Skip to main content

Efficient Minimum Distance Estimation with Multiple Rates of Convergence

Resource type
Date created
2012
Authors/Contributors
Abstract
This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations. Possible applications include econometric problems with two dimensions of asymptotics, due to trimming, tail estimation, infill asymptotic, social interactions, kernel smoothing or any kind of regularization.
Document
Copyright statement
Copyright is held by the author(s).
Permissions
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes.
Scholarly level
Peer reviewed?
No
Language
English
Member of collection
Download file Size
dp12-03.pdf 392.03 KB

Views & downloads - as of June 2023

Views: 0
Downloads: 0