
DISTRIBUTED INDEX FOR MATCHING MULTIMEDIA

OBJECTS

by

Ahmed Abdelsadek

B.Sc., Cairo University, 2010

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c⃝ Ahmed Abdelsadek 2014

SIMON FRASER UNIVERSITY

Fall 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

APPROVAL

Name: Ahmed Abdelsadek

Degree: Master of Science

Title of Thesis: Distributed Index for Matching Multimedia Objects

Examining Committee: Dr. William N. Sumner

Chair

Dr. Mohamed Hefeeda,

Senior Supervisor

Professor, Computing Science

Simon Fraser University

Dr. Greg Mori,

Supervisor

Associate Professor, Computing Science

Simon Fraser University

Dr. Joseph G. Peters,

Internal Examiner

Professor, Computing Science

Simon Fraser University

Date Approved: October 27th, 2014

ii

Partial Copyright Licence

iii

Abstract

This thesis presents the design and evaluation of DIMO, a distributed system for matching mul-

timedia objects. DIMO provides multimedia applications with the function of finding the nearest

neighbors on large-scale datasets. It also allows multimedia applications to define application-

specific functions to further process the computed nearest neighbors. DIMO presents novel meth-

ods for partitioning, searching, and storing high-dimensional datasets on distributed infrastructures

that support the MapReduce programming model. We implemented DIMO and extensively evalu-

ated it on Amazon clusters with up to 128 machines. We experimented with large datasets of sizes

up to 160 million data points extracted from images. Our results show that DIMO produces high

precision when compared against the ground-truth nearest neighbors and it can elastically utilize

varying amounts of computing resources. Additionally, DIMO outperforms the closest system in

the literature by a large margin (up to 20%) in terms of the achieved average precision, and requires

less storage.

iv

Acknowledgments

It is my pleasure to express my profound gratitude to my supervisor, Dr. Mohamed Hefeeda, for his

invaluable guidance, incessant encouragement, and persistent support throughout the course of this

research. Without his critical reviews and intellectual inputs, completion of this thesis would not

have been possible for me.

I would like to express my gratitude to Dr. Greg Mori, and Dr. Joseph Peters, for being on my

committee and reviewing this thesis. I also would like to thank Dr. William Sumner for taking the

time to chair my thesis defense.

I am grateful to all the members at the Network Systems Lab for providing me a stimulating

and fun environment. I would like to thank all my wonderful friends who comforted me during the

difficult times, and offered me great support and help.

Finally, and most importantly, I would like to offer my endless gratitude to my family for their

ceaseless love and support

v

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Acknowledgments v

Contents vi

List of Figures ix

Preface xi

1 Introduction 1
1.1 Overview . 1

1.2 Problem Statement and Thesis Contributions . 4

1.3 Thesis Organization . 5

2 Background and Related Work 6
2.1 Nearest Neighbors Search . 6

2.1.1 Formal definition . 6

2.1.2 Curse of Dimensionality and Approximate Nearest Neighbors Search . . . 7

2.1.3 Standard techniques for finding nearest neighbors 8

2.2 K-Dimensional Trees and Forests . 9

vi

2.3 Locality-sensitive hashing . 10

2.4 MapReduce . 11

2.5 Applications for Nearest Neighbors Search . 12

2.5.1 General Purpose Nearest Neighbors Search 12

2.5.2 Application-specific Nearest Neighbors Search 13

2.6 Related Work . 15

3 Proposed Solution 18
3.1 Overview and System Architecture . 18

3.2 Space Partitioner . 21

3.3 KD Forest as a Space Partitioner . 22

3.3.1 Overview . 22

3.3.2 Constructing the KD trees . 23

3.3.3 Finding the Closest Bins . 25

3.3.4 Scaling Up/Down the Number of Bins . 26

3.4 Locality-sensitive Hashing as a Space Partitioner 27

3.4.1 Overview . 27

3.4.2 Constructing the Hash Tables . 28

3.4.3 Finding the Closest Buckets . 29

3.4.4 Scaling Up/Down the Number of Partitions 30

3.5 Building the Distributed Index . 31

3.5.1 Distributing Data Points . 33

3.6 Similarity Searching and Matching of Objects . 33

3.7 Updating the Distributed Index . 35

3.7.1 Adding/Removing Points . 37

3.7.2 Monitoring Index Imbalance . 37

4 Evaluation 38
4.1 Experimental Setup and Datasets . 38

4.1.1 Platform . 38

4.1.2 Datasets . 39

4.1.3 Performance Metrics . 40

vii

4.2 Parameter Tuning . 41

4.2.1 KD Forest Parameter tuning . 41

4.2.2 Multi-probe LSH Parameter tuning . 42

4.3 Comparison against Ground Truth . 43

4.3.1 KD Forest . 44

4.3.2 Locality-sensitive Hashing . 48

4.3.3 Comparison between KD Forest and Multi-probe LSH 53

4.3.4 Summary of the Results . 55

4.4 Comparison against RankReduce . 55

4.5 Scalability and Elasticity of DIMO . 57

4.6 Overhead Analysis of DIMO . 59

4.6.1 Network Overhead . 59

4.6.2 Storage Usage . 60

4.6.3 Memory Usage . 61

4.6.4 CPU Usage and Load Distribution . 61

5 Conclusions and Future Work 63
5.1 Conclusions . 63

5.2 Future Work . 64

Bibliography 65

viii

List of Figures

3.1 High-level architecture of DIMO. Round boxes are MapReduce jobs. The top part

of the distributed index, space partitioner, is serialized and used by multiple ma-

chines, while partitions at the lower part contain data points and are stored as files

on the distributed file system. 19

3.2 The Classical KD Tree and the Modified KD Tree. 24

3.3 Illustration of the Distribute Data MapReduce job. 31

3.4 Illustration of the second and third steps of the object matching process in the DIMO

system. 34

4.1 The effect of varying the number of scanned bins (B) of the KD forest on both the

selectivity and recall. 44

4.2 The effect of varying the number of trees T in the KD forest on both the recall and

selectivity. 45

4.3 The effect of varying the number of trees T with fixed and variable number of

scanned bins on the recall and selectivity. 46

4.4 The effect of varying the number of K nearest neighbors on the recall while keeping

fixed selectivity. 47

4.5 The effect of varying the bucket width W and the number of projections M on both

the recall and selectivity. 49

4.6 The effect of varying the number of hash tables L on both the recall and selectivity. 50

4.7 The effect of varying the number of steps (N -steps) for searching buckets on both

the recall and selectivity. 51

ix

4.8 The effect of varying the number of K nearest neighbors on the recall while keeping

fixed selectivity. 52

4.9 Comparison between KD forest and multi-probe LSH performance on different

datasets with different dimensionality while varying the number of instances. . . . 54

4.10 Comparing DIMO versus the closest system in the literature, RankReduce. 56

4.11 Scalability and elasticity of DIMO: Running times of different dataset sizes on dif-

ferent number of machines. 58

4.12 Network overhead imposed by DIMO. 59

4.13 Analysis of CPU usage by DIMO for different cluster sizes. 60

x

Preface

All the work in this thesis has been conducted under the supervision of Dr. Mohamed Hefeeda.

Parts of the materials of Chapters 2-4 have been used in the following publication and have been

presented in the corresponding conference:

Ahmed Abdelsadek, and Mohamed Hefeeda. DIMO: distributed index for matching multime-

dia objects using MapReduce. In Proceedings of the 5th ACM Multimedia Systems Conference,

pp. 115-126. ACM, 2014.

xi

Chapter 1

Introduction

In this chapter, we first describe the problem of multimedia object matching and its main applica-

tions. Then, we summarize the contributions of this thesis and describe how the thesis is organized.

1.1 Overview

The rapidly increasing volume of digital content generated daily over the Internet poses many re-

search challenges for efficiently storing, processing, and searching such sheer volume. In this thesis,

we address one of these challenges: matching of multimedia objects, which is the problem of find-

ing similar objects to a given query multimedia object. We address this problem for large-scale

multimedia datasets.

Multimedia object matching involves a crucial step of similarity search. Similarity search is

an important problem with numerous real-life applications, such as video copy detection [38], per-

sonalization and collaborative filtering [20], near-duplicate detection [33], visual recognition [74],

music similarity search [48], text categorization [10], and data mining [16]. In such applications,

objects are represented by one or more feature vectors (high-dimensional points), and the similarity

search is conducted via a variant of nearest neighbors search algorithm, where a method for finding

the nearest neighbors of a given data point is applied. After obtaining the nearest neighbors for a

given point or group of points, further processing steps may need to be applied to refine the ob-

tained object matching results. These steps depend on the specific application that uses the nearest

neighbors results.

1

CHAPTER 1. INTRODUCTION 2

As an example, for a video copy detection application [38], the first step is to search the refer-

ence videos for frames similar to each individual frame from a suspected query video, which is a

nearest neighbors search problem. Then, to decide whether the suspected video is a copy of one of

the reference videos, the temporal aspects of the found frames are checked to see if they are in the

same temporal order as the query video, which is an object matching problem.

Many algorithms have been presented in the literature for solving the nearest neighbors problem

[13, 30, 72, 18, 15]. However, most of them are not time efficient for data with high dimensions. It

is shown in [14, 34] that due to the curse of dimensionality, there is no known algorithm for exact

nearest neighbors to be faster than a linear scan of the data when the dimensionality exceeds 10–15

dimensions. Therefore, researchers consider approximate nearest neighbors by trading the accuracy

with the running time. This is done through allowing an acceptable degradation of the accuracy of

the results compared to the exact ones. The goal of approximate nearest neighbors search is to

reduce search time by possibly introducing an error in the result. This error is acceptable because in

most of the applications mentioned above, the approximate results are almost as good as the exact

ones.

Several approximate nearest neighbors search methods exist in the literature [36, 29, 49, 6,

58, 50]. However, most of them are memory-based and used in centralized settings, where all the

dataset points can fit in one machine’s memory. With the huge amount of digital content created

and made online everyday, this assumption no longer holds, as the processing, storage, and memory

needed for searching and retrieving from such volumes of data go beyond the capacity of a single

machine. Thus, distributed algorithms and systems are needed to handle such massive volumes

of data. Beside having more processing and storage capacities, distributed systems can tolerate

failures, and can scale up/down to handle different sizes of datasets.

The most common way to solve the large-scale nearest neighbors search problem is to construct

a distributed index. The index allows for quickly finding the data points closest to a given query

point by processing the search query in parallel over a set of machines. In addition to the usual

performance aspects of a centralized index to be time and space efficient, the distributed index also

needs to be bandwidth efficient as network communication is one of the critical bottlenecks that may

slow down the whole system. Several distributed approaches have been proposed in the literature,

such as [32, 64, 2, 73, 46, 9, 65, 51]. However, most of these approaches either do not support high

(100s) dimensions [73, 46], are customized for a specific application [2, 65], or do not consider

CHAPTER 1. INTRODUCTION 3

reliability and fault-tolerance [32, 65, 51].

We propose a distributed index for matching multimedia objects, which we call DIMO (Dis-

tributed Index for Matching Objects). Examples of multimedia objects are: images, 2D videos, 3D

videos, and audio files. Multimedia objects are typically characterized by many features and each

feature is represented by a high-dimensional vector. For example, a single image can be character-

ized by hundreds of SIFT [45] descriptors, each has 128 dimensions. A video object will even have

more features. This nature of feature-rich high-dimensional multimedia data adds more processing

and storage requirements to the problem of matching objects.

DIMO provides the function of finding K-nearest neighbors (KNN). It also supports application-

specific matching functions to be applied on the computed nearest neighbors in a distributed and

transparent manner. In contrast to previous works, the proposed DIMO system offers the following

desirable properties:

• General. DIMO can be used for different multimedia object matching applications. It pro-

duces approximate K-nearest neighbors, where the accuracy of the neighbors can be traded

off with the computation and storage requirements. DIMO can support high-dimensional

multimedia data. In our experiments, we use data points with 128 dimensions, extracted from

images.

• Scalable. DIMO is designed for large-scale datasets. In some of our experiments, we use

more than 160 million data points.

• Elastic. DIMO can automatically use varying number of computing machines. We show in

our experiments that DIMO can scale almost linearly with the available number of computing

machines.

• Dynamic. Data points can be added and removed from the system in dynamic manner, with-

out the need to re-build the whole system.

We have implemented DIMO and extensively evaluated it on Amazon clusters [5] with varying

number of computing machines ranging from 8 to 128. We have experimented with large datasets of

sizes up to 160 million data points extracted from publically-available image datasets [24, 4], where

each point is a 128-dimensions SIFT descriptor [45]. Our experimental results show that DIMO: (i)

results in high recall when compared against the ground-truth nearest neighbors, (ii) can elastically

CHAPTER 1. INTRODUCTION 4

utilize varying amounts of computing resources, (iii) does not impose high network overheads, (iv)

does not require large main memory even for processing large datasets, and (v) balances the load

across the used computing machines. Furthermore, DIMO can run on tens to thousands of machines,

because it has no hot-spot central machine or single point of failure.

1.2 Problem Statement and Thesis Contributions

In this thesis, we investigate the problem of matching multimedia objects, which is the problem of

finding similar objects to a given query multimedia object. Matching multimedia objects involves

an important step of similarity search, where objects are represented by one or more feature vectors

(high-dimensional points), and the similarity search is conducted via a nearest neighbors search

algorithm. Nearest neighbors search is the problem of finding the closest points to a given query

point from a set of reference points. Driven by the large scale and high dimensionality of the

data nowadays, centralized and exact solutions are no longer efficient nor scalable enough to solve

it. Distributed and approximate solutions are more practical for such scale and dimensionality of

data. We focus on solving the problem of large-scale multimedia object matching, which includes

designing of efficient methods for solving the distributed approximate nearest neighbors problem.

We focus on solving the approximate nearest neighbors problem for data points in the Euclidean

space. We address this problem for large-scale multimedia datasets that can not fit in one machine.

The contributions of this thesis can be summarized as follows [1]:

• We present DIMO: a novel distributed scalable system for matching multimedia objects over

large-scale datasets. DIMO is suitable for various content-based multimedia information re-

trieval applications, because it has a flexible design that can support different components

for partitioning the data and matching the objects. DIMO indexes large volumes of high-

dimensional data points extracted from multimedia objects. It compares the indexed refer-

ence points to the ones extracted from the query objects for finding, sorting and reporting the

matched multimedia objects.

• We present adapted designs and implementations of the state-of-the-art space-partitioning

techniques: (i) K-dimensional forest (KD forest), and (ii) multi-probe locality-sensitive hash-

ing (MP-LSH). These space-partitioning techniques are used in DIMO.

CHAPTER 1. INTRODUCTION 5

• We implement DIMO and extensively evaluate it on clusters of different numbers of machines

and on large-scale publically-available image datasets. Our results show that DIMO yields

high accuracy, scales almost linearly with data size and number of machines, and efficiently

utilizes the computing resources.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 presents a background on the object

matching problem and the general methods to solve it. It also surveys the related works in the

literature. Chapter 3 presents the details of the proposed DIMO system, and Chapter 4 presents our

evaluation setup and results. Chapter 5 concludes the thesis.

Chapter 2

Background and Related Work

In this chapter, we start by providing the background needed to understand the concepts we discuss

later in the thesis. We discuss the closest works in the literature and mention the applications for

our problem and how it is used in other systems.

2.1 Nearest Neighbors Search

As we mentioned in Chapter 1, the general approach in most similarity search applications is to

extract features that represent the original data objects, each feature is represented by a multi-

dimensional point. A similarity query is defined as finding the most similar data objects in the

dataset to a given query object. For example, in image databases, a possible similarity query is to

find the most similar images to a given query image. The images are represented by one or more

d-dimensional point and the similarity between the images is defined by a distance function (e.g.,

Euclidean distance) between the corresponding features. The k-nearest neighbor (K-NN) problem

is defined as finding the k most similar data points to a given query point. A closely related type of

query is the r-range query, where all data points that are within distance r from the query point q

are retrieved.

2.1.1 Formal definition

Given a set of reference points R in a metric space M, and a set of query points Q ∈ M. For each

query point q ∈ Q we define the following types of retrieving mechanisms:

6

CHAPTER 2. BACKGROUND AND RELATED WORK 7

• K-NN: find the closest K points in R to q.

• r-NN: find all points in R within distance r from q.

In most of the cases, M is taken to be a d-dimensional Euclidean space and the distance between

the points is measured by Euclidean distance or any Minkowski distance.

Metric Space

A set of objects is called a metric space if a notion of distance (called a metric) d(., .) is defined

between any two objects in the set and satisfies the following four conditions:

• Non-negativity: ∀ q, r ∈ U : d(q, r) ≥ 0

• Symmetry: ∀ q, r ∈ U : d(q, r) = d(r, q)

• Identity: d(q, r) = 0 ⇒ q = r

• Triangle inequality: ∀ s, q, r ∈ U : d(q, r) ≤ d(q, s) + d(s, r)

Euclidean space

Euclidean d-dimensional space is the space of all d-tuples of real numbers, (X1, X2, ..., Xd), and

it is a special case of a metric space. It is commonly denoted ℜd. The Euclidean distance between

two points r and q is the length of the line segment connecting them. If r = (r1, r2, ..., rd) and

q = (q1, q2, ..., qd) are two points in Euclidean d-dimensional space, then the distance from r to q,

or from q to r is given by:

d(r, q) = d(q, r) =
√

(q1 − r1)2 + (q2 − r2)2 + · · ·+ (qd − rd)2 =

√√√√ d∑
i=1

(qi − ri)2. (2.1)

2.1.2 Curse of Dimensionality and Approximate Nearest Neighbors Search

The curse of dimensionality is the set of phenomena that occur while dealing with data points in

high-dimensional spaces that do not occur in low-dimensional spaces. The problem is when the

dimensionality increases, the volume of the space increases exponentially fast, and the space of the

data points becomes very sparse. This sparseness causes the classical techniques to fail to group

CHAPTER 2. BACKGROUND AND RELATED WORK 8

similar points, as most of them relies on detecting the areas in the space where points can form

groups with small distances between them. This effect complicates the nearest neighbors search in

high-dimensional spaces, as in the most distance functions that depends on all the dimensions, it is

hard to quickly reject candidate points by considering the difference in one or few dimensions as a

lower bound for the distance function [17].

This leads to the fact that using the classical structures is not efficient when the feature space is a

high-dimensional space [34]. In such cases, the most efficient way to solve exact nearest neighbors

is to sequentially scan the entire dataset, comparing each reference point against the query point.

Obviously, such solution is not applicable for large-scale datasets.

In order to accelerate the search, several works introduced the approximate nearest neighbors

search algorithms, where the problem is addressed by trading the accuracy with the running time.

This is by allowing an acceptable degradation of the accuracy of the results compared to the exact

ones. The goal of approximate similarity search is to reduce search times for similarity queries by

possibly introducing an error in the result through reducing the cost of similarity queries by relaxing

the correctness constraint, i.e., the K points in the approximate result might not be the closest to the

query point.

2.1.3 Standard techniques for finding nearest neighbors

Techniques for solving the nearest neighbors problem can be divided into two main categories: (i)

hierarchical space division and (ii) space mapping. In the first category, algorithms use a general

strategy of hierarchically dividing the search space into regions of close-by points, and represent

them in a tree structure. Then, branch and bound methods are used to search and manipulate these

tree structures. These techniques can be used either in an Euclidean space, e.g., R tree [30] and

KD tree [13], or in a general metric space, e.g., VP tree [72] and M tree [18]. These techniques are

mainly designed to return exact nearest neighbors, and are suitable only for low-dimensional data.

As we mention in Section 2.1.2, due to the curse of dimensionality, for high-dimensional data,

exact neighbors are costly to find because most nearest neighbors search methods will do no better

than linear scan of the whole dataset [14, 34]. Thus, approximate nearest neighbors search methods

have been proposed in the literature. These methods constitute the second category, space mapping,

for solving the nearest neighbors problem. These methods first modify, or map, the search space into

smaller or lower-dimensions one, then solve the problem on the new (approximate) space, where

CHAPTER 2. BACKGROUND AND RELATED WORK 9

the search is simpler. Examples of such techniques are those use approximate filters to reduce the

amount of scanned points in the dataset such as vector approximation (VA-Files) [71]; ones that are

based on dimensionality reduction using projections [49, 23]; or those based on locality-sensitive

hashing (LSH) [36, 29, 6].

2.2 K-Dimensional Trees and Forests

KD tree (short for k-dimensional tree) [27] is a space-partitioning tree [54] for arranging k-dimensional

points in a k-dimensional Euclidean space. KD trees are a generalization of binary search trees

where every node represents is a kdimensional point. It is a binary tree that hierarchically divides

the points space on each tree level over one of the dimensions’ axis, where every non-leaf node can

be considered as separating hyperplane that divides the space into two regions. Points to the left

of this hyperplane represent the left sub-tree of that node and points to the right of the hyperplane

represent the right sub-tree. At each node, the hyperplane direction is perpendicular to one of the

dimension’s axis that corresponds to its tree level. KD tree was firstly introduced in [13] and since

that time various implementations with several improvements have been presented in the research

community. KD tree represents the hierarchical space division category and arguably on top of it.

The major drawback of the traditional KD tree for solving the NNS is that it suffers curse

of dimensionality when the points dimension exceed 10-15 dimensions. Several enhancement are

introduced to the KD tree to make it suitable for the high-dimensional data at the price of getting

approximate neighbors not the exact ones [7, 12, 8, 58]. Some works address the long running time

by putting limits on the search execution. In [12], Beis and Lowe put a time bound on the execution,

that is stopping the search after certain number of backtracking steps in the tree search, and return

the best answers so far. In [8], Arya et al. put an error bound on the search, that is stopping the

search if the error is within 1 + ϵ of the true neighbors. Both techniques however still consider

the full dimensions of the data points. In [58], Silpa-Anan and Hartley use a subset of dimensions

based on their variance. To mitigate the precision loss due to this selection. They build multiple

instances of such a tree, each with different subset of the original dimensions. The authors show

the effect of independence between the trees, that is if the KD trees are built with different subsets

of the dimensions, then the space-partitioning is going to be different for each tree, and the order of

search node and search results on these KD-trees is also going be different, and the final results is

CHAPTER 2. BACKGROUND AND RELATED WORK 10

going to be the union of the results of all the KD trees. This leads to the idea of using multiple KD

trees (or a KD forest) to enhance the approximation results. However this solution may introduce

extra memory or storage used for storing multiple trees instead of one.

In [4], Aly et al. did a benchmark of several NNS techniques including the KD forest and his

results shows the superiority of the KD forest algorithm in compared to other techniques. Based on

their results, the authors argue that the KD forest is state-of-the-art for nearest neighbors search.

2.3 Locality-sensitive hashing

When dimensions of data points gets even higher (≫ 1000s), the previous techniques sometimes

fail to achieve good performance. Authors of [36, 29] tried to find solutions to the nearest neigh-

bors search problem that are independent of the data dimensionality. They introduced the locality-

sensitive hashing (LSH) as a possible cure for that problem. Locality-sensitive hashing is a method

of performing probabilistic hashing of high-dimensional data. The basic idea is to hash the input

points so that similar points are mapped to same buckets with high probability, with the number

of buckets being much smaller than the universe of possible input points. Some authors argue that

it is the state-of-the-art in NNS when the dimensionality is very high [47, 65]. Locality-sensitive

hashing represents the space mapping category and arguably on top of it.

The general idea of LSH relies on the existence of locality-sensitive hash functions. Let H be

a family of hash functions mapping ℜd to some universe U. For any two points p and q, consider

a process in which we choose a hash function h from H uniformly at random, and analyze the

probability that h(p) = h(q). The family H is called locality-sensitive if it satisfies the following

conditions:

A family H is called (R, cR, P1, P2)-sensitive if for any two points p, q ∈ ℜd.

• if ∥ p - q ∥≤ R then PrH [h(q) = h(p)] ≥ P1

• if ∥ p - q ∥≥ cR then PrH [h(q) = h(p)] ≤ P2

In order for a locality-sensitive hash family to be useful, it has to satisfy P1 ≫ P2.

Typically we can not use H as is, since the difference between the two probabilities P1 and P2

for a single hash function could be quite small. Thus, an amplification process is needed in order

to achieve bigger difference between probabilities of collision P1 and P2. We describe this step as

CHAPTER 2. BACKGROUND AND RELATED WORK 11

follows: Given a family H of hash functions with parameters (R, cR, P1, P2), the gap between the

high probability P1 and low probability P2 is amplified by concatenating several hash functions. In

particular, for parameters M and L, we choose L functions gj(q) = (h1,j(q), . . . , hM,j(q)), where

hi,j(1 ≤ i ≤ M, 1 ≤ j ≤ L) are chosen independently and uniformly at random from H. These

are the actual functions to be uses for hashing the data points. The data structure is constructed by

placing each point p from the input set into a bucket gj(p), for j = 1, . . . , L. To process a query

q, the buckets g1(q), . . . , gL(q) are scanned for computing their distances to the query point, and

report any point that is a valid answer to the query [6].

2.4 MapReduce

Driven by growing demand for efficient processing and searching large-scale data, where the amount

of data can not fit in one machine’s memory, the distributed similarity searching systems have re-

ceived considerable attention. To support similarity and nearest neighbors queries in the large-scale

datasets of high-dimensional and unstructured data points, an efficient distributed index structure is

presented, where building and searching is executed across multiple machines in computing cluster.

For such systems, at the level of network and machines topology transparency, most of the works

are done using two kinds of distributed structures: either considering the network topology, which

mostly implemented using either socket programming or massage passing interface (MPI), or us-

ing fully transparent approach from the network topology, which are mainly implemented using

frameworks like MapReduce [22].

The MapReduce framework provides an infrastructure that runs on a cluster of machines, which

automatically manages the execution of multiple computations in parallel as well as the communi-

cations among these computations. It also provides transparent redundancy and fault tolerance to

computations. In its simplest form, a computation in MapReduce (called MapReduce job) is com-

posed of two functions: mapper and reducer. The inputs and outputs of both functions are in the

form of key-value pairs, where the key and value can be complex objects. The programer speci-

fies the computations that should be performed in the mapper and reducer functions as well as the

format of the input and output pairs. The MapReduce infrastructure creates multiple mapper in-

stances, divides the data among them, runs them on the available machines, aggregates their outputs

and passes them to reducers, and finally produces the outputs from the reducers. The MapReduce

CHAPTER 2. BACKGROUND AND RELATED WORK 12

infrastructure also monitors the execution of mappers/reducers on all machines and it can handle

machine failures/slowness by restarting failed/delayed mappers/reducers on different machines. Al-

though the MapReduce infrastructure provides quite useful services, MapReduce programs need to

be carefully designed to achieve good performance as there are several important issues that should

be considered, such as the volume of data exchanged among mappers and reducers and the number

of I/O operations that need to be performed. In addition, MapReduce programs may have no reduc-

ers (only mappers). Other functions, e.g. combiners, are also possible in MapReduce programs.

2.5 Applications for Nearest Neighbors Search

Nearest neighbors search (NNS) is an old and quite established optimization problem, with hun-

dreds of applications in many fields in computer science. For example, image search [2], and text

categorization [10]. In some works, authors introduce their works as general purpose nearest neigh-

bors search algorithms. In such a case, they do not report results on the application-level. In some

other works, authors tend to tie their works to certain applications, which gives a bigger window

for more approximation accuracy through ad-hoc cues suitable only to their specific applications.

For example, in [2], Aly et at. developed an algorithm for NNS where they tied their application to

the problem of finding similar images. They report the accuracy of the whole image search system,

however, they did not report the accuracy of the NNS component on its own.

2.5.1 General Purpose Nearest Neighbors Search

In a standalone nearest neighbors search algorithm, the input is a set of data points and the output

is the set of the closest points to a given point followed by distance (e.g., similarity score). Many

works are done and presented as a standalone NNS algorithm [36] [6] [50] [66] [64] [8], where the

authors did not tie the usage of their algorithms to a specific application, so it can be used with any

arbitrary application as long as it can fit in the problem description mentioned earlier.

In the general NNS, testing and evaluation have many approaches. In some works, the authors

go only for theoretical analysis and formalization of the bounds on the algorithm accuracy error [36]

[6], where they did not do actual implementations nor try to evaluate the practical performance of

their algorithms. In some other works, the authors use randomly generated data synthetically from

some known distributions [66] [50] [64] [8]. In [50], the authors described the randomly generated

CHAPTER 2. BACKGROUND AND RELATED WORK 13

datasets as one of the most challenging ones for the high-dimensions NNS. That is because in

randomly generated data, there is no correlation between the dimensions of the points and no value

can give any prediction about the others. In [8] the authors experimented and reported results from

many distributions like Uniform, Gaussian, and Laplacian.

Although in general NNS the authors do not consider a specific application, some use real data

(i.e. from images or videos) for their evaluations [50] [66] [64]. Using real data can give better

approximation results, because of the correlation and predictability between the dimensions of a

point, and between the points themselves. In [50], the authors show significant accuracy increase

when using real data rather than random data on the same algorithm. Moreover, this makes their

approximation results are more realistic and practical. However, in such works where the authors

used real data sets from images [50] [66] [64], they still did not report the whole accuracy of de-

tecting similar images. They only report the NNS accuracy, and they did not provide a complete

scheme nor results for an image search application, which makes their work fall under the general

NNS category.

2.5.2 Application-specific Nearest Neighbors Search

With the big number of applications based on nearest neighbors search, they can generally be di-

vided into two main categories: searching and classification. In this section we will give some

examples and applications for both types.

Searching and Retrieval

For searching and retrieval of complex objects using NNS, the general technique is: first, we extract

many features from the data objects each is represented by a high-dimensional point. Then, we

store the points in an index structure capable of performing NNS. At query time, for each query

object, we extract the features from the object and for each feature we search the index for similar

features, which the nearest neighboring points in the feature space. Finally, a consistency check

may be executed to see whether the matched individual points are consistent with respect to the

query object.

In [2], Aly et al. developed a system for similar images retrieval based on NNS algorithm

in their index. They index large sets of images, the datasets they used are Caltech Game Covers

Dataset and Caltech Buildings Dataset [4] among millions of other images downloaded from the

CHAPTER 2. BACKGROUND AND RELATED WORK 14

internet. They use the scale-invariant feature transform (SIFT) [45] to extract visual features from

the images. For each query image, they search the index for similar features and report the nearest

among them. They use RANSAC algorithm for further refining the retrieved features and removing

the outlier points. They report the accuracy of their image retrieval system as one component. In

[38], Khodabakhshi and Hefeeda developed a system for finding copies of 3D videos, where they

depend on NNS algorithm in the underlying index. They split the videos into frames, and for each

frame they extract the speeded-Up Robust Features (SURF) [11]. For each query suspected video,

they split the video to frames and extract the SURF features from the frames. They search the index

for similar features and report the nearest among them. They use matrix alignment method to check

if the retrieved reference video frames are in a temporal order consistent with query video frames.

They report the accuracy of the whole copy detection system.

Classification and Regression

Other main usage for nearest neighbors search is classification task for supervised machine learning.

In such usage, each object is giving a label or a class. The classification task is, when a new object

is found, we need to predict its label or class. This task is solved by an NNS algorithm by searching

for the closest objects to the new object, then the label for the new object is assigned to the label

of the majority among the retrieved ones. There are many parameters affect the quality of the

nearest neighbors classifier like the number of retrieved neighbors or the searching radius. The

performance of the nearest neighbors classifier is also affect by the classification task nature and the

objects’ features representation.

One of the classical machine learning tasks is handwritten character recognition, the authors

[62] used nearest neighbor algorithm in character classification. They did their experiments on

large databases with tens of thousands of training examples. They report accuracy for the nearest

neighbors classifier reached 99% when using large enough training examples. In [74], Zhang et

al. combined the NNS with support vector machine (SVM) algorithm for different tasks of visual

category recognition. They experimented with tasks like handwritten character recognition, texture

analysis, and object categorization. They used four different dataset which are, MNIST [42] and

USPS [41] for handwritten digits, CUReT [19] for textures, and finally Caltech-101 [43] for object

classes. In [40] Kulis and Grauman integrate locality-sensitive hashing (LSH) with a kernel machine

algorithm for scalable image search and object recognition tasks. They used correspondence-based

CHAPTER 2. BACKGROUND AND RELATED WORK 15

local feature kernel (CORR) [74] for recognition. Their dataset was Caltech-101 [43] for object

classes. They report the precision and recall of their object recognition task.

2.6 Related Work

Most of the nearest neighbors search techniques were mainly designed to run on a single machine.

Several works have attempted to solve the nearest neighbors problem in a distributed manner in or-

der to support the rapidly-increasing volumes of data being created nowadays. For example, some

works exploit peer-to-peer (P2P) networks for distributed similarity search [26, 32, 69]. In [26],

Flachi et al. introduce M-CAN, which is based on the Content-addressable Network (CAN) P2P

architecture. M-CAN uses a pivot-based technique to project objects from the metric space to an

N -dimensional vector space, and it then maps them to peers. Haghani et al. [32] use LSH on top

of the Chord P2P architecture. In [69], Wang et al. propose RT-CAN, a distributed similarity index,

which implements a variation of the R-tree on top of CAN. For massive datasets, the approaches

that use structured P2P networks could suffer from multiple practical issues. First the mismatch be-

tween the overlay and physical networks, i.e., neighboring nodes in the overlay can be far away in

the physical network, can increase the communication delay and overhead between distributed ma-

chines. Second, node failures cause the employed P2P networks to invoke failure recovery schemes,

which impose communication and computation overheads. Unlike our proposed system, the works

in [26, 32, 69] did not focus on large-scale multimedia datasets that are characterized by high-

dimensional points. These works either used low dimensional data, e.g., five dimensions in [69], or

simulation on a single machine in [32].

In some recent work [51], Muja and Lowe built a distributed system for solving the high-

dimensional nearest neighbors search on multiple machines. They used both hierarchical K-means

[52] and randomized KD tree [58] algorithms for space-partitioning. Their distributed implementa-

tion based on client/server model and using message passing interface (MPI), however they lack a

clear routine of handling machine failures specially the master (server) machine. Also they broad-

cast all the query points to all worker machines which causes a server bottleneck and wastes much

of the bandwidth. They did not perform large-scale experiments, they only used 8 machines with

all data points stored in memory. In a similar work [65], Sundaram et al. proposed a system

for streaming similarity, where the query points arrive in a stream fashion, unlike batches in our

CHAPTER 2. BACKGROUND AND RELATED WORK 16

scenario. They implement what they call parallel locality-sensitive hashing (PLSH), over multiple

machines and multiple cores. They use a dataset of 1 billion tweets and use TF-IDF as their features.

They report efficient performance and small latency for queries, however many of their optimiza-

tion techniques are designed towards the specific data they used. They use a variant of LSH, in their

implementation they use up to 780 hash tables. To achieve low latency they store all the hash tables

in the main memory of the computing machines, which costs more machines to store the data in

memory rather than disks. They also use a client/server model with central node as a server, and

they also do not provide a clear scheme for failures recovery.

Another class of works for solving the nearest neighbors problem in a distributed manner re-

lies on distributed processing frameworks such as MapReduce. In [44], Liao et al. build a multi-

dimensional index using R-tree on top of the Hadoop distributed file system (HDFS) [57]. Their

index, however, can only handle low dimensional datasets–they performed their experiments with

two dimensional data. In addition, their index is optimized for queries in a static environment. In

contrast, our proposed system is dynamic and scalable, where data points can be added/removed

without re-building the main data structures.

The authors of [46] and [73] solve the K nearest neighbors joins over large datasets using

MapReduce [22]. Lu et al. [46] construct a Voronoi-like diagram, using some selected pivot objects.

They then group the data points around the closest pivots and assign them to partitions, where

searching can be done in parallel. Zhang et al. [73] split both query and reference datasets into a

number of disjoint equal-sized subsets, where operations can be done in parallel. The systems in

[46, 73] are also designed for low dimensional datasets; they did not consider data with more than

30 dimensions. In contrast, in our experiments we used image descriptors with 128 dimensions.

In [64], Stupar et al. present a method for implementing a distributed LSH index on a computing

cluster. They maintain a number of hash tables over a set of machines, and they use MapReduce

primitives for searching the tables for similar points. A major drawback of this approach is that it

requires storing multiple replicas of the datasets in hash tables. This incurs significant storage cost

and it increases the number of I/O operations. In contrast, our system stores the dataset only once

and it produces higher precision in the returned neighbors.

Finally, Aly et al. [2] present two approaches to construct distributed KD trees on MapReduce

for finding similar images. The first, called Independent KD-tree (IKdt), partitions the image dataset

into equal-sized subsets. Each partition is assigned to a machine that builds an independent KD tree.

CHAPTER 2. BACKGROUND AND RELATED WORK 17

At query time, all machines search in parallel for the closest match. The second approach, called

Distributed KD-tree (DKdt), builds a global KD tree across all machines. A single root machine

stores the top of the tree, while multiple leaf machines store the rest of the tree. At query time,

the root machine forwards data points to a subset of the leaf machines. In consequent work [3],

The authors argue that KD tree has best performance among their tested algorithms. One of the

drawbacks of this work is the single root machine that directs all query points, which makes it a

single point of failure as well as a bottleneck that could slow down the whole system. Our system

does not use a central node, and thus it is more robust and scalable. In addition, the work in [2] is

tailored to image search, while our system is more general. For example, the authors of [2] report

only the accuracy at the application level (image matching). Whereas we quantify the accuracy of

the returned nearest neighbors (low level), which is general and important for various applications.

Chapter 3

Proposed Solution

In this chapter, we describe the details of the proposed DIMO system. We start by presenting an

overview of the system and its main components in Section 3.1. We describe the methodology and

algorithms used in DIMO in Sections 3.2, 3.3, and 3.4. We describe the distributed implementation

and operations in Sections 3.5, 3.6 and, 3.7.

3.1 Overview and System Architecture

DIMO is a general system for similarity searching and matching of multimedia objects that are

characterized by many features and each feature is represented by a high-dimensional point (i.e.,

feature vector or descriptor). To achieve this general matching task, DIMO first provides an efficient,

distributed, implementation for computing K nearest neighbors for high-dimensional data points.

Then, DIMO provides a generic interface for post-processing these neighbors based on the different

needs of various applications. Thus, many applications can be built on top of DIMO, such as image

search and video copy detection. DIMO is designed to handle large datasets with millions of points,

and it can elastically utilize varying number of computing machines.

Basically, DIMO takes two sets: reference points R and query points Q. Each set contains d-

dimensional data points. There are no constraints on the sizes of Q and R. However, R is assumed

to change at a slower rate, by adding/removing objects to/from it. Whereas Q can change faster.

For example, in an image search application, an archive of stored images would constitute R, while

images submitted to the application for finding ones similar to them would make Q. DIMO builds

18

CHAPTER 3. PROPOSED SOLUTION 19

Figure 3.1: High-level architecture of DIMO. Round boxes are MapReduce jobs. The top part of
the distributed index, space partitioner, is serialized and used by multiple machines, while partitions
at the lower part contain data points and are stored as files on the distributed file system.

CHAPTER 3. PROPOSED SOLUTION 20

a distributed index over R and it then uses it to search and match objects in Q. The cost of building

the index is amortized over processing many queries. Note that data points in R and Q represent

features of multimedia objects. Thus, multiple data points can belong to the same object. We assign

the ID of an object to each data point generated from that object. This allows us to group the results

of the K nearest neighbors phase based on object IDs to support various multimedia applications.

At a high level, DIMO splits the reference points R into partitions. Each partition is mapped to

a file and the partitions are stored on a distributed file system. The partitions are searched in parallel

against query points Q. The core component in our system that enables efficient partitioning of data

points and searching for objects is the space partitioner, which we describe in details in Section 3.2.

Figure 3.1 shows the high-level architecture of the DIMO system. There are two main compu-

tational tasks: Build Index and Match Objects. Build Index first constructs the space partitioner by

estimating its parameters from a sample of the reference points set. Then, it creates the Distributed

Index of all the reference points set using the space partitioner it built earlier. This is done by as-

signing each point to its partition and then store each partition in a file on the distributed file system.

Match Objects takes the query points set and computes the nearest neighbors for each query point. It

also executes application-specific object matching functions on the found nearest neighbors. DIMO

is implemented using the MapReduce distributed programming model [22]. The two computational

tasks mentioned above are MapReduce jobs that run on multiple machines.

As shown in Figure 3.1, the distributed index is divided into two parts: (i) Space Partitioner and

(ii) Partitions. Space partitioner is an abstract data structure that is used to group similar points in

the same or close-by partitions. It is also used to forward query points to the partitions with potential

matches. We build it to be a compact and an in-memory data structure that can be loaded and used

by various computational tasks in the system. Partitions are the end regions of the space partitioner

that contain the actual data points. Each partition is mapped to and stored as a single file on the

distributed file system.

The design of our index has has two main features that make it simple to implement in a dis-

tributed manner, yet efficient and scalable. First, data points are stored only at the files associated

with the partitions. The space partitioner itself does not store any data, it only stores meta data to

guide the search. This significantly reduces the size of the space partitioner and makes it fit easily

in the main memory of a single machine even for large datasets. This feature allows us to distribute

CHAPTER 3. PROPOSED SOLUTION 21

copies of the space partitioner to multiple computing machines to process queries in parallel. Repli-

cating the space partitioner on different machines not only facilitates parallel processing, but it also

greatly improves the robustness and efficiency of the system. The robustness is improved because

there is no single point of failure. The efficiency is improved because there is no central machine

or set of machines that other machines contact during the computation. The second feature of our

index design is the separation of the partitions and storing them as files on the distributed file sys-

tem. This increases reliability as well as simplifies the implementation of the parallel computations

in our system, because the concurrent access of data points is facilitated by the distributed file sys-

tem. In addition, having data points only at files makes updating the index easier as explained in

Section 3.7.

The proposed design of the DIMO system achieves the desired properties mentioned in Chap-

ter 1. For example, it is general, because multiple applications can be supported by implementing

the application-specific object matching functions in the Match Objects task, after the basic nearest

neighbors search function is performed. The elasticity feature of DIMO, i.e., the ability to auto-

matically use various number of machines, is achieved by the MapReduce framework. Finally, in

Section 3.7, we discuss how DIMO can scale to very large datasets and how it can dynamically

add/remove data points to the reference set.

The rest of this chapter is organized as follows: first we describe the space partitioner in general,

then we describe our adapted designs of two concrete methods of space-partitioning, which are K-

dimensional forest (KD forest) and multi-probe locality-sensitive hashing (MP-LSH). Finally, we

describe the distributed implementation and operations of the DIMO system.

3.2 Space Partitioner

In our design, space partitioning is the abstract concept of dividing the search space into partitions

where each partition groups similar points, such that the points in the same partition are closer to

each other than the points in the other partitions.

Space partitioner consists of multiple space-partitioning instances, each instance represents a

different partitioning of the dataset. Each space-partitioning instance is built independently with

different parameters. Building multiple instances gives a room for more accurate results, as the

final results is the union of each individual instance results. This increase in the accuracy comes at

CHAPTER 3. PROPOSED SOLUTION 22

the cost of storing multiple copies of the dataset on the distributed file system. Nevertheless, space

partitioner can consist of only one space-partitioning instance.

Space partitioner is used to group similar points in the same or close-by partitions. It is also

used to forward query points to the partitions with the most potential matches. It is an in-memory

data structure that can be loaded and used by various computational tasks in the system. Partitions

are the end points of the space partitioner, and they are stored as files on the distributed file system.

Space partitioner can be implemented using different data structures (e.g., LSH [21], KD tree

[8]). We design our space partitioners to be scalable by having a controllable number of partitions.

This enables handling different dataset sizes without the need to rebuild the whole index. We also

design it to support dynamic change of the datasets (i.e., adding/removing data points), and to

maintain a good balance between the number of points in each partition.

As we discussed in Section 2.2 and Section 2.3, space partitioners split the data points to parti-

tions based on one of two indexing schema: (i) using tree-based partitioning or (ii) using hash-based

partitioning. We design and implement an example space partitioner from each indexing scheme.

For tree-based approach, we choose KD Forest [58] as the base of our space partitioner, as it is

considered to be the state-of-the-art algorithm in its category. In our design of the space partitioner

based on KD forest, each space-partitioning instance is a KD tree and each partition is a tree bin.

For hash-based approach, we choose multi-probe locality-sensitive hashing (MP-LSH) [47] as

the base of our space partitioner, which is also considered to be the state-of-the-art algorithm in its

category. In our design of the space partitioner based on MP-LSH, each space-partitioning instance

is a hash table and each partition is a range of hash buckets.

3.3 KD Forest as a Space Partitioner

In this section, we introduce our design of a space partitioner based on the KD forest [58].

3.3.1 Overview

KD forest [58] is a group of KD trees that are built together. It is designed to enhance approximate

nearest neighbors search quality by building multiple KD trees rather than building a single KD

tree. We use the KD forest as the space partitioner part of the distributed index, where each space-

partitioning instance is a KD tree, and partitions are the bins associated with the tree leaf nodes.

CHAPTER 3. PROPOSED SOLUTION 23

We are interested in matching data points with high dimensions. Thus, if we use the traditional

KD tree, it will be too deep with too many nodes and each has only one data point, which is not

efficient especially in distributed processing environment where accessing any node may involve

communications over the network. We control the depth of the tree based on the size of the dataset

such that the size of bins at the bottom of the tree roughly matches the storage block size of the

distributed file system.

Figure 3.2(a) shows a simple KD tree constructed from 15 high dimensional data points. The

figure shows that each node stores a data point and that every level of the tree uses a different

dimensions to split the dataset around it. Figure 3.2(b) shows the modified KD tree for the same 15

data points used in Figure 3.2(a). Notice that interior nodes only contain the splitting values and all

data points are stored in the leaf nodes. In real deployment, the size of a leaf node is in the order of

64 to 128 MBs, which means that each leaf node will contain thousands of data points. Thus, the

size of our top part of the KD tree will be small; only three nodes in this example (compared to 15)

and each node stores only one value (compared to a multi-dimensional point).

We construct multiple KD trees to form our KD forest, where each tree is built with different

dimensions. Searching multiple trees gives more accurate results than searching one tree. This is

because the final results is the the union of all the KD trees results. To avoid the communication

and synchronization cost between the KD trees, each KD tree holds a complete copy of the dataset

rather than pointers to it as in other implementations [58]. This imposes storage overhead, however,

it simplifies the distributed computations and minimizes the communication and network overheads.

We choose the KD tree as the base for our space partitioner because of its efficiency and sim-

plicity. Different types of trees [54] can be used instead of the KD tree, after we perform our ideas

of keeping data points only at leaves, aggregating data points into bins, and storing bins on the

distributed file system.

3.3.2 Constructing the KD trees

We construct multiple KD trees to form a KD forest. Since we limit the depth of the trees, trees

are built using subset of the dimensions of the data points, and each tree uses a different subset of

them. Multiple methods can be used to choose these subsets of dimensions. For example, we may

use the dimensions that have the highest variance in the dataset. In order to have high accuracy

with using few dimensions, we use the principal component analysis (PCA) to choose the most

CHAPTER 3. PROPOSED SOLUTION 24

(a) Classical KD Tree (b) Modified KD Tree

Figure 3.2: The Classical KD Tree and the Modified KD Tree.

representative principal components to project the dataset points on them. PCA is a well studied

technique for dimensions reduction. It finds a hyperplane of the required target dimensionality to

project the actual points on, such that the variance among them after the projection is maximized.

It finds this hyperplane by calculating the singular value decomposition (SVD) of the covariance

matrix of the input points.

We use a random sample of the reference data points to perform the PCA. Note that the KD

forest is used in distributing all data points to partitions as we explain later in Section 3.5.1, however,

the construction of the trees is done from a sample of the reference data points.

The following steps are performed to construct our version of the modified KD tree: First, we

decide on the number of levels numLevels in the KD tree. This is calculated from the size of

the reference dataset refSize and the storage block size blockSize of the distributed file system.

If the tree has numLevels levels, then it will have 2numLevels leaf nodes or bins, and each bin

can store up to blockSize/pointSize data points, where pointSize is the size of each data point.

Thus, the the total number of points that can be stored in the distributed index is 2numLevels ×
blockSize/pointSize which must be greater than or equal to the number of data points in the

reference dataset refSize/pointSize. Thus, the number of levels is given by: numLevels ≥
⌈log2 (refSize/blockSize)⌉.

CHAPTER 3. PROPOSED SOLUTION 25

Second, we construct the KD tree using a depth first algorithm. For each level in the tree, we

project all data points in the random sample on the principal component that corresponds to that

level. Then, we sort all data points with respect to this principal component, and we use the median

as the splitting value. Since we use the median value for partitioning, roughly half of the data points

will be directed to the left subtree and the other half to the right subtree in each level, which leads

to a balanced tree. We say roughly half of the data, because the principal component analysis is

not performed on the whole dataset. However, randomly choosing a reasonable-size sample will

unlikely lead to unbalanced tree. A fully-balanced tree can be achieved by applying PCA on the

whole dataset, which is also doable especially that this is done only once on the reference dataset

and the tree will be used to answer many queries. Nonetheless, our experiments with large image

datasets indicate that random sampling is practically sufficient to provide a balanced tree.

3.3.3 Finding the Closest Bins

In order to store a reference point into the index, we first find its bin in each KD tree. Also to find

the best matches for a query point, we first find the closest bins to it in each KD tree. Both tasks we

achieve using the GetClosestBins() function.

The GetClosestBins() function returns the requested number of closest bins to a given point in

a specified KD tree. If we set the number of requested bins to one, it returns the bin that contains

that point. Procedure 1 shows the pseudo code of this function, which is a variant of the best bin

first algorithm in [7]. The idea of the algorithm is to search the candidate bins in ascending order

of their distances to the query point, instead of their original order in the KD tree. This is done

by maintaining a priority queue, based on the distance between the query point and the nodes in

the tree. The queue is initialized by inserting the root of the tree in it. Then, while the algorithm

traverses down the tree to reach the closest bin, it adds more nodes to the priority queue, which will

be inspected later to find other close bins. Once it reaches a leaf node at the bottom of the tree,

it adds the bin ID corresponding to that leaf node to the list of closest bins. If more bins are still

needed, the algorithm traverses the tree again starting from the node on the top of the priority queue.

Otherwise, the algorithm returns the list of closest bins.

Unlike the original method for searching multiple KD trees introduced by Silpa-Anan and Hart-

ley [58], we do not maintain a single priority queue for searching the bins. Instead, we maintain a

separate priority queue for each KD tree, and search each KD tree independently. Finally, we merge

CHAPTER 3. PROPOSED SOLUTION 26

Procedure 1 Finding Closest Tree Bins to Given Data Point

1: function GETCLOSETBINS(KDTree kdt, Point p, int count)
2: List closestBins = []
3: PriorityQueue Q = root of kdt
4: KDTreeNode currentNode = null
5: while Q is not empty do
6: currentNode = top of Q
7: while currentNode is not leaf do
8: distance = Calculate distance between p and currentNode
9: if distance < 0 then ◃ closer to left child

10: Add right child of currentNode to Q
11: currentNode = left child of currentNode
12: else ◃ closer to right child
13: Add left child of currentNode to Q
14: currentNode = right child of currentNode
15: end if
16: end while
17: Add bin ID of currentNode to closestBins
18: if size of closetBins = count then return closetBins
19: end if
20: end while
21: end function

the results at the end of the search from the the KD trees. This significantly reduces the communica-

tion overhead between the computing machines compared to synchronizing a shared data structure

between the machines. It also makes the searches truly independent and can be fully parallelized.

To find B bins from a KD forest with T KD trees, we find the best ⌈B/T ⌉ bins from each KD

tree. The final result is the union of the points in all the B bins from all the trees after removing the

duplicate points if there are any.

3.3.4 Scaling Up/Down the Number of Bins

When the number of points in the index increases/decreases significantly, the KD forest structure

of the index needs to be scaled up or down to handle the change of the data size. As we mentioned

before, we maintain the partition size to be the storage block size of the distributed file system, so

that we can read the whole file in single I/O operation. We scale the KD forest by controlling the

number of levels numLevels in each KD tree.

CHAPTER 3. PROPOSED SOLUTION 27

If the number of points increases beyond the initial capacity of the index, the numLevels

parameter will be increased by 1, which means doubling the number of bins at the bottom of each

tree and hence doubling the total number of points that can be managed by the index. To achieve this,

for each tree, we select a dimension to be considered for the new level. Recall that the dimensions

are computed by performing PCA on a sample of the reference dataset. If the number of tree levels

became greater than the number of dimensions, we iterate again over the dimensions. That is, the

dimension for the new level of the tree will be the same as the first level of the tree. Then, we

project and sort the data points of each partition based on the value of the new dimension. Then,

we compute the median and split each leaf node into two based on it. Similar steps are applied for

scaling down the index when more than half of the points are removed. In this case, the number of

levels in the tree is decreased by one and each pair of leaf nodes will be merged into one.

3.4 Locality-sensitive Hashing as a Space Partitioner

In this section we introduce a different design of a space partitioner based on locality-sensitive

hashing (LSH) from p-stable distributions [21].

3.4.1 Overview

As we mentioned earlier in Section 2.3, the main idea of locality-sensitive hashing is to use hash

functions that map similar objects into the same hash bucket with high probability. In our LSH

space partitioner, we take each space-partitioning instance to be a hash table, and each partition to

be a group of buckets.

Different LSH families can be used to generate different hash codes representations (e.g., Binary

or Integer codes) and using different distance functions (e.g., Hamming or Euclidean distances).

Focusing on the Euclidean space under l2 norm, we use Datar et al. [21] proposed LSH families for

lp norms based on p-stable distributions, where the hashing is done through random projections and

each hash function is defined as:

ha,b(q⃗) =

⌊
a⃗ . q⃗ + b

W

⌋
, (3.1)

where a⃗ is a d-dimensional point with components randomly and independently chosen from a 2-

stable distribution. The 2-stable distribution we use is the Gaussian distribution, which works for

the Euclidean distance [21]. b is a real number uniformly chosen from the range [0,W]. Each hash

CHAPTER 3. PROPOSED SOLUTION 28

function ha,b maps a d-dimensional point q⃗ to an integer. W is the hash bucket width, which controls

the number of points in each bucket. Increasing W increases the number of points that fall into each

bucket, and decreasing it decreases the numbers of points per bucket consequently. So varying W

causes a trade-off between a large table with a large number of small buckets, or a more compact

table and fewer buckets but with more points to consider for each bucket in the final search.

We perform M such projections per point, and concatenate their integer mapping to an integer

sequence of length M . This sequence of integers is the hash code of the input point, and the set of

M such hash functions constitutes a hash table. Two points fall in the same bucket if they have the

same hash code, i.e., map to same values in all the M projections.

To further magnify the probability of collision of similar points, and overcome the unlucky

event of two similar points falling into two different values in one of the M projections due to

quantization, we build L such hash tables. Where in each hash table, we use hash functions of the

same form, but created randomly and independently from the Gaussian distribution. Similar to KD

forest, to avoid the communication and synchronization cost between the hash tables, each hash

table holds a complete copy of the dataset rather than pointers to it as in other implementations [21].

The number of tables L is a trade-off between storage and accuracy. As the more tables we build,

the more likely we find the true neighbors, at the price of extra copy of the dataset per each table.

3.4.2 Constructing the Hash Tables

As we mentioned in the overview, we build L locality-sensitive hash tables, each consisting of

the concatenation of M hash functions on the form of the Equation 3.1. Each bucket has a hash

code of a sequence of M numbers produced by that formula. Unlike the KD tree, we can not

control the number of the produced buckets in each hash table, also this scheme of LSH produces

a large number of buckets per table. Naively mapping each bucket to a partition and then to a file

consumes excessive amounts of storage and network calls. And also keeps the number of files on the

distributed file system and their sizes uncontrollable, which violates a strict design requirement in

our design of the space partitioner. To make storing and retrieving more practical, we group multiple

buckets per partition and store them in a single file in the distributed file system. However, in order

to keep the number of points balanced between the files, we do not assign the same number of

buckets to each partition. Instead, we keep the partitions to be of equal size by assigning a varying

number of buckets to each partition. This is caused by the fact that each bucket has a different

CHAPTER 3. PROPOSED SOLUTION 29

number of points in it. The following steps are performed to construct our version of the LSH: First,

we decide on the number of partitions numPartitions in a hash table. This is calculated from the

size of the reference dataset refSize and the storage block size blockSize of the distributed file

system. We maintain each partition size to be slightly smaller than the block size. Thus, the number

of partitions is given by: numPartitions ≥ ⌈(refSize/blockSize)⌉. Each of these partitions will

have roughly numPoints ≈ blockSize/pointSize number of points where pointSize is the size

of a data point.

Second, we assign a range of constitutive buckets to each partition, so that the total number of

points in these buckets is roughly equals the number of points to be assigned to each partition. This

is done as follows: we take a sample from the reference dataset, apply the chosen hash functions

to it, and assign each point to its bucket. Then we order the buckets by their hash code, and we

also count the number of data points fall into each bucket. We maintain a cumulative counts array

of the number of points in each bucket. Based on this cumulative array of counts we constructed,

we assign range of buckets to each partition, such that partitions have roughly the same number of

points (numPoints) and consequently the same size. Since we assign a range of buckets to each

partition, instead of using the natural order of the buckets, we use a locality-preserving order of them

to the partitions. So that, the buckets in each partition have minimal Manhattan distance between

their hash codes. Consequently, for each query points, the number of requested buckets for search

would lay in a small number of files. We use orderings based on the idea of space-filling curves as

it more locality-preserving order than the natural order of multi-dimensional points. Space-filling

curves shows good locality of arranging points of low-dimensions to a one dimension order. In our

implementation of LSH, we keep the number of projections per table to be a small number, hence,

each hash bucket is represented by a few integers. The small number of integers makes it practical

to use a space-filling curve to order them in a more locality-preserving way. After applying the

space-filling curve order, each bucket’s hash code becomes a single integer. Then, we sort the hash

buckets by their integer representation and assign them in ranges to partitions.

3.4.3 Finding the Closest Buckets

Similar to the KD forest, in order to store a point, or find its neighbors, we first locate its partition,

and the closest partitions to it to search for close neighbors. We use step-wise multi-probe LSH [47]

for searching for the closest buckets to a point. The main idea of the multi-probe LSH method is

CHAPTER 3. PROPOSED SOLUTION 30

to search multiple buckets per table for each query point q instead of searching only one buckets as

in the basic LSH [36, 29]. Ultimately, these buckets should be chosen in a way such that they are

likely to contain the nearest neighbors of the query point with high probability. By the definition

of locality-sensitive hashing, if a reference point r is close to a query point q but not hashed to the

same bucket as q, it is highly likely to be hashed in a bucket that is “near by” the query bucket (i.e.,

the hash values of the two buckets differ slightly in few components). The goal in an effective multi-

probe algorithm is to locate these buckets to consequently increase the chance of finding the points

that are close to q [47]. A bucket difference vector is define as a vector of the same dimensionality of

the hash values of two buckets, and captures the sign and magnitude of the difference between each

two corresponding components of the two buckets’ hash codes. For example, assume two buckets

with hash codes (2, 2, 1, 4) and (1, 2, 2, 4), the difference vector between the first and the second is

(1, 0,−1, 0).

An n-step bucket difference vector has exactly n coordinates that are non-zero. This corresponds

to probing a hash bucket which differs in n coordinates from the hash bucket of the query. Based

on the property of locality sensitive hashing, buckets that are 1-step away (i.e., only one hash value

is different from the M hash values of the query point hash code) are more likely to contain points

that are closer to the query point than buckets that are 2-step away. This motivates the step-wise

probing method, which first probes all the 1-step buckets, then all the 2-step buckets, and so on [47].

We find all buckets that are n-step away from a query point using a breadth-first search algorithm.

The number of buckets searched in an n-step probing sequence is exponential in n, however, the

maximum allowed n-steps are typically small (e.g., 1 -- 10 steps) as the first few buckets contain

most of the nearest neighbors.

3.4.4 Scaling Up/Down the Number of Partitions

Similar to KD forest design, when the number of points increases beyond the initial capacity of

the index, we double the number of partitions and hence doubles the total number of points that

can be managed by the index. To achieve this, for each hash table, we split each partition into two

partitions. Recall that the ranges of buckets assigned to each partition are based on the number of

points in each bucket and their cumulative sum in the sample of the reference dataset. That is, as

we do for the initial index construction, we scan each partition’s range of buckets and maintain a

cumulative sum of the points count. we project and sort the data, then we compute the median point

CHAPTER 3. PROPOSED SOLUTION 31

Figure 3.3: Illustration of the Distribute Data MapReduce job.

of that range and split the buckets to two partitions based on it. Similar steps are used for scaling

down the index when more than half of the points are removed. In this case, we merge each each

two consecutive ranges into one, and join their points into one partition.

3.5 Building the Distributed Index

The distributed index is constructed from the reference R dataset, which is done before processing

any queries. Constructing the index involves two steps: (i) creating the space partitioner and (ii)

distributing the reference dataset to partitions. The space partitioner is created using a sample from

the reference dataset and it is done on one machine. The details are given in Section 3.2 and two

concrete implementations are described in Section 3.3 and Section 3.4. Once created, the space

partitioner is serialized as one object and stored on the distributed file system. This serialized object

can be loaded in memory by various computational tasks running on multiple machines in parallel.

Distribution of data is done in parallel on multiple machines using the Distribute Data MapReduce

task; details are presented in Section 3.5.1.

CHAPTER 3. PROPOSED SOLUTION 32

Procedure 2 Distribute Data MapReduce Job
MAPPER

1: function SETUP ◃ Loaded once per machine
2: SpacePartitioner sp = LoadSpacePartitioner ()
3: end function

// Input: Files containing data points
// Output: List of [(PartitionID, point)]

1: function MAP(FileID i, File f)
2: for each Point p in File f do
3: Partitions = GetClosestPartitions (sp, p, 1)
4: for each Partition in Partitions do
5: Emit (Partition.getID(), p)
6: end for
7: end for
8: end function

REDUCER
//Input: pairs of (PartitionID, point)
//Output: Create a file for each Partition and store all points that correspond to that Partition in it.

1: function REDUCE([(PartitionID pid, Point p)])
2: Write a file for each partition and and store all points that correspond to that partition in it
3: end function

CHAPTER 3. PROPOSED SOLUTION 33

3.5.1 Distributing Data Points

Distribution of data points to partitions is achieved in parallel using the Distribute Data MapReduce

job, which is illustrated pictorially in Figure 3.3 and described in pseudo code in Procedure 2.

Data points are assumed to be stored in files. Each data point is a multi-dimensional vector.

Each mapper instance will process a group of data points. The mapper starts by loading the space

partitioner from the distributed file system. Then, for each data point, the mapper searches the space-

partitioning instances to find the closest partitions to this point in each space-partitioning instance

using GetClosestPartitions() function. After finding the closest partitions for each point, the mapper

emits key-value pairs in the form of (PartitionID, point). Pairs having the same PartitionID are sent

to the same reducer by the MapReduce infrastructure. The reducer, in turn, groups all points with

the same PartitionID and writes them to a file on the distributed file system, which is identified by

the PartitionID.

3.6 Similarity Searching and Matching of Objects

The DIMO system is better suited for processing large query datasets in batch mode. This batch

mode is useful for applications such as image/video de-duplication in multimedia databases and

video copy detection, in which many data points in the query set are processed together. Extend-

ing the DIMO system to process online queries is possible and is part of our future work; this

may require optimization of the MapReduce jobs in the system to reduce the overhead involved in

executing them for short online queries.

DIMO takes a query dataset and matches it against the distributed index, which represents the

reference dataset. This matching process is done in three steps: (i) partitioning query dataset,

(ii) finding K nearest neighbors for each data point in the query dataset, and (iii) performing

application-specific object matching routines using the found K nearest neighbors. Each of these

three steps is executed in parallel on the MapReduce infrastructure.

The first step does not randomly divides the query dataset. Instead, it uses the space patitioner to

partition the query dataset such that each group contains a partition ID and a list of data points that

are likely to have neighbors in that partition. This partitioning is accomplished using the Partition

Queries task, which is similar to the Distribute Data task used in constructing the distributed index

(Figure 3.3 and Procedure 2), except for two modifications. The first modification is that the reducer

CHAPTER 3. PROPOSED SOLUTION 34

Figure 3.4: Illustration of the second and third steps of the object matching process in the DIMO
system.

in the Partition Queries task does not store partitions on the distributed file system. Rather, it emits

partition IDs and lists of query data points; one list for each partition ID. The space partitioner is

used to create the list of data points that corresponds to each partition, in the same way as described

in Section 3.5.1. The second modification is the setting of the number of partitions parameter in

GetClosetPartitions() function in line 4 of Procedure 2. While the number of partitions is set to one

in the Distribute Data task, since each reference data point is stored in only one partition for each

partitioning instance, the number of partitions is variable and used to control the accuracy of the

computed K nearest neighbors in the Partition Queries task. If the number of partitions is set to n,

then each query data point is compared against all reference points in n partitions, which increases

the accuracy but requires more computing resources.

The second and third steps of matching objects are finding the K nearest neighbors and applying

application-specific function(s) on them to produce the final object matching results. These two

steps are illustrated in Figure 3.4. The figure shows that these two steps are achieved through

one MapReduce job that has one mapper and two consecutive reducers.1 The mapper and first

reducer compute the K nearest neighbors for all points in the query dataset. The second reducer

is a place holder for any application-specific post processing function on the K nearest neighbors.

For example, in a video copy detection application [38], individual matching of query frames with

1We note that the current implementation of Hadoop requires having an empty mapper before the second reducer.

CHAPTER 3. PROPOSED SOLUTION 35

reference frames is not sufficient to determine video copies. In this case, the temporal aspects of the

frames should also be considered which is done in the second reducer.

The pseudo code of the Matching Objects MapReduce job is shown in Figure 3. The mapper

takes the output of the Partition Queries task (the first step) in the form: (PartitionID, [p1, p2, . . .]).

It then loads the file corresponding to PartitionID from the distributed file system. The distance

between every query point in [p1, p2, . . .] and every reference point in the loaded file is computed,

and if the distance between any pair of points is less than a pre-defined threshold, this pair will

be emitted for further processing in the following reducer(s). Note that every query point can be

matched against points in multiple partitions for increasing the accuracy. Thus, the first set of re-

ducers combine the results from all mappers, which are keyed on query points IDs. The reducers

then sort neighbors collected from all partitions, and output the nearest K neighbors for each query

point. The output of the first set of reducers contains the object ID of the query point as well as the

object IDs of the K nearest reference points and the distance between each reference point and the

query point. Recall that multiple data points (e.g., SIFT descriptors) can belong to one object (e.g.,

image) and that we identify all data points of the same object with the ID of that object. Specifically,

we give each point an ID that is composed of two components: (ObjectID, Offset), where Offset is

an identifier for the point within the object. The output of the first set of reducers is the query object

ID as key of the out key-value pair. That is, for a query object all the data points from all candidate

reference objects are grouped together and fed to the second set of reducers for any post-processing

of the K nearest neighbors desired by the considered application.

3.7 Updating the Distributed Index

The distributed index is built from the reference dataset, which is assumed to change at slower rate

than the query dataset. Our design of the index, which aggregates all data points and stores them

in partitions that each is mapped to a single file, makes updating the index less complex than other

space-partitioning data structures that store data in interior structure. When a data point is added

or removed, we only change the end files, and we do not need to manipulate or adjust the internal

structure of the space partitioner, which can involve significant computation and communication

overheads in distributed environments. In addition, since partitions are stored as separate files on

the distributed file system, accessing and updating them can easily be done in parallel, as concurrent

CHAPTER 3. PROPOSED SOLUTION 36

Procedure 3 Object Matching MapReduce Job
MAPPER
//Input: PartitionID and list of query points
//Output: List of [(pointID, neighbor)], where neighbor = (pointID, distance)

1: function MAP(PartitionID pid, Point qList[])
2: Point rList[] = Load points from file corresponding to pid
3: for each q in qList do
4: for each r in rList do
5: d = Calculate distance between q and r
6: if d ≤ threshold then
7: Emit(q.getPointID(), (r.getPointID(), d)) ◃ We emit only point IDs to reduce

communications overhead
8: end if
9: end for

10: end for
11: end function
REDUCER 1
//Input: List of pair of points and distance between them
//Output: List of [(pointID, [(neighborID, d)])]

1: function REDUCE(PointID qID, Neighbor nList[])
2: Sort nList based on distance to q
3: Emit (qID, [nList[1], nList[2], . . . , nList[K]])
4: end function

REDUCER 2
//Input: List of [(objectID, [(neighborID, d)])]
//Output: Application Specific

1: function REDUCE(ObjectID qID, Neighbor knnList[])
2: Application-specific processing
3: end function

CHAPTER 3. PROPOSED SOLUTION 37

file accesses are managed by the distributed file system. Furthermore, the sizes of files containing

the data points are used to monitor the balance of the index and whether restructuring of the index

is needed, as will be explained below.

3.7.1 Adding/Removing Points

For adding/removing a data point, we first traverse the space partitioner to find the partition that

this point belongs to. Then, the file corresponding to that partition is accessed through the file sys-

tem and the point is added/removed. For adding/removing multiple points (batch mode), partition

identification of all points is done first using the space partitioner. Then, all points that belong to

the same partition are added/removed to the corresponding file at once. In actual deployment of

the DIMO system, the number of partitions should be conservatively chosen such that the partitions

are not fully filed with data after the first construction of the index. Thus, since the partitions are

relatively large (64 to 128 MBs each), the internal structure of the index will not be impacted by

small updates.

3.7.2 Monitoring Index Imbalance

If there are major updates to the index which involve adding/removing sizable fractions of the

reference points, the balance of the index can be affected, especially if the added/removed data

points change the distribution of the reference data points. For example, if the added/removed

data points make the data distribution more/less skewed. An imbalance in the index can result in

some partitions become quite large while others are empty or have few points. This means that

large partitions would require multiple storage blocks of the distributed file system to be read and

processed, which translates to longer processing times. Whereas little processing is performed for

small partitions, while the system still pays the I/O overhead to access the almost-empty blocks of

the distributed file system. The imbalance in the index can easily be detected by monitoring the

sizes of the partitions on the distributed file system. If the partition size distribution significantly

deviates from the expected uniform distribution, the index should be re-built from scratch. The

deviation from the uniform distribution is quantified by measuring the variance in the partition sizes

and if it exceeds a pre-defined threshold, the index re-building process is initiated.

Chapter 4

Evaluation

In this chapter, we evaluate the performance of the proposed DIMO system using both K-dimensional

forest (KD Forest) and multi-probe locality-sensitive hashing (MP-LSH) implementations of the

space partitioner. We also compare it against the closest system in the literature. We note that

DIMO is designed to be a general object matching system that can work for different applications.

All applications built on top of DIMO rely on the accuracy of the nearest neighbors computed by

DIMO, while these applications may use different metrics to assess their performance. Thus, in

our experiments, we focus on evaluating the accuracy of the nearest neighbors computed by DIMO

and we do not consider application-level performance metrics as they vary from one application to

another.

We first describe our experimental setup and datasets. Then, we compare the nearest neighbors

computed by DIMO versus the ground-truth neighbors. Then, we compare our system versus the

best results reported by the RankReduce system [64]. Then, we analyze the elasticity and scalability

of DIMO. Finally, we analyze various overheads imposed by DIMO.

4.1 Experimental Setup and Datasets

4.1.1 Platform

We have fully implemented the DIMO system with both KD forest and MP-LSH space partitioners

using Java 1.7 and Apache Hadoop 1.0.3 [31]. We conduct several experiments on clusters of

various sizes from the Amazon Elastic MapReduce (EMR) cloud service. To show the elasticity

38

CHAPTER 4. EVALUATION 39

and scalability of our system, we conduct experiments on EMR clusters of sizes 8, 16, 32, 64, and

128 machines. Each machine in the cluster is an Amazon EC2 Medium Instance, which has 3.75 GB

of memory, 2 EC2 Compute Units, and 410 GB storage, and it runs 64-bit Debian 6.0.5 (Squeeze)

linux as its operating system. In addition, we have created a virtual Hadoop cluster on a single

machine in our lab. This machine is a Dell T1600 server with 8-core Intel Xeon E3-1245 3.3 GHz

processor, and 16 GB main memory. The operating system is 64-bit Ubuntu linux 12.04. We used

this virtual Hadoop cluster for small-scale experiments.

4.1.2 Datasets

We assess the performance of the DIMO system using data points extracted from images. We

emphasize that DIMO is a general system and we use data from images as an example of real data.

We extract SIFT [45] features from images and use each SIFT feature descriptor as a data point.

We use the VLFeat 0.9.17 [68] implementation of the SIFT algorithm. On average, we extract 200

SIFT features from each image, and each feature has 128 dimensions. We use two image datasets

in our experiments:

• Caltech Dataset [4]. This dataset is composed of data points extracted from images. The

images are obtained from the Caltech Buildings and Game Covers datasets. Caltech Buildings

is a set of images taken for 50 buildings around the Caltech campus. Five different images

were taken for each building from different angles and distances, giving a total of 250 images.

Caltech Game Covers is a set of CD/DVD covers of video games. It includes around 11,400

images for games on different consoles. We extract around 100 -- 200 data points from each

image. Thus, this dataset contains 1,000,000 reference data points. The query set contains

1,000 data points randomly selected from the 1,000,000 points. We refer to this dataset as

the small dataset and it is used to compare the nearest neighbors computed by our system

versus the actual nearest neighbors (ground truth), which are computed using an expensive

brute force approach that tries all possibilities.

• ImageNet Dataset [24]. ImageNet is an open image database with millions of images orga-

nized according to the WordNet hierarchy, where each group of images illustrate a concept in

WordNet. We downloaded 1 million images from ImageNet. With 200 data points extracted

CHAPTER 4. EVALUATION 40

from each image, this dataset contains 200 million data points and it is used to test the scala-

bility of our system. The query set contains 100,000 data points randomly selected from the

200 million points.

4.1.3 Performance Metrics

The main goal of the DIMO system is to provide high quality nearest neighbors with low cost. The

quality of the retrieved K nearest neighbors for a query point q is assessed by the percentage of

true KNNs found, and the cost is assessed by the percentage of the dataset scanned for finding the

KNNs.

To formalize the performance measures, let q be a query point, we define T (q) to be the set of

true KNNs which is calculated by a full scan brute force algorithm of the reference dataset. We also

define C(q) to be the candidate set which is the aggregation of all reference points in the candidate

partitions, and to be the shortlisted candidate set after sorting the candidate points in C(q), removing

the redundant points, and selecting only the top K among them.

We measure the Recall(q) as the percentage of T (q) appeared in S(q), which is given by:

Recall(q) =
|S(q) ∩ T (q)|

|T (q)|
. (4.1)

The precision of the selected points of S(q) is given by:

Precision(q) =
|S(q) ∩ T (q)|

|S(q)|
. (4.2)

Since we sort C(q) and choose the top K candidates and put them in S(q), then the precision is the

same as recall, as the size of S(q) equals the size of T (q). Recall that T (q) contains the true K

nearest neighbors, and S(q) contains the closest K candidates to the query point.

We compute the average recall of the retrieved K nearest neighbors across all points in the query

set Q, and it is given by:

AvgRecall =

∑|Q|
i=1{Recall(i)}

|Q|
. (4.3)

The main computationally-expensive part of finding the nearest neighbors is scanning through

the candidate set and maintaining the closest K of them to the query point, and this is proportional

to the size of the candidate set. Thus, the percentage of the whole dataset scanned is a good indicator

CHAPTER 4. EVALUATION 41

of query search time. We define the selectivity(q) as the ratio between the candidate set size and

the reference set size, and it is given by:

Selectivity(q) =
|C(q)|
|R|

, (4.4)

where R is the set of reference points.

We compute the average selectivity of the retrieved K nearest neighbors across all points in the

query set Q, and it is given by:

AvgSelectivity =

∑|Q|
i=1{Selectivity(i)}

|Q|
. (4.5)

We use the AvgRecall metric in our experiments as the measure of search quality, and the

AvgSelectivity as the measure of search cost.

In addition, we measure various other performance metrics, including the total running time,

and the amount of data exchanged over the network.

4.2 Parameter Tuning

In this section we describe how we tune the system parameters for different accuracy requirements

and allowed computational resources. We study the behavior of our techniques on the small dataset,

and we estimate the expected behavior on the large ones.

4.2.1 KD Forest Parameter tuning

The main parameters to tune in the KD forest are the number of trees T , the tree height H , and the

number of tree bins to scan for a given query point B. The number of trees controls how many KD

trees in the KD forest. Larger number of trees gives more accuracy at the price of extra copy per

tree. However as shown by Muja and Lowe in [50], the accuracy gain starts to fall quickly after few

number of trees (10 -- 15 trees). Thus, we set the number of trees as the maximum number of copies

that can fit in the allocated storage with an upper bound of 15 trees.

The tree height, number of tree levels, is used to control the maximum depth of each tree and

consequently the total number of the index bins. Note that, each leaf node of a tree is associated with

a single file on the distributed file system that contains all the points assigned to its bin. The tree

CHAPTER 4. EVALUATION 42

height should be chosen carefully, as a small number of levels leads to a small number of leaf nodes

associated with large files with large number of points in it to compare against and consequently

long execution time. Similarly, a large number of levels leads to a large number of leaf nodes

associated with small files with small number of points in each to compare against which leads to

low recall. As we showed in Section 3.3.2, we choose the number of tree levels that leads to an

average file size that can fit in one distributed file system block, so that we can read the whole file

in single I/O operation.

The number of scanned bins controls the fraction of index points to be scanned. It is the number

of bins considered for searching for each query point. We configure the number of bins with respect

to the required accuracy. Increasing this parameter improves the accuracy as it compares the query

points against larger number of reference points, consequently it affects the running time as well.

The number of scanned bins is a key input parameter to our KD tree as it controls the trade-off

between accuracy and running time. For example, if we set the number of considered bins to the

total number of bins, the search algorithm will visit all bins which takes longer running time but all

points will be scanned, and exact solution is guaranteed. Our experiments shows that when scanned

bins represent 1− 2% of total numbers of bins, we achieve around 80− 90% average accuracy.

While the number of trees and the tree height are chosen at the KD forest construction time, the

number of scanned bins can be changed during the query time to optimize for different queries and

different quality and cost requirements.

4.2.2 Multi-probe LSH Parameter tuning

To tune the parameters of our LSH, we use an approach similar to the one proposed by Dong et al.

[25]. In our implementation of LSH, there are four main parameters that need to be tuned for good

performance. Theses parameters are the number of hash tables L, the number of projections M , the

hash bucket width W , and the number of allowed steps in the multi-probe search N -steps. Among

them, L,M and W need to be chosen at the building time of the hash tables. However N -steps can

either be chosen offline while building, or online at querying and changed from query to query.

According to our method, larger number of tables L always results in higher recall, at the price

of extra copies of the reference dataset. Thus L should be tuned to the maximum affordable value,

as limited by the storage available. Note that in practice if L is really large (L ≫ 20, which is not

likely to happen for large datasets), query time will again start increasing as the cost to generate the

CHAPTER 4. EVALUATION 43

probing sequences becomes significant.

We tune M and W for best values when creating the hash tables, while N -steps can be adap-

tively changed during the query time. However, to get a good estimate of the performance when

building the hash tables, we need a fixed N -steps value to predict the performance to tune M and

W accordingly. To overcome this, we choose a fixed N -steps value of medium size to tune for

near-optimal M and W . Setting N -steps = M/2 is a reasonable choice, as the first few buckets are

the most promising and having most of the true matches as shown by Lv et al. [47].

Now we need to optimize the values of M and W given fixed L and N -steps search. We can see

the problem as minimizing the selectivity with the condition that the expected recall is above a given

threshold 1− δ where δ is the allowed expected error. In our implementation, we use the following

approach to find the best parameters M and W given the previous conditions. First, assuming M is

fixed, then the relationships between W and both selectivity and recall are monotonicly increasing.

So, the W value that gives average recall greater than or equal to the target recall can be found using

binary search, and the selectivity of this W is the minimum achievable given the restriction on the

recall. Since M is discrete, we enumerate the value of M from 1 to some reasonably large value

(20 is a reasonable maximum) and for each value of M we get the best W that gives recall greater

than or equal to the target recall. Finally, among the calculated pairs of (M,W), we choose the pair

(M,W) with minimum average selectivity.

At query time, we may change N -steps to different values. N -steps is a trade-off between recall

and selectivity, we can change it for every query batch on the same built reference set.

We note that there are other methods to tune the parameters of LSH. For example, Sundaram et

al. [65] present a memory-based implementation and they use a slightly different approach where

there are constraints on the total memory used. Slaney et al. [61] use a mathematical approach to

model the data distribution, and then fine tune the LSH parameters accordingly. Their methods can

also be used in our system.

4.3 Comparison against Ground Truth

In this section, we compare the accuracy of the returned nearest neighbors by DIMO against the true

nearest neighbors that are computed by a brute force algorithm. We also measure the selectivity of

the DIMO system for retrieving the nearest neighbors. The true nearest neighbors are computed

CHAPTER 4. EVALUATION 44

0 16 32 48 64 80 96 112 128
0

0.2

0.4

0.6

0.8

1

Number of Scanned Bins (B)

R
ec
al
l

0 16 32 48 64 80 96 112 128
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.1: The effect of varying the number of scanned bins (B) of the KD forest on both the
selectivity and recall.

by calculating the distance between each pair of reference point and query point. Since computing

true neighbors is computationally expensive and not possible for large datasets, we use the small

Caltech Dataset in these sets of experiments. This dataset has 1,000,000 reference points and 1,000

query points. We calculate the AvgRecall and AvgSelectivity for the retrieved K nearest neigh-

bors. Unless stated otherwise, we use K = 10 for the experiments. We evaluate DIMO system

performance using both KD forest and multi-probe LSH implementations of the space partitioner.

4.3.1 KD Forest

In these sets of experiments we show the practical aspects of building the index using a KD forest

as its space-partitioning data structure. We show the effect of changing multiple parameters and

their impact on the system performance. We also show how to trade-off the resources to achieve the

target performance.

Effect of Number of Scanned Bins B

In this experiment, we show the effect of changing the number of scanned bins on both recall

and selectivity of the KD forest space partitioner. In Figure 4.1, we plot the AvgRecall and the

AvgSelectivity on both sides of the y-axis, and we vary the number of scanned bins on the x-axis.

CHAPTER 4. EVALUATION 45

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Number of KD Trees (T)

R
ec
al
l

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.2: The effect of varying the number of trees T in the KD forest on both the recall and
selectivity.

To focus on the effect of the number of bins, We build a KD forest of one KD tree with 10 levels,

and having 1,024 leaf bins.

We scan different number of bins at values of 4, 8, 16, 32, 64 and 128 bins out of the 1,024 total

bins. The scanned bins represent selectivity percentages of 0.39%, 0.78%, 1.5%, 3.125%, 6.25%,

and 12.5% of the data size, respectively. We measure the average recall and selectivity of 1,000

query data points against the 1,000,000 reference data points. The results show that DIMO using the

KD forest achieves high recall with low selectivity. For example, when we scan 16 bins out of 1,024

representing selectivity of only 1.5% of the data size, the recall is about 80%. In addition, when we

set the number of scanned bins to 64, DIMO achieves an average recall of more than 95% at the

price of only scanning 6.25% of the bins. This means that, on average, 95% of the true K nearest

neighbors are found in the returned K neighbors by DIMO. We note that the number of scanned bins

controls the trade-off between the average accuracy achieved and the computing resources needed,

which makes DIMO suitable for various applications with different requirements.

Effect of Number of Trees T

In this experiment, we show the effect of changing the number of KD trees in the KD forest on both

the selectivity and recall. In Figure 4.2, we plot the AvgRecall and the AvgSelectivity on both

CHAPTER 4. EVALUATION 46

0 4 8 12 16 20 24 28 32
0.5

0.6

0.7

0.8

0.9

1

Number of Trees (T)

R
ec
al
l

0 4 8 12 16 20 24 28 32
0

0.05

0.1

0.15

0.2

0.25

S
el
ec
ti
v
it
y

Recall
Selectivity

(a) Varying number of trees with variable number of
scanned bins.

0 4 8 12 16 20 24 28 32
0.5

0.6

0.7

0.8

0.9

1

Number of Trees (T)

R
ec
al
l

0 4 8 12 16 20 24 28 32
0

0.05

0.1

0.15

0.2

0.25

S
el
ec
ti
v
it
y

Recall
Selectivity

(b) Varying number of trees with fixed number of scanned
bins.

Figure 4.3: The effect of varying the number of trees T with fixed and variable number of scanned
bins on the recall and selectivity.

sides of the y-axis, and we vary number of KD trees on the x-axis. In this experiment we build each

tree with 13 levels with different dimensions, each tree has 8,192 leaf bins. For each tree we scan

the same number of bins which is 16 bins representing only 0.19% of the total number of bins per

tree. We build different number of trees varying from 1 tree up to 20 trees; each tree cost an extra

copy of the dataset. We measure the average recall and selectivity of 1,000 query data points against

the 1,000,000 reference data points.

The results show that increasing the number of trees significantly increases the recall with slight

increase in the selectivity. For example, when we build one tree we get 51% recall with 0.19%

selectivity. However, if we build four trees we get 77% recall with 0.78% selectivity, that is, 27%

increase in recall with only 0.59% increase in the selectivity. If we increase four more trees the recall

increase to 88% with only 1.5% total selectivity for all the eight trees. We note that after certain

number of trees (10 -- 15), the gain in the recall of building more trees starts to fall significantly

while the selectivity and storage continue to grow linearly with the number of trees.

In Figure 4.3, we conduct a similar experiment to show the comparison between changing the

number of trees with increasing number of scanned bins, and with fixed number of scanned bins.

We also plot the AvgRecall and the AvgSelectivity, and we vary the number of trees on the x-

axis. In this experiment we build each tree with 13 levels having 8,192 leaf bins. In the experiment

plotted in Figure 4.3(a), we scan 64 bins per tree. That increases the total number of scanned bins of

the whole KD forest with increasing the number of trees, and consequently increases the selectivity

CHAPTER 4. EVALUATION 47

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of K Nearest Neighbors

R
ec
al
l

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.4: The effect of varying the number of K nearest neighbors on the recall while keeping
fixed selectivity.

and the running time. As shown in Figure 4.3(a), more trees gives higher recall but with increasing

selectivity as well. In the experiment plotted in Figure 4.3(b), we scan a total of 64 bins for all trees

in the KD forest, which keeps a fixed selectivity and running time while changing the number of

trees. Figure 4.3(b) shows the trade-off between recall and storage while keeping the running time

fixed. Note that, with each extra tree we store extra copy of the data. After few number of trees (8

trees) the increase in the recall tends to be zero.

We note that changing the number of trees controls the trade-off between the storage and the

recall given that the total number of bins is fixed, which again makes DIMO suitable for various

applications with different running time, storage, and accuracy requirements.

Effect of Number of K Nearest Neighbors KNN

In this experiment, we study the effect of changing the number of the retrieved K nearest neighbors.

We create a KD forest of 4 KD trees, and we scan 32 bins per tree for all values of K. We measure

the average recall at different values of K while maintaining a fixed selectivity.

The results are plotted in Figure 4.4 and show that we achieve high recall for returning the

closest neighbor (i.e., K = 1), with value of 94%. The results also show that the average recall

achieved by DIMO using the KD forest is not significantly impacted by increasing K. For example,

CHAPTER 4. EVALUATION 48

at K = 5 the average recall is 88%, and at K = 20 the average recall is 82%, losing only 6% of the

recall when returning 4 times more neighbors. Note that we fix the selectivity for all K values, we

can maintain the same recall for different K values if we allow the selectivity to increase with it.

Summary of the KD Forest Results

In the previous experiments we evaluated the performance of DIMO using the KD forest space

partitioner. The experiments showed that the KD forest achieves high recall with low selectivity.

We report for 1.5% selectivity around 80% recall using only one tree, and around 88% using eight

trees. We showed how we can trade-off between storage and accuracy while having fixed running

time by using different number of trees with fixed number of total scanned bins. We also showed

how to trade-off between accuracy and running time while having fixed storage by scanning different

number of bins for the same number of trees. Finally, we showed that our KD forest space partitioner

is robust against changing the number of the retrieved K nearest neighbors.

Our experiments show that a choice of 4 to 8 trees and 1% to 3% selectivity is reasonable

for most applications achieving from 80% to 95% average recall on our dataset, which is a good

representative of general multimedia datasets.

4.3.2 Locality-sensitive Hashing

In these sets of experiments we show the practical aspects of building the index using a locality-

sensitive hash tables as its space-partitioning data structure. We show the effect of changing mul-

tiple parameters and their impacts on the system performance. We also show how to trade-off the

resources to achieve the target performance.

Effect of Number of Projections M and Bucket Width W

In this set of experiments, we show the effect of changing the bucket width W and the number of

projections M on both the recall and selectivity. As shown in Figure 4.5, we plot the average recall

on the left y-axis and the average selectivity on the right y-axis. On the x-axis, we vary the bucket

width used in building the hash tables. We fix the number of hash tables to one, and the N -steps to

M/2.

We change the bucket width W values from 8 to 16, and we repeat the experiment with different

CHAPTER 4. EVALUATION 49

8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Quantization Width (W)

R
ec
al
l

8 9 10 11 12 13 14 15 16
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

S
el
ec
ti
v
it
y

Recall
Selectivity

(a) Varying W at M = 4

8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Quantization Width (W)
R
ec
al
l

8 9 10 11 12 13 14 15 16
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

S
el
ec
ti
v
it
y

Recall
Selectivity

(b) Varying W at M = 8

8 9 10 11 12 13 14 15 16
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Quantization Width (W)

R
ec
al
l

8 9 10 11 12 13 14 15 16
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

S
el
ec
ti
v
it
y

Recall
Selectivity

(c) Varying W at M = 12

Figure 4.5: The effect of varying the bucket width W and the number of projections M on both the
recall and selectivity.

CHAPTER 4. EVALUATION 50

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

Number of Hash Tables (L)

R
ec
al
l

0 2 4 6 8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.6: The effect of varying the number of hash tables L on both the recall and selectivity.

number of projections M = 4, 8 and 12. We measure the average recall and selectivity of 1,000

query data points against the 1,000,000 reference data points.

As we explained in Section 4.2.2, both recall and selectivity increase monotonicly with W .

Increasing M results in higher recall for the same selectivity. For example, for 10% selectivity,

M = 4 gets a recall of around 50%, M = 8 gets a recall of of around 70%, and for M = 12 gets

recall of around 80%. However, the number of explored buckets is exponential in M , thus we can

not increase M to much higher values.

We note that the the parameters W and M control the trade-off between the average recall

achieved and the required selectivity. We give in Section 4.2.2 an algorithm to automatically set W

and M to achieve the minimum expected selectivity for a given target recall.

Effect of Number of Hash Tables L

In this experiment, we show the effect of changing the number of hash tables on both recall and

selectivity. In Figure 4.6, we plot the AvgRecall and the AvgSelectivity on both sides of the

y-axis, and we vary number of hash tables on the x-axis. We build each table with number of

projections M = 12 and bucket width W = 9. For each table we search the same number of hash

buckets within the range of N -steps = M/2 = 6. The number of buckets probed represent a slightly

different selectivity ratio of each hash table due the nature of the random projections.

CHAPTER 4. EVALUATION 51

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Number of Steps (N-steps)

R
ec
al
l

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.7: The effect of varying the number of steps (N -steps) for searching buckets on both the
recall and selectivity.

We build different number of hash tables varying from 2 up to 20 tables, each hash table costs an

extra copy of the dataset. We measure the average recall and selectivity of 1,000 query data points

against the 1,000,000 reference data points.

The results show that increasing the number of hash tables increases the total recall with a slight

increase in the selectivity. For example, when we build two hash tables we get 41% recall with

0.26% selectivity. However, if we build eight tables we get 69% recall with 1.2% selectivity, that is,

28% increase in recall with only 0.94% increase in the selectivity. If we increase eight more hash

tables the recall increases to 83% with only 2.9% total selectivity for all the sixteen hash tables.

Effect of Multi-probe LSH with Different N -Steps

In this experiment, we show the effect of changing the number of probed hash buckets by the

changing the allowed range of search N -steps on both recall and selectivity. In Figure 4.7, we plot

the AvgRecall and the AvgSelectivity on both sides of the y-axis, and we vary number of N -steps

of the considered hash buckets on the x-axis. We build a locality-sensitive hashing index with four

hash tables, each one is built with number of projections M = 12 and bucket width W = 11.

We scan different number of buckets with different N -steps at values from 0 to 12. The consid-

ered buckets represent an increasing percentage of the total buckets. We measure the average recall

CHAPTER 4. EVALUATION 52

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Number of K Nearest Neighbors

R
ec
al
l

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

S
el
ec
ti
v
it
y

Recall
Selectivity

Figure 4.8: The effect of varying the number of K nearest neighbors on the recall while keeping
fixed selectivity.

and selectivity of 1,000 query data points against the 1,000,000 reference data points. The results

show that DIMO using MP-LSH achieves high recall with low selectivity. For example, when we

scan the buckets at most 6-steps away with selectivity representing only 2.9% of the data size, the

recall is about 80%. In addition, when we set the number of steps to 8, DIMO achieves an average

recall of more than 90% at the price of only 6.3% average selectivity.

We note that the number of N -steps controls the trade-off between the average recall achieved

and the selectivity. We also note that the number of N -steps can be chosen dynamically during

the query time with different value for each query batch. This makes DIMO suitable for various

applications with different requirements.

Effect of Number of K Nearest Neighbors KNN

In this experiment, we study the effect of changing the number of the retrieved K nearest neighbors.

We create an MP-LSH index of 8 hash tables, and we use M = 10 projections, and bucket width

W = 11.00 per table for all values of K. We measure the average recall at different values of K

while maintaining a fixed selectivity.

The results are plotted in Figure 4.8, which show that we achieve high recall for returning the

closest neighbor (i.e. K = 1), with value of 96%. The results also show that the average recall

CHAPTER 4. EVALUATION 53

achieved by DIMO using the MP-LSH is not significantly impacted by increasing K. For example,

at K = 5 the average recall is 92%, and at K = 20 the average recall is 84%, losing only 8% of the

recall when returning 4 times more neighbors. Note that we fix the selectivity for all K values, we

can maintain the same recall for different K values if we allow the selectivity to increase with it.

Summary of LSH results

In the previous experiments we evaluated the performance of DIMO using the multi-probe locality-

sensitive hashing (MP-LSH) space partitioner. The experiments showed that the MP-LSH achieves

high recall with low selectivity. We report average recall from 80% to 90% using 2% to 5% average

selectivity from only 8 to 16 hash tables. This is a better performance than the original LSH algo-

rithm the requires to build hundreds of hash tables [21]. We showed how we can trade-off between

storage and accuracy by using different number of hash tables. We also showed how to trade-off

between accuracy and running time by scanning different number of N -step away hash buckets. We

also showed that our MP-LSH algorithm is robust again changing the number of the retrieved K

nearest neighbors.

Our experiments show that a choice of 8 to 16 hash tables and 2% to 5% selectivity is reasonable

for most applications achieving from 80% to 90% average recall on our dataset, which is a good

representative of general multimedia datasets.

4.3.3 Comparison between KD Forest and Multi-probe LSH

In this section, we discuss the difference between the KD forest and the multi-probe LSH space

partitioners. As we discussed in Section 2.2 and Section 2.3, the main aspect that differentiate the

performance of the two algorithms is the dimensionality of the data and the correlation between the

dimensions. We run a series of experiments on both algorithms with different data dimensionality.

Figure 4.9 shows the achieved recall by each of them on different datasets at varying numbers of

trees and tables. We tune both algorithms parameters to the best values using the techniques we

mentioned in Section 4.2. We build an equivalent number of trees and tables for each algorithm,

with fixed selectivity of 0.07% per each tree/table.

In Figure 4.9(a), we use a reference set of 100,000 128-dimensions SIFT descriptors versus a

query set of 1,000 points chosen randomly from the reference set. The plot shows that the KD

forest has a better performance on such dataset with moderate dimensionality; 128-dimensions.

CHAPTER 4. EVALUATION 54

0 8 16 24 32 40 48 56 64 72
0

0.2

0.4

0.6

0.8

1

Number of Instances

R
ec
al
l

DIMO using KD Forest
DIMO using MP-LSH

(a) Performance of both techniques on data points of 128
dimensions SIFT descriptors.

0 8 16 24 32 40 48 56 64 72
0

0.2

0.4

0.6

0.8

1

Number of Instances

R
ec
al
l

DIMO using KD Forest
DIMO using MP-LSH

(b) Performance of both techniques on data points of 512
dimensions randomly generated points.

Figure 4.9: Comparison between KD forest and multi-probe LSH performance on different datasets
with different dimensionality while varying the number of instances.

This is also because of the principal component analysis (PCA) we perform on the dataset, as the

image descriptors has high correlation between their dimensions. The PCA algorithm exploits this

correlation between the dimensions, resulting in a better performance of KD forest compared to the

MP-LSH which does not contain such mechanism.

In Figure 4.9(b), we use a reference set of 100,000 512-dimensions points randomly generated

from a uniform distribution versus a query set of 1,000 points chosen randomly from the reference

set. The plot shows the superiority of the MP-LSH over the KD forest algorithm for this dataset

with higher dimensionality; 512-dimensions. This is because the randomization in creating the LSH

tables. The analysis of this randomization shows that the LSH results are not highly dependent on

the data dimensionality [36] as in the earlier methods. This is also because the PCA fails to capture

any linear correlation between the data point dimensions. This significantly affects performance of

KD forest compared to the MP-LSH.

In summary, the main test to determine either to use KD forest or general tree-based approaches

versus MP-LSH or general hashing approaches, is the data dimensionality, and the correlation be-

tween the dimensions. KD forest shows better performance with correlated data in low to mid

dimensions (100 -- 200). However, MP-LSH shows better performance with uncorrelated data in

higher dimensions (100s or 1000s).

CHAPTER 4. EVALUATION 55

4.3.4 Summary of the Results

So far we presented two methods and implementations of a space partitioner. We first presented

a KD forest index and we showed its parameters, how to tune it, and their effects on the DIMO

system. We also presented a multi-probe LSH index and we also showed its parameters, how to

tune it, and their effects on the DIMO system. We presented a comparison between both of them,

and which is better for different data dimensionality. Both techniques showed high performance in

different situations.

In summary, we introduced a flexible design of space partitioners for different requirements and

computing machines capabilities. We have three main aspects of the execution, and we can trade-off

between them in a systematic way which are: accuracy, running time, and storage.

At construction time, we can trade-off between the accuracy and the storage while having fixed

running time by having multiple space-partitioning instances; KD trees in the KD forest design, or

hash tables in the MP-LSH design. We can also trade-off between the accuracy and the running

time while having fixed storage by building a finer-grain partitioning. This is done by changing

the tree height (H) in the KD forest design, or by changing the number of projections (M) and

the bucket width (W) in the MP-LSH design. Generally, more fine grain partitioning gives more

accurate results at the price of longer running time.

At query time, we can trade-off between the accuracy and the running time by changing the

number of scanned bins (B) in the KD forest design, or by changing the maximum allowed N -steps

bucket search in the MP-LSH design. Generally, scanning more partitions gives more accurate

results at the price of longer running time.

4.4 Comparison against RankReduce

We compare the proposed DIMO system against the closest one in the literature, which is RankRe-

duce [64]. RankReduce implements a distributed LSH index. It maintains a number of hash tables

over a set of machines on a distributed file system, and it uses MapReduce for searching the tables

for similar points. We compare the results achieved by DIMO against the best results mentioned in

[64] using the same dataset and the same settings. We did not implement RankReduce; rather we

use the the best stated results in its paper. We use the same dataset size of 32,000 points extracted

from visual features of images. The visual features used are 64-dimensional color structure feature

CHAPTER 4. EVALUATION 56

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Scanned percentage of the dataset

A
v
gP

re
ci
si
on

@
20

RankReduce
DIMO

Figure 4.10: Comparing DIMO versus the closest system in the literature, RankReduce.

vectors. We build a space partitioner using the KD forest design, using only 1 tree. We tune the

rest of the parameters using the methods we mentioned in Section 4.2. We measure the average

precision at 20 nearest neighbors at the same percentage of scanned bins, which are called probed

buckets in RankReduce terms.

We plot the comparison results in Figure 4.10. The results show that DIMO consistently out-

performs RankReduce in average recall while maintaining the same average selectivity. The perfor-

mance improvements are significant (15 -- 20%) especially in the practical settings when we scan 5

-- 10% of the data points. For example, when the fraction of scanned data points is 5%, the average

recall achieved by DIMO is about 84%, while the average recall achieved by RankReduce is less

than 65% for the same fraction of scanned data points. For RankReduce to achieve 84% average

recall, it needs to scan at least 15% of the dataset (3X more than DIMO), which incurs significantly

more computation and I/O overheads than DIMO. Similarly, when scanning 10% of the data points,

DIMO achieves more than 97% average recall, while RankReduce achieves less than 80% average

recall. We note that the performance of DIMO and RankReduce is close when we scan a large

fraction of the data (both will get close to 100% average recall), but this is not relevant in practice

because of the huge computational costs needed. Similarly, when scanning a tiny fraction of data

CHAPTER 4. EVALUATION 57

(< 1%), both systems produce low average recall, which may also not be useful for many practical

applications. Nonetheless, in all cases, the performance of DIMO is better than that of RankReduce.

In addition to the superior performance in terms of average recall, DIMO is also more efficient

in terms of storage and computation. For storage, RankReduce needs to store the whole reference

dataset multiple times in hash tables; up to 32 times. On the other hand, DIMO stores the reference

dataset only once in bins. Storage requirements for a dataset of size 32,000 points indicate that

RankReduce needs up to 8 GB of storage, while DIMO needs up to 5 MB , which is more than 3

orders of magnitude less. These storage requirements may render RankReduce not applicable for

large datasets with millions of points, while DIMO can scale well to support massive datasets.

For computation resources, DIMO and RankReduce use similar scan method to reference points

found in bins or buckets. However, as discussed above, RankReduce needs to scan more buckets to

produce similar precision as DIMO. This makes DIMO more computationally efficient for a certain

target precision, as it scans fewer bins.

In summary, the results in this section show that DIMO outperforms the closest system in the

literature (RankReduce [64]) by a large margin in terms of the achieved average recall of the com-

puted nearest neighbors. Furthermore, DIMO requires at least 3 orders of magnitude less storage

than RankReduce and it is more computationally efficient.

4.5 Scalability and Elasticity of DIMO

We conduct multiple experiments to show that DIMO is scalable and elastic. Scalability means the

ability to process large volumes of data, while elasticity indicates the ability to efficiently utilize

various amounts of computing resources. Both are important characteristics: scalability is needed

to keep up with the continuously increasing volumes of data and elasticity is quite useful in cloud

computing settings where computing resources can be acquired on demand.

We run DIMO on datasets of different sizes from 10 to 160 million data points, and on clusters

of sizes ranging from 8 to 128 machines. In all experiments, we compute the K = 10 nearest

neighbors for a query dataset of size 100,000 data points. In the rest of experiments unless stated

other wise, we use the KD forest method with one tree to build with 10 levels ending in a 1,024 bins

(partitions). We scan 16 out of the 1,024 bins, holding a fixed selectivity of 1.5%.

We measure the total running time to complete processing all queries, and we plot the results

CHAPTER 4. EVALUATION 58

0 25 50 75 100 125 150 175
0

25

50

75

100

125

150

175

200

225

250

Reference Dataset Size (Millions)

R
u
n
n
in
g
T
im

e
(M

in
u
te
s)

8 Machines
16 Machines
32 Machines
64 Machines
128 Machines

Figure 4.11: Scalability and elasticity of DIMO: Running times of different dataset sizes on different
number of machines.

in Figure 4.11. The figure shows that DIMO is able to handle large datasets, up to 160 million

reference data points are used in creating the distributed index. More importantly, the running time

grows almost linearly with increasing the dataset size on the same number of machines. Consider for

example the curve showing the running times on 32 machines. The running times for the reference

dataset of sizes 40, 80, and 160 million data points are about 40, 85, and 190 minutes, respectively.

In addition, the results in Figure 4.11 clearly indicate that DIMO can efficiently utilize any

available computing resources. This is shown by the almost linear reduction in the running time of

processing the same dataset with more machines. For example, the running times of processing a

reference dataset of size of 80 million data points are 160, 85, 52, and 27 minutes for clusters of

sizes 16, 32, 64, and 128 machines, respectively.

The scalability and elasticity of DIMO are obtained mainly by our design of the distributed

index, which splits the datasets into independent and non-overlapping partitions. These partitions

are allocated independently to computing machines for further processing. This data splitting and

allocation to partitions enable flexible and dynamic distribution of the computational workload to

the available computing resources, which is supported by the MapReduce framework.

CHAPTER 4. EVALUATION 59

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Reference Dataset Size (Millions)

D
a
ta

S
h
u
ffl
ed

ov
er

N
et
w
or
k
(M

B
s)

(a) Different sizes of reference datasets

0 100 200 300 400 500 600
0

500

1000

1500

2000

2500

Query Dataset Size (Thousands)

D
at
a
S
h
u
ffl
ed

ov
er

N
et
w
or
k
(M

B
s)

(b) Different sizes of query datasets

Figure 4.12: Network overhead imposed by DIMO.

In summary, the experiments in this section show that DIMO can process large datasets and the

processing time proportionally decreases as more computing resources become available to DIMO.

4.6 Overhead Analysis of DIMO

In this section, we analyze various aspects of the DIMO system.

4.6.1 Network Overhead

It is important to minimize the amount of data exchanged over the network in the DIMO system;

otherwise DIMO may not be able to process large datasets or run on large clusters. We run different

sets of experiments on a fixed-size cluster of 16 machines, and we measure the amount of data

exchanged among computing nodes across the network. We measure this network overhead for

various reference data sizes as well as for different query sizes, and we plot the results in Figure 4.12.

We obtain the amount of data exchanged from Hadoop logs. In Figure 4.12(a), we vary the reference

dataset size from 10 to 160 million data points, and we fix the query dataset size at 100,000 data

points. The figure shows that the amount of data shuffled across the network is not affected by the

increase of the reference dataset size, which indicates that DIMO effectively partitions the reference

dataset to minimize the network communication; if otherwise, more data would have been shuffled

across the network as the size of the reference dataset increases, which proportionally increases the

CHAPTER 4. EVALUATION 60

0 16 32 48 64 80 96 112 128 144
0

500

1000

1500

2000

2500

Number of Machines

T
ot

a
l
C

P
U

T
im

e
(M

in
u
te

s)

(a) Total CPU time across all machines

0 16 32 48 64 80 96 112 128 144
0

16
32
48
64
80
96

112
128
144

Number of Machines

C
P

U
T

im
e

/
M

ac
h
in

e
(M

in
u
te

s)

(b) Average CPU time per machine

Figure 4.13: Analysis of CPU usage by DIMO for different cluster sizes.

size of the distributed index.

In Figure 4.12(b), we vary the query dataset size from 100,000 to 500,000 data points, and we

fix the reference dataset size at 10 million data points data points. The results show a linear increase

in the total amount of data shuffled across the network as the size of the query dataset increases.

4.6.2 Storage Usage

Our usage of storage is predictable before running the system. We write the data points in binary

format, and store them as fixed-length records in flat files. We limit the file size to fit in one dis-

tributed file system block (64 MB or 128 MB). This enables fast I/O operations by reading the whole

bin using the minimum number of I/O operations. In addition, the distributed file system uses a lazy

allocation strategy. That is, if data points inside a partition are less than the the block size, the

distributed file system used only the required space without allocating the whole block size. This

yields good utilization of the storage system.

In our experiments with image datasets, we use 128-dimension SIFT features as data points.

Each data point is stored in 136 bytes: 8 bytes for object ID and point ID, and 128 bytes for the

128 dimensions. Thus, for example, for a 1 million data point, we need 136 MB of storage on the

distributed file system for each copy (We store a copy for the dataset for each tree or hash table).

We confirmed these calculations by inspecting the Hadoop logs, which showed close numbers. The

storage overhead in this case is 8 bytes (for storing IDs for each point) divided by 136 bytes (total

CHAPTER 4. EVALUATION 61

size needed for each point), which is less than 6%.

In addition, we store the upper part of the distributed index (the space partitioner) only once

on the distributed file system. The size of the space partitioner depends on the number of data

points in the reference dataset and build parameters. However, as mentioned in Section 3.2, the

space partitioner does not store data points; it only stores meta data. This meta data is a scalar

value, which means that each node in the tree or a hash bucket in a hash table needs up to 4 bytes.

Therefore, the space partitioner takes a negligible space on the storage system compared to the

reference dataset.

4.6.3 Memory Usage

The DIMO system does not require large memory. For our experiments, we set the maximum

allowed memory to 512 MB per node for reducer tasks, and 256 MB per node for mapper tasks.

Thus, DIMO can run on regular off-the-shelf servers, even for processing very large datasets.

4.6.4 CPU Usage and Load Distribution

Two important aspects of any distributed system are how it can balance the workload among the

computing machines, and whether adding more machines introduces more overheads. Load im-

balance results in inefficient utilization of resources and increased running times. More overheads

ultimately limit the scalability of the system. To analyze the performance of DIMO along these two

important issues, we fix the total workload and increase the cluster size from 8 to 128 machines.

The workload is composed of processing 100,000 query data points against 40 million reference

data points.

For each cluster size, we run the experiment and measure the total CPU time, which is the

summation of CPU times on all machines in the cluster. We also measure the average CPU time

per machine in each case. The results are shown in Figure 4.13. We obtain these measurements

from Hadoop logs. The results in Figure 4.13(a) show that DIMO does not introduce any signifi-

cant overheads when the cluster size increases, because the total CPU time remains around 1,000

minutes while the number of machines varies from 8 to 128. In addition, Figure 4.13(b) shows that

the workload (the 1,000 total CPU time) is equally distributed across all machines. For example,

increasing the number of machines from 16 to 32 results in commensurate reduction in the CPU

time per machine from 64 to 32 minutes.

CHAPTER 4. EVALUATION 62

In summary, the results in this section indicate that DIMO: (i) does not impose high network

overhead, (ii) uses the storage system efficiently, (iii) does not require large main memory even for

processing large datasets, and (iv) balances the load across the used computing machines.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, we presented a new method to store and index large-scale high-dimensional data points

for fast searching and matching. Unlike systems proposed in previous works, our index is general

and can be used by multiple applications that require nearest neighbors search in high-dimensional

spaces. Our method computes approximate nearest neighbors, where the accuracy of the computed

neighbors can be to traded off with the required computing resources. This feature makes our

method useful for diverse multimedia applications that have different accuracy requirements and

run on computing platforms with various capacities. We implemented our method in a complete

system called DIMO using the MapReduce programming model. We presented adapted designs and

implementations of two state-of-the-art space-partitioning techniques, which are K-dimensional

forest (KD forest) and multi-probe locality-sensitive hashing (MP-LSH). We experimented with our

system on clusters of different sizes from the Amazon Elastic MapReduce (EMR) cloud service.

We extracted more than 160 million data points from more than 1 million images from the public

ImageNet dataset. The data points are SIFT features, where each one has 128 dimensions. We

rigorously assessed the performance of the DIMO system and compared it against the closest one

in the literature, which is called RankReduce. Our results showed that our system achieves high

accuracy of up to 95% compared to the ground-truth nearest neighbors. Our results also showed

that DIMO is scalable and elastic in the sense that it can efficiently utilize varying amounts of

computing resources, which is a desirable feature given the wide adoption of the on-demand cloud

63

CHAPTER 5. CONCLUSIONS AND FUTURE WORK 64

computing model for acquiring computing resources. In addition, our comparison results showed

that DIMO outperforms RankReduce in terms of the achieved precision of the computed nearest

neighbors, uses less storage, and it is more computationally efficient.

5.2 Future Work

The work in this thesis can be extended in multiple directions. For example, in Section 3.3 we

introduced the design of KD forest as a space partitioner. Other types for trees [54] can be adapted

as well in our design of DIMO, after we perform our ideas of keeping data points only at leaves,

aggregating data points into bins, and storing bins on the distributed file system. Also we note

that one of the drawbacks of KD trees and hierarchical space division techniques in general is

the performance degradation for very high-dimensional data (1,000s or 1,0000s). As the classical

method for dimension reduction and analysis fail to operate on such high dimensions. Nonlinear

dimension reduction like kernel PCA [56], and machine learning-based methods like deep belief

networks (DBNs) [35] can be used for more effective dimensionality reduction.

A possible way of improving the hashing-based space partitioner is to learn the hash codes

from the data instead of the random projections methods. Many techniques are introduced for

supervised and semi-supervised learning of hash codes [70]. As an example, we can use the binary

reconstructive embeddings (BRE) introduced by Kulis and Darrell [39], where the algorithm learns

from the data the hash codes that minimize the reconstruction error. The algorithm is trained from

a sample labeled data of similar and dissimilar objects. It then positions the projection hyperplanes

to minimize the distance between the similar objects and to maximize the distance between the

dissimilar objects in the feature space. Such techniques can easily be adapted and plugged into our

DIMO system.

A different direction of extending the system is to use memory-based frameworks for distributed

processing like Spark [63] instead of disk-based frameworks like Hadoop [31]. Spark uses in-

memory data structures for low-latency and real-time processing.

Bibliography

[1] Ahmed Abdelsadek and Mohamed Hefeeda. Dimo: Distributed index for matching multi-
media objects using mapreduce. In Proceedings of ACM Multimedia Systems Conference
(MMSys), pages 115–126, 2014.

[2] Mohamed Aly, Mario Munich, and Pietro Perona. Distributed KD-Trees for Retrieval from
Very Large Image Collections. In Proceedings of British Machine Vision Conference (BMVC),
2011.

[3] Mohamed Aly, Mario Munich, and Pietro Perona. Indexing in large scale image collections:
Scaling properties and benchmark. In Proceedings of IEEE Workshop on Applications of
Computer Vision (WACV), pages 418–425, 2011.

[4] Mohamed Aly, Peter Welinder, Mario Munich, and Pietro Perona. Scaling object recogni-
tion: Benchmark of current state of the art techniques. In Proceedings of IEEE Workshop on
Emergent Issues in Large Amounts of Visual Data (WS-LAVD), pages 2117–2124, 2009.

[5] Amazon web services. http://aws.amazon.com/.

[6] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In Proceedings of the Symposium on Foundations of Computer
Science (FOCS), pages 459–468, 2006.

[7] Sunil Arya and David Mount. Algorithms for fast vector quantization. In Proceedings of Data
Compression Conference (DCC), pages 381–390, 1993.

[8] Sunil Arya, David M. Mount, Nathan S. Netanyahu, Ruth Silverman, and Angela Y. Wu. An
optimal algorithm for approximate nearest neighbor searching fixed dimensions. Journal of
the ACM (JACM), 45(6):891–923, 1998.

[9] Bahman Bahmani, Ashish Goel, and Rajendra Shinde. Efficient distributed locality sensitive
hashing. In Proceedings of ACM International Conference on Information and Knowledge
Management (CIKM), pages 2174–2178, 2012.

[10] Li Baoli, Lu Qin, and Yu Shiwen. An adaptive k-nearest neighbor text categorization strategy.
ACM Transactions on Asian Language Information Processing (TALIP), 3(4):215–226, 2004.

65

BIBLIOGRAPHY 66

[11] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. Speeded-up robust features
(surf). Computer Vision and Image Understanding (CVIU), 110(3):346–359, 2008.

[12] Jeffrey S. Beis and David G. Lowe. Shape indexing using approximate nearest-neighbour
search in high-dimensional spaces. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 1000–1006, 1997.

[13] Jon Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18(9):509–517, 1975.

[14] Kevin S. Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft. When is ”nearest
neighbor” meaningful? In Proceedings of the International Conference on Database Theory
(ICDT), pages 217–235, 1999.

[15] Alina Beygelzimer, Sham Kakade, and John Langford. Cover trees for nearest neighbor. In
Proceedings of International Conference on Machine Learning (ICML), pages 97–104, 2006.

[16] Christian Bohm and Florian Krebs. High performance data mining using the nearest neighbor
join. In Proceedings of IEEE International Conference on Data Mining (ICDM), pages 43–50,
2002.

[17] E. Chávez, G. Navarro, R. Baeza-Yates, and J.L. Marroquin. Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321, September 2001.

[18] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for
similarity search in metric spaces. In Proceedings of Conference on Very Large Data Bases
(VLDB), pages 426–435, 1997.

[19] K. Dana, B. Ginneken, S. Nayar, and J. Koenderink. Reflectance and texture of real-world
surfaces. ACM Transactions on Graphics (TOG), 18(1):1–34, January 1999.

[20] Abhinandan Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. Google news personal-
ization: Scalable online collaborative filtering. In Proceedings of International Conference on
World Wide Web (WWW), pages 271–280, 2007.

[21] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S. Mirrokni. Locality-sensitive hash-
ing scheme based on p-stable distributions. In Proceedings of Symposium on Computational
Geometry (SCG), pages 253–262, 2004.

[22] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
In Proceedings of the Symposium on Opearting Systems Design and Implementation (OSDI),
pages 137–150, 2004.

[23] Sampath Deegalla and Henrik Bostrom. Reducing high-dimensional data by principal compo-
nent analysis vs. random projection for nearest neighbor classification. In Proceedings of the

BIBLIOGRAPHY 67

International Conference on Machine Learning and Applications (ICMLA), pages 245–250,
2006.

[24] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In Proceedings of IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 248–255, 2009.

[25] Wei Dong, Zhe Wang, William Josephson, Moses Charikar, and Kai Li. Modeling lsh for per-
formance tuning. In Proceedings of ACM Conference on Information and Knowledge Man-
agement (CIKM), pages 669–678, 2008.

[26] Fabrizio Falchi, Claudio Gennaro, and Pavel Zezula. A content-addressable network for sim-
ilarity search in metric spaces. In Proceedings of the International Workshop on Databases,
Information Systems and Peer-to-Peer Computing (DBISP2P), pages 126–137, 2005.

[27] Jerome H. Friedman, Jon Louis Bentley, and Raphael Ari Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical Software (TOMS),
3(3):209–226, 1977.

[28] A. Fu, P. Chan, Y. Cheung, and Y. Moon. Dynamic vp-tree indexing for n-nearest neighbor
search given pair-wise distances. The VLDB Journal, 9(2):154–173, July 2000.

[29] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions via
hashing. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 518–529, 1999.

[30] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In Proceedings
of ACM Conference on Management of Data (SIGMOD), pages 47–57, 1984.

[31] Apache hadoop. http://hadoop.apache.org.

[32] Parisa Haghani, Sebastian Michel, and Karl Aberer. Distributed similarity search in high
dimensions using locality sensitive hashing. In Proceedings of the International Conference
on Extending Database Technology: Advances in Database Technology (EDBT), pages 744–
755, 2009.

[33] Hannaneh Hajishirzi, Wentau Yih, and Aleksander Kolcz. Adaptive near-duplicate detection
via similarity learning. In Proceedings of ACM Conference on Research and Development in
Information Retrieval (SIGIR), pages 419–426, 2010.

[34] Alexander Hinneburg, Charu C. Aggarwal, and Daniel A. Keim. What is the nearest neighbor
in high dimensional spaces? In Proceedings of the International Conference on Very Large
Data Bases (VLDB), pages 506–515, 2000.

[35] Geoffrey E Hinton and Ruslan R Salakhutdinov. Reducing the dimensionality of data with
neural networks. Science, 313(5786):504–507, 2006.

BIBLIOGRAPHY 68

[36] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards removing the
curse of dimensionality. In Proceedings of ACM Symposium on Theory of Computing (STOC),
pages 604–613, 1998.

[37] You Jia, Jingdong Wang, Gang Zeng, Hongbin Zha, and Xian-Sheng Hua. Optimizing kd-
trees for scalable visual descriptor indexing. In Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3392–3399, 2010.

[38] Naghmeh Khodabakhshi and Mohamed Hefeeda. Spider: A system for finding 3d video
copies. ACM Transactions on Multimedia Computing, Communications, and Applications
(TOMCCAP), 9(1):1–20, 2013.

[39] Brian Kulis and Trevor Darrell. Learning to hash with binary reconstructive embeddings. In
Proceedings of Advances in Neural Information Processing Systems (NIPS’09), pages 1042–
1050, 2009.

[40] Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable image
search. In Proceedings of IEEE International Conference on Computer Vision (ICCV), pages
2130–2137, 2009.

[41] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel. Back-
propagation applied to handwritten zip code recognition. Neural Computation, 1(4):541–551,
December 1989.

[42] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[43] Fei-fei Li. Learning generative visual models from few training examples: an incremental
bayesian approach tested on 101 object categories. In In Proceedings of IEEE CVPR Workshop
of Generative Model Based Vision (WGMBV), 2004.

[44] Haojun Liao, Jizhong Han, and Jinyun Fang. Multi-dimensional index on hadoop distributed
file system. In Proceedings of IEEE International Conference on Networking, Architecture,
and Storage (NAS), pages 240–249, 2010.

[45] David Lowe. Distinctive image features from scale-invariant keypoints. International Journal
of Computer Vision (IJCV), 60(2):91–110, 2004.

[46] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing of k nearest neighbor
joins using mapreduce. Proceedings of the VLDB Endowment (PVLDB), 5(10):1016–1027,
2012.

[47] Qin Lv, William Josephson, Zhe Wang, Moses Charikar, and Kai Li. Multi-probe lsh: Ef-
ficient indexing for high-dimensional similarity search. In Proceedings of the International
Conference on Very Large Data Bases (VLDB), pages 950–961, 2007.

BIBLIOGRAPHY 69

[48] Brian McFee and Gert RG Lanckriet. Large-scale music similarity search with spatial trees.
In Proceedings of Symposium for Music Information Retrieval (ISMIR), pages 55–60, 2011.

[49] James McNames. A fast nearest-neighbor algorithm based on a principal axis search tree.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 23(9):964–976,
2001.

[50] Marius Muja and David Lowe. Fast approximate nearest neighbors with automatic algorithm
configuration. In Proceedings of the International Conference on Computer Vision Theory and
Application (VISSAPP), pages 331–340, 2009.

[51] Marius Muja and David Lowe. Scalable nearest neighbor algorithms for high dimensional
data. IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36, 2014.

[52] David Nistr and Henrik Stewnius. Scalable recognition with a vocabulary tree. In Proceedings
of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2161–2168,
2006.

[53] M. Patella and P. Ciaccia. Approximate similarity search: A multi-faceted problem. Journal
of Discrete Algorithms, 7(1):36–48, 2009.

[54] Parikshit Ram and Alexander Gray. Which space partitioning tree to use for search? In
Proceedings of Advances in Neural Information Processing Systems (NIPS), pages 656–664,
2013.

[55] Frederik Schaffalitzky and Andrew Zisserman. Automated scene matching in movies. In
Proceedings of the International Conference on Image and Video Retrieval (CIVR), pages
186–197, 2002.

[56] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component anal-
ysis as a kernel eigenvalue problem. Journal of Neural Computation, 10(5):1299–1319, 1998.

[57] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop dis-
tributed file system. In Proceedings of IEEE Symposium on Mass Storage Systems and Tech-
nologies (MSST), pages 1–10, 2010.

[58] Chanop Silpa-Anan and Richard Hartley. Optimised kd-trees for fast image descriptor match-
ing. In Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–8, 2008.

[59] Josef Sivic and Andrew Zisserman. Video google: A text retrieval approach to object matching
in videos. In Proceedings of IEEE International Conference on Computer Vision (ICCV),
pages 1470–1477, 2003.

[60] Malcolm Slaney and Michael Casey. Locality-sensitive hashing for finding nearest neighbors.
IEEE Signal Processing Magazine, 25(2):128–131, 2008.

BIBLIOGRAPHY 70

[61] Malcolm Slaney, Yury Lifshits, and Junfeng He. Optimal parameters for locality-sensitive
hashing. Proceedings of the IEEE, 100(9):2604–2623, 2012.

[62] S. J. Smith, M. O. Bourgoin, K. Sims, and H. L. Voorhees. Handwritten character classification
using nearest neighbor in large databases. IEEE Transactions on Pattern Analysis and Machine
Intelligence(PAMI), 16(9):915–919, 1994.

[63] Apache spark. http://spark.apache.org.

[64] Aleksandar Stupar, Sebastian Michel, and Ralf Schenkel. Rankreduce - processing k-nearest
neighbor queries on top of mapreduce. In Proceedings of the International Workshop on
Large-Scale Distributed Systems for Information Retrieval (LSDS-IR), pages 13–18, 2010.

[65] Narayanan Sundaram, Aizana Turmukhametova, Nadathur Satish, Todd Mostak, Piotr Indyk,
Samuel Madden, and Pradeep Dubey. Streaming similarity search over one billion tweets
using parallel locality-sensitive hashing. Proceedings of the VLDB Endowment (PVLDB),
6(14):1930–1941, 2013.

[66] Yufei Tao, Ke Yi, Cheng Sheng, and Panos Kalnis. Quality and efficiency in high dimensional
nearest neighbor search. In Proceedings of the 2009 ACM SIGMOD International Conference
on Management of Data, pages 563–576, 2009.

[67] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Inf.
Process. Lett., 40(4):175–179, 1991.

[68] Andrea Vedaldi and Brian Fulkerson. Vlfeat: An open and portable library of computer vision
algorithms. In Proceedings of the ACM International Conference on Multimedia (MM), pages
1469–1472, 2010.

[69] Jinbao Wang, Sai Wu, Hong Gao, Jianzhong Li, and Beng Chin Ooi. Indexing multi-
dimensional data in a cloud system. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), pages 591–602, 2010.

[70] Jun Wang, Sanjiv Kumar, and Shih-Fu Chang. Semi-supervised hashing for large-scale search.
IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 34(12):2393–2406,
2012.

[71] Roger Weber, Hans-Jörg Schek, and Stephen Blott. A quantitative analysis and performance
study for similarity-search methods in high-dimensional spaces. In Proceedings of the Inter-
national Conference on Very Large Data Bases (VLDB), pages 194–205, 1998.

[72] Peter Yianilos. Data structures and algorithms for nearest neighbor search in general metric
spaces. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
311–321, 1993.

BIBLIOGRAPHY 71

[73] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel knn joins for large data in mapre-
duce. In Proceedings of the International Conference on Extending Database Technology
(EDBT), pages 38–49, 2012.

[74] Hao Zhang, Alexander C Berg, Michael Maire, and Jitendra Malik. Svm-knn: Discrimina-
tive nearest neighbor classification for visual category recognition. In Proceedings of IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2126–2136, 2006.

