Skip to main content

Three Problems Involving Permutations

Resource type
Thesis type
(Thesis) Ph.D.
Date created
We study three problems involving permutations: the n-card problem, inv-Wilf-equivalence, and suitable sets of permutations. The n-card problem is to determine the minimal intervals [u, v] such that for every n times n stochastic matrix A there is an n times n permutation matrix P (depending on A) such that tr(PA) belongs to [u, v]. The minimal intervals for the n-card problem are known only for n = 2. We also show that each closed interval of length n/(n−1) contained in [0, 2) is a solution to the n-card problem for all n >= 2. Wilf-equivalence is one of the central concepts of pattern-avoiding permutations. The two known infinite families of Wilf-equivalent permutation pairs both satisfy the stronger condition of shape-Wilf-equivalence. Dokos et al. studied a different strengthening of Wilf-equivalence called inv-Wilf-equivalence. They conjectured that all inv-Wilf-equivalent permutation pairs arise from trivial symmetries. We disprove this conjecture with an infinite family of counterexamples, obtained by generalizing simultaneously the concepts of shape-Wilf-equivalence and inv-Wilf-equivalence. We also prove the Baxter-Jaggard conjecture on even-shape-Wilf-equivalent permutation pairs. A set of N permutations of {1, 2, . . . , v} is (N, v, t)-suitable if each symbol precedes each subset of t − 1 others in at least one permutation. We give examples of suitable sets of permutations for new parameter triples (N, v, t). We relate certain suitable sets of permutations with parameter t to others with parameter t + 1, thereby showing that one of the two infinite families presented by Colbourn can be constructed directly from the other. We prove an exact nonexistence result for suitable sets of permutations using elementary combinatorial arguments. We then establish an asymptotic nonexistence result using Ramsey’s theorem.
Copyright statement
Copyright is held by the author.
This thesis may be printed or downloaded for non-commercial research and scholarly purposes.
Scholarly level
Supervisor or Senior Supervisor
Thesis advisor: Jedwab, Jonathan
Member of collection
Download file Size
etd9945_JChan.pdf 639.23 KB

Views & downloads - as of June 2023

Views: 65
Downloads: 4