Resource type
Thesis type
(Thesis) M.Sc.
Date created
2022-12-20
Authors/Contributors
Author: Martinolich, Matthew
Abstract
In most areas that support resource development, the natural/baseline groundwater quality is poorly understood, limiting our ability to assess groundwater quality impacts. This research utilized an integrated multivariate/descriptive statistical – numerical geochemical modeling approach to characterize the baseline hydrogeochemistry of a shallow groundwater system in the Peace Region, northeast BC, where O&G development has raised concerns for groundwater quality. K-means clustering was used to define groundwater types and construct hydrochemical maps, geochemical modeling was used to simulate the hydrogeochemical evolution of the groundwater, and radiocarbon/tritium dating provided groundwater residence times. In unconsolidated aquifers, carbonate dissolution driven by CO2/CH4 flux produces Ca-HCO3 and Ca-Mg-HCO3 groundwater, often exhibiting elevated sulphate/sodium; outside of paleovalleys, the groundwater is typically <60 years old. In the bedrock, cation exchange and carbonate, gypsum, and silicate dissolution driven by CO2/CH4 flux produce Na-Ca-Mg-HCO3-SO¬4, Na-SO4-HCO3, and Na-HCO3 groundwater. Groundwater residence times in the bedrock range from hundreds to 10,000+ years.
Document
Extent
292 pages.
Identifier
etd22287
Copyright statement
Copyright is held by the author(s).
Supervisor or Senior Supervisor
Thesis advisor: Kirste, Dirk
Language
English
Member of collection
Download file | Size |
---|---|
etd22287.pdf | 19.72 MB |