Skip to main content

Towards silicon-based quantum Dits: optical study of group-V donors 75As:28Si and 121Sb:28Si

Resource type
Thesis type
(Thesis) M.Sc.
Date created
Silicon-based quantum information processing devices show great promise, being one of the most advanced candidates for the basis of the quantum computer. The spin state of phosphorus atoms in isotopic silicon has been demonstrated to have the longest solid-state coherence times. In this thesis, I describe experiments characterizing the other group-V shallow donors arsenic and antimony in silicon, in the context of developing quantum information processing technology. A sample of isotopic silicon containing these dopants was commissioned. I report here the results of photoluminescence excitation spectroscopy, nuclear magnetic resonance (NMR) and electron paramagnetic resonance spectroscopy, and pulsed NMR experiments. I found that antimony is not a suitable candidate in this context by virtue of being unpolarizable by our technique; however, arsenic is sufficiently polarizable. I report a measured coherence time of 2.0 s for the neutral arsenic nuclear spin.
Copyright statement
Copyright is held by the author.
The author granted permission for the file to be printed and for the text to be copied and pasted.
Scholarly level
Supervisor or Senior Supervisor
Thesis advisor: Thewalt, Michael
Member of collection
Download file Size
etd8776_JSalvail.pdf 5.39 MB

Views & downloads - as of June 2023

Views: 0
Downloads: 0