Enumeration of Set Partitions Refined by Crossing and Nesting Numbers

Resource type
Thesis type
(Thesis) M.Sc.
Date created
Author: Chen, Wei
The standard representation of set partitions gives rise to two natural statistics: a crossing number and a nesting number. Chen, Deng, Du, Stanley, and Yan (2007) proved, via a non-trivial bijection involving sequences of Young tableaux that these statistics have a symmetric joint distribution. Recent results by Marberg (2013) has lead to algorithmic tools for the enumeration of set partitions with fixed crossing number and fixed nesting number. In this thesis we further consider set partitions refined by these two statistics. These sub-classes can be recognized by finite automata, and consequently have rational generating functions. Our main contribution is an investigation into the structure of the automata, the corresponding adjacency matrices, and the generating functions.
Copyright statement
Copyright is held by the author.
The author granted permission for the file to be printed and for the text to be copied and pasted.
Scholarly level
Supervisor or Senior Supervisor
Thesis advisor: Mishna, Marni
Thesis advisor: Yen, Lily
Member of collection
Attachment Size
etd8774_WChen.pdf 1.18 MB