Skip to main content

Multi-robot rearrangement in large-scale warehouses

Resource type
Thesis type
(Thesis) M.Sc.
Date created
2023-08-01
Authors/Contributors
Abstract
We introduce a new problem formulation, Double-Deck Multi-Agent Pickup and Delivery (DD-MAPD), which models the multi-robot shelf rearrangement problem in automated warehouses. DD-MAPD extends both Multi-Agent Pickup and Delivery (MAPD) and Multi-Agent Path Finding (MAPF) by allowing agents to move beneath shelves or lift and deliver a shelf to an arbitrary location, thereby changing the warehouse layout. We show that solving DD-MAPD is NP-hard. To tackle DD-MAPD, we propose MAPF-DECOMP, an algorithmic framework that decomposes a DD-MAPD instance into a MAPF instance for coordinating shelf trajectories and a subsequent MAPD instance with task dependencies for computing paths for agents. We also present an optimization technique to improve the performance of MAPF-DECOMP and demonstrate how to make MAPF-DECOMP complete for well-formed DD-MAPD instances, a realistic subclass of DD-MAPD instances. Our experimental results demonstrate the efficiency and effectiveness of MAPF-DECOMP, with the ability to compute high-quality solutions for large-scale instances with over one thousand shelves and hundreds of agents in just minutes of runtime.
Document
Extent
33 pages.
Identifier
etd22636
Copyright statement
Copyright is held by the author(s).
Permissions
This thesis may be printed or downloaded for non-commercial research and scholarly purposes.
Supervisor or Senior Supervisor
Thesis advisor: Ma, Hang
Language
English
Member of collection
Download file Size
etd22636.pdf 1.87 MB

Views & downloads - as of June 2023

Views: 41
Downloads: 0