Skip to main content

Autonomous task-based grasping for mobile manipulators

Resource type
Thesis type
(Thesis) Ph.D.
Date created
A fully integrated grasping system for a mobile manipulator to grasp an unknown object of interest (OI) in an unknown environment is presented. The system autonomously scans its environment, models the OI, plans and executes a grasp, while taking into account base pose uncertainty and obstacles in its way to reach the object. Due to inherent line of sight limitations in sensing, a single scan of the OI often does not reveal enough information to complete grasp analysis; as a result, our system autonomously builds a model of an object via multiple scans from different locations until a grasp can be performed. A volumetric next-best-view (NBV) algorithm is used to model an arbitrary object and terminates modelling when grasp poses are discovered on a partially observed object. Two key sets of experiments are presented: i) modelling and registration error in the OI point cloud model is reduced by selecting viewpoints with more scan overlap, and ii) model construction and grasps are successfully achieved while experiencing base pose uncertainty. A generalized algorithm is presented to discover grasp pose solutions for multiple grasp types for a multi-fingered mechanical gripper using sensed point clouds. The algorithm introduces two key ideas: 1) a histogram of finger contact normals is used to represent a grasp "shape" to guide a gripper orientation search in a histogram of object(s) surface normals, and 2) voxel grid representations of gripper and object(s) are cross-correlated to match finger contact points, i.e. grasp "size", to discover a grasp pose. Constraints, such as collisions with neighbouring objects, are incorporated in the cross-correlation computation. Simulations and preliminary experiments show that 1) grasp poses for three grasp types are found in near real-time, 2) grasp pose solutions are consistent with respect to voxel resolution changes for both partial and complete point cloud scans, 3) a planned grasp pose is executed with a mechanical gripper, and 4) grasp overlap is presented as a feature to identify regions on a partial object model ideal for object transfer or securing an object.
Copyright statement
Copyright is held by the author(s).
This thesis may be printed or downloaded for non-commercial research and scholarly purposes.
Supervisor or Senior Supervisor
Thesis advisor: Gupta, Kamal
Thesis advisor: Mehrandezh, Mehran
Member of collection
Download file Size
input_data\21184\etd21302.pdf 5.26 MB

Views & downloads - as of June 2023

Views: 46
Downloads: 2