Skip to main content

Distributed Index for Matching Multimedia Objects

Resource type
Thesis type
(Thesis) M.Sc.
Date created
2014-10-27
Authors/Contributors
Abstract
This thesis presents the design and evaluation of DIMO, a distributed system for matching multimedia objects. DIMO provides multimedia applications with the function of finding the nearest neighbors on large-scale datasets. It also allows multimedia applications to define application-specific functions to further process the computed nearest neighbors. DIMO presents novel methods for partitioning, searching, and storing high-dimensional datasets on distributed infrastructures that support the MapReduce programming model. We implemented DIMO and extensively evaluated it on Amazon clusters with up to 128 machines. We experimented with large datasets of sizes up to 160 million data points extracted from images. Our results show that DIMO produces high precision when compared against the ground-truth nearest neighbors and it can elastically utilize varying amounts of computing resources. Additionally, DIMO outperforms the closest system in the literature by a large margin (up to 20%) in terms of the achieved average precision, and requires less storage.
Document
Identifier
etd8756
Copyright statement
Copyright is held by the author.
Permissions
The author granted permission for the file to be printed and for the text to be copied and pasted.
Scholarly level
Supervisor or Senior Supervisor
Thesis advisor: Hefeeda, Mohamed
Member of collection
Download file Size
etd8756_AAbdelsadek-Ahmed.pdf 1.68 MB

Views & downloads - as of June 2023

Views: 15
Downloads: 3