Thesis type
(Thesis) M.Sc.
Date created
2020-12-18
Authors/Contributors
Author (aut): Holicek, Viktor
Abstract
Carbohydrates are one of the four main classes of biological macromolecules in nature, alongside lipids, proteins, and nucleic acids. They serve in a wide range of cellular functions fundamental to the existence of biological organisms. These functions include but are not limited to cellular metabolism, energy production and storage, structural support, signaling, and recognition. The ubiquitous presence of carbohydrates in organisms has led to the study of their role in various maladies, such as neurodegenerative and infectious diseases. Deciphering the role of carbohydrates in these diseases allows for the possibility of developing treatments for associated diseases. In this manner, it is necessary to develop tools to exploit and test our understanding of these mechanisms. Existing methodologies may need to be adapted for application to larger scale experimental designs, such as those used in chronic dosing studies using preclinical animal models or high-throughput automated screening assays. This thesis describes improvements to previously published methods in the synthesis of one such chemical tool, Thiamet-G, a small molecule inhibitor used to study the carbohydrate processing enzyme O-GlcNAcase, which has been linked to neurodegenerative diseases including Alzheimer's and Parkinson's Disease. This thesis also seeks to apply the concepts developed during creation of a live cell assay towards creation of a new experimental approach suitable for large scale high through-put screening of compound libraries. Such an application would allow for the efficient pursuit of inhibitors of the bacterial protein AmpG - a transporter that is essential for inducible AmpC β-lactamase-driven antibiotic resistance.
Document
Identifier
etd21230
Copyright statement
Copyright is held by the author(s).
Supervisor or Senior Supervisor
Thesis advisor (ths): Vocadlo, David
Language
English
Member of collection
Download file | Size |
---|---|
input_data\21181\etd21230.pdf | 4.76 MB |