Empirical Modeling of Fuel Cell Durability: Cathode Catalyst Layer Degradation

Resource type
Thesis type
(Thesis) M.A.Sc.
Date created
2017-12-06
Authors/Contributors
Abstract
Fuel cells for automotive applications do not yet match the durability and cost of conventional engines. Durability can be improved by better understanding degradation mechanisms of fuel cell components. A critical component is the cathode electrode, which facilitates the slow oxygen reduction reaction. In this work, fuel cells with state of the art electrodes are manufactured and subjected to degradation tests simulating two drive cycle conditions: load cycling, and start-up/shutdown cycling. The degradation data is used to empirically model the voltage loss due to cathode electrode degradation, to predict voltage loss throughout fuel cell lifetime, and compare to findings in literature. The model may be used as a starting point to better understand electrode degradation, and to develop fundamental models. Based on degradation results it is recommended to investigate coupling effects between the different drive cycle conditions, impact of mitigation factors, and effect of different catalyst loadings on the electrode durability.
Document
Identifier
etd10498
Copyright statement
Copyright is held by the author.
Permissions
This thesis may be printed or downloaded for non-commercial research and scholarly purposes.
Scholarly level
Supervisor or Senior Supervisor
Thesis advisor: Kjeang, Erik
Attachment Size
etd10498_MMessing.pdf 5.61 MB