Skip to main content

EFHC1, Implicated in Juvenile Myoclonic Epilepsy, Functions at the Cilium and Synapse to Modulate Dopamine Signaling

Resource type
Date created
2019-02-27
Abstract
Neurons throughout the mammalian brain possess non-motile cilia, organelles with varied functions in sensory physiology and cellular signaling. Yet, the roles of cilia in these neurons are poorly understood. To shed light into their functions, we studied EFHC1, an evolutionarily conserved protein required for motile cilia function and linked to a common form of inherited epilepsy in humans, juvenile myoclonic epilepsy (JME). We demonstrate that C. elegans EFHC-1 functions within specialized non-motile mechanosensory cilia, where it regulates neuronal activation and dopamine signaling. EFHC-1 also localizes at the synapse, where it further modulates dopamine signaling in cooperation with the orthologue of an R-type voltage-gated calcium channel. Our findings unveil a previously undescribed dual-regulation of neuronal excitability at sites of neuronal sensory input (cilium) and neuronal output (synapse). Such a distributed regulatory mechanism may be essential for establishing neuronal activation thresholds under physiological conditions, and when impaired, may represent a novel pathomechanism for epilepsy.
Document
Published as
Loucks, C. 2019, Feb 27. EFHC1, implicated in juvenile myoclonic epilepsy, functions at the cilium and synapse to modulate dopamine signaling. doi: 10.7554/eLife.37271.001
Document title
EFHC1, Implicated in Juvenile Myoclonic Epilepsy, Functions at the Cilium and Synapse to Modulate Dopamine Signaling
Date
2019
Publisher DOI
10.7554/eLife.37271.001
Copyright statement
Copyright is held by the author(s).
Scholarly level
Peer reviewed?
Yes
Language
English
Member of collection
Download file Size
elife-37271-v1.pdf 1.23 MB

Views & downloads - as of June 2023

Views: 0
Downloads: 0