Skip to main content

Design variations in adaptive web sampling

Resource type
Thesis type
(Project) M.Sc.
Date created
2008
Authors/Contributors
Abstract
There is an increasing body of literature related to sampling for network and spatial settings. Although current link-tracing methods like adaptive cluster sampling, snowball sampling, and targeted random walk designs have advantages over conventional designs, some of the following drawbacks remain evident: there is a lack of flexibility in sample placement; thereis an inability to control over sample sizes; and efficiency gains over conventional sampling designs for estimating population parameters may not be achievable. Adaptive web sampling (AWS) is a recently developed link-tracing design that overcomes some of these issues. Furthermore, the flexibility inherent to the AWS method permits many design variations. Using a simulated network population, an empirical population at risk for HIV/AIDS, a simulated spatial population, and an empirical population of birds, this project performs a simulation study to compare the performance of three variations of AWS strategies.
Document
Copyright statement
Copyright is held by the author.
Permissions
The author has not granted permission for the file to be printed nor for the text to be copied and pasted. If you would like a printable copy of this thesis, please contact summit-permissions@sfu.ca.
Scholarly level
Language
English
Download file Size
etd4028.pdf 8.06 MB

Views & downloads - as of June 2023

Views: 0
Downloads: 0