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ABSTRACT 

This research introduces rough sets to better characterizing spatial relationships 

and uncertainty in two examples. First, scale issues in census data are addressed. Census 

data provide demographic and socio-economic information at specific area units. 

Hence, derived spatial information are scale-dependent leading to uncertainty when 

analyzing results at different scales. Rough sets mitigate scale distortions and provide 

scale-sensitivity measure during scale transition. It employs the metaphor of topology 

to illustrate the ability of rough sets to retain spatial relationships of adjacency and 

contiguity. 

Second, rough sets and transition probability are used to characterize sediment 

distribution. The study simulates sediment state and transitions for low and high 

quality borehole data by providing better geological understanding. It also assesses 

Geological Survey of Canada standardization scheme for classifying borehole data. The 

utility of rough sets is demonstrated as a knowledge base tool for characterizing 

uncertainty irrespective of the data under study. 
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The four difference measures formulas: 

Mean Bias Error, MBE - describes the bias. The variability of (P - 0) about 

the MBE is the variance of the distribution of differences. 

Root Mean Square Error, RMSE - defines the linear fit between model and 

observation and is an index of systematic error. 

Mean Absolute Error, MAE - is a weighted average of the absolute errors. 

Index of Agreement, d - measures the relative size of average difference or the 

nature of the differences comprising MAE or RMSE. 

where P and 0 denote predicted and observed values respectively. 
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GLOSSARY 

Keywords: 

Aggregation: the grouping together of a selected set of like entities to form a 

single entity. 

Aquiclude: a body of impermeable or distinctly less permeable rock. 

Aquifer: a permeable geologic formation saturated with water and through 

which g-oundwater moves. 

Aquitard: low-permeability unit that can store groundwater and also transit it 

slowly from one aquifer to another. 

Background material: the most abundant geologic unit present in a borehole 

Bayesian: mathematical theory of probability which applies to the degree of 

plausibility of statements, or to the degree of belief of rational agents in the 

truth of statements 

Conditional probability: the probability of an event assuming another event. 

Correlation coefficientt: is a numeric measure of the strength of linear 

relationship between two random variables. 

Dempster-Shafer theory: a mathematical theory of evidence representing 

plausibilities. 

Drumlin: an elongated whale-shaped hill formed by glacial action. 

Facies: all characteristics of a geologic unit or a distinct kind of rock for a 

specific environment. 

Fuzzy sets: a set characterized by a membership-degree function. 

Golden spike: boreholes with continuous core recovery which provide high 

quality data 

Joint probability: is the probability of two events in conjunction 

Kriging: an interpolation technique using a regionalized variable. 

Lag: minimum spacing between and within sediments in a borehole 

. .. 
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Markov chains: a discrete-time stochastic process using transition probability 

of state and state transitions. 

Maximum entropy factor: ratio of the transition rate to the maximum 

entropy transition rate. 

Metadata: data about data and usage aspects of it. 

Moraine: glacial drift or till deposited chiefly by direct glacial action. 

Permeability: a rock's or sediment's capacity for transmitting a fluid. 

Porosity: a measure of the percent of void space in a rock or soil. 

Regression: a statistical method where the mean of one or more random 

variables is predicted conditioned on other random variables. 

Rough sets: a set with nonempty boundary when approximated by another. 

Specific retention: ratio of the volume of water a rock or sediment will retain 

against the pull of gravity to the total volume of rock or sediment. 

Specific yield: ratio of the volume of water a rock or soil will yield by gravity 

by gravity drainage to the total volume of rock or soil. 

Stratigraphy: the study of sequence and correlation of stratified rocks 

T-PROG simulation: sediment state and transition simulation in Markov 

chains using transition probability. 

Topology: the relative location of geographic phenomena independent of 

their exact position 

Transition probability: a conditiona.1 probability representing a system's state 

and transitions. 

Acronyms: 

CSD: Census Sub-division 

CT: Census Tract 

d: Index of agreement 

D A: Dissemination Area 

DI : Deprivation Index 

G AI: Good Aquifer Index (Indicator) 
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HDI : 

IDI: 

LA: 

LDI : 

MAUP: 

MAE 

M AI: 

MBE 

MDI : 

mef: 

MOEE 

NAI: 

NDI: 

ORM: 

PAI: 

pwd: 

RIC: 

RIDI: 

RMSE: 

tpm: 

UP: 

VGAI: 

VHDI : 
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Geological Survey of Canada 

High Deprivation Index 

Identification Index 

Lower approximation set 

Low Deprivation Index 

Modifiable Areal Unit Problem 

Mean Absolute Error 

Medium Aquifer Index (Indicator) 

Mean Bias Error 

Medium Deprivation Index 

maximum entropy factor 

Ministry of Environment and Energy 

Non-Aquifer Index (Indicator) 

Net Deprivation Index 

Oak Ridges Moraine 
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~ r iva te  well drillers 

Recent Immigrant Concentration 

Recent Immigrant Deprivation Index 

Root Mean Square Error 

transition probability matrix 

Upper approximation set 

Very Good Aquifer Index (Indicator) 

Very High Deprivation Index 

Very Low Deprivation Index 



CHAPTER 1: 
INTRODUCTION 

The representation of geographic phenomena is dependent on data collection 

which are, in turn, based on data acquisition concepts, tools and methods. Data 

acquisition techniques are designed to meet specific research requirements and to fully 

represent the phenomena under study. However, there is often a difference between 

the geographic model and the geographic reality which it represents. This disparity 

between geographic model and phenomena in reality may be termed uncertainty. 

Uncertainty in spatial data gained significance with the search for elements that define 

spatial data quality (Buttenfield and Beard 1994). Uncertainty has a direct influence on 

data quality because it distorts standards for data quality. 

Spatial Data Transfer Standard (SDTS) is a set of standards established by the 

International Cartographic Association (ICA). SDTS aimed to provide detail 

information about data for users to assess the fitness of data for a particular use 

(Morrison 1995). The elements in SDTS include lineage, positional accuracy, attribute 

accuracy, completeness, logical consistency, semantic accuracy and temporal 

information (Morrison 1995). While the elements of spatial data quality attempt to 

enhance data validity for accurate and complete geographic inquiries, Buttenfield and 

Beard (1994) argued that SDTS should incorporate uncertainty of real world 

conditions. The elements of data quality standard, in other words, improved validity 

of data (uncertainty about database descriptions). Data quality standards have also 

focused narrowly on error in data rather than the wider consideration of uncertainty 

(Allan 2003). Buttenfield and Beard (1994) contended that the validity of geographic 

reality (uncertainty of real world conditions) be integrated into data quality records. 

Hence, standards for data quality are starting point for assessing geographic reality, but 

they need to address geographic validity by assessing uncertainty of real world 



conditions. So, this study attempts to incorporate uncertainty into spatial database and 

analysis of geographic information. 

The study investigates the effects of uncertainty in two data: census data and 

borehole data. These are seemingly different data and they represent different 

problems. Census data are used to characterize spatial aspects of human socio- 

economic and demographic information. Borehole data, on the other hand, are used in 

spatial characterization of the physical subsurface. They are, however, equally plagued 

with the problem of data uncertainty. Also a common analysis tool - rough sets 

technique is applied to minimize the effects of data uncertainty. Rough sets concept is 

an analytical theory for discovering hidden patterns in data in order to better describe 

phenomena about which data are collected. 

In this study, uncertainty is described separately for each data while the 

methodology for specific uncertainties in each data is linked by the use of rough sets. 

For census data, uncertainty represents scale distortions from opposing analysis 

assumptions and poor spatial data integrity across scale changes. This uncertainty is 

often referred to as scale problem or scale issue. The scale problem can be restated as 

the process where statistical results and relationships for aggregated data are dzferent for the 

same set of data a t  dzferent scales. Borehole data uncertainty, on the other hand, 

includes geologic unit (or sediment) identification and description problems. These 

uncertainties are not the only uncertainties in the two data, but these are the 

uncertainties examined in this study. This research uses two data separately into two 

case studies in order to explore the nature of uncertainty using rough sets. 

In the first case study, rough sets are applied to census data at different census 

scales for neighbourhood characterization using deprivation indices and recent 

immigrant population. Rough sets mitigate the scale issue by providing a scale 

sensitivity measure in order to map deprivation levels across multiple census scales. 

During transitions across multiple scales, data distribution retention is crucial in order 

to estimate scale translation indices. The rough sets technique employs the metaphor 



of topology to illustrate its ability for retaining spatial relationships of adjacency and 

contiguity across multiple scales in attribute space. 

For census data, spatial relationship outputs have shown that rough sets better 

represents spatial relationships than other spatial analysis techniques such as spatial 

regression. Specifically, rough sets may enhance spatial characterization and can 

replace other spatial analysis tools when characterizing geographic phenomena. The 

first case study illustrates this enhanced spatial characterization using rough sets by 

maintaining data distribution and providing scale sensitivity index for translating 

neighbourhood phenomena across different census scales. The rough sets outputs 

emphasize unique uncertainty levels at each census scale and provide thresholds within 

which results apply. The research also revealed limitations inherent in traditional 

spatial analysis tools, which make them poorly characterize spatial relations. 

In the second case study, rough sets and transition probability are used to 

provide a means of characterizing the subsurface environment. These methods are used 

to enhance the use of borehole data of marginal quality (e.g. Ontario Ministry of 

Environment and Energy (MOEE) data) for accurate hydrogeological inquiry. The 

rough sets method also assesses the GSC (Geological Survey of Canada) 

standardization scheme and incorporates MOEE data variation when characterizing 

the subsurface. 

Analysis tools for reducing the effects of erroneous sediment identification and 

description problem are mainly data classification. While this study recognizes the 

relevance of data standardization, it focuses on the assessment of data classification 

using rough sets. Also transition probability is used to characterize sediment variation 

in the subsurface. This translates accurate sediment distribution from quality borehole 

data to less accurate borehole data (i.e. MOEE data) in order to enhance poor quality 

data for reliable hydrogeological inquiry. The use of rough sets and transition 

probability compensate each other by assessing different effects of uncertainty due to 

erroneous sediment identification. This is illustrated in the borehole outputs especially 

when identifying high and less accurate sediments within boreholes. 



In investigating the effects of uncerrainty in these case studies, this research 

acknowledges traditional methods applied to the respective data for examining data 

uncertainties. It argues, however, that rough sets and transition probability are suitable 

analytical tools for exploring uncertainties of scale distortions in census data and 

sediment variation problems in borehole data. Hence, the study also underscores the 

utility and versatility of rough sets: its ability to enhance geographic inquiry 

irrespective of the data; and its flexibility to adapt to different effects of uncertainty in 

human and physical processes. Spatial characterization using census data represents a 

human phenomena characterization, while subsurface characterization signifies a 

physical process. This emphasizes that applications of rough set are broad because it 

adapts easily to different analysis problems. For example, scale problem in census data 

and sediment description problems in borehole data. This underscores the use of 

different data in this study: to illustrate the use of one analysis tool (i.e. rough sets) in 

both human (i.e. census socio-economic and demographic information) and physical 

(i.e. subsurface environment) phenomena analysis. Table 1.1 below shows the two 

different (but unified by data uncertainty and rough sets) case studies that constitute 

this research. 

Table 1.1: Research description into two major case studies 

Case study I Data 1 Effects of Uncertainty 

Scale problem: lack 
of spatial integrity 
across scales 

Two (2) and description problems 

Traditional Techniques Technique 

local and global Rough sets 
statistical measures, etc 

Rough sets & Data standardization transition probability 

1.1 RESEARCH OBJECTIVES 

The first case study is aimed at exploring the scale problem in census data: that 

is, the problem of lack of spatial integrity during transition across scales. The scale 

problem is the variation in analytical result:; when data for a particular set of spatial 

units are aggregated into smaller or larger spatial units for analysis (Openshaw 1984a). 



The scale problem is closely linked to spatial data transition between two spatial units 

from small to high resolution or vice versa (Openshaw 1984a). This problem is 

examined with many spatial analysis tools but its effects have resisted analytical 

assumptions such as randomness and independency of data variables. This first 

empirical study uses rough sets to minimize the scale problem by examining the 

relationship between recent immigrants and deprivation indices. So, the research 

question is: during census characterization of spatial relationships how do we account 

for scale transitions at different census scales. 

Spatial analysis techniques on spatially grouped data such as spatial regression 

and correlation examine global trends. They are inadequate in the prediction of future 

occurrence of local events and understanding spatial social structure at local levels 

(Lark 2000). They also have proven to poorly describe spatial relationships (Shaw and 

Wheeler 1994; Lark 2000). Methods are needed to describe spatial relationships at both 

global and local scales. The study applies a technique that utilizes high-quality large 

resolution census data for geospatial analysis while providing results that are relevant 

and appropriate to local spatial phenomena investigation. This is examined through 

rough sets ability to retain data variation and integrity across scales. 

In sum, application of rough sets to spatially grouped data for multiple spatial 

units may allow us to quantify uncertainty associated with spatial transitions from 

small spatial unit to large units and vice versa. The metaphor of topology is used as a 

parallel to illustrate the ability of rough sets to retain data distribution and variation 

across multiple scales in attribute space. During spatial analysis, spatial integrity of 

adjacency and contiguity is maintained through topology. Topology in attribute space, 

however, becomes relevant when translating spatial phenomena across different scales. 

Rough sets analysis is used to retain data distribution and variation in attribute space, 

which is synonymous to spatial adjacency and contiguity in spatial space. So while 

spatial topology ensures spatial integrity during spatial analysis, rough sets technique 

enhances attribute integrity during scale transitions. 



The second case study uses rough sets and transition probability on borehole 

data of marginal quality. A unique ability of rough sets is the discovery of hidden 

patterns in data and characterization of inter-data connections or relationships (Pawlak 

1982). These patterns allow better understanding and description of phenomena about 

which data are collected. So, rough sets are used to better describe the subsurface 

environment using borehole data of marginal quality. Transition probability, on the 

other hand, is used in Markov chains to analyze complex systems using the concept of 

state and state transitions (Howard 1971). In this study, transition probability is used 

to simulate sediment variation for the borehole data. The research problem for this 

case study is to reduce the effects of sediment identification and description problems 

in borehole data of marginal quality (i.e. MOEE data). The properties of rough sets 

and transition probability are suitable uncertainty tools for subsurface data analysis in 

order to define borehole units using aquifer-supporting properties. 

Borehole data of high accuracy (i.e. continuous core recovery borehole) 

acquired by the Geological Survey of Canada, GSC (referred to as golden spikes), and 

MOEE (Ontario Ministry of Environment and Energy) data mainly acquired by 

private well drillers are used for this case study. Rough sets and .transition probability 

utilize golden spikes to enhance the MOEE data for reliable hydrogeological 

application. They enrich borehole data of marginal quality for geospatial analysis while 

at the same time accounting for the effects of uncertainty in subsurface environment. 

Overall, rough sets and transition probability applications to uncertainty may 

allow borehole data of marginal quality to be incorporated into geographic inquiry - 

thereby improving characterization accuracy. Subsurface models developed using low 

quality data are validated with those built from high quality data (golden spikes from 

the GSC). Hence, the technique quantifies uncertainty inherent in the low quality data 

in order to enhance geological inquiry. 



1.2 RESEARCH JUSTfFICATION 

This research uses two case studies to address persistent geographical problems: 

scale problem in census data, and erroneous sediment identification and description 

problems in borehole data. First, the study characterized spatial relationship between 

recent immigrants and deprivation index in order to investigate the scale problem. 

Current literatures (Kassim and Laurel 2000; Kazemipur and Halli 1998) have 

identified strong correlations between poverty of census unit and the proportion of its 

population who are immigrants. The first case study examines the extent of this 

relationship by using rough sets. 

In the first case study, census data provide valuable demographic and socio- 

economic information on people at a particular place and time. The application of 

these data in the management of resources and people has profound consequences. 

Resource management and distribution, for example, affect goods and services reaching 

a particular place and time. Census data form an integral component of market 

research databases for category management and planning, geo-demographic market 

segmentation and retail site selection and evaluation. The quality of these data has 

significant implications on subsequent applications and research. Hence, the study 

examines processes and implications of using census data for real world applications 

such as resource management and distribution, neighbourhood and retail site 

characterization. 

Census data are often aggregated from small to coarse resolutions. Census data 

aggregation has important implications for protecting individual confidentiality and 

privacy. The inherent characteristics of census aggregate data are that they rarely retain 

original data distribution, leading to the creation of a different data with new data 

characteristics at each level of aggregation. Finally, these data are employed in model 

development and decisions are made for smaller spatial units, for example, 

neighbourhood characterization and retail site selection. In this study, rough sets aim 

to retain original data characteristics despite scale transitions. 



In the second case study, borehole data remain an important data source for 

subsurface study. Borehole data are employed in subsurface mapping of geological 

settings and require accurate identification and description of the subsurface geology. 

They are also used in subsurface modelling to provide a means of understanding 

subsurface geologies which control the distribution and movement of fluids (e.g. 

groundwater). The efficiency of geological applications resulting from the use of 

borehole data is correspondingly dependent on the quality of borehole data. 

Consequently, the quality of these data is integral to the accuracy of any geological 

inquiry. 

Additionally, borehole data may be employed in locating groundwater sources 

for economic and industrial activities. The environmental and economic benefits of 

aquifer locations cannot be overstated, as they are protected zones for water supply for 

domestic, industrial and agricultural purposes (Logan et al. 2001; Russell et al. 1998; 

Schuurman 2004). Groundwater represents a major proportion (about 0.6 per cent) of 

the earth's usable water resource and in some locations it is the only source of water 

supply (Price 1985). Groundwater can be developed when and where it is necessary or 

needed, thus they provide reliable water source with relatively good accessibility. 

However, aquifers - the earth's subsurface water repositories are not uniformly 

distributed throughout the earth's crust (Price 1985). They require geological settings 

that support adequate water movement and distribution, hence the need to protect and 

manage them effectively. 

The importance and applications of well-log data are crucial. Well-log data 

allow subsurface geological investigations such as subsurface mapping for the 

representation of ground stability, aquifer (groundwater repositories) locations and 

mineral deposit sites and their assessment. Most geological applications are currently 

executed with little consideration to the quality of the initial data. Also there exist 

inaccuracies and assumptions built into analytical tools that are employed in model 

design. This causes the propagation of complex uncertainty that can result in 



significant model departure from reality. Hence, this project seeks to design geographic 

models that retain input data variability using rough sets. 

Overall, the use of different data in this study attempts to illustrate the utility 

of rough set for characterizing diverse uncertainties irrespective of the data under 

study. The study underscores the utility and versatility of rough sets: its ability to 

enhance geographic inquiry irrespective of the data; and its flexibility to adapt to 

different effects of uncertainty in human and physical processes. Hence, the 

applications of rough set are broad because it adapts easily to different analysis 

problems. 

1.3 THESIS STRUCTURE 

The preceding sections introduced the research focus and discussed the study 

objectives. This section outlines different components of the study which are 

organized into chapters. The study is organized into five (5) chapters including this 

introductory chapter. 

Chapter two (2) introduces concepts and definitions of uncertainty and 

describes specific aspects of uncertainty in the two data: census data and borehole data. 

Chapter two also provides guidelines for identifying analytical tools in order to 

adequately accommodate specific effects of uncertainty in the data. This chapter 

describes the scale problem in census data and the problem of sediment identification 

and description in borehole data. Limitations which plague spatial analysis tools and 

impede methods for resolving the effect of scale distortions during spatial 

characterization are also emphasized. Finally, analysis tools for assessing uncertainty 

are described. Underlying assumptions and conditions which characterize these tools 

are outlined in order to assess their suitability for addressing specific uncertainties in 

the data. 

Chapter three (3) constitutes the first case study. This chapter describes rough 

sets method, census data outputs and discussions. Rough sets method is developed in 



order to mitigate the scale issue during scale transition. This chapter uses rough sets to 

explore neighbourhood characterization by assessing deprivation levels across multiple 

census scales. It also examines the extent of recent immigrant and deprivation level 

relationships. Scale transition estimates are approximated from large census units to 

small ones and vice-versa. The rough sets approach provides a scale sensitivity measure 

to enhance census estimates made from one census unit (say, DA1) using another (say, 

Chapter four (4) constitutes the second case study. Chapter four describes 

rough sets and transition probability methods, borehole data outputs and discussions. 

It describes methods for limiting the effects sediment identification and description 

problem in borehole data. The section outlines data preparation and structuring and 

specific uncertainties examined separately by rough sets and transition probability. 

These two analysis tools enhance the use of low quality borehole data for 

characterizing the subsurface environment. Borehole data outputs are grouped into 

three categories. First, the GSC standardization scheme is assessed in order to estimate 

the extent of data variation in the MOEE data. Second, transition probability is used 

to simulate sediment transition sequence in the vertical direction. Finally, limitations 

of transition probability simulation are outlined and a simple illustration is used to 

estimate depth and spatial information for specific sediment states and transitions. 

To conclude, chapter five (5) brings together research findings and 

contributions for both case studies. Chapter five integrates both case studies in order 

to demonstrate the utility of rough sets as a .knowledge base tool for characterizing 

uncertainty irrespective of the data or area of application under study. This chapter 

also outlines limitations and recommendations for further research separately for 

census data and borehole data. 

' DA denotes dissemination area 

CT denotes census tract 



1.4 DATA SOURCES & DATA DESCRIPTIONS 

This section outlines the two data: census data and borehole data. It also 

illustrates data sources and their descriptions. Data requirements for this study are 

categorized in two major groups: census data and borehole data, according to the two 

defining research focus. Census data acquired for the study is 2001 Canada census data 

for GVRD, a census metropolitan area (CMA). Three census units which are small 

constituents of the chosen CMA, (that is GVRD) are: census sub-division (CSD), 

census tract (CT) and dissemination area (DA). The 2001 census data are provided by 

the Statistics Canada through Simon Fraser University (SFU). 

The borehole data were provided by Terrain Sciences Division of the 

Geological Survey of Canada (GSC). There are two categories of the borehole data: 

golden spikes and MOEE (Ministry of Environment and Energy) data. Golden spikes 

refer to boreholes with continuous core recovery and provide the highest quality data 

(Russell et al. 1996). Golden spikes were drilled by the GSC, OGS (Ontario Geological 

Survey) and IWA (International Water Association) (Russell et al. 1996). There are 32 

boreholes that constitute the golden spike data scattered over the entire study area - 

southern Ontario. The MOEE data have limited application because they lack 

sediment sampling (Russell et al. 1996) and are provided by private well drillers (pwd). 

Sediment descriptions supplied by pwd are questionable because they often lack 

technical Geoscience training. Hence, resulting sediment identification and 

descriptions are often assigned multiple tags which limit the assessment of accuracy 

levels for the data. 'The sediment descriptions rely on washings brought to the surface 

during drilling and do not describe solid sediment core' (Russell et al. 1996, p196). 

Boreholes from the MOEE data have low reliability (Russell et al. 1996) but 

constitute the most single abundant data available. There are about 62,325 boreholes 

available in the MOEE data. Hence, it provides a unique opportunity for 

characterizing the subsurface from high quality data (e.g. golden spikes) (Russell et al. 

1996). 



CHAPTER 2: 
UNCERTAINTY & MODELS IN GEOGRAPHIC 

INFORMATION 

The preceding chapter introduced the study and outlined key uncertainties for 

the both case studies. This chapter describes conceptual framework of uncertainty and 

common computational techniques for modelling uncertainty. The chapter also 

describes detail uncertainties in the two data: census data and borehole data. 

2.1 SOME DEFINITIONS OF WCERTAIN1"Y 

Uncertainty is a persistent and a common problem in most information 

systems. Uncertainty has many definitions. In the information sciences, for example, 

uncertainty 'relates to the truth or the conformity to reality of an information item' 

(Dubois and Prade 1988, 2). Uncertainty is assessed in relation to the degree of 

confidence in an information item (Dubois and Prade 1988). Confidence as a 

component of an information item is an index of reliability of an entity (Dubois and 

Prade 1988) which can be used to evaluate the uncertainty in information item. 

In GIs, Dutton (1989, 126) defined spatial uncertainty as an inaccuracy that 

'occurs when no model of gound truth exist or can be agreed upon in relation to a 

particular set of measurements'. Zhang and Goodchild (2002, 6) described uncertainty 

in relation to spatial databases as a 'measure of the difference between the actual 

contents of a database and the contents that a current user would have created by 

direct and perfect accurate observation of reality'. Dungan (2002, 26) described 

uncertainty as 'quantitative statement about the probability of error'. Allan (2003, 190) 

described uncertainty as a 'global term to encompass any facet of data, its collection, its 

storage, its manipulation or its presentation as information which may raise concern, 

doubt or scepticism in the mind of the user as to the nature or validity of the results 
I 

intended message'. Pang (2001, 2) defined uncertainty as 'a multi-faceted 

characterization about data, whether from measurements and observations of some 



phenomenon and predictions made from them'. It may include 'error, accuracy, 

precision, validity, quality, variability, noise, completeness, confidence and reliability' 

(Pang 2001, 2). 

These descriptions of uncertainty show that certain aspects of uncertainty are 

exact and attainable (e.g. distance measurement errors), while others ( e g  

indeterminate river banks) are not. The conformity or the simulation of reality in 

these descriptions of uncertainty with relation to geographic data is the basis for 

assessing uncertainty levels in this study. 

In geography, uncertainty may be inherent in describing geographic 

phenomena, acquisition of geospatial data and manipulation processes. Continuous 

features such as mountains and rivers essentially exhibit vague boundary characteristics 

(Burrough and McDonnell 1998) such that their selection must accommodate some 

trade-offs in concepts used to describe them. Subsequent data collection techniques are 

dependent on how these features are conceptualized coupled with inaccuracies in the 

data acquisition tools and methods. Uncertainty can be deliberately introduced in 

geographic data (Worboys 1998) through information handling or mathematical 

operations applied on data. Data aggregation, in census data for example, conceals the 

original data variability and distribution. Analytical tools such as regression and 

correlation approaches to spatial data analysis may inadequately retain the input data 

variability during spatial analysis. 

Uncertainty exists in the whole process of geographic data representation 

through data abstraction, collection, analysis and the use of data (Zhang and 

Goodchild 2002) partly due to the complex nature of geographic reality. Geographic 

reality however, must be simplified and represented in order to facilitate analysis and 

decision-making (Zhang and Goodchild 2002). These selection, generalization, 

symbolization or filtering processes are dependent on geospatial variations and 

heterogeneity in the real world (Lo and Yeung 2002). The use of these data acquisition 

tools for information gathering do not describe even the physical characteristics of the 

geographic environment because geographic reality cannot be reduced to models 



without error (Duckham and Sharp 2004; Zhang and Goodchild 2002). The 

understanding and detection of a variety of uncertainties in geospatial data processes is 

fundamental to the modelling of uncertainty in geographic data. In the following 

section generalized factors which introduce uncertainty in geographic space 

characterization, are outlined. 

2.2 UNCERTAINTY AND DATA QUALITY 

The preceding section described uncertainty and its persistent occurrence in 

geographic phenomena. This section discusses specific elements of data quality through 

which uncertainty may emerge. The presence of uncertainty results in the 

deterioration data quality. Uncertainty has direct influence on data quality because it 

distorts standards for data quality. The components of Spatial Data Transfer Standard 

(SDTS) include lineage, positional accuracy, attribute accuracy, completeness, logical 

consistency, semantic accuracy and temporal information (Morrison 1995). Lineage 

describes original measurements, data acquisition and compilation methods, 

conversions, transformations, analyses and derivations that the data have been 

subjected to and the assumptions applied at any stage during data processing (Clarke 

and Clark 1995). Hence, lineage records the parentage of data by recording data 

changes in its nature, form and format. Positional accuracy refers to the nearness of the 

position of real world entity to the entity's true position in an appropriate coordinate 

system (Drummond 1995). 

Attribute accuracy refers to a fact about some location, set of locations or 

features on the surface of the earth (Goodchild 1995). Completeness shows whether 

each entity instance is present and whether all of its attributes are present, where the 

totality of entity instances is defined by the entities within an abstract universe (Brassel 

et al. 1995). Logical consistency refers to logical rules of structure and attribute rules 

for spatial data and describes the compatibility of a reference with other data in a 

dataset (Kainz 1995). Semantic accuracy is the quality of geographic object description 

in accordance with a selected model (Salge 1995). The quality of temporal information 



describes the level of information adequacy (in terms of temporal, precision, frequency 

and process history) for describing geographic phenomena (Guptill 1995). 

Elements of spatial data quality attempt to enhance data validity for accurate 

and complete geographic inquiries, but Buttenfield and Beard (1994) argue that SDTS 

should incorporate uncertainty of real world conditions. The elements of data quality 

standard seek to enhance validity of data (uncertainty about database descriptions). 

Data quality standards have also focused narrowly on error in data rather than the 

wider consideration of uncertainty (Allan 2003). So, Buttenfield and Beard (1994) 

contended that the validity of geographic reality (uncertainty of real world conditions) 

to be integrated into data quality records. Hence, while standards for data quality are 

starting point for assessing geographic reality, they need to address geographic validity 

by assessing uncertainty of real world conditions. 

2.3 TYPES OF UNCERTAINTY 

The above section described the influence of uncertainty on standards of data 

quality. This section outlines types of uncertainty. The assessment of uncertainty 

establishes the level of certainty for derived information from available (or known) 

data. This assessment involves application of a particular analysis process to certain 

data depending on whether the process is data-driven or method-driven. Cluster 

analysis for single variables, for example, is a data-driven process because data 

distribution remains unchanged and it determines the path of the analysis process. 

Weighting processes, on the other hand, are method-driven because data are subjected 

to analytical tool concepts and assumptions which determine output data distribution. 

Data quality comprises several defining elements including: subjective aspects 

such as fitness-for-use; and objective measurables like deviation from observed or 

attainable true values (Worboys 1998; Lo and Yeung 2002). Restrictions on data 

quality resulting from imperfection can arise for a variety of reasons such as inherent 

and operational errors in data (Worboys 1998). These may be deliberately introduced 

(e.g. census data), inherent in the real-world objects that are under study, or during 



data acquisition (Worboys 1998). Operational errors associated with uncertainty may 

occur during the process of collecting, managing and using geospatial data (Lo and 

Yeung 2002). Goodchild (1989) observed that errors inherent in geographic data 

describe the differences that exist between data model and the geographic truth that 

the model represents (Lo and Yeung 2002). Worboys (1998, 258) observed that 

"deficiencies in data quality, leading to various kinds of uncertainty may be the result 

of several factors: 

Inaccuracy and error: deviation from true value 

Vagueness: imprecision in concepts used to describe the information 

Incompleteness: lack of relevant information 

Inconsistency: conflicts arising from the use of information 

Imprecision: limitation on the granularity or resolution at which the 

observation is made or the information is represented". 

Inaccuracy and error is the deviation from the truth or a value taken to be true 

(e.g. standardized value) with the assumption that the true value is achievable at least in 

theory (Worboys 1998; Zhang and Goodchild 2002). Vagueness (or inexactness) refers 

to the existence of indeterminate location or borderline cases or the lack of a clear 

boundary to define a set of values that fully characterizes an object (Bittner and Stell 

2002; Worboys and Clementini 2001; Duckham et al. 2003; Dubois and Prade 1988). 

Incompleteness arises due to the absence of information in which uncertainty 

can be assessed as the amount of information required for recovering the truth (Zhang 

and Goodchild 2002). Completeness describes the degree of replicability of reality 

through feature abstraction represented in databases. Data acquisition methods and 

standards employed in the creation of spatial databases are essential determinants of 

completeness (Veregin 1999). Incomplete data do not contain the relevant information 

required to fully describe a phenomena under study, partly because of research 

requirements underlying data acquisition and limitation of concepts for data collection 

methods. Incomplete data may be due to poor metadata information. Geographic data 

may be incomplete depending on which ministry or institution acquires the data 



because geographic data collection is commonly selective based on the research goals 

and requirements. Hence, data can be identified or associated with a particular data 

collection agency and vice-versa (Schuurman 2004). A missing material description or 

lack of spatial location in a well-log description represents incompleteness for 

describing sediment distribution structure of that borehole. 

Inconsistency exists as a result of lack of uniformity inherent in information 

and may be due to heterogeneous standards or lack of coherent classification rules 

applied to information (Smets 1997; Veregin 1999). Inconsistency may also result when 

models fail to render valid or reliable outcomes resulting in incoherent conclusions 

where variables function differently under similar conditions (Bosc and Prade 1997, 

290; Smets 1997,229). Well-log data may exhibit inconsistency because there are 

multiple sediment tags and conflicts may persist for spatial and elevation values of 

borehole units. Absence of inconsistency is an indication of the level of internal 

reliability or validity, but its identification does not guarantee possible correction 

(Veregin 1999). Imprecision refers to lack of specificity (W'orboys and Clementini 

2001) in representation or lack of repeatability or the degree of spread of 

measurements. Imprecision and inconsistency relate to the substance or content of 

information item; information is imprecise because data are incompatible with reality; 

in the later, because no consistent pattern exist between reality and abstracted 

information (Smets 1997, 227). Hence, imprecision and consistency can be traced for 

particular geographic information and corrected as they are identified with an 

information item. 

2-4 SQUIPCES OF UNCERTAINTY 

In the preceding section, types of uncertainty have been outlined as broadly due 

to complexity in geographic phenomena and inaccuracies in concepts and tools 

employed for information extraction. This section focuses on sources of uncertainty. 

Uncertainty may arise from a variety of sources depending on the geographic 



phenomena under study or it may be specific to the methods and tools employed in 

data acquisition process. 

Allan (2003) described major sources of uncertainty as: intrinsic uncertainty, 

inherited uncertainty, operational uncertainty and uncertainty in use. Intrinsic 

uncertainty includes inaccuracies in observation, definition, generalization, natural 

variation and operator bias (Allan 2003). Intrinsic uncertainties are associated with 

primary data. For example, in spatial mapping, geometric error may occur as a result 

of measurements on the spherical surface of the earth and its corresponding projection 

onto plane surfaces (Hunsaker et al. 2001). Inherited uncertainties arise from the 

management of primary data for storage or for other applications. Inherited 

uncertainties are linked to secondary data and comprise errors due to: age, relevance, 

scale, format, coverage symbolization or semantics (Allan 2003; Worboys 1998). 

Operational uncertainties arise from inaccuracies inherent in data analysis tools and 

their conditions and assumptions of application. Uncertainty in use is associated with 

the use of data for decision-making. Beard (1989) observed that uncertainty in use arise 

from users' different perceptions or interpretations of the output information (Allan 

2003). 

A persistent difficulty remains because different disciplines conceptualize 

geographic space differently leading to semantic heterogeneity in spatial databases. 

Semantic heterogeneity is much researched (e.g. Kuhn 2001, 2003; Raubal 2001; 

Harvey et al. 1999) though methods for resolving attendant interoperability problems 

remain elusive. The rising need for data sharing requires integrating or reconciling 

different meaning or standards (Harvey et al. 1999). Harvey et al. (1999) suggested 

addressing semantic differences by constructing data sharing environments to develop 

cross-standard exchange mechanisms. This study is not focusing on interoperability, 

but it is worth acknowledging these challenges because they result into uncertain 

information. Plewe (2002) observed that generally, geographic complexity and other 

problems result in uncertainty via two processes: human conceptualization, involved 



with the simplification of reality, and measurements from which formal 

representations are developed to form conceptual models. 

Other sources of uncertainty may be due to physical changes of attribute 

information over space and time (Hunsaker et al. 2001). Most geographic databases are 

static snapshots of reality requiring temporal dimension of features to be considered as 

an integral component of geographic phenomena. For certain analysis such as well-log 

data, temporal change is large and can be ignored for short duration studies. 

Overall, uncertainty manifests itself in diverse ways: through most stages of 

processes with data (e.g. data sampling, conversions, and transformations) to final 

geographical decisions. But, uncertainty may be detected, measured and characterized 

in order to assign a level of confidence to geographic information. Openshaw (1989) 

observed that what most applications need is not exact estimates of error but a level of 

confidence to protect validity of output information. The manifestations of 

uncertainty are diverse and may be specific to a particular data or area of application. 

The following sections, describe some manifestations, detection techniques and 

characterization of uncertainty in two data: census data and borehole data. 

2.5 UNCERTAINTY IN CENSUS DATA 

The preceding two sections outlined types and sources of uncertainty. This 

section describes specific aspects of uncertainty exclusive to census data. Census data 

acquisition and analysis, like any geographic data, are subject to inaccuracies in tools 

and methods employed in the data collection and reporting processes and also partly 

due to complexity of geographic reality. A fundamental characteristic of census data is 

that data are collected at the individual level and reported at area units (Schuurman 

2004; Duckham et al. 2003). In essence, individual data are aggregated to spatial (i.e. 

area) units based on arbitrary subdivision of the area under study. 

Openshaw (1984a) observed that spatial data aggregation is essential to generate 

relevant data and is a convenient way to report data. The collection of data requires 



data aggregation to a larger area unit relative to the observed pattern of the phenomena 

under study. In population health studies, for instance, the spatial association of 

tuberculosis in relation to a particular ethnic group will require data aggregation to an 

area that includes at least one specified ethnic group and the tuberculosis case and vice- 

versa (Dragicevic et al. 2004). However, the spatial units at which data are aggregated 

are one out of many different ways of dividing non-overlapping area units for spatial 

analysis processes (Openshaw 1984a). This uncertainty of arbitrary subdivision of area 

units for spatial analysis purposes is often referred to as the Modifiable Areal Unit 

Problem (MAUP). 

2.5.1 The Modifiable Areal Unit Problem (MAUP) 

The MAUP is a fundamental spatial analysis problem inherent in all aggregated 

data where results are susceptible to the configuration (that is, shape and size) of spatial 

units at which data are analyzed (Openshaw 1984a). In other words, the MAUP is the 

process where different spatial unit configurations result into different and conflicting 

results (Fotheringham and Wong 1991; Reynolds 1998; Davis 2003; Klinkenberg 2003). 

This influences subsequent results of analysis made on such data, and also how these 

results are interpreted which may lead to the problem of ecological fallacy. Ecological 

fallacy describes the inaccuracy resulting from spatial analysis of area data applied to 

individual level or the application of aggregate data relationships to individual 

relationships (Tranmer and Steel 1998; Marceau 1999). Openshaw (1984a) provided a 

comprehensive study into the MAUP, and identified two subcomponents of the 

problem as the scale problem and the aggregation problem. 

The scale problem is a variation in analytical results when data are increasingly 

aggregated into smaller or larger spatial units (Barber 1998). Aggregation effect results 

because the spatial units are modifiable (Openshaw 1984a). That is, there are many 

different ways of subdividing an area for aggregation at the same scale. The aggregation 

problem is the variation in analytical outcomes due to alternate or different 

aggregation of area units at the same or similar scales (Openshaw 1984a; Barber 1998). 



Openshaw (1984a) and Horner and Murray (2002) observed that the aggregation effect 

occurs because of the uncertainty of how spatial configurations should be defined to 

generate a fixed number of area units. 

The effects of MAUP has being tackled in many studies to minimize its effect 

on grouped data analysis. It effects seemed to have resisted many mathematical tools 

and methods. Openshaw (1984a), for example, suggested optimal zoning system to 

create homogeneous units and Barber (1998) recommended combining similar units 

during aggregation to preserve original data variability. The creation of spatial units 

with least variance to curtail the aggregation effect can only be optimized for a single 

variable at a time. In addition, spatial heterogeneity and variability inherent in 

geographic data will not permit uniform spatial units for multiple variables. Real- 

world scenarios will require single area definition for spatial analysis, and least- 

variance spatial unit definition may be varied depending on the variable under 

consideration. The aggregation problem investigation requires individual level data to 

create modifiable units for different aggregations at the same scale. The aggregation 

problem investigation is beyond the scope of this study due to lack of individual-level 

data. 

2.5.2 The Scale Problem 

The scale problem is the variation in analytical results when data for a 

particular set of spatial units are aggregated into smaller or larger units for analysis 

(Openshaw 1984a). In the 2001 Canada census data, three common census units at 

which data are reported are: census sub-division (CSD), census tract (CT) and 

dissemination area (DA). The CSD represents the largest of these census units followed 

by CT, a medium size census unit and DA is the smallest census unit. Figure 2.1 

illustrates these three census units (that is, CSD, CT and DA) and their relative sizes. A 

CSD represents a municipality or an area that is deemed to be equivalent to a 

municipality. A CT usually has a population of 2,500 to 8,000. They are located in 

large urban centres that have an urban core population of 50,000 or more. A DA 



represents small areas consisting one or  more neighbouring blocks, with a population 

of 400 to 700 persons. 

So in the 2001 census data, for example, DA data aggregated to C T  level 

represents a scale problem because a C T  is a census unit which consists of two o r  more 

DA entities. This is a fundamental characteristic of all spatially grouped data for which 

census data are an example. Census data are gathered at fine spatial resolution and 

results are presented in aggregated form at coarser spatial resolution for privacy and 

other reasons (Schuurman 2004; Duckham et al. 2003). The scale problem can be 

considered analogous to scaling defined by Javis in Marceau (1999) as information 

transformation from one scale to another where upscaling is the information 

derivation from small to large scale and downscaling is information decomposition 

from one scale into its constituents at a smaller scale. 

Figure 2.1: Three sample census units (CSD, CT and DA) and their relative sizes 
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A real challenge in the scaling process is the non-linearity between phenomena 

processes and the inherent heterogeneity of geographic properties that determines the 

rate of the processes (Jarvis 1995). Here, we are concerned about the effect of scale on 

statistical results and models when using aggregated data (Marceau 1999) and not the 

scaling in the natural sciences concerned with spatial patterns and associations at 

different scales. The scale problem considered with regard to aggregate census data can 

be restated as the process where statistical results and relationships for aggregated data are 

dzfferent for the same set of data at different scales. The scale issue is recognized as the 

uncertainty of the number of spatial units required for spatial analysis (Openshaw 

1984a). 

Figure 2.2: The Scale Problem - Map of Recent Immigrants at two scales (CT & 

DA) 

The uncertainty specific to census data investigated in this study is the one 

associated with the scale problem. It involves the spatial transition of census data from 

DA to C T  level in order to explore the spatial pattern of the scale effect. Figure 2.2 

illustrates the spatial variability lost consequent to aggregation during the spatial 

transition from DA to C T  and the increasing spatial heterogeneity within individual 



census tracts (CT). Analysis of the spatial pattern due to the scale problem requires 

analytical tools that will retain the outputs at the original scales for accurate 

determination of disparities between different scales. 

Hence, analysis tools which degrade input data distribution and introduce 

different spatial patterns between input variables are inadequate for this analysis. Many 

analytical methods have been applied on aggregated data to predict and minimize the 

effects of the MAUP. Among the analytical tools is multivariate statistical analysis by 

Fotheringham and Wong (1991, 1025) who applied multiple linear regression and 

multiple logit regression models in examining the sensitivity of estimates to variations 

in scale and spatial units. They concluded "The modifiable areal unit problem is shown 

to be essentially unpredictable in its intensity and effects in multivariate statistical 

analysis and is a much greater problem than in univariate or bivariate analysis. The 

results of this analysis are rather depressing in that they provide strong evidence of the 

unreliability of any multivariate analysis undertaken with data from areal units". 

Nakaya (2000) also examined the solution of optimal zoning system to MAUP and 

observed that the approach is suitable for spatial anomaly determination but presents a 

biased overall pattern. Openshaw (1984a) also investigated multiple dimensions of the 

MAUP and observed that the problem is best understood by empirical experiments 

and that MAUP should be considered a geographical problem rather than a statistical 

one and tools be developed as such to handle it. Further, he concluded that there are 

no convincing alternative techniques for managing spatially aggregated data in a 

statistically sound framework and suggested more radical non-statistical approaches to 

handling the problem. Following is a brief description of limitations identified with 

common analysis tools such as spatial regression and correlation, autocorrelation 

measures, multivariate statistical analysis, etc on spatially grouped data. 

2.6 SOME LIMITATIONS OF COMMON SPATIAL ANALYSIS TOOLS 

The preceding section discussed the relevance of data distribution as a 

precondition to resolving the scale issue and summarizes some early approaches to 



limiting the effects of MAUP. This section outlines specific characteristics of spatial 

data which are difficult for most analysis tools to handle. The underlying problem is 

that analytical tool assumptions do not always accommodate characteristics of the data 

and resulting outputs are disjunct from reality because the method is tool-driven 

rather than data-driven. Below, is a description of common analysis tools with their 

inherent assumptions and conditions required from data. 

Spatial analysis involving regression and correlation are valuable predictive and 

modelling tools allowing the creation of numerical terms to control one variable 

(dependent) from a single or multiple (independent) variables (Shaw and Wheeler 

1994). These tools attempt to provide numerical prediction of geographic events based 

on specific assumptions between the predicted and predictor variable(s). An overview 

of some inherent inadequacies with regards to geographic information is described 

below. 

The requirement of variable normality prohibits the use of percentages in 

regression models and requires a natural logarithm transformation which leads to 

complex conversions and loss of numerical clarity (Shaw and Wheeler 1994). Excessive 

disparity of intermediate output from the input data distribution due to data 

transformation can be considered loss of relative accuracy in the spatial model. Data 

normality requirements, however, are necessary for illustrating sound model-based 

inferences and determining statistics with variability that are less influenced by outliers 

(Griffith et al. 2003). Identification of outliers can easily be made for data acquired 

with repeated measurements mostly in the physical sciences. However, for geospatial 

data, spatial locations must be reconciled with attribute characteristics. This divide of 

analytical tool requirement and geographic data reality poses a conflict between 

derived model and data; resulting in data conformity to model requirements. But, the 

empirical data distribution (which conforms to the conceptual normal distribution 

theory) will yield reliable confidence intervals constructed for normally distributed 

error term assumptions (Griffith et al. 2003). So, the reliability and accuracy of these 

models are dependent on the input data characteristics, particularly data normality. 



Next, the derivation of spatial relationships among data elements is a problem 

for unique data distributions. For example, in a complementary class such as gender 

groups of male and female have a pre-determined relationship such that as one 

increases the other decrease (Shaw and Wheeler 1994). These relationships may 

indicate strong or no spatial association but the variables may be spatially dependent 

on each other. Also the assumption that errors in regression models are statistically 

independent will often not be plausible due to spatial dependence in the sources of 

error (Lark 2000; Shaw and Wheeler 1994). Lesch et al. (1995) recognized this problem 

and suggested that the test of independence be applied to the residuals from regression 

models (Lark 2000). They recommended that regression only be used when the 

residuals appeared to be independent - a very restrictive condition for both single and 

multiple variable approaches (Lark 2000). Total errors in such models cannot be 

ascribed solely to the dependent variable alone because the independent variable may 

also be subject to error. The identification of independent and dependent variables 

may be difficult in cases where process-response relationship is not clear (Lark 2000; 

Shaw and Wheeler 1994). 

In addition, statistical dependence may not necessarily imply valid geographical 

relationship between the variables (Lark 2000; Shaw and Wheeler 1994). A regression 

or correlation model may suggest a link or strong relationship between variables and at 

the same time the variables may just be responding simultaneously to different or 

unknown variable(s). Also there may be unique spatial considerations, such as spatial 

autocorrelation, geographic data dependencies, etc which may confound standard 

statistical approaches. An apparent result of these implications is the loss in variability 

of the predicted (or dependent) variable with regards to input (or independent) 

variable(s). These limit attempts to minimize the effects of MAUP in spatial analysis 

processes on aggregated data. Comparisons of various indices from spatial analysis 

processes at different spatial resolutions do not resolve or minimize the effects of 

MAUP because these analyses do not often retain the input data distribution. 
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Figures 2.3 and 2.4 are explicit examples of significant loss of input data 

variation and distribution inherent in spatial analysis processes. The maps are of the 

same spatial extents and census tracts. Figure 2.3 represents the input variable and 

Figure 2.4 is the spatial analysis output combining multiple variables. The spatial 

variation even at the same census scale is lost in this spatial analysis approach. This is 

not unique to spatial regression and correlation analyses alone but also to other spatial 

analysis tools such as factor and cluster analysis and spatial autocorrelation measures 

like Moran's I and Geary's Ratio. 

These tools rely on global measures that must find best fit models based on 

some trade-offs in the input variable characteristics. But many approaches to 

improving model reliability and accuracy work by increasing input data volume or 

collecting data at small resolution or short temporal duration to satisfy central limit 

theory requirement. The central limit theorem which states that data normality can be 

achieved with sufficiently large data collected for a particular phenomenon does not 

apply to non-random data samples (Shaw and Wheeler 1994; Lark 2000). Also 

geospatial data are often dependent and heterogeneous requiring tools that can retain 

input data variation irrespective of spatial resolution or temporal dimension at which 

data are acquired. 

2.7 UNCERTAINTY IN WELL-LOG DATA 

The previous section outlined limitations associated with analysis tools in 

spatial data analysis. It illustrates how these inaccuracies propagate from known data 

into uncertainty during analysis. The section also suggested the need for non-statistical 

tools to retain data distribution during spatial analysis. This section identifies specific 

uncertainties inherent in well-log data. 

Well-log data are geological samples mostly collected during groundwater 

investigation through borehole or water-well. A borehole or well is a vertical 

excavation constructed mainly for the purpose of groundwater extraction, subsurface 

exploration, artificial recharge and disposal of sewage or industrial waste (Tolman 



1937; Tood 1964). These data may constitute key elements in determining the accuracy 

of subsequent applications using well-log data. The influence of data quality on 

resulting geographic representation cannot be over-emphasized as reliability of 

geological model resulting from data are determined by the quality of the original 

well-log data. 

In Canada, borehole data are one major data source for subsurface study. Well- 

log data are employed in subsurface mapping of geological settings and requires 

accurate identification and description of the subsurface geology. Subsurface modelling 

provides a means of understanding subsurface geologies, which accounts for the 

distribution and movement of groundwater. However, because subsurface lithologies 

are hidden below the earth's surface, it is difficult and expensive to obtain samples 

(Schuurman 2004). In Canada, water well drillers are the primary source of well-log 

data (Schuurman 2002) involved in subsurface geologic material identification and 

description. Regrettably, due to the variability in experience and training of these 

private well drillers, the well-log data varies considerably in its level of detail, with 

many soil deposits and rock formations being misrepresented and several descriptions 

being given for one material unit. This has resulted in different lithological terms being 

used to describe the subsurface in British Columbia (Schuurman 2002) resulting in high 

variability in geological formation within a small region. Schuurman (2002) observed 

that this figure far exceeds the actual material distribution in the subsurface geology. 

A snapshot of material descriptions of well-log data collected by the private 

well drillers is as shown in Figure 2.5. The data signify not only lack of experience in 

subsurface material identification and description on the part of the well drillers, but, 

also inherent complexity in the geological structure of boreholes. A borehole 

comprises continuous geological units which for purposes of geological analysis must 

be discretized and collected as distinct entities. The continuous characteristic of 

sediment units of a well-log data partly reflect the difficulty experienced by the well 

drillers in identifying the material limits and the struggle to differentiate between 

materials in assigning single tags to borehole units. 



Figure 2.5: Sample borehole data material description by private well drillers 
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Also there exist gradual material transitions between different sediment types 

confusing the well drillers to assign multiple material tags. A single borehole unit is 

not given a distinct tag, suggesting that a material unit may belong to more than one 



category whenever an attempt is made to place them in single group. This is an explicit 

illustration of inherent geological complexity and the uncertainty experienced in 

classifying geological space. This uncertainty is what is investigated in this study with 

regards to well-log data. 

Immediate and apparent consequences of this well-log data collection process is 

the high geological variability and distribution within boreholes and between 

boreholes, which many applications find challenging and demanding to support. 

Figures 2.6 and 2.7 illustrate this high geological material heterogeneity within and 

between boreholes from such data. 

2.8 WHY CONSIDER GEOGRAPHIC DATA UNCERTAINTY 

The preceding sections (sections 2.3 and 2.5) have identified specific 

uncertainties in the two data used in this study. This section discusses the relevance of 

integrating uncertainty into geospatial analysis. Uncertainty exist in all forms of 

geographic realities, mandating uncertainty integration into all geographic information 

systems (Smets 1997). 

Models resulting from geographic information systems are always imperfect 

(Zhang and Goodchild 2002; Smets 1997; Hunsaker et al, 2001). This may partly be 

due to inherent complexity in the real-world and inaccuracies in tools and methods 

employed in geographic model development. For instance, most geographic spaces are 

continuous, while observations must be discretized to allow data analysis and facilitate 

decision-making (Goodchild et al. 1994; Zhang and Goodchild 2002). Optimal and 

accurate representation of geographic complexity in simple and complex models may 

be impractical, but the assessment of model accuracy is important for the use of data to 

certain applications. This was clearly recognized by Openshaw (1989, 265) who 

observed that "... what many applications seem to need is not precise estimates of error 

but some confidence that the error and uncertainty levels are not so high as to render 

in doubt the validity of the results in a particular data specific situation". 



Openshaw (1989, 265) identified two approaches to minimizing uncertainty: 

". . . develop adequate means of representing and modelling uncertainty and error 

characteristics of spatial data; and secondly, to develop GIs related methods and 

techniques that can explicitly take error into account during operations with spatial 

data". The first approach requires conceptual model and methods that can fully 

accommodate spatial data properties; it can be considered a general broad-based 

approach for most geographic analysis. The second technique is what is considered in 

this study: applying analytical tools which minimize uncertainty in spatial analysis 

processes to safeguard final decisions. The method is not aimed at total eradication of 

uncertainty in geographic analysis processes, but the application of analytical tools that 

utilize available information to minimize or lessen quantifiable inadequacies which 

render spatial decision-making sour. 

Additionally, digital geographic information from computers are trusted to be 

of high accuracy and precision (Keukelaar 1999; Duckham and Sharp 2004; Motro 

1997). The integrity of geographic information is related, however, to geographic 

reality. Geographic inquiry dependent on digital databases must be comparable to 

reality in order to maintain spatial data reliability and protect integrity of geographic 

decisions. 

2.9 ANALYTICAL TOOLS - UNCERTAINTY MODELS 

The preceding sections have outlined specific aspects of uncertainty in the two 

data: census data and well-log data. The sections below will identify and describe 

analytical tools for characterizing uncertainty, their assumptions and conditions of 

application. 

There are a variety of analytical tools and methods employed in minimizing the 

effects of uncertainty in geographic information. Depending on what is identified to 

describe uncertainty, certain methods are applied in controlling its occurrence and 

propagation. Dominant and common in many approaches is the conventional error 

propagation inherent in many analytical processes using probability distribution. 



Error models may be formulated using stochastic processes capable of simulating a 

variety of known error possibilities or inaccuracies identified with analytical processes 

(Abbaspour et al. 2003). These error models aimed at minimizing residuals in the 

modelling process in order to bring the model close to input data. Uncertainty 

assessment, however, goes beyond reducing error during modelling processes but 

attempts to replicate reality or data distribution. This chapter outlines different aspects 

of uncertainty modelling by using available information to develop models, which 

closely characterize reality. Four prominent tools for uncertainty modelling are 

probability and stochastic models, fuzzy set theory and rough set theory. Following is 

a brief outline of their respective approaches to uncertainty modelling. 

2-10 PROBABILITY AND STOCHASTIC MODELS 

The theory of probability is an advanced mathematical tool with clear and 

standard concepts. The probability of an event is a number expressing the degree of 

chance or belief that an event will occur or a proposition is true (Henri et al. 1997). 

Probability values range from zero (0), signifying a false proposition or an event will 

not occur to one (I), indicating occurrence of an event or a true proposition. 

Probability theory has enriched and strengthened the analysis of geographic 

data and their applications in scientific research have an advantage of well understood 

concepts (Zhang and Goodchild 2002; Duckham and Sharp 2004). Probability concepts 

have been employed in diverse disciplines of geography with certain degrees of success, 

for example, Manslow and Nixon (2002) evaluate the ambiguity in a sensor's point 

spread function (PSF) on the information it acquires; Dowd and Pardo-Iguzquiza 

(2002) investigated the model of uncertainty in geostatistical analysis for geological data 

using stochastic method; Diggle and Ribeiro (2002) utilized Bayesian approach to 

spatial interpolation smoothing in order to accommodate uncertainty associated with 

unknown value determination for model parameters; Brunsdon 2001 also employed 

Bayesian models for determining catchment zones for schools. The list continues, but 

there are conditions and assumptions, which must be satisfied for satisfactory results. 



Probability and stochastic models are dependent on random variation and 

independent data. The random requirement does not accommodate spatial 

dependencies, which are highly associated with geographic data. The independency 

condition is inflexible to allow gadual transition of spatial phenomena that are 

characterized by vagueness. The conditions for probability and stochastic models are 

complex and are difficult to maintain (Duckham and Sharp 2004). For example, we 

apply probability if and only if residuals appear to be independent. Some analytical 

processes, however, are carried out with less regard to these conditions, probably 

ignoring their consequence or hoping their effects are minimal. Errors from spatial 

data are characteristic of the data under study and Zhang and Goodchild (2002, 87) 

observed that "all spatially distributed data demonstrate spatial dependency to a certain 

degree and so do spatial errors". In other words, uncertainties in geographic data must 

reflect trends underlying the data. Hence, for probabilistic and stochastic approaches 

to yield satisfactory results, both data and error characteristics must satisfy prevailing 

conditions. 

2.11 STOCHASTIC SIMULATION - MARKOV CHAIN MODEL 

The section above discussed probabilistic and stochastic restrictions on data in 

order to yield satisfactory outcomes. This section describes one stochastic model - 

Markov chains - and its approach to characterizing uncertainty. The Markov chain is a 

dynamic probabilistic model for analyzing complex systems using the concept of state 

and state transitions (Howard 1971). A system's state represents all descriptive values, 

which characterize the system at any instant. The dynamic behaviour experienced by 

the system from one state to another is called state transition or simply transition. 

Some processes whose states and transitions are finite and whose probabilistic 

character is random possess a Markov chain. So, if the probability of a process's state is 

dependent on only the present state for a given transition period then the process is 

called a Markov chain (Elfeki and Dekking 2001; Howard 1971; Carle and Fogg 1997). 

The statistical description of a system's process using Markov chains requires the 



specification of conditional probabilities of all individual states in the system. The 

specification of these probabilities can in itself be a problem and its implementation 

could be complex (Howard 1971). 

Markovian assumption is employed to simplify both the complex behaviour of 

the system and the problem of specifying the process. The Markov dependence 

assumption is: given the present, the future does not depend on the past, in other 

words, only the present state characteristics of the process are relevant in determining 

its future behaviour (Elfeki and Dekking 2001; Howard 1971; Carle and Fogg 1997). 

In other words, the probability of future transitions of each state in the system depend 

only on the present state occupied. For instance, consider a borehole with which equal 

depth intervals (say 0.5 metres) are marked from the top down to a specified depth. By 

using this equal depth interval as borehole state transitions, different material states 

could be identified (say sand, gravel, silt, etc). Hence, borehole material transition from 

one state (say, silt) to another, given the present conditions, is not dependent on the 

material's past occurrence. That is, Markov model of spatial variability assumes that 

local occurrence of a category depends entirely upon the nearest presence of another 

category and independent of more distant occurrences (Carle and Fogg 1997). 

The validity of this assumption is the concern of many complex system analysts 

because the compatibility of this assumption to practical observations is integral to 

model accuracy. It is however, analogous to first law of geography which states that all 

things are related but near things are more related than far things (Tobler 1970). While, 

no experimental results can fully support the Markov assumption, there are neither 

practical processes that are entirely non-Markovian (Howard 1971). 

2.1 1.1 Transition Probability Matrix 

The preceding section discussed the Markov chain concept and assumptions for 

the treatment of uncertainty. This segment describes a key ingredient - transition 

probability for implementing the Markov chain. The conditional probability 

specification of a system's state and transition processes forms an integral component 



to the implementation of the Markov model. So, a Markov process is defined by 

specifying for each state and transition time, the probability of making the next 

transition to each other state given the present conditions. The transition probability, 

Pij is the probability that a process presently in state i will transit to state j after its next 

transition (Howard 1971). A transitional probability is thus, obtained by dividing the 

frequency of transitions by the frequency of the state in question. It represents a 

conditional probability, the probability to move to state j, given that the subject is in 

state i. The transitional probability is not the same as joint probability, which reflects 

the overall probability of observing a certain transition (it is computed by dividing by 

the total number of observations). The transition probability, Pij satisfies the 

probability unit scale requirement that is: 

O I P i j  I l f o r  l I i , j  I n  

where n is the number of transitions. 

For a finite number of transitions, n where the process must occupy one of its n states 

after each transition, the sum of all transition probabilities must be one (1.0). 

ZF', = 1.0 For all i = 1,2,3, ..., n 
j=l 

The transition probability that describes a Markov process is represented by a square 

(nx n order) matrix called transition probability matrix (Pt) with Pij elements. 

This transition probability matrix, Pt is a stochastic matrix, that is a matrix whose 

entries cannot lie outside a unit scale (0, 1) and whose row's sum is one (Howard 1971). 

The transition probability describes categorical data dynamics by revealing 

information about the underlying structure of the data sequence (Lemay 1999). The 



transition probability matrix forms a fundamental framework and remains the first 

step into the Markov process modelling. 

2.11.2 Multistep Transition Probability 

The assignment of probability values to future states for n number of 

transitions given the present condition is one practical problem most complex system 

analyst's face. In other words, given the present borehole condition what is the 

borehole state after n number of transitions? This raises the question of how does the 

present condition and the number of transitions influence the condition of future 

states? The quantity @ij(n) is called the n-step transition probability of the Markov 

process from state i to state j (Howard 1971). The multistep transition probability 

@ii(n) is related to the transition probability pij. The multistep transition probability 

can be written into an n x n matrix as: 

For a process starting at state i to another state j after (n+ 1) transitions, the multistep 

transition probability matrix @(n) and the transition probability P are related by the 

equation: 

@(n + 1) = @(n)P for n= 0, 1, 2, ... 

@(O) = I where I is an identity matrix 

For successive n transitions, the multistep transition probabilities are: 

@(O) = I 

@(I) = @(O)P = IP = P 

@(2) = Q(1)P = P2 

@(3) = @(2) P = P3 

Thus, in general, @(n) = Pn for n= 0, 1,2, ... 



The multistep transition probability equation is a fundamental relation with each row 

specifying the probability distribution that will exist over the states of the process after 

n transitions for each possible starting point (Howard 1971). 

The multistep transition probability equation raises a question of validity for 

extremely large numbers, that is, the response of the matrix elements as n increases. It 

is apparent that when n increases then the difference between rows of n and (n+l) 

decreases and will eventually approach zero. For example, consider the following 

multistep transition probability matrix for increasing power of n: 

Hence, for extremely large values of n, the multistep transition probability becomes: 

So, for very large values of n: O = O(m) = P" is called the limiting multistep 

transition probability (Howard 1971) because the deviation of subsequent rows for 

closed states approaches a limiting value of zero (0). This mathematical proof validates 

the Markov assumption, because there is a lost of dependency of future states on past 

states and it is only the current state that reflects what happens next. In sum, the 

transition probability provides a means of simulating hidden patterns in complex 

systems. 

2-12 FUZZY SET THEQRY 

The section above discussed one stochastic simulation, that is, Markov chains 

and its basic framework for implementation in minimizing the effects of uncertainty. 



This section describes another tool - fuzzy set theory - for characterizing uncertainty. 

Fuzzy sets concept was introduced by Zadeh in the 1960s to deal with uncertainty in 

complex systems (Dubois and Prade 1988). 

In classical logic, sets are constructed with definite set characteristics enforcing 

strict outcomes; either an element belongs to or it does not belong to a set. For 

instance, an observed area is classified as water or land with sharp grades of set 

membership which does not recognize the interaction that may occur for gradual 

transition of one geographic phenomenon to another. While conventional set theory 

can be employed to certain applications (crisp and independent physical features such 

as roads, houses, etc) with high degrees of success, this approach needed modification 

for quantitative analysis of geographic information. 

Geographic space is a continuum with panicles interacting at different levels to 

form features abstracted even at one scale of observation coupled with complexity of 

geographic reality. To account for this complexity, fuzzy set theory was introduced to 

measure the degree of membership of an element to a set (Dubois and Prade 1988; 

Jiang 1998). In essence, fuzzy set theory was designed to accommodate partial set 

memberships, vague boundaries and allow gradual transition of one phenomenon to 

another. In fuzzy sets, each element is identified with a real number within the unit 

interval (0, 1) which describes the degree of membership or belongingness of that 

element to a set (Duckham and Sharp 2004). Zero (0) signifies no membership while 

one (1) indicates full membership, so the closer the result of fuzzy membership value is 

to 1 the higher the degree of its membership. 

Interest in the application of fuzzy set theory to uncertainty in geographic 

information has advanced over the past two decades (Duckham and Sharp 2004). 

Fuzzy sets have been applied in a variety of areas within geography such as remote 

sensing, environmental and ecological systems, etc. Lagacherie et al. (1996), for 

instance, used fuzzy sets to handle uncertainty in delineating soil boundaries; Fortin 

and Edwards (2001) also employed fuzzy sets to demarcate vegetation boundaries in 

remote sensing; Allen et al. (2002) utilized fuzzy set theory to model and visualize 



three dimensional structure of an aquifer; Carranza and Hale (2001) mapped mineral 

distribution using fuzzy set theory to redirect surficial exploration processes to 

potential sites; Dragicevic et al. (2001) modelled urban growth dynamic using fuzzy 

logic. There are numerous and diverse applications of fuzzy set in geographic 

information. 

Fuzzy membership values are appropriate for accommodating different levels 

of complexity in geographic data which are characterized with vague or fuzzy 

characteristics. However, the assignment of fuzzy membership values is difficult 

because values are often subjective, a characteristic usually regarded as a weakness in 

the application of fuzzy set theory (Duckham and Sharp 2004). Fuzzy membership 

values are integral components of fuzzy sets (Lin 2001), thus, the level of accuracy of 

fuzzy set theory is highly dependent on set membership function formulation. Lin 

(2001) observed that since probability is the most common concept of uncertainty, 

fuzzy membership functions can be easily confused as probability. The unit interval 

for both probability and fuzzy membership values can also be misinterpreted to apply 

these numerical values interchangeably. Probability values are determined specifically 

with reference to probability space as a measure of event occurrence based on some 

observed population. While fuzzy membership values can refer to probability values, 

Lin (2001), pointed out that the identification or association of probability space is 

required for satisfactory application. Fuzzy membership values have primarily been 

assigned using expert knowledge, probability and possibility distributions. The section 

below describes probability and possibility distributions for assigning fuzzy 

membership values. 

2.12.1 Probability and Possibility Distributions 

In the preceding section, fuzzy sets theory is described. The above showed the 

problem of assigning membership function values, which may be subjective. This 

section discusses two ways of assigning membership values; excluding expert 

knowledge. 



When dealing with uncertainty in geographic information, certain truth-values 

must be assigned to data elements of the real world they represent in order to assess the 

degree of confidence in data. This truth-value assignment may be difficult due to 

uncertainty caused by geographic complexity. Approximate methods are used in 

determining possible values based on available information (Bonissone 1997). 

Commonly used approximate techniques are probability and possibility techniques. 

Probability concepts are well developed and theoretically advanced uncertainty 

model. The probability of an event is a number expressing the degree of chance or 

belief that an event will occur or a proposition is true (Henri et al. 1997). Probability 

values range from zero (0), signifying a false proposition or an event will not occur to 

one (I), indicating occurrence of an event or a true proposition. Henri et al. (1997,256) 

described three probability perspectives namely; propensity view, frequency view and 

subjective probability. 

In propensity perspective, probability is a physical characteristic of a device 

(e.g. a fair coin), the tendency of a particular coin to show up heads, for example. The 

occurrence of different events is dependent on the physical characteristic of the device, 

and devices could be partially constructed. In frequency view, probability is the 

convergence limit of relative frequencies for repeated random events or the 

characteristic of a population of like events (Smets 1997; Henri et al. 1997), the 

occurrence of a particular geological material (e.g. clay) in a specified borehole, for 

example. Smets (1997) observed that this probabilistic view is the most widely 

accepted, however, the observation of convergence limits is impossible. The 

assumption that past event occurrence pattern will be the same for future occurrences 

is not possible for single events. Threshold specifications are required when 

convergence limits are reached for certain phenomenon. Geographic data, for 

example, exhibit spatial dependency limits called 'sill' used in kriging interpolation 

technique that indicates the variance value at which spatial dependency ceases among 

data variables. 



Subjective probability is a numerical value indicating a person's confidence or 

degree of belief in a proposition or the occurrence of an event using the person's 

knowledge about the phenomena under study (Henri et al. 1997). This probability 

perspective is open to many criticisms such as personal subjectivity and as Henri et al. 

(1997) pointed out, it is contrary to propensity and frequency views as subject to a 

particular observer's perspective. Generally, probability values are determined based 

on some evidence that may be subjective or objective based on available information. 

However, optimal decisions arise from these numerical values with no degree of 

confidence on the real validity or reliability of an event's occurrence or the truth of a 

proposition. 

In addition, geospatial data are often spatially dependent, a characteristic 

contrary to randomness condition of probability distribution. Spatial variability and 

geographic heterogeneity characteristics do not allow the application of convergence 

limits, for example, the application of probability value of clay in one borehole to 

another. Probability applications assume symmetrical pattern of event outcomes 

(Smets 1997); spatial data, however, may exhibit disparate or unequal classes of 

outcomes. The number of geological units (materials) in different boreholes is not 

bound to be uniform in order to enforce symmetrical outputs. Probability values for a 

particular geological material will be different because there are different sediment 

populations in different boreholes resulting in failure of the symmetric condition. 

Possibility theory, on the other hand, was introduced by L. A. Zadeh in 1978 

in connection with fuzzy set theory to deal with uncertainty that accounts for an 

element's association with one or more classes when one attempts to place them in 

specific category (Rokos et al. 2004; Dubois and Prade 1988). The possibility approach 

was introduced with the identification of non-probabilistic uncertainties in 

information systems. Spatial autocorrelation and geographic data dependency, for 

example, do not assume probabilistic conditions of randomness and independency of 

event occurrences. Lagacherie et al. (1996) observed that in fuzzy set theory, the grade 

of membership does not necessarily exhibit random characteristics but does exhibit a 



possibility character. Possibility concept assesses the degree of event occurrences or to 

what extent the occurrence of events are possible and the certainty of event occurrence 

without prior knowledge of probability of its occurrence (Rokos et al. 2004; Dubois 

and Prade 1988). Possibility theory also has descriptive interval values ranging from 

zero (0) signifying impossible events, to one (1) indicating complete possible events. 

Fuzziness is different from randomness which deals with the probability of an 

element's membership to distinct sets, while fuzziness entails the uncertainty of 

belonging to a fuzzily defined set (Piatetsky-Shapiro 1997). Probability values are based 

on evidence from well-defined sets and set definition whose constituents describes set 

population play an integral role in probability value determination. However, in most 

information systems, these set characterizations are not uniquely defined and 

imposition of defined (that is, crisp) sets over fuzzy set will result in conflicting 

membership values. Possibility distribution is designed to allow the description of 

entities which conform to fuzzy constraints or belong to ill-defined sets (Smets 1997). 

A set of highly permeable geologic materials in a borehole based on multiple material 

tags may be vaguely defined for subsurface material classification because constituent 

materials may belong to different sets. Smets (1997) observed that numerical values of a 

possibility distribution do not matter; it is the ordinal system that imposes an order on 

the elements of the domain. He further emphasized that possibility and probability 

values do not necessarily correlate to imply high possibility mean high probability and 

vice-versa, but if an event is impossible it is also bound to be improbable. This 

paradigm does not only approximately quantify uncertainty but also evaluates the real 

validity or reliability of an event occurrence. 

2.12.2 Rough sets Theory and other set (Boolean & Fuzzy sets) Concepts 

The preceding section discussed the assignment of fuzzy membership values 

using probability and possibility distributions. This section discusses rough sets and 

other set concepts: Boolean and fuzzy sets. It is important to differentiate rough sets 

theory from other set concepts and why these concepts are not suitable for the kind of 



uncertainty examined in this study. The following distinguishes rough sets from 

Boolean sets (or classical sets) and fuzzy sets. 

In classical logic, sets are constructed with definite set characteristics enforcing 

strict outcomes, either an element belong to or it does not belong to a set. For 

instance, a river bank may be classified as water or land with sharp grades of set 

membership that do not recognize and account for interactions which may occur for 

gradual transition of one geographic phenomenon to another. Classical logic is based 

on Aristotelian logic where: 

everything is what it is - law of identity, 

something and its negation or inverse cannot both be true - law of non- 

contradiction and 

every statement is either true or false - principle of excluded middle 

(Burrough 1996). 

So in Boolean sets, an element is assigned one (1) or zero (0) (or 'Yes' and 'No') 

to categorize the element as member of a set or not a member respectively. In other 

words, Boolean sets do not accommodate varying set memberships; that is, an element 

is either part of a class or it is not. Boolean sets can be used for some applications (e.g. 

crisp and independent physical features such as roads or houses) with high degrees of 

success. But this concept needs modification for quantitative analysis of geographic 

information. 

In fuzzy sets theory, on the other hand, membership functions enable elements 

to exhibit partial class memberships of different and overlapping sets in order to 

account for multiple states of an entity. Confusion sets, however, may result in cases 

where zones of different fuzzy sets intersect (Burrough and McDonnell 1998). This 

may arise where an element is a ~a r t i a l  member of three or more fuzzy sets which may 

generate two or more intersecting fuzzy zones. For instance, when we select a land 

area based on three characteristics; slope, vegetation cover and soil type. It is likely, at 



least in practice, that some land areas may exhibit overlapping characteristics which 

may result into confusion sets. 

Rough sets accommodate confusion sets by applying set rules to derive lower 

and upper approximation sets, and allow the possibility of partial set memberships. So 

considering the case where land areas are selected based on three conditions: slope, 

vegetation and soil type. When confusion zones arise, then we develop set rules to 

characterize elements that definitely belong and those with partial memberships to 

construct lower and upper approximation sets respectively. The design of set rules is 

dependent on specific data patterns; the two case studies in chapters 3 and 4 

demonstrate sample derivation of rough sets rules. The following section describes set 

characterization using the concept of rough sets. 

2.13 ROUGH SET THEORY 

The preceding section discussed rough sets and other set concepts: Boolean and 

fuzzy sets. This section describes a generalized concept of rough sets in order to 

establish a background upon which to implement rough sets in spatial analysis: for 

neighbourhood characterization in census data; and for subsurface characterization 

using aquifer properties. 

A rough set is a set (that is, a classical set extension) that has a nonempty 

boundary when approximated by another set (Pawlak et al. 1995). In other words, a 

rough set is a conventional set whose boundary is too rough to be approximated by a 

crisp set. 

Figure 2.8: Crisp set characterization into a rough set scenario 

set A 

set B 

boundary 



In Figure 2.8, the set A may be described as having elements in both shaded 

regions. While at the same time it may strictly be described to contain only elements 

in the inner set B. Based on different or the same criteria of observation, set A may be 

characterized as having either elements in set B only or both set B elements and those 

outside (boundary elements). Elements outside set B may exhibit slightly different 

properties based on the spatial or measurement resolution. To handle this, a threshold 

could be set to define set characteristics of set A. But, some elements may still exhibit 

properties that do not necessarily exclude them from the set criteria. Also some 

elements may exhibit different characteristics at different times (today it belongs to set 

A and tomorrow it does not). 

In addition, observations can be made at different spatial resolution or scales. 

At a fine resolution, an element may be found to belong to a set, but found excluded at 

a coarse resolution. So the question is what scale or resolution should we use to define 

or discern observation or measurements made close to boundary elements? At what 

resolution will boundary elements exhibit different characteristics? In other words, 

what is the spatial resolution do we classify elements to belong to one set for having 

indiscernible properties? Rough sets analysis of elementary granules for a geographic 

data can be employed to develop indiscernible relations in categorizing geographic 

space. 

The primary concept of rough set is the indiscernibility relation (Pawlak et al. 

1995) that is developed from elementary sets. Information subsets of entities 

characterized by the same or similar information that are indiscernible are called 

elementary sets (Zhang and Goodchild 2002; Pawlak et al. 1995). Borehole units with 

multiple distinct tags represent indistinguishable elements with each tag characterizing 

the material differently into different categories. Also a census tract with constituent 

distinct dissemination areas (that is, elementary sets) represents a rough set. A rough 

set may be definable if there is a finite union of all elementary sets (Pawlak et al. 1995). 

The concept of rough sets is based on approximation space to effectively 

categorize an information space using patterns inherent in available information 



represented in information (or decision) tables. Rough sets have three approximated 

regions as identified in Figure 2.8 as: lower approximation set, upper approximation 

set and the boundary region. Lower approximation set is a consistent union of all 

elementary sets that are definitely members of the rough set (Zhang and Goodchild 

2002; Duckham and Sharp 2004). Upper approximation set is the union of all 

elementary sets that have nonempty intersection with the entire set; in essence, upper 

approximation set characterizes set items that possibly belong to the set (Zhang and 

Goodchild 2002; Duckham and Sharp 2004). The boundary region comprises 

elementary set elements that result because of the nonempty characteristic of the upper 

approximation set, in other words, the failure of congruency between the upper and 

lower approximation sets. Zhang and Goodchild (2002, 181) and Pawlak et al. (1995, 

91) described the boundary region as the "disparity between the upper and lower 

approximation sets" or the collection of "elementary set elements that are members of 

the upper approximation set but not members of the lower approximation set". 

Hence, there are two necessary conditions for the implementation of rough set 

to multiple or single variables: 

the variable must be categorized to have nonempty boundary when 

approximated by another variable (e.g. sub variable(s)) 

the sub variable(s) which constitute the rough set variable must be crisp sets 

(that is, elementary sets) 

So, a single variable can only be treated as a rough set if and only if it has nonempty 

boundary when approximated by a crisp set. For example, an orange is a crisp set (or 

elementary set) when it is classified into a family of citrus fruits. It is however, a rough 

set when it is approximated by the peel (that is, orange skin) and the pulp (that is, 

inside tissue). Hence, a variable is a rough set; other words it is a crisp set with uniform 

constituent elements (Pawlak et al. 1995). 

Consequently, the elementary set characterization and the definition and 

quality of lower and upper approximation sets play an integral role in the effectiveness 



of rough sets assessment of uncertainty. The quality of set approximation, 

indiscernibility and attribute dependency are concepts which indicate how accurate we 

can predict outputs with a particular set of data (Katzberg and Ziarko 1994). Lower 

approximation set constituents are used to design certain rules because their 

characteristic can be definitely derived from the available information with certainty. 

Similarly, the upper approximation set properties are used to develop possible rules 

since there is some possibility that their characteristics have certain truth values. 

Pawlak et al. (1995) compared the quality of the lower and upper approximation sets as 

belief and plausibility functions respectively which are commonly used in Dempster- 

Shafer evidence theory (a generalization of the Bayesian concept of subjective 

probability). Pawlak et al. (1995) also defined quality of lower approximation as the 

ratio of the number of all elements in the lower approximation set to the total number 

of elements; and quality of the upper approximation is the ratio of the total number of 

elements in the upper approximation set to the total number of elements. For any 

approximation, the accuracy of set element estimation can also be determined to assess 

which approximation process adequately represents the original set characteristics. 



CHAPTER 3: 
FIRST CASE STUDY - CElVSPJS DATA METHODS, 

RESULTS & DISCUSSIONS 

In the preceding chapter, uncertainties associated with spatial data were 

described. Also common analytical tools for handling uncertainty and their 

assumptions and conditions of application were outlined. This chapter constitutes the 

first case study and it recognizes the numerous uncertainties in spatial data but focuses 

on only the scale problem. The chapter illustrates the use of rough sets to mitigate the 

scale issue in census data. In order to examine this scale issue, the case study 

investigates spatial relationship between recent immigrants and deprivation indices in 

the Greater Vancouver Regional District (GVRD). A number of socio-economic 

factors are considered in relation to recent immigrant settlement in Greater Vancouver 

Regional District (GVRD) at census tract (CT) and dissemination area @A) levels. So, 

rough sets will assess recent immigrant and deprivation index patterns at multiple 

census units (that is, CSD, CT and DA). 

Current literatures have identified strong correlations between poverty of CT 

and the proportion of its population who are immigrants (Kassim and Laurel 2000). 

Also rising poverty in Canada raises the possibility that the misery is absorbed by 

certain segments of the population, particularly, immigrants of certain ethnic origins 

(Kazemipur and Halli 1998). This study examines the extent of this relationship in 

order to verify whether the overall index does provide information on whether or not 

the observed trend is applicable to all recent immigrants. 

Census data like other aggregate data pose a persistent challenge that renders 

resulting patterns from this data subject to the census resolution used. Policies are 

implemented with little regard to census units utilized; that is policies may not be in 

conformity to spatial resolution of the census data used to inform policy development. 

Since one fundamental focus of policy development is to ensure that services reach the 



people who need them, spatial data analysis must preserve unique data characteristics 

in model development. Policies may have profound impact on services reaching people 

at a particular place and time, but data analysis methods that aim to replicate reality 

should play an integral role in the development of these policies. But, assumptions and 

conditions of analysis techniques must conform to data characteristics. Hence, 

methods used in this project are geared towards retaining data distribution and 

variation rather than analytical tool characteristics. 

The implementation of census data for spatial model design is aimed at the scale 

problem investigation. The scale issue can only be examined by considering two or 

more spatial resolutions to explore the pattern of each spatial resolution relative to 

each data distribution. A prerequisite for such model development is the preservation 

of data characteristics to permit optimal approximation of model discrepancy due to 

scale transition. A unique technique is rough sets analysis of spatially grouped data. 

While the assumption of variable dependency is required for assessing relationship 

between two or more variables in many analytical methods, it is not necessary in 

rough sets technique. This assumption of variable dependency is required in selecting 

dependent and independent variables, for instance, in most statistical analysis like 

regression and correlation. The spatial dependency assumption among variables has 

fundamental model implications because this may not be valid hypothesis and it is 

predetermining unknown spatial relationship. 

Rough set implementation for spatial data analyzes variables independently 

with no assumption of spatial dependency. For example, a deprivation index for socio- 

economic variables is developed from various variables interacting with different 

characteristics. The following section shows an explicit implementation of sample 

variables in a rough set fashion. 

3.1 ROUGH SET MODEL FOR DEPRIVATION INDICES - CT & DA 

This section describes the use of rough sets in a spatial analysis case study which 

mitigates the scale dimension of MAUP. The scale issue is the result of data 



characteristic changes across scales. A precondition to accommodating scale changes is 

to maintain data distribution from one census resolution to another. Data 

characteristics can be described as the inherent relationships between the data 

elements, which are analogous to spatial relationships in topology. Topology is central 

to spatial analysis functions and is considered most suited for complex spatial analysis 

(e.g. neighbourhood search) (Theobald 2001; Zlatanova, Abdul Rahman, and Shi 2004). 

Rough sets are used to facilitate appropriate grouping of multiple data elements in 

order to characterize attribute space for neighbourhood definition using deprivation 

levels in the following. 

In urban poverty studies, socio-economic factors and ethno-cultural features 

tied to immigration include: immigrant concentrations in census units, country of 

origin, ability to use official language, period of arrival. Ley and Smith (1997) used 

these attributes to describe the extent of deprivation within a census unit. Their 

methodology was to map poverty levels as a chloropleth map. These socio-economic 

variables such as level of unemployment and education and dependency upon 

government transfer payments were identified as representing a significant 

contribution to spatial variation of urban poverty (Ley and Smith 1997). In this study, 

these poverty indicators are extracted from census data as deprivation indices and 

examined using rough sets. Deprivation, therefore, is a neighbourhood 

characterization process where different sub-variables categorize an area unit 

differently. The focus however, is not how these sub-variables are chosen but an 

appropriate representation of each sub-variable distribution in the final output. 

There are several socio-economic variable indicators reported in the census 

data, but these individual data elements have little relevance and application for direct 

and appropriate development of relationships between deprivation index and recent 

immigrants. Recent immigrant information is directly available, but deprivation 

indicators such as standard of education, income level status are available for entire 

census units. So deprivation indices are not specific to recent immigrants, but to entire 

population within a census unit. Major deprivation indices considered are broadly 



classified into categories as education, employment, housing and income levels. The 

individual variables which constitute these categories are outlined in Appendix B1. 

The abstraction of similar deprivation variables for census units (CSD, CT, 

DA) has a limitation on the number of individual indices that forms one major 

category. For example, disparities in data at two census units: CT and DA are reflected 

in the constituent elements for the housing category (see Appendix Bl). A 

diagrammatic illustration of the deprivation index derivation procedure is shown in 

Appendix B2 with no spatial dependency assumed. This derivation process is 

hierarchical and it allows independent analysis of individual variables. Intermediate 

results from the derivation process can be used to explain individual variable patterns, 

for example, to select variables that constitute major deprivation categories. An 

illustration of this pattern is evident in the choice between 'Incidence of low income' 

and 'Low income' (see Appendices B3 and B4). These are different variables assessing 

different aspects of income, but they have consistent patterns of data distribution and 

variation. The frequency distributions which are shown in charts and tables (see 

Appendices B3 to B6) illustrate a uniform trend between the two variables. 

The deprivation variables (e.g income, education, etc) are combined with their 

individual normal distribution values, which retained their unique data characteristics. 

All the normal distribution values are re-scaled into unit intervals from zero (0.00) to 

one (1.00) to allow appropriate and mathematically sound assessment of the 

deprivation indicators. It is worth noting that each data element is homogenized from 

the census data. So the re-scaling of variable intervals into unit interval scale does not 

change original data distribution. 

A sample illustration of deprivation index values is shown in Table 3.1 where 

each deprivation index is considered as a unique category. The rough sets assessment of 

these indicators is to define each index as a unique category. For example, high 

deprivation index category is a rough set because distinct census units have constituent 

deprivation values belonging to multiple categories (e.g. education, income, etc) (see 

Table 3.1). That is, a census tract (say CTUID: 0187.05) has constituent indices (each of 



which is treated as a rough set) belonging to multiple deprivation categories. Set 

criteria for the approximation of lower and u.pper sets are defined in Table 3.2. 

Hence, it is evident that individual census tracts do not have consistent values 

across the various deprivation indicators, and set constituents cannot define each 

category because elements have multiple set memberships. 

Table 3.1: Samwle dewrivation indicator values for set awwroximations 
I 

Very low deprivation indicator (VLDI) Lower approximation: 

Low deprivation indicator (LDI) three to four set inclusion 

CTUID~ 

01 87.05 

Table 3.2: Set category key and criteria for set approximations 

Medium deprivation indicator (MDI) upper approximation: 

High deprivation indicator (HDI) at least one set inclusion 

1 setcategories 

Very high deprivation indicator (VHDI) Modified upper approximation: 
at least two set inclusion 

Note: If an entity belongs to all four upper approximation sets then determine the average of its 
constituent values and place the entity into the upper approximation set of the set range it falls. 
Also apply same rule if an entity belongs to two upper approximation sets. 

Education 

0.781 

Unit Interval 

In Table 3.1, the set constituents for medium deprivation category (MDI) can be 

defined as below: 

Housing 
0.201 

Employment 

0.471 

Set Approximation Criteria 

For Education: Census tracts, CTU1.D: 0186.01, 0191.02 

For Employment: Census tracts, CTUID: 0187.05, 0191.02 

For Housing: Census tracts, CTUID: 0056.01, 086.01, 0191.02, 0184.06 

For Income: Census tracts, CTUID: 0186.01,0187.05 

l ncome 

0.501 

' CTUID is a unique identifier for a CT. 



Applying the set approximation criteria, the lower and upper approximation sets for 

this deprivation category - medium deprivation indicator, MDI are: 

MDhwer = 0186.01,0191.02 

MDIupper = 0187.05, 0191.02, 0186.01, 0184.06, 0056.01 

Modified MDIupper = 0187.05, 0191.02, 0186.01 

In addition, an entity may belong to all four upper approximation sets, for 

example, CTUID: 0184.06. In an effort to reduce set memberships to a minimum for 

manageable assessment of entities, the last criterion stated in Table 3.2 is applied to 

specify entities to distinct sets. The average of the constituent values for CTUID: 

0184.06 is (0.811 + 0.123 + 0.536 + 0.254) / 4 = 0.431 (see Table 3.1). Since 0.431 is 

within the MDI range (that is 0.41 - 0.60), the entity: CTUID = 0184.06 is therefore 

placed into the upper approximation set of MDI. 

In sum, input variables are analyzed based on their distinct property at an 

instant, so entities do not necessarily assume their group characteristics. The technique 

consequently, recognizes the common variance shared by all the input variables and 

the unique variance that distinctively identifies and separates each data characteristic 

from another. Common variances, which exist among variables, situate these variables 

into upper approximation sets, while unique variance isolates specific variables into 

lower approximation sets. Set property is the result of individual data distribution and 

variation, which may be similar to other data characteristics (e.g. see Tables 3.1 and 

3.2). 

3.1.1 Approximation of Deprivation Index Spaces at Dissemination Areas into 

Census Tracts 

The preceding section illustrated the use of rough sets to group disparate data 

characteristics irrespective of the spatial unit (that is, census unit) in question. This 

section employs rough sets to characterize a large census unit (e.g. a CT) using a small 

one (e.g. a DA). A CT is a census unit, which comprise two or more DA entities, and a 



census sub-division (CSD) is a census entity, which comprises multiple CT. 

Deprivation index models are developed for the same group of variables at CSD, CT 

and DA. Distinct DA which constitute a CT may belong to different deprivation 

categories and approximating these component values for a particular CT requires 

aggregation. This gouping of constituent DA values for a CT is necessary to 

determine the deprivation index discrepancy due to the scale transition from DA to 

CT. The resulting model of this technique is two independent deprivation index 

models for all CT. The first model is a deprivation index model with direct variables 

from CT resolution, while the second is a deprivation index model of DA grouped 

into CT. 

The approximation process for individual DA values which constitute different 

CT is illustrated in Appendix B7. Each set value is gouped independently, for 

example, all DA 'Education' constituent values for a distinct CT are aggregated. This 

result into a similar information table developed in Table 3.1 for which set 

approximation criteria can be applied. The set elements for the medium deprivation 

indicator, MDI in the various major deprivation categories are shown below: 

For Education: Census tracts, CTUID: 0133.02 

For Employment: Census tracts, CTUID: 0132.00, 0250.02 

For Housing: Census tracts, CTUID: 0133.02 

For Income: Census tracts, CTUID: 0133.02,0132.00 

Again, applying the set approximation criteria in Table 3.2, using MDI category the 

following constituent units for the lower and upper approximation sets are: 

MDI lower  = 0133.02 

M D I u p p e r  = 0133.02, 0132.00, 0250.02 

Modified M D I u p p e r  = 0133.02, 0132.00 

This illustrates the use of small census units as elementary sets for large census units, 

which are considered rough sets. For example, when a CT is treated as rough sets, then 

its elementary sets are the constituent DA. 



3.1.2 Recent Immigrant Deprivation Indicator (RIDI) Deduction 

The foregoing sections have demonstrated the derivation of the deprivation 

index irrespective of the census unit under study and with no  dependency on any 

specific variable(s). Next, with reference to Appendix B2, this section illustrates the 

derivation of deprivation index for the target population group (that is, recent 

immigrants) t o  establish a spatial association. The spatial association we attempt to  

examine is the spatial relationship between the deprivation index (DI) and recent 

immigrant concentrations (RIC) within specific census units. This spatial association is 

denoted RIDI (that is, recent immigrant deprivation index). 
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First, DI is estimated for all census units as shown in section 3.1. So each census 

unit is assigned a DI value (within 0.00 - 1.00 interval). To allow rough sets operation, 

RIC values for the census resolutions (that is, DA, CT and CSD) are also transformed 

into a unit scale (that is, 0.00 to 1.00). These RIC values are grouped into intervals, 

which conform to the class interval developed for the deprivation index. Few examples 

are: very low RIC interval (0.00 - 0.20), low RIC interval (0.21 - 0.400), medium RIC 

interval (0.41 - 0.60), etc (see Table 3.3 for details). The final step generates values for 

RIDI (also within 0.00 - 1.00 interval) in each census unit. The recent immigrant 

deprived census units are those census entities for which recent immigrant values (that 

is, RIC) match a designated deprivation index (that is, DI). For instance, low (that is, 

0.21 - 0.40) RIC value with very low, low, medium, high and very high DI values is 

. assigned very low, low, low, low and low RIDI values respectively. So, to assign a 

RIDI to a census unit, we examine its RIC and DI values. The RIDI value is the RIC 

value or less because RIDI cannot be assigned to census unit with DI value which does 

not match RIC and vice versa. The set rules for computing RIDI values are illustrated 

in Table 3.3. 

This spatial association (that is, RIDI) is characterized with model magnitude 

and strength. The model magnitude is computed directly by examining the RIDI 

values. But the strength of the spatial association is analogous to the correlation 

coefficient, which is deduced as the ratio of the number of match-value-categories to 

the total number of census units. 

number of matched - value - categories 
Correlatio n coeficien t, r = 

total number of census units 

The number of matched-value-categories is the number of census units which have RI 

and DI values belonging to the same group, say, high RI and high DI are classified into 

high RIDI set. The computation of the correlation coefficient is illustrated in section 

3.6 for the three census units (that is, DA, CT and CSD). 



3.2 INCLUSION OF CENSUS SUBDIVISION DATA 

The inclusion of a third census resolution has become necessary to validate the 

same information at two different spatial resolutions with a different census resolution 

data. The immediate census resolution after census tract is census subdivision (CSD). 

All the data extracted for CT and DA are also collected for CSD in the Greater 

Vancouver Regional District (GVRD). Similar analytical procedures are also taken to 

derive values into a unit scale from zero (0.0) to unity (1.0). Census subdivision unit 

characteristics are approximated from CT and DA by calculating both the average and 

the median of each constituent CSD entity. Hence, all CSD have their calculated 

deprivation indices coupled with two approximated values each of average and median 

values from CT and DA. This permits the investigation of deprivation model 

discrepancy for approximating CSD from CT and DA. Resulting discrepancy can be 

applied to estimated values as net error to be incurred in scale transition between 

similar census data resolutions. 

3.3 CENSUS DATA RESULTS AND DISCUSSION 

The choice of tools and methods applied to spatial data in this study is focused 

on retaining individual data characteristics in resulting outputs. For instance, sub- 

variables (e.g. income, education, etc) used to derive deprivation index are made to 

assume their unique characteristics rather than their generalized pattern. Spatial data 

characteristic preservation has both analytical and practical importance because 

geographic models should not obscure the data from which they are developed. Data 

property manipulation during analytical implementation can result in geographic 

model failure such as inadequate resource distribution or inaccurate targeting of 

consumer groups. Data distribution retention during analytical process is paramount, 

particularly in spatial data manipulation where each data element is characteristic of a 

spatial location. Also the representation of each data characteristic in outputs becomes 

crucial when we identify extreme data elements. Extreme data elements identified 



based on any attribute must be reconciled with its spatial location to fully classify such 

data entity as an outlier. 

Figure 3.1: Analytical tools (Spatial Regression and Rough sets) perspective of 
census data for the city of Burnaby at census tract resolution 

This is important because statistical values identified as outliers may be 

different in a spatial framework since statistical calculation may neglect the spatiality 

of the data. So, the first output, Figure 3.1, attempt to illustrate the preservation of 

data characteristic during spatial data analysis using rough sets. Spatial data distribution 

and variability underlies the accuracy of many analytical processes because relative 

accuracy between multiple variables is reliant on individual data characteristics. In the 

rough sets process, the steps for deriving recent immigrant deprivation index (RIDI) 

census units are based on designated recent immigrant concentration PIC) values, 

which match similar deprivation index (DI) values. It is apparent that RIDI cannot be 



assigned to census units with DI, which does not match RIC, and vice-versa. That is, a 

census unit of low (0.21 - 0.40) DI category and corresponding very low (0.00 - 0.20) 

recent immigrant concentration (RIC) cannot be designated a moderate (that is, 0.41 - 

0.60) RIDI category. This is the erroneous pattern observed from the regression 

output; due to the initial assumption that DI is dependent on RIC. All census units 

with high RIC are assigned high RIDI irrespective of the original DI in the census 

entities. So, certain census tracts are designated higher RIDI than their initial DI using 

the regression method. But, the rough sets approach has indicated a strong parallel 

between the two input variables (that is, RIC and DI): retaining and effectively 

integrating two data distribution and their spatial variation. 

The rough sets method is comparable to a regression technique for which all 

the assumptions of dependency, independency of observations, linearity, no missing 

values and outliers are exhibited by the data under consideration. Fundamentally, the 

rough sets technique will yield similar outputs to a regression method for exactly two 

variables, which exhibit the above regression assumptions. But conflicting results arise 

when multiple variables are combined hierarchically such that each variable exhibits 

inconsistent data distribution towards the dependent variable. An explicit example is 

shown in the regression output where RIC obscures the DI distribution (see Figure 

3.1). This data characteristic pattern is beyond the control of many analytical tools. So 

values are constrained to assume general data pattern in order to determine results for 

points that do not comply with the overall data distribution pattern. This results in 

loss of unique data characteristics and their subsequent loss of representation in the 

output model. 

Also the rough sets categorization can be considered analogous to data 

clustering techniques whose classification is dependent on the global measures rather 

than individual data characteristic used in rough sets. Global patterns are valuable 

quantitative measures, which give accurate descriptive information for uniformly 

distributed data. But, for heterogeneous data where extreme variables must be treated 

equally and not allowed to assume the general data pattern, global measures 



inadequately describe the data distribution. The problem becomes compounded for 

multiple variables for which extreme variables in one data must be considered in 

relation to other variables. While the approximation of data distribution and variation 

is inescapable during analytical processes, the rough sets method represents all input 

data characteristics at optimum thresholds. This guarantees consistency between the 

spatial model and data from which it is generated. This is what has been achieved in 

this first output (see Figure 3.1) and this characteristic underlies subsequent outputs. 

Hence, the rough sets concept assumes no dependency in multivariate analysis, 

indicating that one attribute clustering does not necessitate clustering in geographic 

space or  another attribute characteristic. 

Figure 3.2: Sample Recent Immigrant Deprivation Index estimation using Spatial 
Regression & Rough sets 

The disparity in the model development usmg spatial regression and rough sets 

approach is reinforced in Figure 3.2 showing significant differences between the two 

models. Figure 3.2 is a rough sets and regression output for recent immigrant 

deprivation index for the first output shown in Figure 3.1. The green colour indicates 

more deprived areas with exaggerated z (height) values while the red colour shows less 



deprived neighbourhoods with relatively small z values. There is significant difference 

between the two outputs; difference in both distribution and quantity of 

neighbourhoods assigned into a particular RIDI category. The rough sets output shows 

a more diverse distribution (high variance) and small number of census units with high 

RIDI. This pattern reflects the data characteristics because RIDI value of each census 

unit is comparable to the input variables. The regression output shows the contrary, 

small variability for RIDI values and large number of census units with high RIDI 

values. The foregoing has illustrated the preservation of multiple data characteristics in 

derived models at specified census unit. The scale issue however, is the problem of 

translating data characteristics across different scales. 

3.4 SCALE TRANSITION & ASSESSMENT FOR CSD FROM CT & DA 

The preceding section showed the utility of rough sets in accommodating 

unique data characteristics during spatial analysis. The rough sets outputs were 

compared to the results from the regression method, which does not retain single or 

multiple data distribution at specific spatial unit. This section examines the scale 

transition over multiple census units (CDS, CT and DA) from small to large units in 

order to estimate scale translation parameters. This is a necessary step in order to 

reverse the scale transition from large units to small ones. 

The scale transition for census sub-division, CSD involves the approximation of 

deprivation index constituents of CT and DA for a particular CSD. Due to different 

characteristics of each census unit both the average and the median values of these 

component values are determined to unearth any distinct pattern. In rough sets 

context, a CSD is a rough set while both the DA and CT within a particular CSD are 

elementary sets. The scale assessment entails determining estimated values of one 

census resolution using another, say approximate CSD using DA. Figure 3.3 illustrates 

the direction of the scale transition and shows which census units to designate as rough 

sets and elementary sets for a specified scale transition. For scale transition from DA to 

CT, for example, constituent DA that are subsets of a particular CT are designated 



elementary sets, while the specified CT becomes a rough set. This estimation is 

dependent on the appropriate pattern, which emerge from these three census 

resolutions. 

Figure 3.3: A CSD represented at different spatial resolutions 

r 

direction of scale transition -small to large unit 

The first scale transition output (see Table 3.4) is that estimated for CSD using 

both DA and CT separately. The sample deprivation index values for CSD shown in 

Table 3.4 shows that approximated values from CT and DA are generally less than the 

calculated values using CSD resolution data. While the average estimated values from 

CT indicated a smaller discrepancy, corresponding average values from DA indicated 

the opposite. The overall spread and variation however, shown by the standard 

deviation and the data interval for CT are higher than those of DA. Despite the small 

total deviation and mean deviation values of CT, the descriptive measures (e.g. sum, 

maximum, mean, etc) indicated for these two census resolutions; CT and DA have 

demonstrated more uniform data distribution for DA than for CT. Increased accuracy 

indicators for DA are also apparent in the difference measures (e.g. RMSE, MAE, d, 

etc) with a smaller error and high index of agreement than for CT, indicating a more 

coherent outcome. 

Secondly, scale transition from DA to CT is also examined because it is a spatial 

transition from small to large unit. The DA approximation to CT (see Table 3.5) has 

indicated a comparable deviation of the estimated values from the known ones. The 

DA approximation suggests an increased accuracy irrespective of the increased number 

of census units involved (that is, CT is 424 units and DA is 3369 units). Increased 

accuracy does not guarantee comparable pattern in the approximation processes, but 

the results shown demonstrate coherent pattern with respect to size of the census 

resolution. That is, decrease in size of census unit results in increased accuracy of 



estimating its data distribution and variation in order to approximate constituent 

census entities. 

Table 3.4: Sam~le de~rivation index amroximation for CSD from CT and DA 

Census 4 NDI NDI Value- NDI Value- Difference Difference 

Langley 

Langley 

Surrey 

White Rock 

591 5001 . 

591 5002 

Delta 

Richmond 

Vancouver 1 5915022 1 0.5635 1 0.5108 1 0.4720 1 0.0527 1 0.0914 

591 5004 

591 5007 

Greater 
Vancouver A 

Burnaby 1 5915025 1 0.6058 ( 0.5252 1 0.4742 ( 0.0806 1 0.1316 

0.5091 

0.6777 

591 501 1 

591 501 5 

0.6426 

0.4707 

591 5020 

Port Coauitlam 1 5915039 1 0.3555 1 0.5376 1 0.3342 1 -0.1822 1 0.0212 

0.4431 

0.61 '0  

0.5094 

0.5889 

New 
Westminster 
Coquitlam 

Port Moody 1 5915043 1 0.3555 1 0.4679 1 0.3342 1 -0.1124 1 0.0212 

0.5677 

0.41 58 

0.4059 

1 5915046 1 0.2388 1 0.2782 1 0.2157 1 -0.0394 1 :::::: Fs! Vancouver 

Vancouver 591 5051 0.2388 0.4806 0.2157 -0.241 8 

Vancouver 591 5055 0.5814 0.1435 0.5063 0.4379 0.0751 

0.4467 

0.5634 

0.4365 

0.4920 

5915029 

5915034 

0.5290 

0.4060 

0.2795 

0.0660 

0.0607 

0.4468 

0.4565 

0.6357 

0.5698 

Bowen Island 

Pitt Meadows 

0.0625 

0.1142 

0.0749 

0.0549 

0.3299 

Maple Ridge 

Musqueam 2 

NDI 1 Net De~rivation Index 1 Maximum 1 0.5668 1 0.1333 

0.1136 

0.0647 

0.0729 

0.0969 

0.6008 

0.4781 

591 5062 

591 5070 

Key I Meaning 

I I I I 

CT I Census Tracts I Mean 1 0.0612 1 0.0727 

0.0627 

0.1 324 

0. 1264 

5915075 

591 5803 

D A I Dissemination Areas 1 Std. Deviation 1 0.2189 1 0.0419 

0.0761 

0.5297 

0.4757 

0.6785 

0.3467 

Sum 

Minimum 

0.2570 

0.7403 

Mean Absolute Error (MAE) 1 0.1643 1 Mean Absolute Error (MAE) 1 0.0732 

0.0349 

0.091 7 

0.24C6 

0.5283 

1.2237 

-0.2741 

-CT Difference Measures 

Root Mean Square Error (RMSE) 

- 1 I I I 

Index of agreement (d) 1 0.9461 1 Index of agreement (d) 1 0.9925 

0.1 060 

0.0941 

0.531 1 

0.1735 

1.4549 

-0.0047 

'' CSDUID is a unique identifier of a CSD 

0.6088 

0.3514 

Value 

0.2219 

0.2133 

0.6070 

0.4379 

-0.1816 

DA Difference Measures 

Root Mean Square Error (RMSE) 

0.0697 

-0.0047 

-0.2741 

0.5668 

Value 

0.0834 

0.0436 

0.1333 



This reduction in size of census unit, for example, from CSD to CT has indicated a 

consistent data characteristic resulting in the increased accuracy of estimating CT 

deprivation index using DA. 

Table 3.5: Descri~tive and difference measures of DA a~~rox ima t ion  to CT 
I Descri~tive Measures I CT 1 DA I Residuals I Difference Measures I 

Sum of net deprivation index 
Minimum 

Maximum 

Mean 

The rise in model accuracy is also reflected in the difference measures of the 

DA approximation to CT, resulting in a decline in both root mean square and mean 

absolute errors of 0.0778 and 0.0127 respectively. There is also a surge in the index of 

agreement of 0.0018; all from previous DA approximation to CSD compared to DA 

estimation of C T  values (see Tables 3.4 and 3.5). Hence, the three scale transition 

examined from small to large spatial unit suggests that size and number of census units 

used in the transition process influence data characteristics across scales. The persistent 

problem however, during scale transition is not the transition from small to large units 

but the converse of this transition; the derivation of data characteristics for small area 

units using large units. 

207.1302 
0.0884 

Standard deviation 

Number of census units 

3.5 SCALE TRANSTION FROM LARGE TO SMALL CENSUS UNITS 

195.1527 1 11.9775 1 Root Mean Square Error 
0.1 692 -0.1478 (RMSE) = 0.0056 

0.8603 

0.4885 

Census data have been approximated for large areas using small census units in 

the above section. The scale transition results and their accuracy assessment values in 

the preceding section are used here. This will help to  reverse the census data 

approximation of large units using small entities in order to  determine small entities 

using large census units. The importance of this approximation is an integral concern 

for many grouped data applications where decisions are made for small areas from 

large area data. Small area data estimation is desirable, for example, optimum 

0.713 I ;:;23;; 1 Mean Absolute Error 
0.4603 (MAE) = 0.0605 

0.1771 
424 

0.1173 1 0:;:6 1 Index of agreement 
3369 (d) = 0.9943 



distribution of goods and services, site characterization for retail location, etc. Small 

area data approximation, however, is difficult for many analytical tools because data 

distribution and variation must be controlled at discrete level rather than using general 

pattern to describe distinct data characteristics. 

Figure 3.4: A CSD represented at different spatial resolutions 

- 
direction of scale transition - large to small unit 

In addition, it involves data pattern estimation, which may not only be 

nonlinear but also heterogeneous. Figure 3.4 shows the direction of the scale transition 

process from large units to small entities. This estimates scale transition across scales at 

CSD, CT and DAY and evaluates the estimated values against known values in the 

following. 

The mean bias error (MBE) and the mean absolute error (MAE) both measure 

the effective error due to rough sets approximation. The MBE assesses the variance of 

the residual distribution, while the MAE measures the weighted average of the 

absolute errors. The application of both the MBE and MAE are to correct for the error 

due to the approximation. The error incurred however, is characterized by both 

quantity and its distribution. The error distribution is measured using the standard 

deviation of the census residuals. So, the application of MBE/MAE and the standard 

deviation (STD) of the census residuals to any census unit should describe the 

predicted census distribution and variation. Specific to the census resolutions 

considered; three census approximations were examined; estimation of CT using CSD 

and determining DA using both CT and CSD. In the determination of CT, the 

formula below is applied to component CSD as: 

CT = CSDvdue + MBE STD 

A CSD consists of multiple CT and census error distributions are assumed as 

related to the number of its constituent census units. This assumption is apparent in 



section 3.1.1 where there are disparities among constituent census entities, which are 

contained in a larger census unit (e.g. DA within CT). The rationale behind this 

assumption is to distribute computed values of constituent CT of a CSD using the 

number of CT contained in a CSD. This is because it is unlikely, at least in practice, 

for all CT values to exhibit no variation and distribution. A CSD exhibits variable 

smaller units say CT, hence, for a CSD with n number of CT then: 

CTi = CSDvdue + MBE STD x i/n 

where i starts from 1 to n and MBE and STD are from CT to CSD 

approximation. 

The number of constituent census units in a larger census resolution can be even or 

odd, affecting the error distribution for a particular approximation. For even number 

of census units, the standard deviation, STD is applied as positive to half the number of 

census units and to the others as negative. In cases where there are odd number of 

census units, the middle census unit is applied zero STD and the same even number of 

census unit procedure is repeated for the rest of the census entities. Below are excerpts 

for two numbers of census units; four (4) and five (5), which are even and odd 

respectively. 

Even number of census units e.g. four (4): 

CTI = CSDvdue + MBE + STD x 1/1 

CT2 = CSDvaue + MBE + STD x 1/2 

CT3 = CSDvdue + MBE - STD x 1/1 

CT4 = CSDvaue + MBE - STD x 1/2 

Odd number of census units e.g. five (5): 

CTI = CSDvaue + MBE + STD x 1/1 

CT2 = CSDVdue + MBE + STD x 1/2 

CT3 = CSDvaue + MBE 

CT4 = CSDvaue + MBE - STD x 1/ 1 

CT5 = CSDvaue + MBE - STD x 1/2 



Similar census approximation is repeated for DA using both CSD and C T  

separately for corresponding difference and descriptive measures. This summarizes the 

approximation of small census units from large ones and subsequent redistribution of 

estimated values for constituent census units. For instance, DA values are estimated 

using a CT, and these estimated values are redistributed to the constituent DA in 

specified CT. The succeeding section discusses the scale transition results for small 

census units derived from large units. 

3.5.1 Census Estimation Results Summary 

The census approximation results discussed here are in threefold: C T  results 

using CSD, and DA results using both C T  and CSD separately. First, a total of 39 

CSD are used to estimate deprivation index values for 424 C T  by reversing the error 

quantity and redistributing the error variation for the approximation of CSD from 

CT. The C T  outputs from CSD shown in Table 3.6 have produced results that are 

consistent with predicted values. The descriptive statistics for the known and predicted 

values have indicated minimum deviations, particularly, the minimum, maximum and 

the standard deviation of the deprivation index. The predicted model has optimum 

approximation to an absolute error margin of 0.0011 (approx. 0.1%) and to a worst 

absolute error of 0.6512 (approx. 65%). 

Iescriptive statistics 
eprivation Index Est~ 

CT I C 

Table 3.6: CT Deprivation Index estimation using CSD - Results summar 
DI i r n a 3  - - 

S I - 

Difference Measures 

CT 

1 sum 1 2:;;;~ 1 2;;;;;1 -;.57;9 
MAE = 0.1790 

Minimum 

Maximum 0.8603 0.9578 0.651 2 
RMSE = 0.0494 

Average 0.4885 0.6267 -0.1382 

Standard deviation 0.1771 0.1067 1 0:::3 1 d = 0.9557 
No. of census units 424 39 

Despite this large error margin, the MAE value is as small as 0.1790, which is 

the average absolute error with error distribution of 0.1743. This results in extreme 



error quantity and distribution to the interval: -0.1382 + 0.1743 (that is between 

0.0415 and -0.3071 using MBE). The model degree of agreement also has high accuracy 

value of 0.9557 (approx. 96%). These values indicate high accuracy approximation 

process for deprivation index values at the CT level. It is partly dependent on the 

earlier approximation of CSD from CT from which the error quantity and its 

distribution were computed. It is worth noting that the predicted values have less 

distribution (0.1067) than the known (0.1771) demonstrating that the smaller the 

census unit the more diverse its data characteristics. The census data variation caused 

by this aspect of the scale transition cannot possibly be described from a larger census 

resolution data. This data characteristic pattern is also apparent in subsequent results 

for DA discussed in the following. 

The deprivation index estimation at the DA level using both CT and CSD uses 

424 and 39 census units respectively to approximate 3369 DA. The DA results shown 

in Table 3.7 also have high accuracy values and are consistent with earlier CT results. 

The descriptive measures such as the minimum, maximum, mean and the standard 

deviation values have minimum deviations from the known values. The minimum and 

maximum absolute errors from CT are 0.0000 and 0.6104, and for CSD they are 0.0000 

and 0.5946 respectively. This is remarkable because in estimating deprivation index for 

some DA there will be zero error (that is, absolutely no error). Also the average 

absolute error for both CT and CSD is 0.1020 and 0.1758 respectively. The 

approximation process has shown an increased accuracy level demonstrated from the 

descriptive and the difference measures. This increased accuracy is partly due to the 

reverse approximation involving DA, CT and CSD to determine the error quantity 

and distribution values used in this current estimation. 

The extreme error magnitude and distribution from the CT approximation is 

described by the MBE (that is, -0.0642) and the standard deviation (that is, +0.1138) of 

the residuals. This results in an interval of -0.0642 + 0.1138 (that is, from 0.0496 to - 

0.1780) within which errors will be distributed. Likewise, for approximation values 

from CSD, the error magnitude and distribution interval is -0.1642 + 0.1328 (that is, 



from -0.0314 to -0.2990). A more descriptive model assessment is the degree of 

agreement value, indicating 0.9828 and 0.9594 for C T  and CSD respectively. The 

increased accuracy illustrated by estimated values from C T  can be described in relation 

to the similarity of census data distribution characterized by its size. That is, CT data 

distribution is more similar to DA data distribution because their sizes are also 

comparable. 

Table 3.7: DA Deprivation Index estimation using CT & CSD - Results summary 

Descriptive Deprivatfon Index Estimates Residuals 
Difference 

statistics 
DA CT CSD 

Sum 1796.06 21 32.83 1579.69 

Minimum 0.047 0.073 0.058 0.0000 

Maximum 0.958 0.855 0.839 0.6104 1 0.5946 1 RMSE I RMSE 

Average 0.533 0.633 0.469 -0.0642 -0.1 642 = 0.01 7 = 0.045 

deviation 
No. of 
census units 

Also the predicted deprivation index values are always less distributed than the 

known values. The scale transition from small to large resolution exhibits data 

distribution, which is highly comparable to known data because smaller resolution 

data have richer data characteristic, which competes with what may be observed. The 

converse is not true because patterns derived from data cannot describe explicitly 

distinct data distribution and variation. This is the challenge, which geospatial model 

development tools encounter with regards to  scale transition because it is more than 

replicating data distribution and variation for different spatial resolutions. Observing 

scale transition pattern from multiple resolutions can approximate this data 

characteristic pattern. 

This section concludes the scale transition investigation across multiple census 

resolutions while maintaining data characteristics during the estimation process. 

Accuracy indices for the estimation are also illustrated to validate the scale transition 



process. The error magnitudes defined by MBE/MAE and standard deviation provides 

a scale sensitivity measure for the scale transition. Following, we examine spatial 

associations derived from multiple variables across different census scales. 

3.6 RECENT IMMIGRANT AND DEPRIVATION INDEX 

RELATIONSHIP 

We have examined the effect of varying scales on data characteristics. It is 

shown that the size of census unit is a major defining characteristic of data 

distribution. Census units with relatively smaller sizes (e.g DA) exhibit more diverse 

data distribution. So, DA data are most distributed compared to census data at CT and 

CSD levels. But, what is the effect of data characteristics across different scales on 

spatial relationships derived at these varying scales? In other words, how does the size 

(scale) of a census unit and its corresponding data characteristics affect the derived 

spatial relationships? 

The immediate concern for which spatial resolution of census data poses a 

challenge in geographic model development is the accuracy of spatial relationships and 

associations generated from these data to inform social and physical policies. Spatial 

relationships developed at different census units are often different. The understanding 

of accuracy limitation introduced by data resolution on derived spatial models is 

crucial to utilize these results as generalized patterns rather than distinct occurrences in 

the real world. So, how do policy makers incorporate spatial resolution standards into 

their decisions? Are there any accuracy indicators that inform them of the spatial 

thresholds, which limit their decisions? 

The essence of spatial resolution underlines the purpose of social and physical 

applications of census data to distribute resources and services to where they are 

needed. The derivation of these spatial relationships is characteristic of the analytical 

tool from which they are developed. So, integration of data characteristics into spatial 

models generated from the data is the first accuracy index achieved (see section 3.3) 

which enforces harmony between data and the spatial model. It is also indicated that 



the data and model conflict may degenerate into erroneous conclusions from derived 

spatial associations between variables. The spatial relationship we examine here is the 

spatial association between recent immigrants and deprivation index. So, the 

relationship between recent immigrant and deprivation indices are developed from 

outputs, which are consistent with the data from which they are developed, and at 

various spatial resolutions whose patterns have been observed carefully. 

Figure 3.5: Deprivation Index for the entire census unit population - CT 





Spatial relationships are developed at specific census resolutions; CSD, CT and 

DA. The problem becomes: are there indices that quantify and translate values from 

one resolution to another? While the relative generalized pattern observed for the 

three census units are consistent suggesting unbiased data reporting for the census 

resolutions, the individual data pattern are incoherent. For example, recent immigrant 

concentration in one census unit, say, CT can be traced to a similar proportion of 

recent immigrants at DA level. But, the variance among specific census units (e.g. DA, 

CT) and nonlinearity of the multiple variables are non-transferable between different 

census units. This individual data disparity discourages the derivation of consistent 

spatial relationships among multiple variables. Figures 3.5 and 3.6 illustrate the 

individual data disparity, which may exist among multiple variables, and how the 

spatial model generated in Figure 3.7 harmonizes the two different data characteristics. 

As shown in Figure 3.5, the CT indicates the overall deprivation index due to 

the entire population in respective CT units with no dependency on any distinct 

population group. Next, the target population group, recent immigrants are shown in 

Figure 3.6. The resulting model is a deprivation index due to recent immigrants 

indicated in Figure 3.7 at census tract level. This model characteristic has no data 

distribution conflict but reflects optimum integration of the two data distributions in 

Figures 3.5 and 3.6. The model demonstrates the strength and magnitude of the spatial 

relationship between recent immigrants and deprivation index at CT level. The 

measure of this spatial association between recent immigrants (RI) and the deprivation 

index (DI) that is analogous to the correlation coefficient (r) is determined as ratio of 

the number of matched-value-categories to the total number of census units. 

number of matched - value - categories 
Correlatim coefficient, r = 

total number of census units 

The number of matched-value-categories is the number of census units which have RI 

and DI values belonging to the same group interval, say; high RI and high DI are 

classified into high RID1 (recent immigrant deprivation index) set. The correlation 

coefficient at CSD, CT and DA levels are 0.600, 0.549 and 0.468 respectively. The CSD 



correlation coefficient indicates that 60% of the total deprivation index is linked to 

recent immigrants while it is approximately 55% at C T  level. The coefficient of 

correlation at the DA level has declined significantly illustrating the scale transition 

effect even for data manipulation in which data characteristics are retained from one 

census resolution to another. The variation in the correlation coefficient value of the 

census resolutions shows the inaccurate conclusions, which could be reached, based on 

any specific census data resolution. The steady decline in the correlation coefficient 

value also demonstrates that census household or individual level data will have a 

smaller correlation index. It is worth noting that the CSD and the C T  models should 

be used for reconnaissance study in order to identify potential spatial locations to be 

further examined. While the DA model cannot be used to uniquely describe reality, 

the individual level model is not far from it. So, it is essential to investigate the scale 

transition over multiple census resolutions to approximate what could describe the 

household level model. 

From the foregoing, it is necessary to investigate further at smaller extent the 

recent immigrant and deprivation index relationship. From patterns observed at CSD 

and C T  levels, the following CSD units: Burnaby, Vancouver and North Surrey have 

shown high RID1 correlations and their compact DA settings will be suitable for 

manipulation. Hence, one of these CSD units: Burnaby is examined further with no 

characteristic preference. 

3.6.1 Household Census Data Approximation using Large Resolution Data 

The results for the census resolutions involving CSD, C T  and DA have 

significant patterns that describe the estimated value characteristics with respect to the 

size of census unit. In other words, data characteristic is a function of size of census 

unit. Table 3.8 shows the summary pattern defined by various descriptive and 

difference measures. 



Table 3.8: Summary o f  descriptive patterns observed f r o m  mul t ip le census 
resolutions data 

(e.g. DA to CSD) (e.g. CSD to DA) 

census residual (MBE) are smaller the census residual (MBE) are higher 

Predicted values defined by the absolute 
mean of the census residual (MAE) are 
smaller 

Predicted values defined by the absolute 
mean of the census residual (MAE) are 
higher 

I The error distribution characterized by the I The error distribution characterized by the I 
standard deviation of the residuals are smaller I standard deviation of the residuals are higher 

I Model index of agreement are generally higher I Model index of agreement are smaller I 

Estimated deprivation values indicate a richer 
and more varied distribution than the known values 

The strength of derived spatial associations and relationships declined significantly with decrease 
in size of census resolution 

Approximated deprivation values are less 
distributed than known values suggesting a 
less varied prediction 

The essence of these patterns is to describe a generalized model for derived 

spatial relationship between recent immigrants and deprivation index at a smaller scale 

(e.g. household or individual level). Zhang and Goodchild (2002) observed that error 

distribution cannot be different from the data characteristics from which these errors 

are generated. The census data at CSD, C'T and DA resolutions have shown this 

property of each error distribution representing their respective data characteristics. 

For instance, error distribution for CSD data are less varied while residuals from DA 

data showed a more diverse distribution. These error distributions are characteristic of 

their respective data traits. The deviation of an estimated value from its known value 

however, is characterized by the error magnitude and its distribution. The patterns of 

census resolutions and their error characteristics due to the scale transition, and the 

approximation process describe the error magnitude and its distribution for the census 

household model derivation from larger resolution data. 

From the descriptive and the difference measures indicated for the census 

approximation residuals and the deviation patterns observed, the census household 

(CH) level data derivation from CSD, C T  and DA are shown as follows: 



CSD census household data approximation: 

CH = CSDV,lue - MBE k STD 

CH = CSDva~ue - 0.0915 + 0.1328 

CT census household data approximation: 

CH = CTvdue - MBE k STD 

CH = CTvdue - 0.0360 _+ 0.1138 

DA census household data approximation: 

CH = DAvdue - MBE + STD 

These approximations follow the same estimation procedure used in section 3.4 

separately for odd and even numbers of constituent census units. The approximations 

have shown a declining trend in both the error magnitude and its distribution from 

CSD through CT to DA. These decreasing values (that is, MBE and STD values) show 

the increased approximation accuracy from using small resolution census data ( e g  

DA) and its accompanying diverse distribution. 

The validation of these estimates is essential to evaluate the reliability of the 

method used in the census approximation process. Census data elements reported are 

sampled from a particular area, ensuring that samples statistically represent the study 

area under consideration (Schuurman 2002). For other spatial analysis methods, the 

number of census households used in the sampling process will affect the accuracy of 

the approximation. The rough sets census approximation adopted however, is 

independent of the number of constituent units used. This is because irrespective of 

the number of census entities used, the error and its distribution values ensure that the 

average value is retained. So, while the individual census values remained unchanged, 

the error magnitude and its variation are the key descriptors for the approximation 

process. 



3.6.2 RID1 Relationship for Selected CSD - Burnaby 

The derivation of spatial relationships from different census resolutions has 

been described for the entire Greater Vancouver Regional District (GVRD) at CSD 

and CT levels. A more detailed consideration of the effects of the scale transition and 

the size of census resolution on derived spatial associations is addressed in relation to 

this selected CSD unit: Burnaby. Figure 3.8 shows recent immigrant concentrations 

and their derived spatial relationship with deprivation index at DA and CT levels. The 

correlation coefficients for derived recent immigrant and deprivation index 

relationship at CT and DA levels are 0.5405 (that is, 20/37) and 0.5590 (that is, 

180/322) respectively. The proximity of these two values is remarkable because this 

shows that multiple census resolutions can result in very close and similar outputs of 

derived spatial relationships from areas characterized with homogeneity and 

randomness. 

Also the closeness of the two correlation coefficients indicates the versatility 

and efficacy of the rough sets process in retaining data characteristics. Appropriate 

treatment of conflict within input data variables and convenient representation of 

multiple data distributions were recognized as key merits in rough sets analysis. While 

the rough sets tool does not improve nor create new data, its worth is in reasoning 

with data to develop models, which replicate single or multiple data characteristics. 

From the derived spatial relationship, it is evident that regarding the choice of census 

resolution for particular policy implementation, there is a limiting threshold within 

which derived models from these multiple census resolution could yield very close 

results. This approach can be employed in census resolution specification in data 

collection and model development for certain applications in order to specify size for 

optimal census resolution. This also reduces the uncertainty of selecting census scales 

to describe deprivation levels. This is because if small resolution data are expensive to 

collect and manage then it becomes inefficient to develop spatial models from small 

resolution data if the same model can be generated from large census resolution with 

comparable accuracy. 



Figure 3.8: Recent Immigrant Concentration and their corresponding Deprivation 
Index at DA & CT 

It is worth noting however, that while there is no alternative to indicating 

spatial specification for areas smaller than the census resolution used in model 

development: they can give indications of likely spatial locations within which certain 

occurrences are possible. This pattern is apparent in Figure 3.8 where certain 

deprivation occurrences at DA level can be traced from a larger area at CT level. 



CHAPTER 4: 
SECOND CASE STUDY - BOREMOLE DATA 

METHODS, RESULTS & DISCUSSIONS 

The preceding chapter discussed census data methods and results, and marked 

the end of the first case study. This chapter describes borehole data methods and 

outputs. The chapter constitutes the second case study. The second case study uses 

rough sets and transition probability to minimize the effects of uncertainty due to 

erroneous sediment identification and description problems. The technique is to 

identify hydrogeologic properties, specifically, hydrostratigraphic units of subsurface 

materials. These are used to approximate geological spaces with the aim of classifying 

borehole units for conceptual model development using aquifer-supporting criteria. 

The definition of hydrostratigraphic units from geological information, for 

example, well-log data are paramount for many aquifer flow investigations. 

Hydrostratigraphic units comprise geologic units of similar hydrogeologic 

characteristics (Anderson and Woessner 1992). The development of a conceptual 

model for groundwater flow system, for example, requires accurate hydrostratigraphic 

description. Such hydrogeologic unit information underlies the overall performance of 

derived numerical models. The modeling of regional flow systems, aquifers and 

confining beds are suitably described, for example, using the concept of 

hydrostratigraphic unit (Anderson and Woessner 1992). The reconstruction of material 

deposition is also reliant on stratigraphic information to unfold depositional history. 

Understanding of depositional account in a study region can be helpful in discovering 

the occurrence of sediment types when geologic information is sparse (Anderson and 

Woessner 1992). 

Generally, hydrostratigraphic information is developed from detailed site- 

specific information on stratigraphy and hydraulic conductivity (Anderson and 

Woessner 1992; Dolgoff 1996). While hydrostratigraphic information may be most 



suitable for regional simulation of geologic systems, at small scales stratigraphic and 

hydrogeologic information are required. Site-specific information becomes necessary 

because facies model which are idealized representations of environments of deposition 

do not represent the characteristics of any one site (Anderson and Woessner 1992). A 

facies is a unit of material with similar physical characteristics that are deposited in the 

same geological setting (Dolgoff 1996; Anderson and Woessner 1992). Metamorphic 

facies, for example, are formed by material assemblage under the same set of 

temperature-pressure conditions regardless of their original compositions (Dolgoff 

1996). Thus, facies models describe the expected distribution of predicted geologic 

units (Anderson and Woessner 1992) and such information can be used to define 

hydrostratigraphic units. 

4.1 HYDROLOGIC CHARACTERISTICS QF SUBSURFACE MATERIALS 

To investigate the occurrence of groundwater necessitates a clear understanding 

of the geological settings that support its existence, distribution and movement. 

Subsurface environments are not homogenous, but highly heterogeneous with varied 

hydrologic characteristics which control the quantity and distribution of groundwater 

(Tolman 1937; Tood 1964). Geological settings, formations (or structures) that are 

sufficiently porous to store water and permeable enough to transmit water in adequate 

and economic quantities are called aquifers (Price 1985; Tolman 1937). The defining 

characteristics of these subsurface water repositories - aquifers are discussed below. 

The principal hydrologic characteristics of rocks are porosity, effective porosity 

or specific yield, specific retention, permeability and the direction of maximum ease of 

percolation (Tolman 1937; Price 1985; Tood 1964). These hydrological properties are 

dependent on porosity, size of openings or voids (or interstices) and shape, 

arrangement, interconnection and continuity (Tolman 1937). Porosity is the ratio of 

the volume of voids (that is, openings or pores in rock) in the rock to the total volume 

of the rock (Price 1985; Tood 1964). Porosity controls the entrance of water into 
/ 

aquifers by assessing the rock's capacity to hold water. Tolman (1937, 111-112) 



investigated the pattern of voids in relation to porosity and the direction of ease of 

water percolation and identified the following: 

"percentage of void space does not increase with the size of material 

from the previous, rock heterogeneity reduces pore space 

the size of the finest void material which occurs in sufficient amount to 

surround the coarser grain materials controls the velocity of percolation in 

heterogeneous material 

the larger the proportion of large grains enclosed in fine material, the greater 

the reduction in average porosity of the formation". 

Appendix A1 shows the porosity of selected geological materials. 

Permeability controls the combined effect of material void size and their 

interconnectedness to enable appreciable passage of water through them. Simply, 

permeability is the measure of the ease with which water flows though rock pores. 

Tolman (1937) observed that permeability varies with the degree of material 

assortment or the percentage of fine material and arrangement of coarse grains with 

fine material (that is, sedimentary structures). Water permeability is called hydraulic 

conductivity which is the volume of water that flows though a unit cross-sectional area 

of a geological formation in unit time under unit hydraulic gradient at a particular 

temperature (Brassington 1988). Permeability is, thus, measured by assessing the 

hydraulic conductivity of rocks. Specific yield also called effective porosity is a 

measure of the water moved under gravity influence or the volume of water that is 

drained from a rock or soil material under gravity effect when initially saturated 

(Tolman 1937; Price 1985). Specific yield increases with grain size and assortment. 

Specific retention is the measure of water that is not drained from the pores when a 

saturated rock or soil material is drained under gravity (Price 1985). Apparently, 

specific retention decreases with grain size and assortment. 

Specific yield and specific retention contributes to the water-holding ability 

described as porosity (Price 1985; Tolman 1937). Specific yield and permeability are 



also broadly related. In general, geological formations with high specific yield tend to 

be more permeable and vice-versa (Brassington 1988). Appendix A2 indicates the 

specific yield in percent and Appendices A3 and A4 show the permeability in terms of 

hydraulic conductivity of selected geological materials. Tolman (1937) observed that 

decreasing grain size and increasing fineness and proportion of void material can 

gradually alter the geological settings from an aquifer to aquiclude. An aquiclude is a 

geological formation which although porous and capable of absorbing water, will not 

transmit it fast enough to furnish an adequate supply of water. Essential aquicludes are 

silt and clay and their extent and structure formation control groundwater distribution 

and movement in aquifers. 

4,2 STUDY SITE AND HYDROGEOLOGIC CONSIDERATIONS 

Major hydrologic properties which support the existence, flow and distribution 

of groundwater are outlined in the preceding section. This section describes 

hydrogeologic characteristics of the study area ( O M )  and its major depositional 

information. Depositional information provides a baseline for evaluating the 

subsurface environment. Depositional history may be reconstructed from stratigraphic 

information. The ORM deposition environment is a moraine. A moraine is a general 

term for debris of all sons originally transported by glaciers or ice sheets that have 

since melted away (Wicander and Monroe 1995; Skinner and Porter 1989). That is, a 

moraine is accumulation of glacial sediments (drift) deposited directly by glaciers 

(Levin 1981). Moraines are characterized with sediments (e.g. sand, silt, gravel, etc) and 

unconformity. The ORM, as an example, is built on high relief, erosion surface 

(unconformity) and a network of tunnel valleys (Barnett et al. 1998). So, geological 

deposits are predominantly sediments as evident from the golden spikes, MOEE data 

and depositional information. This limits the geologic units (that is, gravel, silt, etc) to 

be considered in the modelling process. However, the key problem is excessive 

complexity in sediment distribution due to varied extents of subsurface deposits. These 

are revealed in aquifers and aquitards having varied extents and geometry (Sharp et al. 



1996). This problem requires modelling tools to accommodate local geologic property. 

The section following outlines varying sediment types present in the ORM. 

4.2.1 Oak Ridge Moraine (ORM) - Southern Ontario 

Oak Ridge Moraine (ORM) is located in southern Ontario adjacent Lake 

Ontario. The ORM pigure 4.1) subsurface environment is an aquifer complex which 

provides large amounts of potable water within the Greater Toronto Area (GTA) 

(Sharp et al. 1996). Groundwater potential of the ORM has attracted many researches 

into understanding its origin, nature and architecture. The Geological Survey of 

Canada (GSC) in 1993 initiated a three year regional hydrogeological study of ORM 

principally for aquifer delineation (Sharp et al. 1996). Among many research 

objectives, the following problems constitute core ORM challenges: 

weak geological framework for addressing hydrogeological and planning 

related problems, 

excessive complexity due to complex subsurface glacial deposits because 

aquifers and aquitards have varied regional extents and geometry, 

goundwater flow-paths are difficult to trace and 

3-D geological mapping is necessary to identify geological controls on 

groundwater flow (Natural Resources, Canada 2003). 

In their paper, 'On the origin of the Oak Ridges Moraine' Barnett et al. (1998) 

outlined past and present geological model of major sediments and their distribution in 

the ORM. ORM forms a drainage divide of high sandy ground between Lake Ontario 

and Georgian Bay, extending from the Niagara Escarpment to beyond Rice Lake 

(Barnett et al. 1998). Barnett et al. (1998) and Sharp et al. (1999) observed that the 

Peterborough drumlin field occurs to the north of ORM (Chapman and Putnam 1943; 

1951; 1984) that forms a regional NE-SW-oriented surface underlain by thick, deposits 

of Newmarket Till. 



Figure 4.1: Study area location for golden spikes and MOEE data 

The drumlin field is cut by a complex NE-SW-oriented, network of deep 

valleys. The valleys have deep sides, a branching pattern, inset eskers and large 

bedform. These features have being suggested as tunnel channels by high energy 

subglacial meltwater flow (e.g. Barnett 1989; 1990; Shaw and Gorrell 1991; Brennand 

and Shaw 1994). In their paper 'Regional geological mapping of the Oak Ridges 

Moraine, Greater Toronto Area southern Ontario' Sharp et al. (1999), described seven 

physiographic areas of the ORM as the following: 

the Niagara Escarpment is an elevated landform that affect melt water flow 

across the area (Barnett et al. 1998) 

drumlinized uplands of the Peterborough drumlin field occur north and 

south of the ORM and they underlie it (Barnett et al. 1998) 



large flat-floored valleys are eroded into the drumlin upland north of the 

ORM; some continue south of the moraine (Sharpe and Barnett 1997; Kenny 

1997) 

ORM forms a drainage divide of high sandy ground between Lake Ontario 

and Georgian Bay, extending from the Niagara Escarpment to beyond Rice 

Lake (Barnett et al. 1998) 

broad, gently sloping plains border the south-western margin of the ORM 

(Barnett et al. 1991) 

Lake Iroquois shoreline truncates this plain 

river valleys dissect the area rising in drumlinized uplands or in the ORM. 

Depositional information of the ORM is crucial to understand sediment 

distribution in the subsurface environment. Sharp et al. (1999) identifies sediment 

origin and thickness for the ORM subsurface environment. Major sediment units are: 

Halton till: are drifts occurring as surface tills and lake sediments. It comprise 

clayey silt to silt till with interbedded sand and silt (Sharpe 1996). 

Oak Ridge Moraine: constitutes extensive surface deposit, 160km long and 2 

to l l k m  wide but may be more extensive beneath the Halton drift (Sharpe 

1996). Interbedded fine sands and silts constitute major sediments, but coarse 

sands and gravel are prominent locally (Sharpe 1996). 

Newmarket till: have drumlins and erosion elements and occurs at the surface 

north of ORM. It comprise a thick gravel, silty sand to sandy diamicton 

separated by sandy interbeds ( Sharpe 1999; Sharpe 1996). 

Unconformity: is regional erosions surface marked with channels and 

drumlins (Barnett et al. 1998). Coarse gained drifts form part of the erosion 

surface. 

Lower deposits: lies between the bedrock at the bottom and Newmarket till 

at the top. It comprises mainly sand, silt, clay and till. White (1975) observed 

that outcrops of this formation occur north of Lake Ontario shoreline 

(Sharpe 1996). 



Channel fill: comprise dense buried drifts with 10 to 25m thick of gravel 

sequence. This unit has 10 to 75m thick of sandy drifts that fine upwards to 

silt and clay (Barnett et al. 1998). But surface sediments contain fine sand, silt 

and organic material. Gwyn and Dilabio (1973); Sharpe et al. (1994) observed 

that sandy and stony till extend beneath the ORM. 

In sum, the ORM is built on regional unconformity comprising irregular 

drumlins of Newmarket Till in the broad upland areas and the base of the deep, wide, 

inter-upland valleys (Barnett et al. 1998). The section below describes ways to 

accommodate varied sediment distribution for characterizing the subsurface 

environment. 

4.3 APPROXIMATING GEOLOGICAL SPACES USING BOREHOLE 

UNITS 

Depositional information which describes the nature of geologic units that 

make-up the ORM is outlined in the preceding section. This section discusses the 

means of combining aquifer characteristics in order to characterize the subsurface 

environment. Geological spaces are inherently heterogeneous with increasing material 

variability exhibited by borehole units. Approximation of these borehole units that 

give descriptive properties of the geological formation is essential for geographic 

analysis and decision-making. Hydrological properties of water-bearing rock materials 

identified from the preceding section are employed in geological space approximation. 

However, this approximation process is only accurate as the available data, so the 

accuracy of the modelled or the resulting geological space must retain the original data 

distribution and inherent variability. A rough sets approach is employed here as the 

approximation tool in classifying or categorizing these borehole units. 

Borehole units referred to as subsurface materials are identified with aquifer 

characteristics as: porosity, permeability, specific retention, specific yield and grain 

size. The approach categorizes well-log units using these hydrologic properties. The 

rough sets method aims at retaining individual variability of input variables 



irrespective of spatial ganularity of observed variables. This characteristic will enable 

accurate assessment of disparities in outputs for different uncertainty levels of data. For 

example, to define whether an area is classified as an aquifer, we start by imposing 

elementary sets using borehole units. Borehole units considered as elementary sets are 

characterized by discernible information, that is, well-log units (e.g. sand, clay, etc) are 

elementary granules of an aquifer formation. 

For example, in Figure 4.2, we consider the area in set A as a borehole and then 

use borehole unit labels; a l ,  a2, a3, a4, a5 as elementary sets or partitions of set A. 

These borehole units are used to define the lower and upper approximations of set A 

as LA and UA respectively. The elementary sets are analyzed for set criteria using the 

hydrologic properties, and LA and UA are derived accordingly, for example, as shown 

in Figure 4.2. The set A in Figure 4.2 is an individual borehole and the elementary sets 

are the various layers of subsurface material for a specified borehole (set A). LA and 

UA specified for the individual sets will be identified with heights. 

Figure 4.2: Rough set characterization into approximation sets (LA & UA) using 
elementary sets 

A 
L Set A 

Lower approxima~ion (LA) 

Upper approxima~ion (UA 

By this way, boundaries could be defined in three dimensions because each LA 

and UP have both spatial and height information. Table 4.1 which comprise porosity, 

permeability, specific yield and grain size have been designed into five categories for 

the borehole material group approximations. Increasingly, the moderate/medium 

categories in the various hydrologic characteristics except for permeability have been 

identified consistently as ideal geological setting for optimal groundwater conduction 

and storage. Table 4.2 shows the key for the various material groupings which specify 

their levels of aquifer-supporting characteristics. 
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Table 4.2: Descrivtive kev for material categorv av~roximations 

I 1 Moderate Aquifer Indicators (MAI) Non -Aquifer Indicators (NAI) I 

t , * " - a  
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These grouping constituents do not form consistent material categories for the 

various hydrologic properties. Some materials belong to more than one category and 

even within one group, category material constituent are not consistent. These 

material distribution and category characteristic are evident in the real world. The 

material group characterization illustrated by these hydrologic properties describes 

what Pawlak et al. (1995) defined as a set that is indefinable by given attributes called a 

rough set. The set of good aquifer indicators, for example, has material constituents 

that are inconsistent for each hydrologic property. This inherent data characteristic 

can be appropriately handled using the rough set for set approximation. In rough set 

fashion, each material category (e.g. low, medium, etc) can be said to comprise lower 

and upper approximation sets, with each material considered as elementary entity 

constituting a particular category. It is worth noting that the approximation sets are 

not uniquely defined for probabilistic applications which require exact and known 

population of sample spaces 

4.3.1 Approximation and Set Derivation from Well-log Material Characteristics 

Very good Aquifer lndicators (VGAI) 

Good Aquifer Indicators (GAII 

The preceding section outlined geologic material grouping using aquifer 

properties for subsurface materials. This section employs rough set rules to categorize 

geologic materials into different levels of aquifer index. As apparent from Table 4.1 

(see section 4.3), well-log materials exhibit multiple categories for the various material 

characteristics. Distinct material classification is not possible using the individual 

borehole material properties, because of inconsistency of constituent well-log 

materials which characterize the material properties. 

Poor Aquifer indicators (PAI) 
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However, borehole materials for different properties can be classified into various 

levels for aquifer indicator suitability. This allows the possibility of applying set rules 

using the four aquifer properties to approximate well-log materials into set categories. 

The result of this approximation for the material properties from Table 4.1 is shown 

in Table 4.3. 

In fuzzy set theory, membership functions enable elements to exhibit partial 

class memberships of different and overlapping sets. Confusion sets, however, may 

result in cases where zones of different fuzzy sets intersect (Burrough and McDonnell 

1998). This may arise where an element is a partial member of three or more fuzzy sets 

to generate two or more intersecting fuzzy zones. As indicated in Table 4.1, silt for 

example, is a partial member of three different sets (that is, poor aquifer indicator, non- 

aquifer indicator and good aquifer indicator). This and similar situations where an 

element is characterized by multiple set memberships require tools that categorize 

individual elements while retaining their varied class characteristics and fuzzy 

memberships. It worth noting that no particular tool can account for this data 

characteristic, so the approach is to implement these analytical tools (that is, rough set 

theory and fuzzy set theory) to accommodate different aspects of the data. 

Consequently, the rough set process for borehole material categorization does not 

account for the inherent geologic unit transition within boreholes, but allows the 

classification of any geologic unit into a single group. 

4.3.2 Application of Geologic unit Categories to MOEE Data 

In the above section, a generalized grouping of unconsolidated subsurface 

materials is developed by characterizing sediments using major aquifer properties such 

as porosity, permeability, etc. This section applies this grouping to MOEE data which 

are standardized by the Geological Survey of Canada (GSC) with predefined sets of 

materials. Appendix A5 lists major subsurface sediments present in MOEE data after 

standardization by the GSC while Appendix A6 shows geologic material groupings for 

the MOEE data using rough sets. In reference to Table 4.3, which illustrates geologic 



materials into aquifer index categories, Appendix A6 shows GSC material details 

which constitute different aquifer indicator groups. These materials are further detailed 

into Table 4.4 with 'fill' regrouped into '01:hers'. These material clusters are used in 

subsequent subsurface characterization process such as Markov chains. 

Material 

Tag 

Others 

Table 4.4: List of geologic material details grouped into cate 

Material 
Material Material Mate.al 
Details Tao 

Gravel 

covered 
bored 

bedrock bedrock 

limestone limestone 

Silt 

gravel 

sand 

sand-diamicton 

sand-diamicton 

silt 

silt 

silt diamicton 

silt-diamicton 

pot-bedrock 
potential 
bedrock Clay 

sandstone I sandstone I 1 clav diamicton 

limestone-shale-inter limestone, I shale 
unknown Iunknown [ I 

ories 

Material Details 

aravel 

sand 

sand, diamicton 

grave1,diamicton 

silt 

sand, clay 

silt. sand 

gravel, clay 

clay 

clay, silt 

4.4 ASSESSING GSC STANDARDIZATION SCHEME 

In the preceding section, different sediment types have been categorized using 

aquifer supporting properties. But these groupings are standardized geologic units from 

MOEE water well data which are characterized with diverse geologic units and terms. 

The accuracy and extent of the standardization process however is not known. So, this 

section evaluates the representation of original data in the standardized MOEE data. 

MOEE water well data for ORM is mainly collected by private well drillers 

(pwd). The quality of MOEE data undermines its application into research and 

subsurface studies. Lack of training for pwd have been identified as one major factor 

limiting geologic accuracy of the MOEE data (Russell et al. 1998; Schuurman 2002). A 

rational approach to resolving this problem is the use of standardization schemes to 

homogenize the data onto a common platform. This is a necessary step to both 



prepare the data for modelling processes and derive relevant geologic information. 

Standardization, however, should retain original data variability. The variability of 

output data from the standardization process is crucial for at least two reasons. 

First, variability output data from standardization with respect to the original 

data evaluates the accuracy and the extent of the classification system. This is 

important because different classification systems have different goals. This goal may 

be data reduction and filtering while others may aim at replicating original data 

distribution. The measure of accuracy is the degree of how standardized outputs 

represent original data. The accuracy assessment describes not only explicit 

representation of terms such as gravel, silt, etc but also descriptive information carried 

by those terms. For example, 'sand and clay' classified as silt has 100% accuracy. The 

extent of classification is the degree by which standardization rules reduce original data 

into standard terms. For example, all instances of 'gravel and clay' are converted to 

'silt - diamicton'. 

Second, standardization scheme assessment could be used to design training 

programs for well-log data collectors (e.g. pwds). Hence, the assessment result should 

identify geologic materials with excessive high degree of error and vice versa. There are 

however, problems in assessing data variability, particularly, categorical data. The 

section below outlines few of these problems. 

4.4.1 Challenges in Assessing Variability of Categorical Data 

The above section discussed the need to assess classification systems and 

incorporate assessment outputs into validating rule-based standardization processes. 

This section, however, identifies some problems associated with categorical data 

classification using standardization schemes. Data variability assessment is a measure of 

variance between original data and the output data from standardization process. It 

includes both the magnitude and the direction of the variance. Variance assessment for 

numerical data is relatively easy because prior understanding and domain knowledge 

are not necessary preconditions to determine variance. Numerical data, though, not 



independent of the parameter under study (e.g. income levels, elevation, etc) have 

properties, and are understood by their magnitude. Population counts, elevation, 

income level, etc are examples of numerical data. Data variability can be assessed 

without underlying information about the data or consulting domain experts. 

Conversely, variability of categorical data requires domain knowledge. 

Variance of categorical data is not just the disparities that exist between two or more 

data elements but the unique properties inherent in them. For groundwater 

considerations for instance, fill, overburden and topsoil are considered one geologic 

unit since their hydrogeologic property is similar - hence no (or zero) variance. So, 

expert knowledge is a precondition to establishing variance in categorical data. 

A common approach to handling poor quality categorical data is to classify its 

terms to standard terms so relevant information are embedded into specific terms. This 

enhances information retrieval (Russell et al. 1998) and accuracy parameters can be 

assessed easily. Validation of such classification systems do not fall into mainstream 

standardization approaches. But, not until we have validated rule-based schemes which 

impose strict grouping of data elements (e.g. geologic units), do we actually begin 

relating standardization scheme to the real world. Original data collected by pwd 

express the variability inherent in the real world. Hence, the assessment of the 

standardization should enhance ways to incorporate original data variation into 

standardized outputs. The derivation of this variability is illustrated in the following 

section. 

4.4.2 Determination of Variability Index 

Problems encountered during categorical data assessment are discussed in the 

above section. This section outlines the approach adopted for computing the 

variability index for categorical borehole data. The variance computation employs set 

rules to derive three identification categories. First, if the original material is fully 

represented in the standardized output then identification index (IDI) of one (1) is 

assigned to that borehole unit (for example, if silt is standardzed as silt then its ID1 is 



1). Second, a borehole unit is assigned half (0.5) if the original data element is partially 

represented in the output. For example, if 'sand and gravel' is classified as 'gavel' then 

ID1 is 0.5. Third, a unit is given zero (0) ID1 if there is no relationship between the 

original data and the standardized output. The set rule essentially compares the sum of 

all identifiable materials to the standardized material for each well-log unit within a 

particular borehole. All borehole units with ID1 values less than one (1) are extracted 

in order to identify geologic units in error and also to compute percent error for 

material identification within each borehole. A summary table is constructed to 

outline the minimum, maximum, mean, standard deviation and coefficient of variation 

for the percent error of all boreholes. The summary table also includes the percent 

accuracy for identifying a particular geologic unit, say sand, gravel, etc. 

4.5 ACCQMMODAZTNG GRADUAL TRANSITION BETWEEN 

BOREHQLE UNITS 

The preceding section illustrated methods for assessing the GSC 

standardization scheme. This section describes techniques for accommodating gradual 

transition between geologic units. The approximation of borehole units developed 

towards categorizing geological space must also accommodate gadual transition 

between these geologic materials which are continuous entities. The transport of 

geologic materials from their source origins to various deposition sites through agents 

such as streams, glaciers, winds, etc accumulate sediments into layers whose transition 

from one to the other vary (Dolgoff 1996). While other geological investigations and 

deposition history of sediment accumulation sites can be employed to model the 

pattern of various geologic units, the geologic unit transition from one material to the 

other can hardly be estimated. Also such information is often lacking from mainstream 

well-log information. In cases where knowledge of geologic unit pattern may be 

sufficient for certain applications, an account of this added information on transition 

zones of various materials can enhance the ~erformance of derived numerical models. 



The essence and model performance capability of this information for 

environmental and geologic applications are not farfetched. Control of contaminant 

transport in groundwater systems may be endangered resulting in failure of numerical 

models that are used for the location and design of waste disposal sites. Road and dam 

settlements may also occur where there are significant transition zones between major 

geologic units that are ignored. The definition of the transition zone in fuzzy objects is 

related to the limits at which the object indicates differing characteristic which is 

significantly dependent on the precision of measuring the phenomena under 

consideration (Burrough and McDonnell 1998, 271). For data measured at certain 

locations (or points) the width of the transition zone could reflect the known accuracy 

of the measurement technique; for interpolated grid data using Kriging, the width of 

the transition zone could be given by the Kriging standard error (Burrough and 

McDonnell 1998,271). For diffuse geographic boundaries, width of the transition zone 

of the membership functions related to geographic boundaries could be defined using 

expert knowledge from the terrain (Burrough and McDonnell 1998). 

To accommodate indeterminacy in geologic unit transitions, relevant data on 

transition zone of geologic unit is essential coupled with application of an appropriate 

analysis tool that fully represents the fuzzy phenomena. Geophysical borehole logging 

such as resistivity and radiometric logs are potential means of estimating the width of 

transition boundaries between subsurface units. Lagacherie, Andrieux and Bouzigues 

(1996) identified the collection of soil indeterminacy information and the selection of a 

theoretical framework to model soil indeterminacy. The collection of geologic unit 

transition zone information in well-log data are required in the simulation of gradual 

transition between geologic units. The estimation of transition zone width may be 

highly inaccurate from geologic unit characteristic because transition boundary length 

between two geologic units is a property of the boundary rather than the geologic unit 

characteristics in consideration. That is, the boundary width of a transition zone may 

be defined separately for geologic unit and study area in question. It is worth noting, 

however, that the depositional history of a particular geological setting may influence 



the boundary width and the arrangement of constituent sediments. Hence, fuzzy set 

theory is not implemented in this study due to lack of boundary information for 

different geologic units. 

4.6 STOCHASTIC SIMULATION USING MARKOV CHAIN MODEL 

The above section discussed information requirement for applying fuzzy sets to 

borehole data for characterizing the subsurface environment. This section describes 

stochastic approach for simulating material transition sequence in the subsurface. The 

modelling of spatial surfaces using various interpolation techniques, for example, 

Kriging is employed to approximate possible estimates at unsampled locations 

(Burrough and McDonnell 1998). Variograms and the variance of estimated 

regionalized variable in Kriging do not necessarily exhibit original data characteristics, 

but ensures minimum error in the interpolation process. These interpolation 

techniques strive for the accuracy of the approximation process with little regards to 

geographic reality. 

Geographic simulation, on the other hand, attempts to provide infinite number 

of realizations (or renditions) that replicate the distribution and variability of original 

data (Shibli 2003). Hence, simulation attempts to reproduce reality by considering the 

uncertainty involved in data characteristics. Stochastic simulation is an alternate 

approximate probability simulation (Bardossy 2003) employing the use of random 

number sequence to generate multiple representations of reality. Stochastic simulation 

by Markov chains generates geographic representations of random field by employing 

simulated annealing, a generalization of a random sampling from probability 

distributions for examining a system's varying states in finite transitions (Bardossy 

2003; Bevington and Robinson 1992). Simulations are very useful for possible 

representations of reality that are not final outputs of analysis (Bardossy 2003). 

Markov chain models are applied in geology for categorical data (e.g. lithologies 

or geologic units) modelling to provide random patterns of spatial variability and also 

for relatively structured patterns with asymmetry and cyclical trends (Elfeki and 



Dekking 2001; Carle and Fogg 1997). Increasingly, spatial heterogeneity (e.g. lens 

length variation) common in geological material units requires analytical tools to 

simulate the geological distribution characterized with random geological states. Carle 

and Fogg (1997) contended for the appropriateness of the use of transition probability 

in Markov chains for accommodating asymmetric geological patterns. Most indicator 

geological models assume geological symmetry to quantify geographic variability, for 

example, cross-variogram or indicator models. 

Figure 4.3: Sample illustration of transition probability estimation using borehole 
geologic units 

+--- } lag spacing 

Markov chain models were developed in Groundwater Modeling System 

(GMS) by Brigham Young University into T-PROGS interface in the Borehole 

Module of GMS. T-PROGS application performs a transition probability geostatistics 

to generate multiple realizations of aquifer heterogeneity which are conditioned to a 

well-log data (Jones 2003). The Markov chain model in geological applications starts 

by defining n number of possible geologic material states e.g. SI, S2, S3, ..., Sn. The 

probability Pij of material transition from state Si to state Sj is estimated. Stationary and 



transition probabilities are then generated from the borehole material to develop the 

Markov chain model. Figure 4.3 illustrates the superimposition of a vertical line of 

equidistant points along a borehole at a particular interval. 

The transition frequencies between material states are determined as the ratio of 

the number of times a given state Si is followed by itself or the other states Sj in the 

process to the total number of transitions (Elfeki and Dekkiq  2001). The transition 

probability of material j to k, tjk (h) is defined by the conditional probability as: 

t jk  (h) = Pr(j occurs at x+ h I k occurs at h) 

where x is the spatial location, h is the lag spacing and j, k are the material categories 

(Jones 2003; Carle and Fogg 1997). A curve of transition probability against the lag 

spacing represents the Markov chain. Multiple material sets are generated during the 

simulation phase by fitting Markov chain curves to measured transition probability 

curves (Tones 2003). Markov chain model applied to one-dimensional categorical data 

in a direction 4 assumes a matrix exponential form: 

T (h,) = exp (R,h,) and 

where 4 is a lag in the direction 4 ,  R, represents the transition rate matrix 

and rjk,, denotes the conditional rates of change from material category j to k per unit 

length in the direction 4 (Jones 2003; Carle and Fogg 1997). Transition rates ensure an 

optimum fit between Markov chain model and the observed transition probability 

data. 

The Markov chain plot is characterized by three key descriptive features; 

material proportions, lens length and transition rates as illustrated in Figure 4.4. In the 

sample Markov chain shown in Figure 4.4, the transition probability corresponding to 

the flat portion of the curve represents the mean proportion for the material 



considered. The mean lens length corresponds to the lag separation on the horizontal 

where the tangent drawn against the initial portion of the curve intersects the 

horizontal axis. The initial gradient of the curve represents the transition rate. 

Figure 4.4: Sample transition curve demonstrating key descriptive features 

O f  5 10 15 

mean lens length 

The preceding computations for the Markov chain is considered for only the 

vertical direction, horizontal transition probability matrix need to be estimated to 

generate the horizontal Markov chain. Borehole data are generally rich in vertical 

direction but not sufficiently dense in the horizontal direction. Walther's law is 

employed to approximate the horizontal Markov chain model from results generated 

from the vertical direction calculations. Walther's law states that "any juxtapositional 

tendencies observed in the vertical direction will also hold true in the horizontal 

directions" or in other words, the vertical successions of deposited facies represent the 

lateral successions of environments of deposition 00nes 2003). The application of 

Walter's law assumes uniform material proportions in all directions to allow the 

derivation of horizontal transition rates from the vertical transition rates. 



4.7 BORENOW DATA RESULTS AND DISCUSSION 

The preceding sections outlined methods for implementing the borehole data in 

order to enhance the means of characterizing the subsurface environment. Outputs 

from the borehole data are discussed in the following sections and are categorized into 

three groups. First, the GSC standardization system is assessed to estimate the extent 

of data variability reduction. It also identifies specific sediment frequencies and the 

accuracy of geologic material identification level for all water wells in the MOEE data. 

Second, the transition probability matrix (tpm) for sediments grouped by rough set 

process is determined in order to simulate sediment transition sequences in the vertical 

direction. T-PROG simulations which describe sediment transitions are defined for 

golden spike clusters and sample MOEE data. Conflicting and similar sediment 

transition patterns are identified to describe relative correlation between both golden 

spikes and MOEE data. Third, limitations of T-PROG simulation are outlined in the 

subsurface characterization process. While the tpm outputs have both theoretical and 

practical relevance, its drawbacks are also carefully noted and outlined. Finally, a 

simple illustration is used to estimate depth and spatial information where specific 

sediments and sediment transitions are likely to occur. 

4.8 STANDARDIZATION ASSESSMENT RESULT 

The standardization assessment result is summarized in two tables: Tables 4.5 

and 4.6. In Table 4.5, original geologic descriptions are standardized into specific terms 

defined by the GSC. All possible geologic unit descriptions are identified from the 

original description and labelled as 'matl', 'mat2', 'mat3', etc. These geologic units 

approximate the variability inherent in the initial description and are compared to the 

GSC standardized terms. Identification index, ID1 is assigned to each description (that 

is, borehole unit) and for each borehole, percentage accuracy (ratio of the sum of ID1 

values for each geologic unit to the total number of geologic units that constitute the 

borehole expressed as a percentage) is computed. 
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If ID1 is less than one (I), then geologic units corresponding to the original description 

are identified as inconsistent materials. 

Table 4.6: Geologic material characteristics from MOEE data and summary statistic 
measures 

Material Material details 

Gravel gravel 

Sand sand, sand diamicton 

Silt 

Clay 

Others 

silt, silt-diamicton 

clay, clay-diamicton 
bedrock, pot-bedrock, 
sandstone, shale, 
limestone-shale-inter, 
limestone dolomite, 
covered, fill, organic, 
unknown 

Total 

Summary Statistics for Percent Accuracy of geologic units within Boreholes 

Number of Overall 
Occurrences From 

Spike) 
data (32 wells 

Sum I 5620220.56 I Number of borehole units I 262.650 

Number 
of Overall 

Occurrences 

Mean I 90.18 I Coefficient of variation I 0.0583 

Minimum 

Maximum 

In Table 4.6, the number of instances a geologic unit occur both in original 

description and as inconsistent material are ujed to compute the percentage error (ratio 

of the number of occurrence in error to the number of overall occurrence expressed as 

a percentage). The geologic units considered are gravel, sand, silt, clay and all other 

subsurface materials are labelled 'others'. This material grouping is in reference to the 

rough set approximation. The geologic material details are shown in Table 4.6. The 

grouping illustrates the insignificant presence of other geologic units with respect to 

gavel, sand, silt and clay. Silt has the highest percentage error and 'others' records the 

least percentage error. The significant percentage error for silt raises many questions. 

Silt has the least occurrences both in error and in the original description; but for 

every ten (10) occurrence, at least eight (8) of these occurrences will be in error. This 

represents a considerable error and limits the accuracy of the classification system. 

Number of 
Occurrences 

in Error 

Percent 
Error 

16.67 

100.00 

Number of boreholes 

Standard deviation 

62,325 

5.2504 



Clay has the highest overall occurrence but registers a small presence in error. This 

suggests most occurrences of clay have consistent classification and without 'others' 

geologic units, clay represents the most consistent sediment classified. Hence, the GSC 

rule has well represented (or targeted) clay in the classification process. Sand and gavel 

have approximately the same percentage error, though sand has higher occurrences 

both in original description and as inconsistent material. 

From golden spike data, the number of occurrence of these geologic units is 

also computed (see Table 4.6). Sand has the largest number of occurrences while gravel 

has the least. Comparing overall occurrence of these sediment groups, sand is well 

represented in both golden spike data and MOEE data. Clay is over-represented in the 

MOEE data; hence it is reduced significantly (78.9%) in the classification process. This 

supports what Russell et al. (1998) observed for two boreholes in the Humber River 

watershed that less than 2% of clay was over-represented to about 40% in the MOEE 

data (Russell et al. 1998-E). The significant percentage error for silt may be because it is 

the least (17.9O/) reduced material unit despite its predominance (approx. 24%) in the 

golden spike data. Significant reduction targeted on clay should also be directed onto 

silt in order to reduce its presence in error. 

Table 4.6 also shows summary statistic values for the accuracy of all geologic 

units that constitute each borehole. The accuracy for each borehole is computed as the 

sum of ID1 values for each geologic unit to the total number of geologic units that 

constitute the borehole expressed as a percentage. For 62,325 boreholes in the MOEE 

data; there are 262,650 geologic units, the minimum and maximum accuracies are 

16.67% and 100% respectively. There is, however, only one occurrence of 16.67% and 

the average accuracy is 90.18% with a standard deviation of 5.25. Hence, for one 

standard deviation from the average, the accuracy range is between 95.43% and 

84.93%. This represents a high accuracy measure for the classification system. 



4.9 CHARACTERIZING SEDIMENT VARIABILITY - ORM 

SUBSURFACE 

The above section assessed the GSC classification system which standardizes 

diverse geologic units into specific terms. It also illustrated major sediment types 

present in the ORM and their relative frequency of occurrence. This section however, 

employs golden spike data to characterize the subsurface in a vertical direction using 

transition probability matrix from Markov chains. 

4.9.1 Group Selection for Golden spikes 

The spatial distribution of golden spike data requires the grouping of golden 

spikes into small clusters based on proximity and similar sediment types. The accuracy 

of determining sediment transition sequence is a function of a deposition environment 

that exhibit similar sediment distribution. The grouping is very crucial to the accuracy 

of determining sediment proportions, lens lengths and the measure of transition of one 

sediment to another. Figure 4.5 illustrates sample borehole grouping. 

The boreholes which constitute group 6 (constituent clusters are groups 6a, 6b 

and 6c) are related by proximity and can be categorized as one cluster. But, the 

sediment distribution patterns observed for this group of boreholes have directions to 

it. The depositional pattern has north-west (NW) to south-east (SE) direction where 

sediments of larger sizes are towards NW side and small sized sediments are to the SE. 

Hence, sediments are generally transported from NW to SE. Employing these 

properties of proximity and sediment distribution, golden spikes are grouped into 

small clusters shown in Table 4.7. 



Figure 4.5: Sample borehole grouping prior to subsurface characterization 
/ 4 

GSC-BH-S-SHM 

Group 6b 
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Group 2b I GSC-BH-S-GHR Group 6a 
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Group 6c 
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GSC-BH-S-KING 
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4.9.2 Transition Probability Outputs 

The preceding section described factors considered for grouping golden spikes 

in order to enhance sediment transition determination. This section employs these 

golden spike clusters into simulating sediment distribution. These golden spike clusters 

are used in Groundwater Modeling System (GMS) employing T-PROG simulation to 

characterize sediment distribution in the vertical direction. For each simulation, the 

predominant sediment type is chosen as the background material and lag is specified. 

The T-PROG vertical simulation output includes; sediment proportions, lens lengths, 

transition rates, embedded transition probabilities and frequencies, maximum entropy 

factors and Markov chain graphs. These outputs for all the golden spike groups are 

, shown in Appendices C1 to C24. 

In Table 4.8 and Figure 4.6 is a sample output for group 4 (see Figure 4.6) 

golden spikes. Background material is sand (most predominant sediment) and lag is 

0.3m. The transition rates corresponds to the slope of the transition probability curve 

at the initial lag (that is lag = 0). Diagonal values of the transition rate matrix are 

negative because for the same sediment type, transition rate decreases with an increase 

in lag (see Figure 4.7). For the same sediment type, consistent transition occurs when 

transition probability varies uniformly with lag. Sand transits most uniformly than 

any other sediments and have a transition rate of -0.084, while gravel and clay exhibit a 

relatively rapid transition. Transition rates for different sediments (off-diagonal terms) 

are positive; transition probability increase together with lag. Clay to sand (0.181) and 

gravel to sand (0.169) transitions have the highest rates. The converse of this is not true 

because sand to clay (0.028) and sand to gravel (0.029) transition have smaller rates. 

Hence, it is more likely to transit from clay to sand and from gravel to sand than the 

opposite of these transitions. 

Embedded transition probabilities (or transition frequencies) are also computed 

so that they are conditioned to the sediment lens lengths. So, diagonal entries for the 

tpm correspond to the lens length values. Off-diagonal values are transition 



probabilities for different sediment transitions. Clay to sand (0.727) and gravel to sand 

(0.571) transitions again, indicate the highest probabilities. 

Malarial Proportion Gravel Sand Silt 
I - I ,  . I  I 

---- 
Gravel 0.068 -0.312 0.169 - / 0.051 / 3.210 1 0.571 1 0.238 1 0.190 - 
Sand 0.538 0.029 -0.084 0.028 0.028 0.346 12.762 0.362 0.292 
Sill 0.296 0.016 0.055 -0.086 0.015 0.217 0.522 11.609 0.261 

Golden spikes: GSC-BH-VSR, OGS-PJB-14,OGS-PJB-15, OGS-PJB-16,OGS-PJB-17, 
OGS-PJB-18,OGS-PJB-19, GSC-BH-S-AUR, GSC-BH-S-BAL, GSC-BH-S-MSR. 

Figure 4.6: Spatial and sediment type distribution for group 4 golden spikes 





Finally, maximum entropy factors (rnef) represent the ratio of the transition 

rate to the maximum entropy transition rate. A mef of 1.0 represents maximum 

disorder in depositional tendencies (Jones 2003; Environmental Modeling Systems 

2004). A mef greater than 1.0 indicates that two sediments tend to occur next to each 

other and when the rate is less than unity then the opposite occurs (Environmental 

Modeling Systems 2004). In other words, for a mef of 1.0, the transition probability of 

single sediment to another is consistent with random distribution of the sediments. So, 

transition rate is dependent only on sediment proportions of these two materials 

(Jones 2003). This is an intuitive method of generating Markov chains because it 

enables logical incorporation of anisotropy into the model with the maximum entropy 

factors (Environmental Modeling Systems 2004; Jones 2003). In Table 4.8, high 

maximum entropy factors close to or greater than unity are; gravel to silt (1.256), sand 

to gravel (1.092), sand to silt (0.914), silt to gravel (0.962) and clay to sand (1.090) 

transitions. These transitions have high juxtaposition tendencies while the least 

transition is clay to gravel (0.190). 

4.9.3 Sample Transition Probability Outputs for Golden spikes and MOEE Data 

In the section above, golden spikes data are used to characterize the ORM 

subsurface in the vertical direction using T-PROG by generating transition probability 

simulations. This section outlines a common spatial extent for which both golden 

spikes and MOEE data coexist and are used to generate transition probability 

simulations. This is necessary in order to examine sediment transitions for the two 

data in order to identify comparable and dissimilar patterns. 

A subset of group 4 golden spikes used in the above section (that is, section 

4.9.2) is selected for this exercise. This sub-selection becomes necessary due to lack of 

spatial coordinates for MOEE data covering the entire group 4 golden spikes area. A 

combination of golden spikes and MOEE data chosen is shown in Figure 4.8. The 

widths of golden spikes are exaggerated relative to the MOEE data, but this does not 

affect sediment states and transitions. T-PROG simulations were run for golden spikes 



and MOEE data separately. The outputs for transition probability results are shown in 

Tables 4.9 and 4.10 while Markov chain graphs are displayed in Appendices C25 and 

C26 respectively. 

Figure 4.8: Spatial and sediment distribution of sample golden spikes and MOEE 
data 

Fwl Sand 

The tpm for the golden spikes are very distinct, that is, specific sediment 

transitions such as silt to clay, clay to sand, etc are consistently measured with unique 

values that separate them from other transitions. Silt to clay transition measured using 

transition rate, embedded transition probability and frequency and maximum entropy 

factor all indicate zero (0.000) (see Table 4.9). The converse of this transition is true; 

that is clay to silt transition exhibit the same properties. Hence, possible sediment 

transitions and juxtaposition tendencies are non-existent for silt to clay and clay to silt 

transitions. The opposite of this transition property is clay to sand. Clay to sand 

transition measured using transition rate, embedded transition probability and 

frequency and maximum entropy factor indicate 0.211, 1.000, 0.172 and 1.844 



respectively (see Table 4.9). These values show that wherever clay occurs in this 

environment, the only sediment type to transit to will be sand. The clay to sand 

transition has 100% probability and shows the most prevalent juxtaposition trend. So 

clay to sand transition properties are unique based on measured tpm values. The other 

transitions exhibiting transition properties close to clay to sand are gravel to silt and 

silt to gravel. These observed transitions (that is, clay to silt or vice versa and clay to 

sand) show two extreme transition patterns which characterize vertical sediment 

distribution for this environment. 

Table 4.9: Vertical T-PROG simulation o u t ~ u t  for samvle Golden s~ikes 

I Golden spikes: OGS-PJB-17, OGS-PJB-18, OGS-PJB-19. 

Table 4.10: Vertical T-PROG simulat 



For the MOEE data, while there are similar transition patterns, important 

sediment transition conflicts persist. First, clay to sand transition is consistent with its 

observed pattern in golden spikes. The similarity in this transition is only limited to 

sediment sequences but not in juxtaposition trend. That is, transition rate, embedded 

transition probability and frequency have high (see Table 4.10) values (0.114, 0.632 and 

0.147 respectively) enforcing a similar clay to sand transition sequence in golden 

spikes. But, entropy factor (0.568) is considerably below unity (less juxtaposition 

tendency) indicating that it is less likely to transit from clay to sand in this 

environment. This juxtaposition pattern is opposite to that observed for golden spikes. 

Second, the only sediment transition which exhibits juxtaposition pattern is silt 

to clay transition with mef of 1.463. But, this transition (silt to clay) constantly 

indicate a zero (0.00) value for all tpm measures (that is, transition rate, embedded 

transition probability and frequency and mef) for golden spike simulation. Hence, silt 

to clay transition sequence in MOEE data in this environment is the most conflicting 

sediment transition. So to adjust sediment transition sequence, silt to clay transition 

should be the first to correct in order to simulate or replicate sediment transition 

pattern from golden spikes into MOEE data. 

4.10 SEDIMENT DISPARITIES FOR GOLDEN SPIKES AND MOEE DATA 

The preceding section characterized sediment variability in the vertical 

direction using state transitions of geologic materials. T-PROG simulations were used 

to describe material distribution for sample golden spikes and MOEE data and 

disparate sediment transition patterns are identified. Geologic material arrangement 

patterns described by T-PROG simulation in the subsurface environment are not the 

only characteristics hydrogeologist need. For example, while sediment transition 

sequence becomes vital input to determine depth limits for water wells during drilling 

processes, the exact depth and spatial information may remain unknown. 

Also when adjusting sediment transition sequence in MOEE data to conform to 

observed pattern in golden spikes, there is no depth information to indicate where 



specific transitions and sediments are likely to occur. For example, if sand to gravel 

transition has predominant juxtaposition trend in golden spikes then to replicate this 

pattern in MOEE data, one of these sediments (that is, either sand or gravel) must 

occur in the MOEE data. This becomes a necessary precondition to determine 

discrepancy patterns for different sediments in both data and such conditions may be 

difficult to accomplish. So, this section illustrates a means of identifying conflicting 

sediment types in golden spikes and MOEE data. 

Figure 4.9: Spatial and sediment distribution for selected golden spikes (horizons 
between sediment contacts are in metres) 

Figure 4.9 shows spatial and sediment distribution for sample golden spikes 

MOEE data. Figure 4.10 illustrates a cross section between golden spikes: OGS-PJB- 

OGS-82 and GSC-BH-S-KING. Boreholes from MOEE data which intercept this 



golden spike profile (that is, cross-section) are also inserted. This illustrates sediment 

differences in golden spikes and MOEE data. 

Clay is rare sediment in the golden spikes cross section where the MOEE 

boreholes occur. Hence, it is less likely to have significant clay occurrence in the 

MOEE data in this environment. The MOEE data should exhibit trace presence of 

gravel at depths between 317m and 288m. The lens length of sand in MOEE data is 

overstated compared to its occurrence In golden spikes. There are few occurrences of 

silt which are similar in both data but this is limited to only five MOEE boreholes and 

their lens widths vary considerably. Also the pattern of sediment states shown in GSC- 

BH-S-KING at the immediate surface (between 289m and 280m) is characterized with 

unconformity. This pattern is not represented in MOEE boreholes. 

Figure 4.10: Sediment profile between two golden spikes and intercepted boreholes 
from MOEE data (horizons between sediment contacts are in metres) 



This illustrates unique sediment differences between golden spikes and MOEE 

data. Sediment states in the MOEE data can be modified at specific depths in order to 

replicate sediment distribution pattern from golden spikes. Hence, this section 

provides a means of simulating sediment states from golden spikes into MOEE data. 

In sum, rough sets use major aquifer properties (porosity, permeability, grain 

size and specific yield) to appropriately group borehole geologic units. The sediment 

grouping enables better classification of geologic units into different aquifer suitability 

levels. This sediment clusters were applied to MOEE data in order to assess sediment 

variation in the subsurface environment. Sediment variation assessment was, however, 

preceded with the assessment of GSC classification system which was used for 

standardizing the MOEE data. The GSC scheme was assessed using rough sets. The 

assessment results unveil significant extent of the GSC classification and provide a 

metadata equivalent for the MOEE borehole database. The metadata information such 

as: percent accuracy of borehole characterization, inconsistent sediments in each 

borehole, accuracy of sediment identification, etc provide relevant ingredients for 

uncertainty assessment. 

Further, transition probability was used to simulate sediment state and 

transition for both golden spikes and MOEE data. This technique incorporates 

sediment variation from golden spikes into MOEE data. Both comparable and 

conflicting patterns were described in order to enhance sediment distribution in the 

MOEE data. This method showed great potential for sediment simulation from one 

borehole data into another. Apparent limitations, however, such as presence of 

consistent sediment requirements were also described. 



CHAPTER5: , 

CONCLUSIONS AND FURTHER WORK 

The preceding two chapters have discussed data uncertainties, methods and 

outputs illustrating specific uncertainties in two data: census data and borehole data. 

This chapter brings together observed uncertainties in these two case studies and 

provides concluding remarks and recommendations for further work. The chapter also 

provides an overview for integrating these unique case studies into one research. The 

section below discusses research implications for integrating the two case studies. 

5.1 INTEGRATING BOTH CASE STUDIES 

The research techniques and the data used in this study raised many questions. 

One question is: why use data that are different in many ways. For example, census 

data are used to measure socio-economic and demographic information, and borehole 

data are used to characterize subsurface geology. There are many factors which 

influenced the choice of data and their subsequent uncertainties - which are examined 

in this study. 

First, uncertainties in both case studies are different and they reflect their 

respective data distribution. Census data are different from borehole data, so also are 

their subsequent uncertainties. The scale problem in census data is different from 

erroneous sediment description in borehole data. These differences provide a 

computational opportunity to assess different uncertainties with one analysis tool (i.e. 

rough sets). Second, data availability also affected the research technique. The data used 

in this study were made accessible by research communities who are ready to provide 

data for research without cost. 

Third, most methods for assessing uncertainty are plagued with the tendency to 

examine problems in a specific data or area of application. Fuzzy sets, for example, 

have experienced huge applications in environmental and physical systems (Lagacherie 



et al. 1996; Fortin and Edwards 2001; Allen et al. 2002; Carranza and Hale 2001; 

Dragicevic et al. 2001) but little applications in human systems. One may find many 

articles on uncertainty but they are often specific to particular data property or 

analytical process. For example, Warren et al. (2003) developed a technique for 

representing and propagating uncertainty through predictive model for species richness 

in order to estimate different levels of biodiversity. Their method was unique and may 

be useful for ecosystem models. But a broad perspective of geographic uncertainty is 

needed to enhance integrity of geographic analysis. For example, Goodchild (1989) 

discussed 'modeling error in objects and fields'. He described a generic technique that 

is sensitive to the nature of data and its uncertainty when minimizing error. This 

method provides a broad perspective for data uncertainty and accounts for basic 

properties of data which may be subject to uncertainty. Hence, the use of rough sets in 

this study was to provide a broad technique for reducing uncertainty that is sensitive 

to data characteristics and their uncertainties. 

However, rough sets have not gained popularity in GIScience partly because 

many researchers tend to focus narrowly on specific data or area of application. In this 

study, the utility of rough sets was applied to reduce uncertainty in census data and 

borehole data. The technique was not only to minimize uncertainty in these data but 

to demonstrate rough sets as a knowledge base tool for characterizing uncertainty 

irrespective of the data or area of application under study. Hence, this research have 

show-cased the use of rough sets as a broad uncertainty characterization tool. A brief 

outline of uncertainties in each case study is described below. 

The study has described uncertainties which plagued census data and borehole 

data. It recognized that these uncertainties result in marginal data quality and 

erroneous geographic information. These uncertainties threaten the integrity of 

GIScience applications, but this study provided a technique for reducing the effects of 

uncertainty in both data independently. For the first case study, rough sets enhanced 

spatial characterization of the relationship between recent immigrants and deprivation 

indices by mitigating the scale problem. The rough sets technique used can be applied 



to any spatially grouped data for which scale distortion is encountered. Hence, for 

census data, the effects or extents of uncertainty resultant from scale issue are 

minimized using rough sets. 

In the second case study, rough sets and transition probability were used to 

assess GSC classification scheme. The techniques replicate sediment variation by 

enhancing geologic understanding in the subsurface environment. This case study 

enriched borehole data of marginal quality by providing metadata information and 

integrating accurate sediment distribution. Hence, for borehole data, the implications 

of uncertainty ensuing from erroneous sediment identification and description were 

reduced using rough sets and transition probability. 

The following sections discuss research findings and conclusions separately for 

both case studies in: census data and borehole data. 

5.2 CONCLUSIONS AND FURTHER RESEARCH: FIRST CASE STUDY 

The study has identified problems associated 'with common spatial analysis 

tools and illustrated the utility of rough sets in spatial data analysis. Common 

geospatial data characteristics such as spatial dependency, spatial autocorrelation and 

heterogeneity of geographic phenomena confound most analytical tools and discourage 

representation of data distributions into derived models. The study used rough sets to 

accommodate different data characteristics. So, outputs from the rough sets method 

showed the preservation of data distribution during spatial analysis. This ensured 

relative accuracy and reduced excess discrepancies between data distribution and model 

characteristics. Appropriate treatment of conflict within input data variables and 

convenient representation of multiple data distribution were recognized as key merits 

in rough sets analysis. The rough sets tool did not improve nor create new data, but its 

worth is in reasoning with data to develop models which replicate single or multiple 

data characteristics. These properties enhance spatial integrity in attribute space. 



Next, the scale dimension of MAUP has been explored to estimate scale 

transition parameters in order to translate data characteristics across different scales. 

Different patterns of data distribution have been examined at multiple census scales: 

CSD, CT and DA. Scale transitions from large resolution data to small areas are 

necessary because policy decisions are often made for small areas using large resolution 

data. Accuracy indicators were also computed to describe the thresholds within which 

these census data estimates can be applied satisfactorily across scales. 

Finally, the spatial relationships of recent immigrant and deprivation index 

were derived and were characterized with model strength and magnitude. The strength 

of recent immigrant and deprivation index relationships computed at CSD, CT and 

DA levels were 0.600, 0.549 and 0.468 respectively. The variation in the strength of 

this relationship at the various census scales showed the erroneous conclusions which 

can be reached based on any specific census scale used. The steady decline in the 

strength of this relationship showed that census household or individual level data 

would have a smaller correlation index. While the DA model cannot be used to 

uniquely describe reality (i.e. individual level pattern), the individual level model is not 

far from it. This quantitative method of neighbourhood characterization may not be 

recognized for its validity of using indicators to describe human phenomena. 

However, for quantitative analysis of spatial aggregate data, rough sets minimized the 

scale problem and better characterized spatial relationships. 

A number of questions, however, remain unanswered and require further 

investigation. Census household level data estimates should be analyzed with known 

data to validate the actual residual and evaluate the rough sets approximation process. 

Census data used in this study is subject to a single aggregation pattern homogenized 

for specified area units, and it is apparent that different census grouping will unearth 

different data patterns. Subsequent studies should extend this analysis to disaggregate 

data at different census resolutions to explore the aggregation pattern over multiple 

resolutions and also to compute transformation parameters to translate between 

different scales. Finally, the rough sets technique estimated deprivation levels for small 



census areas using large resolution census data, but the spatial specifications (or 

location) for these small areas remained unknown. 

5.2.1 Research Contributions: First Case Study 

Research findings observed in this study have both practical and theoretical 

relevance. Research contributions for the first case study are itemized below: 

Data distributions for multiple variables were retained during spatial analysis. 

Rough sets provided a means of translating socio-economic characteristics 

across different census scales: CSD, CT and DA. This sequence of analysis 

may be applied in other research areas, for example, population health 

studies. First, to harmonize nonlinear patterns among multiple variables, 

which may characterize the same health neighbourhood differently. Second, 

to describe health scenarios at different area units. In other words, population 

health analyst may assess the effects of data aggregation on their analysis. 

Openshaw (1984a) suggested that accuracy of parameter estimates be 

computed in order to examine the effects of data aggregation. The first case 

study has computed accuracy measures for different levels of census 

aggregation (CSD, CT and DA). Estimated scale sensitivity measure enhanced 

spatial analysis operation with minimum scale distortions. Rough sets method 

provided a unique technique of simulating topological relationships for 

attribute data so we may know the amount of distortion introduced by data 

aggregation. 

Considering the city of Burnaby, the relationship between recent immigrants 

and deprivation index for different census scales: CT (0.5405) and DA (0.5590) 

have very close outputs. Hence, for compact study areas characterized with 

homogeneity and randomness, spatial relationships at different census units 

(e.g. CT, DA) can be identical. This could minimize the uncertainty of 

choosing which census units (or scales) to characterize deprivation levels. So, 

regarding the choice of census scale for particular policy implementation, 



there is a limiting threshold within which derived models could yield very 

close results in order to inform census scale specification. 

The section below discusses conclusions and future work for the second case study. 

5.3 CONCLUSIONS AND FURTHER WORK: SECOND CASE STUDY 

The effects of uncertainty examined for the second case study were aimed at 

enhancing the use of borehole data of marginal quality for accurate geological inquiry. 

The sequence of methods applied on borehole data addressed sediment variation and 

erroneous description problems. 

First, the GSC standardization scheme was assessed using MOEE data. The 

assessment examined sediment variation as perceived by private well drillers (pwd) in 

MOEE data. This sediment distribution pattern was examined against outputs from 

the GSC classification system. The assessment identified sediments with high 

percentage error (e.g. silt) and computed accuracy measures for sediment descriptions 

within each borehole. 

Second, transition probability simulation characterized sediment distribution in 

the subsurface using both golden spikes and MOEE data separately. The method 

compared sediment state and transition patterns in golden spikes and MOEE data in 

the vertical direction. The T-PROG simulation was a further step for enhancing and 

validating MOEE data beyond the GSC standardization scheme assessment. For 

example, silt occurred as the most abundant sediment in error when standardized by 

GSC scheme. Clay, on the other hand, occurred as the overall predominant sediment 

in the MOEE data. But, the GSC scheme has reduced its occurrence of error, and it 

was the most standardized sediment. From T-PROG simulation, clay and silt were 

identified for exhibiting the most conflicting sediment state and transition pattern 

compared with other sediment distributions in golden spikes. Hence, though clay had 

less error during GSC scheme assessment, its significant occurrence in error was 

exposed through transition probability simulation. 



Third, T-PROG simulated sediment distributions in the subsurface, but specific 

depth and spatial information where these sediment state and transitions occurred 

remained unknown. So, this final stage showed a simple profile between two golden 

spikes. Boreholes in the MOEE data which intersected the golden spike profile were 

examined to estimate depth and spatial information where sediment differences 

occurred. 

Further questions, however, remain for future investigation. Fuzzy sets should 

be used to describe gradual sediment state and transition. But, specific data on sediment 

transition which describe boundary properties are needed. Further, sediment state and 

transition simulation were focused in the vertical direction. Sediment distribution 

pattern should also be examined for the horizontal direction. Also sediment differences 

observed were sampled from both golden spikes and MOEE data. The same approach 

should be extended for other golden spike sub-clusters and MOEE data. Sediment 

distributions cannot be replicated from one golden spike cluster to another, but 

specific sediment states and transitions which are consistently in error could be 

identified. 

5.3.1 Research Contributions: Second Case Study 

In the second case study, which focused on sediment identification and 

description problems in borehole data, below are its research contributions: 

Outputs from GSC standardization assessment and sediment variability 

should support training programs for private well drillers and enhance 

borehole data quality. The output for the GSC scheme assessment provided a 

metadata equivalent for the MOEE database. 

Accuracy measures, which indicate the reliability of sediment distribution for 

specific boreholes, should form part of the GSC or MOEE borehole database, 

so researchers may quantify the level of uncertainty when using this data. 

Sediment state and transitions simulated using transition probability are 

valuable for estimating depth information for water wells in order to reduce 



the cost of drilling and provide productive water wells. The methods applied 

on borehole data represent a unique approach to enhance data of marginal 

quality using high quality data. 

To conclude, the analysis process for both census and borehole data emphasize 

the need to develop knowledge base techniques uniquely for different uncertainties, 

however these methods should be designed to resist distortions in scale and data 

distributions. 

5.4 FINAL CONCLUSIONS 

The sources and effects of uncertainty have been examined in two disparate 

data: census data and borehole data. Scale issues in census data and sediment 

identification and description problems in MOEE borehole data have linked these data 

under a single umbrella of uncertainty. Hence, this study focused on providing tools to 

reduce the effect of these uncertainties in order to enhance geographic inquiry. 

In census data, applying rough sets to spatial analysis has provided a scale 

sensitivity measure to translate geographic relationships over multiple census scales. So 

while the rough set tool cannot eradicate uncertainty during spatial transition, it does 

provide accuracy thresholds within which rough sets estimates apply. It also enhances 

data distribution retention across census scales. 

In borehole data, rough sets enabled sediment grouping using aquifer- 

supporting properties. These sediment clusters highly facilitated the GSC 

standardization scheme assessment and T-PROG simulation. The sequence of 

techniques employed enhanced the quality of MOEE data in accurate geological 

inquiry. The utility of rough sets and transition probability is not limited to ORM 

southern Ontario alone, but also any aquifer with borehole data of marginal quality. 

However, the ORM provided a unique opportunity in order to enrich data of 

marginal quality from high quality data. 



Apendix A l :  Descriptive values o f  porosity fo r  a range o f  geological 
materials 

Material 1 Porosity (per cent) Material I Porosity (per cent) 

Coarse gravel 

Medium aravel 

Limestone 

Dolomite 

Dune sand 45 
Adapted from Water Supply Paper 1839-D by permission of the United States Geological 
Survey (Brassington 1988, p53) 

Fine gravel 

Coarse sand 

Medium sand 

Fine sand 

Silt 

Fine-grained sandstone 

Clay 

Apendix A2: Descriptive values o f  specific yield fo r  a range o f  geological 
materials 

28 

32 

r 

Material I specific Yieid I Material I Specific Yield 
(per cent) (per cent) 

34 

39 

39 

43 

46 

3 3 

42 

Loess 

Peat 

49 

92 

Schist 

Siltstone 

Claystone 

Shale 

Till - mainly sand 

Till - mainly silt 

Tuff 

Coarse gravel 

Medium gravel 

Fine gravel 

Coarse sand 

Medium sand 

Fine sand 

Silt 

Clay 

Fine-grained sandstone 

[ Survey (Brassington 1988, p53) I 

38 

35 

43 

6 

31 

34 

41 

Medium grained sandstone I 27 I Tuff 

2 3 

24 

25 

27 

28 

2 3 

8 

3 

21 

21 
Adapted from Water Supply Paper 1662-D by permission of the United States Geological 

Limestone 

Dune sand 

Loess 

Peat 

Schist 

Siltstone 

Till - mainly silt 

Till - mainly sand 

Till - mainly gravel 

14 

38 

18 

44 

26 

12 

6 

16 

16 



Apendix A3: List of descriptive porosities and hydraulic conductivities for 
unconsolidated sediments and rocks 

Hydraulic conductivity, 

Unconsolidated Sediments 

0.0005 - 0.002 

0.002 - 0.06 

Alluvial sands 0.06 - 2.0 1 .O - 500 
2.0 - 64 25 - 35 500 - 10 000 

Consolidated Sedimentary Rocks 

shale 

Sandstone 

Limestone 

Small 

Medium 

Granite 
Slate 

Apendix A4: Hydraulic conductivities in metredday for various rocks 
.-. . 

Hydraulic ~ondi~ct iv i t~- in  m/d 
I o - ~  I o4 10 I 0-L 10-1 I 10 10' 

1 o3 1 o4 

Variable 

Schist 

Relative Hydraulic Conductivity 
Very low Moderate High 

Very high 

Represented Materials 

5 -  15 

5 - 3 0  

Igneous and Metamorphic Rocks 

Large 

Small 

Medium 1 0.001 - 1 1 lo-' - lo4  

Silt, clay and 
mixtures of 

sand, silt and 
aravel 

5 x  lo-'- 5 x  

l o 4 -  10 

0.1 - 30 

Basalt 

Reproduced from S248 by permission of the Open University (Brassington 1988, p561 

Massive 
igneous & 

metamorphic 
rocks 

Adapted from 

10 

Small 1 0.031 - 1 1 0.0003 - 3 

0.0001 - 1 

0.001 - 1 

Consolidated Rocks I 

0.0003 - 3 

10"- lo-5 

~ep'artment of the Interior (Brassington 1988; 656) 

127 

Clean 
Laminated sandstone & 
sandstone, fractured 

shale & igneous & 
mudstone metamorphic 

rocks 

Vesicular & 
scoriaceous basalt 

& cavernous 
limestone & 

dolomite 

the Groundwater Manual by permission of the United States 



Apendix A5: Geologic units present in MOEEE data identified by the 
GSC 

Description 

11 I Covered 

1-1 I Limestone 

1-2 I Shale 

1-3 ] Granite 

1-4 I Dolomite 

1-6 I Sandstone 

5 I Gravel 

6 I Sand 

7 I silt 

9 I Oraanic 

9 9 I Unknown 

Apendix A6: ORM geologic unit approximation into aquifer supporting 
groups 

Non-Aquifer lndicators (NAI) 

Set Category 

Very Good Aquifer lndicators (VGAI) 

Good Aquifer Indicators (GAI) 

Moderate Aquifer Indicators (MAI) 

Poor Aquifer lndicators (PAI) 

Organic 

Limestone Shale-Inter 

Modified Upper 
Approximation set 

Gravel 

Sand-Diamicton 

Silt-Diamicton 

Fill 

Clay-Diamicton 

- 

Granite, Dolomite 

Lower 
Approximation set 

Sand 

Silt 

Clay 

Bedrock, Pot-Bedrock 

Limestone, Shale 



APPENDIX B 

Apendix Bl :  Individual variable constituents o f  major deprivation categories 

nemployed population 
years population 15 years and over by of dwelling $ 
not attending school labour force activity % 

Population 20 years I 

than grade 9(%)- 1 
Without high school Unemployed population 

25 years and over by graduation labour force activity % 
I I 

Unemployment rate 

Employment 
income % 

Government 
transfer payments % 

Population 15 years 
and over without 
income % 

Incidence of low 
income in 2000 % 

Apendix B2:Deprivation index derivation process w i t h  n o  assumption o f  spatial 
dependency o n  Recent immigrants 



Apendix B3: Frequency distribution chart for low income 

Frequency Distribution of Low Income - Census Tracts 

0.2 0.4 0.6 0.8 1 .O 
Data Range 

Apendix B4:Frequency distribution chart for Incidence of low income 

Frequncey Distribu~ion of Incidence of 
Low Income - Census Tracts 

02 0.4 C.6 0.8 1 .O 
Data Range 



A
pe

nd
ix

 B
5:

F
re

qu
en

cy
 d

is
tr

ib
ut

io
n 

ta
bl

e 
fo

r 
L

ow
 

In
co

m
e 

A
pe

nd
ix

 B
6:

F
re

qu
en

cy
 d

is
tr

ib
ut

io
n 

ta
bl

e 
fo

r 
In

ci
de

nc
e 

of
 L

ow
 I

nc
om

e 

D
a

ta
 R

an
ge

 
' 

0.
00

 -
 0

.2
0 

T
ot

al
 

D
A

U
ID

 is
 a

 u
ni

qu
e 

id
en

tif
ie

r f
or

 a
 D

A
 

C
T

U
ID

 is
 a

 u
ni

qu
e 

id
en

tif
ie

r f
or

 a
 C

T
 

F
re

qu
en

cy
 

11
9 

D
at

a 
R

an
ge

 
0.

00
 -
 0

.2
0 

A
pe

nd
ix

 B
7:

 S
am

pl
e 

de
pr

iv
at

io
n 

in
di

ca
to

r 
va

lu
es

 a
t D

A
 r

es
ol

ut
io

n 
gr

ou
pe

d 
in

to
 C

T
 f

or
 s

et
 a

pp
ro

xi
m

at
io

ns
 

F
re

qu
en

cy
 

12
1 

42
4 

t;
 

+
 

T
ot

al
 

D
A

U
ID

' 

00
1 5

 
00

1 6
 

00
1 7

 
00

04
 

00
06

 
00

07
 

00
08

 
00

09
 

00
1 

1 
00

01
 

00
02

 
00

03
 

42
4 

C
TU

ID
' 

01
 32

.0
0 

01
33

.0
1 

01
 33

.0
2 

02
50

.0
2 

A
ve

ra
ge

1 
M

ed
ia

n 
E

du
ca

tio
n 

0.
27

1i
 

0.
26

1 

0.
11

71
 

0.
13

1 

0.
47

71
 

0.
47

7 

0.
27

41
 

0.
19

0 

E
du

ca
tio

n 

0.
26

1 
0.

13
9 

0.
41

 2 
0.

17
5 

0.
02

1 
0.

08
7 

0.
18

3 
0.

64
5 

0.
30

9 
0.

19
0 

0.
48

2 
0.

15
0 

E
m

pl
oy

m
en

t 

0.
62

6 
0.

25
1 

0.
60

2 
0.

56
3 

0.
1 

72
 

0.
19

5 
0.

22
0 

0.
16

7 
0.

40
7 

0.
36

5 
0.

66
5 

0.
27

2 

A
ve

ra
ge

1 
M

ed
ia

n 
E

m
pl

oy
m

en
t 

0.
49

31
 

0.
60

2 

0.
28

81
 

0.
20

8 

0.
28

71
 

0.
28

7 

0.
43

41
 

0.
36

5 

H
ou

si
ng

 

0.
85

7 
0.

96
7 

0.
53

6 
0.

65
2 

0.
71

 5 
0.

86
9 

0.
98

5 
0.

23
6 

0.
58

6 
0.

90
6 

0.
93

5 
0.

84
5 

A
ve

ra
ge

1 
M

ed
ia

n 
H

ou
si

ng
 

0.
78

71
 

0.
85

7 

0.
80

51
 

0.
79

2 

0.
41

 11
 

0.
41

 1
 

0.
89

51
 

0.
90

6 

In
co

m
e 

0.
43

8 
0.

26
9 

0.
68

7 
0.

27
8 

0.
34

0 
0.

40
0 

0.
27

9 
0.

74
2 

0.
24

2 
0.

24
6 

0.
26

6 
0 

29
0 

A
ve

ra
ge

l 
M

ed
ia

n 
In

co
m

e 

0.
46

51
 

0.
43

8 

0.
32

41
 

0.
31

0 

0.
49

21
 

0.
49

2 

0.
26

71
 

0.
26

6 



A
P

P
E

N
D

IX
 C

 

[ B
ac

kg
ro

un
d 

m
at

er
ia

l: 
si

lt 
I la

g:
 0

.3
m

 
I G

ol
de

n 
sp

ik
es

: G
S

C
-B

H
-S

-R
IC

E
 

I B
ac

kg
ro

un
d 

m
at

er
ia

l: 
sa

nd
 

I 
la

g:
0.

3m
 I 

G
ol

de
n 

sp
ik

es
: G

S
C

-B
N

-S
-P

O
N

 

G
S

C
-B

H
-S

-R
IC

E
 

M
at

er
ia

ls
 

G
ra

ve
l 

G
SC

-B
H

-S
-P

O
N

 

1 Gr
av

el
 



M
at

er
ia

l 

-.
 



G
ol

de
n 

sp
ik

es
: 

G
S

C
-B

H
-V

S
R

, O
G

S
-P

JB
-1

4,
 O

G
S

-P
JB

-1
5,

 O
G

S
-P

JB
-1

6,
 O

G
S

-P
JB

-1
7,

 
O

G
S

-P
JB

-1
8,

 O
G

S
-P

JB
-1

9,
 G

S
C

-B
H

-S
-A

U
R

, G
S

C
-B

H
-S

-B
A

L,
 G

S
C

-B
H

-S
-M

S
R

 

V
er

ti
ca

l 
T

-P
R

O
G

 s
im

ul
at

io
n 

ou
to

ut
 a

nd
 b

or
eh

ol
e 

 l
ot

 f
or

 G
r

o
u

~
 

5 
po

ld
en

 m
ik

es
 



9816-P
A

-H
8-3S

3 
'8S

 119-P
A

-H
a-3S

3 '0 1 118 1
-P

A
-H

8
-3

S
3

 'N
H

3
A

-S
-H

8
-3

S
3

 '1
8

0
N

-S
-H

8
-3

S
3

 :say!ds uaP
lo3 

2
 

u
c

.0
 :6el 

pues :le!A
alew

 p
u

n
o

~
6

y
x

g
 

8L0'0 
9W

.O
 

EO
E'O

 
000'0 

8L0'0 
1Z

l'O
 

1S 1'0 
000'0 

he13 
896'0 

€
9

9
'0

 
1O

S
'l 

PSO
'O

 
101'0 

€
9

9
'0

 
9E

Z'O
 

000'0 
ll!S

 
80L'O

 
86L'Z

 
6

1
E

'l 
8ZO

'Z 
O

Ll'O
 

P
lZ

'O
 

6
1

€
'1

 
€00'0 

P
ueS

 
000'0 

99L'O
 

1S
O

'l 
098'6 

000'0 
100'0 

Z
00'0 

098'6 
P

A
W

9
 

h
e

1
3

 
lI!S

 
P

ueS
 

W
e

J
9

 
he13 

I
!

 
P

ueS
 

W
e

J
3

 
le

!Ja
lW

 
slo

p
e

d
 h

d
o

~
lu

g
 urnur!xeyy 

s
a

p
u

a
n

b
a

~
j uo!l!sueJl p

a
p

p
a

q
u

q
 

8L0'0 1 
Z

99'0 1 
8

€
€

'0
 1 

000'0 
6

P
L

'Z
l- I 

1
6

€
'€

 I 
8S

€'6 1 
000'0 

8
L

0
'0

 
LZO

'O
 



A
m

en
di

x 
C

9:
 

V
er

tic
al

 T
-P

R
O

G
 s

im
ul

at
io

n 
o

u
t~

u
t an

d 
bo

re
ho

le
 d

o
t f

or
 G

ro
u

~
b

c
 

po
ld

en
 m

ik
es

 

V
er

tic
al

 T
-P

R
O

G
 si

m
ul

at
io

n 
o

u
t~

u
t an

d 
bo

re
ho

le
 b

 lo
t f

or
 G

ro
u

~
 

7a
 g

ol
de

n 
m

ik
es

 

























d 
C 

5 z 

% I 
1 
I 

4 ," 

"If 
11 ,) 

,' - 
a * * - " a w * ?  -.- 
- = = * * = * = a =  

iUlGPUClU 191. I U U  









REFERFiNCE LIST 

Abbaspour, R. A., Delavar, M. R. and Batouli, R. 2003. The Issue of Uncertainty 
Propagation in Spatial Decision Making. D e  9th Scandinavian Research 
Conference on  Geographical Information Science, 57 - 65. 

Allan, Brimicombe. 2003. GIs,  Environmental Modelling and Engineering. London: 
Taylor & Francis Group. 

Allen, D. M., Schuurman, N. and Zhang, Q. 2002. Application of Fuzzy Logic for 
Aquifer Architecture Modelling. 

Anderson, P. Mary, and William W. Woessner. 1992. Applied GroundwaterModeling - 
Simulation of Flow and Advective Transport. San Diego, California: Academic 
Press Inc. 

Barber, G. M. 1998. Elementary Statistics For Geographers: Guilford, New York. 

Bardossy, Andras. 2004. Introduction to Geostatistics. University of Stuttgart 2003 [cited 
11th August 20041. Available from http://www.warem.uni- 
stuttgart.de/study/programO3/downloads/download702e/geostatistics screen. 
pdf. 

Barnett, P. J, D. R Sharp, H. A. J Russell, T. A Brennand, G. Gorrell, F. Kenny, and 
A. Pugin. 1998. O n  the origin of the Oak Ridges Moraine. Canadian Journal of 
Earth Sciencies 35: 1152-1 167. 

Bevington, R. P., and D. K. Robinson. 1992. Data Reduction and Error Analysis for the 
Physical Sciences. Second ed. New York: McGraw-Hill, Inc. 

Bittner, T. and Stell, J. G. 2002. Vagueness and Rough Location. Geolnformatica 
6(2):99 - 121. 

Bonissone, P. P. 1997. Approximate Reasoning Systems: Handling Uncertainty and 
Imprecision in Information Systems. In Uncertainty Management in Information 
Systems: From Needs to Solution, Motro, A. and Smets, P. (Eds.), Kluwer 
Academic: The Netherlands. 



Bosc, P. and Prade, H. 1997. An Introduction to the Fuzzy set and Possibility Theory- 
Based Treatment of Flexible Queries and Uncertain or Imprecise Databases. In 
Uncertainty Management in Information Systems: From Needs to Solution, 
Motro, A. and Smets, P. (Eds.), Kluwer Academic: The Netherlands, p 285 - 
324. 

Brassel, K., F. Bucher, E. M. Stephan, and A. Vckovski. 1995. Completeness. In 
Elements of spatial data quality, edited by S. C. Guptill and J. L. Morrison. New 
York: Elsevier Science Ltd. 

Brassington, R. 1988. Field Hydrogeology. Milton Keynes, Open University Press & 
Halsted Press; New York. 

Brunsdon, C. 2001. A Bayesian Approach to Schools' Catchment-based Performance 
Modelling Geographical and Environmental Modelling 5(1): 9 - 22. 

Burrough, Peter A. 1996. Natural Objects with Indeterminate Boundaries. In 
Geographic Objects with Indeterminate Bounduries, edited by P. A. Burrough and 
A. U. Frank. London: Taylor & Francis. 

Burrough, A. Peter, and Rachael A. McDonnell. 1998. Principles of Geographical 
Information Systems. New York: Oxford University Press. 

Buttenfield, B., and M. K Beard. 1994. Graphical and Geographical Components of 
Data Quality. In Visualization In Geographical Information Systems, edited by 
H. M. Hearshaw and D. J. Unwin. Chichester: John Wiley & Sons Ltd. 

Carle, Steven F. 1999 T-PROGS: Transition Probability Geostatistical Software 
Version 2.1, Hydrologic Sciences Graduate Group University of California, 
Davis. 

Carle, S. F. and Fogg, G. E. 1997. Modelling Spatial Variability with One and 
Multidimensional Continuous-Lag Markov Chains. Mathematical Geology 29(7): 
891 - 918. 

Carranza, E. J. M. and Hale, M. 2001. Geologically Constrained Fuzzy Mapping of 
Gold Mineralization Potential, Baguio District, Philippines. Natural Resources 
Research, lO(2): 125 -136. Kluwer Academic Publishers. 

Clarke, D. G, and D. M Clark. 1995. Lineage. In Elements of spatial data quality, edited 
by S. C. Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 



Davis, Benjamin. 2003. Choosing a method forpoverty mapping: Agriculture and 
Economic Development Analysis Division, FAO, UN. 

Diggle, P. J. and Ribeiro Jr. P. J. 2002. Bayesian Inference in Gaussian Model-based 
Geostatistics Geographical and Environmental Modelling 6(2): 129 - 146. 

Dolgoff, Anatole. 1996. Physical Geology. Lexington, MA: D. C. Heath and Company 

Dowd, P. A. and Pardo-Iguzquiza, E. 2002. The Incorporation of Model Uncertainty in 
Geostatistical Simulation. Geographical and Environmental Modelling 6(2): 147 - 
169. 

Dragicevic, Suzana, J. Danielle Marceau, and Claude Marois. 2001. Space, time, and 
dynamics modeling in historical GIs databases: a fuzzy logic approach. 
Environment and Planning B: Planning and Design 28545-562. 

Dragicevic, Suzana, N. Schuurman, and J. M FitzGerald. 2004. The Utility of 
exploratory spatial data analysis in the study of Tubercolosis incidences in 
urban Canadian population. Cartographica 39 (429-39. 

Drummond, J. 1995. Positional Accuracy. In Elements of spatial data quality, edited by 
S. C. Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 

Dubois, D. and Prade, H. 1988. Possibility Theory: An Approach to Computerized 
Processing of Uncertainty, New York: Plenum. 

Dubois, D. and Prade, H. 1980. Fuzzy Sets and Systems: Theory and Applications, 
Academic Press Int.: New York. 

Duckham, M. and Sharp, J. (forthcoming, 2004) Uncertainty and geographic 
information: computational and critical convergence. In Re-presenting objects, 
Unwin, D. and Fisher, P.F. (Eds.), Wiley: New York. 

Duckham, M., Keith, M., Stell, J. and Worboys, M. 2003. Formal Approach to 
Imprecision In Geographic Information. Computer, Environment and Urban 
Systems 2589-103. 

Dungan, J. L. 2002. Towards a Comprehensive View of Uncertainty in Remote 
Sensing Analysis. In Uncertainty in Remote Sensing and GIs, edited by G. M. 
Foody and P. M. Atkinson. Chichester: John Wiley & Sons Ltd. 



Dutton, Geoffrey. 1989. Modeling locational uncertainty via hierarchical tesselation. 
In Accuracy of Spatial Databases, edited by F. M. Goodchild and S. Gopal. 
London: Taylor & Francis. 

Elfeki, A. and Dekking, M. 2001. A Markov Chain Model for Subsurface 
Characterization: Theory and Applications. Mathematical Geology 33(5): 569 - 
589. 

Foody, Giles M. and Atkinson, Peter M. 2002. Uncertainty in Remote Sensing and GIS: 
John Wiley & Sons, England. 

Fortin, M. and Edwards, G. 2001. Delineation and Analysis of Vegetation Boundaries. 
In Spatial Uncertainty in Ecology: Implications for Remote Sensing and GIS 
Applications, Hunsaker, C. T., Goodchild, M. F., Friedl, M. A. and Case, T. J. 
(Eds.), Springer-Verlag, New York. 

Fotheringham, A. S. and Wong, D. W. S. The modifiable areal unit problem in 
multiavriate statistical analysis. Environment and Planning A 23: 1025-1044. 

Goodchild, F. Michael. 1989. Modeling error in objects and fields. In Accuracy of 
Spatial Databases, edited by F. M. Goodchild and S. C. Guptill. London: Taylor 
& Francis Ltd. 

Goodchild, F. Michael. 1995. Attribute Accuracy. In Elements of spatial data quality, 
edited by S. C. Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 

Goodchild, M. F., Buttenfield, B. and Wood, J. 1994. Introduction to Visualizing Data 
Quality. In Visualization in Geographic Information Systems, Hearnshaw, H.  
M. and Unwin, D. J. (Eds.), John Wiley & Sons: England. 

Griffith, D. A., Wong, D.W.S and Whitefield, T. 2003. Exploring Relationships 
between the Global and Regional Measures of Spatial Autocorrelation. Journal 
of Regional Science 43(4): 686 - 710. 

Groundwater Modeling System 5.0. Environmental Modeling Systems, Inc., Utah, 
USA. 

Guptill, S. C. 1995. Temporal Information. In Elements of spatial data quality, edited by 
S. C. Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 

Harvey F., Kuhn W., Pundt H., Bishr Y., Riedemann C. 1999. Semantic 
Interoperability: A central issue for sharing geographic information. The Annals 
of Regional Science: 213-232. 



Henrion, M., Suermondt, H. J. and Heckerman, D. E. 1997. Probabilistic and Bayesian 
Representations of Uncertainty in  Information Systems: A Pragmatic Introduction. 
In Uncertainty Management in Information Systems: From Needs to Solution, 
Motro, A. and Smets, P. (Eds.), Kluwer Academic: The Netherlands. 

Horner, W. Mark and Murray, T. Alan. 2002. Excess Commuting and the Modifiable 
Areal Unit Problem. Urban Studies 39 (1): 13 1-139. 

Howard, R. A. 1971. Dynamic Probabilistic Systems Volume 1: Markov Models. John 
Wiley & Sons Inc., New York. 

Hunsaker, C. T., Goodchild, M. F., Friedl, M. A. and Case, T. J. 2001. Spatial 
Uncertainty in Ecology: Implicationsfor Remote Sensing and G I s  Applications: 
Springer-Verlag, New York. 

Hunter, Gary J. 1998. Managing Uncertainty in GIs, NCGIA Core Curriculum in 
GIScience, [cited May 11, 20041. Available from: 
http://www.ncgia.ucsb.edu/giscc/units/ul87/u1871.html, posted February 03, 
1998. 

Jarvis, P.G. 1995. Scaling processes and problems. Plant, Cell, and Environment, 18: 
1079 -1089. 

Jelinski, Dennis E. and Jianguo Wu. 1996. The modifiable areal unit problem and 
implications for landscape ecology. Landscape Ecology 11 (3): 129 -140. 

Jiang, B. 1998. Visualisation of Fuzzy Boundaries of Geographic Objects Graphics. 
Cartography - The Journal 27(2): 41 - 46. 

Jones, Norman L. 2003. Seepage & GroundwaterModeling. Dept. of Civil and 
Environmental Engineering, Brigham Young University 2003 [cited August 
10th 20041. Available from http://class.et.byu.edu/ce547/. 

Kainz, W. 1995. Logical Consistency. In Elements of spatial data quality, edited by S. C. 
Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 

Kassim, S. and Rothman L. 2003. Immigrant Poverty in Canada: Focus on Toronto. 
Campaign2000 [cited October, 20 20031. Available from 
http://www.fsatoronto.com. 

Katzberg, J. D. and Ziarko, W. 1994. Variable Precision Rough Sets with Asymmetric 
Bounds. In Rough Sets, Fuzzy Sets and Knowledge Discovery, Ziarko, W. P 
(Eds.),Springer-Verlag and British Computer Society: London, p 167 - 177. 



Kazemipur, A. and Halli, S.S. 1998. Plight of Immigrants: The Spatial Concentration 
of Poverty in Canada. Canadian Journal of Regional Science X X  (1-2): 11-28. 

Keukelaar, J. 1999. A Visual Programming Language for the Analysis of Uncertain Spatial 
Data. [Cited January 11, 20041. Available from: 
http://~~~.nada.kth.se/utbildning/forsk.utb/avhandlingar/lic/990608.pdf. 

Klinkenberg, Brian. 2003. Geography 470 Advanced Issues in  GIS: Developing a n  
understanding [cited January, 20 20041. Available from 
http://~~~.geog.ubc.ca/courses/geog470. 

Klinkenberg, Brian. 2004. Uncertainty in a GIs. In  Geog 516: Graduate GIS Seminar 
[cited May 11, 20041. Available from: 
http://www.geog.ubc.ca/courses/geog5 16/notes/Uncertainty.ppt. 

Kuhn, W. 2001. Ontologies in support of activities in geographical space. International 
Journal of Geographical Information Science 15 (7):613-63 1. 

Kuhn, W. 2003. Semantic reference systems. International Journal of Geographical 
Information Science V(5) : 405-409. 

Lagacherie, P., Andrieux, P. and Bouzigues, R. 1996. Fuzziness and Uncertainty in Soil 
Boundaries: From Reality to Coding in GIs. In Geographic Objects with 
Indeterminate Boundaries, Burrough, P. A. and Andrew, U. F. (Eds.), Taylor 
and Francis. p 275 -286. 

Lark, R. M. 2000. Regression analysis with spatially autocorrelated error: simulation 
studies and application to mapping of soil organic matter. International Journal 
of Geographic Information Science 14 (3) :247-264. 

Lemay, Philippe. 1999. The Statistical Analysis of Dynamics and Complexity I n  
Psychology: A Configural Approach. PhD Thesis, Facult6 Des Sciences Sociales Et 
Politiques, Universit6 De Lausanne. 

Levin, Harold L. 1981. Contemporary Physical Geology. Philadelphia: Saunders College 
Publishing. 

Ley, David, and Smith Heather. 1997. Immigration and Poverty in Canadian Cities. 
Canadian Journal ofRegional Science 20 (12):29-51. 

Lo, C. P. and Yeung, A. K. W. 2002. Concepts and Techniques of Geographic 
Information Systems, Keith C. Clarke. New Jersey: Lo, C.P (Chor Pang). 



Logan, C. 2005. Borehole Drilling costs, May 6, personal conversation. 

Logan, C., Russell, H. A. J. and Sharpe, D. R. 2001-Dl. Regional three-dimensional 
stratigraphic modelling of the Oak Ridges Moraine area, southern Ontario. Geological 
Survey of Canada: 19. 

Manslow, J. F. and Nixon, M. S. 2002. On  the Ambiguity Induced by a Remote 
Sensor's PSF. In Uncertainty in Remote Sensing and GIs, Foody, G. M. and 
Atkinson, P. M. (Eds.), John Wiley & Sons, England. 

Marceau, J. Danielle. 1999. The scale issue in social and natural sciences. Canadian 
Journal of Remote Sensing 25 (4):347-356. 

Morrison, J. L. 1995. Spatial Data Quality. In Elements of spatial data quality, edited by 
S. C. Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 

Motro, A. 1997. Sources of Uncertainty, Imprecision and Inconsistency in Information 
Systems. In Uncertainty Management in Information Systems: From Needs to 
Solution, Motro, A. and Smets, P. (Eds.), Kluwer Academic: The Netherlands. 

Nakaya, Tomoki. 2000. An information statistical approach to the modifiable areal 
unit problem in incidence rate maps. Environment and PlanningA 32 (1):91- 
109. 

Natural Resources, Canada. 2005. Oak Ridges Moraine 2003 [cited March 28 20051. 
Available from 
http://sts.gsc.nrcan.gc.ca/orm dcp/index e.asp?CaId= 2&PEId = 3. 

Openshaw, S. 1984a. The Modifiable Areal Unit Problem. Concepts and Techniques in 
Modern Geography (CATMOG), no. 38. 

Openshaw, S. 1984b. Ecological fallacies and the analysis of areal census data. 
Environment and Planning A 16: 17-3 1. 

Openshaw, S. 1989. Learning to live with errors in spatial databases. In The Accuracy of 
Spatial Databases, Goodchild, M. F. and Gopal, S. (Eds.), Taylor & Francis, 
London, pp. 263 - 76. 

Pang, Alex. 2001. Visualizing Uncertainty in Geo-spatial Data. Santa Cruz: University 
of California. 

Pawlak, Zdzislaw. 1982. Rough sets. International Journal of Computer and Information 
Sciences 11:341-356. 



Pawlak, Zdzislaw, Jerzy Grzymala-Bausse, Roman Slowinski, and Wojciech Ziarko. 
1995. Rough Sets. Emerging Technologies; Communication of the A C M  38 
(1 1):89-95. 

Piatetsky-Shapiro, G. 1997. Knowledge Discovery and Acquisition from Imperfect 
Information. In Uncertainty Management in Information Systems: From Needs 
to Solution, Motro, A. and Smets, P. (Eds.), Kluwer Academic: The 
Netherlands. 

Plewe, B. S. 2002. The Nature of Uncertainty in Historical Geographic Information. 
Transactions i n  G I s  6(4): 432 - 456. 

Plewe, B. S. 2003. Representing Datum-level Uncertainty in Historical GIs. 
Cartography and Geographic Information Science 30(4): 319 - 334 

Price, Michael. 1985. Introducing Groundwater. London: George Allen & Unwin Ltd. 

Raubal, Martin. 2001. Ontology and epistemology for agent-based wayfinding 
simulation. International Journal of Geographical Information Science 15 (7):653- 
665. 

Reynolds, Harold David. 1998. The Modifiable Area Unit  Problem: Empirical Analysis 
by Statistcal Simulation. Doctor of Philosophy, Graduate Department of 
Geography, University of Toronto, Toronto. 

Rokos, D., Petrou, M. and Desachy J. 2004. Multi-Sources Information Fusionfor 
Satellite Images Class$cation [Internet]. National Technical University of 
Athens: Laboratory of Remote Sensing 2004 [cited February, 10 20041. 
Available from 
http://~~~.~~~ey.ntua.gr/main/labs/rsens/DeCETI/IRIT/MSI- 
FUSIONhdex. html. 

Russell, H. A. J, C Logan, T. A Brennand, M. J. Hinton, and D. R Sharp. 1996. 
Regional geoscience database for the Oak Ridges Moraine project (southern 
Ontario). Current Research 1996-E; Geological Survey of Canada: 19 1-200. 

Russell, H. A. J., Brennand, T. A., Logan, C. and Sharpe, D.R. 1998-E. Standardization 
and assessment of geological descriptions from water well records, Greater 
Toronto and Oak Ridges Moraine areas, southern Ontario. Geological Survey of 
Canada: 89 -102. 

Salge, F. 1995. Semantic Accuracy. In Elements of spatial data quality, edited by S. C. 
Guptill and J. L. Morrison. New York: Elsevier Science Ltd. 



Schuurman, Nadine. 2002. Flexible Standardisation: Making Interoperability 
Accessible to Agencies with Limited Resources. Cartography and Geographic 
Information Science 29 (4):343-353. 

--- . 2004. GIs: A short Introduction. Oxford: Blackwell. 

Sharp, D. R, L. D. Dyke, S. E. Hinton, H. A. J. Russell, T. A. Brennand, P. J. Barnett, 
and A. Pugin. 1996. Groundwater prospects in the Oak Ridges Moraine area, 
southern Ontario: application of regional geological models. Current Research; 
Geological Survey of Canada: 18 1-190. 

Sharp, D. R., P. J. Barnett, H. A. J. Russell, T. A. Brennand, and G. Gorrell. 1999. 
Regional geological mapping of the Oak Ridges Moraine, Greater Toronto 
Area, southern Ontario. Current Research; Geological Survey of Canada:123-136. 

Shaw, G. and Wheeler, D. 1994. Statistical Techniques in Geographic Analysis. Second 
ed. London: David Fulton. 

Shibli, A. R. Syed. 2004. Conditional Simulation 2003 [cited 11th August 20041. 
Available from http://www.ai-geostats.org. 

Skinner, Brian, J, and Stephen Porter, C. 1989. f i e  Dynamic Earth: a n  introduction to 
physical geology. New York: John Wiley & Sons Inc. 

Smets, P. 1997. Imperfect Information: Imprecision and Uncertainty. In Uncertainty 
Management in Information Systems: From Needs to Solution, Motro, A. and 
Smets, P. (Eds.), Kluwer Academic: The Netherlands. 

Theobald, M. David. 2001. Topology revisited: representing spatial relations. 
International Joounal of Geographic Information Science 15 (8):689-705. 

Tobler, W. R. 1970. A computer movie simulating urban growth in the Detroit 
region. Economic Geography 46:234 - 240. 

Tood, D. K. 1964. Ground Water Hydrology. John Wiley & Sons; New York. 

Tolman, C. F. 1937. Ground Water. Mcgraw-Hill Books; New York. 

Tranmer, M. and Steel, D. G. 1998. Using census data to investigate the causes of the 
ecological fallacy. Environment and Planning A 30:s 17-83 1. 



Veregin, H. 1999 Data quality parameters, in P.A. Longley, M.F. Goodchild, D.J. 
Maguire and D.W. Rhind (Eds), Geographical information systems, 177-189, 
New York, Wiley. 

Warren, Anthony J., Michael J. Collins, Edward A. Johnson, and Peter F. Ehlers. 
2002. Managing Uncertainty in a Geospatial Model of Biodiversity. In 
Uncertainty in Remote Sensing and GIs, edited by G. M. Foody and P. M. 
Atkinson. Chichester: John Wiley & Sons Ltd. 

Wicander, Reed, and James Monroe, S. 1995. Essentials of Geology. New York: West 
Publishing Company. 

Worboys, Mike. 1998. Imprecision in Finite Resolution Spatial Data. GeoInfomzatica 2 
(3):257-279. 

Worboys, M. F. and Clementini, E. 2001. Integration of Imperfect Spatial Information. 
Journal of Visual Languages & Computing 12(1): 61 - 80. 

Zhang, J and Goodchild, M. F. 2002. Uncertainty in geographical information. New 
York: Taylor & Francis, 2002. 

Zlatanova, Siyka, Alias Abdul Rahman, and Wenzhong Shi. 2004. Topological models 
and frameworks for 3D spatial objects. Computers & Geosciences 30:419-428. 


