Interaction Profile-Based Protein Classification of Death Domain

Resource type
Date created
2004
Authors/Contributors
Author: Lett, Drew
Abstract
Background: The increasing number of protein sequences and 3D structure obtained fromgenomic initiatives is leading many of us to focus on proteomics, and to dedicate our experimentaland computational efforts on the creation and analysis of information derived from 3D structure.In particular, the high-throughput generation of protein-protein interaction data from a feworganisms makes such an approach very important towards understanding the molecularrecognition that make-up the entire protein-protein interaction network. Since the generation ofsequences, and experimental protein-protein interactions increases faster than the 3D structuredetermination of protein complexes, there is tremendous interest in developing in silico methodsthat generate such structure for prediction and classification purposes. In this study we focused onclassifying protein family members based on their protein-protein interaction distinctiveness.Structure-based classification of protein-protein interfaces has been described initially by Ponstinglet al. [1] and more recently by Valdar et al. [2] and Mintseris et al. [3], from complex structures thathave been solved experimentally. However, little has been done on protein classification based onthe prediction of protein-protein complexes obtained from homology modeling and dockingsimulation.Results: We have developed an in silico classification system entitled HODOCO (Homologymodeling, Docking and Classification Oracle), in which protein Residue Potential InteractionProfiles (RPIPS) are used to summarize protein-protein interaction characteristics. This systemapplied to a dataset of 64 proteins of the death domain superfamily was used to classify eachmember into its proper subfamily. Two classification methods were attempted, heuristic andsupport vector machine learning. Both methods were tested with a 5-fold cross-validation. Theheuristic approach yielded a 61% average accuracy, while the machine learning approach yielded an89% average accuracy.Conclusion: We have confirmed the reliability and potential value of classifying proteins via theirpredicted interactions. Our results are in the same range of accuracy as other studies that classifyprotein-protein interactions from 3D complex structure obtained experimentally. While ourclassification scheme does not take directly into account sequence information our results are inagreement with functional and sequence based classification of death domain family members.
Document
Published as
BMC Bioinformatics 2004, 5:75 doi:10.1186/1471-2105-5-75
Publication title
BMC Bioinformatics
Document title
Interaction Profile-Based Protein Classification of Death Domain
Date
2004
Volume
5
Issue
75
Publisher DOI
10.1186/1471-2105-5-75
Copyright statement
Copyright is held by the author(s).
Permissions
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes.
Scholarly level
Peer reviewed?
Yes
Language
Attachment Size
1471-2105-5-75.pdf 463.59 KB