Thesis type
(Thesis) Ph.D.
Date created
2021-12-17
Authors/Contributors
Author: MacNab, Finlay
Abstract
The challenge of plasmonic hot electron science is in understanding and integrating the three pillars of device efficiency: (i) plasmonic excitation, (ii) plasmon decay and hot carrier transport, and (iii) rectification of the carrier's energy across an interface. These three concepts were introduced and synthesized into a systematic experimental approach to the design and fabrication of silver-zinc oxide Schottky junction, plasmonic photovoltaic devices. Devices were built and tested to establish structure-function relationships that underpinned device performance. The high-throughput device optimization strategies employed allowed the fabrication of hundreds of test samples, iteratively achieving: (i) a novel deposition technique for the PVD evaporation of ultra-smooth, single-crystal silver thin films; (ii) a low-cost, single step, high fidelity nanopatterning technique; (iii) prism-coupled plasmonic photovoltaic devices that exhibited world best performance by the internal photoemission mechanism (11.2% IQE @ 543 nm); and (iv) a low-cost, free-space coupled, nanostructured design, that exhibited strong second order nonlinear second harmonic generation and two photon photoluminescence, as well as, optical absorbance that agreed well with models, informing the interpretation of the nanostructure's photovoltaic response.
Document
Identifier
etd21768
Copyright statement
Copyright is held by the author(s).
Supervisor or Senior Supervisor
Thesis advisor: Leach, Gary W.
Language
English
Member of collection
Download file | Size |
---|---|
input_data\22340\etd21768.pdf | 5.12 MB |