Skip to main content

On the Well-Posedness of the Stochastic Allen-Cahn Equation in Two Dimensions

Resource type
Date created
2011-12-31
Authors/Contributors
Abstract
White noise-driven nonlinear stochastic partial differential equations (SPDEs) of parabolic type are frequently used to model physical and biological systems in space dimensions d = 1,2,3. Whereas existence and uniqueness of weak solutions to these equations are well established in one dimension, the situation is different for d \geq 2. Despite their popularity in the applied sciences, higher dimensional versions of these SPDE models are generally assumed to be ill-posed by the mathematics community. We study this discrepancy on the specific example of the two dimensional Allen-Cahn equation driven by additive white noise. Since it is unclear how to define the notion of a weak solution to this equation, we regularize the noise and introduce a family of approximations. Based on heuristic arguments and numerical experiments, we conjecture that these approximations exhibit divergent behavior in the continuum limit. The results strongly suggest that a series of published numerical studies are problematic: shrinking the mesh size in these simulations does not lead to the recovery of a physically meaningful limit.
Document
Copyright statement
Copyright is held by the author(s).
Permissions
You are free to copy, distribute and transmit this work under the following conditions: You must give attribution to the work (but not in any way that suggests that the author endorses you or your use of the work); You may not use this work for commercial purposes.
Scholarly level
Peer reviewed?
Yes
Language
English
Member of collection

Views & downloads - as of June 2023

Views: 0
Downloads: 0