Object Recognition and Pose Estimation across Illumination Changes

Resource type
Date created
2007-03
Authors/Contributors
Author: Muselet, D.
Author: Funt, B.
Author: Shi, L.
Author: Macaire, L.
Abstract
In this paper, we present a new algorithm for color-based object recognition that detects objects and estimates their pose (position and orientation) in cluttered scenes observed under uncontrolled illumination conditions. As with so many other color-based object-recognition algorithms, color histograms are also fundamental to our approach; however, we use histograms obtained from overlapping subwindows, rather than the entire image. Furthermore, each local histogram is normalized using greyworld normalization in order to be as less sensitive to illumination as possible. An object from a database of prototype objects is identified and located in an input image by matching the subwindow contents. The prototype is detected in the input whenever many good histogram matches are found between the subwindows of the input image and those of the prototype. In essence, normalized color histograms of subwindows are the local features being matched. Once an object has been recognized, its 2D pose is found by approximating the geometrical transformation most consistently mapping the locations of prototype’s subwindows to their matched subwindow locations in the input image.
Document
Description
Presented at the VISAPP Second International Conference on Computer Vision Theory and Applications, Barcelona, March 2007.
Published as
Muselet, D., Funt, B., Shi, L., and Macaire, L., "Object Recognition and Pose Estimation across Illumination Changes." Proc. Second International Conference on Computer vision Theory and Applications - IU/MTSV, 2007, pages 264-267.
Publication title
Proc. Second International Conference on Computer vision Theory and Applications
Document title
Object Recognition and Pose Estimation across Illumination Changes
Date
2007
First page
264
Last page
267
Copyright statement
Copyright is held by the author(s).
Scholarly level
Peer reviewed?
Yes
Language
Member of collection
Attachment Size
Muselet_Funt_Shi_Macaire_VISAPP_2007.pdf 191.5 KB