Resource type
Thesis type
(Thesis) Ph.D.
Date created
2020-12-16
Authors/Contributors
Author: Blake, Adam
Abstract
Insect herbivores exploit plant cues to discern host and non-host plants. Studies of visual plant cues have focused on color despite the inherent polarization sensitivity of insect photoreceptors and the information carried by polarization of foliar reflectance, most notably the degree of linear polarization (DoLP; 0-100%). The DoLP of foliar reflection was hypothesized to be a host plant cue for insects but was never experimentally tested. I investigated the use of these polarization cues by the cabbage white butterfly, Pieris rapae (Pieridae). This butterfly has a complex visual system with several different polarization-sensitive photoreceptors, as characterized with electrophysiology and histology. I applied photo polarimetry revealing large differences in the DoLP of leaf-reflected light among plant species generally and between host and non-host plants of P. rapae specifically. As polarized light cues are directionally dependent, I also tested, and modelled, the effect of approach trajectory on the polarization of plant-reflected light and the resulting attractiveness to P. rapae, showing that certain approach trajectories are optimal for discriminating among plants based on these cues. I then demonstrated that P. rapae exploit the DoLP of foliar reflections to discriminate among plants. In experiments with paired digital plant images that allowed for independent control of polarization, color and intensity, P. rapae females preferred images of the host plant cabbage with a low DoLP (31%) to images of the non-host plant potato with a high DoLP (50%). These results indicated that the DoLP had a greater effect on foraging decisions than the differential color, intensity or shape of the two plant images. To investigate potential neurological mechanisms, I designed behavioral bioassays presenting choices between images that differed in color, intensity and/or DoLP. The combined results of these bioassays suggest that several photoreceptor classes are involved and that P. rapae females process and interpret polarization reflections in a way different from that described for other polarization-sensitive taxa. My work has focused on P. rapae and its host plants but there is every reason to believe that the DoLP of foliar reflection is an essential plant cue that may commonly be exploited by foraging insect herbivores
Document
Identifier
etd21234
Copyright statement
Copyright is held by the author(s).
Supervisor or Senior Supervisor
Thesis advisor: Gries, Gerhard
Language
English
Member of collection
Download file | Size |
---|---|
input_data\21170\etd21234.pdf | 14.77 MB |