Sum of the largest eigenvalues of symmetric matrices and graphs

Resource type
Thesis type
(Thesis) M.Sc.
Date created
2008
Authors/Contributors
Abstract
D. Gernert conjectured that the sum of two largest eigenvalues of the adjacency matrix of a simple graph is at most the number of vertices of the graph. This can be proved, in particular, for all regular graphs. Gernert’s conjecture was recently disproved by Nikiforov, who also provided a nontrivial upper bound for the sum of two largest eigenvalues. We will study extensions of these results to general n×n symmetric matrices with entries from [0, 1] and try to improve Nikiforov’s theorem. We will also study other recent results on the extreme behavior of the sum the k largest eigenvalues of symmetric matrices and particularly, adjacency matrices of graphs.
Document
Copyright statement
Copyright is held by the author.
Permissions
The author has not granted permission for the file to be printed nor for the text to be copied and pasted. If you would like a printable copy of this thesis, please contact summit-permissions@sfu.ca.
Scholarly level
Language
English
Member of collection
Attachment Size
etd3462.pdf 1.17 MB