The Neuroinflammatory Response in ALS: The Roles of Microglia and T Cells

Resource type
Date created
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by upper and lower motoneuron death. Mutations in the gene for superoxide dismutase 1 (SOD1) cause a familial form of ALS and have been used to develop transgenic mice which overexpress human mutant SOD1 (mSOD) and these mice exhibit a motoneuron disease which is pathologically and phenotypically similar to ALS. Neuroinflammation is a pathological hallmark of many neurodegenerative diseases including ALS and is typified by the activation and proliferation of microglia and the infiltration of T cells into the brain and spinal cord. Although the neuroinflammatory response has been considered a consequence of neuronal dysfunction and death, evidence indicates that manipulation of this response can alter disease progression. Previously viewed as deleterious to neuronal survival, recent reports suggest a trophic role for activated microglia in the mSOD mouse during the early stages of disease that is dependent on instructive signals from infiltrating T cells. However, at advanced stages of disease, activated microglia acquire increased neurotoxic potential, warranting further investigation into factors capable of skewing microglial activation towards a neurotrophic phenotype as a means of therapeutic intervention in ALS.
Published as
Neurology Research International
Volume 2012 (2012), Article ID 803701, 8 pages
Publication title
Neurology Research International
Document title
The Neuroinflammatory Response in ALS: The Roles of Microglia and T Cells
Publisher DOI
Copyright statement
Copyright is held by the author(s).
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes.
Scholarly level
Peer reviewed?
Attachment Size
803701.pdf 1.7 MB