Skip to main content

Controlling a Motorized Orthosis to Follow Elbow Volitional Movement: Tests with Individuals with Pathological Tremor

Resource type
Date created
2019-02-01
Authors/Contributors
Abstract
Background: There is a need for alternative treatment options for tremor patients who do not respond well to medications or surgery, either due to side effects or poor efficacy, or that are excluded from surgery. The study aims to evaluate feasibility of a voluntary-driven, speed-controlled tremor rejection approach with individuals with pathological tremor. The suppression approach was investigated using a robotic orthosis for suppression of elbow tremor. Importantly, the study emphasizes the performance in relation to the voluntary motion.Methods: Nine participants with either Essential Tremor (ET) or Parkinson’s disease (PD) were recruited and tested off medication. The participants performed computerized pursuit tracking tasks following a sinusoid and a random target, both with and without the suppressive orthosis. The impact of the Tremor Suppression Orthosis (TSO) at the tremor and voluntary frequencies was determined by the relative power change calculated from the Power Spectral Density (PSD). Voluntary motion was, in addition, assessed by position and velocity tracking errors.Results: The suppressive orthosis resulted in a 94.4% mean power reduction of the tremor (p < 0.001) – a substantial improvement over reports in the literature. As for the impact to the voluntary motion, paired difference tests revealed no statistical effect of the TSO on the relative power change (p = 0.346) and velocity tracking error (p = 0.283). A marginal effect was observed for the position tracking error (p = 0.05). The interaction torque with the robotic orthosis was small (0.62 Nm) when compared to the maximum voluntary torque that can be exerted by adult individuals at the elbow joint.Conclusions: Two key contributions of this work are first, a recently proposed approach is evaluated with individuals with tremor demonstrating high levels of tremor suppression; second, the impact of the approach to the voluntary motion is analyzed comprehensively, showing limited inhibition. This study also seeks to address a gap in studies with individuals with tremor where the impact of engineering solutions on voluntary motion is unreported. This study demonstrates feasibility of the wearable technology as an effective treatment that removes tremor with limited impediment to intentional motion. The goal for such wearable technology is to help individuals with pathological tremor regain independence in activities affected by the tremor condition. Further investigations are needed to validate the technology.
Document
Published as
Herrnstadt, Gil & McKeown, Martin & Menon, Carlo. (2019). Controlling a motorized orthosis to follow elbow volitional movement: Tests with individuals with pathological tremor. Journal of NeuroEngineering and Rehabilitation. 16. DOI: 10.1186/s12984-019-0484-1.
Publication title
Journal of NeuroEngineering and Rehabilitation
Document title
Controlling a motorized orthosis to follow elbow volitional movement: Tests with individuals with pathological tremor
Date
2019
Volume
16
Publisher DOI
10.1186/s12984-019-0484-1
Copyright statement
Copyright is held by the author(s).
Peer reviewed?
Yes
Language
English
Member of collection
Download file Size
s12984-019-0484-1.pdf 1.73 MB

Views & downloads - as of June 2023

Views: 0
Downloads: 0