Resource type
Date created
2018-10
Authors/Contributors
Author (aut): Rayani, Kaveh
Author (aut): Lin, Eric
Author (aut): Craig, Calvin
Author (aut): Lamothe, Marcel
Author (aut): Shafaattalab, Sanam
Author (aut): Gunawan, Marvin
Author (aut): Li, Alison Yueh
Author (aut): Hove-Madsen, Leif
Author (aut): Tibbits, Glen
Abstract
The zebrafish (Danio rerio) heart is a viable model of mammalian cardiovascular function due to similarities in heart rate, ultrastructure, and action potential morphology. Zebrafish are able to tolerate a wide range of naturally occurring temperatures through altering chronotropic and inotropic properties of the heart. Optical mapping of cannulated zebrafish hearts can be used to assess the effect of temperature on excitation-contraction (EC) coupling and to explore the mechanisms underlying voltage (Vm) and calcium (Ca2+) transients. Applicability of zebrafish as a model of mammalian cardiac physiology should be understood in the context of numerous subtle differences in structure, ion channel expression, and Ca2+ handling. In contrast to mammalian systems, Ca2+ release from the sarcoplasmic reticulum (SR) plays a relatively small role in activating the contractile apparatus in teleosts, which may contribute to differences in restitution. The contractile function of the zebrafish heart is closely tied to extracellular Ca2+ which enters cardiomyocytes through L-type Ca2+ channel (LTCC), T-type Ca2+ channel (TTCC), and the sodium-calcium exchanger (NCX). Novel data found that despite large temperature effects on heart rate, Vm, and Ca2+ durations, the relationship between Vm and Ca2+ signals was only minimally altered in the face of acute temperature change. This suggests that zebrafish Vm and Ca2+ kinetics are largely rate-independent. In comparison to mammalian systems, zebrafish Ca2+ cycling is inherently more dependent on transsarcolemmal Ca2+ transport and less reliant on SR Ca2+ release. However, the compensatory actions of various components of the Ca2+ cycling machinery of the zebrafish cardiomyocytes, allow for maintenance of EC coupling over a wide range of environmental temperatures.
Document
Published as
Rayani K, Lin E, Craig C, Lamothe M, Shafaattalab S, Gunawan M, Li AY, Hove-Madsen L, Tibbits GF. (2018). Zebrafish as a model of mammalian cardiac function: Optically mapping the interplay of temperature and rate on voltage and calcium dynamics. Progress in biophysics and molecular biology 138, 69-90. https://doi.org/10.1016/j.pbiomolbio.2018.07.006
Publication details
Publication title
Progress in biophysics and molecular biology
Document title
Zebrafish as a Model of Mammalian Cardiac Function: Optically Mapping the Interplay of Temperature and Rate on Voltage and Calcium Dynamics
Date
2018
Volume
138
First page
69
Last page
90
Published article URL
Copyright statement
Copyright is held by the author(s).
Scholarly level
Peer reviewed?
Yes
Language
English
Member of collection
Download file | Size |
---|---|
Accepted.pdf | 403.06 KB |