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Abstract 

Carbohydrates are one of the four main classes of biological macromolecules in nature, 

alongside lipids, proteins, and nucleic acids. They serve in a wide range of cellular 

functions fundamental to the existence of biological organisms. These functions include 

but are not limited to cellular metabolism, energy production and storage, structural 

support, signaling, and recognition. The ubiquitous presence of carbohydrates in 

organisms has led to the study of their role in various maladies, such as 

neurodegenerative and infectious diseases. Deciphering the role of carbohydrates in 

these diseases allows for the possibility of developing treatments for associated 

diseases. In this manner, it is necessary to develop tools to exploit and test our 

understanding of these mechanisms. Existing methodologies may need to be adapted 

for application to larger scale experimental designs, such as those used in chronic 

dosing studies using preclinical animal models or high-throughput automated screening 

assays. This thesis describes improvements to previously published methods in the 

synthesis of one such chemical tool, Thiamet-G, a small molecule inhibitor used to study 

the carbohydrate processing enzyme O-GlcNAcase, which has been linked to 

neurodegenerative diseases including Alzheimer’s and Parkinson’s Disease. This thesis 

also seeks to apply the concepts developed during creation of a live cell assay towards 

creation of a new experimental approach suitable for large scale high through-put 

screening of compound libraries. Such an application would allow for the efficient pursuit 

of inhibitors of the bacterial protein AmpG - a transporter that is essential for inducible 

AmpC β-lactamase-driven antibiotic resistance.  

Keywords: Gram-negative bacteria; β-lactam antibiotics resistance; disaccharide 

substrate; membrane permease; transporter enzyme ampG; live-cell assay; caged 

fluorescence; coupled assay; high-throughput scale; Thiamet-G; O-GlcNAcase.  
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Dedication 

Scientific progress is driven as much by the questions posed as by the tools 

available to answer them” - Gary Taubes 
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Chapter 1.  
 
A Select Overview of Carbohydrates, Carbohydrate 
Processing Enzymes, and Tools Used to Increase 
our Understanding of These Topics     

1.1. Carbohydrates and their Biological Role as a Class of 
Macromolecules 

1.1.1. A Selective Overview of Carbohydrates (1.1.1) 

Carbohydrates are one of the four main biological macromolecules found 

alongside proteins, nucleic acids, and lipids within nature. Etymologically, carbohydrates 

were named based on their elemental constituents, carbon, hydrogen, and oxygen. 

These constituents often exist in a hydrogen-oxygen atom ratio of 2:1, thus yielding the 

general formula for most carbohydrates of Cm(H2O)n, and accordingly leading to these 

compounds being sometimes referred to as the hydrate of carbon.  

Accepted definitions for carbohydrates have varied over time and between 

industries – formaldehyde (CH2O) for example, while meeting the Cm(H2O)n formula is 

nonetheless not typically recognized as a carbohydrate. Acetic acid, which also meets 

the Cm(H2O)n formula, also is generally not recognized as a carbohydrate outside of the 

USDA National Nutrient Database. In the realm of chemical biology and for the purposes 

of this thesis, carbohydrates are recognized and limited to those molecules having a 

minimum of three carbon atoms, each of which is covalently bound to oxygen functional 

groups existing as a polyhydroxyl aldehyde or ketone or polymer thereof. In addition to 

this basic core structure, carbohydrates can exist with a multitude of modifications. This 

includes the addition of acetyl bearing nitrogen groups as seen in amino sugars such as 

those relevant to this thesis - chiefly N-acetyl-D-glucosamine and or alkylated analogues 

such as N-acetyl-D-muramic acid (Figure 1.1).  
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Figure 1.1. A Selected Assortment of Chair Conformation Carbohydrate 
Structures  
Variation in the substituents and conformation of carbohydrates is readily 
illustrated using three dimensional representations of these molecules.  

Carbohydrates first gained attention in the nineteenth century, with the discovery 

of their role in the human metabolic process for deriving energy from the oxidation of 

food by German scientist Justus von Liebig. Further probing into the nature of 

carbohydrates yielded the discovery of glycogen as a starchy substance in mammalian 

livers by French chemist Claude Bernard in 18561. This observation not only shed insight 

into the energy storage capabilities of carbohydrates, but also into the nature of their 

structure as polymers of glucose and the ability for them to break down into individual 

monosaccharide units. Further elucidation of the variations and specific stereochemical 

structure of carbohydrates was carried out by the great German chemist Emil Fischer, 

who with his team in in 1891 deduced the 16 stereoisomeric structures of glucose2 as 

well as providing Fischer Projection diagrams as a way of visually representing 

differences in these aldohexose isomers - a representation that still is used to this day 

(Figure 1.2).   

 

Figure 1.2. Carbohydrates as Depicted by Fischer Projections 
Fischer Projections were devised by German chemist Emil Fischer following his 
discovery of their various stereochemical conformations. They allow enantiomers 
to be easily distinguished from one another by observing the configuration of the 
chiral carbon furthest away from the carbonyl group (position 5 in D-Glc depicted 
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above). D or (+) denoted carbohydrates will have a hydroxyl substituent 
positioned on the right side of the carbon backbone, whereas L or (-) will have a 
hydroxyl position on the left side of the carbon backbone.  

In their polymer form, carbohydrates are composed of individual saccharide 

monomers, called monosaccharides, that is analogous to the linkages between amino 

acids or nucleic acids that together comprise proteins and DNA, respectively. Given the 

multitude of positions and stereochemical orientations in which carbohydrates can be 

configured and be linked to one another, many more degrees of freedom and structural 

complexity are available to carbohydrate polymers as compared to protein and DNA.  

As a source of molecular fuel, the carbohydrate glucose plays a critical role in 

cellular respiration and the production of ATP necessary for cellular function and 

survival3-4. At the monomeric level inside cells, glucose exists primarily in the 

monophosphorylated form as glucose 6-phosphate, from which it may enter several 

metabolic pathways including the glycolysis and pentose phosphate pathways5,6. These 

same glucose monosaccharides in their β1-4 glycosidic linked polymeric form, known as 

cellulose, also provide the structural support in plant cell walls7,8. In addition to energy 

production and structural integrity, carbohydrates serve a multitude of signaling and 

recognition functions. One specific area with far reaching implications in healthcare 

stems from the glycan system underlying blood type antigens. Each antigen corresponds 

to a specific glycan expressed at the cell surface, which dictates immune system 

response to foreign blood and tissues that may be transplanted9,10. The enzymatic and 

covalent addition of carbohydrates to proteins inside the cell, known as glycosylation, a 

form of post-translational modification (PTM), can significantly influence proteins in terms 

of their folding, their available conformations, overall stability, and regulatory 

functions11,12. Glycosylation is found as one of four major categories: N-linked 

glycosylation, O-linked glycosylation, C-linked mannosylation, and glypiation13,14. Of 

these four modifications, N-linked and O-linked (denoting the amino acid residue to 

which the carbohydrate is covalently bound) are the most prevalent14,15.      

1.1.2. Carbohydrate processing enzymes  

Post-translational glycosylation of proteins inside cells is carried out by 

carbohydrate processing enzymes. These enzymes are responsible for catalyzing the 

addition, removal, or modification of carbohydrates – resulting in the wide range of 
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glycans and glycoconjugates found within cells – together comprising the entire 

glycome16. The Carbohydrate Active Enzymes database (CAZy) provides a means of 

classifying carbohydrate processing enzymes based on their amino acid sequence. The 

majority of these carbohydrate processing enzymes exist either to add (glycosyl 

transferases) or remove (glycosyl hydrolase) carbohydrates from their corresponding 

protein substrate.  

Within the CAZy system, glycoside hydrolases (GHs) are the most common and 

well characterized carbohydrate processing enzymes. This class of enzymes catalyzes 

the breakdown of the large polysaccharide biomasses of starch during the consumption 

of food by large organisms including humans. At the cellular level, other GHs cleave the 

beta-1,4 linkages of the peptidoglycan  of both Gram-negative and Gram-positive 

bacteria to recycle and maintain the bacterial cell wall17,18. In contrast to the hydrolase 

and transferase category of carbohydrate processing enzymes there also exist 

carbohydrate transporters – enzymes responsible for the transport of sugars through 

membranes. The bacterial protein AmpG is one such enzyme, which as a transporter 

also plays a fundamental role in the recycling and maintenance of the Gram-negative 

bacterial cell well. Its exclusive capacity for cytoplasmic uptake of GlcNAc-anhMurNAc-

peptides will be a fundamental point of importance in the development of this thesis in 

subsequent chapters19–21.  

1.1.3. Glycoside Hydrolase Mechanisms  

Exo- and endo-glycoside hydrolases refer to the region of a polysaccharide 

where the enzyme is capable of cleaving. Enzymes specific to glycosidic linkages at the 

terminal end of a polymer (exo-acting) will typically share an enzymatic structure distinct 

from that of the hydrolases capable of cleaving glycosidic linkages centrally located 

within a polymer. The ability to envelope and target the linkage seems to approximately 

dictate the active site structure. A pocket shaped enzymatic active site is more 

accommodating of terminal carbohydrate residues, whereas a cleft shaped active site 

allows for binding of the polymeric substrate across the active site of the enzyme, 

thereby allowing access to internal carbohydrate linkages22.   
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1.1.4. Retaining & Inverting Mechanism 

The manner in which linkages between carbohydrates (termed “glycosidic 

linkages”) are cleaved dictates the stereochemical configuration of the resulting product. 

In this regard, glycoside hydrolases (GH) exist as either inverting enzymes or retaining 

enzymes (Figure 1.3).  

 

Figure 1.3. Inverted versus retained glycoside hydrolysis product 
Both products result in a newly liberated hemiacetal at the anomeric position. An 
inverting catalytic mechanism acting on an α-glycosidic linkage as depicted 
above will yield β-D-glucose (left) whereas the retaining glycoside hydrolase 
produces the α-D-glucose isomer (right). 

This inversion or retention of stereochemistry relates to the anomeric carbon 

found in saccharides, which is the carbon found in the hemiacetal/acetal position in a 

cyclically depicted carbohydrate (Figure 1.4).   

 

Figure 1.4. Formation of α (A) and β (B) anomers from the open chain 
carbohydrate glucose 

One such carbohydrate PTM relevant to the aims of this thesis is the post 

translational addition and removal of O-linked β-N-acetylglucosamine (O-GlcNAc) to 

proteins inside the nucleus and cytoplasm of metazoan cells. Discovered by Torres & 

Hart in 198423, this form of glycosylation (Figure 1.5) is installed by the enzyme known 

as O-GlcNAc Transferase (OGT). O-GlcNAc is typically not further elongated by 

additional carbohydrate residues and the PTM can be hydrolytically removed by the 

counterpart GH enzyme O-GlcNAcase (OGA). 
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Figure 1.5. Modification of proteins with O-linked N-acetyl glucosamine 
UDP-GlcNAc serves as the substrate for OGT mediated glycosylation to hydroxyl 
functional groups of select serine and threonine residues. The glycosidic linkage 
formed between GlcNAc and the aglycone protein may be cleaved by the 
enzymatic hydrolysis activity of OGA.   

O-Linked β-N-acetylglucosamine, as the prefix in the name suggests, is 

covalently linked via oxygen to the serine or threonine residues on the protein targets to 

which GlcNAc is being installed. The hydroxyl functional groups of serine and threonine 

are coupled to the anomeric carbon to form a stable acetal (Figure 1.5). The 

stereochemical configuration of this glycoside is assigned most simply and generally – 

though not precisely - as either alpha or beta, depending on whether the resulting 

linkage is either cis (β) or trans (α) relative to the 6-position carbon atom extending from 

the plane of the ring.  

 

Figure 1.6. Glycosidic Linkage Conformation 
The glycosidic linkage when trans relative to the 6-position carbon atom is 
denoted α (A) and in this illustration appears below the plane of the ring. The 
inverse anomic configuration (B) whereby the 6-position carbon atom is cis 
relative to the glycosidic linkage is correspondingly denoted β. Drawn in this chair 
confirmation the β anomer glycoside appears above the plane of the ring. 
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Previous research has implicated the O-GlcNAc modification as playing 

important roles in various processes including, but not limited to, cellular signaling24, 

DNA transcription25, membrane transport26, stress response27, and autophagy28. Many of 

the same proteins targeted for modification by GlcNAc are also substrates for O-linked 

phosphorylation by a category of enzymes known as kinases. Unlike OGT, multiple 

distinct enzymes exist capable of phosphorylating their target substrate, while OGT is 

exclusively capable of installing O-GlcNAc. Taken together, OGT is sometimes 

considered as acting in a competitive equilibrium with various kinases (Figure 1.7), such 

as glycogen synthase kinase-3 (GSK-3), which shares at least 10 distinct protein 

substrates with OGT29,30. This potential interactive relationship between O-GlcNAc and 

phosphorylation of enzymes has been implicated in a number of disorders including 

diabetes31–34, cardiovascular33–38, cancer31,40–42, and of particular focus in this text, 

neurodegenerative diseases43.  

 

Figure 1.7. Reciprocal relationship between N-acetyl glycosylation and 
phosphorylation 

1.2. Implication of O-GlcNAc in Alzheimer Disease (AD) 

Dementia characterizes a set of symptoms affecting the brain, including memory 

loss, mental instability, difficulty problem solving, abnormal motor behavior, and overall 

cognitive decline. According to the Alzheimer’s Association 2020 Disease Facts and 

Figures publication, AD accounts for 60-80% of all dementia cases, with approximately 1 

in 10 affected individuals affected over the age of 65. The exact causes of AD are not 

entirely understood, but its progression correlates strongly with the aggregation of an 

abnormally phosphorylated protein within neurons that normally play a role in 

microtubule assembly and stability within cells44,45,46. Microtubule-associated protein Tau 

(Tau) protein, originally identified in 197547, form toxic oligomers and downstream 

aggregates known as neurofibrillary tangles (NFT) that are one of the pathological 

hallmarks of AD seen during post mortem analysis of AD affected brain tissues48. This 
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aberrant hyperphosphorylation is carried is out by many different kinases and the 

subsequent aggregation of toxic oligomers into NFT correlates closely with cell death 

and brain atrophy over time49.  

1.2.1. OGA in Tauopathies  

Tau is also an example of the previously mentioned protein group that is subject 

to competing modification between phosphorylation and glycosylation by OGT50,51. 

Based on this understanding, previous research has made efforts to prevent NFT 

formation by driving this equilibrium away from hyperphosphorylation towards 

glycosylation. By using OGA inhibitors to reduce its glycoside hydrolase activity towards 

glycosylated tau, hyperphosphorylation would also be attenuated as a result of substrate 

reduction given that the serine and threonine residues would be covalently bound to 

GlcNAc residues. This reduction in hyperphosphorylation would in turn reduce tau 

toxicity by preventing aggregation of Tau and leading to a reduction in cell death43,52–54. 

Other proteins including β-amyloid also correlate with and are strongly implicated in the 

early stages of development of AD. While the function of β-amyloid is not well 

understood, it is the main component of amyloid plaques – another key pathological 

hallmark of AD. It remains unclear which of these two, if either, is definitively causative of 

the disease, nor whether preventing these processes can attenuate disease progression 

– although a large number of preclinical studies suggest this should be the case. 

Increased O-GlcNAcylation has been shown to be effective in preventing β-amyloid 

toxicity55 via reduction of the corresponding OGA glycoside hydrolase activity56. An 

alternative and independent effort is focused on selectively inhibiting GSK-3, a kinase 

implicated in tau hyperphosphorylation and increased -amyloid production57. Phase II 

clinical trials for this inhibitor (Tudeglusib) are underway as of 2017, however, the drug is 

yet to be shown to be effective (Identifier: NCT03692312).  

In addition to Alzheimer’s Disease, Parkinson’s Disease (PD) is another 

dementia that manifests itself in the nervous system. This impairment of the body’s 

relaxed or fine motor control may lead to almost complete loss of voluntary muscle 

function, hallucination, unintelligible speech, and additional comorbidities. The 

pathophysiology of PD is characterized by death of the brain’s dopaminergic neurons, 

which is though to stem from the oligomerization and downstream aggregation of the 

protein α-synuclein to form the pathological hallmark of PD referred to as Lewy bodies58. 
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Similarly to the phenomenon observed with tau and β-amyloid in the case of Alzheimer’s 

Disease, increased O-GlcNAcylation has shown to reduce aggregation and toxicity of α-

synuclein toward neuronal cells59. As such, targeting the hydrolytic activity of OGA 

responsible for the removal of O-linked GlcNAcylation from the nice serine and threonine 

residues found on α-synuclein is a potential therapeutic strategy of some interest.  

1.3. Small Molecule Inhibitors as Tools to Probe Glycan 
Processing Enzymes  

Small molecules are conventionally associated with their application as drugs as 

medical therapeutics to treat a disease or pathology. In this context, they are meant to 

physiologically alter an organism in some specific and medically relevant manner. While 

some small molecules may serve to enhance the function of their targets, small 

molecules more commonly serve as inhibitors intended to attenuate selective enzyme 

function. Beyond this role however, small molecules can themselves be used as tools to 

probe and elucidate the function of proteins within their biologically relevant 

environment. The structure of small molecule inhibitors that bind to the active sites of 

enzymes often mimic that of the natural substrate – though not always. Unsurprisingly 

perhaps, such inhibitors exploit certain functionalities to allow binding to the target 

enzyme in the same manner as the natural substrate.  

1.3.1. Inhibition of OGA 

The structure of the active site of an enzyme target to which the natural substrate 

binds may provide clues into the catalytic mechanism and associated transition states 

used by the enzyme. Such information can be applied towards the rational design of an 

analogous molecular probe - targeting the same active site and closely mimicking the 

high-energy transition state. Iterative changes to the analogous probe may significantly 

improve the overall binding affinity and produce a molecule capable of readily 

outcompeting the natural substrate for the enzyme active site, leading to inhibition of the 

enzyme.   

Such an approach was applied towards the development of inhibitors for OGA. 

Previously published work in the lab had uncovered the 2-acetamido of the natural 

substrate acts in what is termed a substrate-assisted catalytic mechanism in which an 
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oxazoline intermediate figures prominently17,60. Based on these findings, the selection of 

a compound structurally similar to the high energy oxazoline intermediate or a closely 

derived transition state (Figure 1.8) yielded NAG-thiazoline as a potent inhibitor of OGA. 

Iterative variations of the oxazoline ring substituents allowed for further improvement in 

selectivity for OGA (NBut-GT) over other functionally related enzymes. Kinetic and 

structural studies implicated aspartate 242 in the enzyme as a key carboxylate group 

that acts in its deprotonated form at physiological pH as a general catalytic base. It was 

postulated that increasing the pKa of the inhibitor NBut-GT may serve to boost binding 

between the interacting aspartate 242 residue (pKa 5.2) and the inhibitor. To this end, an 

additional exocyclic nitrogen was used a bioisosteric substitution to NBut-GT to increase 

the basicity of the thiazoline ring at the site of interaction with aspartate 242. The pKa of 

the thiazolinium ion was experimentally found to be 8.0 and it is accordingly mostly in its 

protonated form at physiological pH (7.4) which is believed to allow for significantly 

improved binding between the inhibitor and aspartate residue by harnessing a close 

range ionic interaction. The rational design of this new inhibitor (Ki = 2.1 nM) was a 

significant 37 fold improvement upon the original work (NAG-thiazoline Ki = 78 nM)61.  

Following the design of Thiamet-G, in vivo experiments were able to demonstrate 

its ability to effectively reduce phosphorylation of tau protein in animal cells and 

suggesting a possible novel strategy to attenuate the formation of pathologic tau 

oligomers61. MK-8719, a fluorinated derivative of Thiamet-G, has since been developed 

as a potential therapeutic candidate in a partnership between the biotechnology 

company Alectos Therapeutics and the multinational pharmaceutical giant Merck. Focus 

on improved pharmacokinetic properties yielded a compound with excellent blood brain 

barrier permeability, confirmed target engagement using PET imaging with an 18F-

labelled PET agent, and attenuation of NFT and brain atrophy in mouse models62. MK-

8719 has successfully completed Phase I clinical trials in humans as of 2017 and was 

granted orphan drug status by the Food and Drug Administration (FDA). Further 

research remains to be carried out regarding the applicability of OGA inhibiting 

compounds like MK-8719 towards α-synuclein toxicity and Parkinson’s Disease.   
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Figure 1.8. Transition state inspired inhibitors of OGA  

1.4. Transporters  

In addition to glycoside transferases and hydrolases, there exists another class 

of enzymes known as transporters (or permeases). These proteins serve to transport 

molecules without covalently modifying them in the process. Transporters facilitate the 

influx and efflux of ions, nutrients, neurotransmitters, and even drugs between the cell 

and the extracellular matrix. They are broadly divided into two groups - channels or 

carriers. The former is categorized by the exclusive use of passive diffusion to transport 

substrates in the direction of their electrochemical or concentration gradient, allowing for 

upwards of millions of molecules to pass through simultaneously. By contrast, carriers 

may transport their substrate passively through diffusion or via active transport - as 

would be required in the movement of particles from an area of low concentration to an 

area of high concentration. Both forms typically exist exclusively as transmembrane 

proteins where they are embedded within cellular membranes. Active transport may 

function in a coupled manner whereby the target substrate is exchanged for an ion such 

has H+ or Na+ or use energy in the form of nucleoside triphosphates. 

 

1.4.1. Carbohydrate Transport 

While molecules exist that can freely permeate the cell membrane, these are 

generally limited to small and relatively nonpolar compounds not typical of branched and 

polar carbohydrates. The relative impermeability of the lipid bilayer membrane to 

carbohydrates means that their uptake is often facilitated by transporters. Some 

carbohydrates, such as D-glucose, may be taken up by cells via facilitated diffusion, 

whereby D-glucose is transported across the cell membrane through glucose-specific 
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(GLUT) transporters. Other carbohydrates such as β-(1,4) linked disaccharide composed 

of N-acetylglucosamine and N-acetylmuramic acid (GlcNAc-anhydro-MurNAc) rely on an 

active transporter that depends on coupled exchange of a proton to facilitate transport.   

The directional flow of this coupled exchange determines whether the transporter 

is denoted as a uniporter, symporter, or antiporter. Transport of a single molecule or ion 

in a single direction constitutes a uniporter, while the addition of a second ion or 

molecule in this exchange – travelling in the same or opposite direction – identifies the 

transporter as a symporter or antiporter, respectively.    

Figure 1.9. Categories of trans membrane enzyme transport 

1.4.2.   Gram-Negative Bacteria and AmpG Transport  

One of the many pathways in which transporters play a central role in the cell is 

in the peptidoglycan recycling system of Gram-negative bacteria. The peptidoglycan 

network exists between the inner and outer membrane of Gram-negative bacteria. It is 

composed of disaccharide units of β-(1,4) linked N-acetylglucosamine and N-

acetylmuramic acid (GlcNAc-anhydro-MurNAc) cross-linked with one another via short 

peptide chains pendent to the lactyl group of the MurNAc residue. This mesh-like 

framework constitutes the cell wall in Gram-negative bacteria, serving to provide 

structural support in addition to counteracting the osmotic pressure between the 

cytoplasm and external medium.  

These disaccharide constituents are fragmented by enzymatic cleavage within 

the cell, recycled, and recirculated back into the peptidoglycan during the life of the 

Uniporter Symporter Antiporter 

https://en.wikipedia.org/wiki/N-Acetylmuramic_acid
https://en.wikipedia.org/wiki/N-Acetylmuramic_acid
https://en.wikipedia.org/wiki/N-Acetylmuramic_acid
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bacterium. Gram-negative bacteria contain a secondary cell membrane enclosing the 

cytoplasm. Between this inner cytoplasmic membrane and the outer cell membrane 

exists the periplasmic layer where free floating peptidoglycan fragments exist. To be 

further processed, a symporter embedded in the inner membrane of Gram-negative 

bacteria internalizes the periplasmic monomers of GlcNAc-anhydro-MurNAc. This 

transporter, known as AmpG, is believed to be dependent upon the proton motive force 

to simultaneously internalize both a proton as well peptidoglycan metabolite63. In this 

manner, AmpG exploits the electrochemical concentration gradient across the cell 

membrane to initiate conformational changes in its domain structure. These changes are 

believed to facilitate an alternating access mechanism which constitutes the binding, 

internalization, and release of its carrier molecule and ion. Beginning with the 

recruitment of a proton, the enzyme remains in an “outward-facing” conformation. The 

subsequent binding of the disaccharide substrate induces a conformation change in the 

enzyme such the substrate and proton are now exposed to the intracellular cytoplasm 

and are internalized past the inner membrane. With the release of the substrate and 

proton, the enzyme is free to revert back to its outward facing conformation and catalyze 

the uptake of another substrate. 

 

Figure 1.10. Alternating access mechanism   
Binding of a proton prior to the substrate is depicted. This is followed by 
conformational change of the membrane bound enzyme to allow for cytoplasmic 
internalization of the proton and substrate.  

1.4.3. The Peptidoglycan & Antibiotics  

One of the most commonly prescribed classes of antibiotics, known collectively 

as β-lactams, rely on a mechanism that targets the structural integrity of the 

peptidoglycan layer. These compounds act by inhibiting formation of the cross links 

formed by Penicillin Binding Proteins (PBP).  These PBP are covalently inactivated by β-
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lactams, rendering them unable to catalyze cross linking of the short chain peptides64. In 

the absence of these cross-links, the cell becomes unstable and is not able to sufficiently 

replenish the peptidoglycan and GlcNAc-anhydro-MurNAc begins to accumulate within 

the cell. In the course of reproduction, Gram-negative bacteria such as Escherichia coli 

will break down more than 60% of their cell wall in order to divide and prepare new cell 

wall for their progeny. Without this capacity, the cell rigidity is structurally compromised 

and the cell is no longer viable to reproduce65.      

 

Figure 1.11. Peptidogylcan network of β-1,4 linked glycosides and pendant 
peptide residues 

The success of β-lactams  as antibiotics is evident in their wide-spread use and 

their development into drugs such as amoxicillin, ampicillin, and penicillin. Since the 

discovery of penicillin in 1928 and its subsequent widespread application in humans 

during the second world war, numerous derivatives of the core β-lactam structure have 

been developed in an effort to escape the emergence of antibiotic resistance66.  
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Figure 1.12, Well known β-lactam antibiotics 

One form of resistance mechanism harbored by Gram-negative bacteria is the 

production of β-lactamases. These enzymes are responsible for hydrolyzing and thereby 

inactivating the antibiotic β-lactam core, leaving them unable to covalently inactivate 

PBPs. For exactly this reason, physicians often prescribe β-lactamase inhibitors, such as 

clavulanic acid, in conjunction with β-lactam antibiotics. 

1.4.4. GlcNAc-anhydro-MurNAc & Antibiotic Resistance  

The accumulation of GlcNAc-anhydro-MurNAc inside the cytoplasm of Gram-

negative bacteria is thought to drive transcriptional activation of the AmpC β-lactamases 

system. Cell exposure to β-lactam antibiotics inhibits PBPs and drives the peptidoglycan 

recycling pathway towards an excess of disaccharide substituents in the periplasm of the 

cell. Active transport of these fragments by AmpG into the cytoplasm facilitates 

transcriptional activation AmpC β-lactamases which proceed to hydrolyze the β-lactam 

antibiotics. This negative feedback loop serves to produce antibiotic resistance-

conferring enzymes only in the presence of the downstream effects of β-lactam 

exposure. Inactivation of AmpG, preventing cytoplasmic internalization of the 

disaccharides that act as AmpC transcriptional activators, has been shown to restore 

susceptibility to antibiotics in antibiotic resistance strains of Gram-negative bacteria67. 

Inhibiting transport of these cell wall fragments to prevent activation of the AmpC 

antibiotic resistance mechanism will be, in part, the focus of discussion below. 

1.4.5. A Transport Assay for AmpG Permease 

Previous live cell assays carried out in the Vocadlo laboratory have successfully 

demonstrated the ability of the AmpG transporter to internalize a variant of the natural 

disaccharide substrate. That proof of concept study showed how appending a 
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fluorophore to the GlcNAc-anhydro-MurNAc disaccharide in place of the short chain 

peptides was tolerated and that fluorescence was internalized68. As a control, it was 

shown that genetic inactivation of the AmpG transporter prevented the retention of any 

fluorescence signal following successive washes of cells, indicating no internalization 

had taken place. The fluorescent probe allowed a way of monitoring transporter activity, 

whereby potential inhibitors of transporter could be screened and evaluated. 

In order for the assay to function it was still necessary to process the cells by 

removal of the outer peptidoglycan cell wall and outer membrane. This procedure 

exposed the inner membrane of the Gram-negative bacterium to the extracellular media 

in which the fluorescent probe is present. Even with careful manual handling throughout 

the several hours of washing, centrifugation, and resuspension, the cells are sensitive 

and tend to rupture. Removal of the cell wall and outer membrane also renders the cells 

unable to replicate, and vulnerable to lysis from osmotic pressure. These factors 

together made it impossible for the assay as originally designed to be applied to high 

throughput screening (HTS) without significant measures being taken to increase the 

robustness, consistency, and efficiency of the assay. 

 

Figure 1.13. Fluorescent based exploitation to monitor AmpG transport 
Substitution of the natural substrate pendant peptides with a fluorophore allowed 
for monitoring of AmpG activity in a live cell fluorescence uptake assay. 
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1.5.  Aims of the Thesis 

The research outlined in this thesis aims to improve upon two existing tools 

available to the research community in the study of carbohydrate processing enzymes 

and their relevant systems.  

The first tool and primary focus of this thesis is to improve on a previously 

established sugar transport assay to make it amenable to high through-put screening. I 

used information uncovered in the original assay regarding AmpG substrate tolerance 

and applied this to the rational design of novel probes intended to improve the efficiency, 

consistency, and signal quality of the assay. In particular, the strategies and syntheses 

used to generate these probes, and their suitability in monitoring transport activity in live 

cells, will be discussed. Such improvements would enable an assay compatible with 

automated high-throughput screening (HTS) against libraries comprising of many 

thousands of compounds to facilitate the identification of leads that could become 

potential therapeutics to combat AmpC antibiotic resistance.  

The secondary topic of my thesis concerns the synthesis of the OGA inhibitor 

Thiamet-G. The existing synthetic protocol is evaluated and revisions are made to 

facilitate dramatically increasing the scales  of reactions used in its chemical synthesis 

while maintaining both high product purity and yield. Continuing research using this 

widely applied tool compound and its derivative forms, such as the clinically relevant 

OGA inhibitor MK-8719, highlight a need for a more facile, clean, and economical 

synthesis. This topic is particularly relevant given the quantities of Thiamet-G necessary 

to carry out large scale animal studies as is currently being done in our laboratory as 

well as those of collaborators. The research described below reduce the use of toxic 

reagents, eliminate the need for chromatographic purification steps, and have the 

potential to save several hundreds of thousands of dollars in commercial manufacturing 

costs. The final product, performed at a scale approaching production of one kilogram of 

Thiamet-G, has been used directly for neurodegenerative studies of OGA transgenic 

mice in Parkinson Disease (PD) research.  
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Chapter 2. Developing High Throughput Amenable 
ampG Transporter Assay 

2.1. Contributions 

This work is based on the AmpG transporter assay originally developed in a 

multidisciplinary collaboration involving synthetic chemistry performed by Dr. Anuj 

Yadav, genetic manipulation by Judith Winogrodzki, and assay development by Evan 

Perley-Robertson. My role has been an extension of this work drawing from previously 

established information in all three areas of synthesis, cell preparation, and assay 

execution. My primary efforts were in the synthesis, design, and application of novel 

probes. 

2.2. Abstract 

Many Gram-negative bacteria pose a serious societal health concern in the form 

of hospital acquired (nosocomial) infections. These infections often manifest themselves 

in the form of illnesses including pneumonia, sepsis, urinary tract infection, and surgical 

site infection. Conventional treatments for these illnesses  are the use of antibiotics, 

which have become so widely used and improperly administered that β-lactamase 

antibiotic resistance has arisen as a formidable long-term concern in fighting infections. 

β-Lactamase inhibitors such as clavulanic acid are often co-prescribed with β-lactam 

antibiotics but these are ineffective against AmpC β-lactamases. Previous work has 

demonstrated the dependence of Gram-negative bacteria on an inner membrane 

muropeptide transporter to enable high level induction of AmpC in the presence of β-

lactams. The ability to monitor activity of this transporter would allow screening to 

identify inhibitors capable of preventing AmpC β-lactamase induction. Recently, novel 

fluorescent probes and cell processing techniques to expose the inner membrane 

transporter have been used in tandem to visualize transporter activity. Stripping the 

outer membrane of these bacterial cells during the required processing and visualization 

techniques causes considerable lysis along with consequent reductions in signal. 

Moreover, the AmpG transporter substrates are constitutively fluorescent, complicating 

their use in HTS. Described herein is an attempt to devise a novel substrate probe that 
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becomes fluorescent only upon internalization by cells thereby allowing for the direct 

screening of AmpG inhibitors on a high throughput platform.   

2.3. Introduction 

2.3.1. Nosocomial Infection 

Nosocomial infections are not exclusively a concern of the impoverished world, 

nor are they exclusively the result of bacterial infections. Despite this, bacteria are the 

most common cause of nosocomial infections, far exceeding (80%+) that of fungal and 

viral cases. The World Health Organization (WHO) reported that of every 100 

hospitalized patients, 7 in developed countries and 10 in developing nations would 

become infected69. The duration of hospitalization is also very closely linked to likelihood 

of infection. The Extended Prevalence of Infection in Intensive Care (EPIC II) study 

found that upwards of 51% of patients admitted to the hospital ICU acquired some kind 

of nosocomial infection in various ways – ranging from direct human contact and moist 

instrumentation to ventilation based airborne transmission69. The majority of these 

infections stemmed from Gram-negative bacteria (62%) and were caused by 

Staphylococcus, Acinetobacter, and Pseudomonas genera. These nosocomial infections 

translated into a mortality rate of more than double that of non-infected patients (25% vs. 

11%)69.  

2.3.2. Gram-Negative Bacterial Infection Treatment 

β-lactam antibiotics have been used as a staple in the treatment of bacterial 

infections, serving to inhibit essential penicillin binding proteins (PBP) that are 

responsible for the integrity of the bacterial cell wall. These PBP transpeptidases 

interlink the murein cell wall are inactivated upon covalent modification by β-lactam 

antibiotics. The inability of the cell to sufficiently replenish its peptidoglycan cell wall 

compromises bacterial cell division and increases susceptibility to lysis from osmotic 

pressure65.  

The resistance mechanism that has evolved that enable the survival of Gram-

negative bacteria in response to this class of antibiotics is to produce β-lactamases that 

are capable of hydrolyzing the core β-lactam structure (Figure 2.1) . 



20 

 

Figure 2.1. Enzymatic cleavage of β-lactam antibiotics. 
The chemical mechanism outlining hydrolysis of the core β-lactam structure is 
shown. Lone pair electrons from a serine residue hydroxyl group in the enzyme 
active site bind covalently to the β-lactam carbonyl carbon. This opens the β-
lactam ring as the cyclic amide is converted into a secondary amine. Attack by a 
water molecule subsequently liberates the enzyme for additional catalysis  

2.3.3. β-lactamase Enzymes 

The classification of β-lactamases is based on functional characteristics and 

differences in amino acid sequences and protein structures of the four generally 

recognized classes A, B, C, and D. Classes A, C, and D inactivate β-lactams using a 

nucleophilic serine residue involving a mechanism in which an acyl intermediate is 

formed prior to hydrolysis (Figure 2.1)70. Class B β-lactamases are metalloenzymes and 

rely on the use of a zinc ion for hydrolysis. Conventional treatment in response to β-

lactamase mediated β-lactam resistance has been to co-prescribe β-lactamase inhibitors 

such as clavulanic acid in addition to the primary antibiotic. Clavulanic acid and 

analogous compounds are not effective against all forms β-lactamase enzymes – 

particularly against a subgroup of Class C enzymes known as AmpC. 

 

The SENTRY antimicrobial surveillance program carried out in 2004 collected 

Escherichia coli isolates from 30 medical centers in North America and found 5% of the 

samples to contain AmpC71. In the proceeding years reports of the prevalence of 

extended spectrum β-lactamases such as AmpC has continued to rise. The Study for 

Monitoring Antimicrobial Resistance Trends (SMART) was an ongoing surveillance 

program to monitor trends in Gram-negative bacteria isolated from patient abdominal 

infections in 37 participating nations. Their reports showed year over year increases in 

extended spectrum β-lactamase (ESBL) prevalence, with of 18% of E. coli and 26% K. 

pneumoniae possessing such a resistance mechanism72 . The horizontally acquired 
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resistance mechanism seems to be of particular concern in less developed nations, 

where hospitals how reported upwards of 47% of clinical isolates harbor AmpC73. 

AmpC is the only class of β-lactamase for which expression is induced, in 

response to exposure to β-lactams, by the transcriptional activator AmpR74. AmpC β-

Lactamase expression is usually repressed in the absence of β-lactams. Upon exposure 

to these antibiotics, anhMurNAc-peptide fragments derived during recycling of the 

peptidoglycan accumulate inside the cytoplasm where they displace the repressor 

molecule normally bound to AmpR (Figure 2.2). This displacement of the cell wall 

anabolic metabolite, UDP-MurNAc-pentapeptide, in turn drives transcription of the AmpC 

gene by AmpR and its downstream translation to produce clavulanic resistant AmpC β-

lactamases that proceed to hydrolyze the administered β-lactam antibiotics . Upon return 

of the anhMurNAc-peptide fragments to basal levels, the AmpR is once again by bound 

UDP-MurNAc-pentapeptide and inducible expression of AmpC ceases74.  

 

Figure 2.2. Peptidoglycan recycling pathway 
The steps following exposure of a Gram-negative AmpC bacterium to antibiotics 
is depicted. The peptidoglycan wall is illustrated as the purple layer below the 
outer membrane. Increased peptidoglycan fragmentation in light of PBP inhibition 
and missing peptide crosslinks leads to a cytosolic accumulation of the 
disaccharide through the AmpG transporter. These fragments are further 
metabolized to yield transcriptional activators subsequently activating AmpC 



22 

transcription and producing β-lactamases in a negative feedback form to destroy 
the invading penicillin. Adapted, with permission, from Perley-Robertson 2016.75 

2.3.4. Peptidoglycan Fragments 

In order to activate the AmpR transcriptional regulator that is normally bound by 

UDP-MurNAc-pentapeptide to repress β-lactamase expression, anhMurNAc-peptides 

must accumulate in appreciable quantities inside the cytoplasm of the bacterium20. 

AnhMurNAc-peptides have peptides of between three and five residues pendent to the 

lactyl group of the MurNAc residue, and the are the product of cleavage by the glycoside 

hydrolase NagZ, which acts on a GlcNAc-anhydro-MurNAc-peptide  substrate17,20. 

GlcNAc-anhydro-MurNAc-peptides can only move from the periplasmic space between 

the cell wall and inner membrane into the cytoplasm via the active proton driven 

antiporter AmpG. Targeting the internalization of GlcNAc-anhydro-MurNAc-peptides by 

inhibiting AmpG thus remains a potential therapeutic approach to decommission the 

activation of AmpC β-lactamase expression. 

2.3.5. Established Proof of Concept 

Previous research done in a  collaboration between the Vocadlo and Mark 

laboratories have explored this strategy by modifying the natural substrate of AmpG, 

GlcNAc-anhydro-MurNAc-peptide, by replacing the short peptide chain with a 

fluorophore68. The choice in making this substitution was based on earlier work 

demonstrating uptake of radiolabeled PG fragments, suggesting that the 3-5 amino acid 

peptide was not necessary for uptake of the disaccharide76. In addition to synthesis of a 

fluorescent substrate, previous freeze-thaw strategies used to expose the inner 

membrane transporter were used in combination with chemical reagents to remove the 

cell wall and outer membrane. This method of generating what are known as 

spheroplasts included the use of lysozyme to cleave the PG cross links, as well as 

EDTA as a divalent cation chelator to disrupt calcium function in the outer membrane68. 

By using a genetic knockout of the AmpG transporter in bacterial cell lines as a negative 

control, the team also provided a means of ensuring observed activity and downstream 

AmpC induction could be directly attributed to loss of AmpG transporter function. Taken 

together, this approach was used to successfully show uptake of the fluorescent probe 

and demonstrate its selectivity for AmpG in a consistent and kinetically quantifiable 
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manner68. This work represented the first fluorescent-based transport assay for a 

periplasmic transporter and laid the groundwork for an approach towards screening for 

potential inhibitors of the transporter enzyme. 

A number of obstacles, however, arose in envisioning translating this proof-of-

concept approach to an assay compatible with high-throughput screening (HTS). 

Following incubation of cells in spheroplasting solution, the freshly prepared 

spheroplasts, chemically stripped of their cell wall and outer membrane, are subjected to 

successive cycles of centrifugation, resuspension, and washing. These cycles serve to 

remove extracellular probe from the media and isolate only the signal emanating from 

the AmpG substrate that has been taken up inside the spheroplasts. The process itself 

not only likely ruptures numerous spheroplasts, but also requires hours of manual 

handling and pipetting before any results can be obtained. Such a protocol would not be 

feasible when tested against chemical libraries containing thousands of compounds. 

Even with the availability of centrifuge and plate washer devices built into the automated 

screening platform, efforts to replicate the results of the manual protocol failed. In 

particular, pellets of the spheroplast obtained by centrifugation were unable to be 

resuspended in an automated manner and washing proved inefficient when the retentate 

following centrifugation of 384-well plates could not be drained. Developing a new assay 

that allowed for imaging directly following incubation would enable a simple and HTS 

compatible approach to screening for AmpG inhibitors on a large scale. 

2.4. Results and Discussion 

2.4.1. Design of Substrate 

Two strategies were initially considered in addressing the previously mentioned 

hurdles towards development of a high through-put screening assay for AmpG activity. 

As with the original live cell transporter assay, both approaches relied on detectable 

fluorescence activation from within spheroplasts. 

2.4.2. Fluorescence Quenched Approach 

The first strategy was to exploit the quenching effects in the Förster Resonance 

Energy Transfer (FRET) phenomenon. Here energy is transferred in a non-radiative 
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manner between a donor (fluorophore) in an excited electron state and an acceptor 

(quencher) dye. The spectral overlap between the emission band of the donor and the 

excitation band of the acceptor, along with their physical proximity (up to approximately 

100Å) dictate, in a distance-dependent manner the extent to which FRET occurs. In the 

design I contemplated here the donor and acceptor are two separate molecules. In order 

for such an approach to be feasible for a live cell assay, it is necessary to use a highly 

polar quencher compound that cannot diffuse into or be transported into the cells. 

Furthermore, a quencher having the appropriate excitation wavelengths must be 

selected such that there is ample overlap between the emission band of the FRET donor 

with the absorption band of the FRET acceptor. By incubating spheroplasts in a medium 

containing a high concentration (>50 mM) of a quencher compound, I reasoned that any 

fluorescence originating from outside of the cell should be quenched. Since the 

quencher compound is incapable of being internalized, a fluorescent substrate 

transported by AmpG into the spheroplast would no longer be within effective range for 

FRET quenching to occur. In this manner the only detectable signal would be emitted 

from fluorophores internalized by the spheroplasts. Toward this goal, several 

fluorophore-quencher pairs were evaluated for their suitability based on brightness, size, 

stability, availability, and wavelength. Ultimately, BODIPY-Fl was selected for its high 

quantum yield (0.81), extinction coefficient (80,000 cm-1M-1), and red shifted excitation 

wavelength as compared to the originally used AlexaFluor350 fluorophore (503nm vs. 

350nm). Shorter wavelengths such as that of the probe used in the proof-of-concept 

assay results in some interference from autofluorescence arising from cells and 

spheroplasts that can  complicate the sensitivity of the assay.   
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Figure 2.3. Extracellular fluorescence using membrane impermeable FRET  
Cell membrane impermeable FRET acceptor molecules, depicted as black 
spheres in the figure above, are shown to quench all donor molecule signal 
emitted from outside of the cell. Once the probe (BODIPY-Fl appended to the 
disaccharide natural substrate) is internalized into the cytosol via AmpG, the 
donor molecule is no longer in the proximity of FRET acceptor molecules for 
effective FRET quenching to occur.   

2.4.3. Uncaging Enzymatic Approach 

The second approach to designing an assay that would allow for  directly 

detecting AmpG transport activity using spheroplasts without extensive sample handling 

involved further exploitation of the substrate tolerance of AmpG. I reasoned that 

chemical caging of the fluorophore with a functional group that could only be cleaved 

once inside spheroplasts could bypass the need for an external quencher. It is known 

that certain phenolic fluorophores, such as resorufin or umbelliferone, will only 

fluorescence significantly as the anionic phenolate. Acylation of the phenolic hydroxyl 

group with a moiety that can be cleaved by cytoplasmic esterases within the cell would 

lead to fluorescence only emerging within the spheroplasts from uncaged fluorescent 

AmpG substrates that have been transported into the spheroplasts (Figure 2.4). 

Coumarins such as the difluorinated coumarin Pacific Blue (3-carboxy-6,8-

difluoro-7-hydroxycoumarin) appeared to be a suitable choice for several reasons. 

Sterically, their small size makes them less likely to interfere with tolerance of the 

disaccharide substrate by AmpG. The phenolic hydroxyl group must be deprotonated to 

enable bright fluorescence and therefore provides a logical site for caging the 

fluorophore. Situated on the opposite end of the molecule, the carboxylic acid can serve 

as a site for coupling to the disaccharide natural substrate. Furthermore, the Vocadlo lab 
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already possessed gram quantities of Pacific Blue, which also alleviated the financial 

burden of acquiring such a precious compound for an experimental synthesis. 

The known susceptibility of phenolic acetates to spontaneous hydrolysis led to 

the search for more stable acyl caging groups – chemical modifiers that supressed 

fluorescence activity normally present in the anionic and unmodified form of the 

fluorophore. The stability of various esters and acyloxymethylethers of umbelliferone in 

aqueous solution have been examined in the literature for their rate of spontaneous 

hydrolysis. These findings suggested that a pivaloxymethyl ether (POM) exhibited  

robust stability77 and I therefore selected this as the lead caging group for this enzymatic 

approach towards the AmpG transporter assay. 

Uncaging of fluorescence involving fluorophores caged using 

acyloxymethylethers proceeds in a two-step mechanism, whereby enzyme hydrolysis of 

the ester bond first exposes a hydroxymethyl ether on the substrate. The inherent 

instability of this newly formed hemiacetal leads to its spontaneous break down to form 

formaldehyde and the liberated fluorophore, which can now be deprotonated and 

fluorescence77. 

 

Figure 2.4. Fluorescence release following cytoplasmic internalization and 
enzymatic uncaging. 
The natural disaccharide substrate is appended to a pivaloxy methyl ether caged 
coumarin. Following internalization of this intact probe via AmpG, cytoplasmic 
esterases within the cell presumably cleave the pival ester moiety to yield a 
hemiacetal which in turn rapidly decomposes into formaldehyde and the freely 
fluorescent anionic coumarin.    
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2.4.4.  Synthesis of a Common Disaccharide Intermediate   

Testing of both the enzymatic and quencher-based approaches required 

synthesis the GlcNAc-anhMurNAc disaccharide from which the fluorescent probes are 

derived. This work was largely based on a previous protocol published in 1986 by the 

German chemists Paulson, Himpkamp, and Peters78. The route is a convergent 

synthesis of the individual monosaccharides N-acetylglucosamine (GlcNAc) and 1,6-

anhydro-N-acetylmuramic acid (Scheme 2.1). Commercially available tri-O-acetyl-d-

glucal (1) was de-O-acetylated using catalytic quantities of sodium methoxide in 

methanol to give quantitative yields of d-glucal (2). The 1,6-anhydrosugar was 

subsequently formed using bis(tributyltin) oxide using the methods of Malik et al.79 

followed by installation of iodine at the 2 position carbon to give anhydrosugar 3. 

Formation of the C2-C3 epoxide was carried out using excess sodium hydride leading to 

displacement of iodine via the C-3 alkoxide, allowing for selective benzylation of the 

remaining C-4 hydroxyl to form epoxide 4. Ring opening of the epoxide was done using 

NaN3 , leading to installation of the azide at the C-2 position to generate azide 5. 

Alkylation of the now liberated C-3 hydroxyl using ethyl (S)-2-trifluoro methylsulfonyloxy 

propionate produces ester 6. Reduction and N-acetylation of the azide using palladium 

on carbon under a hydrogen atmosphere followed by treatment with acetic anhydride in 

pyridine furnished MurNAc 7. Deprotection of the C-4 hydroxyl using pressurized 

hydrogenation fostered glycoside acceptor 7 that was needed to build the target AmpG 

substrates. 
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Scheme 2.1. Synthesis of GlcNAc-AnhydroMurNAc fragments 

Synthesis of the glycoside donor (Scheme 2.1) began using 1,3,4,6-tetra-O-

acetyl-2-amino-2-deoxy-β-D-glucopyranose hydrochloride (8) as the starting material, 

which I generated using well established methods from D-(+)-glucosamine80,81. Steric 

hinderance from installation of the phthalamide protecting group on the amine (9) 

ensured the correct β-bromo stereochemistry of the glycosyl bromide using hydrobromic 

acid in glacial acetic acid to yield the desired glycosyl donor (10). 

 

Scheme 2.2. Glycoside formation and deprotection of β-1,4-GlcNAc-
anhydroMurNAc 

Glycosylation of donor 10 via the Koenigs-Knorr reaction used a method that was 

adapted from Paulson et al.78 in which I used silver triflate and silver carbonate in 

anhydrous methylene chloride to produce disaccharide 11 (Scheme 2.2). Hydrazine in 
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refluxing ethanol was used to remove the N-phthalimide protecting group and the 

resulting amine was directly acetylated using excess acetic anhydride in pyridine to 

furnish acetamide 12. De-O-acetylation, followed by a final saponification step using 

lithium hydroxide in methanol yielded the target disaccharide (14) to which fluorophores 

may be appended. 

Functionalization of BODIPY-Fl, previously prepared in the lab by Matthew Deen, 

with ethylenediamine allowed for direct amide coupling to disaccharide 14 (Scheme 2.3) 

using as a coupling reagent hexafluorophosphate benzotriazole tetramethyl uronium 

(HBTU) to yield candidate probe 15.  

 

Scheme 2.3. Synthesis of β-1,4-GlcNAc-anhydroMurNAc-BODIPY-Fl 

In parallel I worked to generate a caged coumarin using, as noted above, Pacifiic 

Blue. Initial attempts to cage Pacific Blue failed, presumably due to poor nucleophilicity 

of the  acidic phenolic hydroxyl group. I suspected that the combined electron 

withdrawing effects of the adjacent fluorine atoms diminishes the nucleophilic potential of 

the phenolate. Techniques to drive the SN2 reaction, such as preparation of the more 

reactive iodomethyl pivalate analogue (Scheme 2.4) and addition of 15-Crown-5 ether to 

enhance nucleophilicity of the phenolate failed to yield any product. Ultimately the Pacific 

Blue fluorophore was abandoned and the non-fluorinated commercially available version 

7-hydroxycoumarin-3-carboxylic acid. 
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Scheme 2.4. Unsuccessful caging of Pacific Blue using iodomethyl pivalate 

Initial attempts to selectively cage the 7-position hydroxyl group instead yielded 

preferential alkylation at the acid moiety or di-alkylation at both the acid and phenol 

positions (Scheme 2.5). It was hypothesized that dianion formation of the coumarin in 

the presence diisopropylethylamine (DIPEA) was electrostatically unfavorable. The 

propensity of the acid to be deprotonated before the phenol may well be the reason for 

its preferential alkylation. Administration of a stronger base , such as sodium hydride, 

was also ineffective in driving exclusive alkylation of the phenol. 

 

Scheme 2.5. Unsuccessful caging reactions of the non-fluorinated 7-
Hydroxycoumarin-3-carboxylic acid 

The synthesis was therefore reconfigured to neutralize the reactivity of the 

carboxy functional group by protection of the carboxyl group using benzyl 2-

aminoethylcarbamate (Scheme 2.6). In addition to vastly improving solubility of the 

compound (previously only soluble in DMSO and DMF), subsequent installation of the 

methyloxypivalate caging group to generate acetal 16 was facile. Excitation and 



31 

emission of protected fluorophore 16 were monitored (Ex. 410 nm, Em. 450 nm) 

following uncaging in a solution of sodium hydroxide (pH 12).  

 

Figure 2.5. Methyl pivalate installation and experimental uncaging of acid 
protected 7-hydroxycoumarin-3-carboxylic acid  
Incubation of the caged coumarin (16) in a basic solution of 0.1 M sodium 
hydroxide quickly liberates the fluorescent form of the molecule which glows 
bright blue under ultraviolent light compared to the intact starting material.  

Incubation of compound 16 with cell lysates in spheroplast buffer (98% 0.8 M 

sucrose, 1% 1 M MgCl2, 1% 1 M Tris at pH 7.2 (v/v)) demonstrated a linear increase in 

fluorescence relative to whole cell spheroplasts as the negative control group. These 

data indicate successful uncaging of 16, presumably as a result of cytosolic esterase 

activity.  
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Figure 2.6. Successful cell lysate enzymatic cleavage of compound 16 
Cell lysate boiled to induce protein denaturation prior to incubation with the probe 
(blue) shows no increase in fluorescence signal over time as compared to non-
boiled lysate (red). Excitation and emission wavelengths used were 410nm and 
450nm, respectively.  

Having shown the successful fluorescence uncaging of model compound 16 

using spheroplast lysates, I removed the carbamate protecting group to liberate the 

primary free amine for coupling to the disaccharide substrate (Scheme 2.7). Reduction 

conditions using standard palladium on charcoal caused saturation of the benzene ring, 

which I confirmed by mass spectrometry analysis. Experimentation with poisoned and 

moisten forms of palladium on charcoal using a hydrogen atmosphere failed to produce 

the desired compound. Ultimately 1,4-cyclohexadine was successfully applied as an 

alternative source of hydrogen, and this was done in refluxing ethanol in the presence of 

catalytic quantities of 10% by weight Pd-C, which furnished the target amine 17 

(Scheme 2.7).  

(+) Probe 
(+) Probe Boiled Lysate 
 
(-) Probe  
(-) Probe Boiled Lysate 

(hours) 
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Scheme 2.7. Cyclohexadiene facilitated cage installation 
1,4-cyclohexadiene allowed for the successful selective reduction of the 
carboxybenzyl group in 16 to liberate the free amine for subsequent amide 
coupling to furnish 18. 

Following HBTU amide coupling to disaccharide 14 caged candidate AmgG 

substrate 18 was obtained. The HPLC purified caged coumarin substrate, however, was 

observed to be unstable in solution – spontaneously uncaging to release fluorescent 

signal. Spontaneous colour change in the compound from a white solid, initially 

transparent in a solution of methanol, to a yellow solid consistent with uncaging, 

corresponded to an increase in fluorescence signal as observed by plate reader 

fluorescence detection. This decomposition occurred despite repeated HPLC purification 

and isolation in a number of buffered and unbuffered solutions in an effort to seek out 

the best conditions to minimize this problem (Figure 2.7). This observation was not 

entirely surprising given the low but detectable levels of hydrolysis reported even in the 

pivaloxymethyl ether coumarin substrate in similar aqueous conditions77. In the literature, 

incubation of similar acyloxymethylethers probes with enzymes produced significant 

increases in signal that are likely sufficient to render the spontaneous rates of hydrolysis 

a low-level background rate that can be ignored in those cases. As such, it was thought 

that the observed decomposition would not be a significant source of fluorescent signal.  
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Figure 2.7. Spontaneous hydrolysis of compound 18 in aqueous buffer 
Fluorescence activity was monitored via plate reader with 410nm and 450nm 
excitation and emission wavelengths, respectively.  

To reproduce the existing results of the proof of concept assay by Perley-

Robertson & Yadav68 it was necessary to synthesize the same fluorogenic substrate. In 

this manner I could ensure that the spheroplasting procedure and execution of the assay 

protocol was not a source of error behind the results I was observing with new probes. 

As in the original synthesis, benzyl 2-aminoethylcarbamate was coupled to the acid 

moiety of disaccharide 14 to both introduce a spacer group in the substrate and provide 

a protected primary amine that could be obtained by reductive deprotection of compound 

1968. The resulting primary amine allowed for amide coupling to 10 mg of the 

commercially available N-hydroxy succinimidyl AlexaFluor-350 to generate probe 20 with 

53 % yield following HPLC purification. 

(hours) 

0.8 M Sucrose 
20 mM MgCl2 
10 mM Tris 
pH 7.2 
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Scheme 2.8. Synthesis of β-1,4-GlcNAc-anhydroMurNAc-AF350 

Preparation of spheroplasts using E. coli BW25113 and E. coli MG1655 was 

carried out according to previously published methods82 that were optimized in the proof 

of concept transporter uptake assay68. DIC microscopy images taken before and after 

the spheroplasting process of E. coli show changes in the structure and mobility of 

bacteria (Figure 2.8) as they transition from motile rod-like cells to spheres that simply 

float in solution. Variability in the production of spheroplasts as judged by DIC 

microscopy was observed between experiments, with less than complete conversion of 

cells to spheroplasts. Apart from visual confirmation, spheroplast production could be 

confirmed by successful uptake of AmpG fluorescent probe as compared to 

unprocessed whole cells in the AmpG transport assay. 
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Figure 2.8. DIC images of E. coli MG1655 cells before and after spheroplasting 
Prior to the addition of spheroplasting reagents, the bacteria are rod-like in shape 
and extremely mobile. Following transformation, they adopt a spherical form 
owing to the shedding of their rigid cell wall and become relatively fixed in place 
without the full use of their flagella.  

2.4.5. Reproducing AmpG Transport Assay Proof of Concept  

Having prepared several probes and having learned to produce spheroplasted 

cells, a fluorescent uptake assay using a fluorescent plate reader was performed 

according to the previously established protocol68. Incubation of cells with probe 20, 

followed by washing of the spheroplasts to remove extracellular signal furnished 

significantly higher fluorescence in cells containing the AmpG transporter as compared 

with the ΔAmpG genetic knock-out strain (Figure 2.9). This result was indicative of the 

successful internalization and retention of fluorescent substrate 20, suggesting that the 

core disaccharide substrate (14) had been correctly synthesized and that the 

spheroplasting process and transporter assay were being accurately performed. Similar 

results were observed in using the new BODIPY-Fl probe (15), signaling that the 

alternative fluorophore was well tolerated by the AmpG transporter and similarly taken 

up by spheroplasted cells.  
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Figure 2.9. Successful uptake of fluorescent probes 15 (BODIPY-FL) and 20 
(AF350) following incubation and washes 
Experiments were carried out in duplicate (N=2). All probes were incubated at 50 
μM concentration levels in 0.12 g / mL E. coli for 2 hours before 4 cycles of 
centrifugation, pellet washing, and resuspension preceding fluorescent plate 
reader analysis.  

Access to a Zeiss AxioObserver spinning disc confocal microscope with a 491nm 

excitation laser allowed for suitable imaging of the comparatively red-shifted BODIPY-Fl 

probe (15). Concentrated fluorescent signal was observed to be emitted directly from 

spheroplasts with zero observable signal in the ΔAmpG genetic knockdown strain 

(Figure 2.10). These data supported the notion that signal observed in the microplate 

reader was from the AmpG mediated internalization of the probe.  
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Figure 2.10. Fluorescence microscopy confirming uptake of BODIPY-Fl transport 
substrate 15 (right) in ampG cells and absence of signal in AmpG 
knockout cells (left) 
Excitation and emission wavelengths 491nm and 503nm, respectively.   

Pursuing the approach of using an impermeable fluorophore, I performed initial 

experiments attempting to entirely quench the constitutive fluorescence of BODIPY-Fl. 

To this end, a two-fold dilution series of Ponceau S (10 mM–156 μM) was dissolved in 

50 μM of BODIPY-Fl probe 15 in spheroplast buffer conditions. Concentrations achieving 

greater than 90% quenching efficiency however proved to overwhelm any signal 

potentially released during incubation of BODIPY-Fl based 15 in spheroplasts. This 

observed inner filtering effect stemming for the high concentration of FRET donor 

molecules required to suppress the intense brightness of BODIPY-Fl (quantum yield Φ = 

0.9, EC > 80,000 cm-1 M-1) made this strategy untenable. Substitution with Pacific Blue 

as a dimmer fluorophore was more promising but this required exceedingly high 

concentrations of a polyanionic FRET acceptor such as Ponceau S (Figure 2.11) to 

extinguish fluorescence from Pacific Blue led to a maximum quenching of approximately 

90% as compared to the fluorescence seen in the absence of the quencher. The inability 

to effectively quench fluorescence by essentially saturating the solution using FRET 

acceptor molecules detracted from this as potential assay strategy.    
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Figure 2.11. Quenching of fluorophore Pacific Blue using Ponceau S as a FRET 
acceptor 
Excitation and emission wavelengths 410nm and 455nm, respectively. Ponceau 
S FRET acceptor concentration ranged from 10 mM to 156 μM.    

2.4.6. Caged Coumarin Transport Assay 

Having successfully replicated the results of previously established work68 to 

ensure the functionality of the assay and structural integrity of the carbohydrate 

recognition features of the substrate, the caged coumarin probe (18) was tested for 

uptake by AmpG using E. coli MG1655 spheroplasts using the previously established 

protocol68. Fluorescence data obtained using a microplate reader (Figure 2.11) appears 

to show a 4 to 5-fold increase in fluorescence of the AmpG transporter containing cells 

as compared to the ΔAmpG genetic knockdown strain, indicative of a weaker 

internalization or retention ability for probe 18 or the hydrolyzed form as compared to the 

AF-350 (15) and BODIPY-Fl (20) counterparts (Figure 2.12). It also remained unknown 

whether the caged probe was being transported by AmpG rather than the uncaged 

fluorescent  species. Indeed, retention of signal in AmpG cells following washing could 

be attributed to extracellular uncaging followed by internalization of the anionic 

fluorescent compound, rather than internalization of the intact caged compound. 

Difference in polarity between the alkylated and free anion form of the compound may 

dictate substrate tolerability. The sulfonic acid group present in the AF-350 compound 20 

lends credit to this notion that polar functional groups may assist with internalization via 

AmpG, whereas the pivaloxymethyl ether may be less favoured for transport.  

Wavelength (nM)  
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Figure 2.12 Caged Coumarin (18) spheroplast uptake assay following washing 

Microscopic images obtained by the Zeiss AxioObserver using the DAPI-based 

fluorescent channel allowed for visualization of fluorescence of compound 20 within 

spheroplasts after washing (Figure 2.13). Comparison of these images with DIC images 

of the same field of view seem to suggestion a failure of the probe to be internalized by 

the spheroplasts. 

 

Figure 2.13. Fluorescence microscopy images of caged coumarin (18) compared 
to DIC 
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Initial attempts to monitor fluorescence uncaging in spheroplasts highlighted the 

need to carry out the assay immediately following purification of compound 18. Despite 

using identical probe concentrations across all wells, the solutions emitting the strongest 

signal were found in the negative control buffers lacking spheroplasts. This presumably 

was due to the interference of spheroplasts themselves, causing light scattering, in 

conjunction with existing uncaged fluorescence due to spontaneous uncaging of the 

probe during the handling and storage of compound 20. Subsequent experiments were 

carried out immediately following HPLC purification to mitigate these possible problems.  
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Figure 2.14. Probe 18 in buffer unhindered by scattering effects of spheroplasts 
shows greater signal than spheroplast incubated probe 

Monitoring by plate reader the fluorescence over time directly following 

incubation in spheroplasts using freshly HPLC purified probe (18) did seem to yield a 

greater difference in signal increase between the experimental and control spheroplasts. 

Efficient internalization and cytosolic turnover of 18 was expected to yield results similar 

to those observed in the cell lysate assay when using precursor compound 16. In 

contrast, there was only an approximately 2-fold difference in rates between AmpG 

containing spheroplasts and the ΔAmpG genetic knockdown strain (Figure 2.15). Large 

background signal from spontaneous uncaging of compound 20 in buffer therefore likely 

accounts for a significant portion of signal release.  
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Figure 2.15. Spheroplast uptake assay using compound 18 immediately 
following HPLC purification showing increased fluorescence 
uncaging in ampG cells as measured by fluorescence using a plate 
reader 

Given the greater than 10-fold increase in signal arising from uncaging of 

compound 16 in cell lysate experiments relative to the buffered negative control, it 

seemed plausible that only low levels of 18 were being turned over inside spheroplasts. 

It was uncertain whether this could be attributed to poor internalization of the uncaged 

probe or poor cytosolic turnover inside of cells. Lack of confidence in uptake of 20 by 

AmpG in spheroplasts and overall instability in aqueous conditions inspired the search 

for an alternative caging strategy.   

2.4.7. Design of AMC Amidase Approach 

As opposed to the ester caging strategy described above that I pursued, amides 

are much more stable and, if attached as an amino acid, also more closely resemble the 

natural substate peptide chain of AmpG substrates. Although fluorescence is not entirely 

quenched upon caging of aminocoumarins as amides, it is sufficiently altered such that 

liberation of the free aryl amine would be easily observable by fluorescence 

spectroscopy83.   

Previously published work demonstrated the use of 7-amino-4-methylcoumarin 

(AMC) substrates for the detection E. coli methionine amino peptidase (MAP) activity84. 

It is thought that E. coli possess only one methionine amino peptidase85. This enzyme is 

localized to the cytosol86, rather than periplasm, and presumably would remain inside the 

cell following spheroplasting. The scientific literature reports on the selectivity of E. coli 
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MAP for terminal methionine residues, with a preference for small side chain residues 

immediately adjacent to the terminal methionine87. This limited preference in adjacent 

residues was consistent with crystal structure data of the enzyme-substrate complex 

depicting outward branching of the remaining residues away from the active site. As a 

result, it was hypothesized that that a GlcNAc-anhydro-MurNAc disaccharide appended 

to a methionine caged coumarin may be distal enough to not interfere with  cleavage of 

the methionine from the probe by the MAP. The two predominant methionine uptake 

systems in E. coli88,89 posed potential problems since, if they facilitated transport of the 

disaccharide substrate, this could interfere with the assay of AmpG transport activity. 

This concern was mitigated by the fact that no uptake was observed of the methionine 

AMC probe84 in whole cell E. coli84. Furthermore, uptake of the probe via the methionine 

transport system, if problematic, could be inhibited by incubation of the spheroplasts in 

buffers containing concentrated methionine. 

Existing experiments employing this methionine AMC approach used EDTA 

among other chelators of divalent cations to inhibit peptidase activity84. The fragile state 

of spheroplasts precludes the use of these inhibitors due to their propensity for lysis. 

2.4.8. Synthesis of Methionine Caged Substrate  

Commercially available fluorenyl methyloxy carbonyl (Fmoc) protected L-

methionine was converted to the corresponding acyl chloride using thionyl chloride in 

refluxing DMF. Displacement of the chloride with 7-amino-4-methyl-3-coumarinylacetic 

acid was carried out using diisopropylethylamine as a base in DMF . Amide coupling to 

the disaccharide (14) followed by deprotection of the Fmoc group in a 20% solution of 

piperidine in DMF furnished the final target compound 21. 
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Scheme 2.6. Synthesis of methionine amide caged analogue β-1,4-GlcNAc-
anhydroMurNAc-methionine-aminomethylcoumarin (21) 

2.4.9. Methionine Caged Coumarin Transport Assay 

Initial testing was carried out using cell lysates to ensure cytoplasmic methionine 

aminopeptidase (MAP) activity was capable of turning over the novel substrate. An 

approximate tenfold increase in signal was observed relative to the negative control after 

thirty minutes of incubation. These results indicated that cytoplasmic MAP activity was 

capable of cleaving the substrate target amide bond, but that there was no extracellular 

enzyme that was appreciably turning over the substrate.  
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Figure 2.16. Spheroplast lysate assay shows uncaging of compound 21 

Despite promising cell lysate experiment data, endpoint scans following the wash 

protocol suggest a complete inability of the probe to be taken up by cells (Figure 2.17). 

The stability against spontaneous hydrolysis of 21 combined with the signal retention 

observed for the ester caged analogue (18) would suggest that only the uncaged MAP-

processed probe is capable of being internalized. Kinetic monitoring of compound 21 

incubated with spheroplasts yielded no significant difference in signal between AmpG 

containing spheroplasts as compared to ΔAmpG spheroplasts.  
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Figure 2.17. Methionine caged probe (21) shows no uptake in AmpG 
spheroplasts following uptake assay incubation and washing 
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Figure 2.18, Methionine caged probe (21) shows no difference in fluorescence 
signal between AmpG spheroplasts and knockout strain during 
uptake assay 

The automatic gain function of the microplate reader used to obtain the 

fluorescence data serves to amplify the signal readout and adjust the y-axis 

correspondingly. The 4-fold increase in signal observed over 2 hours would indicate an 

extremely low baseline signal. To confirm this notion, a positive control consisting of 

equimolar concentrations of the methionine-caged coumarin free of the disaccharide 

was tested alongside probe 21 in spheroplasts. Signal produced from turnover of this 

coumarin rapidly dwarfed any signal produced from compound 21 in either cell line.   
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Figure 2.19. Methionine aminomethylcoumarin incubate with spheroplasts 
shows dramatic signal release relative to methionine amide caged 
coumarin (21) 

2.4.10. Alternative Amide Caging Residue Strategy  

These results suggested a failure of compound 21 to be appreciably internalized 

by cells. Mass spectrometry results confirmed the expected mass of 21 following 
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completion of the synthesis, as with all preceding probes used in the uptake assay. A 

secondary mass spectrometry analysis of stock compound 21 dissolved in DMSO used 

in the assay revealed a primary peak with an additional 16 atomic mass units. This value 

corresponded exactly to the atomic mass of oxygen and is believed to arise by oxidation 

of the sulfur atom of methionine. While it seemed unlikely that this modification would be 

responsible for the inability of 21 to be internalized by AmpG transport, two additional 

analogous probes were synthesized using L-alanine and L-leucine as caging moieties in 

place of methionine (Figure 2.20). The synthetic route was exactly as in the production 

21 with the exception of using N-Fmoc-L-alanine and N-Fmoc-L-leucine as starting 

materials.  

 

Figure 2.20. L-Alanine amide caged coumarin (22) and L-leucine amide caged 
coumarin (23) 

Spheroplast lysate experiments were able to confirm ability of cytosolic contents 

to cleave off the alanine and leucine caging moieties. Uncaging was extremely rapid, 

reaching detector saturation within minutes of incubation.  

 

Figure 2.21. Spheroplast lysate shows rapid uncaging of alanine probe 22 (A) 
and leucine probe 23 (B) 
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Endpoint scans of cells incubated with either probe 22 or 23 both exhibited some 

level of retention in AmpG-containing cell lines. It is suspected that this difference in 

signal is the result of uptake of the uncaged fluorescent probe following the rapid 

extracellular amidase activity of lysed spheroplasts. This may explain the discrepancy in 

results between endpoint scans of probes 22 and 23 as compared with the methionine 

analog 21 (Figure 2.22).  
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Figure 2.22. Fluorescence signal of alanine (22) and leucine (23) probe in 
spheroplast uptake assay following washing 

Despite turnover of the probes in the cell lysate assays, as with the methionine 

probe 21, there was no substantial difference in release signal observed during 

incubation between AmpG and ΔAmpG cell lines (Figure 2.23). 
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Figure 2.23. No difference in fluorescence uncaging observed between +AmpG 
and knockout line in spheroplasts for probes 22 (A) and 23 (B) 

2.5. Conclusions and Future Work 

Several probes have been designed and synthesized in an effort to develop an 

efficient and high throughput amenable screening assay toward identifying inhibitors of 

AmpG permease. These probes, while capable of being processed by the lysates of E. 

coli spheroplasts, have nonetheless shown to be ineffective in quantifying AmpG 

transporter activity in the manner intended. Despite the retention of fluorescent signal in 

AmpG transporter bearing cells, it has not been shown that AmpG permease is capable 

of internalizing these probes in their intact and chemically caged state. Furthermore, 

instability of the POM caging group of compound 18 introduced a significant level of 

background noise due to the high rate of spontaneous uncaging in aqueous conditions. 

All probes were synthesized using an identical stock of the core disaccharide substrate 

structure, including that of the successfully reproduced AF-350 based positive control 

21. Taken together these data would suggest an inability of the caged novel probes to 

be transported inside of spheroplasts and potentially a lower substrate tolerability than 

was previously hypothesized for the AmpG transporter. 

A shift in quenching strategies to enable eliminating manual washing, 

resuspension, and centrifugation of spheroplasts could ultimately achieve the same goal. 

One alternative approach could be to use cell impermeable thioamide compounds to 

quench the extracellular signal of BODIPY-Fl (18) by photoinduced electron transfer 

(PET) quenching without simultaneously extinguishing all signal from within the solution 

due to an inner filter effect. Alternatively, mechanical improvements and setup 
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optimization in the washing, suspension, and draining capabilities of the high throughput 

screening platform may even be capable of using the original assay protocol to screen 

for inhibitors.  

2.6. Experimental Section 

2.6.1. General Chemical Methods 

Unless stated otherwise, all reagents were purchased from commercial sources 

and were used without further purification. Anhydrous solvents used in reactions were 

purchased from commercial sources. Reactions were monitored by thin layer 

chromatography (TLC) on Silica Aluminum TLC plate, silica gel coated with fluorescent 

indicator F254. TLC spots were detected under UV light (254 λ /365 λ) and/or by 

charring with potassium permanganate or “Seebach” stain (2.5 g phosphomolybdic acid, 

1 g Ce(SO4)2, 6 mL conc H2SO4, 94 ml H2O.). High pressure liquid chromatography 

(HPLC) was performed on an Agilent 1260 Infinity device equipped with a variable 

wavelength UV-Vis detector using ZORBAX 300SB C8 column (5.0 µm, 9.4 x 250 mm 

for analytical runs and semi-preparative scale purifications) and elution carried out using 

HPLC grade solvents. In concentrating reactions, solvents were evaporated under 

reduced pressure on a rotary evaporator between 40–60 ºC using either a PIAB vacuum 

system or Welch W Series high vacuum oil pump. NMR spectra were recorded on 

Bruker AVANCE III 400 or AVANCE II 600_QNP. Spectra are referenced according to 

the chemical shift of the deuterated solvent in which they were dissolved (1H NMR: 

CDCl3: 7.26 ppm, CD3OD: 3.30 ppm; 13C NMR: CDCl3: 77.0 ppm; CD3OD 49.0 ppm) and 

peak assignments were made on the basis of 2D-NMR (1H COSY, HSQC, HMBC) 

experiments. High resolution mass spectra (HRMS) were recorded on a Bruker MaXis 

Impact spectrometers using positive or negative electrospray ionization (ESI). 

2.6.2. Synthesis of Key Chemical Compounds 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide (14) To a 

solution of 17.9 mg (0.028 mmol) of compound 13 (ethyl (R)-2-(((1R,2S,3R,4R,5R)-4-

acetamido-2-(((2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-

(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6,8-dioxabicyclo[3.2.1]octan-3-

yl)oxy)propanoate in 566 μL of methanol was added 566 μl of 1.0M LiOH (0.057 mmol) 
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and stirred under an inert atmosphere at room temperature for 30 minutes. The crude 

mixture was then concentrated by rotary evaporation and purified using a CombiFlashTM 

chromatography device on normal phase silica to give compound 14 (11.4 mg, 85% 

yield). 1H NMR (600 MHz, Deuterium Oxide) δ 5.25 (t, J = 1.6 Hz, 1H), 4.73 (s, 2H), 4.52 

(dd, J = 7.4, 3.9 Hz, 2H), 4.11 – 4.04 (m, 2H), 3.92 (d, J = 1.7 Hz, 1H), 3.85 (d, J = 1.9 

Hz, 1H), 3.77 (dd, J = 12.5, 2.1 Hz, 1H), 3.67 – 3.58 (m, 4H), 3.57 (d, J = 2.6 Hz, 2H), 

3.43 (dd, J = 10.5, 8.4 Hz, 1H), 3.39 (t, J = 1.6 Hz, 1H), 3.37 – 3.27 (m, 2H), 3.21 (d, J = 

0.7 Hz, 1H), 1.93 (dd, J = 7.3, 0.7 Hz, 6H), 1.21 (d, J = 6.9 Hz, 3H).13C NMR (151 MHz, 

Deuterium Oxide) δ 175.15, 100.85, 99.72, 76.11, 75.91, 75.34, 73.71, 73.62, 73.23, 

69.58, 69.48, 64.69, 60.34, 60.24, 55.41, 50.17, 22.16, 21.86, 18.11. Mass Spec: HR-

ESI-MS calculated for C19H30N2O12 [M+H]+ 479.1889, found 479.1868 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide 

BODIPY-Fl (15) To a solution of  5.9 mg (0.018 mmol) of N-(2-aminoethyl)-3-(5,5-

difluoro-7,9-dimethyl-5H-dipyrrolodiazaborinin-3-yl)propenamide dissolved in 720 μL of 

DMF (0.025 M) was added 10.6 mg of HBTU (0.028 mmol) and DIPEA (11.3 μl, 0.065 

mmol) and stirred under an inert atmosphere at room temperature for two hours. The 

mixture was then concentrated by rotary evaporation and purified using a CombiFlashTM 

chromatography device on normal phase silica to give compound 15 (3.2 mg, 22% 

yield). 1H NMR (600 MHz, Methanol-d4) δ 7.45 (d, J = 253.4 Hz, 1H), 7.03 (dt, J = 171.0, 

4.7, 4.0 Hz, 1H), 6.98 (s, 0H), 6.35 (d, J = 4.0 Hz, 1H), 6.24 (s, 1H), 4.61 (d, J = 5.5 Hz, 

1H), 4.50 (d, J = 8.3 Hz, 1H), 4.25 – 4.20 (m, 1H), 4.12 (q, J = 6.7 Hz, 1H), 4.01 (d, J = 

1.8 Hz, 1H), 3.91 (dd, J = 12.0, 2.1 Hz, 1H), 3.85 (d, J = 1.9 Hz, 1H), 3.81 – 3.66 (m, 

3H), 3.52 (p, J = 1.6 Hz, 1H), 3.48 – 3.27 (m, 27H), 3.24 (t, J = 7.8 Hz, 2H), 2.64 (ddd, J 

= 9.0, 6.7, 1.2 Hz, 2H), 2.54 (s, 3H), 2.31 (s, 3H), 2.05 (d, J = 18.4 Hz, 6H), 1.38 (d, J = 

6.8 Hz, 3H), 1.31 (s, 1H). 13C NMR (151 MHz, Methanol-d4) δ 174.62, 173.59, 173.40, 

171.98, 159.81, 157.24, 144.34, 135.09, 133.50, 128.26, 124.38, 119.89, 116.28, 

100.58, 100.51, 78.06, 76.81, 76.04, 73.97, 73.85, 73.26, 70.59, 64.44, 61.22, 55.70, 

48.38, 38.61, 38.39, 34.65, 24.13, 22.01, 21.23, 17.45, 13.50, 9.78. Mass Spec: HR-ESI-

MS calculated for C35H49BF2N6O12 [M+H]+ 795.3560, found 795.3549 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide 

Pivaloxymethyl Ether Coumarin (18). Crude compound 17 (11 mg, 0.030 mmol) was 

dissolved in 912 μL of DMF (0.033 M) with 23.2 mg (0.043 mmol) of compound 14, 23.9 

mg of HBTU (0.063 mmol) and 12.6 μl of DIPEA (0.072 mmol) and stirred for 2 hours 
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under an inert atmosphere at room temperature. The mixture was then concentrated by 

rotary evaporation and purified using a CombiFlashTM chromatography device on normal 

phase silica followed by HPLC purification to give compound 18 (2.0 mg, 0.002 mmol, 

12.5% yield). 1H NMR (600 MHz, Methanol-d4) δ 7.83 (d, J = 8.6 Hz, 1H), 7.19 – 7.13 

(m, 2H), 5.94 (d, J = 0.8 Hz, 2H), 4.59 (d, J = 5.6 Hz, 1H), 4.48 (d, J = 8.4 Hz, 1H), 4.21 

(dd, J = 7.5, 0.9 Hz, 1H), 4.13 (q, J = 6.7 Hz, 1H), 3.88 (dd, J = 12.0, 2.0 Hz, 1H), 3.81 – 

3.57 (m, 6H), 3.51 (p, J = 1.5 Hz, 1H), 3.47 – 3.35 (m, 4H), 3.33 – 3.25 (m, 56H), 2.04 (s, 

3H), 1.98 (s, 3H), 1.36 (d, J = 6.7 Hz, 3H), 1.21 (s, 9H). 13C NMR (151 MHz, Methanol-

d4) δ 179.02, 176.78, 174.76, 173.40, 171.86, 163.04, 161.76, 161.04, 156.21, 147.71, 

131.41, 115.47, 114.12, 113.62, 102.36, 100.67, 100.51, 84.29, 78.04, 76.77, 76.00, 

73.96 (d, J = 2.0 Hz), 73.33, 70.53, 64.41, 61.19, 55.68, 38.77, 38.52, 38.11, 31.69, 

29.55 – 29.28 (m), 25.82, 22.35, 22.01, 21.19, 17.31. Mass Spec: HR-ESI-MS calculated 

for C37H50N4O17 [M+H]+ 823.3261, found 823.3233 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide AF350 

(20) To a solution of  5.0 mg (0.012 mmol) of commercially available AF350 N-

hydroxysuccinimidyl ester dissolved in 1.0 ml of DMF was added 9.1 mg of compound 

19 (0.018 mmol) and 3.3 μl of DIPEA (0.019 mmol) and stirred at room temperature 

under an inert atmosphere for two hours. The crude reaction mixture was then 

concentrated by rotary evaporation and purified using a CombiFlashTM chromatography 

device on normal phase silica followed by HPLC purification to give compound 20 (5.6 

mg, 57% yield). 1H NMR (400 MHz, Methanol-d4) δ 8.16 (s, 1H), 5.31 (d, J = 12.7 Hz, 

1H), 4.49 (d, J = 8.2 Hz, 2H), 4.07 (dt, J = 21.1, 7.1 Hz, 2H), 3.96 – 3.87 (m, 2H), 3.81 – 

3.68 (m, 2H), 3.64 (d, J = 17.0 Hz, 4H), 3.51 (s, 2H), 3.39 (dd, J = 14.3, 8.1 Hz, 3H), 

2.46 (s, 3H), 2.05 (d, J = 7.9 Hz, 6H), 1.37 (d, J = 6.8 Hz, 3H).13C NMR (151 MHz, 

Methanol-d4) δ 173.53, 154.83, 150.93, 125.27, 114.86, 110.32, 101.64, 100.72, 100.48, 

77.76, 76.68, 75.80, 74.33, 73.89, 73.32, 70.59, 64.38, 61.22, 55.76, 33.95, 22.02, 

21.20, 17.22, 14.11, 7.80. Mass Spec: HR-ESI-MS calculated for C33H45N5O17S [M-H]- 

814.2441, found 814.2449 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide 

methionine aminomethylcoumarin (21) 10mg (0.009mmol) of (9H-fluoren-9-yl)methyl 

((S)-1-((3-(2-((2-((R)-2-(((1R,2R,3R,4S,5R)-4-acetamido-2-(((2R,3R,4R,5S,6R)-3-

acetamido-4,5-dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6-

oxabicyclo[3.2.1]octan-3-yl)oxy)propanamido)ethyl)amino)-2-oxoethyl)-4-methyl-2-oxo-
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2H-chromen-7-yl)amino)-4-(methylthio)-1-oxobutan-2-yl)carbamate was stirred in a a 

20% solution of piperidine in DMF for 10 minutes. The crude reaction mixture was 

concentrated by rotary evaporation and purified using a CombiFlashTM chromatography 

device on normal phase silica followed by HPLC purification to give compound 21 (1.1 

mg, 15% yield). 1H NMR (600 MHz, Methanol-d4) δ 7.91 (s, 1H), 7.82 (d, J = 8.6 Hz, 

1H), 7.51 (d, J = 8.7 Hz, 1H), 4.51 (d, J = 8.4 Hz, 1H), 4.23 (d, J = 7.5 Hz, 1H), 4.12 (q, J 

= 6.8 Hz, 2H), 3.91 (dd, J = 12.0, 2.0 Hz, 2H), 3.85 (d, J = 2.0 Hz, 2H), 3.80 – 3.74 (m, 

3H), 3.70 (dd, J = 11.8, 5.8 Hz, 2H), 3.67 (d, J = 2.9 Hz, 3H), 3.50 (s, 2H), 3.46 (q, J = 

4.3, 3.0 Hz, 4H), 2.49 (s, 5H), 2.07 – 2.02 (m, 8H), 1.36 (d, J = 6.7 Hz, 6H). 13C NMR 

(151 MHz, Methanol-d4) δ 174.71, 173.49, 171.39, 152.83, 150.23, 125.79, 118.32, 

100.52, 78.02, 76.78, 76.01, 73.92, 73.69, 73.29, 70.55, 64.48, 61.19, 55.68, 39.10, 

38.22, 33.93, 31.68, 29.35, 29.08, 22.05, 21.24, 17.52, 14.20. Mass Spec: HR-ESI-MS 

calculated for C38H54N6O15S [M+H]+ 867.3458, found 867.3431 

β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide alanine 

aminomethylcoumarin (22) 8.8 mg (0.009mmol) of (9H-fluoren-9-yl)methyl ((S)-1-((3-

(2-((2-((R)-2-(((1R,2S,3R,4R,5R)-4-acetamido-2-(((2S,3R,4R,5S,6R)-3-acetamido-4,5-

dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6,8-dioxabicyclo[3.2.1]octan-

3-yl)oxy)propanamido)ethyl)amino)-2-oxoethyl)-4-methyl-2-oxo-2H-chromen-7-

yl)amino)-1-oxopropan-2-yl)carbamate was stirred in a 20% solution of piperidine in 

DMF for 10 minutes. The crude reaction mixture was concentrated by rotary evaporation 

and purified using a CombiFlashTM chromatography device on normal phase silica 

followed by HPLC purification to give compound 22 (4.1 mg, 57% yield). 1H NMR (600 

MHz, Methanol-d4) δ 7.88 (d, J = 2.1 Hz, 1H), 7.49 (dd, J = 8.7, 2.1 Hz, 1H), 4.62 (d, J = 

5.6 Hz, 1H), 4.51 (d, J = 8.4 Hz, 1H), 4.27 – 4.21 (m, 1H), 4.11 (p, J = 7.0 Hz, 2H), 4.01 

(d, J = 2.2 Hz, 1H), 3.91 (dd, J = 12.0, 2.0 Hz, 1H), 3.86 (d, J = 1.8 Hz, 1H), 3.81 – 3.74 

(m, 2H), 3.73 – 3.62 (m, 3H), 3.50 (q, J = 1.6 Hz, 1H), 3.48 – 3.40 (m, 3H), 2.68 (s, 8H), 

2.48 (s, 3H), 2.04 (d, J = 13.2 Hz, 6H), 1.64 (d, J = 7.1 Hz, 3H), 1.39 – 1.29 (m, 3H). 13C 

NMR (151 MHz, Methanol-d4) δ 174.73 (d, J = 11.7 Hz), 173.44, 171.88, 171.36, 168.22, 

162.16, 152.84, 150.15, 140.76, 125.79, 118.36, 116.78, 115.46, 106.50, 100.55 (d, J = 

5.5 Hz), 78.07, 76.81, 76.04, 73.94, 73.65, 73.29, 70.57, 64.46, 61.21, 55.67, 49.63, 

39.10, 38.98, 38.23 (d, J = 18.5 Hz), 33.89, 22.02, 21.22, 17.52, 16.05, 14.17. Mass 

Spec: HR-ESI-MS calculated for C36H50N6O15 [M+H]+ 807.3424, found 807.3350 
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β-D-N-Acetylglucopyranosyl-1,6-anhydro-β-D-N-acetylmuranamide leucine 

aminomethylcoumarin (23) 9.0 mg (0.008mmol) of (9H-fluoren-9-yl)methyl ((S)-1-((3-

(2-((2-((R)-2-(((1R,2S,3R,4R,5R)-4-acetamido-2-(((2S,3R,4R,5S,6R)-3-acetamido-4,5-

dihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-6,8-dioxabicyclo[3.2.1]octan-

3-yl)oxy)propanamido)ethyl)amino)-2-oxoethyl)-4-methyl-2-oxo-2H-chromen-7-

yl)amino)-4-methyl-1-oxopentan-2-yl)carbamate was stirred in a 20% solution of 

piperidine in DMF for 10 minutes. The crude reaction mixture was concentrated by rotary 

evaporation and purified using a CombiFlashTM chromatography device on normal phase 

silica followed by HPLC purification to give compound 22 (3.3 mg, 49% yield). 1H NMR 

(600 MHz, Deuterium Oxide) δ 7.70 (d, J = 8.7 Hz, 0H), 7.57 (d, J = 2.1 Hz, 0H), 7.32 

(dd, J = 8.7, 2.1 Hz, 0H), 5.24 (s, 0H), 4.51 (dd, J = 21.2, 7.1 Hz, 1H), 4.06 (t, J = 7.7 Hz, 

1H), 3.96 (q, J = 6.8 Hz, 0H), 3.78 (d, J = 2.0 Hz, 0H), 3.75 – 3.67 (m, 1H), 3.67 – 3.47 

(m, 2H), 3.42 (dd, J = 10.5, 7.9 Hz, 0H), 3.36 – 3.25 (m, 2H), 3.25 – 3.17 (m, 0H), 3.06 

(q, J = 7.3 Hz, 3H), 2.32 (s, 1H), 1.93 (s, 1H), 1.79 – 1.70 (m, 1H), 1.71 – 1.68 (m, 1H), 

1.63 (dp, J = 13.5, 6.8 Hz, 0H), 1.15 (dt, J = 14.7, 7.1 Hz, 5H), 0.87 (dd, J = 6.6, 3.2 Hz, 

2H). 13C NMR (151 MHz, Deuterium Oxide) δ 175.74, 175.15, 173.25, 172.89, 169.35, 

163.68, 152.52, 152.10, 139.59, 126.38, 117.35, 117.23, 107.97, 100.75, 99.68, 81.59, 

76.93, 76.10, 75.86, 74.00, 73.59, 73.22, 69.54 (d, J = 18.5 Hz), 64.73, 60.46, 55.37, 

52.54, 49.44, 46.55, 39.89, 39.29, 38.32, 34.17, 23.82, 22.27, 21.84, 21.52, 20.83, 

18.29, 14.83, 8.12. Mass Spec: HR-ESI-MS calculated for C39H56N6O15 [M+H]+ 

849.3894, found 849.3720 

2.6.3. Cell Preparation & Spheroplasting  

Experiments were carried out in duplicate using existing frozen stock of E. coli 

MG1655 and BW25113 strains leftover from the original research carried out by Perley 

Robertson and Yadav in the Vocadlo lab68. Deletion of E.coli AmpG from the 

chromosome of MG1655 and BW25113 in these cell stocks was followed by 

transformation with with pBAD-Pa-AmpG-V5His-Km expression vectors or pBAD-Pa-

AmpG-V5His-Km Cell culturing, harvest, and spheroplasting were carried out according 

to previously published protocol68. Overnight cultures of MG1655 or BW25113 were 

prepared in lysogeny broth (LB) and grown overnight at 37 ∘C in the presence of 35 

μg/mL of kanamycin. The following morning the cells were inoculated with a 50-fold 

dilution into 400 mL of LB and allowed to grow at 28 ∘C until the OD600 was observed to 
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reach 0.6-0.7. Expression of ampG was induced for an additional 4 hours at this point 

with the addition of 0.2% (w/v) L-arabinose. In the case of BW25113 cells, cephalexin (6 

μg/mL) was added during the last hour of induction. The cells were centrifuged at 3000 

rcf at 4∘C and the pellet resuspended in 100 mL of 0.8 M sucrose solution. The 

spheroplasting procedure was initiated within 24 hours of this time and the sucrose 

suspended cells were stored in the fridge at 6 ∘C. Spheroplast was initiated with the 

rapid and successive addition of 6 mL of 0.2 M Tris (pH 7.2), 4.8 mL of 1 mg/mL 

lysozyme, and 6 mL of 0.025 M EDTA. The cell solution was allowed to sit for a 

maximum of 15 minutes following the addition of these reagents and spheroplast 

formation and completion was monitored with DIC microscopy of intermittent sample 

aliquots during the process. Once judged complete, an ice chilled stop solution (87.5% 

0.8 M sucrose, 9.5% deionized water, 2% 1 M MgCl2, 1% 1 M Tris) was added followed 

by 280 mL of dilution solution (98% 0.8M sucrose, 1% 1 M MgCl2, 1% 1 M Tris). The 

diluted spheroplast solution was immediately centrifuged at 2000 rcf at 4 ∘C for 25 

minutes and the pellet subsequently washed with dilution solution before being 

resuspended at 4 g/mL in dilution solution. Spheroplasts were used within 48 hours of 

this procedure and stored in the fridge at 6 ∘C otherwise. 

2.6.4. Spheroplast Uptake Assay  

Experiments were carried out according to the previously published protocol by 

Perley-Robertson and Yadav68. 100 μL of E.coli MG1655 or BW25113 spheroplasts and 

the corresponding ΔampG strains were added to 1 mL Eppendorf tubes followed by the 

addition of 150 μL of dilution solution. The assay was initiated with the addition of 100 μL 

of 175 μM probe followed by inversion of the tubes several times to homogenize the 

solution. The final reaction concentrations were 50 μM probe and 0.12 g/mL 

spheroplasts. In the case of kinetic plate reader analysis, 150 μL aliquots of this solution 

were transferred to 96 well solid black flat bottom plates and immediately following 

mixing and submitted for analysis on a Synergy H1 Hybrid Multi-Mode Microplate 

Reader. In the case of endpoint scans following incubation and washing of cells, the 

Eppendorf tubes were incubated at room temperature using a digital heating block for 2 

hours in darkness. Following this incubation, 1 ml of ice chilled dilution solution was 

added to each Eppendorf tube following by 2000 rcf centrifugation at 4 ∘C for 20 minutes. 

The supernatant is the removed with a syringe making effort to minimally perturb the 
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pellet and replaced with 1 mL of fresh ice chilled dilution solution. The pellet is then 

gently resuspended using a 1 mL micropipette without sucking up the pellet itself before 

further successive cycles of centrifugation, supernatant drainage and resuspension. 

After four cycles total, the cells are suspended in 200 μL of dilution solution and 150 μL 

aliquots are transferred to a 96 well solid black flatbottom plate for fluorescence endpoint 

scans on a Synergy H1 Hybrid Multi-Mode Microplate Reader.  

2.6.5. Microscopy  

Differential contrast interference imaging of bacteria for the purposes of the 

spheroplasting procedure and following the ampG transport assay were captured using 

Zeiss Axio Observer inverted microscope equipped with a Yokogawa CSU-10 confocal 

head. Imaging was carried out with a 62X oil objective lens. A Hammamatsu and 9100 

EMCCD camera controlled through Volocity acquisition software. Fluorescence images 

were captured using Nikon A1R Ti-inverted microscope equipped with a 32-channel 

spectral detector, 60X oil objective lens and  Hammamatsu 9100 EMCCD camera. 

Acquisition was operated using Nikon Elements 4.2 software. Excitation wavelengths of 

350nm (compound 20), 380nm (compound 21-23), 410nm (compound 18) and 503nm 

(compound 15) were used during fluorescence microscopy. 
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Chapter 3. Development of a Practical Large-Scale 
Synthesis of Thiamet-G 

3.1. Abstract  

Herein is reported a large-scale synthesis of Thiamet G, a potent inhibitor of the 

glycoside hydrolase O-GlcNAcase and a compound of clinical research interest for its 

potential application in various illnesses including cardiovascular disease, tauopathies, 

and conditions associated with cardiac ischemia. This work represents a significant 

improvement in the scalability and efficiency of previously reported synthetic routes while 

also improving protocol safety, product purity, and overall yield. The volumes of solvent 

are significantly reduced, use of toxic reagents are reduced or entirely eliminated, and 

the need for chromatographic purification is eliminated whilst affording the final product 

in high purity. The utility of the methods described are illustrated by a single production 

run yielding 150 grams of Thiamet-G using glassware commonly found within academic 

chemistry laboratories.  

3.2. Contributions 

The original synthetic scheme for Thiamet-G was established in 200861. The 

revised synthesis described herein was developed in a collaborative effort between 

Matthew Deen and Viktor Holicek.   

3.3. Introduction 

O-linked N-acetylglucosamine (O-GlcNAc) modification of serine and threonine 

protein residues is a dynamic and wide-spread post translational modification found on 

hundreds of proteins within all multicellular eukaryotes studied to date90,91. O-GlcNAc 

modification has been demonstrated to affect cell and organismal physiology, affecting 

many process including, for example, cellular homeostasis92, transcription93, 

development94, and autophagy28. Studies focused on O-GlcNAcylation within various 

animal models has implicated this modification within a host of chronic diseases ranging 

from neurodegeneration43 to cancer31,40–42 and on to cardiovascular34–36 disease33–38.  

Many of these physiological findings have been uncovered with the aid of small molecule 
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inhibitory tool compounds which have been used manipulate O-GlcNAcylation in cellular 

and in vivo models. 

Among these inhibitors, Thiamet-G, a selective and potent inhibitor of O-

GlcNAcase (OGA) (Ki = 2.1 nM), the sole enzyme responsible for removing O-GlcNAc32, 

has proven to be a particularly valuable tool compound for the field. Thiamet-G was 

developed as a means to probe the dynamic relationship between O-GlcNAc and 

phosphorylation of the microtubule associated protein tau whose aggregates are a 

classical hallmark of Alzheimer’s disease61. The design of the inhibitor was inspired by 

mechanistic studies of the OGA enzyme and was first reported in 200861. Thiamet-G is a 

transition state analogue, which in part accounts for its far exceeding previously reported 

inhibitors in both selectivity and binding affinity61. Subsequently, Thiamet-G has found 

application in studying the impact of increased O-GlcNAc levels within a number of 

disease models. One of the disease areas in which it has had the most impact in is in 

neurodegeneration, where it has been used in many studies focused on Alzheimer’s 

Disease (AD)55, Parkinson’s (PD)95, Progressive Supranuclear Palsy (PSP)96, and 

Huntington’s Disease97. The ability of Thiamet-G to slow neurodegeneration in AD 

tauopathy mouse models has been reproducibly demonstrated98 and the compound has 

since been exploited as a lead molecule that was optimized to produce an improved 

analog (MK-8719) with improved pharmacokinetic properties that has been taken into 

Phase 1 clinical trials for PSP, where it was shown to be generally well tolerated in 

patients62. Efforts such as this demonstrate the interest behind structurally optimizing 

and exploring derivatives of Thiamet-G and highlight its value as a synthetic precursor to 

clinically relevant pharmaceutical compounds. Similarly, the growing use of Thiamet-G in 

academic animal studies requires access to large and high quality compound since the 

modest brain exposure for this tool compound requires administration of relatively high 

doses9,17,24–27. Furthermore, commercially available Thiamet-G can be prohibitively 

expensive to purchase at scales needed for animal studies or even for sustained cellular 

experimentation. Taken together, the increased quantities of Thiamet-G needed to 

support these avenues of research highlight the need for a more accessible and 

straightforward synthetic route to production. Several key aspects of the original 

synthesis pose safety and practical concerns. We sought to exclude the used of toxic 

heavy metals, reduce the large solvent volumes that could necessitate large reactor 

vessels, reduce the need for excess reagents, and minimize the labour and cost 
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associated with intensive chromatographic purification of intermediates. These goals 

were pursued while focusing on ensuring production of high purity final product 

necessary for animal use. Here we described a convenient synthetic route, using 

conventional academic laboratory equipment, designed to overcome these challenges. 

This route can be applied both at small scale but we also illustrate its utility for large 

scale production by producing, within a single run, 150 g of Thiamet-G.   

 

Scheme 3.1. Synthesis of Thiamet-G from Commercially Available GlcNAc•HCl 
The synthesis of Thiamet-G begins with glucosamine hydrochloride salt (1) from 
which the 1,3,4,6-tetra-acetyl glucosamine hydrochloride intermediate (4) may be 
formed using previously established methods. The upper pathway (A) depicts the 
original synthetic route for the subsequent three steps, while the newly proposed 
optimized route (B) is illustrated below. 

3.4. Results and Discussion 

The in-house production of 150 g of Thiamet-G required a large quantity of the 

hydrochloride salt intermediate (4), which while commercially available (approximately 

$4,500 / kg), was an expensive starring material. Therefore, beginning with the more 

readily available glucosamine hydrochloride salt precursor (1) was a much more 

economical alternative ($60.00 / kg). The previously reported synthesis103 for 

intermediate 4 was adapted to use generally available materials which allowed us to 

produce hundred gram quantities of this compound in 66% yield over three steps. Initial 
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efforts to scale up the previously reported formation of the thiourea intermediate (5) 

using ethyl isothiocyanate (EIT) at a multigram scale failed to reproduce the reported 

98% yield61 and resulted in incomplete turnover of the starting material based on TLC. In 

addition, both the volume of refluxing solvent and subsequent flash column silica gel 

chromatography of the product were prohibitive at large scale. We hypothesized that 

inclusion of a nucleophilic catalyst would serve to facilitate product formation. In 

performing single gram test reactions, we found that inclusion of pyridine significantly 

reduced reaction time and the need for reflux. Following this observation, and to further 

minimize the volumes of reagents needed, we replaced pyridine with 4-

dimethylaminopyridine (DMAP) as a more potent nucleophilic catalyst. DMAP functioned 

equally well and also enabled simple removal of the reagent during aqueous workup of 

the crude material. Notably, the addition of nucleophilic catalysts such as pyridine and 4-

dimethylaminopyridine (DMAP) have seen limited use in the synthesis of thioureas, 

however, optimizing the fractional equivalencies of either DMAP or pyridine as 

nucleophilic catalysts in acetonitrile allowed the reaction to proceed efficiently at room 

temperature and with reduced equivalents of ethyl isothiocyanate. In scaling up the 

reaction, the poor solubility of HCl salt 4 presented problems at multi-molar quantities. 

Several solvents were tested, of which DMF proved to be the best with respect to 

ensuring timely completion of the reaction yet also the most difficult to remove to enable 

concentrating the product. To this end, the concentration of starting material was 

increased to 1.0 M, enabling a 90% reduction in the reaction volume, which allowed its 

facile removal during workup. Using these measures yields were obtained that were 

similar to those achieved in the original synthetic report  using acetonitrile (Table 3.1). 

More conveniently, however, in addition to accelerating the reaction, the product 

obtained directly from the workup was pure enough to carry on to the next step without 

purification. 
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Table 3.1. Reactions were carried out at 1.0 gram scale in the presence of 1.8 
equivalents of triethylamine. Variation in nucleophilic catalyst, 
temperature, solvent, and reagent concentration were used to 
examine changes in both time to completion of the reaction and 
isolated yield. 

Following installation of the thiourea, cyclization to produce aminothiazoline 5 

was previously carried out in the presence of four equivalents of the Lewis acid catalyst 

Sn(IV)Cl4. Under these conditions, kilogram quantities of Stannic Chloride would be 

required to produce 500 g of Thiamet-G, leading us to search for other less toxic and 

more effective alternatives. Trifluoroacetic acid has previously been shown as an 

effective cyclization reagent for the synthesis of thiazolines at room temperature104. 

Experimentation with this as a substitute catalyst enabled us to both reduce the amount 

of DCM used as solvent by 60% and the number of equivalents of the catalyst by 70% 

(Table 3.2) as compared to the reported synthetic route.  
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Table 3.2. Reactions were carried out at 1.0 gram scale. Variation in the 
catalyst, temperature, solvent, and reagent concentration were used 
to examine changes in yield and completion time. 

The originally reported synthesis reported using 5% w/v K2CO3 in the final 

deprotection step. We elected to use catalytic quantities of sodium methoxide since we 

expected this would require a far smaller quantity of reagent with an improved reaction 

time because of the improved solubility of sodium methoxide in organic solvents as 

compared to potassium carbonate. Upon completion of the reaction, we added an 

equimolar quantity of sodium bisulfate as an inexpensive and readily measurable solid 

material that could be used to neutralize the base catalyst. Column chromatography of 

the crude material as reported in the original synthesis was prohibitive given the large 

scale and propensity for Thiamet-G to decompose upon prolonged exposure to acidic 

silica. In light of this, recrystallization techniques using organic solvents provided an 

alternative convenient means to obtain purified Thiamet-G. To the crude product, 

obtained after removing solvent in vacuo, was added a minimal volume of methanol and 

ethyl acetate (9:1 v/v) with heating to 55 °C to dissolve the material, after which the 

solution was  gradually cooled to -20 °C and stored overnight. The resulting white 

precipitate was decanted over a Buchner funnel, the cake rinsed with chilled methanol 

and ethyl acetate (9:1 v/v),and dried under vacuum to obtain fine white crystals of 

aminothiazoline 6 in >99 % purity as judged by analysis using HPLC and NMR. The 

process was repeated with the filtrate three times to enable a cumulative yield of 85%.  
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3.5. Conclusion 

We demonstrate a convenient and rapid series of transformations that can be 

performed at scale to synthesize Thiamet-G from inexpensive and readily available 

glucosamine hydrochloride salt 1 in 44% yield over six steps in greater than 99% purity. 

This route is performed without requiring column chromatography at any step and with a 

significant reduction in the need for solvents, reagents, and elimination of toxic metal 

catalysts. This optimized route, in conjunction with aqueous workup methods and a final 

recrystallization step make amenable the large-scale production of Thiamet-G using 

conventional academic laboratory equipment. We anticipate these methods will greatly 

facilitate the application of Thiamet-G as a tool compound for use in animal models of 

various diseases, which will help uncover the therapeutic potential of OGA inhibitors. 

3.6. Experimental Section 

3.6.1. General Chemical Methods 

Unless stated otherwise, all reagents were purchased from commercial sources 

and were used without further purification. Anhydrous solvents used in reactions were 

purchased from commercial sources. Reactions were monitored by thin layer 

chromatography (TLC) on Silica Aluminum TLC plate, silica gel coated with fluorescent 

indicator F254. TLC spots were detected under UV light (254 λ /365 λ) and/or by 

charring with potassium permanganate or “Seebach” stain (2.5 g phosphomolybdic acid, 

1 g Ce(SO4)2, 6 mL conc H2SO4, 94 mL H2O.). High pressure liquid chromatography 

(HPLC) was performed on an Agilent 1260 Infinity device equipped with a variable 

wavelength UV-Vis detector using ZORBAX 300SB C8 column (5.0 µm, 9.4 x 250 mm 

for analytical runs and semi-preparative scale purifications) and elution carried out using 

HPLC grade solvents. In concentrating reactions, solvents were evaporated under 

reduced pressure on a rotary evaporator between 40–60 ºC using either a PIAB vacuum 

system or Welch W Series high vacuum oil pump. NMR spectra were recorded on 

Bruker AVANCE III 400 or AVANCE II 600_QNP. Spectra are referenced according to 

the chemical shift of the deuterated solvent in which they were dissolved (1H NMR: 

CDCl3: 7.26 ppm, CD3OD: 3.30 ppm; 13C NMR: CDCl3: 77.0 ppm; CD3OD 49.0 ppm) and 

peak assignments were made on the basis of 2D-NMR (1H COSY, HSQC, HMBC) 
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experiments. High resolution mass spectra (HRMS) were recorded on a Bruker MaXis 

Impact spectrometers using positive or negative electrospray ionization (ESI). 

3.6.2. Synthesis of Key Chemical Compounds 

Synthesis of 2-deoxy-2-[[(4-methoxyphenyl)methylene]amino]-β-D-

glucopyranose (2). To a solution of glucosamine hydrochloride (1, 2.044 g, 9.5 mol) in 

NaOH solution (1 M, 9.48 L) at 0 °C was added p-anisaldehyde (1.15 L, 9.48 mol) 

dropwise over 30 minutes under mechanical stirring. The resulting mixture was stirred at 

0 °C for 1 h and the precipitate was collected by Buchner funnel suction filtration, 

washed successively with cold water (9.5 L), cold ethanol (9.5 L) and diethyl ether (9.5 

L), and then dried under vacuum to give the title compound (2) as a white solid (2.37 kg, 

84% yield). 1H NMR (400 MHz, DMSO-d6) δ 8.12 (s, 1H), 7.73 – 7.66 (m, 2H), 7.03 – 

6.96 (m, 2H), 6.54 (d, J = 6.7 Hz, 1H), 4.94 (d, J = 5.3 Hz, 1H), 4.83 (d, J = 5.6 Hz, 1H), 

4.70 (dd, J = 7.7, 6.8 Hz, 1H), 4.57 (t, J = 5.8 Hz, 1H), 3.80 (s, 3H), 3.73 (ddd, J = 11.7, 

5.6, 2.0 Hz, 1H), 3.54 – 3.37 (m, 2H), 3.28 – 3.09 (m, 2H), 2.79 (dd, J = 9.3, 7.7 Hz, 1H). 

Synthesis of 1,3,4,6-tetra-O-acetyl-2-deoxy-2-[[(4-methoxyphenyl)-

methylene]amino]-β-Dglucopyranose (3). Imine 2 (700 g, 2.35 mol) and pyridine (3.0 

L, 37.6 mol) were stirred for 5 m in an ice bath at 0 °C under N2 atmosphere. Acetic 

anhydride (5.52 L, 58.4 mol) was then added slowly over the course of an hour with 

continuous stirring. The reaction mixture was maintained at 0 °C for 2 h and then at 

room temperature overnight. The reaction was quenched by transferring 1.0 L portions 

of the reaction into 4.0 L of ice water at 0 °C. The precipitate was collected by filtration, 

washed with cold water and dried under vacuum to give the title compound (3) as a 

white solid (943 g, 86 % yield). 1H NMR (400 MHz, Chloroform-d) δ 8.18 (s, 1H), 7.72 – 

7.61 (m, 2H), 6.98 – 6.88 (m, 2H), 5.96 (d, J = 8.3 Hz, 1H), 5.45 (t, J = 9.6 Hz, 1H), 5.16 

(t, J = 9.8 Hz, 1H), 4.40 (dd, J = 12.4, 4.5 Hz, 1H), 4.15 (dd, J = 12.4, 2.1 Hz, 1H), 3.99 

(ddd, J = 10.1, 4.5, 2.1 Hz, 1H), 3.86 (s, 3H), 3.47 (dd, J = 9.8, 8.3 Hz, 1H), 2.12 (s, 3H), 

2.05 (d, J = 6.4 Hz, 6H), 1.90 (s, 3H). 

Synthesis of 2-amino-2-deoxy-1,3,4,6-tetra-O-acetyl-β-D-glucopyranose (4). 

A solution of O-acetylated imine 3 (885 g, 1.90 mol) in acetone (6.4 L) was treated with 5 

M HCl (396 mL, 1.98 mol). The solution was stirred for 30 min before diethyl ether (3 L) 

was added, and the stirring was continued for a further 1 h. The precipitate was collected 
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via suction filtration, washed with 3 L of cold diethyl ether and dried under vacuum to 

give the title compound (4) as a white solid (721 g, 99 % yield). 1H NMR (400 MHz, 

Methanol-d4) δ 5.91 (d, J = 8.7 Hz, 1H), 5.39 (dd, J = 10.6, 9.1 Hz, 1H), 5.12 (dd, J = 

10.2, 9.1 Hz, 1H), 4.33 (dd, J = 12.6, 4.6 Hz, 1H), 4.14 (dd, J = 12.6, 2.3 Hz, 1H), 4.05 

(ddd, J = 10.1, 4.6, 2.3 Hz, 1H), 3.66 (dd, J = 10.5, 8.8 Hz, 1H), 2.22 (s, 3H), 2.17 – 2.01 

(m, 9H). 

Synthesis of 2-deoxy-2-ethylthioureido-1,3,4,6-tetra-O-acetyl-β-D-

glucopyranose (5). To a suspension of 1,3,4,6-tetra-acetyl glucosamine hydrochloride 

(4, 400 g, 1.04 mol) in anhydrous DMF (1.0 L) with 2.55 g DMAP (0.02 moles) and was 

treated dropwise over 30 minutes with triethylamine (256 mL, 1.84 moles). 110 mL (1.25 

moles) of ethyl isothiocyanate was added gradually using a dropwise additional funnel 

over the course of 2.5 hours. The reaction was then stirred at room temperature for 2 

days. Following reaction completion as judged by TLC (95% CH2Cl2 5% MeOH v/v) the 

mixture was diluted with 4 L of DCM and washed sequentially with a 4 L solution water 

and brine (50 % v/v), 4L of 0.01 M HCl, 4 L of saturated NaHCO3, and finally 4 L of brine. 

The organic layer was then dried using sodium sulfate and co-concentrated with a 

toluene azeotrope yielding the product as a dark yellow viscous liquid (384 g, 85% yield). 

1H NMR (400 MHz, Methanol-d4) δ 6.14 (t, J = 5.2 Hz, 1H), 5.75 (d, J = 8.5 Hz, 1H), 5.26 

– 5.15 (m, 2H), 4.30 (dd, J = 12.5, 4.6 Hz, 1H), 4.16 (dd, J = 12.5, 2.3 Hz, 1H), 3.85 

(ddd, J = 9.5, 4.3, 2.2 Hz, 1H), 2.16 (s, 3H), 2.12 (s, 3H), 2.09 (s, 3H), 2.07 (s, 3H), 1.22 

(t, J = 7.2 Hz, 3H). 13C NMR (151 MHz, Methanol-d4) δ 171.66, 170.76 169.78, 169.60, 

169.34, 92.96, 73.02, 72.84, 67.71, 63.11, 61.67, 21.07, 20.86, 20.77, 20.62, 14.81, 

14.08. HR-ESI-MS calculated for C17H26N2O9S [M+H]+ 435.14, found 435.1431  

Synthesis of 3,4,6-tri-O-acetyl-1,2-dideoxy-2'-ethylamino-α-D-glucopyranoso-

[2,1-d]-∆2'- thiazoline (6).  350 g of the dry thiourea 5 (0.805 mol) was dissolved in 

DCM (3.3 L) to which 74 mL of TFA (0.969 mol) was added. The reaction mixture was 

then heated to reflux and stirred until TLC (95% CH2Cl2 5% MeOH v/v) showed reaction 

completion (1-2 days). The resulting reaction mixture was filtered through celite and 

washed with saturated NaHCO3. The organic layer was concentrated in-vacuo to give 

the cyclized aminothiazoline product 6 as a flaky light yellow solid (278 g, 92%). 1H NMR 

(400 MHz, Methanol-d4) δ 6.23 (d, J = 6.5 Hz, 1H), 5.43 (dd, J = 4.1, 2.7 Hz, 1H), 4.95 

(ddd, J = 9.5, 2.7, 1.1 Hz, 1H), 4.36 (ddd, J = 6.5, 4.1, 1.1 Hz, 1H), 4.21 – 4.09 (m, 2H), 

3.90 – 3.79 (m, 1H), 3.46 – 3.20 (m, 2H), 2.11 (s, 3H), 2.08 (s, 3H), 2.07 (s, 3H), 1.21 (t, 
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J = 7.2 Hz, 3H). 13C NMR (151 MHz, Methanol- d4) δ 170.72, 169.71, 169.52, 89.64, 

72.65, 71.87, 69.11, 68.50, 63.24, 39.45, 21.05, 20.91, 20.83, 14.87, 1.04. HR-ESI-MS 

calculated for C15H22N2O7S [M+H]+ 375.11, found 375.1258  

Synthesis of 1,2-dideoxy-2'-ethylamino-α-D-glucopyranoso-[2,1-d]-∆2'- 

thiazoline (7). 278 g of tri-O-acetylated Thiamet-G 6 (0.74 mol) was dissolved into 2.97 

L of anhydrous methanol (0.25 M solution) followed by addition of 185 mL of 0.2 M (37.1 

mmol) solution of sodium methoxide. The mixture was then stirred at room temperature 

until judged to be complete by TLC (95% CH2Cl2 5% MeOH v/v). The base was 

neutralized using a 1.0 M aqueous solution to yield an equimolar addition of sodium 

bisulfate (4.45 g, 37.1 mmol) and the resulting mixture was subsequently filtered through 

a pad of celite before concentrating the resulting organic layer in vacuo. The product 

was isolated via recrystallization of the crude dried material as described below to yield 

Thiamet-G. 

3.6.3. Recrystallization of Thiamet G 

Crude Thiamet G was completely dissolved in a minimal volume of 9:1 MeOH 

EtOAc (approximately 10 mL / g) with the aid of heating (55 °C) and mixing within the 

rotary evaporator under reduced atmospheric pressure. Once dissolved, the solution 

was allowed to cool down to room temperature and then placed in a -20 °C freezer 

overnight to precipitate. The next day, the solution was decanted and collected for 

further recrystallization, while the precipitate was collected on a Buchner funnel, rinsed 

with a chilled solution of 9:1 MeOH EtOAc v/v, and then dried overnight under high 

vacuum to yield Thiamet G as a fine white crystalline powder. The consolidated product 

from three cycles of recrystallization provided 157 g in 85% isolated yield. 

Decomposition point 143 ᵒC. Elemental analysis, Predicted: C 43.54% H 6.50% N 

11.28%, Found: C 43.70% H 6.36% N 11.25%. 1H NMR (600 MHz, Methanol-d4) δ 6.29 

(d, J = 6.3 Hz, 1H), 4.05 (t, J = 6.1 Hz, 1H), 3.93 (t, J = 5.6 Hz, 1H), 3.79 (dd, J = 11.7, 

2.1 Hz, 1H), 3.70 – 3.58 (m, 2H), 3.48 (dd, J = 9.1, 5.3 Hz, 1H), 3.31 – 3.22 (m, 2H), 

1.17 (t, J = 7.2 Hz, 3H). 13C NMR (151 MHz, Methanol- d4) δ 163.08 , 90.85 , 76.29 , 

75.77 , 75.72 , 71.20 , 63.26 , 39.57 , 14.88. HR-ESI-MS calculated for C9H16N2O4Sz 

[M+H]+ 249.08, found 249.0904.  
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Figure 3.1. HPLC chromatogram of recrystallized Thiamet-G 
HPLC chromatogram of recrystallized Thiamet-G obtained using a Zorbax SB-
300 C8 semi preparatory column and an elution profile of 70% A : 30% B for 15 
minutes then starting a gradient to 10% A : 90% B over 15 minutes, where 
solvent  A is 50 mM ammonium acetate buffer (pH = 6.8) and solvent B is an 
80:20 mixture of HPLC grade MeOH and 50 mM ammonium acetate buffer (pH 
6.8). 
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