Skip to main content

Growing Brains in Silico: Integrating Biochemistry, Genetics and Neural Activity in Neurodevelopmental Simulations

Resource type
Thesis type
(Thesis) M.Sc.
Date created
2004
Authors/Contributors
Abstract
Biologists' understanding of the roles of genetics, biochemistry and activity in neural function is rapidly improving. All three interact in complex ways during development, recovery from injury and in learning and memory. The software system NeuroGene was written to simulate neurodevelopmental processes. Simulated neurons develop within a 3D environment. Protein diffusion, decay and receptor-ligand binding are simulated. Simulations are controlled by genetic information encoded using a novel programming language mimicking the control mechanisms of biological genes. Simulated genes may be regulated by protein concentrations, neural activity and cellular morphology. Genes control protein production, changes in cell morphology and neural properties, including learning. We successfully simulate the formation of topographic projection from the retina to the tectum. We propose a novel model of topography based on simulated growth cones. We also simulate activitydependent refinement, through which diffuse connections are modified until each retinal cell connects to only a few target cells.
Document
Copyright statement
Copyright is held by the author.
Permissions
The author has not granted permission for the file to be printed nor for the text to be copied and pasted. If you would like a printable copy of this thesis, please contact summit-permissions@sfu.ca.
Scholarly level
Language
English
Member of collection
Download file Size
etd0493.pdf 24.58 MB

Views & downloads - as of June 2023

Views: 0
Downloads: 0