Resource type
Date created
2009-03-30
Authors/Contributors
Author: Marcelo, Filipa
Author: He, Yuan
Author: Yuzwa, Scott A.
Author: Nieto, Lidia
Author: Jiménez-Barbero, Jesús
Author: Sollogoub, Matthieu
Author: Vocadlo, David J.
Author: Davies, Gideon D.
Author: Blériot, Yves
Abstract
Here we report the synthesis of a series of polyhydroxylated 3- and 5-acetamido azepanes and detail the molecular basis of their inhibition of family 84 glycoside hydrolases. These family 84 enzymes include human O-GlcNAcase, an enzyme involved in post-translational processing of intracellular proteins modified by O-linked β-N-acetylglucosamine residues. Detailed structural analysis of the binding of these azepanes to BtGH84, a bacterial homologue of O-GlcNAcase, highlights their conformational flexibility. Molecular mechanics and molecular dynamics calculations reveal that binding to the enzyme involves significant conformational distortion of these inhibitors from their preferred solution conformations. The binding of these azepanes provides structural insight into substrate distortion that likely occurs along the reaction coordinate followed by O-GlcNAcase during glycoside hydrolysis. This class of inhibitors may prove to be useful probes for evaluating the conformational itineraries of glycosidases and aid the development of more potent and specific glycosidase inhibitors.
Document
Identifier
DOI: 10.1021/ja809776r
Published as
Marcelo, F., He, Y., Yuzwa, S. A., Nieto, L., Jiménez-Barbero, J., Sollogoub, M., Vocadlo, D. J., Davies, G. D., & Blériot, Y. (2009). Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion. Journal of the American Chemical Society, 131(15), 5390–5392. https://doi.org/10.1021/ja809776r.
Publication details
Publication title
Journal of the American Chemical Society
Document title
Molecular Basis for Inhibition of GH84 Glycoside Hydrolases by Substituted Azepanes: Conformational Flexibility Enables Probing of Substrate Distortion
Date
2009
Volume
131
Issue
15
First page
5390
Last page
5392
Published article URL
Copyright statement
Copyright is held by the author(s).
Scholarly level
Peer reviewed?
Yes
Language
English
Member of collection