Skip to main content

Reduced Protein O-glycosylation in the Nervous System of the Mutant SOD1 Transgenic Mouse Model of Amyotrophic Lateral Sclerosis

Resource type
Date created
2012-05-16
Authors/Contributors
Abstract
Human O-GlcNAcase plays an important role in regulating the post-translational modification of serine and threonine residues with β-O-linked N-acetylglucosamine monosaccharide unit (O-GlcNAc). The mechanism of O-GlcNAcase involves nucleophilic participation of the 2-acetamido group of the substrate to displace a glycosidically linked leaving group. The tolerance of this enzyme for variation in substrate structure has enabled us to characterize O-GlcNAcase transition states using several series of substrates to generate multiple simultaneous free-energy relationships. Patterns revealing changes in mechanism, transition state, and rate-determining step upon concomitant variation of both nucleophilic strength and leaving group abilities are observed. The observed changes in mechanism reflect the roles played by the enzymic general acid and the catalytic nucleophile. Significantly, these results illustrate how the enzyme synergistically harnesses both modes of catalysis; a feature that eludes many small molecule models of catalysis. These studies also suggest the kinetic significance of an oxocarbenium ion intermediate in the O-GlcNAcase-catalyzed hydrolysis of glucosaminides, probing the limits of what may be learned using nonatomistic investigations of enzymic transition-state structure and offering general insights into how the superfamily of retaining glycoside hydrolases act as efficient catalysts.
Document
Identifier
DOI: 10.1016/j.neulet.2012.04.018
Published as
Shan, X., Vocadlo, D. J., & Krieger, C. (2012). Reduced protein O-glycosylation in the nervous system of the mutant SOD1 transgenic mouse model of amyotrophic lateral sclerosis. Neuroscience Letters, 516(2), 296–301. https://doi.org/10.1016/j.neulet.2012.04.018
Publication title
Neuroscience Letters
Document title
Reduced Protein O-glycosylation in the Nervous System of the Mutant SOD1 Transgenic Mouse Model of Amyotrophic Lateral Sclerosis
Date
2012
Volume
516
Issue
2
First page
296
Last page
301
Copyright statement
Copyright is held by the author(s).
Scholarly level
Peer reviewed?
Yes
Language
English

Views & downloads - as of June 2023

Views: 0
Downloads: 0