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Abstract

We introduce a new problem formulation, Double-Deck Multi-Agent Pickup and Delivery
(DD-MAPD), which models the multi-robot shelf rearrangement problem in automated
warehouses. DD-MAPD extends both Multi-Agent Pickup and Delivery (MAPD) and Multi-
Agent Path Finding (MAPF) by allowing agents to move beneath shelves or lift and deliver a
shelf to an arbitrary location, thereby changing the warehouse layout. We show that solving
DD-MAPD is NP-hard. To tackle DD-MAPD, we propose MAPF-DECOMP, an algorithmic
framework that decomposes a DD-MAPD instance into a MAPF instance for coordinating
shelf trajectories and a subsequent MAPD instance with task dependencies for computing
paths for agents. We also present an optimization technique to improve the performance
of MAPF-DECOMP and demonstrate how to make MAPF-DECOMP complete for well-
formed DD-MAPD instances, a realistic subclass of DD-MAPD instances. Our experimental
results demonstrate the efficiency and effectiveness of MAPF-DECOMP, with the ability to
compute high-quality solutions for large-scale instances with over one thousand shelves and
hundreds of agents in just minutes of runtime.

Keywords: Multi-Robot Systems, Path Planning for Multiple Mobile Robots or Agents,
Task Planning
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Chapter 1

Introduction

The real-world applications of multi-robot systems often require coordination between mul-
tiple agents to rearrange objects in shared environments. Warehouse robots in fulfillment
centers, such as those described in [38], are one such example where agents are utilized
to relocate inventory shelves. In these scenarios, it is crucial for agents to avoid collisions
with each other and with the objects they are relocating. Other instances of multi-agent
object transportation problems include automated container relocation and 3D automated
warehouse fulfillment, where the objects can be manipulated and moved by agents. In these
cases, it is imperative to prevent collisions between both agents and objects.

Much research has been done on the topic of multi-robot rearrangement of inventory
shelves in automated warehouses, with a focus on the simplified Multi-Agent Path Finding
(MAPF) problem [32]. In MAPF, each agent must move from its predefined start location
to its predefined goal location quickly without colliding with others. Multi-Agent Pickup
and Delivery (MAPD) [23] extends MAPF to a more realistic setting where there are more
tasks than agents. In MAPD, each task has a predefined pickup location and a predefined
delivery location. Each agent needs to get assigned a task and complete it by moving first
to its pickup location and then to its delivery location. Task assignment and path finding
are repeated until all tasks are completed. While MAPD is more practical for rearranging
shelves than MAPF, it assumes a fixed storage layout for shelves and that shelves can only
be picked up and delivered to designated locations. MAPD algorithms do not coordinate
shelf movement explicitly, making them impossible to solve problems such as exchanging
the locations of two shelves using a single agent.

Therefore, we introduce a novel problem formulation, Double-Deck Multi-Agent Pickup
and Delivery (DD-MAPD), which extends the existing MAPF and MAPD techniques toward
practical large-scale real-world warehouse autonomy. DD-MAPD addresses the multi-robot
shelf rearrangement problem by allowing agents to either move beneath shelves or lift, carry,
and place shelves at new locations. The name “Double-Deck” reflects the requirement to
avoid collisions on two levels: on the high level, between shelves when they are being carried
by agents, and on the low level, between agents themselves. The problem of DD-MAPD is

1



Figure 1.1: The typical layout of a fulfillment center [38].

to task N agents with moving M shelves from their given pickup locations to their given
delivery locations, thereby changing the overall arrangement of the shelves.

From a practical perspective, the problem formulation of DD-MAPD enables the use of
robots to dynamically adapt warehouse layouts in response to changing product demands.
As shown in Figure 1, a typical layout of an Amazon fulfillment center features green cells
representing designated storage locations for shelves, which are arranged in 4×7 blocks, each
consisting of 10 × 2 storage locations. DD-MAPD allows for the creation of solutions that
utilize various numbers of agents to efficiently (re)arrange shelves, such as those that are
less frequently requested, into dense configurations or selectively “dig out” desired shelves
from densely packed blocks by moving other shelves out of the way. This approach can
significantly reduce land usage, ultimately reducing the cost of an automated warehouse.

1.1 Contributions

We propose a novel problem formulation, DD-MAPD, to model the multi-robot shelf re-
arrangement problem in a warehouse. Theoretically, our work generalizes existing inap-
proximability and NP-hardness results of MAPD to DD-MAPD and establishes a set of
sufficient conditions, namely well-formedness, for solvability. Our main contribution is a
new algorithmic framework, MAPF-DECOMP, which solves a DD-MAPD instance with N

agents and M shelves by decomposing it into an M -agent MAPF instance, followed by a
subsequent N -agent MAPD instance with task dependencies—an extension to MAPD that
has received limited attention thus far. MAPF-DECOMP first solves the MAPF instance
to plan collision-free trajectories for the shelves. It then converts the computed shelf tra-
jectories into tasks and solves the N -agent MAPD instance to assign tasks and plan paths
for the agents to complete all the tasks. This decomposition has a two-fold advantage.
Firstly, it enables better scalability by reducing the state space and number of agents in the
planning problem of N ×M agent-shelf pairs. Secondly, it leverages the advancements of
off-the-shelf MAPF solvers to speed up DD-MAPD solving. We also propose an optimiza-
tion technique to improve the effectiveness of MAPF-DECOMP and a variant of it that
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solves all well-formed DD-MAPD instances, a realistic subclass of DD-MAPD instances.
Our experimental results show that MAPF-DECOMP can compute high-quality solutions
for up to 1,843 shelves and 400 agents in minutes.
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Chapter 2

Related Work

2.1 Single-Agent Path Finding

Single-agent path finding problem is an alias of single-source shortest path problem, where
an agent is inside a graph G = (V, E), whose vertices V represent locations and edges E

represent the connection between these locations that the agent can move along. The agent
has a start location and a goal location. The required solution is a shortest path from the
start location to the goal one. It is optimally solvable with polynomial algorithms such as
Dijkstra algorithm, and search-based algorithms such as A*.

2.1.1 A*

A* is a path search algorithm, which is used in many fields of computer science due to
its completeness, optimality, and optimal efficiency[30]. A priority queue, named OPEN is
used to save vertices, also called search nodes during the search. Its pop function returns
the node n with the minimum f-value: f(n) = g(n) + h(n), where g(n) is the cost of the
path from the start location to this vertex and h(n) is a heuristics function that estimates
the minimum cost from this vertex to the goal location.

OPEN is initialized with only the start location. Then at each iteration, A* first pops
the node with the minimum f-value from the OPEN . Next, this node is expanded to
generate new nodes with its neighbor vertices. Lastly, new nodes are pushed into OPEN .
Here neighbor vertices are ones that have a directed edge in G linked from the previous
vertex. Finally, when the goal location is popped from OPEN , the shortest path’s length
is the g-value of the goal location’s search node(the h-value of the goal location is usually
0).

With an admissible heuristics function, which means it never overestimates the cost, A*
is guaranteed to return a shortest path from start to goal.
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2.2 Multi-Agent Path Finding

The multi-agent path finding(MAPF) problem is a generalization of single-agent path find-
ing, and its goal is to find collision-free paths for multi agents. Each agent is assigned a
start location and a goal location. Time is discrete and for each timestep, an agent can move
either to an adjacent vertex or wait at its current vertex. One set of collision-free paths is
a solution if and only if all agents are at their start locations at first and are at their goal
locations at the end. The completion time of an agent is the earliest timestep when the
agent has arrived its goal location and stopped moving. The quality of a solution is usually
measured by flowtime, which is the sum of agents’ completion time, or makespan, which is
the maximum of agents’ completion time.

There are two kinds of conflicts leading to collisions: vertex conflict and edge conflict.
A vertex conflict happens when two agents are at the same vertex at the same timestep.
An edge conflict happens when two agents are moving to each other’s current vertex during
the same timestep.

MAPF is NP-hard to solve optimally [40, 33] on general graphs, planar graphs [39], and
even 2D 4-neighbor grids [2]. Recent MAPF solvers include reduction-based [14, 34, 8, 9],
rule-based [28], and search-based [31, 37, 19, 18] methods.

2.2.1 Space-Time A*

Space-time A* is a single-agent path finding algorithm used by many MAPF solvers. Space-
Time A* includes one pair of vertex and time into its search node. Node ⟨v, t + 1⟩ can
be generated from ⟨u, t⟩ when u = v or there is a directed edge from u to v in the map.
Space-time A* can meet the requirements of MAPF solvers. Firstly, it can generate a time-
minimal path, which is related to the quality of a MAPF solution. Secondly, it can add
constraints before the search, prohibiting the agent from moving into one specific location
at some specific timestep(s), to avoid collisions with other agents.

2.2.2 Prioritized Planning

Prioritized planning(PP)[6] is a basic but efficient solver for MAPF. It simply assigns priority
to agents, and plans each agent individually one after one, instead of planning multi agents
simultaneously. Each time one agent plans its path with space-time A* so that the path is
time-minimal and does not have collisions with former agents that are already planned.

PP avoids collision by transferring former agents’ paths into constraints before starting
the space-time A* search. There are three kinds of constraints from former agents: vertex
constraints, edge constraints, and goal constraints. Vertex constraints and edge constraints
are set to avoid vertex conflicts and edge conflicts, preventing the agent either from being at
some vertex or moving from one specified vertex to another specified one, at some timestep.
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Goal constraints prohibit the agent from moving into any former agents’ goal locations after
these agents arrive at their goal locations.

Although prioritized planning is a suboptimal algorithm with no suboptimality guar-
antee, it is very efficient. It is also complete in solving well-formed MAPF instances[26].
Well-formed MAPF instances are practical instances with the map that is connected even
after all the start and goal locations are removed from the map. Therefore each agent can
stay indefinitely at its start location or goal location without blocking any other agents.

2.2.3 Push and Swap

The push and swap algorithm[21] is a MAPF solver that can solve most instances. The only
requirement is that the map should have at least two unoccupied vertices. The algorithm
first assigns priority to agents. Then iteratively, the algorithm chooses an agent and plans
its path, any shortest one, to its goal location. When this agent is moving along the path,
another agent may block its way. If the blocking agent is with lower priority, the blocking
agent will be ’pushed’ away along one shortest path to an unoccupied vertex. If it is with
higher priority, a ’swap’ operation will be executed by making use of the unoccupied vertex,
to exchange the location of these two agents. Then the blocking agent will return to its
original location and the moving agent can also continue to move.

2.2.4 Conflict-Based Search

Conflict-based search(CBS)[31] is an essential algorithm in MAPF literature. It is complete
and optimal. Some later optimizations make it even more efficient and practical.

CBS is a two-level algorithm and both the high-level and low-level are A*-based. The
low-level algorithm, usually space-time A*, plans the path for single agent. Algorithm 1
shows that for high-level, it generates the first search node by planning each agent’s shortest
path individually with the low-level algorithm. Then at each iteration, it selects the node
from OPEN with the minimum f-value, which is the flowtime. There would probably be
conflicts between agents’ paths of this node, otherwise, the solution is found. CBS then
generates two new search nodes with the two agents involved in the first conflict. For each
new node, a new constraint is added to avoid that conflict and the low-level will replan
the path of the agent considering all constraints on it. The f-value of new nodes is updated
accordingly and pushed into OPEN .

Optimizations surrounding CBS is an active research field and recent literature are
making optimizations such as classifying conflicts[4], utilizing better heuristics[7], adding
accurate constraints[17], considering agent priorities[26], identifying difficult conflicts[16],
and applying neighborhood search on solutions[15].
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Algorithm 1: CBS
1 R.constraints ← ∅;
2 R.solution ← find individual paths by LowLevel();
3 R.f ← FlowTime(R.solution);
4 insert R to OPEN ;
5 while OPEN ̸= ∅ do
6 P ← node with minimum f from OPEN;
7 if P has no conflict then
8 return P.solution;
9 C ← first conflict (ai , aj , v, t) in P.solution;

10 foreach agent ai in C do
11 A← new node;
12 A.constraints ← P.constraints + (ai , v, t);
13 A.solution ← P.solution;
14 Update A.solution by invoking LowLevel(ai);
15 A.f ← FlowTime(A.solution);
16 insert A to OPEN ;

2.2.5 Explicit Estimation Conflict-Based Search

Explicit estimation conflict-based search(EECBS)[19] replaces CBS’s high level from A*
into Explicit Estimation search(EES), to provide a bounded-suboptimal solution of MAPF
instance while still guaranteeing completeness. With a proper suboptimality setting, EECBS
can generate an acceptable solution faster.

EES maintains three lists during the search: CLEANUP , OPEN , and FOCAL. Firstly,
CLEANUP is the priority queue used in regular A*, with a regular admissible heuristic h,
and f(n) = g(n) + h(n). OPEN is another priority queue with a potentially inadmissible
heuristic h, and f ′(n) = g(n) + h′(n). FOCAL saves the nodes n in OPEN satisfying
f(n) ≤ wf ′(bestf ′), where w is the suboptimality, and is sorted by h′(n). Each time the
high-level selects the best node bestd in FOCAL only if f(bestd) ≤ wf(bestf ). Otherwise
it selects the best node bestf ′ in OPEN only if f(bestf ′) ≤ wf(bestf ). Otherwise, lastly, it
selects the best node bestf in CLEANUP and in the next round the lower bound wf(bestf

is thus increased, allowing it to consider bestd or bestf ′ .

2.3 Multi-agent pickup and delivery

Multi-agent pickup and delivery(MAPD) is a generalization of MAPF. It decouples agents
and tasks. One agent has a start location. One task is with a pair of pickup location and
delivery location, and a start time which is the timestep when it can start to be executed.
A task is executed when an agent picks the task’s pickup location, and delivers it to its
delivery location. One agent can only execute one task at the same time and cannot change
its task before the current one has been executed. Similar to MAPF, the solution of MAPD
is a set of agents’ paths, and the quality of it is measured by the service time, which is the
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average time between one task’s start timestep and its executed timestep. It can also be
measured by makespan, which is the earliest timestep that all tasks are executed. MAPD
is more complex than MAPF and is also NP-hard to solve optimally[25].

Existing MAPD algorithms [23, 20] decompose a MAPD instance into a sequence of
task-assignment and MAPF instances. They assign tasks and plan paths for the agents
whenever there is a change in the system, such as agents finishing tasks or new tasks being
added.

MAPD problems for tasks with temporal constraints [27] or predefined dependencies [5]
have also been studied. However, these problems do not model shelves as movable objects
that occupy locations, which is necessary for shelf rearrangements.

2.3.1 Multi-Label A*

Multi-label A*(MLA*)[10],an extension of space-time A*, is designed for the low level search
of CBS-based MAPD solvers. It considers that in MAPD, an agent needs firstly move to
one task’s pickup location and then to its delivery location. It takes both destinations into
account during one search procedure and thus optimizes paths more globally and accurately.
Otherwise, if regular space-time A* is used, it needs calculate twice since there are two paths,
and the concatenation of two optimal paths may not be optimal.

2.3.2 CENTRAL

CENTRAL[23] is a complete algorithm for solving well-formed MAPD, a practical subclass
of MAPD. It iterates the timestep and for each timestep, it assigns distinct target locations,
which can be either tasks’ pickup locations or safe parking locations, to agents. Then it calls
CBS to plan agents to their target locations, firstly for agents whose target locations are
pickup locations and secondly for agents assigned parking locations.

2.3.3 TA-hybrid

TA-hybrid[20] is also a complete algorithm for well-formed MAPD. Its task assignment
procedures are similar to CENTRAL, while it proposed to use dummy paths during path
planning. For agents assigned with pickup locations, they are planned with the path from
their current locations, via the pickup locations to their safe parking locations, by replacing
CBS’s low-level with MLA*. And such paths are called dummy paths because agents will
usually be assigned delivery locations after reaching pickup locations and their paths will
be re-planned. The usage of the dummy path improves the algorithm performance and
guarantees the completeness.
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2.3.4 Goal Sequencing and Configurable Environments

Recent studies [35, 41, 29] have explored MAPF variants where each agent must visit mul-
tiple goals and computes the order in which it visits the goals. DD-MAPD also requires
sequencing tasks, but the task locations must be computed dynamically. [3] studies a MAPF
variant where the warehouse layout can be changed by a blackbox, but DD-MAPD requires
computing a plan for agents to change the warehouse layout.

2.3.5 Plan Execution

MAPF and MAPD plans can be executed by real robots, using a dependency graph that
respects the precedence constraints [12]. The plan execution is guaranteed to be collision-
free, even with unmodeled kinematic constraints [11] or delay uncertainties [22]. Unlike our
proposed framework for solving DD-MAPD, each agent has its own path in the computed
plan and cannot execute other paths.

9



Chapter 3

Problem Definition

A DD-MAPD instance consists of N agents a1, . . . , aN , M shelves s1, . . . , sM , and a con-
nected directed graph G = (V, E), whose vertices V represent locations and edges E repre-
sent the connections between these locations that the agents can move along. We consider
only interesting DD-MAPD instances where M ≥ N since, otherwise, one can use N = M

agents to each carry a unique shelf.
Let πi(t) denote the location of agent ai at timestep t. Each agent ai starts at its start

location at timestep 0 and moves to an adjacent location or waits in its current location
at each timestep. Each shelf sj starts in its pickup location pj at timestep 0 and is given
a delivery location dj . If a shelf sj does not need to be relocated, then pj = dj . An agent
can move beneath a shelf when not carrying any shelf, and it can lift a shelf when it is
in the same location as the shelf, carry the shelf from then on, and place (put down) the
shelf when it arrives in another location. Agents are active when they are carrying shelves,
and free when they are not. We assume that the time required to perform a lift or place
action is 0, but our framework can easily be generalized to accommodate lift and place
actions with non-zero time costs. Let ηj(t) denote the location of shelf sj at timestep t.
Shelves can only move when carried by agents. There should be no collisions either between
agents (on the virtual low-level deck) or between shelves (on the virtual high-level deck). A
vertex collision between agents ai and ai′ occurs iff πi(t) = πi′(t); an edge collision occurs iff
πi(t) = πi′(t + 1) and πi(t + 1) = πi′(t). Similarly, a vertex collision between shelves sj and
sj′ occurs iff ηj(t) = ηj′(t); an edge collision occurs iff ηj(t) = ηj′(t+1) and ηj(t+1) = ηj′(t).

The problem of DD-MAPD aims to compute collision-free paths for the agents to trans-
port all shelves from their pickup locations to their delivery locations. The completion time
of agent ai is the earliest timestep when the agent has arrived in the last location of its
path and stopped moving. We use two metrics to measure the effectiveness of a DD-MAPD
algorithm: the makespan, defined as the maximum of the completion times of all agents,
and the flowtime, defined as the sum of the completion times of all agents.

We use the DD-MAPD instance shown in Figure 3.1 as our running example. Figure 3.1
(Top) demonstrates a solution with makespan 7 and flowtime 14 (= 7 + 7).
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Figure 3.1: Example DD-MAPD instance with two agents and four shelves on a 2D 4-
neighbor grid. Shelves s2 and s3 need to be relocated to the orange and green cells, respec-
tively. Other shelves do not need to be relocated. Top: Locations of agents and shelves at
each timestep. Bottom: Shelf trajectories and the resulting dependency graph.
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Chapter 4

Complexity and Solvability

We now generalize existing complexity results for MAPD to DD-MAPD and identify suffi-
cient conditions that make DD-MAPD instances solvable.

4.1 Complexity

We first show a constant-factor inapproximability result for DD-MAPD with respect to
makespan minimization by reusing the reduction [25] from the NP-complete ≤3,=3-SAT
problem [36] to MAPD, similar to that for MAPF [24]. The reduction in [25] proves that for
any ϵ > 0, it is NP-hard to find a (4/3 − ϵ) approximate solution to MAPD for makespan
minimization.
Theorem 1. For any ϵ > 0, it is NP-hard to find a (4/3 − ϵ)-approximate solution to
DD-MAPD for makespan minimization.
Proof Sketch. We use the same reduction as that used in the proof of Theorem 4.5 in [25]
to construct a DD-MAPD instance with M = N = 2N +M shelves and agents for a given
≤3,=3-SAT instance with N variables andM clauses. The arguments for MAPD still hold
for DD-MAPD since each constructed agent carries only its corresponding constructed shelf.
The constructed DD-MAPD instance has a solution with makespan three iff the ≤3,=3-SAT
instance is satisfiable, and always has a solution with makespan four, even if the ≤3,=3-SAT
instance is unsatisfiable.

The constructed DD-MAPD instance in the above proof has the property that the com-
pletion time of each agent is at least three. Therefore, if the makespan is three, then every
agent completes in exactly three timesteps, and the flowtime is 3N (= 3(2N +M)). More-
over, if the makespan exceeds three, then the flowtime exceeds 3M , yielding the following
corollary:
Corollary 2. It is NP-hard to find an optimal solution to DD-MAPD for flowtime mini-
mization.
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4.2 Baseline Complete Algorithm for Well-Formed Instances

We characterize a subclass of solvable DD-MAPD instances, called well-formed DD-MAPD
instance, that generalize well-formed MAPD instances [23], even though we often need
to solve non-well-formed DD-MAPD instances in practice. We first define that a MAPF
solution for shelves (by treating shelves as agents that can move by themselves) is 1-robust
[1] iff, at any time step, a shelf is not allowed to (move to and) occupy a location at the
next time step if the location is currently occupied. We note that the requirement for the
existence of a 1-robust MAPF solution is not overly restrictive in practice since a sufficient
condition for it is that at least two vertices of the MAPF graph are unoccupied [21].
Definition 1 (Well-formedness and safe 1-robustness). A DD-MAPD instance is well-
formed iff all agents start at different locations, graph G remains connected if the start
locations of any N − 1 agents are removed, and there exists a safe 1-robust MAPF solution
for shelves, defined as one that does not use the start location of any agent.

We then sketch a baseline algorithm that is complete for all well-formed DD-MAPD
instances as follows: It first generates trajectories for all shelves by computing a safe 1-robust
MAPF solution for them; It then uses any single agent to execute all shelf trajectories in
locked steps, namely proceeding to the next step only after executing one step of the MAPF
solution for all shelves, while letting all other agents wait at their start locations. It is a
straightforward observation that all well-formed DD-MAPD instances are solvable, and this
baseline algorithm solves all of them. Our framework, MAPF-DECOMP, is similar to this
baseline algorithm in that it first computes the shelf trajectories, but it differs in that it
utilizes multiple agents to execute them.
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Chapter 5

MAPF-DECOMP

Algorithm 2 shows the pseudocode of MAPF-DECOMP. The algorithm starts by calling
a MAPF solver to compute collision-free trajectories τ for all shelves from their pickup
locations to delivery locations [Line 1]. These trajectories represent the intended path for
each shelf, but the actual path of each shelf is executed by the agents. To distinguish the
trajectories from the actual paths of the shelves or agents, we refer to τ as trajectories.1

Next, MAPF-DECOMP converts the trajectories into a dependency graph that implicitly
partitions each trajectory into segments [Line 2]. Each segment represents a portion of the
trajectory that can be executed by an agent by carrying the shelf and following the segment.
Finally, MAPF-DECOMP solves a specialized MAPD instance with task dependencies by
assigning shelves (segments) to agents and planning paths for them to complete all exe-
cutable segments at each timestep where an agent changes from active to free or vice versa,
while respecting the dependencies between segments [Lines 3-11]. Unlike existing MAPD
algorithms, MAPF-DECOMP does not plan paths for active agents but lets them follow
the planned trajectories of the shelves they carry. The paths of active agents are thus the
unexecuted portion of the trajectories.

To solve the specialized MAPD instance resulting from the dependency graph, MAPF-
DECOMP maintains the current state of each agent ai in the variable Statesi that consists
of two attributes: Statesi.type is either free or active and initially set to free; Statesi.shelf
is the shelf assigned to agent ai and initially set to null [Line 4]. In addition, each shelf
sj is assigned a step sj .step = k, which represents its current location τj(k) according to
its trajectory τj . The step sj .step is initially set to 0, corresponding to the pickup location
τj(0) = pj [Line 6]. We recall that a shelf is completed if it has arrived at its delivery
location and remains there. At each timestep where there are uncompleted shelves, MAPF-
DECOMP updates the states of all agents based on the dependency graph and the steps

1This thesis adopts a non-standard use of the terms “paths” and “trajectories” by reversing their con-
ventional definitions. The purpose of this is to maintain consistency with the usage of “paths” in the MAPF
literature, whereas in robotics, a “trajectory” typically refers to the path/executed followed by an agent as
a function of time.
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Algorithm 2: MAPF-DECOMP
1 τ ← trajectories of shelves by MAPF;
2 G = (V, E)← BuildDep();
3 foreach agent ai do
4 Statesi .type ← free, Statesi .shelf ← null;
5 foreach shelf sj do
6 Stepsj ← 0 ;
7 while there are uncompleted shelves do
8 Update(States,G);
9 if States has changed then

10 FreePaths ← AssignAndPlan(States);
11 System proceeds to the next timestep;
12 Move(States, τ, FreePaths);

Algorithm 3: BuildDep(τ,G)
1 foreach vertex pairs τj(k), τj′(k ′) in τ with k > k ′ do
2 if j ̸= j ′ and τj(k) = τj′(k ′) then
3 AddEdge(τj(k), τj′(k ′ + 1 ));

of all shelves [Line 8]. If any agent changes its state, MAPF-DECOMP (re)assigns shelves
or safe locations to free agents and calls a MAPF solver to compute collision-free paths
for them to reach their assigned destinations [Line 10]. The algorithm then proceeds to the
next timestep and moves all agents and the shelves they carry to their next locations [Lines
11-12].

5.1 Building Dependency Graph

Given the trajectories τ as the result of calling a MAPF solver, MAPF-DECOMP calls
Function BuildDep() to construct a dependency graph. The trajectories τ define a total order
on their entries τj(k), which the dependency graph relaxes to a partial order. The resulting
dependency graph G = (V, E) is a directed graph whose vertices V are the trajectories
entries τj(k). For all j, j′, k, k′ with j ̸= j′, k > k′, and location τj(k) = τj′(k′), an edge
⟨τj(k), τj′(k′ + 1)⟩ exists, which represents that shelf sj should be in step k, namely the
location specified by τj(k) (that follows τj(k), which specifies the same location as τj′(k′)),
no earlier than shelf sj′ is in step k′ + 1, namely the location specified τj′(k′ + 1). That is,
whether an agent is allowed to execute the segment starting from step k or not depends on
whether shelf sj′ has been in step k′ + 1. By construction, cycles can only exist for entries
τj(k) with the same step k. The above construction of the dependency graph is similar to the
one used in the previous work [11, 22] and guarantees that the execution of the collision-free
trajectories of the shelves is also collision-free. It differs from the one used in the previous
work in not constructing edges between entries of the same trajectory. Figure 3.1 shows
the dependency graph for our running example and Figure 5.1 shows how the dependency
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Figure 5.1: Usage of the dependency graph

graph constrains the movement of shelves: In timestep 3, there is an edge directed from
τ2(1) to τ1(1), prohibiting s2 from executing its next movement, which is moving left. And
in timestep 4, since s1 is moved for one step, the edge is removed and s2 can move in the
following timesteps.

5.2 Updating Agent States

At each timestep, MAPF-DECOMP calls Function Update() to update the states of agents.
Update() serves three purposes: (1) It checks whether a free agent located at its assigned
shelf’s location can execute the shelf’s trajectory. (2) It verifies if an active agent can continue
executing the trajectory of its assigned shelf or if the shelf’s trajectory is completed. (3)
If the shelf trajectories are not 1-robust, the function checks whether the next trajectory
entries of the assigned shelves of multiple agents form a cycle or path and whether the
shelves can be executed simultaneously.

We define a (simple) path on G as a sequence of vertices that has an outgoing edge from
each vertex in the sequence to its successor in the sequence, with no repeated vertices and
edges. We define a (simple) cycle on G as a (simple) path except that the first and last
vertices are the same.

Algorithm 4 shows the pseudocode of Update(). Asc is the set of possible agents whose
assigned shelves have dependencies that might be released simultaneously in the next step.
Asc is set to empty initially [Line 1]. For each agent ai, numDeps stores the number of
dependencies of the next step of its assigned shelf sj [Line 4]. If numDeps = 1, let the only
dependency be ⟨τj(sj .step + 1), τj′(k′ + 1)⟩ (with τj(sj .step + 1 ) = τj′(k ′) and step + 1 > k′).
In this case, Function SoftDep() returns true iff Stepsj′ = k ′ (namely, shelf sj′ is in step k′

that specifies the same location as the next step of shelf sj) and stores the result in the
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Algorithm 4: Update(States,G)
1 Asc ← ∅;
2 foreach agent ai do
3 sj ← Statesi .shelf ;
4 numDeps ← |outgoing edges of τj(sj .step + 1) in G| ;
5 isSoftDep ← numDeps = 1 ? SoftDep(Statesi .shelf ,G) : false;
6 if Statesi .type = free and agent ai at the same location as Statesi .shelf then
7 if isSoftDep then
8 Asc ← Asc ∪ ai ;
9 else if numDeps ≥ 1 then

10 Statesi .shelf ← null;
11 else
12 Statesi .type ← active;

13 else if Statesi .type = active then
14 if Statesi .shelf is completed then
15 Statesi .shelf ← null;
16 Statesi .type ← free;
17 else if isSoftDep then
18 Asc ← Asc ∪ ai ;
19 else if numDeps ≥ 1 then
20 Statesi .shelf ← null;
21 Statesi .type ← free;

22 AnoMove ← FindNoMove(Asc);
23 foreach agent ai ∈ Asc do
24 if ai ∈ AnoMove then
25 Statesi .shelf ← null;
26 Statesi .type ← free;
27 else
28 Statesi .type ← active;

Boolean variable isSoftDep. In this case, we say that shelf sj is softly constrained, or has a
soft dependency, because both shelves sj and sj′ can move one step forward simultaneously,
which includes cases where τj(sj .step + 1) and τj′(k′ + 1) are in a cycle or path. For each
free agent ai that is in the same location as its assigned shelf [Line 6], if the shelf has a soft
dependency, then agent ai is added to Asc [Lines 7-8]. Otherwise, if the shelf has depen-
dencies (that are thus hard), then it is unassigned from agent ai [Lines 9-10]. Otherwise,
the shelf has no dependency, and agent ai changes from free to active and starts executing
the trajectory of the shelf [Lines 11-12]. All other free agents do not change their states
(remain free). For each active agent ai, if its assigned shelf is completed, then the shelf is
unassigned from it, and it changes from active to free [Lines 13-16]. Otherwise, if the shelf
has a soft dependency, then agent ai is added to Asc [Lines 17-18]. Otherwise, if the shelf
has dependencies (that are thus hard), then it is unassigned from agent ai, and the agent
changes from active to free [Lines 19-21]. All other active agents do not change their states
and continue executing the trajectories of the shelves they carry.

17



Function Update() then calls the procedure FindNoMove() to identify the set AnoMove

of any agents in Asc that cannot move to the locations specified by the next step of the
trajectories of their assigned shelves. We recall that each such shelf sj is softly constrained,
namely, its next trajectory entry depends on the next trajectory entry of another shelf sj′

(not necessarily assigned to an agent in Asc) and it can thus move one step only no earlier
than shelf sj′ has moved one step. FindNoMove() considers the subgraph Gsc of G induced
by the next trajectory entries of shelves assigned to all agents in Asc. Each such trajectory
entry is in either a cycle or a path on Gsc since it has one outgoing edge in Gsc except for
the case that it is the last vertex on some path and its (only) outgoing edge in G points
to a trajectory entry of some shelf sj′ that is not assigned to any agent in Asc (the edge
thus does not belong to Gsc). In this case, if shelf sj′ is assigned to either a free agent (not
in Asc) or no agent at all, then the outgoing edge (dependency) is not released since shelf
sj′ is not carried by any agent, The shelves with their next trajectory entries on this path
cannot move, and the agents that they are assigned to are thus added to AnoMove.

5.3 Shelf Assignment and Path Planning

MAPF-DECOMP calls Function AssignAndPlan() if Update() changes an agent’s type from
free to active or from active to free and unassigns its assigned shelf. AssignAndPlan() then
assigns executable shelves, namely ones that are not constrained at their current steps, to
free agents and plan their paths, unless the shelves are already carried by active agents. The
function operates in multiple rounds, with the aim of making more shelves executable in
each subsequent round, as constraints are lifted by the paths planned in the previous round.
To do so, AssignAndPlan() procedure follows these steps in each round: (1) It constructs a
candidate set of unassigned and executable shelves. (2) If no such shelves exist, the function
simulates Function Move() that lets all agents (including the free agents that got assigned
shelves in the previous rounds and all active agents) follow their paths. During simulation,
each shelf moves together with its assigned active agent until it reaches a hard dependency in
its next trajectory entry. AssignAndPlan() then identifies any newly executable unassigned
shelves and adds them to the candidate set. (3) If no such shelves become executable
from the simulation, the function identifies all unassigned shelves whose next trajectory
entries form a cycle in G and adds them to the candidate set since they can be executed
simultaneously. Once the candidate set consists of one or more shelves, AssignAndPlan()
calls the Hungarian algorithm [13] to find a minimal-cost assignment of shelves to free
agents and plans their paths. The cost of assigning a shelf to an agent is calculated as the
maximum of the shortest-path distance between the agent and the shelf and the timestep
when the shelf first becomes executable. AssignAndPlan() then calls a MAPF solver to
compute paths for these agents from their current locations to the current locations of their
assigned shelves, avoiding collision with paths of active agents and any paths of free agents
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Algorithm 5: Move(States, τ, FreePaths)
1 foreach agent ai do
2 if Statesi .type = active then
3 sj ← Statesi .shelf ;
4 Update the location of ai and sj according to τj ;
5 sj .step ← sj .step + 1 ;
6 Remove incoming edges of τj(sj .step) from G;
7 else
8 Update the location of ai according to FreePathsi ;

already planned in the previous rounds. When all executable shelves have been assigned, for
each free agent that remains unassigned, the function assigns it a unique location closest to
it and not on any active agent’s path. The function then calls a MAPF solver to compute
paths for these unassigned agents, avoiding collisions with the paths of all other agents.

5.4 Moving Agents and Shelves

When the system proceeds to the next timestep, MAPF-DECOMP calls Function Move()
to move agents and shelves one step forward. Algorithm 5 shows the pseudocode of Move().
Each active agent ai and the shelf it carries move one step according to the trajectory τj

of the shelf [Lines 4-5], which, as a result, releases the dependencies of the corresponding
entry of τj (by removing all incoming edges of the entry from G) [Line 6]. Each free agent
moves one step according to FreePathsi [Line 8].

5.5 Running Example

Figure 3.1 (Top) shows the execution of the shelf trajectories for our running example. For
ease of presentation, we point out only the most insightful details. At timestep 0, a1 and
a2 are assigned s3 and s1 since s2 is not executable in Round 1. At timestep 1, a1 changes
from free to active. At timestep 2, a1 completes s3 and becomes free. In Round 1, only s1

is executable and is assigned to a2. In Round 2, s2 is assigned to a1. At timesteps 4 and 5,
Update() sets a2 to free even though it is in the same location as its assigned shelf s1 since
⟨τ1(2), τ2(2)⟩ is a hard constraint. At timestep 6, Update() adds only a2 to Asc and changes
it to active since ⟨τ1(2), τ2(2)⟩ is a soft constraint.

5.6 Optimization: Involving Future (IVF)

We now present an optimization technique called Involving Future (IVF) that aims to en-
hance the effectiveness of the shelf assignment procedure in MAPF-DECOMP. IVF improves
AssignAndPlan() by considering not only the currently free agents but also those that will
become free in K timesteps for shelf assignment. This allows for a larger pool of agents to
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be considered for shelf assignment, potentially resulting in a better overall assignment. To
achieve this, IVF simulates both Update() and Move() for K iterations and includes active
agents that change to free during the simulation in the shelf assignment and path planning
process. The number of timesteps elapsed when each such agent becomes free is recorded
and added to the shortest-path distance between the agent and any shelf when calculating
the cost of assigning the shelf to the agent.
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Chapter 6

Prioritized Planning (PP) for
Completeness

MAPF-DECOMP is not guaranteed to solve all well-formed DD-MAPD instances due to two
reasons: (1) If the shelf trajectories are not 1-robust, multiple shelves with soft dependencies
may form a cycle (as detailed in Section 5.3), which cannot be resolved if the total number
of agents is smaller than the number of shelves in the cycle. (2) Function AssignAndPlan()
plans paths for free agents to locations different from the start locations of agents, which
does not guarantee collision-free paths from those locations exist.

Thus, we propose a variant of MAPF-DECOMP, MAPF-DECOMP(PP), that is com-
plete for all well-formed DD-MAPD instances. This variant differs from the original in the
following ways: (1) It uses a MAPF solver to compute safe 1-robust shelf trajectories. (2)
In each assignment round, AssignAndPlan() assigns only one shelf from the candidate set
to an agent by selecting the pair with the smallest assignment cost, and then uses a multi-
label A* search [10] to compute a time-minimal path for the agent, avoiding any collisions
with the paths of other agents. The path first moves the agent from its current location to
the current location of the shelf, then follows the trajectory of the shelf without waiting
until the shelf is constrained, and finally moves the agent to its start location. Any free
agent that remains unassigned when all executable shelves have been assigned keeps its
current path that ends in its start location. Therefore, each agent maintains the invariant
that its path always ends in its start location, inspired by the “reserving dummy paths”
deadlock-avoidance technique for MAPD [20].
Theorem 3. MAPF-DECOMP(PP) solves all well-formed DD-MAPD instances.
Proof. Since the dependency graph for 1-robust trajectories is acyclic, Function Assig-
nAndPlan() adds at least one unassigned shelf that is or (in simulation) will become ex-
ecutable to the candidate set and assigns it to a free agent. The multi-label A* search
guarantees to find a collision-free path for the agent to execute the shelf trajectory segment
since such a path always exists. For example, the agent can first follow its old path and wait
at its start location until all other agents have completed their paths and stay at their start
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locations indefinitely. Without passing through the start locations of other agents, the agent
can then move to the current location of its assigned shelf, follow the trajectory of the shelf
without waiting or causing shelf collisions until the shelf is constrained, and finally return
to its start location. Thus, all shelf trajectories will eventually be executed since at least
one additional trajectory segment is assigned and executed each time AssignAndPlan() is
called.
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Chapter 7

Experiments

We conduct our experiments on a 3.1GHz Intel Core i5 laptop with 16GB RAM. We imple-
ment three variants of MAPF-DECOMP: MAPF-DECOMP without the IVF optimization,
MAPF-DECOMP with IVF, and MAPF-DECOMP(PP) (labeled NIVF, IVF, and PP, re-
spectively). They all use EECBS [19] to compute both trajectories for shelves and paths
for agents and are implemented in C++. We adapt EECBS to compute safe 1-robust shelf
trajectories for PP. We label IVF executions that use 1-robust shelf trajectories returned
by EECBS as IVF-R. The suboptimality factor ω of EECBS ranges from 1.2 to 1.8 for dif-
ferent settings to balance the effectiveness and efficiency. We also implement two baseline
algorithms: one that uses a single agent to execute the 1-robust shelf trajectories returned
by EECBS in locked timesteps (labeled BASE), and another that used a single agent to ex-
ecute 1-robust shelf trajectories returned by Push and Swap [21] (labeled PAS). Unlike the
trajectories returned by EECBS, the sequential 1-robust shelf trajectories returned by Push
and Swap often have segments longer than one step, and PAS interprets the trajectories as
a total order on the segments.

7.1 MAPF-DECOMP with IVF

We construct DD-MAPD instances on n × n square 2D 4-neighbor grids of different sizes
(labeled size n) by randomly sampling blocks of 2× 2 cells as pickup locations of shelves
until the pickup locations reach a certain density (percentage of all cells, labeled den). We
sample 0.1 ·n2 shelves from all the shelves as the only ones that need relocation and sample
their delivery locations from non-pickup cells. We randomly sample the start locations of
the agents. We evaluate 50 random instances per setting and report the mean over all solved
instances.
Optimization and numbers of future timesteps. Figure 7.1 and Figure 7.2 show
the results for IVF when different values of K (numbers of future timesteps) are used,
where K = inf means that all active agents are included in the shelf assignment. The
makespan tends to be smaller for larger K. K = inf does not necessarily result in the
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Figure 7.1: Agent time ratios of IVF against NIVF for different K. Legends show grid sizes.

Figure 7.2: Makespan ratios of IVF against NIVF for different K. Legends show grid sizes.

smallest makespan, where the last call of EECBS returns paths for a few agents that are
much longer than for other paths since EECBS optimizes only the flowtime. As K grows,
the runtime excluding shelf trajectory computation (labeled agent time) (1) first drops
since the makespan also drops and fewer calls to EECBS are made and (2) can then go up
since each call to EECBS involves more agents. We use K = 8 for IVF in all the following
experiments to balance the runtime and the effectiveness. IVF (with K > 0) is always more
effective than NIVF due to better shelf assignments as a result of involving more agents.
Grid sizes, agent numbers, and shelf densities. Table 7.1 (Top) shows that IVF solves
all instances in seconds for small numbers of agents and that doubling the number of agents
sometimes increases the flowtime, which sums up the completion times of all agents, but
always reduces the makespan significantly. The agent times are large for large makespans
due to the large numbers of calls of EECBS by AssignAndPlan(). Table 7.1 (Middle) shows
that IVF achieves high success rates (labeled succ) for hundreds of agents and more than
one thousand shelves. The total runtimes remain in a few minutes even though the task-
assignment and path-planning functions must be executed many times for makespans of
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Figure 7.3: Results for IVF (den=20%): flowtime ratios against trajectory flowtimes for 4
agents and different sizes

Figure 7.4: Results for IVF (den=20%): effectiveness for different numbers of agents and
size 24.

thousands of timesteps. Table 7.1 (Bottom) categorizes the reasons for failed instances: (a)
A timeout (1 min) for EECBS to compute shelf trajectories (typically for very large M); (b)
Not enough agents to simultaneously move all shelves in a soft dependency cycle (typically
for large M and small N), which can be addressed by computing a 1-robust MAPF solution
for shelves or using more agents by setting N to be the number of shelves in the largest
cycle; (c) The incompleteness of path planning for free agents in AssignAndPlan() (typically
for very large N), which can be addressed by using deadlock-avoidance techniques if the
given DD-MAPD instance is well-formed.
Effectiveness. Figure 7.3 shows that the flowtime of the shelf trajectories (the sum of all
trajectory lengths), which is a (trivial) lower bound on the flowtime and for which MAPF-
DECOMP does not optimize, consistently contributes to a large portion (≥60%) of the
flowtime across different instance sizes, which indicates that the decomposition and the
execution of the trajectories of our framework are both effective. Figure 7.4 shows that to
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Figure 7.5: Results for IVF (den=20%): time breakdown for different sizes and 8 agents.

execute the same trajectory, as the number of agents increases, the flow time drops for large
numbers of agents and the makespan drops in all cases. This is so because shelves are often
assigned to close-by agents when there are many agents.
Runtime breakdown. Figure 7.5 confirms that the runtime used to compute the trajec-
tories of shelves (labeled shelf time) contributes to a large portion of the total runtime.
It also suggests that an improvement in the efficiency of the MAPF solver would directly
result in an improvement in the efficiency of our framework since most of the runtime is
used by the MAPF solver.

7.2 Comparison of Algorithms on Well-Formed Instances

We follow a similar procedure to construct random DD-MAPD instances, except that we
do not place shelves along the perimeter of the grids but sample start locations of agents
from cells on the perimeter, excluding the corners, to guarantee well-formedness. Table 7.2
shows that IVF-R with one agent is more effective than the two baselines and that using
more agents results in further improvement. For example, the makespan for 100 agents is
only 1.1% of that for a single agent for instances of size 96. IVF-R and IVF tend to be more
effective but are less efficient than PP since PP assigns tasks and plans paths for agents
one at a time. PP solves all well-formed instances as expected. IVF-R has higher success
rates than IVF since it does not fail for Reason (b) observed in the previous experiments
but still fails for three instances in total due to the incompleteness of AssignAndPlan(). All
algorithms do not time out with a one-minute runtime limit for each call to the MAPF solver.
Overall, PP appears to be the the optimal choice of algorithm in practice if well-formedness
is guaranteed since it strikes a good balance between efficiency and effectiveness.
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7.3 Warehouse Rearrangement Demo

We construct 50 well-formed instances on 2D 4-neighbor grids of size 27 × 27, with 32
agents starting along the perimeter, based on the layout of a fulfillment center comprising
8 × 4 blocks of 5 × 2 shelves. The delivery locations of these 320 shelves are arranged in a
diagonally symmetrical configuration and randomly shuffled. IVF-R successfully solves all
instances with an average total time of 30.68s and an average agent time of 4.85s using
EECBS with ω = 1.8. A demo video showcasing the execution on one of the instances is
available at: https://youtu.be/WFPl3wKDXXY.
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size den M N makespan flowtime
total
time
(s)

agent
time
(ms)

ω succ

8

40%

25 4 31.10 109.32 1.81 2.82 1.2

100%

10 40 4 55.02 204.10 3.41 5.83 1.48 31.83 209.26 3.39 8.97

12 57 4 89.18 339.53 0.30 11.81 1.68 50.27 347.39 0.31 17.52
16 102 8 105.68 772.60 0.92 55.83 1.8

16

20%

51 4 140.98 534.94 0.10 22.51 1.2

100%

8 74.34 530.60 0.11 34.82

24 115 4 452.69 1,775.31 0.38 134.82 1.28 236.65 1,786.88 0.46 209.49

32 204 4 1,072.18 4,247.16 0.67 487.65 1.48 546.39 4,249.12 0.92 737.61
40 320 8 1,072.35 8,444.20 2.62 2,119.00 1.6

large-size instances, agent time reported in seconds (s)

48

20%

460 8 1,850.22 14,629.29 6.24 5.04 1.6 98%
32 487.78 14,578.45 13.09 11.83 98%

64 819

8 4,451.22 35,425.22 32.02 25.68

1.8

98%
32 1,148.41 35,476.73 106.00 99.26 98%
100 397.68 33,648.55 88.95 82.57 94%
400 153.31 26,969.08 182.46 176.72 96%

96 1,843 32 3,909.00 123,383.24 302.92 270.27 1.8 92%
100 1,264.05 118,965.28 1,060.16 1,019.93 80%

reasons for failed large-size instances
size den M N instances (a) timeout (b) small N (c) incomplete

48

20%

460 8 1/50 0 1 0
32 1/50 0 1 0

64 819

8 1/50 0 1 0
32 1/50 0 1 0
100 3/50 0 3 0
400 2/50 0 0 2

96 1,843 32 4/50 1 3 0
100 10/50 8 2 0

sum 23/400 9 8 2

Table 7.1: Results for IVF in different settings.
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size M N algo. makespan flowtime
total
time
(s)

agent
time
(s)

ω succ

48 460

1
BASE 190,243.52 - 1.20 -

1.6

100%
PAS 14,707.44 - 2.31 - 100%

IVF-R 13,439.26 - 2.55 1.35 100%

8
PP 1,757.33 13,910.77 2.11 0.93 100%

IVF-R 1,750.96 13,862.56 6.35 5.20 100%
IVF 1,745.44 13,812.10 6.86 5.80 96%

32
PP 463.71 13,836.77 2.94 1.58 100%

IVF-R 460.75 13,705.56 10.68 9.48 100%
IVF 461.35 13,740.19 10.05 9.13 96%

64 819

1
BASE 605,647.28 - 4.34 -

1.8

100%
PAS 34,642.68 - 9.17 - 100%

IVF-R 32,560.80 - 9.06 4.72 100%

8
PP 4,258.04 33,877.76 7.66 3.18 100%

IVF-R 4,254.92 33,839.10 25.64 21.01 100%
IVF 4,256.45 33,865.43 24.43 20.98 98%

32
PP 1,105.00 34,090.16 10.69 5.38 100%

IVF-R 1,099.69 33,943.73 41.29 36.64 100%
IVF 1,096.71 33,835.06 40.50 37.01 98%

100
PP 384.81 32,695.28 17.78 11.00 100%

IVF-R 381.58 32,419.40 63.19 58.75 98%
IVF 384.00 32,530.45 66.11 62.59 98%

96 1,843

1
BASE 3,027,935.92 - 37.13 -

1.8

100%
PAS 112,282.98 - 71.02 - 100%

IVF-R 111,258.48 - 72.10 34.97 100%

32
PP 3,817.24 120,368.60 79.49 33.06 100%

IVF-R 3,817.67 120,410.38 301.82 264.46 98%
IVF 3,807.28 120,134.72 294.06 271.03 92%

100
PP 1,235.37 115,719.63 123.86 64.49 100%

IVF-R 1,228.53 115,274.80 623.54 585.69 98%
IVF 1,229.35 115,037.24 708.07 684.56 92%

Table 7.2: Results on large-size well-formed instances.
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Chapter 8

Conclusions and Future Work

In this thesis, we propose a novel problem formulation, DD-MAPD, and a new algorithmic
framework, named MAPF-DECOMP for solving DD-MAPD, to make MAPF and MAPD
applicable to multi-robot shelf rearrangement problems in large-scale warehouses. MAPF-
DECOMP decouples the problem by firstly generating collision-free trajectories for shelves,
and secondly planning paths for agents to carry shelves following the planned trajectories.
In this thesis, we focus on the efficiency of our framework without sacrificing much of
its effectiveness. Experiment results show that this framework can generate high-quality
solutions for 1,843 shelves and 400 agents in minutes. We also propose a variant of MAPF-
DECOMP that can solve all well-formed DD-MAPD instances efficiently.

We propose two future extensions to our framework: (1) We intend to improve its ef-
fectiveness by making its MAPF solving for shelf trajectories aware of the subsequent de-
composition and planning. (2) We propose to plan paths for active agents instead of letting
them follow shelf trajectories. (3) We may accelerate large-scale instances’ execution by
splitting agents and tasks into multiple groups by their start locations, and parallelize the
computation of the whole algorithm framework.
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