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ABSTRACT 

Outlier detection is an important data mining task. Recently, online discovering 

outlier under data stream model has attracted attention for many emerging applications, 

such as network intrusion detection. Because the algorithms on data streams are 

restricted to fulfil their works with only one pass over data sets and limited resources, it is 

a very challenging problem to detect outliers over streams. 

In this paper, we present an unsupervised outlier detection approach to online 

network intrusion detection over data streams. Our method continuously maintains 

online summary and obtains a set of clusters, and those small clusters far away from big 

clusters are regarded as outlier clusters. We also propose a novel definition of outlier 

degree to measure the outlying degree of each cluster. When a new data arrives, it is 

considered as an outlier if it lies in the top-k outlier clusters. 

Experiment results demonstrate the effectiveness of our method. 
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CHAPTER 1:INTRODUCTION 

1.1 Background Information and Motivation 

An outlier in a dataset is defined informally as an observation that is considerably 

different from the remainder as if it is generated by a different mechanism. Outlier 

detection is an important data mining research direction with numerous applications, 

including credit card fraud detection, discovery of criminal activities in electronic 

commerce, weather prediction, marketing and customer segmentation. 

Recently, online discovering outliers under data stream model have attracted 

attention for many emerging applications, such as network intrusion detection. With the 

increased usage of computer networks, security becomes a critical issue. A network 

intrusion can cause severe disruption to networks. Therefore the development of a robust 

and reliable network intrusion detection system is increasingly important. 

Traditional methods for intrusion detection employ signature-based detection. 

These methods extract features from data streams, and detect intrusions by comparing the 

feature values to a set of attack signatures provided by human experts. Such methods can 

only detect previously known intrusions since these intrusions have a corresponding 

signature. The signature database has to be manually revised for each new type of attack 

that is discovered and until this revision, systems are vulnerable to these attacks. 



Because of this, applying data mining techniques is a promising approach. In data 

mining community, intrusion detection can be solved by outlier detection over data 

streams. 

A data stream is a massive unbounded sequence of data elements continuously 

generated at a rapid rate. For many recent applications, the concept of data stream is 

more appropriate than a dataset. By nature, a stored static dataset is an appropriate model 

when significant portions of the data are queried again and again, and updates are 

relatively infrequent. In contrast, a data stream is an appropriate model when a large 

volume of data arriving continuously and it is either unnecessary or impractical to store 

the data in some form of memory. Data streams are also appropriate as a model of access 

to large datasets stored in secondary memory where performance requirements 

necessitate linear scans [15]. 

Outlier detection has been widely studied in static data sets. Distance-based 

outlier is first presented by Knorr and Ng [6]. A distance-based outlier in a dataset D is a 

data object with at lease p% of the objects in D having a distance of more than d,, away 

from it. It is further extended in [7] based on the distance of a point from its kth nearest 

neighbour. All the data objects are ranked by the distance to their kt" nearest neighbour, 

and the top-k data objects are identified as outliers. Alternatively, in the algorithm 

proposed by Angiuli and Pizzuti [9], each data point is ranked by the sum of distances 

from its k nearest neighbours. Distance-based outliers are meaningful and adequate 

under certain conditions, but not satisfactory for the general case when clusters of 

different densities exist. 



To avoid the shortcomings in distance-based outlier definition, Breunig [8] 

introduced the concept of "local outliers", which are the objects outlying relative to their 

local neighbourhoods, particularly with respect to the densities of the neighbourhoods. 

The outlier rank of a data object is determined by "local outlier factor (LOF)". Although 

the concept of local outliers is a useful one, the computation of LOF value for every data 

object requires a large number of k-nearest neighbours searches and can be 

computationally expensive. 

Agganval and Yu [lo] discussed a technique for outlier detection, which finds 

outliers by observing the density distribution of projections from the data. That is, their 

definition considers a point to be an outlier, if in some lower dimensional projection it is 

present in a local region of abnormally low density. It also has an expensive 

computation. 

Clustering-based outlier detection techniques regard small clusters as outliers 

[14]. It first performs fixed-width clustering over the points with a radius of w, and then 

sort the clusters based on the size. The points in the small clusters are labelled as 

outliers. This algorithm requires only one pass through the dataset. 

Although outlier detection has been widely studied, however, there has not been 

much research work conducted on detecting outliers in dynamic data streams, and most 

existing methods are not appropriate in data stream environment. 

In data mining community there has been some work addressing data streams, but 

these proposals mainly solve the problems of clustering [I, 21, mining frequent patterns 

[3, 41, data analysis and query processing [ 5 ] ,  and do not address the problem of online 

outlier detection over data stream. 



In the data stream model, data points can only be accessed in the order of their 

arrivals and random access is disallowed. The space available to store information is 

supposed to be small comparing to the huge size of the unbounded data streams. Thus, 

the data mining algorithms on data streams are restricted to be able to fulfil their works 

with only one pass over data sets and limited resources. In addition, outliers may be the 

seeds of a new cluster and clusters may also become outliers in the course of the time. 

The data distribution is dynamically changed over data streams. So it is a very 

challenging problem to detect outliers in stream environment. 

In this paper, we present an unsupervised outlier detection approach for online 

network intrusion detection over the data streams. Our method continuously keeps online 

summary and obtains a set of clusters over the data stream, and those small clusters far 

away from big clusters are regarded as outlier clusters. We also propose a novel 

definition of outlier degree to measure the outlying degree of each cluster. When a new 

data arrives, it is considered as an outlier if it lies in the top-k outlier clusters. 

For this application, we make the following assumptions: 

Assumption 1 The majority of data in the stream are normal. Only a small 

number of data are outliers [12]. 

Assumption 2 The outliers are statistically different from normal data [13]. 

These two assumptions are two different issues and both are important. If we 

only have Assumption 1, outliers may have the similar or same behaviour of normal data. 

With Assumption 2, we ensure that the outliers as a group must have a quite different 

behaviour from normal data. 



Since our approach aggregates the online summary of clusters in the data stream, 

temporal decaying is not considered. Moreover, sparse data points between bursts that lie 

in the same spatial cluster are not likely to be network attacks. Thus we won't consider 

the time dimension in this thesis. 

1.2 Contribution 

This thesis makes the following contributions: 

Propose a novel method for online outlier detection over data stream. Our 

approach can immediately predict if a data object is an outlier, when it arrives. 

Propose a novel definition for outlier: cluster-based outlier, which is natural 

for data stream and has numerous applications, and introduce a corresponding 

outlier degree measurement. 

Present an efficient and effective grid-based online summarization algorithm 

that successfully satisfies the requirement in run time complexity and memory 

consumption for data stream. 

Besides a binary detecting answer, provide more information or description 

about outliers, such as the outlier degree, the means of outlier clusters, etc. 

We evaluate our method using the 1999 KDD Cup data set, which is a very 

popular and widely used intrusion attacks data set. Our result shows the very good 

accuracy and recall. 

1.3 Thesis Organization 

The remainder of this thesis is organized as follows: 



In Chapter 2, we provide an overview of related work systematically. 

Chapter 3 defines the problem, and then presents our approach. 

Chapter 4 describes the data set and discuss the experiment results. 

In Chapter 5, we finally summarize our work and discuss future work. 



CHAPTER 2:RELATED WORK 

In this Chapter, we review several previous studies that are related to our work 

technically. Section 2.1 presents some related work on mining data stream. Section 2.2 

discusses several previous researches on outlier detection. Section 2.3 provides a survey 

of network intrusion detection and existing solutions in network research area. 

2.1 Related Work on Mining Data Streams 

2.1.1 CluStream 

This algorithm was introduced by Cham Agarwal, Jiawei Han and Philip Yu [I] 

for clustering evolving data, which evolves considerably over time. The idea is divide 

the clustering process into an online component that periodically stores detailed summary 

statistics and an offline component that uses only this summary statistics. 

We first begin by defining the concept of micro-clusters. 

Definition 1 A micro-cluster for a set of d-dimensional points Xi, ... Xi, with 

time stamps Til ... Tin is defined as the (2d + 3) tuple (CF2', CFIX, CF~ ' ,  CF~ ' ,  n), 

where in CF2" and CFlx each correspond to a vector of d entries. The definition 

of each of these entries is as follows: 

For each dimension, the sum of the squares of the data values is 

maintained in CF2". Thus, CF2' contains d values. The p-th entry of CF2" 

is equal to zn (x:)~ 
1=1 J 



For each dimension, the sum of the data values is maintained in CFlX. 

Thus, CFIX contains d values. The p-th entry of CFlx is equal to xn xf . 
1=1 J 

The sum of the squares of the time stamps Til ... Tin is maintained in CFZ~. 

The sum of the time stamps TL1 . . . Tin is maintained in C F ~ ~  

The number of data points is maintained in n. 

We note that the above definition is actually a cluster feature vector. The 

summary information in it can be expressed in an additive way over the data points. In 

another words, as a new data point come and is added into a micro-cluster, the feature 

vector of the micro-cluster can be updated in an additive way. 

Based on this definition, clustream algorithm assumes that a total of q micro- 

clusters are maintained at any moment by the algorithm. The value of q is determined by 

the amount of main memory available in order to store the micro-clusters. Typically, the 

value of q is significantly greater than the number of clusters and smaller than the number 

of data points in a massive data stream. The following is the basic steps of the algorithm. 

First, store InitNumber data points at very beginning of the data stream and offline 

create the initial q micro-clusters using k-means clustering algorithm. 

When a new data point arrives, the micro-clusters are updated in order to reflect 

the change. It either needs to be absorbed by a closest existing micro-cluster, or it needs 

to be put in a cluster of its own if this data point does not lie within the maximum 

boundary of the nearest micro-cluster. In the later case, a new micro-cluster must be 



created, and two of the old micro-clusters are merged together to limit the memory 

consumption. 

The micro-clusters are stored at particular moments in the stream, which are 

referred as snapshots. Given the time-horizon h and the number of clusters k by the user, 

we can obtain a set of micro-clusters by S(t,) - S(tc- h'), where S(tc) is the snapshot at a 

current clock time &, S(tc-h') is the snapshot just before the time t, - h, and h' is within a 

pre-specified tolerance. 

At last, k clusters are determined by using a modification of a k-means algorithm. 

This algorithm gives the user the flexibility to explore stream clusters over 

different time horizons. However, it also has the following shortages: 

Each new data is either absorbed in an existing micro-cluster or put into a 

new cluster of its own. After this, it will belong to this micro-cluster 

forever and won't be reassigned to other micro-cluster, even though the 

data distribution and micro-clusters' shape may change later. 

Although this clustering algorithm can be modified to discovering outlier 

clusters with the same definition and outlier degree measurement in our 

approach, but its original task is to find clusters, the outliers are typically 

ignored or tolerated in the clustering process for producing meaningful 

clusters, which prevents giving good results on outlier detection. E.g. 

outliers may be assigned to big clusters because of the above first 

shortage, merging clusters and k-means clustering in the initial phase. 



It is a two-phase algorithm. The statistical summary are collected and 

stored in hard disk in first phase. Then it will do offline clustering and 

evolution analysis. From this point, it is not a real-time online algorithm. 

2.1.2 Grid-based Clustering 

Park and Lee [2] proposed a statistical grid-based approach to cluster data 

elements of a data stream. Initially, the data space is partitioned into a set of mutually 

exclusive equal-size initial cells. When the support of a cell becomes greater or equal to 

a predefined split support Ssplt, one dimension of the data space is chosen based on its 

distribution statistics and the cell is dynamically divided into two mutually exclusive 

intermediate cells, with respect to the selected dividing dimension. The distribution 

statistics of each divided cell are estimated. Similarly, when an intermediate cell itself 

becomes dense, it is partitioned by the same way. Eventually, a dense region of each 

initial cell is recursively partitioned until it becomes the smallest cell called a unit cell. A 

cluster in a data stream is a group of adjacent dense unit cells. Three partition methods 

are proposed: p-partition (based on the average value), &partition (based on the standard 

deviation) and hybrid-partition (select the more effective one). 

During the partition, it only maintains two-level hierarchical structure. When 

partitioning an initial cell g into gl and g2, gl and g2 are naturally the children of g. But 

when an intermediate cell gl is divided into g3 and g4, gl is replaced by g3 and g4. Figure 

2.1 shows this example with SVlt= 10. 



Figure 2.1 Partitioning Example 

rzq rnl 

In this structure, it is very easy to prune an intermediate or unit cells whose 

support is less than a predefined pruning support Spm. The cell is removed from the 

second level and its distribution statistics are returned back to its parent initial cell. The 

statistics of the parent cell is updated accordingly. Figure 2.2 shows a simple pruning 

example based on Figure 2.1 with SP,= 3. 

Figure 2.2 Pruning Example . 

This approach can also adaptively adjust the memory usage by resizing the size h 

of a unit cell dynamically. Given the value of A, if the confined memory space is full, all 

unit cells are pruned and their distribution statistics are added to their parent initial cells 

respectively. Similarly, those intermediate cells whose interval size in at least one 

dimension is less than 2h are pruned by the same way. Subsequently, the value of h is 

doubled and the normal operations of the proposed algorithm are resumed. Since the 

value of h is doubled, the memory requirement of the proposed method is reduced while 

its clustering accuracy is degraded. 



This clustering algorithm can also be applied to discovering outlier clusters with 

the same outlier definition and outlier degree measurement in our approach, but its top- 

down partition property prevent giving a good results on outlier detection. In top-down 

partition, the statistic summary can only be estimated. In addition, the distance between 

two clusters can only be estimated too, since sparse outlier clusters may lie in a very big 

rectangle. 

2.2 Related Work on Outlier Detection 

2.2.1 Distance-based approach 

Knorr and Ng [6] proposed a distance-based approach to detect outliers in large 

static datasets. A distance-based outlier in a dataset T is a data object with at lease p% of 

the objects in T having a distance of more than D away from it. This definition is 

formally defined as follows [6]: 

An object 0 in a dataset T is a DB(p, D)-outlier if at least fraction p of the objects 

in T lies greater than distance D from 0. 

This definition is suitable for situations where the observed distribution does not 

fit any standard distribution and relies on the computation of distance values. 

For any dimensionality k>2, Knorr also presented a Nested-Loop (NL) algorithm 

for finding all outliers. The algorithm is shown in Figure 2.3. Assuming a total buffer 

size of B% of the dataset size, the algorithm divides the entire buffer space into two parts 

called the first and second array. It reads the data into the arrays, and directly computes 

pair-wised distances. For each object t in the first array, a count of its D-neighbours is 

maintained. Counting stops for a particular tuple whenever the number of D-neighbours 



exceeds M. The run time complexity is 0(kN2), where k and N are the dimensionality 

and size of the dataset. 

Figure 2.3 Pseudo-Code for NL algorithm 

3 Vlrhilo bluclcs remain to be compared to  the first array, do: 

a. Fill the second array with an~ the r  block [ b u ~  $&vz/e a 
block which lras never sea.& ns tkr first array, far 
art). 

b ,  For rm3-i unmarked tuple t ,  in ths first array do: 

Fbr each tuple t2 in thc wcond s m q ,  if diwqt,, 
$,I 5 0: 

5. 1% t t ~ c  second array h.w wrrcd its ahe fimr array anyelme 
bcfurc, stop, otherwise, s w ~ p  the names of the first aad 
w o a d  army and 

This outlier definition is further extended in [7] based on the distance of a point 

from its kch nearest neighbour. All the data objects are ranked by the distance to their kth 

nearest neighbour, and the top-k data objects are identified as outliers. Alternatively, in 

the algorithm proposed by Angiuli and Pizzuti [9], each data point is ranked by the sum 

of distances from its k nearest neighbours. 



However, for each data object, all these algorithms need a search for its 

neighbours, which is infeasible in stream environment. Even though some clustering 

algorithm over data streams can be used to approximate the neighbour search and 

computation, the neighbours of each data point may change over time and some data 

point not in the set of top-k outliers may become one of them later, but it has been thrown 

away since the memory can not keep all the data points. 

Moreover, the above outlier definition captures only certain kinds of outliers. 

Because the definition takes a global view of the dataset, these outliers can be viewed as 

"global" outliers [8]. However, for many real-world datasets, such as data streams, 

which exhibit a more complex structure. Distance-based outliers are meaningful and 

adequate under certain conditions, but not satisfactory for the general case when clusters 

of different densities exist. This shortcoming is illustrated in details in [8]. 

2.2.2 Local outlier (LOF) 

To avoid the shortcomings in distance-based outlier definition, Breunig [8] 

introduced the concept of "local outliers", which are the objects outlying relative to their 

local neighbourhoods, particularly with respect to the densities of the neighbourhoods. 

The outlier rank of a data object is determined by "local outlier factor (LOF)". Before 

introduce LOF, some notations are defined as follows. 

k-distance of an  object p [8]: For any positive integer k, the k-distance of object 

p, denoted as k-distance(p), is defined as the distance d(p,o) between p and an 

object o E D such that: 

(i) for at least k objects O'E D \ {p) it holds that d(p,o') l d(p,o), and 



(ii) for at most k-1 objects o' E D \ {p)  it holds that d(p,oY) < d(p,o). 

k-distance neighbourhood of an object p [8]: Given the k-distance of p, the k- 

distance neighbourhood of p contains every object whose distance from p is not 

greater than the k-distance, i.e. Nk-distance(p)(~) = { q E D\{p) I d(p, q )  5 k- 

distance(p) ) . These objects q are called the k-nearest neighbors of p. 

reachability distance of an object p w.r.t. object o [8]: Let k be a natural 

number. The reachability distance of object p with respect to object o is defined as 

reach-distk(p, o )  = max { k-distance(o), d(p, o )  ). 

local reachability density of an object p [8]: The local reachability density of p 

is defined as 

where MinPts is the minimum number of objects. 

Figure 2.4 illustrates the idea of reachability distance with k=4. Intuitively, the 

local reachability density of an object p is the inverse of the average reachability distance 

based on the MinPts-nearest neighbours of p. 



Figure 2.4 reach-dist(pl, o) and reach-dist(p2, o),  fork = 4 

Based on above definitions, Local Outlier Factor (LOF) [8] of an object p is 

defined as 

The outlier factor of object p captures the degree to which we call p an outlier. It 

is the average of the ratio of the local reachability density of p and those of p's MinPts- 

nearest neighbours. It is easy to see that the lower p's local reachability density is, and the 

higher the local reachability densities of p's MinPts-nearest neighbours are, the higher is 

the LOF value of p. 

Although the concept of local outliers is a useful one, the computation of LOF 

values for every data objects requires a large number of k-nearest neighbours searches 

and can be computationally expensive. This problem makes it infeasible in data stream 

environment. 



2.2.3 Cluster-based approach 

To satisfy the requirements in the application of intrusion detection, Eskin, et al. 

[14] investigated the effectiveness of a cluster-based algorithm to detect outliers in 

feature spaces. 

The goal of this approach is to compute how many points are "near" each point in 

the feature space. For any pair of points xl and x2, they are considered "near" each other 

if their distance is less than or equal to a fixed width w. Thus the number of points that 

are within w of a point x is defined as follows: 

The nalve computation of N(x) for all the points has a complexity of 0(n2) where 

n is the size of the dataset. However, since the task is to identify the outliers, this 

computation can be approximated. This approximation is implemented as follows. 

It first performs fixed-width clustering over the points with a radius of w. The 

first point is the center of the first cluster. Given a fixed width w, for every subsequent 

point, if it is within w of a cluster center, it is added to that cluster. Otherwise it is the 

center of a new cluster. 

Let N(c) be the number of points in a cluster c. For each point x, we approximate 

N(x) by N(c), where c is the cluster that contains x. For points in very dense areas where 

there is a lot of overlap between clusters, this approximation is an inaccurate estimate. 

However, for the outliers that lie in sparse regions, N(c) is an accurate approximation of 

N(x). Since we are only interested in outliers, the points in the dense regions will be 

higher than the density threshold anyway. Thus the approximation is reasonable. 



After clustering the data points, the clusters are sorted by the size. The points in 

the small clusters are labelled as outliers. 

This efficient approximation algorithm is able to process significantly large 

datasets, because it needs not to perform a pair-wise comparison of points and requires 

only one pass through the data. This property makes it appropriate and practical in 

stream environment. 

However, this algorithm ranks the clusters only by their size. This simple outlier 

degree measurement may result in mislabelling lots of normal data points as outliers. For 

example, if the normal data points lie in the edge of a big cluster that has a dense center 

and sparse edge, they are outside of w and in a sparse area. Thus they may be incorrectly 

regarded as outliers. 

2.3 A survey of network intrusion detection 

Intrusion detection systems (IDS) automate the detection of security violations 

through computer processing of system audit information. The approaches are usually 

classified into two categories: Rule-Based Intrusion Detection (RBID) and Statistical- 

Based Intrusion Detection (SBID). The nature of training data sets of each category is 

different, but expensive to produce in either case. 

Rule-Based Intrusion Detection (RBID) seeks to identify intrusion attempts by 

matching audit data with known patterns of intrusive behaviour. It compares data to 

known intrusive behaviour learned from training data. If the data matches the pattern of 

some known intrusion data, the observed data is considered intrusive. RBID systems rely 



on codified rules obtained by training on a large set of data in which the attacks have 

been manually labelled [16]. This data is very expensive to produce because each piece 

of data must be labelled as either normal or some particular attack. Intrusions not 

represented in an RBID rule base will go undetected by these systems. 

To help overcome this limitation, statistical methods have been employed to 

identify audit data that may potentially indicate intrusive or abusive behaviour. Known 

as Statistical-based Intrusion Detection (SBID) systems, these systems compare data to 

normal patterns learned from the training data. If the data deviates from normal 

behaviour, it is considered intrusive. These systems are popular because they are seen as 

a possible approach to detecting unknown or new attacks [17, 18, 19, 201. Most of these 

systems require that the data used for training is purely normal and does not contain any 

attacks. This data can also be very expensive because the systems still require a very 

large amount of normal data. 

In 1996, Forrest [17] introduced a novel and simple intrusion detection method 

based on learning the patterns of UNIX processes. This is a classic example of SBID 

systems. In this method, each UNIX process is represented by its trace - the ordered list 

of system calls used by that process from the beginning of its execution to the end. They 

gathered the normal traces and analyzed the "local (short) range ordering of system 

calls". They discovered that these local orderings "appears to be remarkably consistent, 

and this suggests a simple definition of normal behaviour". 

The key idea is to build a "normal" database that contains all possible short 

sequences (e.g., of length 11) of system calls. The normal database is then used to 

examine the behaviour of a running program. If the total number or percentage of 



abnormal sequences, which are those that can not be found in the normal database, is 

above a threshold value, then the current run is labelled as an outlier or intrusion. 

2.4 Summary 

Continue with Section 2.1 and Section 2.2, all proposed work on mining outliers 

is not appropriate for data stream model. Furthermore, existing proposals on mining data 

streams do not address the problem of outlier detection. 

From Section 2.3, current Intrusion Detection Systems trained on data gathered 

from one environment may not perform well in some other environment. At the same 

time, the cost of generating data sets can be very expensive. 

To address these issues, in this thesis, we propose an intrusion detection method 

that performs unsupervised online outliers detection over data streams. 



CHAPTER 3:OUR APPROACH 

This chapter provides an in-depth discussion of our approach for online outlier 

detection over data streams. In Section 3.1, a problem definition and the basic idea are 

given. Section 3.2 presents the grid-based clustering algorithm, and then Section 3.3 

provides a new cluster-based outlier definition and a novel outlier degree measurement. 

Finally, Section 3.4 discusses the memory management strategies over stream 

environment and presents an efficient implementation. 

3.1 Problem definition and basic idea 

In this section, we formally define the problem of online outlier detection over 

data streams, and introduce our basic idea. 

Problem Definition Given a data space in multiple dimensions A1, . . . , Am with 

domains Dl,. . ., Dm respectively, let the data stream D be a sequence of data objects, 

where each data object t E D1x.. .xD,. Our task is to online detect if a new coming data 

is an outlier. 

The basic idea in our approach is as follows. It first perfoms an online clustering 

over the data stream, and then sort the clusters based on the outlier degree that measure 

how outlying a cluster is. We propose: the smaller a cluster is, the more outlying it is; the 

further a cluster is from the closest data cluster, the more outlying it is. For each new 

coming data, if it lies in the top-k outlying clusters, it is regarded as an outlier. 



Here, the clustering algorithm can be chosen freely, as long as it can satisfy the 

following requirements: 

Appropriate for stream environment. 

Provide online statistic summary of each cluster. 

0 Produce good clustering results, e.g. not ignore small clusters 

3.2 Grid-based clustering algorithm 

In our approach, a grid-based clustering algorithm is used. To find clusters of 

similar data objects over a data stream, the distribution statistics of data objects in the 

data space of a data stream are carefully maintained. By keeping only the distribution 

statistics of data elements in a pre-partitioned grid-cell, the clusters of a data stream can 

be effectively found without maintaining the individual data elements physically. The 

maintaining of the statistics is very efficient and easy, but the partitions can not be 

dynamically changed. 

To illustrate this clustering method, we begin with an example in a 2-dimension 

space. In Figure 3.1, the data space is partitioned into small cells according to users 

input. Here we simply use X, the width of the grid in each dimension, as the partition 

rule. Whenever a new data object arrives, it lies in a cell according to the values of its 

features. Then a cluster is formally defined as following: 

Definition 1 Each non-empty cell is defined as a cluster. 

The advantage of defining each non-empty cell as a cluster is that it does not lose 

any small or sparse clusters. Most clustering algorithms only concentrate on providing 



meaningful clustering results and often ignore small clusters. However, in the problem of 

outlier detection, the small clusters have more value than large ones, since most outliers 

lie in these small clusters. On the other side, outliers are not likely to lie in large data 

clusters. Thus to save memory, a group of adjacent large data clusters can be merged into 

one big cluster. We will discuss it in details later. 

For each cluster, we maintain a statistic summary S, which is defined as follows: 

Definition 2 The statistic summary S of a cluster is defined as a tuple a, n, 

M>, where: 

R is the set of cell rectangles included in this cluster 

n is the support of this cluster. 

M is the set of means in all dimensions for the data objects in this cluster. 

When a new data object arrives, it either needs to be absorbed by an existing 

cluster or needs to be put in a new cluster if it lies in an empty cell. The statistic 

summary S of the cluster is updated. Thus at any moment, a set of clusters can be 

constructed. 

Figure 3.1 presents an example in 2-d~mensions with 6 clusters (C1, C2, C3, C4, 

C5, Cb) at some particular moment. C1, C2 and C3 are constructed from several dense 

clusters. C4, C5 and C6 are sparse clusters. 

With this grid-based clustering algorithm we can easily find and merge the 

adjacent dense clusters by simply searching its neighbour cells in each dimension. 

However, the vector-based clustering algorithms must calculate pair-wise distance 

between clusters and find the closest clusters to merge. The distance computation is 



expensive and may result in errors. Thus the grid-based clustering algorithm provides 

more accurate online summarization. But as the dimensions increase, the number of cells 

increases dramatically and the number of cluster may also increase. The space 

complexity of cells is O(xm), where x is the number of intervals in each dimension and m 

is the dimensionality; the space complexity of clusters is O(n), where n is the number of 

data objects in the data stream. 

Figure 3.1 An example in 2-D space 

3.3 Outlier definition and outlier degree 

In this section, we propose a new cluster-based definition for outliers and a novel 

measure for outlier degree. We begin with the same example in Figure 3.1. It is very 

obvious that data objects in C4, C5 and C6 are outliers. Intuitively we call data objects in 

C4, C5 and Cb outliers because they are in small clusters and deviated from most data. 

Thus we will define outliers from the point of view of clusters and define the data objects 

that don't lie in large data clusters as outliers. 



Definition 3 Let C = {C1, C2, . . ., Ch) is the set of clusters in the ordering of 

IC112IC2l2 . . .2 IChl. Given two pre-specified parameters a and P, we find the 

minimal d as the boundary such that it can first satisfy condition ( I )  and then also 

satisfy condition (2): 

Then the set of large Date Cluster (DC) := {C1, C2, . . ., Cd), and the set of small 

Outlier Cluster (00 = { Cd+l, . . . , Ch ). Thus all the data objects in OC are 

outliers. 

The above definition considers two heuristics: 

Outliers are just a small number of data objects, and most data objects are 

not outliers. It is our Assumption 1 and is represented by formula (1). 

E.g. a = 95%, then at least 95% of data objects are not outliers. 

The average size of clusters in DC should also be much bigger than that of 

clusters in OC. E.g. P = 6 then the average size of clusters in DC is at 

least 6 times of the average size of clusters in OC. 

In Figure 3-1, according to Definition 3, :DC = {C1, C2, Cg) and OC = {C4, C5, 

CG). However, sometimes only condition ( I )  can be satisfied. Condition (2) is not 

satisfied since clusters have very similar support, and the boundary d can not be found by 

Definition 3. In this case, data points are evenly distributed in the data space, so it is 



intuitively reasonable to claim that there are no outlier clusters and all clusters are data 

clusters, thus no outliers exist. Figure 3-2 illustrates the situation. 

Figure 3.2 Boundary not exists 

To describe an outlier cluster, it is desirable to have an outlier degree to measure 

how outlying it is from normal data clusters. Moreover, some outlier clusters in OC may 

be very close to big data clusters and only contain normal data objects. If all the data 

objects in OC are regarded as outliers, those normal data objects will be incorrectly 

labelled as outliers. To avoid this, we can simply only predict those data objects in the 

top-k outlier clusters as outliers, if an outlier degree measurement is defined. 

Figure 3.3 illustrates this situation. There are 8 clusters (C1, to C8) at some 

particular moment. According to Definition 2, OC = {C4, C5, C6, C7, C8} and DC = {C1, 

C2, C3). However, all the data objects in C6, C7 and C8 are normal data, and only C4 and 

C5 are real outlier clusters. So if we have an outlier degree measurement and let k be 2, 

then C4, C5 can be identified as the top-2 outlier clusters and the detection is more 

accurate. 

From the example in Figure 3.3, we observe that C5 is more outlying than C4, 

since it is smaller and further from normal data clusters. According to Assumption 2, 



outliers are statistically different from normal data, the further from the closest data 

cluster, the more outlying they are. Thus the outlier degree of an outlier cluster should be 

determined by the size of its own cluster and the distance between itself and the closest 

data cluster. For any pair of clusters Ci and Cj, the distance between them can be 

approximate by the distance of two closest cells that belongs to Ci and Ci respectively. 

Figure 3.3 Top-k outlier clusters 

Definition 4 For any two clusters Ci and Cj, the distance (Ci, Cj) is defined as: 

distance (Ci, Cj) = rnin { distance(r,, rt) ), 

where r, is a cell in Ci and rt is a cell in Cj. 

Based on above observation and definitions, the Outlier Degree of an outlier 

cluster is defined as follows: 



Definition 5 Given the set of clusters C = {Cl, C2, . . ., Ck) in the ordering of 

IC1121C2(2 . . . 2  ICkl, and a: fi  d, DC and OC based on Definition 2. For each 

cluster Ci€ OC, the Outlier Degree (OD) of Ci is defined as following: 

min{distance(Ci,Cj)) 
OD(Ci) = (4), where Cj€DC. 

ICi I 

From Definition 5, the smaller a cluster is, the more outlying it is; the further a 

cluster is from the closest large cluster, the more outlying it is. We can normalize the 

distance between any pair of two clusters, then numerator of formula (4) is in [0, 11, and 

the denominator is in [I,  m], consequently the OD value is in [0, 11. 

Figure 3.4 shows an example when a new data t lies in a large data cluster and its 

OD value equals to 0. Figure 3.5 presents an example when a new data t is very far from 

the closest large data cluster and its OD value equals to 1. 

Figure 3.4 An example of OD = 0 



Figure 3.5 An example of OD = 1 

Online outliers detection over data streams 

Given the outlier definition and outlier degree measurement, this section presents 

how to implement an efficient algorithm to online detect outliers in stream environment. 

Since our approach is cluster-based online outlier detection, we denote it as CBOD in our 

later discussion. 

The idea of CBOD is to immediately identify an outlier in the real time by 

online building summaries of grid-based clusters and check if it is in the top-k outlier 

clusters. 

The challenge is how to control the memory consumption, and what should be 

done if the memory is full. Because the data stream is infinite, there may be so many 

clusters that data structure for clusters' summary will eventually overload the memory. 

When memory is full, we can use the following two strategies: 



First, we can merge adjacent data clusters into one big data clusters. 

Since out task is to identify outliers that usually lie in outlier clusters, 

merging adjacent dense data clusters won't affect the detecting accuracy. 

Second, we can prune all the outlier clusters in OC or write them to hard 

disk for users' offline analysis in the future. The sacrifice of this strategy 

is that some initial normal data objects in new data clusters probably be 

regarded as outliers in a short of period after pruning, but it won't miss 

any real outliers. 

Figure 3.6 An example of data structures without merging 

Outlier clusters index HashMap 

To implement the grid, keep the online summary, we used a data structure called 

HashMap provided by Java Development &t. HashMap is roughly equivalent to a hash 

table. It provides random access with a constant time by mapping a key object to a value 

object. In our algorithm, we use the grid coordinates as the key and the summary S of the 



cluster as value object. With this structure, we only keep summaries for non-empty cells 

or clusters, and for each new coming data, we can directly find the owner cluster's 

summary or create a new one with the key. To keep track of all the outlier-clusters, we 

use an index of the keys sorted by their corresponding OD values. Figure 3.6 shows an 

example of the data structures for a 2-D data set. 

To find and merge the adjacent data clusters, we can simply search its neighbour 

cells in each dimension. In the above example, (2, 2) is a data cluster, we check its 4 

neighbours with 1-2, 3-2, 2-1, 2-3 as keys respectively and find that (2, 1) is an adjacent 

data cluster, then we merge them into one cluster. To prune all the outlier clusters, we 

can find their keys from the outlier clusters index and delete them in HashMap directly 

with those keys. The time complexity for merging and pruning is O(n), where n is the 

number of clusters, which in the worst case is the number of data objects. Figure 3.7 

shows the data structures after the merging. 

Figure 3.7 An example of data structures after merging 

Outlier clusters index HashMap 



Figure 3.8 gives the pseudo code of CBOD. The input are the data stream D, the 

minimum percentage (a) of data objects in D that are normal, the minimum ratio (P) of 

data clusters' average size and outlier clusters' average size, the number (K) of most 

outlying clusters that users want to check during detection, and the rule to grid the data 

space, the width (X) of the grid in each dimension when partitioning data space. 

Figure 3.8 The CBOD algorithm 

Input: data stream D, a, P, K, and X 

Met hods: 

1. Initialize Top-K-Outlier-Clusters[ ] = 0. 

2. For each new coming data object t, 

3. If memory full, then merging adjacent data clusters and 
pruning all outlier clusters. 

4. Discretize t according to input parameter X. 

5. If t lies in an existing cluster, then assign t to this cluster. 

6. else create a new cluster of its own. 

7. update the summary S = <R, n, M> for that cluster 

8. determine DC (D, a, p) and OC(D, a, p) according to 
Definition-3. 

9. compute OD(Ci) for each Ci€OC according to Definition-5. 

10. update Top-K-Outlier-Clusters[ 1. 
11. if( t~Top-K-Outlier-Clusters[ ] ), then predict t as an outlier. 

12. else predict t as normal data. 

The method starts with initialize Top-K-Outlier-Clusters to empty in Line 1. 

Then it repeats Line 3 to Line 12 for each new coming data object. When a new data 



object arrives, if the memory is already full it merges all adjacent dense data clusters and 

prune all the outlier clusters. First, the new data is hscretized according to input 

parameter X and its owner grid is determined. If it lies in an existing cluster, it is 

assigned to this cluster in Line 5, otherwise create a new cluster of its own in Line 6. 

Then update the summary for the cluster and determine DC and OC according to the 

input parameters (D, G ,@ and the outlier definition in Line 7, 8. Continuously calculate 

the outlier degree OD for each outlier cluster in OC and put the top-k outlier clusters in 

Top-K-Outlier-Clusters in Line 9, 10. Finally, if the cluster containing the new data 

object is in Top-K-Outlier-Clusters, it is regarded as an outlier in Line 11, otherwise it is 

regarded as a normal data in Line 12. 

As we discussed above, the following are the time complexity of the main 

operations. 

Assign a new data to the corresponding cluster or create a new cluster: O(1) 

Merging data clusters and pruning outlier clusters (optional): O(n) 

Sorting clusters by size when determining DC and OC: O(l), because only the 

rank of this owner cluster of the new data and its neighbours in the sorted 

cluster list can change. 

Thus the total run time complexity of CBOD is O(n), where n is the number of clusters 

and equals to the number of data objects in the worst case. However, when the worst 

case occurs, it also means that no outliers exist and most clusters can be merged as data 

clusters. Thus in average case n is much smaller than the number of data points and is 

usually at hundred or thousand level. In addition, the merging and pruning are required 



only when memory is full, which is very infrequent. Thus, in most cases the run time 

complexity is basically constant, which can definitely satisfy the online requirement. 



CHAPTER 4:EVALUATION 

To evaluate the effectiveness of our algorithm, we conduct extensive experiments. 

In this Chapter, we present data set, experiment design, results and discussion. 

4.1 Data Set 

The data used for testing is the KDD Cup 1999 data mining competition data set 

(KDD 1999). It originated from the 1998 DARPA Intrusion Detection Evaluation 

Program managed by MIT Lincoln Labs. Lincoln Labs simulated a military LAN and 

peppered it with multiple attacks over a nine-week period. 

The raw training data is from the first seven weeks of network traffic, but it 

contains some noise data and some of them have no or wrong class labels. In addition, 

since CBOD is unsupervised and there is no training phase, it is not necessary to use this 

training data set. The testing data consists of the last two weeks of traffic with around 

300,000 connections, and every record has a corrected class label. Each record consisted 

of 41 features, and a class label that is either "normal" or one of the 37 attack types. 

These 37 attack types fall into four main categories: 

DOS: denial-of-service 

R2L: unauthorized access from a remote machine 

0 U2R: unauthorized access to local super-user (root) privileges 

Probing: surveillance and other probing 



This data set is popularly used in data stream domain. In our experiment, we did 

not use all the data from the 1999 KDD Cup testing data set. Since it was generated for a 

supervised learning competition, the data set contains a high percentage of attack traffic 

(91%). We need to filter out most of the attacks however to fit Assumption 1. This is 

achieved by randomly sampling some attacks. As a result, the testing data set only 

contains a very small number of attacks belonging to 4 main categories respectively. 

Totally it contains around 61125 records, including 60269 normal connections and 856 

attacks. The data distribution is given in Table 4.1. 

Table 4.1 Data distribution 

I Data 1 Number / Percentage 

I Normal 1 60269 1 98% 

/ Dos 1 47 I 

The data set has 41 features. In our experiment, we use 4 features: 

connection duration 

number of data bytes from source to destination 

Probing 

U2R 

percentage of connections to the same destination that have 'REJ' error 

percentage of connections to the same destination with the same service 

that have 'REJ' error 

118 

79 
2% 



Another unsupervised network intrusion detection approach [14] uses the same 

data set, obtains a similar distribution after filtering many attacks, and also uses 4 

features. 

4.2 Experiment design 

To evaluate our approach, we use detection rate and false positive rate as the 

performance measurement. They are defined based on a confusion matrix as shown in 

Table 4.2. 

Table 4.2 Confusion Matrix 

I ( Actual positive ( Actual negative 

I Positive (Outlier) I (true positive) I (false positive) 

Predict as 

I Predict as I I T N  I Negative (Normal) I (false negative) I (true negative) 

(outliers) 
TP 

11 
Detection Rate = 

TP + FN 

(normal) 
FP 

1 1  

False Positive Rate = 
TN + FP 

Detection Rate and False Positive Rate are good indicators of performance [14], 

since they measure what percentage of intrusions the method is able to detect and how 

many incorrect classifications it makes in the process. We calculate these values over the 

labelled data to measure the performance. 



To determine the parameter values used by CBOD, we conduct extensive 

experiments based on different values and combinations of a, P, K, X. Figure 4.1 to 

Figure 4.4 show the impact of these parameters. We choose one group of values having 

the best result. The parameter values finally used by our algorithm are shown in Table 

4.3. 

To simulate the memory full situation in our experiments, we assume the memory 

can only contains summary for 60, 100, 150, 200 and all clusters respectively. Thus we 

can evaluate the performance of CBOD in different memory size. If the number of 

clusters exceeds the limit, the memory is considered as full and merging and pruning 

strategies will be performed. 

Table 4.3 Values of parameters in our algorithm 

Parameter Value v 
250 - for all integer dimensions 

0.1 - for all real number dimensions 



Figure 4.1 Comparison of different a (Alpha) values 
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Figure 4.2 Comparison of different P (Beta) values 
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Figure 4.3 Comparison of different K values 
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Figure 4.4 Comparision of different X values 
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To further evaluate the performance of CBOD, we also conduct extensive 

experiments on two other approaches for comparison. 

One comparison partner is Clustream [I], which is a very popular and import 

clustering algorithm over the data stream. Instead of our own clustering method, we use 

this algorithm to provides online summary of clusters in data stream, and then still apply 

our outlier definition and detection algorithm on the top. It is a natural and good way to 

evaluate the performance of our own clustering algorithm. Clustream needs to perform a 

k-means clustering for the first ZnitNumber data objects in the initial phase. Since the 

value of k is determined by the size of main memory and it should be as large as possible, 

k is naturally set to 60, 100, 150, 200 and 250 respectively. Thus we can compare it with 

CBOD in different memory size. We set InitNumber equals to 5000 in our experiments. 

The second partner is "Unsupervised Anomaly Detection" [14] for detecting 

network intrusion. We denote it as UAD in our later discussion. This algorithm has 

some similarity with CBOD. It is also an unsupervised cluster-based outlier detection 

method, its experiment uses the same dataset and it is for the same network intrusion 

detection problem. Thus comparison with this method is another good indicator. UAD 

need a fixed width w as input parameter. Since we can compute the radius of cells in 

CBOD, we try some different values around this radius value and use the one having the 

best result for comparison. 

To verify the performance of detecting outliers only based on top-k outlier 

clusters, for CBOD and Clustream, we also conduct the experiments to detect outliers 

based on all the outlier clusters as a comparison. 



4.3 Results 

We calculate and gather Detection Rate and False Positive Rate periodically over 

the data stream. Figure 4.5 to Figure 4.14 show the experiment results. The content in 

each figure is shown in Table 4.4 

Comparison of 
Detection Rate, 

Comparison of 
False Positive Rate 

Table 4.4 Result Matrix 

Memory Size (max. number of clusters it can keep) 

Figure 4.5 

Figure 4.6 

Figure 4.7 

Figure 4.8 

Figure 4.9 

Figure 4.10 

Figure 4.1 1 

Figure 4.12 

Figure 4.5 Comparison of Detection Rate (MM = 60) 
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Figure 4.6 Comparison of False Positive Rate (MM = 60) 
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Figure 4.7 Comparison of Detection Rate (MM = 100) 
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Figure 4.8 Comparison of False Positive Rate (MM= 100) 
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Figure 4.9 Comparison of Detection Rate (MM = 150) 
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Figure 4.10 Comparison of False Positive Rate (MM = 150) 
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Figure 4.11 Comparison of Detection Rate (MM = 200) 
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Figure 4.12 Comparison of False Positive Rate (MM = 200) 
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Figure 4.13 Comparison of Detection Rate (MM = all) 
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Figure 4.14 Comparison of False Positive Rate (MM = all) 

False Positive Rate 
(MM = all) 
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- Clustream: based on Top-k outher clusters 

Clustream: based on all the outlier clusters 

Unsupeiised Anomaly Detection (UAD) 

4.4 Discussion 

The experiment results show that our algorithm has a better detection rate than 

Clustream and UAD at different memory sizes. At the beginning the detection rate of 

CBOD is zero, since no clusters information exists at the beginning, but it is increased 

very quickly. At the end of the data stream, detection rate reaches 95%. 

The detection rate of UAD is lower than that of our method because it uses a 

simple clustering algorithm and its outlier degree measurement only consider the size of 

clusters. Clustream has a worse detection rate, because it focuses on producing 

meaningful clusters and ignores some small clusters. 

At the same time, CBOD also has a lower false positive rate than Clustream and 

UAD at different memory sizes. The number of rnisclassification is only about 4% of the 



normal data objects. This is acceptable in the real application. However, Clustream and 

UAD have a much higher false positive rate, because of the similar reasons as above. 

The figures also present that the detection rate based on top-k outlier clusters is 

very close to the detection rate based on all outlier clusters. However, the false positive 

rate using top-k outlier clusters is lower than that based on all outlier clusters. This 

demonstrates the correctness of our novel outlier degree measurement. In data stream 

environment, it requires a fast processing in the real time. If the algorithm is based on all 

the clusters, the computation cost is very expensive. Thus the method of detection only 

based on top-k outlier clusters will be much more efficient than detection using all the 

outlier clusters, and it also verify the effectiveness of our efficient algorithm. 

The experiment results at different memory sizes also demonstrate the 

effectiveness of the pruning strategies in CBOD. As memory size decreases, the 

detection rate does not change much. However, as memory size decreases, the false 

positive rate increases, but is still at an acceptable level. For example, when the memory 

size is only 60, CBOD can still achieve 93% detection rate with only 6% false positive 

rate. 

Thus, the experiment results demonstrate that our algorithm works well in the 

data stream environment and outperforms other approaches. 



CHAPTER 5:CONCLUSION AND FUTURE WORK 

In this Chapter, we first summarize the thesis, and then discuss some interesting 

directions for future research. 

5.1 Summary of the Thesis 

Outlier detection is an important task in data mining research with numerous 

applications, including credit card fraud detection, discovery of criminal activities in 

electronic commerce, video surveillance, pharmaceutical research, and weather 

prediction. Recently, discovering outliers under data stream model have attracted 

attention for many emerging applications, such as network intrusion detection, sensor 

networks, earth observation, and stock analysis. 

A data stream is an ordered sequence of objects that arrive continuously and must 

be processed online. And the space available to store information is supposed to be small 

relatively to the huge size of unbounded streaming data objects. Thus, the data mining 

algorithms on data streams are restricted to be able to fulfill their works with only one 

pass over data sets and limited resources. This is very challenging. Most previous 

studies on outlier detection can not satisfy the requirements in stream environment. 

In this thesis, we propose a cluster-based online outlier detection algorithm 

(CBOD) to detect network intrusions. We use a grid-based clustering method to 

discover clusters and keep online summary over the data stream, and those small clusters 

far away from large data clusters are regarded as outlier clusters. We also proposed a 



novel definition of outlier degree to measure how outlying each cluster is. When a new 

data arrives, it is considered as an outlier and intrusion if it lies in the top-k outlier 

clusters. 

The following are the contributions of our approach. 

Propose a novel method for online outlier detection over data stream. Our 

approach can immediately predict if a data object is an outlier, when it arrives. 

Propose a novel definition for outlier: cluster-based outlier, which has great 

new intuition and numerous applications. 

Introduce a quantitative outlier degree measurement. 

Present an efficient and effective grid-based online summarization and 

clustering algorithm that successfully satisfies the requirement of run time 

complexity and memory consumption for data stream. 

Besides a binary detecting answer, provide more information or description 

about outliers, such as the outlier degree, the means of outlier clusters, etc. 

The extensive experiments based on the KDD Cup 1999 data mining competition 

data set demonstrate the effectiveness of our approach. 

5.2 Future Work 

With the success of this method, it is interesting to re-examine and explore many 

related problems, extensions and applications. Some of them are listed here: 

Discover bursts and outliers between bursts over data streams. This is a 

different way to define outliers, which includes time dimension and 



considers sparse data points between bursts as outliers. Our approach is 

for detecting network intrusion and does not include time dimension in 

this application. So discovering bursts and outliers between bursts in other 

applications worth some research. 

Outlier detection based on subspace clustering over data stream. How to 

work with high dimensionality is very important, because an outlier may 

be outlying only on some, but not on all, dimensions. This information 

can describe or explain why the identified outliers are exceptional. This is 

an interesting and quite challenging topic. 
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