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ABSTRACT

This research introduces rough sets to better characterizing spatial relationships
and uncertainty in two examples. First, scale issues in census data are addressed. Census
data provide demographic and socio-economic information at specific area units.
Hence, derived spatial information are scale-dependent leading‘to uncertainty when
analyzing results at different scales. Rough sets mitigate scale distortions and provide
scale-sensitivity measure during scale transition. It employs the metaphor of topology
to illustrate the ability of rough sets to retain spatial relationships of adjacency and

contiguity.

Second, rough sets and transition probability are used to characterize sediment
distribution. The study simulates sediment state and transitions for low and high
quality borehole data by providing better geological understanding. It also assesses
Geological Survey of Canada standardization scheme for classifying borehole data. The
utility of rough sets is demonstrated as a knowledge base tool for characterizing

uncertainty irrespective of the data under study.
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GLOSSARY

Keywords:

Aggregation: the grouping together of a selected set of like entities to form a
single entity.

Aquiclude: a body of impermeable or distinctly less permeable rock.

Aquifer: a permeable geologic formation saturated with water and through
which groundwater moves.

Aquitard: low-permeability unit that can store groundwater and also transit it
slowly from one aquifer to another.

Background material: the most abundant geologic unit present in a borehole
Bayesian: mathematical theory of probability which applies to the degree of
plausibility of statements, or to the degree of belief of rational agents in the
truth of statements

Conditional probability: the probability of an event assuming another event.
Correlation coefficientt: is a numeric measure of the strength of linear
relationship between two random variables.

Dempster-Shafer theory: a mathematical theory of evidence representing
plausibilities.

Drumlin: an elongated whale-shaped hill formed by glacial action.

Facies: all characteristics of a geologic unit or a distinct kind of rock for a
specific environment.

Fuzzy sets: a set characterized by a membership-degree function.

Golden spike: boreholes with continuous core recovery which provide high
quality data

Joint probability: is the probability of two events in conjunction

Kriging: an interpolation technique using a regionalized variable.

Lag: minimum spacing between and within sediments in a borehole
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Markov chains: a discrete-time stochastic process using transition probability
of state and state transitions.

Maximum entropy factor: ratio of the transition rate to the maximum
entropy transition rate.

Metadata: data about data and usage aspects of it.

Moraine: glacial drift or till deposited chiefly by direct glacial action.
Permeability: a rock’s or sediment’s capacity for transmitting a fluid.
Porosity: a measure of the percent of void space in a rock or soil.

Regression: a statistical method where the mean of one or more random
variables is predicted conditioned on other random variables.

Rough sets: a set with nonempty boundary when approximated by another.
Specific retention: ratio of the volume of water a rock or sediment will retain
against the pull of gravity to the total volume of rock or sediment.

Specific yield: ratio of the volume of water a rock or soil will yield by gravity
by gravity drainage to the total volume of rock or soil.

Stratigraphy: the study of sequence and correlation of stratified rocks
T-PROG simulation: sediment state and transition simulation in Markov
chains using transition probability.

Topology: the relative location of geographic phenomena independent of
their exact position

Transition probability: a conditional probability representing a system’s state

and transitions.

Acronyms:
= CSD: Census Sub-division
= CT: Census Tract
= d: Index of agreement
= DA: Dissemination Area
= DI: Deprivation Index
»  GAL Good Aquifer Index (Indicator)
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CHAPTER 1:
INTRODUCTION

The representation of geographic phenomena is dependent on data collection
which are, in turn, based on data acquisition concepts, tools and methods. Data
acquisition techniques are designed to meet specific research requirements and to fully
represent the phenomena under study. However, there is often a difference between
the geographic model and the geographic reality which it represents. This disparity
between geographic model and phenomena in reality may be termed uncertainty.
Uncertainty in spatial data gained significance with the search for elements that define
spatial data quality (Buttenfield and Beard 1994). Uncertainty has a direct influence on

data quality because it distorts standards for data quality.

Spatial Data Transfer Standard (SDTS) is a set of standards established by the
International Cartographic Association (ICA). SDTS aimed to provide detail
information about data for users to assess the fitness of data for a particular use
(Morrison 1995). The elements in SDTS include lineage, positional accuracy, attribute
accuracy, completeness, logical consistency, semantic accuracy and temporal
information (Morrison 1995). While the elements of spatial data quality attempt to
enhance data validity for accurate and complete geographic inquiries, Buttenfield and
Beard (1994) argued that SDTS should incorporate uncertainty of real world
conditions. The elements of data quality standard, in other words, improved validity
of data (uncertainty about database descriptions). Data quality standards have also
focused narrowly on error in data rather than the wider consideration of uncertainty
(Allan 2003). Buttenfield and Beard (1994) contended that the validity of geographic
reality (uncertainty of real world conditions) be integrated into data quality records.
Hence, standards for data quality are starting point for assessing geographic reality, but

they need to address geographic validity by assessing uncertainty of real world



conditions. So, this study attempts to incorporate uncertainty into spatial database and

analysis of geographic information.

The study investigates the effects of uncertainty in two data: census data and
borehole data. These are seemingly different data and they represent different
problems. Census data are used to characterize spatial aspects of human socio-
economic and demographic information. Borehole data, on the other hand, are used in
spatial characterization of the physical subsurface. They are, however, equally plagued
with the problem of data uncertainty. Also a common analysis tool - rough sets
technique is applied to minimize the effects of data uncertainty. Rough sets concept is
an analytical theory for discovering hidden patterns in data in order to better describe

phenomena about which data are collected.

In this study, uncertainty is described separately for each data while the
methodology for specific uncertainties in each data is linked by the use of rough sets.
For census data, uncertainty represents scale distortions from opposing analysis
assumptions and poor spatial data integrity across scale changes. This uncertainty is
often referred to as scale problem or scale issue. The scale problem can be restated as
the process where statistical results and relationships for aggregated data are different for the
same set of data at different scales. Borehole data uncertainty, on the other hand,
includes geologic unit (or sediment) identification and description problems. These
uncertainties are not the only uncertainties in the two data, but these are the
uncertainties examined in this study. This research uses two data separately into two

case studies in order to explore the nature of uncertainty using rough sets.

In the first case study, rough sets are applied to census data at different census
scales for neighbourhood characterization using deprivation indices and recent
immigrant population. Rough sets mitigate the scale issue by providing a scale
sensitivity measure in order to map deprivation levels across multiple census scales.
During transitions across multiple scales, data distribution retention is crucial in order

to estimate scale translation indices. The rough sets technique employs the metaphor



of topology to illustrate its ability for retaining spatial relationships of adjacency and

contiguity across multiple scales in attribute space.

For census data, spatial relationship outputs have shown that rough sets better
represents spatial relationships than other spatial analysis techniques such as spatial
regression. Specifically, rough sets may enhance spatial characterization and can
replace other spatial analysis tools when characterizing geographic phenomena. The
first case study illustrates this enhanced spatial characterization using rough sets by
maintaining data distribution and providing scale sensitivity index for translating
neighbourhood phenomena across different census scales. The rough sets outputs
emphasize unique uncertainty levels at each census scale and provide thresholds within
which results apply. The research also revealed limitations inherent in traditional

spatial analysis tools, which make them poorly characterize spatial relations.

In the second case study, rough sets and transition probability are used to
provide a means of characterizing the subsurface environment. These methods are used
to enhance the use of borehole data of marginal quality (e.g. Ontario Ministry of
Environment and Energy (MOEE) data) for accurate hydrogeological inquiry. The
rough sets method also assesses the GSC (Geological Survey of Canada)
standardization scheme and incorporates MOEE data variation when characterizing

the subsurface.

Analysis tools for reducing the effects of erroneous sediment identification and
description problem are mainly data classification. While this study recognizes the
relevance of data standardization, it focuses on the assessment of data classification
using rough sets. Also transition probability is used to characterize sediment variation
in the subsurface. This translates accurate sediment distribution from quality borehole
data to less accurate borehole data (i.e. MOEE data) in order to enhance poor quality
data for reliable hydrogeological inquiry. The use of rough sets and transition
probability compensate each other by assessing different effects of uncertainty due to
erroneous sediment identification. This is illustrated in the borehole outputs especially

when identifying high and less accurate sediments within boreholes.



In investigating the effects of uncertainty in these case studies, this research
acknowledges traditional methods applied to the respective data for examining data
uncertainties. It argues, however, that rough sets and transition probability are suitable
analytical tools for exploring uncertainties of scale distortions in census data and
sediment variation problems in borehole data. Hence, the study also underscores the
utility and versatility of rough sets: its ability to enhance geographic inquiry
irrespective of the data; and its flexibility to adapt to different effects of uncertainty in
human and physical processes. Spatial characterization using census data represents a
human phenomena characterization, while subsurface characterization signifies a
physical process. This emphasizes that applications of rough set are broad because it
adapts easily to different analysis problems. For example, scale problem in census data
and sediment description problems in borehole data. This underscores the use of
different data in this study: to illustrate the use of one analysis tool (i.e. rough sets) in
both human (i.e. census socio-economic and demographic information) and physical
(i.e. subsurface environment) phenomena analysis. Table 1.1 below shows the two
different (but unified by data uncertainty and rough sets) case studies that constitute

this research.

Table 1.1: Research description into two major case studies

. e ok Alternative & Proposed
Case study | . Dat?a :Effe,c:ts of Un_c_eﬂglnty _ Traditional Techniques - Technique
Census Scale problem: lack Spatial regression,
One (1) data of spatial integrity local and global Rough sets
across scales statistical measures, etc
Borehole | Sediment identification N Rough sets &
Two (2) data and description problems Data standardization transition probability

1.1 RESEARCH OBJECTIVES

The first case study is aimed at exploring the scale problem in census data: that
is, the problem of lack of spatial integrity during transition across scales. The scale
problem is the variation in analytical results when data for a particular set of spatial

units are aggregated into smaller or larger spatial units for analysis (Openshaw 1984a).




The scale problem is closely linked to spatial data transition between two spatial units
from small to high resolution or vice versa (Openshaw 1984a). This problem is
examined with many spatial analysis tools but its effects have resisted analytical
assumptions such as randomness and independency of data variables. This first
empirical study uses rough sets to minimize the scale problem by examining the
relationship between recent immigrants and deprivation indices. So, the research
question is: during census characterization of spatial relationships how do we account

for scale transitions at different census scales.

Spatial analysis techniques on spatially grouped data such as spatial regression
and correlation examine global trends. They are inadequate in the prediction of future
occurrence of local events and understanding spatial social structure at local levels
(Lark 2000). They also have proven to poorly describe spatial relationships (Shaw and
Wheeler 1994; Lark 2000). Methods are needed to describe spatial relationships at both
global and local scales. The study applies a technique that utilizes high-quality large
resolution census data for geospatial analysis while providing results that are relevant
and appropriate to local spatial phenomena investigation. This is examined through

rough sets ability to retain data variation and integrity across scales.

In sum, application of rough sets to spatially grouped data for multiple spatial
units may allow us to quantify uncertainty associated with spatial transitions from
small spatial unit to large units and vice versa. The metaphor of topology is used as a
parallel to illustrate the ability of rough sets to retain data distribution and variation
across multiple scales in attribute space. During spatial analysis, spatial integrity of
adjacency and contiguity is maintained through topology. Topology in attribute space,
however, becomes relevant when translating spatial phenomena across different scales.
Rough sets analysis is used to retain data distribution and variation in attribute space,
which is synonymous to spatial adjacency and contiguity in spatial space. So while
spatial topology ensures spatial integrity during spatial analysis, rough sets technique

enhances attribute integrity during scale transitions.



The second case study uses rough sets and transition probability on borehole
data of marginal quality. A unique ability of rough sets is the discovery of hidden
patterns in data and characterization of inter-data connections or relationships (Pawlak
1982). These patterns allow better understanding and description of phenomena about
which data are collected. So, rough sets are used to better describe the subsurface
environment using borehole data of marginal quality. Transition probability, on the
other hand, is used in Markov chains to analyze complex systems using the concept of
state and state transitions (Howard 1971). In this study, transition probability is used
to simulate sediment variation for the borehole data. The research problem for this
case study is to reduce the effects of sediment identification and description problems
in borehole data of marginal quality (i.e. MOEE data). The properties of rough sets
and transition probability are suitable uncertainty tools for subsurface data analysis in

order to define borehole units using aquifer-supporting properties.

Borehole data of high accuracy (i.e. continuous core recovery borehole)
acquired by the Geological Survey of Canada, GSC (referred to as golden spikes), and
MOEE (Ontario Ministry of Environment and Energy) data mainly acquired by
private well drillers are used for this case study. Rough sets and transition probability
utilize golden spikes to enhance the MOEE data for reliable hydrogeological
application. They enrich borehole data of marginal quality for geospatial analysis while

at the same time accounting for the effects of uncertainty in subsurface environment.

Overall, rough sets and transition probability applications to uncertainty may
allow borehole data of marginal quality to be incorporated into geographic inquiry -
thereby improving characterization accuracy. Subsurface models developed using low
quality data are validated with those built from high quality data (golden spikes from
the GSC). Hence, the technique quantifies uncertainty inherent in the low quality data

in order to enhance geological inquiry.



12 RESEARCH JUSTIFICATION

This research uses two case studies to address persistent geographical problems:
scale problem in census data, and erroneous sediment identification and description
problems in borehole data. First, the study characterized spatial relationship between
recent immigrants and deprivation index in order to investigate the scale problem.
Current literatures (Kassim and Laurel 2000; Kazemipur and Halli 1998) have
identified strong correlations between poverty of census unit and the proportion of its
population who are immigrants. The first case study examines the extent of this

relationship by using rough sets.

In the first case study, census data provide valuable demographic and socio-
economic information on people at a particular place and time. The application of
these data in the management of resources and people has profound consequences.
Resource management and distribution, for example, affect goods and services reaching
a particular place and time. Census data form an integral component of market
research databases for category management and planning, geo-demographic market
segmentation and retail site selection and evaluation. The quality of these data has
significant implications on subsequent applications and research. Hence, the study
examines processes and implications of using census data for real world applications
such as resource management and distribution, neighbourhood and retail site

characterization.

Census data are often aggregated from small to coarse resolutions. Census data
aggregation has important implications for protecting individual confidentiality and
privacy. The inherent characteristics of census aggregate data are that they rarely retain
original data distribution, leading to the creation of a different data with new data
characteristics at each level of aggregation. Finally, these data are employed in model
development and decisions are made for smaller spatial units, for example,
neighbourhood characterization and retail site selection. In this study, rough sets aim

to retain original data characteristics despite scale transitions.



In the second case study, borehole data remain an important data source for
subsurface study. Borehole data are employed in subsurface mapping of geological
settings and require accurate identification and description of the subsurface geology.
They are also used in subsurface modelling to provide a means of understanding
subsurface geologies which control the distribution and movement of fluids (e.g.
groundwater). The efficiency of geological applications resulting from the use of
borehole data is correspondingly dependent on the quality of borehole data.
Consequently, the quality of these data is integral to the accuracy of any geological
inquiry.

Additionally, borehole data may be employed in locating groundwater sources
for economic and industrial activities. The environmental and economic benefits of
aquifer locations cannot be overstated, as they are protected zones for water supply for
domestic, industrial and agricultural purposes (Logan et al. 2001; Russell et al. 1998;
Schuurman 2004). Groundwater represents a major proportion (about 0.6 per cent) of
the earth’s usable water resource and in some locations it is the only source of water
supply (Price 1985). Groundwater can be developed when and where it is necessary or
needed, thus they provide reliable water source with relatively good accessibility.
However, aquifers — the earth’s subsurface water repositories are not uniformly
distributed throughout the carth’s crust (Price 1985). They require geological settings
that support adequate water movement and distribution, hence the need to protect and

manage them effectively.

The importance and applications of well-log data are crucial. Well-log data
allow subsurface geological investigations such as subsurface mapping for the
representation of ground stability, aquifer (groundwater repositories) locations and
mineral deposit sites and their assessment. Most geological applications are currently
executed with little consideration to the quality of the initial data. Also there exist
inaccuracies and assumptions built into analytical tools that are employed in model

design. This causes the propagation of complex uncertainty that can result in



significant model departure from reality. Hence, this project seeks to design geographic

models that retain input data variability using rough sets.

Overall, the use of different data in this study attempts to illustrate the utility
of rough set for characterizing diverse uncertainties irrespective of the data under
study. The study underscores the utility and versatility of rough sets: its ability to
enhance geographic inquiry irrespective of the data; and its flexibility to adapt to
different effects of uncertainty in human and physical processes. Hence, the
applications of rough set are broad because it adapts easily to different analysis

problems.

1.3 THESIS STRUCTURE

The preceding sections introduced the research focus and discussed the study
objectives. This section outlines different components of the study which are
organized into chapters. The study is organized into five (5) chapters including this

introductory chapter.

Chapter two (2) introduces concepts and definitions of uncertainty and
describes specific aspects of uncertainty in the two data: census data and borehole data.
Chapter two also provides guidelines for identifying analytical tools in order to
adequately accommodate specific effects of uncertainty in the data. This chapter
describes the scale problem in census data and the problem of sediment identification
and description in borehole data. Limitations which plague spatial analysis tools and
impede methods for resolving the effect of scale distortions during spatial
characterization are also emphasized. Finally, analysis tools for assessing uncertainty
are described. Underlying assumptions and conditions which characterize these tools
are outlined in order to assess their suitability for addressing specific uncertainties in

the data.

Chapter three (3) constitutes the first case study. This chapter describes rough

sets method, census data outputs and discussions. Rough sets method is developed in



order to mitigate the scale issue during scale transition. This chapter uses rough sets to
explore neighbourhood characterization by assessing deprivation levels across multiple
census scales. It also examines the extent of recent immigrant and deprivation level
relationships. Scale transition estimates are approximated from large census units to
small ones and vice-versa. The rough sets approach provides a scale sensitivity measure
to enhance census estimates made from one census unit (say, DA') using another (say,
CT?.

Chapter four (4) constitutes the second case study. Chapter four describes
rough sets and transition probability methods, borehole data outputs and discussions.
It describes methods for limiting the effects sediment identification and description
problem in borehole data. The section outlines data preparation and structuring and
specific uncertainties examined separately by rough sets and transition probability.
These two analysis tools enhance the use of low quality borehole data for
characterizing the subsurface environment. Borehole data outputs are grouped into
three categories. First, the GSC standardization scheme is assessed in order to estimate
the extent of data variation in the MOEE data. Second, transition probability is used
to simulate sediment transition sequence in the vertical direction. Finally, limitations
of transition probability simulation are outlined and a simple illustration is used to

estimate depth and spatial information for specific sediment states and transitions.

To conclude, chapter five (5) brings together research findings and
contributions for both case studies. Chapter five integrates both case studies in order
to demonstrate the utility of rough sets as a ‘knowledge base tool for characterizing
uncertainty irrespective of the data or area of application under study. This chapter
also outlines limitations and recommendations for further research separately for

census data and borehole data.

DA denotes dissemination area

2 CT denotes census tract
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1.4 DATA SOURCES & DATA DESCRIPTIONS

This section outlines the two data: census data and borehole data. It also
illustrates data sources and their descriptions. Data requirements for this study are
categorized in two major groups: census data and borehole data, according to the two
defining research focus. Census data acquired for the study is 2001 Canada census data
for GVRD, a census metropolitan area (CMA). Three census units which are small
constituents of the chosen CMA, (that is GVRD) are: census sub-division (CSD),
census tract (CT) and dissemination area (DA). The 2001 census data are provided by

the Statistics Canada through Simon Fraser University (SFU).

The borehole data were provided by Terrain Sciences Division of the
Geological Survey of Canada (GSC). There are two categories of the borehole data:
golden spikes and MOEE (Ministry of Environment and Energy) data. Golden spikes
refer to boreholes with continuous core recovery and provide the highest quality data
(Russell et al. 1996). Golden spikes were drilled by the GSC, OGS (Ontario Geological
Survey) and IWA (International Water Association) (Russell et al. 1996). There are 32
boreholes that constitute the golden spike data scattered over the entire study area -
southern Ontario. The MOEE data have limited application because they lack
sediment sampling (Russell et al. 1996) and are provided by private well drillers (pwd).
Sediment descriptions supplied by pwd are questionable because they often lack
technical Geoscience training. Hence, resulting sediment identification and
descriptions are often assigned multiple tags which limit the assessment of accuracy
levels for the data. “The sediment descriptions rely on washings brought to the surface

during drilling and do not describe solid sediment core’ (Russell et al. 1996, p196).

Boreholes from the MOEE data have low reliability (Russell et al. 1996) but
constitute the most single abundant data available. There are about 62,325 boreholes
available in the MOEE data. Hence, it provides a unique opportunity for
characterizing the subsurface from high quality data (e.g. golden spikes) (Russell et al.
1996).

11



CHAPTER 2:
UNCERTAINTY & MODELS IN GEOGRAPHIC
INFORMATION

The preceding chapter introduced the study and outlined key uncertainties for

the both case studies. This chapter describes conceptual framework of uncertainty and
common computational techniques for modelling uncertainty. The chapter also

describes detail uncertainties in the two data: census data and borehole data.

21 SOME DEFINITIONS OF UNCERTAINTY

Uncertainty is a persistent and a common problem in most information
systems. Uncertainty has many definitions. In the information sciences, for example,
uncertainty ‘relates to the truth or the conformity to reality of an information item’
(Dubois and Prade 1988, 2). Uncertainty is assessed in relation to the degree of
confidence in an information item (Dubois and Prade 1988). Confidence as a
component of an information item is an index of reliability of an entity (Dubois and

Prade 1988) which can be used to evaluate the uncertainty in information item.

In GIS, Dutton (1989, 126) defined spatial uncertainty as an inaccuracy that
‘occurs when no model of ground truth exist or can be agreed upon in relation to a
particular set of measurements’. Zhang and Goodchild (2002, 6) described uncertainty
in relation to spatial databases as a ‘measure of the difference between the actual
contents of a database and the contents that a current user would have created by
direct and perfect accurate observation of reality’. Dungan (2002, 26) described
uncertainty as ‘quantitative statement about the probability of error’. Allan (2003, 190)
described uncertainty as a ‘global term to encompass any facet of data, its collection, its
storage, its manipulation or its presentation as information which may raise concern,
doubt or scepticism in the mind of the user as to the nature or validity of the results
intended message’. Pang (2001, 2) defined uncertainty as ‘a multi-faceted:

characterization about data, whether from measurements and observations of some
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phenomenon and predictions made from them’. It may include ‘error, accuracy,
recision, validity, quality, variability, noise, completeness, confidence and reliability’
Y, q y Ys y

(Pang 2001, 2).

These descriptions of uncertainty show that certain aspects of uncertainty are
exact and attainable (e.g. distance measurement errors), while others (e.g.
indeterminate river banks) are not. The conformity or the simulation of reality in
these descriptions of uncertainty with relation to geographic data is the basis for

assessing uncertainty levels in this study.

In geography, uncertainty may be inherent in describing geographic
phenomena, acquisition of geospatial data and manipulation processes. Continuous
features such as mountains and rivers essentially exhibit vague boundary characteristics
(Burrough and McDonnell 1998) such that their selection must accommodate some
trade-offs in concepts used to describe them. Subsequent data collection techniques are
dependent on how these features are conceptualized coupled with inaccuracies in the
data acquisition tools and methods. Uncertainty can be deliberately introduced in
geographic data (Worboys 1998) through information handling or mathematical
operations applied on data. Data aggregation, in census data for example, conceals the
original data variability and distribution. Analytical tools such as regression and
correlation approaches to spatial data analysis may inadequately retain the input data

variability during spatial analysis.

Uncertainty exists in the whole process of geographic data representation
through data abstraction, collection, analysis and the use of data (Zhang and
Goodchild 2002) partly due to the complex nature of geographic reality. Geographic
reality however, must be simplified and represented in order to facilitate analysis and
decision-making (Zhang and Goodchild 2002). These selection, generalization,
symbolization or filtering processes are dependent on geospatial variations and
heterogeneity in the real world (Lo and Yeung 2002). The use of these data acquisition
tools for information gathering do not describe even the physical characteristics of the

geographic environment because geographic reality cannot be reduced to models
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without error (Duckham and Sharp 2004; Zhang and Goodchild 2002). The
understanding and detection of a variety of uncertainties in geospatial data processes is
fundamental to the modelling of uncertainty in geographic data. In the following
section generalized factors which introduce uncertainty in geographic space

characterization, are outlined.

22  UNCERTAINTY AND DATA QUALITY

The preceding section described uncertainty and its persistent occurrence in
geographic phenomena. This section discusses specific elements of data quality through
which uncertainty may emerge. The presence of uncertainty results in the
deterioration data quality. Uncertainty has direct influence on data quality because it
distorts standards for data quality. The components of Spatial Data Transfer Standard
(SDTY) include lineage, positional accuracy, attribute accuracy, completeness, logical
consistency, semantic accuracy and temporal information (Morrison 1995). Lineage
describes original measurements, data acquisition and compilation methods,
conversions, transformations, analyses and derivations that the data have been
subjected to and the assumptions applied at any stage during data processing (Clarke
and Clark 1995). Hence, lineage records the parentage of data by recording data
changes in its nature, form and format. Positional accuracy refers to the nearness of the
position of real world entity to the entity’s true position in an appropriate coordinate

system (Drummond 1995).

Attribute accuracy refers to a fact about some location, set of locations or
features on the surface of the earth (Goodchild 1995). Completeness shows whether
each entity instance is present and whether all of its attributes are present, where the
totality of entity instances is defined by the entities within an abstract universe (Brassel
et al. 1995). Logical consistency refers to logical rules of structure and attribute rules
for spatial data and describes the compatibility of a reference with other data in a
dataset (Kainz 1995). Semantic accuracy is the quality of geographic object description

in accordance with a selected model (Salge 1995). The quality of temporal information
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describes the level of information adequacy (in terms of temporal, precision, frequency

and process history) for describing geographic phenomena (Guptill 1995).

Elements of spatial data quality attempt to enhance data validity for accurate
and complete geographic inquiries, but Buttenfield and Beard (1994) argue that SDTS
should incorporate uncertainty of real world conditions. The elements of data quality
standard seek to enhance validity of data (uncertainty about database descriptions).
Data quality standards have also focused narrowly on error in data rather than the
wider consideration of uncertainty (Allan 2003). So, Buttenfield and Beard (1994)
contended that the validity of geographic reality (uncertainty of real world conditions)
to be integrated into data quality records. Hence, while standards for data quality are
starting point for assessing geographic reality, they need to address geographic validity

by assessing uncertainty of real world conditions.

23  TYPES OF UNCERTAINTY

The above section described the influence of uncertainty on standards of data
quality. This section outlines types of uncertainty. The assessment of uncertainty
establishes the level of certainty for derived information from available (or known)
data. This assessment involves application of a particular analysis process to certain
data depending on whether the process is data-driven or method-driven. Cluster
analysis for single variables, for example, is a data-driven process because data
distribution remains unchanged and it determines the path of the analysis process.
Weighting processes, on the other hand, are method-driven because data are subjected

to analytical tool concepts and assumptions which determine output data distribution.

Data quality comprises several defining elements including: subjective aspects
such as fitness-for-use; and objective measurables like deviation from observed or
attainable true values (Worboys 1998; Lo and Yeung 2002). Restrictions on data
quality resulting from imperfection can arise for a variety of reasons such as inherent
and operational errors in data (Worboys 1998). These may be deliberately introduced

(e.g. census data), inherent in the real-world objects that are under study, or during

15



data acquisition (Worboys 1998). Operational errors associated with uncertainty may
occur during the process of collecting, managing and using geospatial data (Lo and
Yeung 2002). Goodchild (1989) observed that errors inherent in geographic data
describe the differences that exist between data model and the geographic truth that
the model represents (Lo and Yeung 2002). Worboys (1998, 258) observed that
“deficiencies in data quality, leading to various kinds of uncertainty may be the result

of several factors:

» Inaccuracy and error: deviation from true value

=  Vagueness: imprecision in concepts used to describe the information

* Incompleteness: lack of relevant information

»  Inconsistency: conflicts arising from the use of information

* Imprecision: limitation on the granularity or resolution at which the

observation is made or the information is represented”.

Inaccuracy and error is the deviation from the truth or a value taken to be true
(e.g. standardized value) with the assumption that the true value is achievable at least in
theory (Worboys 1998; Zhang and Goodchild 2002). Vagueness (or inexactness) refers
to the existence of indeterminate location or borderline cases or the lack of a clear
boundary to define a set of values that fully characterizes an object (Bittner and Stell

2002; Worboys and Clementini 2001; Duckham et al. 2003; Dubois and Prade 1988).

Incompleteness arises due to the absence of information in which uncertainty
can be assessed as the amount of information required for recovering the truth (Zhang
and Goodchild 2002). Completeness describes the degree of replicability of reality
through feature abstraction represented in databases. Data acquisition methods and
standards employed in the creation of spatial databases are essential determinants of
completeness (Veregin 1999). Incomplete data do not contain the relevant information
required to fully describe a phenomena under study, partly because of research
requirements underlying data acquisition and limitation of concepts for data collection
methods. Incomplete data may be due to poor metadata information. Geographic data

may be incomplete depending on which ministry or institution acquires the data
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because geographic data collection is commonly selective based on the research goals
and requirements. Hence, data can be identified or associated with a particular data
collection agency and vice-versa (Schuurman 2004). A missing material description or
lack of spatial location in a well-log description represents incompleteness for

describing sediment distribution structure of that borehole.

Inconsistency exists as a result of lack of uniformity inherent in information
and may be due to heterogeneous standards or lack of coherent classification rules
applied to information (Smets 1997; Veregin 1999). Inconsistency may also result when
models fail to render valid or reliable outcomes resulting in incoherent conclusions
where variables function differently under similar conditions (Bosc and Prade 1997,
290; Smets 1997,229). Well-log data may exhibit inconsistency because there are
multiple sediment tags and conflicts may persist for spatial and elevation values of
borehole units. Absence of inconsistency is an indication of the level of internal
reliability or validity, but its identification does not guarantee possible correction
(Veregin 1999). Imprecision refers to lack of specificity (Worboys and Clementini
2001) in representation or lack of repeatability or the degree of spread of
measurements. Imprecision and inconsistency relate to the substance or content of
information item; information is imprecise because data are incompatible with reality;
in the later, because no consistent pattern exist between reality and abstracted
information (Smets 1997, 227). Hence, imprecision and consistency can be traced for
particular geographic information and corrected as they are identified with an

information item.

24  SOURCES OF UNCERTAINTY

In the preceding section, types of uncertainty have been outlined as broadly due
to complexity in geographic phenomena and inaccuracies in concepts and tools
employed for information extraction. This section focuses on sources of uncertainty.

Uncertainty may arise from a variety of sources depending on the geographic
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phenomena under study or it may be specific to the methods and tools employed in

data acquisition process.

Allan (2003) described major sources of uncertainty as: intrinsic uncertainty,
inherited uncertainty, operational uncertainty and uncertainty in use. Intrinsic
uncertainty includes inaccuracies in observation, definition, generalization, natural
variation and operator bias (Allan 2003). Intrinsic uncertainties are associated with
primary data. For example, in spatial mapping, geometric error may occur as a result
of measurements on the spherical surface of the earth and its corresponding projection
onto plane surfaces (Hunsaker et al. 2001). Inherited uncertainties arise from the
management of primary data for storage or for other applications. Inherited
uncertainties are linked to secondary data and comprise errors due to: age, relevance,
scale, format, coverage symbolization or semantics (Allan 2003; Worboys 1998).
Operational uncertainties arise from inaccuracies inherent in data analysis tools and
their conditions and assumptions of application. Uncertainty in use is associated with
the use of data for decision-making. Beard (1989) observed that uncertainty in use arise
from users’ different perceptions or interpretations of the output information (Allan

2003).

A persistent difficulty remains because different disciplines conceptualize
geographic space differently leading to semantic heterogeneity in spatial databases.
Semantic heterogeneity is much researched (e.g. Kuhn 2001, 2003; Raubal 2001;
Harvey et al. 1999) though methods for resolving attendant interoperability problems
remain elusive. The rising need for data sharing requires integrating or reconciling
different meaning or standards (Harvey et al. 1999). Harvey et al. (1999) suggested
addressing semantic differences by constructing data sharing environments to develop
cross-standard exchange mechanisms. This study is not focusing on interoperability,
but it is worth acknowledging these challenges because they result into uncertain
information. Plewe (2002) observed that generally, geographic complexity and other

problems result in uncertainty via two processes: human conceptualization, involved
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with the simplification of reality, and measurements from which formal

representations are developed to form conceptual models.

Other sources of uncertainty may be due to physical changes of attribute
information over space and time (Hunsaker et al. 2001). Most geographic databases are
static snapshots of reality requiring temporal dimension of features to be considered as
an integral component of geographic phenomena. For certain analysis such as well-log

data, temporal change is large and can be ignored for short duration studies.

Overall, uncertainty manifests itself in diverse ways: through most stages of
processes with data (e.g. data sampling, conversions, and transformations) to final
geographical decisions. But, uncertainty may be detected, measured and characterized
in order to assign a level of confidence to geographic information. Openshaw (1989)
observed that what most applications need is not exact estimates of error but a level of
confidence to protect validity of output information. The manifestations of
uncertainty are diverse and may be specific to a particular data or area of application.
The following sections, describe some manifestations, detection techniques and

characterization of uncertainty in two data: census data and borehole data.

25  UNCERTAINTY IN CENSUS DATA

The preceding two sections outlined types and sources of uncertainty. This
section describes specific aspects of uncertainty exclusive to census data. Census data
acquisition and analysis, like any geographic data, are subject to inaccuracies in tools
and methods employed in the data collection and reporting processes and also partly
due to complexity of geographic reality. A fundamental characteristic of census data is
that data are collected at the individual level and reported at area units (Schuurman
2004; Duckham et al. 2003). In essence, individual data are aggregated to spatial (i.e.

area) units based on arbitrary subdivision of the area under study.

Openshaw (1984a) observed that spatial data aggregation is essential to generate

relevant data and is a convenient way to report data. The collection of data requires
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data aggregation to a larger area unit relative to the observed pattern of the phenomena
under study. In population health studies, for instance, the spatial association of
tuberculosis in relation to a particular ethnic group will require data aggregation to an
area that includes at least one specified ethnic group and the tuberculosis case and vice-
versa (Dragicevic et al. 2004). However, the spatial units at which data are aggregated
are one out of many different ways of dividing non-overlapping area units for spatial
analysis processes (Openshaw 1984a). This uncertainty of arbitrary subdivision of area
units for spatial analysis purposes is often referred to as the Modifiable Areal Unit

Problem (MAUP).

25.1 The Modifiable Areal Unit Problem (MAUP)

The MAUP is a fundamental spatial analysis problem inherent in all aggregated
data where results are susceptible to the configuration (that is, shape and size) of spatial
units at which data are analyzed (Openshaw 1984a). In other words, the MAUP is the
process where different spatial unit configurations result into different and conflicting
results (Fotheringham and Wong 1991; Reynolds 1998; Davis 2003; Klinkenberg 2003).
This influences subsequent results of analysis made on such data, and also how these
results are interpreted which may lead to the problem of ecological fallacy. Ecological
fallacy describes the inaccuracy resulting from spatial analysis of area data applied to
individual level or the application of aggregate data relationships to individual
relationships (Tranmer and Steel 1998; Marceau 1999). Openshaw (1984a) provided a
comprehensive study into the MAUP, and identified two subcomponents of the

problem as the scale problem and the aggregation problem.

The scale problem is a variation in analytical results when data are increasingly
aggregated into smaller or larger spatial units (Barber 1998). Aggregation effect results
because the spatial units are modifiable (Openshaw 1984a). That is, there are many
different ways of subdividing an area for aggregation at the same scale. The aggregation
problem is the variation in analytical outcomes due to alternate or different

aggregation of area units at the same or similar scales (Openshaw 1984a; Barber 1998).
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Openshaw (1984a) and Horner and Murray (2002) observed that the aggregation effect
occurs because of the uncertainty of how spatial configurations should be defined to

generate a fixed number of area units.

The effects of MAUP has being tackled in many studies to minimize its effect
on grouped data analysis. It effects seemed to have resisted many mathematical tools
and methods. Openshaw (1984a), for example, suggested optimal zoning system to
create homogeneous units and Barber (1998) recommended combining similar units
during aggregation to preserve original data variability. The creation of spatial units
with least variance to curtail the aggregation effect can only be optimized for a single
variable at a time. In addition, spatial heterogeneity and variability inherent in
geographic data will not permit uniform spatial units for multiple variables. Real-
world scenarios will require single area definition for spatial analysis, and least-
variance spatial unit definition may be varied depending on the variable under
consideration. The aggregation problem investigation requires individual level data to
create modifiable units for different aggregations at the same scale. The aggregation
problem investigation is beyond the scope of this study due to lack of individual-level

data.

2.5.2 The Scale Problem

The scale problem is the variation in analytical results when data for a
particular set of spatial units are aggregated into smaller or larger units for analysis
(Openshaw 1984a). In the 2001 Canada census data, three common census units at
which data are reported are: census sub-division (CSD), census tract (CT) and
dissemination area (DA). The CSD represents the largest of these census units followed
by CT, a medium size census unit and DA is the smallest census unit. Figure 2.1
illustrates these three census units (that is, CSD, CT and DA) and their relative sizes. A
CSD represents a municipality or an area that is deemed to be equivalent to a
municipality. A CT usually has a population of 2,500 to 8,000. They are located in

large urban centres that have an urban core population of 50,000 or more. A DA
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represents small areas consisting one or more neighbouring blocks, with a population

of 400 to 700 persons.

So in the 2001 census data, for example, DA data aggregated to CT level
represents a scale problem because a CT is a census unit which consists of two or more
DA entities. This is a fundamental characteristic of all spatially grouped data for which
census data are an example. Census data are gathered at fine spatial resolution and
results are presented in aggregated form at coarser spatial resolution for privacy and
other reasons (Schuurman 2004; Duckham et al. 2003). The scale problem can be
considered analogous to scaling defined by Javis in Marceau (1999) as information
transformation from one scale to another where upscaling is the information
derivation from small to large scale and downscaling is information decomposition
from one scale into its constituents at a smaller scale.

Figure 2.1: Three sample census units (CSD, CT and DA) and their relative sizes

A Census Sub-divisior {CSD) with constutuent CTs and DAs
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A real challenge in the scaling process is the non-linearity between phenomena
processes and the inherent heterogeneity of geographic properties that determines the
rate of the processes (Jarvis 1995). Here, we are concerned about the effect of scale on
statistical results and models when using aggregated data (Marceau 1999) and not the
scaling in the natural sciences concerned with spatial patterns and associations at
different scales. The scale problem considered with regard to aggregate census data can
be restated as the process where statistical results and relationships for aggregated data are
different for the same set of data at different scales. The scale issue is recognized as the
uncertainty of the number of spatial units required for spatial analysis (Openshaw

1984a).

Figure 2.2: The Scale Problem - Map of Recent Immigrants at two scales (CT &
DA)

Recent tmmigrant (% of Total Population)
0% -551%
552% - 1371%
1372%-20. -..
6154%

Census Tract Boundaries

The uncertainty specific to census data investigated in this study is the one
associated with the scale problem. It involves the spatial transition of census data from
DA to CT level in order to explore the spatial pattern of the scale effect. Figure 2.2
illustrates the spatial variability lost consequent to aggregation during the spatial

transition from DA to CT and the increasing spatial heterogeneity within individual
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census tracts (CT). Analysis of the spatial pattern due to the scale problem requires
analytical tools that will retain the outputs at the original scales for accurate

determination of disparities between different scales.

Hence, analysis tools which degrade input data distribution and introduce
different spatial patterns between input variables are inadequate for this analysis. Many
analytical methods have been applied on aggregated data to predict and minimize the
effects of the MAUP. Among the analytical tools is multivariate statistical analysis by
Fotheringham and Wong (1991, 1025) who applied multiple linear regression and
multiple logit regression models in examining the sensitivity of estimates to variations
in scale and spatial units. They concluded “The modifiable areal unit problem is shown
to be essentially unpredictable in its intensity and effects in multivariate statistical
analysis and is a much greater problem than in univariate or bivariate analysis. The
results of this analysis are rather depressing in that they provide strong evidence of the
unreliability of any multivariate analysis undertaken with data from areal units”.
Nakaya (2000) also examined the solution of optimal zoning system to MAUP and
observed that the approach is suitable for spatial anomaly determination but presents a
biased overall pattern. Openshaw (1984a) also investigated multiple dimensions of the
MAUP and observed that the problem is best understood by empirical experiments
and that MAUP should be considered a geographical problem rather than a statistical
one and tools be developed as such to handle it. Further, he concluded that there are
no convincing alternative techniques for managing spatially aggregated data in a
statistically sound framework and suggested more radical non-statistical approaches to
handling the problem. Following is a brief description of limitations identified with
common analysis tools such as spatial regression and correlation, autocorrelation

measures, multivariate statistical analysis, etc on spatially grouped data.

2.6  SOME LIMITATIONS OF COMMON SPATIAL ANALYSIS TOOLS

The preceding section discussed the relevance of data distribution as a

precondition to resolving the scale issue and summarizes some early approaches to

24



limiting the effects of MAUP. This section outlines specific characteristics of spatial
data which are difficult for most analysis tools to handle. The underlying problem is
that analytical tool assumptions do not always accommodate characteristics of the data
and resulting outputs are disjunct from reality because the method is tool-driven
rather than data-driven. Below, is a description of common analysis tools with their

inherent assumptions and conditions required from data.

Spatial analysis involving regression and correlation are valuable predictive and
modelling tools allowing the creation of numerical terms to control one variable
(dependent) from a single or multiple (independent) variables (Shaw and Wheeler
1994). These tools attempt to provide numerical prediction of geographic events based
on specific assumptions between the predicted and predictor variable(s). An overview
of some inherent inadequacies with regards to geographic information is described

below.

The requirement of variable normality prohibits the use of percentages in
regression models and requires a natural logarithm transformation which leads to
complex conversions and loss of numerical clarity (Shaw and Wheeler 1994). Excessive
disparity of intermediate output from the input data distribution due to data
transformation can be considered loss of relative accuracy in the spatial model. Data
normality requirements, however, are necessary for illustrating sound model-based
inferences and determining statistics with variability that are less influenced by outliers
(Griffith et al. 2003). Identification of outliers can easily be made for data acquired
with repeated measurements mostly in the physical sciences. However, for geospatial
data, spatial locations must be reconciled with attribute characteristics. This divide of
analytical tool requirement and geographic data reality poses a conflict between
derived model and data; resulting in data conformity to model requirements. But, the
empirical data distribution (which conforms to the conceptual normal distribution
theory) will yield reliable confidence intervals constructed for normally distributed
error term assumptions (Griffith et al. 2003). So, the reliability and accuracy of these

models are dependent on the input data characteristics, particularly data normality.
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Next, the derivation of spatial relationships among data elements is a problem
for unique data distributions. For example, in a complementary class such as gender
groups of male and female have a pre-determined relationship such that as ome
increases the other decrease (Shaw and Wheeler 1994). These relationships may
indicate strong or no spatial association but the variables may be spatially dependent
on each other. Also the assumption that errors in regression models are statistically
independent will often not be plausible due to spatial dependence in the sources of
error (Lark 2000; Shaw and Wheeler 1994). Lesch et al. (1995) recognized this problem
and suggested that the test of independence be applied to the residuals from regression
models (Lark 2000). They recommended that regression only be used when the
residuals appeared to be independent - a very restrictive condition for both single and
multiple variable approaches (Lark 2000). Total errors in such models cannot be
ascribed solely to the dependent variable alone because the independent variable may
also be subject to error. The identification of independent and dependent variables
may be difficult in cases where process-response relationship is not clear (Lark 2000;

Shaw and Wheeler 1994).

In addition, statistical dependence may not necessarily imply valid geographical
relationship between the variables (Lark 2000; Shaw and Wheeler 1994). A regression
or correlation model may suggest a link or strong relationship between variables and at
the same time the variables may just be responding simultaneously to different or
unknown variable(s). Also there may be unique spatial considerations, such as spatial
autocorrelation, geographic data dependencies, etc which may confound standard
statistical approaches. An apparent result of these implications is the loss in variability
of the predicted (or dependent) variable with regards to input (or independent)
variable(s). These limit attempts to minimize the effects of MAUP in spatial analysis
processes on aggregated data. Comparisons of various indices from spatial analysis
processes at different spatial resolutions do not resolve or minimize the effects of

MAUP because these analyses do not often retain the input data distribution.
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Figures 2.3 and 2.4 are explicit examples of significant loss of input data
variation and distribution inherent in spatial analysis processes. The maps are of the
same spatial extents and census tracts. Figure 2.3 represents the input variable and
Figure 2.4 is the spatial analysisvoutput combining multiple variables. The spatial
variation even at the same census scale is lost in this spatial analysis approach. This is
not unique to spatial regression and correlation analyses alone but also to other spatial
analysis tools such as factor and cluster analysis and spatial autocorrelation measures

like Moran’s I and Geary’s Ratio.

These tools rely on global measures that must find best fit models based on
some trade-offs in the input variable characteristics. But many approaches to
improving model reliability and accuracy work by increasing input data volume or
collecting data at small resolution or short temporal duration to satisfy central limit
theory requirement. The central limit theorem which states that data normality can be
achieved with sufficiently large data collected for a particular phenomenon does not
apply to non-random data samples (Shaw and Wheeler 1994; Lark 2000). Also
geospatial data are often dependent and heterogeneous requiring tools that can retain
input data variation irrespective of spatial resolution or temporal dimension at which

data are acquired.

27 UNCERTAINTY IN WELL-LOG DATA

The previous section outlined limitations associated with analysis tools in
spatial data analysis. It illustrates how these inaccuracies propagate from known data
into uncertainty during analysis. The section also suggested the need for non-statistical
tools to retain data distribution during spatial analysis. This section identifies specific

uncertainties inherent in well-log data.

Well-log data are geological samples mostly collected during groundwater
investigation through borehole or water-well. A borehole or well is a vertical
excavation constructed mainly for the purpose of groundwater extraction, subsurface

exploration, artificial recharge and disposal of sewage or industrial waste (Tolman
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1937; Tood 1964). These data may constitute key elements in determining the accuracy
of subsequent applications using well-log data. The influence of data quality on
resulting geographic representation cannot be over-emphasized as reliability of
geological model resulting from data are determined by the quality of the original

well-log data.

In Canada, borehole data are one major data source for subsurface study. Well-
log data are employed in subsurface mapping of geological settings and requires
accurate identification and description of the subsurface geology. Subsurface modelling
provides a means of understanding subsurface geologies, which accounts for the
distribution and movement of groundwater. However, because subsurface lithologies
are hidden below the earth’s surface, it is difficult and expensive to obtain samples
(Schuurman 2004). In Canada, water well drillers are the primary source of well-log
data (Schuurman 2002) involved in subsurface geologic material identification and
description. Regrettably, due to the variability in experience and training of these
private well drillers, the well-log data varies considerably in its level of detail, with
many soil deposits and rock formations being misrepresented and several descriptions
being given for one material unit. This has resulted in different lithological terms being
used to describe the subsurface in British Columbia (Schuurman 2002) resulting in high
variability in geological formation within a small region. Schuurman (2002) observed

that this figure far exceeds the actual material distribution in the subsurface geology.

A snapshot of material descriptions of well-log data collected by the private
well drillers is as shown in Figure 2.5. The data signify not only lack of experience in
subsurface material identification and description on the part of the well drillers, but,
also inherent complexity in the geological structure of boreholes. A borehole
comprises continuous geological units which for purposes of geological analysis must
be discretized and collected as distinct entities. The continuous characteristic of
sediment units of a well-log data partly reflect the difficulty experienced by the well
drillers in identifying the material limits and the struggle to differentiate between

materials in assigning single tags to borehole units.
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Figure 2.5: Sample borehole data material description by private well drillers

Descnption

Sand - medium to fine and brown clay

Blue clay some fine gravel

Coarse sand and fine gravel high silt content
Coarse sand and fine gravel

Coarce sand some medium sa;

Coarse sand and fine gravel

Gravel medium to fine and coarse to medium sand
Sand - coarse 1o = aum and fing gravel
Madium sand some coarse sand

Fine sand some medium sand high silt content
Brown silty clay some sand and fine gravel
Hlue clay little gravel.

Gravel - medium Lo fine some r~arsr sand

Figure 2.6: A simple cross-section
requiring no manual
intervention - relatively
homogefneous geological
formation
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-
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Figure 2.7: A simple cross-section
requiring manual
intervention - relatively
heterogeneous
geological formation

38631

Sand
Gravel

Also there exist gradual material transitions between different sediment types

contusing the well drillers to assign multiple material tags. A single borehole unit is

not given a distinct tag, suggesting that a material unit may belong to more than one



category whenever an attempt is made to place them in single group. This is an explicit
illustration of inherent geological complexity and the uncertainty experienced in
classifying geological space. This uncertainty is what is investigated in this study with

regards to well-log data.

Immediate and apparent consequences of this well-log data collection process is
the high geological variability and distribution within boreholes and between
boreholes, which many applications find challenging and demanding to support.
Figures 2.6 and 2.7 illustrate this high geological material heterogeneity within and

between boreholes from such data.

28  WHY CONSIDER GEOGRAPHIC DATA UNCERTAINTY

The preceding sections (sections 2.3 and 2.5) have identified specific
uncertainties in the two data used in this study. This section discusses the relevance of
integrating uncertainty into geospatial analysis. Uncertainty exist in all forms of
geographic realities, mandating uncertainty integration into all geographic information

systems (Smets 1997).

Models resulting from geographic information systems are always imperfect
(Zhang and Goodchild 2002; Smets 1997; Hunsaker et al, 2001). This may partly be
due to inherent complexity in the real-world and inaccuracies in tools and methods
employed in geographic model development. For instance, most geographic spaces are
continuous, while observations must be discretized to allow data analysis and facilitate
decision-making (Goodchild et al. 1994; Zhang and Goodchild 2002). Optimal and
accurate representation of geographic complexity in simple and complex models may
be impractical, but the assessment of model accuracy is important for the use of data to
certain applications. This was clearly recognized by Openshaw (1989, 265) who
observed that ... what many applications seem to need is not precise estimates of error
but some confidence that the error and uncertainty levels are not so high as to render

in doubt the validity of the results in a particular data specific situation”.

31



Openshaw (1989, 265) identified two approaches to minimizing uncertainty:
“... develop adequate means of representing and modelling uncertainty and error
characteristics of spatial data; and secondly, to develop GIS related methods and
techniques that can explicitly take error into account during operations with spatial
data”. The first approach requires conceptual model and methods that can fully
accommodate spatial data properties; it can be considered a general broad-based
approach for most geographic analysis. The second technique is what is considered in
_ this study: applying analytical tools which minimize uncertainty in spatial analysis
processes to safeguard final decisions. The method is not aimed at total eradication of
uncertainty in geographic analysis processes, but the application of analytical tools that
utilize available information to minimize or lessen quantifiable inadequacies which

render spatial decision-making sour.

Additionally, digital geographic information from computers are trusted to be
of high accuracy and precision (Keukelaar 1999; Duckham and Sharp 2004; Motro
1997). The integrity of geographic information is related, however, to geographic
reality. Geographic inquiry dependent on digital databases must be comparable to
reality in order to maintain spatial data reliability and protect integrity of geographic

decisions.

29  ANALYTICAL TOOLS - UNCERTAINTY MODELS

The preceding sections have outlined specific aspects of uncertainty in the two
data: census data and well-log data. The sections below will identify and describe
analytical tools for characterizing uncertainty, their assumptions and conditions of

application.

There are a variety of analytical tools and methods employed in minimizing the
effects of uncertainty in geographic information. Depending on what is identified to
describe uncertainty, certain methods are applied in controlling its occurrence and
propagation. Dominant and common in many approaches is the conventional error

propagation inherent in many analytical processes using probability distribution.
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Error models may be formulated using stochastic processes capable of simulating a
variety of known error possibilities or inaccuracies identified with analytical processes
(Abbaspour et al. 2003). These error models aimed at minimizing residuals in the
modelling process in order to bring the model close to input data. Uncertainty
assessment, however, goes beyond reducing error during modelling processes but
attempts to replicate reality or data distribution. This chapter outlines different aspects
of uncertainty modelling by using available information to develop models, which
closely characterize reality. Four prominent tools for uncertainty modelling are
probability and stochastic models, fuzzy set theory and rough set theory. Following is

a brief outline of their respective approaches to uncertainty modelling.

2.10  PROBABILITY AND STOCHASTIC MODELS

The theory of probability is an advanced mathematical tool with clear and
standard concepts. The probability of an event is a number expressing the degree of
chance or belief that an event will occur or a proposition is true (Henri et al. 1997).
Probability values range from zero (0), signifying a false proposition or an event will

not occur to one (1), indicating occurrence of an event or a true proposition.

Probability theory has enriched and strengthened the analysis of geographic
data and their applications in scientific research have an advantage of well understood
concepts (Zhang and Goodchild 2002; Duckham and Sharp 2004). Probability concepts
have been employed in diverse disciplines of geography with certain degrees of success,
for example, Manslow and Nixon (2002) evaluate the ambiguity in a sensor’s point
spread function (PSF) on the information it acquires; Dowd and Pardo-Iguzquiza
(2002) investigated the model of uncertainty in geostatistical analysis for geological data
using stochastic method; Diggle and Ribeiro (2002) utilized Bayesian approach to
spatial interpolation smoothing in order to accommodate uncertainty associated with
unknown value determination for model parameters; Brunsdon 2001 also employed
Bayesian models for determining catchment zones for schools. The list continues, but

there are conditions and assumptions, which must be satisfied for satisfactory results.
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Probability and stochastic models are dependent on random variation and
independent data. The random requirement does not accommodate spatial
dependencies, which are highly associated with geographic data. The independency
condition is inflexible to allow gradual transition of spatial phenomena that are
characterized by vagueness. The conditions for probability and stochastic models are
complex and are difficult to maintain (Duckham and Sharp 2004). For example, we
apply probability if and only if residuals appear to be independent. Some analytical
processes, however, are carried out with less regard to these conditions, probably
ignoring their consequence or hoping their effects are minimal. Errors from spatial
data are characteristic of the data under study and Zhang and Goodchild (2002, 87)
observed that “all spatially distributed data demonstrate spatial dependency to a certain
degree and so do spatial errors”. In other words, uncertainties in geographic data must
reflect trends underlying the data. Hence, for probabilistic and stochastic approaches
to yield satisfactory results, both data and error characteristics must satisfy prevailing

conditions.

211  STOCHASTIC SIMULATION - MARKOV CHAIN MODEL

The section above discussed probabilistic and stochastic restrictions on data in
order to yield satisfactory outcomes. This section describes one stochastic model -
Markov chains - and its approach to characterizing uncertainty. The Markov chain is a
dynamic probabilistic model for analyzing complex systems using the concept of state
and state transitions (Howard 1971). A system’s state represents all descriptive values,
which characterize the system at any instant. The dynamic behaviour experienced by
the system from one state to another is called state transition or simply transition.
Some processes whose states and transitions are finite and whose probabilistic
character is random possess a Markov chain. So, if the probability of a process’s state is
dependent on only the present state for a given transition period then the process is
called a Markov chain (Elfeki and Dekking 2001; Howard 1971; Carle and Fogg 1997).

The statistical description of a system’s process using Markov chains requires the

34



specification of conditional probabilities of all individual states in the system. The
specification of these probabilities can in itself be a problem and its implementation

could be complex (Howard 1971).

Markovian assumption is employed to simplify both the complex behaviour of
the system and the problem of specifying the process. The Markov dependence
assumption is: given the present, the future does not depend on the past, in other
words, only the present state characteristics of the process are relevant in determining
its future behaviour (Elfeki and Dekking 2001; Howard 1971; Carle and Fogg 1997).
In other words, the probability of future transitions of each state in the system depend
only on the present state occupied. For instance, consider a borehole with which equal
depth intervals (say 0.5 metres) are marked from the top down to a specified depth. By
using this equal depth interval as borehole state transitions, different material states
could be identified (say sand, gravel, silt, etc). Hence, borehole material transition from
one state (say, silt) to another, given the present conditions, is not dependent on the
material’s past occurrence. That is, Markov model of spatial variability assumes that
local occurrence of a category depends entirely upon the nearest presence of another

category and independent of more distant occurrences (Carle and Fogg 1997).

The validity of this assumption is the concern of many complex system analysts
because the compatibility of this assumption to practical observations is integral to
model accuracy. It is however, analogous to first law of geography which states that all
things are related but near things are more related than far things (Tobler 1970). While,
no experimental results can fully support the Markov assumption, there are neither

practical processes that are entirely non-Markovian (Howard 1971).

2.11.1 Transition Probability Matrix

The preceding section discussed the Markov chain concept and assumptions for
the treatment of uncertainty. This segment describes a key ingredient - transition
probability for implementing the Markov chain. The conditional probability

specification of a system’s state and transition processes forms an integral component
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to the implementation of the Markov model. So, a Markov process is defined by
specifying for each state and transition time, the probability of making the next .
transition to each other state given the present conditions. The transition probability,
Pj is the probability that a process presently in state i will transit to state j after its next
transition (Howard 1971). A transitional probability is thus, obtained by dividing the
frequency of transitions by the frequency of the state in question. It represents a
conditional probability, the probability to move to state j, given that the subject is in
state i. The transitional probability is not the same as joint probability, which reflects
the overall probability of observing a certain transition (it is computed by dividing by
the total number of observations). The transition probability, Pj satisfies the

probability unit scale requirement that is:

0<Pi<ifor 1<ij<n

where n is the number of transitions.

For a finite number of transitions, n where the process must occupy one of its n states

after each transition, the sum of all transition probabilities must be one (1.0).
D> P, =10 Foralli =1,2,3,..,n
=1

The transition probability that describes a Markov process is represented by a square

(nxn order) matrix called transition probability matrix (P:) with Pj elements.

p, P, P,

p, P p
Pt :Pij — 2 n 2

pnl an o pnn

This transition probability matrix, P: is a stochastic matrix, that is a matrix whose
entries cannot lie outside a unit scale (0, 1) and whose row’s sum is one (Howard 1971).
The transition probability describes categorical data dynamics by revealing

information about the underlying structure of the data sequence (Lemay 1999). The
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transition probability matrix forms a fundamental framework and remains the first

step into the Markov process modelling.

2.11.2 Multistep Transition Probability

The assignment of probability values to future states for n nurnber.of
transitions given the present condition is one practical problem most complex system
analyst’s face. In other words, given the present borehole condition what is the
borehole state after n number of transitions? This raises the question of how does the
present condition and the number of transitions influence the condition of future

states? The quantity ¢;(n) is called the n-step transition probability of the Markov

process from state i to state j (Howard 1971). The multistep transition probability

¢;(n) is related to the transition probability pi. The multistep transition probability
can be written into an nx n matrix as:
o e . ¢

M®=@A®} o n=0,1,2,..

For a process starting at state i to another state j after (n+1) transitions, the multistep

transition probability matrix @(n) and the transition probability P are related by the
equation:
®d(n+1) = O(n)P forn=0,1,2, ...

@) =1 where I is an identity matrix

For successive n transitions, the multistep transition probabilities are:

() =1
(1) = ®(O)P=1P = P
O(2) = ®()P = P*

D(3) = ®(2)P =P
Thus, in general, ®(n) = P* forn=0,1,2, ...
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The multistep transition probability equation is a fundamental relation with each row
specifying the probability distribution that will exist over the states of the process after

n transitions for each possible starting point (Howard 1971).

The multistep transition probability equation raises a question of validity for
extremely large numbers, that is, the response of the matrix elements as n increases. It
is apparent that when n increases then the difference between rows of n and (n+1)
decreases and will eventually approach zero. For example, consider the following

multistep transition probability matrix for increasing power of n:

1 0 06 04
Q0) =1= O(1) =1=

01 0.5 05

[0.56 0.44 [0.556 0.444
D(2) =1= OB3) = 1=

1055 045 10.555 0.445

[0.556 0.444 [0.556 0.444
O@4) =1= O5) =1=

0.556 0.445 10556 0.444

Hence, for extremely large values of n, the multistep transition probability becomes:

0.6 04
06 04

(D(oo)=I=[

So, for very large values of n: @ =®(x)=P" is called the limiting multistep
transition probability (Howard 1971) because the deviation of subsequent rows for
closed states approaches a limiting value of zero (0). This mathematical proof validates
the Markov assumption, because there is a lost of dependency of future states on past
states and it is only the current state that reflects what happens next. In sum, the
transition probability provides a means of simulating hidden patterns in complex

systems.

2.12 FUZZY SET THEORY

The section above discussed one stochastic simulation, that is, Markov chains

and its basic framework for implementation in minimizing the effects of uncertainty.
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This section describes another tool - fuzzy set theory - for characterizing uncertainty.
Fuzzy sets concept was introduced by Zadeh in the 1960s to deal with uncertainty in

complex systems (Dubois and Prade 1988).

In classical logic, sets are constructed with definite set characteristics enforcing
strict outcomes; either an element belongs to or it does not belong to a set. For
instance, an observed area is classified as water or land with sharp grades of set
membership which does not recognize the interaction that may occur for gradual
transition of one geographic phenomenon to another. While conventional set theory
can be employed to certain applications (crisp and independent physical features such
as roads, houses, etc) with high degrees of success, this approach needed modification

for quantitative analysis of geographic information.

Geographic space is a continuum with particles interacting at different levels to
form features abstracted even at one scale of observation coupled with complexity of
geographic reality. To account for this complexity, fuzzy set theory was introduced to
measure the degree of membership of an element to a set (Dubois and Prade 1988;
Jiang 1998). In essence, fuzzy set theory was designed to accommodate partial set
memberships, vague boundaries and allow gradual transition of one phenomenon to
another. In fuzzy sets, each element is identified with a real number within the unit
interval (0, 1) which describes the degree of membership or belongingness of that
element to a set (Duckham and Sharp 2004). Zero (0) signifies no membership while
one (1) indicates full membership, so the closer the result of fuzzy membership value is

to 1 the higher the degree of its membership.

Interest in the application of fuzzy set theory to uncertainty in geographic
information has advanced over the past two decades (Duckham and Sharp 2004).
Fuzzy sets have been applied in a variety of areas within geography such as remote
sensing, environmental and ecological systems, etc. Lagacherie et al. (1996), for
instance, used fuzzy sets to handle uncertainty in delineating soil boundaries; Fortin
and Edwards (2001) also employed fuzzy sets to demarcate vegetation boundaries in

remote sensing; Allen et al. (2002) utilized fuzzy set theory to model and visualize
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three dimensional structure of an aquifer; Carranza and Hale (2001) mapped mineral
distribution using fuzzy set theory to redirect surficial exploration processes to
potential sites; Dragicevic et al. (2001) modelled urban growth dynamic using fuzzy
logic. There are numerous and diverse applications of fuzzy set in geographic

information.

Fuzzy membership values are appropriate for accommodating different levels
of complexity in geographic data which are characterized with vague or fuzzy
characteristics. However, the assignment of fuzzy membership values is difficult
because values are often subjective, a characteristic usually regarded as a weakness in
the application of fuzzy set theory (Duckham and Sharp 2004). Fuzzy membership
values are integral components of fuzzy sets (Lin 2001), thus, the level of accuracy of
fuzzy set theory is highly dependent on set membership function formulation. Lin
(2001) observed that since probability is the most common concept of uncertainty,
fuzzy membership functions can be easily confused as probability. The unit interval
for both probability and fuzzy membership values can also be misinterpreted to apply
these numerical values interchangeably. Probability values are determined specifically
with reference to probability space as a measure of event occurrence based on some
observed population. While fuzzy membership values can refer to probability values,
Lin (2001), pointed out that the identification or association of probability space is
required for satisfactory application. Fuzzy membership values have primarily been
assigned using expert knowledge, probability and possibility distributions. The section
below describes probability and possibility distributions for assigning fuzzy

membership values.

2.12.1 Probability and Possibility Distributions

In the preceding section, fuzzy sets theory is described. The above showed the
problem of assigning membership function values, which may be subjective. This
section discusses two ways of assigning membership values; excluding expert

knowledge.
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When dealing with uncertainty in geographic information, certain truth-values
must be assigned to data elements of the real world they represent in order to assess the
degree of confidence in data. This truth-value assignment may be difficult due to
uncertainty caused by geographic complexity. Approximate methods are used in
determining possible values based on available information (Bonissone 1997).

Commonly used approximate techniques are probability and possibility techniques.

Probability concepts are well developed and theoretically advanced uncertainty
model. The probability of an event is a number expressing the degree of chance or
belief that an event will occur or a proposition is true (Henri et al. 1997). Probability
values range from zero (0), signifying a false proposition or an event will not occur to
one (1), indicating occurrence of an event or a true proposition. Henri et al. (1997, 256)
described three probability perspectives namely; propensity view, frequency view and

subjective probability.

In propensity perspective, probability is a physical characteristic of a device
(e.g. a fair coin), the tendency of a particular coin to show up heads, for example. The
occurrence of different events is dependent on the physical characteristic of the device,
and devices could be partially constructed. In frequency view, probability is the
convergence limit of relative frequencies for repeated random events or the
characteristic of a population of like events (Smets 1997; Henri et al. 1997), the
occurrence of a particular geological material (e.g. clay) in a specified borehole, for
example. Smets (1997) observed that this probabilistic view is the most widely
accepted, however, the observation of convergence limits is impossible. The
assumption that past event occurrence pattern will be the same for future occurrences
is not possible for single events. Threshold specifications are required when
convergence limits are reached for certain phenomenon. Geographic data, for
example, exhibit spatial dependency limits called ‘sill’ used in kriging interpolation
technique that indicates the variance value at which spatial dependency ceases among

data variables.
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Subjective probability is a numerical value indicating a person’s confidence or
degree of belief in a proposition or the occurrence of an event using the person’s
knowledge about the phenomena under study (Henri et al. 1997). This probability
perspective is open to many criticisms such as personal subjectivity and as Henri et al.
(1997) pointed out, it is contrary to propensity and frequency views as subject to a
particular observer’s perspective. Generally, probability values are determined based
on some evidence that may be subjective or objective based on available information.
However, optimal decisions arise from these numerical values with no degree of
confidence on the real validity or reliability of an event’s occurrence or the truth of a

proposition.

In addition, geospatial data are often spatially dependent, a characteristic
contrary to randomness condition of probability distribution. Spatial variability and
geographic heterogeneity characteristics do not allow the application of convergence
limits, for example, the application of probability value of clay in one borehole to
another. Probability applications assume symmetrical pattern of event outcomes
(Smets 1997); spatial data, however, may exhibit disparate or unequal classes of
outcomes. The number of geological units (materials) in different boreholes is not
bound to be uniform in order to enforce symmetrical outputs. Probability values for a
particular geological material will be different because there are different sediment

populations in different boreholes resulting in failure of the symmetric condition.

Possibility theory, on the other hand, was introduced by L. A. Zadeh in 1978
in connection with fuzzy set theory to deal with uncertainty that accounts for an
element’s association with one or more classes when one attempts to place them in
specific category (Rokos et al. 2004; Dubois and Prade 1988). The possibility approach
was introduced with the identification of non-probabilistic uncertainties in
information systems. Spatial autocorrelation and geographic data dependency, for
example, do not assume probabilistic conditions of randomness and independency of
event occurrences. Lagacherie et al. (1996) observed that in fuzzy set theory, the grade

of membership does not necessarily exhibit random characteristics but does exhibit a
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possibility character. Possibility concept assesses the degree of event occurrences or to
what extent the occurrence of events are possible and the certainty of event occurrence
without prior knowledge of probability of its occurrence (Rokos et al. 2004; Dubois
and Prade 1988). Possibility theory also has descriptive interval values ranging from

zero (0) signifying impossible events, to one (1) indicating complete possible events.

Fuzziness is different from randomness which deals with the probability of an
element’s membership to distinct sets, while fuzziness entails the uncertainty of
belonging to a fuzzily defined set (Piatetsky-Shapiro 1997). Probability values are based
on evidence from well-defined sets and set definition whose constituents describes set
population play an integral role in probability value determination. However, in most
information systems, these set characterizations are not uniquely defined and
imposition of defined (that is, crisp) sets over fuzzy set will result in conflicting
membership values. Possibility distribution is designed to allow the description of
entities which conform to fuzzy constraints or belong to ill-defined sets (Smets 1997).
A set of highly permeable geologic materials in a borehole based on multiple material
tags may be vaguely defined for subsurface material classification because constituent
materials may belong to different sets. Smets (1997) observed that numerical values of a
possibility distribution do not matter; it is the ordinal system that imposes an order on
the elements of the domain. He further emphasized that possibility and probability
values do not necessarily correlate to imply high possibility mean high probability and
vice-versa, but if an event is impossible it is also bound to be improbable. This
paradigm does not only approximately quantify uncertainty but also evaluates the real

validity or reliability of an event occurrence.

2.12.2 Rough sets Theory and other set (Boolean & Fuzzy sets) Concepts

The preceding section discussed the assignment of fuzzy membership values
using probability and possibility distributions. This section discusses rough sets and
other set concepts: Boolean and fuzzy sets. It is important to differentiate rough sets

theory from other set concepts and why these concepts are not suitable for the kind of

43



uncertainty examined in this study. The following distinguishes rough sets from

Boolean sets (or classical sets) and fuzzy sets.

In classical logic, sets are constructed with definite set characteristics enforcing
strict outcomes, either an element belong to or it does not belong to a set. For
instance, a river bank may be classified as water or land with sharp grades of set
membership that do not recognize and account for interactions which may occur for
gradual transition of one geographic phenomenon to another. Classical logic is based

on Aristotelian logic where:

»  everything is what it is ~ law of identity,

»  something and its negation or inverse cannot both be true - law of non-
contradiction and

= every statement is either true or false - principle of excluded middle

(Burrough 1996).

So in Boolean sets, an element is assigned one (1) or zero (0) (or ‘Yes’ and ‘No’)
to categorize the element as member of a set or not a member respectively. In other
words, Boolean sets do not accommodate varying set memberships; that is, an element
is either part of a class or it is not. Boolean sets can be used for some applications (e.g.
crisp and independent physical features such as roads or houses) with high degrees of
success. But this concept needs modification for quantitative analysis of geographic

information.

In fuzzy sets theory, on the other hand, membership functions enable elements
to exhibit partial class memberships of different and overlapping sets in order to
account for multiple states of an entity. Confusion sets, however, may result in cases
where zones of different fuzzy sets intersect (Burrough and McDonnell 1998). This
may arise where an element is a partial member of three or more fuzzy sets which may
generate two or more intersecting fuzzy zones. For instance, when we select a land

area based on three characteristics; slope, vegetation cover and soil type. It is likely, at

44



least in practice, that some land areas may exhibit overlapping characteristics which

may result into confusion sets.

Rough sets accommodate confusion sets by applying set rules to derive lower
and upper approximation sets, and allow the possibility of partial set memberships. So
considering the case where land areas are selected based on three conditions: slope,
vegetation and soil type. When confusion zones arise, then we develop set rules to
characterize elements that definitely belong and those with partial memberships to
construct lower and upper approximation sets respectively. The design of set rules is
dependent on specific data patterns; the two case studies in chapters 3 and 4
demonstrate sample derivation of rough sets rules. The following section describes set

characterization using the concept of rough sets.

2.13 ROUGH SET THEORY

The preceding section discussed rough sets and other set concepts: Boolean and
fuzzy sets. This section describes a generalized concept of rough sets in order to
establish a background upon which to implement rough sets in spatial analysis: for
neighbourhood characterization 1n census data; and for subsurface characterization
using aquifer properties.

A rough set is a set (that is, a classical set extension) that has a nonempty
boundary when approximated by another set (Pawlak et al. 1995). In other words, a
rough set is a conventional set whose boundary is too rough to be approximated by a

crisp set.

Figure 2.8: Crisp set characterization into a rough set scenario

set A
<4— — setB

<« —— boundary
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In Figure 2.8, the set A may be described as having elements in both shaded
regions. While at the same time it may strictly be described to contain only elements
in the inner set B. Based on different or the same criteria of observation, set A may be
characterized as having either elements in set B only or both set B elements and those
outside (boundary elements). Elements outside set B may exhibit slightly different
properties based on the spatial or measurement resolution. To handle this, a threshold
could be set to define set characteristics of set A. But, some elements may still exhibit
properties that do not necessarily exclude them from the set criteria. Also some
elements may exhibit different characteristics at different times (today it belongs to set

A and tomorrow it does not).

In addition, observations can be made at different spatial resolution or scales.
At a fine resolution, an element may be found to belong to a set, but found excluded at
a coarse resolution. So the question is what scale or resolution should we use to define
or discern observation or measurements made close to boundary elements? At what
resolution will boundary elements exhibit different characteristics? In other words,
what is the spatial resolution do we classify elements to belong to one set for having
indiscernible properties? Rough sets analysis of elementary granules for a geographic
data can be employed to develop indiscernible relations in categorizing geographic

space.

The primary concept of rough set is the indiscernibility relation (Pawlak et al.
1995) that is developed from elementary sets. Information subsets of entities
characterized by the same or similar information that are indiscernible are called
elementary sets (Zhang and Goodchild 2002; Pawlak et al. 1995). Borehole units with
multiple distinct tags represent indistinguishable elements with each tag characterizing
the material differently into different categories. Also a census tract with constituent
distinct dissemination areas (that is, elementary sets) represents a rough set. A rough

set may be definable if there is a finite union of all elementary sets (Pawlak et al. 1995).

The concept of rough sets is based on approximation space to effectively

categorize an information space using patterns inherent in available information
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represented in information (or decision) tables. Rough sets have three approximated
regions as identified in Figure 2.8 as: lower approximation set, upper approximation
set and the boundary region. Lower approximation set is a consistent union of all
elementary sets that are definitely members of the rough set (Zhang and Goodchild
2002; Duckham and Sharp 2004). Upper approximation set is the union of all
elementary sets that have nonempty intersection with the entire set; in essence, upper
approximation set characterizes set items that possibly belong to the set (Zhang and
Goodchild 2002; Duckham and Sharp 2004). The boundary region comprises
elementary set elements that result because of the nonempty characteristic of the upper
approximation set, in other words, the failure of congruency between the upper and
lower approximation sets. Zhang and Goodchild (2002, 181) and Pawlak et al. (1995,
91) described the boundary region as the “disparity between the upper and lower
approximation sets” or the collection of “elementary set elements that are members of

the upper approximation set but not members of the lower approximation set”.

Hence, there are two necessary conditions for the implementation of rough set

to multiple or single variables:

» the variable must be categorized to have nonempty boundary when
approximated by another variable (e.g. sub variable(s))
»  the sub variable(s) which constitute the rough set variable must be crisp sets

(that is, elementary sets)

So, a single variable can only be treated as a rough set if and only if it has nonempty
boundary when approximated by a crisp set. For example, an orange is a crisp set (or
elementary set) when it is classified into a family of citrus fruits. It is however, a rough
set when it is approximated by the peel (that is, orange skin) and the pulp (that is,
inside tissue). Hence, a variable is a rough set; other words it is a crisp set with uniform

constituent elements (Pawlak et al. 1995).

Consequently, the elementary set characterization and the definition and

quality of lower and upper approximation sets play an integral role in the effectiveness
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of rough sets assessment of uncertainty. The quality of set approximation,
indiscernibility and attribute dependency are concepts which indicate how accurate we
can predict outputs with a particular set of data (Katzberg and Ziarko 1994). Lower
approximation set constituents are used to design certain rules because their
characteristic can be definitely derived from the available information with certainty.
Similarly, the upper approximation set properties are used to develop possible rules
since there is some possibility that their characteristics have certain truth values.
Pawlak et al. (1995) compared the quality of the lower and upper approximation sets as
belief and plausibility functions respectively which are commonly used in Dempster-
Shafer evidence theory (a generalization of the Bayesian concept of subjective
probability). Pawlak et al. (1995) also defined quality of lower approximation as the
ratio of the number of all elements in the lower approximation set to the total number
of elements; and quality of the upper approximation is the ratio of the total number of
elements in the upper approximation set to the total number of elements. For any
approximation, the accuracy of set element estimation can also be determined to assess

which approximation process adequately represents the original set characteristics.
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CHAPTER 3:
FIRST CASE STUDY - CENSUS DATA METHODS,
RESULTS & DISCUSSIONS

In the preceding chapter, uncertainties associated with spatial data were
described. Also common analytical tools for handling uncertainty and their
assumptions and conditions of application were outlined. This chapter constitutes the
first case study and it recognizes the numerous uncertainties in spatial data but focuses
on only the scale problem. The chapter illustrates the use of rough sets to mitigate the
scale issue in census data. In order to examine this scale issue, the case study
investigates spatial relationship between recent immigrants and deprivation indices in
the Greater Vancouver Regional District (GVRD). A number of socio-economic
factors are considered in relation to recent immigrant settlement in Greater Vancouver
Regional District (GVRD) at census tract (CT) and dissemination area (DA) levels. So,
rough sets will assess recent immigrant and deprivation index patterns at multiple

census units (that is, CSD, CT and DA).

Current literatures have identified strong correlations between poverty of CT
and the proportion of its population who are immigrants (Kassim and Laurel 2000).
Also rising poverty in Canada raises the possibility that the misery is absorbed by
certain segments of the population, particularly, immigrants of certain ethnic origins
(Kazemipur and Halli 1998). This study examines the extent of this relationship in
order to verify whether the overall index does provide information on whether or not

the observed trend is applicable to all recent immigrants.

Census data like other aggregate data pose a persistent challenge that renders
resulting patterns from this data subject to the census resolution used. Policies are
implemented with little regard to census units utilized; that is policies may not be in
conformity to spatial resolution of the census data used to inform policy development.

Since one fundamental focus of policy development is to ensure that services reach the
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people who need them, spatial data analysis must preserve unique data characteristics
in model development. Policies may have profound impact on services reaching people
at a particular place and time, but data analysis methods that aim to replicate reality
should play an integral role in the development of these policies. But, assumptions and
conditions of analysis techniques must conform to data characteristics. Hence,
methods used in this project are geared towards retaining data distribution and

variation rather than analytical tool characteristics.

The implementation of census data for spatial model design is aimed at the scale
problem investigation. The scale issue can only be examined by considering two or
more spatial resolutions to explore the pattern of each spatial resolution relative to
each data distribution. A prerequisite for such model development is the preservation
of data characteristics to permit optimal approximation of model discrepancy due to
scale transition. A unique technique is rough sets analysis of spatially grouped data.
While the assumption of variable dependency is required for assessing relationship
between two or more variables in many analytical methods, it is not necessary in
rough sets technique. This assumption of variable dependency is required in selecting
dependent and independent variables, for instance, in most statistical analysis like
regression and correlation. The spatial dependency assumption among variables has
fundamental model implications because this may not be valid hypothesis and it is

predetermining unknown spatial relationship.

Rough set implementation for spatial data analyzes variables independently
with no assumption of spatial dependency. For example, a deprivétion index for socio-
economic variables is developed from various variables interacting with different
characteristics. The following section shows an explicit implementation of sample

variables in a rough set fashion.

3.1  ROUGH SET MODEL FOR DEPRIVATION INDICES - CT & DA

This section describes the use of rough sets in a spatial analysis case study which

mitigates the scale dimension of MAUP. The scale issue is the result of data
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characteristic changes across scales. A precondition to accommodating scale changes is
to maintain data distribution from one census resolution to another. Data
characteristics can be described as the inherent relationships between the data
elements, which are analogous to spatial relationships in topology. Topology is central
to spatial analysis functions and is considered most suited for complex spatial analysis
(e.g. neighbourhood search) (Theobald 2001; Zlatanova, Abdul Rahman, and Shi 2004).
Rough sets are used to facilitate appropriate grouping of mﬁltiple data elements in
order to characterize attribute space for neighbourhood definition using deprivation

levels in the following.

In urban poverty studies, socio-economic factors and ethno-cultural features
tied to immigration include: immigrant concentrations in census units, country of
origin, ability to use official language, period of arrival. Ley and Smith (1997) used
these attributes to describe the extent of deprivation within a census unit. Their
methodology was to map poverty levels as a chloropleth map. These socio-economic
variables such as level of unemployment and education and dependency upon
government transfer payments were identified as representing a significant
contribution to spatial variation of urban poverty (Ley and Smith 1997). In this study,
these poverty indicators are extracted from census data as deprivation indices and
examined using rough sets. Deprivation, therefore, is a neighbourhood
characterization process where different sub-variables categorize an area unit
differently. The focus however, is not how these sub-variables are chosen but an

appropriate representation of each sub-variable distribution in the final output.

There are several socio-economic variable indicators reported in the census
data, but these individual data elements have little relevance and application for direct
and appropriate development of relationships between deprivation index and recent
immigrants. Recent immigrant information is directly available, but deprivation
indicators such as standard of education, income level status are available for entire
census units. So deprivation indices are not specific to recent immigrants, but to entire

population within a census unit. Major deprivation indices considered are broadly
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classified into categories as education, employment, housing and income levels. The

individual variables which constitute these categories are outlined in Appendix B1.

The abstraction of similar deprivation variables for census units (CSD, CT,
DA) has a limitation on the number of individual indices that forms one major
category. For example, disparities in data at two census units: CT and DA are reflected
in the constituent elements for the housing category (see Appendix Bl). A
diagrammatic illustration of the deprivation index derivation procedure is shown in
Appendix B2 with no spatial dependency assumed. This derivation process is
hierarchical and it allows independent analysis of individual variables. Intermediate
results from the derivation process can be used to explain individual variable patterns,
for example, to select variables that constitute major deprivation categories. An
illustration of this pattern is evident in the choice between ‘Incidence of low income’
and ‘Low income’ (see Appendices B3 and B4). These are different variables assessing
different aspects of income, but they have consistent patterns of data distribution and
variation. The frequency distributions which are shown in charts and tables (see

Appendices B3 to B6) illustrate a uniform trend between the two variables.

The deprivation variables (e.g. income, education, etc) are combined with their
individual normal distribution values, which retained their unique data characteristics.
All the normal distribution values are re~scaled into unit intervals from zero (0.00) to
one (1.00) to allow appropriate and mathematically sound assessment of the
deprivation indicators. It is worth noting that each data element is homogenized from
the census data. So the re-scaling of variable intervals into unit interval scale does not

change original data distribution.

A sample illustration of deprivation index values is shown in Table 3.1 where
each deprivation index is considered as a unique category. The rough sets assessment of
these indicators is to define each index as a unique category. For example, high
deprivation index category is a rough set because distinct census units have constituent
deprivation values belonging to multiple categories (e.g. education, income, etc) (see

Table 3.1). That is, a census tract (say CTUID: 0187.05) has constituent indices (each of
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which is treated as a rough set) belonging to multiple deprivation categories. Set

criteria for the approximation of lower and upper sets are defined in Table 3.2.

Hence, it 1s evident that individual census tracts do not have consistent values
across the various deprivation indicators, and set constituents cannot define each

category because elements have multiple set memberships.

Table 3.1: Sample deprivation indicator values for set approximations

CTUID® . Education Employment - " Housing . Income
0187.05 0.781 0.471 0.201 0.501
0056.01 0.101 0.784 0.600 0.360
0186.01 0.451 0.120 0.520 0.602
0184.06 0.811 0.123 0.536 0.254
0191.02 0.521 0.435 0.491 0.289

Table 3.2: Set category key and criteria for set approximations

Sét”Categbries__ . - .+ [ UnitInterval -+ | Set_Approximatioh Criteria

Very low deprivation indicator (VLDI) 0.00- 0.20 Lower approximation:

Low deprivation indicator (LDI) 0.21- 0.40 | three to four setinclusion

Medium deprivation indicator (MDI) 0.41 - 0.60 Upper approximation:

High deprivation indicator (HDI) 0.61- 0.80 at least one set inclusion

Very high deprivation indicator (VHDI) 0.81- 1.00 Modified upper approximation:
at least two set inclusion

Note: If an entity belongs to all four upper approximation sets then determine the average of its
constituent values and place the entity into the upper approximation set of the set range it falls.
Also apply same rule if an entity belongs to two upper approximation sets.

In Table 3.1, the set constituents for medium deprivation category (MDI) can be

defined as below:

*=  For Education: Census tracts, CTUID: 0186.01, 0191.02

*  For Employment: Census tracts, CTUID: 0187.05, 0191.02

*  For Housing: Census tracts, CTUID: 0056.01, 086.01, 0191.02, 0184.06
*  For Income: Census tracts, CTUID: 0186.01, 0187.05

* CTUID s a unique identifier for a CT.
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Applying the set approximation criteria, the lower and upper approximation sets for

this deprivation category - medium deprivation indicator, MDI are:

MDIlower = 0186.01, 0191.02
MDlupper = 0187.05, 0191.02, 0186.01, 0184.06, 0056.01
MOdlfled MDIupper = 018705, 019102, 0186.01

In addition, an entity may belong to all four upper approximation sets, for
example, CTUID: 0184.06. In an effort to reduce set memberships to a minimum for
manageable assessment of entities, the last criterion stated in Table 3.2 is applied to
specify entities to distinct sets. The average of the constituent values for CTUID:
0184.06 is (0.811 + 0.123 + 0.536 + 0.254) / 4 = 0.431 (see Table 3.1). Since 0.431 is
within the MDI range (that is 0.41 - 0.60), the entity: CTUID = 0184.06 is therefore

placed into the upper approximation set of MDL

In sum, input variables are analyzed based on their distinct property at an
instant, so entities do not necessarily assume their group characteristics. The technique
consequently, recognizes the common variance shared by all the input variables and
the unique variance that distinctively identifies and separates each data characteristic
from another. Common variances, which exist among variables, situate these variables
into upper approximation sets, while unique variance isolates specific variables into
lower approximation sets. Set property is the result of individual data distribution and
variation, which may be similar to other data characteristics (e.g. see Tables 3.1 and

3.2).

3.1.1 Approximation of Deprivation Index Spaces at Dissemination Areas into

Census Tracts

The preceding section illustrated the use of rough sets to group disparate data
characteristics irrespective of the spatial unit (that is, census unit) in question. This
section employs rough sets to characterize a large census unit (e.g. a CT) using a small

one (e.g. a DA). A CT is a census unit, which comprise two or more DA entities, and a
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census sub-division (CSD) is a census entity, which comprises multiple CT.
Deprivation index models are developed for the same group of variables at CSD, CT
and DA. Distinct DA which constitute a CT may belong to different deprivation
categories and approximating these component values for a particular CT requires
aggregation. This grouping of constituent DA values for a CT is necessary to
determine the deprivation index discrepancy due to the scale transition from DA to
CT. The resulting model of this technique is two independent deprivation index
models for all CT. The first model is a deprivation index model with direct variables
from CT resolution, while the second is a deprivation index model of DA grouped

into CT.

The approximation process for individual DA values which constitute different
CT is illustrated in Appendix B7. Each set value is grouped independently, for
example, all DA ‘Education’ constituent values for a distinct CT are aggregated. This
result into a similar information table developed in Table 3.1 for which set
approximation criteria can be applied. The set elements for the medium deprivation

indicator, MDI in the various major deprivation categories are shown below:

= For Education: Census tracts, CTUID: 0133.02

=  For Employment: Census tracts, CTUID: 0132.00, 0250.02
*  For Housing: Census tracts, CTUID: 0133.02

»  For Income: Census tracts, CTUID: 0133.02, 0132.00

Again, applying the set approximation criteria in Table 3.2, using MDI category the

following constituent units for the lower and upper approximation sets are:

MDIiower = 0133.02
MDTupper = 0133.02, 0132.00, 0250.02
Modlfled MDIupper = 0133.02, 0132.00

This illustrates the use of small census units as elementary sets for large census units,
which are considered rough sets. For example, when a CT is treated as rough sets, then

its elementary sets are the constituent DA.
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3.1.2 Recent Immigrant Deprivation Indicator (RIDI) Deduction

The foregoing sections have demonstrated the derivation of the deprivation
index irrespective of the census unit under study and with no dependency on any
specific variable(s). Next, with reference to Appendix B2, this section illustrates the
derivation of deprivation index for the target population group (that is, recent
immigrants) to establish a spatial association. The spatial association we attempt to
examine is the spatial relationship between the deprivation index (DI) and recent
immigrant concentrations (RIC) within specific census units. This spatial association is

denoted RIDI (that is, recent immigrant deprivation index).

Table 3.3: Recent Immigrant Deprivation Indicator estimation

“'Resulting , - «Resulting
_..Recent Census Unit - Recent Recent Census Unit Recent
Immigrant -Deprivation |- Immigrant - | Immigrant | Deprivation | - Immigrant .
Population Index Deprivation --|. Population Index - Deprivation
o : il Indexiin ' Index
0.00-0.20 1.0 0.00 - 0.20 1.0
Vlg;yc ;r?:N 0.21 - 0.40 1.0 Low Recent | 0.21-040 2.0
Immiarants 0.41-0.60 1.0 Immigrants 0.41-0.60 2.0
g 9.21-0.40
0.00 -020 | 0.61-0.80 1.0 0.61 —0.80 2.0
0.81 -1.00 1.0 0.81 -1.00 2.0
1o | Resulting _ : ) Resulting
~ Recent . Census Unit Recent Recent = | Census Unit " Recent
Immigrant Deprivation.. | Immigrant Immigrant .| Deprivation Immigrant
Population =} Index Deprivation:*:|  Population = | Index. | Deprivation
o ‘ Index ==} - C Index
0.00-0.20 1.0 0.00-10.20 1.0
M;s(?;ie 0.21 - 0.40 2.0 High Recent | 0-21 =040 2.0
Immiarant 0.41-10.60 3.0 mmigrants 0.41-0.60 3.0
gran's 0.61 - 0.80
0.41-0.60 0.61-0.80 3.0 0.61-0.80 4.0
0.81-1.00 3.0 0.81-1.00 4.0
: - Resulting ' '
Recent | Census.Unit Recent - o : : _
- Immigrant” | Deprivation | Immigrant - “Key -~ ~Meaning
Population Index = = }:=Deprivation o T
=1L Index o s
0.00-0.20 1.0 1.0 Very Low Deprivation Index
Very High 0.21-0.40 2.0 2.0 Low Deprivation Index
Im'fr’fi;f;‘rt]ts 0.41 — 0.60 3.0 3.0 Moderate Deprivation Index
0.81-1.00 0.61-0.80 4.0 4.0 High Deprivation index
0.81-1.00 5.0 5.0 Very High Deprivation Index
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First, DI is estimated for all census units as shown in section 3.1. So each census
unit is assigned a DI value (within 0.00 - 1.00 interval). To allow rough sets operation,
RIC values for the census resolutions (that is, DA, CT and CSD) are also transformed
into a unit scale (that is, 0.00 to 1.00). These RIC values are grouped into intervals,
which conform to the class interval developed for the deprivation index. Few examples
are: very low RIC interval (0.00 - 0.20), low RIC interval (0.21 - 0.400), medium RIC
interval (0.41 - 0.60), etc (see Table 3.3 for details). The final step generates values for
RIDI (also within 0.00 - 1.00 interval) in each census unit. The recent immigrant
deprived census units are those census entities for which recent immigrant values (that
is, RIC) match a designated deprivation index (that is, DI). For instance, low (that is,
0.21 - 0.40) RIC value with very low, low, medium, high and very high DI values is
assigned very low, low, low, low and low RIDI values respectively. So, to assign a
RIDI to a census unit, we examine its RIC and DI values. The RIDI value is the RIC
value or less because RIDI cannot be assigned to census unit with DI value which does
not match RIC and vice versa. The set rules for computing RIDI values are illustrated

in Table 3.3.

This spatial association (that is, RIDI) is characterized with model magnitude
and strength. The model magnitude is computed directly by examining the RIDI
values. But the strength of the spatial association is analogous to the correlation
coefficient, which is deduced as the ratio of the number of match-value-categories to

the total number of census units.

number of matched -value - categories

Correlatio n coefficien t, r = -
total number of census units

The number of matched-value-categories is the number of census units which have RI
and DI values belonging to the same group, say, high RI and high DI are classified into
high RIDI set. The computation of the correlation coefficient is illustrated in section

3.6 for the three census units (that is, DA, CT and CSD).
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32  INCLUSION OF CENSUS SUBDIVISION DATA

The inclusion of a third census resolution has become necessary to validate the
same information at two different spatial resolutions with a different census resolution
data. The immediate census resolution after census tract is census subdivision (CSD).
All the data extracted for CT and DA are also collected for CSD in the Greater
Vancouver Regional District (GVRD). Similar analytical procedures are also taken to
derive values into a unit scale from zero (0.0) to unity (1.0). Census subdivision unit
characteristics are approximated from CT and DA by calculating both the average and
the median of each constituent CSD entity. Hence, all CSD have their calculated
deprivation indices coupled with two approximated values each of average and median
values from CT and DA. This permits the investigation of deprivation model
discrepancy for approximating CSD from CT and DA. Resulting discrepancy can be
applied to estimated values as net error to be incurred in scale transition between

similar census data resolutions.

33  CENSUS DATA RESULTS AND DISCUSSION

The choice of tools and methods applied to spatial data in this study is focused
on retaining individual data characteristics in resulting outputs. For instance, sub-
variables (e.g. income, education, etc) used to derive deprivation index are made to
assume their unique characteristics rather than their generalized pattern. Spatial data
characteristic preservation has both analytical and practical importance because
geographic models should not obscure the data from which they are developed. Data
property manipulation during analytical implementation can result in geographic
model failure such as inadequate resource distribution or inaccurate targeting of
consumer groups. Data distribution retention during analytical process is paramount,
particularly in spatial data manipulation where each data element is characteristic of a
spatial location. Also the representation of each data characteristic in outputs becomes

crucial when we identify extreme data elements. Extreme data elements identified
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based on any attribute must be reconciled with its spatial location to fully classify such

data entity as an outlier.

Figure 3.1: Analytical tools (Spatial Regression and Rough sets) perspective of
census data for the city of Burnaby at census tract resolution
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This is important because statistical values identified as outliers may be
different in a spatial framework since statistical calculation may neglect the spatiality
of the data. So, the first output, Figure 3.1, attempt to illustrate the preservation of
data characteristic during spatial data analysis using rough sets. Spatial data distribution
and variability underlies the accuracy of many analytical processes because relative
accuracy between multiple variables is reliant on individual data characteristics. In the
rough sets process, the steps for deriving recent immigrant deprivation index (RIDI)
census units are based on designated recent immigrant concentration (RIC) values,

which match similar deprivation index (DI) values. It is apparent that RIDI cannot be
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assigned to census units with DI, which does not match RIC, and vice-versa. That is, a
census unit of low (0.21 - 0.40) DI category and corresponding very low (0.00 - 0.20)
recent immigrant concentration (RIC) cannot be designated a moderate (that is, 0.41 -
0.60) RIDI category. This is the erroneous pattern observed from the regression
output; due to the initial assumption that DI is dependent on RIC. All census units
with high RIC are assigned high RIDI irrespective of the original DI in the census
entities. So, certain census tracts are designated higher RIDI than their initial DI using
the regression method. But, the rough sets approach has indicated a strong parallel
between the two input variables (that is, RIC and DI): retaining and effectively

integrating two data distribution and their spatial variation.

The rough sets method is comparable to a regression technique for which all
the assumptions of dependency, independency of observations, linearity, no missing
values and outliers are exhibited by the data under consideration. Fundamentally, the
rough sets technique will yield similar outputs to a regression method for exactly two
variables, which exhibit the above regression assumptions. But conflicting results arise
when multiple variables are combined hierarchically such that each variable exhibits
inconsistent data distribution towards the dependent variable. An explicit example is
shown in the regression output where RIC obscures the DI distribution (see Figure
3.1). This data characteristic pattern is beyond the control of many analytical tools. So
values are constrained to assume general data pattern in order to determine results for
points that do not comply with the overall data distribution pattern. This results in
loss of unique data characteristics and their subsequent loss of representation in the

output model.

Also the rough sets categorization can be considered analogous to data
clustering techniques whose classification is dependent on the global measures rather
than individual data characteristic used in rough sets. Global patterns are valuable
quantitative measures, which give accurate descriptive information for uniformly
distributed data. But, for heterogeneous data where extreme variables must be treated

equally and not allowed to assume the general data pattern, global measures
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inadequately describe the data distribution. The problem becomes compounded for
multiple variables for which extreme variables in one data must be considered in
relation to other variables. While the approximation of data distribution and variation
is inescapable during analytical processes, the rough sets method represents all input
data characteristics at optimum thresholds. This guarantees consistency between the
spatial model and data from which it is generated. This is what has been achieved in
this first output (see Figure 3.1) and this characteristic underlies subsequent outputs.
Hence, the rough sets concept assumes no dependency in multivariate analysis,
indicating that one attribute clustering does not necessitate clustering in geographic

space or another attribute characteristic.

Figure 3.2: Sample Recent Immigrant Deprivation Index estimation using Spatial
Regression & Rough sets

Spatal Regression Method of Recent Imurogrant Rouphi set Aethed of Reeent Tmrrigrant
Deprvative Index Denvation Deprivative Tndex Denvation

The disparity in the model development using spatial regression and rough sets
approach is reinforced in Figure 3.2 showing significant differences between the two
models. Figure 3.2 is a rough sets and regression output for recent immigrant
deprivation index for the first output shown in Figure 3.1. The green colour indicates

more deprived areas with exaggerated z (height) values while the red colour shows less
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deprived neighbourhoods with relatively small z values. There is significant difference
between the two outputs; difference in both distribution and quantity of
neighbourhoods assigned into a particular RIDI category. The rough sets output shows
a more diverse distribution (high variance) and small number of census units with high
RIDIL This pattern reflects the data characteristics because RIDI value of each census
unit is comparable to the input variables. The regression output shows the contrary,
small variability for RIDI values and large number of census units with high RIDI
values. The foregoing has illustrated the preservation of multiple data characteristics in
derived models at specified census unit. The scale issue however, is the problem of

translating data characteristics across different scales.

3.4  SCALE TRANSITION & ASSESSMENT FOR CSD FROM CT & DA

The preceding section showed the utility of rough sets in accommodating
unique data characteristics during spatial analysis. The rough sets outputs were
compared to the results from the regression method, which does not retain single or
multiple data distribution at specific spatial unit. This section examines the scale
transition over multiple census units (CDS, CT and DA) from small to large units in
order to estimate scale translation parameters. This is a necessary step in order to

reverse the scale transition from large units to small ones.

The scale transition for census sub-division, CSD involves the approximation of
deprivation index constituents of CT and DA for a particular CSD. Due to different
characteristics of each census unit both the average and the median values of these
component values are determined to unearth any distinct pattern. In rough sets
context, a CSD is a rough set while both the DA and CT within a particular CSD are
elementary sets. The scale assessment entails determining estimated values of one
census resolution using another, say approximate CSD using DA. Figure 3.3 illustrates
the direction of the scale transition and shows which census units to designate as rough
sets and elementary sets for a specified scale transition. For scale transition from DA to

CT, for example, constituent DA that are subsets of a particular CT are designated
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elementary sets, while the specified CT becomes a rough set. This estimation is
dependent on the appropriate pattern, which emerge from these three census

resolutions.

Figure 3.3: A CSD represented at different spatial resolutions
DA CT CSD

[

»
direction of scale transition - small to large unit

The first scale transition output (see Table 3.4) is that estimated for CSD using
both DA and CT separately. The sample deprivation index values for CSD shown in
Table 3.4 shows that approximated values from CT and DA are generally less than the
calculated values using CSD resolution data. While the average estimated values from
CT indicated a smaller discrepancy, corresponding average values from DA indicated
the opposite. The overall spread and variation however, shown by the standard
deviation and the data interval for CT are higher than those of DA. Despite the small
total deviation and mean deviation values of CT, the descriptive measures (e.g. sum,
maximum, mean, etc) indicated for these two census resolutions; CT and DA have
demonstrated more uniform data distribution for DA than for CT. Increased accuracy
indicators for DA are also apparent in the difference measures (e.g. RMSE, MAE, d,
etc) with a smaller error and high index of agreement than for CT, indicating a more

coherent outcome.

Secondly, scale transition from DA to CT is also examined because it is a spatial
transition from small to large unit. The DA approximation to CT (see Table 3.5) has
indicated a comparable deviation of the estimated values from the known ones. The
DA approximation suggests an increased accuracy irrespective of the increased number
of census units involved (that is, CT is 424 units and DA is 3369 units). Increased
accuracy does not guarantee comparable pattern in the approximation processes, but
the results shown demonstrate coherent pattern with respect to size of the census

resolution. That is, decrease in size of census unit results in increased accuracy of
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estimating its data distribution and variation in order to approximate constituent

census entities.

Table 3.4: Sample deprivation index approximation for CSD from CT and DA
Census - | | | NDI | NDIValue- | NDIValue— | Difference. |. Difference
subdivision | SPYIPT 1 vaie cT DA O of
o - ) e - NDI-CT NDI-DA

Langley 5915001 | 0.5091 0.4431 0.4467 0.0660 0.0625
Langley 5915002 0.6777 0.6170 0.5634 0.0607 0.1142
Surrey 5915004 0.6426 0.5677 0.5290 0.0749 0.1136
White Rock 5915007 0.4707 0.4158 0.4060 0.0549 0.0647
Delta 5915011 0.5094 0.4365 0.4468 0.0729 0.0627
Richmond 5915015 0.5889 0.4920 0.4565 0.0969 0.1324
Sgiitoeljver A 5915020 | 0.4059 0.2795 0.3299 0.1264 0.0761
Vancouver 5915022 0.5635 0.5108 0.4720 0.0527 0.0914
Burnaby 5915025 0.6058 0.5252 0.4742 0.0806 0.1316
\’;‘Vi";tminster 5915029 | 0.6357 | 0.6008 0.5297 0.0349 0.1060
Coquitlam 5915034 0.5698 0.4781 0.4757 0.0917 0.0941
Port Coquitlam 5915039 0.3555 0.5376 0.3342 -0.1822 0.0212
Port Moody 5915043 0.3555 0.4679 0.3342 -0.1124 0.0212
U e 5915046 | 0.2388 | 02762 0.2157 0.0394 | 0.0231
Lo e 5915051 | 0.2388 | 0.4806 0.2157 02418 | 0.0231
\V/\; enséouv or 5915055 | 0.5814 0.1435 0.5063 0.4379 0.0751
Bowen Island 5915062 0.6785 0.24C6 0.6088 0.4379 0.0697
Pitt Meadows 5915070 0.3467 0.5283 0.3514 -0.1816 -0.0047
Maple Ridge 5915075 0.2570 0.5311 0.2133 -0.2741 0.0436
Musqueam 2 5915803 0.7403 0.1735 0.6070 0.5668 0.1333
Sum 1.2237 1.4549
Key Meaning Minimum -0.2741 -0.0047
NDI Net Deprivation Index Maximum 0.5668 0.1333
CT Census Tracts Mean 0.0612 0.0727
DA Dissemination Areas Std. Deviation 0.2189 0.0419
~CT Difference Measures. ~ | Value DA Difference Measures Value
Root Mean Square Error (RMSE) 0.2219 Root Mean Square Error (RMSE) 0.0834
Mean Absolute Error (MAE) 0.1643 Mean Absolute Error (MAE) 0.0732
Index of agreement (d) 0.9461 Index of agreement (d) 0.9925

* CSDUID is a unique identifier of a CSD
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This reduction in size of census unit, for example, from CSD to CT has indicated a
consistent data characteristic resulting in the increased accuracy of estimating CT

deprivation index using DA.

Table 3.5: Descriptive and difference measures of DA approximation to CT

Descriptive Measures - CT ~ DA - Residuals Difference Measures
Sum of net deprivation index 207.1302 | 195.1527 11.9775 Root Mean Square Error
Minimum 0.0884 0.1692 -0.1478 (RMSE) = 0.0056
Maximum 0.8603 0.713 0.2315 Mean Absolute Error
Mean 0.4885 0.4603 0.0282 (MAE) = 0.0605
Standard deviation 0.1771 0.1173 0.0696 Index of agreement
Number of census units 424 3369 424 (d)=0.9943

The rise in model accuracy is also reflected in the difference measures of the
DA approximation to CT, resulting in a decline in both root mean square and mean
absolute errors of 0.0778 and 0.0127 respectively. There is also a surge in the index of
agreement of 0.0018; all from previous DA approximation to CSD compared to DA
estimation of CT values (see Tables 3.4 and 3.5). Hence, the three scale transition
examined from small to large spatial unit suggests that size and number of census units
used in the transition process influence data characteristics across scales. The persistent
problem however, during scale transition is not the transition from small to large units
but the converse of this transition; the derivation of data characteristics for small area

units using large units.

3.5 SCALE TRANSTION FROM LARGE TO SMALL CENSUS UNITS

Census data have been approximated for large areas using small census units in
the above section. The scale transition results and their accuracy assessment values in
the preceding section are used here. This will help to reverse the census data
approximation of large units using small entities in order to determine small entities
using large census units. The importance of this approximation is an integral concern
for many grouped data applications where decisions are made for small areas from

large area data. Small area data estimation is desirable, for example, optimum
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distribution of goods and services, site characterization for retail location, etc. Small
area data approximation, however, is difficult for many analytical tools because data
distribution and variation must be controlled at discrete level rather than using general

pattern to describe distinct data characteristics.

Figure 3.4: A CSD represented at different spatial resolutions
CSD CT DA

direction of scale transition - large to small unit -

In addition, it involves data pattern estimation, which may not only be
nonlinear but also heterogeneous. Figure 3.4 shows the direction of the scale transition
process from large units to small entities. This estimates scale transition across scales at
CSD, CT and DA, and evaluates the estimated values against known values in the

following.

The mean bias error (MBE) and the mean absolute error (MAE) both measure
the effective error due to rough sets approximation. The MBE assesses the variance of
the residual distribution, while the MAE measures the weighted average of the
absolute errors. The application of both the MBE and MAE are to correct for the error
due to the approximation. The error incurred however, is characterized by both
quantity and its distribution. The error distribution is measured using the standard
deviation of the census residuals. So, the application of MBE/MAE and the standard
deviation (STD) of the census residuals to any census unit should describe the
predicted census distribution and variation. Specific to the census resolutions
considered; three census approximations were examined; estimation of CT using CSD
and determining DA using both CT and CSD. In the determination of CT, the

formula below is applied to component CSD as:
CT = CSDvawe + MBE + STD

A CSD consists of multiple CT and census error distributions are assumed as

related to the number of its constituent census units. This assumption is apparent in
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section 3.1.1 where there are disparities among constituent census entities, which are
contained in a larger census unit (e.g. DA within CT). The rationale behind this
assumption is to distribute computed values of constituent CT of a CSD using the
number of CT contained in a CSD. This is because it is unlikely, at least in practice,
for all CT values to exhibit no variation and distribution. A CSD exhibits variable

smaller units say CT, hence, for a CSD with n number of CT then:

CTi = CSDviee + MBE + STD x i/n

where 1 starts from 1 to n and MBE and STD are from CT to CSD

approximation.
The number of constituent census units in a larger census resolution can be even or
odd, affecting the error distribution for a particular approximation. For even number
of census units, the standard deviation, STD is applied as positive to half the number of
census units and to the others as negative. In cases where there are odd number of
census units, the middle census unit is applied zero STD and the same even number of
census unit procedure is repeated for the rest of the census entities. Below are excerpts
for two numbers of census units; four (4) and five (5), which are even and odd

respectively.
Even number of census units e.g. four (4):

CT: = CSDvate + MBE + STD x 1/1
CT:z = CSDvae + MBE + STD x 1/2
CTs = CSDvawe + MBE - STD x 1/1
CT+ = CSDvie + MBE - STD x 1/2

Odd number of census units e.g. five (5):
CT1 = CSDvie + MBE + STD x 1/1
CTz = CSDviwe + MBE + STD x 1/2
CTs = CSDvive + MBE

CT+ = CSDvae + MBE - STD x 1/1
CTs = CSDvawe + MBE - STD x 1/2
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Similar census approximation is repeated for DA using both CSD and CT
separately for corresponding difference and descriptive measures. This summarizes the
approximation of small census units from large ones and subsequent redistribution of
estimated values for constituent census units. For instance, DA values are estimated
using a CT, and these estimated values are redistributed to the constituent DA in
specified CT. The succeeding section discusses the scale transition results for small

census units derived from large units.

3.5.1 Census Estimation Results Summary

The census approximation results discussed here are in threefold: CT results
using CSD, and DA results using both CT and CSD separately. First, a total of 39
CSD are used to estimate deprivation index values for 424 CT by reversing the error
quantity and redistributing the error variation for the approximation of CSD from
CT. The CT outputs from CSD shown in Table 3.6 have produced results that are
consistent with predicted values. The descriptive statistics for the known and predicted
values have indicated minimum deviations, particularly, the minimum, maximum and
the standard deviation of the deprivation index. The predicted model has optimum
approximation to an absolute error margin of 0.0011 (approx. 0.1%) and to a worst

absolute error of 0.6512 (approx. 65%).

Table 3.6: CT Deprivation Index estimation using CSD - Results summary

o " Deprivation Index Estimates - Residuals: Difference Measures

Descriptive statistics. : - nlS el — '

o T . . CT CSD CT-CSD. CT
Sum 207.1302 265.7081 -58.5779 MAE = 0.1790
Minimum 0.0884 0.0811 0.0011
Maximum 0.8603 0.9578 0.6512 RMSE = 0.0494
Average 0.4885 0.6267 -0.1382
Standard deviation 0.1771 0.1067 0.1743 d=0.9557
No. of census units 424 39 424

Despite this large error margin, the MAE value is as small as 0.1790, which is

the average absolute error with error distribution of +0.1743. This results in extreme
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error quantity and distribution to the interval: -0.1382 + 0.1743 (that is between
0.0415 and -0.3071 using MBE). The model degree of agreement also has high accuracy
value of 0.9557 (approx. 96%). These values indicate high accuracy approximation
process for deprivation index values at the CT level. It is partly dependent on the
earlier approximation of CSD from CT from which the error quantity and its
distribution were computed. It is worth noting that the predicted values have less
distribution (0.1067) than the known (0.1771) demonstrating that the smaller the
census unit the more diverse its data characteristics. The census data variation caused
by this aspect of the scale transition cannot possibly be described from a larger census
resolution data. This data characteristic pattern is also apparent in subsequent results

for DA discussed in the following.

The deprivation index estimation at the DA level using both CT and CSD uses
424 and 39 census units respectively to approximate 3369 DA. The DA results shown
in Table 3.7 also have high accuracy values and are consistent with earlier CT results.
The descriptive measures such as the minimum, maximum, mean and the standard
deviation values have minimum deviations from the known values. The minimum and
maximum absolute errors from CT are 0.0000 and 0.6104, and for CSD they are 0.0000
and 0.5946 respectively. This is remarkable because in estimating deprivation index for
some DA there will be zero error (that is, absolutely no error). Also the average
absolute error for both CT and CSD is 0.1020 and 0.1758 respectively. The
approximation process has shown an increased accuracy level demonstrated from the
descriptive and the difference measures. This increased accuracy is partly due to the
reverse approximation involving DA, CT and CSD to determine the error quantity

and distribution values used in this current estimation.

The extreme error magnitude and distribution from the CT approximation is
described by the MBE (that is, -0.0642) and the standard deviation (that is, +0.1138) of
the residuals. This results in an interval of -0.0642 + 0.1138 (that is, from 0.0496 to -
0.1780) within which errors will be distributed. Likewise, for approximation values

from CSD, the error magnitude and distribution interval is -0.1642 + 0.1328 (that is,
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from -0.0314 to -0.2990). A more descriptive model assessment is the degree of
agreement value, indicating 0.9828 and 0.9594 for CT and CSD respectively. The
increased accuracy illustrated by estimated values from CT can be described in relation
to the similarity of census data distribution characterized by its size. That is, CT data
distribution is more similar to DA data distribution because their sizes are also

comparable.

Table 3.7: DA Deprivation Index estimation using CT & CSD - Results summary

Descriptive. | Deprivation Index Estimates Residuals B;gg;i?gg
" statistics 7 F——= — —
DA CT CSD. | DA-CT | DA-CSD. | €T | CSD

Sum 1796.06 | 2132.83 | 1579.69 | -216.364 | -553.1362 MAE MAE
Minimum 0.047 0.073 0.058 | 0.0000 0.0000 =0.102 | =0.176
Maximum 0.958 0.855 0.839 0.6104 0.5946 RMSE | RMSE
Average 0.533 0.633 0.469 | -0.0642 -0.1642 =0.017 | =0.045
Standard

Jeviation 0.176 0.086 0.142 0.1138 0.1328 g- g=
No. of _ 3369 424 39 0.9828 0.9594
census units

Also the predicted deprivation index values are always less distributed than the
known values. The scale transition from small to large resolution exhibits data
distribution, which is highly comparable to known data because smaller resolution
data have richer data characteristic, which competes with what may be observed. The
converse 1s not true because patterns derived from data cannot describe explicitly
distinct data distribution and variation. This is the challenge, which geospatial model
development tools encounter with regards to scale transition because it is more than
replicating data distribution and variation for different spatial resolutions. Observing
scale transition pattern from multiple resolutions can approximate this data

characteristic pattern.

This section concludes the scale transition investigation across multiple census
resolutions while maintaining data characteristics during the estimation process.

Accuracy indices for the estimation are also illustrated to validate the scale transition
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process. The error magnitudes defined by MBE/MAE and standard deviation provides
a scale sensitivity measure for the scale transition. Following, we examine spatial

associations derived from multiple variables across different census scales.

3.6 RECENT IMMIGRANT AND DEPRIVATION INDEX
RELATIONSHIP

We have examined the effect of varying scales on data characteristics. It is
shown that the size of census unit is a major defining characteristic of data
distribution. Census units with relatively smaller sizes (e.g. DA) exhibit more diverse
data distribution. So, DA data are most distributed compared to census data at CT and
CSD levels. But, what is the effect of data characteristics across different scales on
spatial relationships derived at these varying scales? In other words, how does the size
(scale) of a census unit and its corresponding data characteristics affect the derived

spatial relationships?

The immediate concern for which spatial resolution of census data poses a
challenge in geographic model development is the accuracy of spatial relationships and
associations generated from these data to inform social and physical policies. Spatial
relationships developed at different census units are often different. The understanding
of accuracy limitation introduced by data resolution on derived spatial models is
crucial to utilize these results as generalized patterns rather than distinct occurrences in
the real world. So, how do policy makers incorporate spatial resolution standards into
their decisions? Are there any accuracy indicators that inform them of the spatial

thresholds, which limit their decisions?

The essence of spatial resolution underlines the purpose of social and physical
applications of census data to distribute resources and services to where they are
needed. The derivation of these spatial relationships is characteristic of the analytical
tool from which they are developed. So, integration of data characteristics into spatial
models generated from the data is the first accuracy index achieved (see section 3.3)

which enforces harmony between data and the spatial model. It is also indicated that
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the data and model conflict may degenerate into erroneous conclusions from derived
spatial associations between variables. The spatial relationship we examine here is the
spatial association between recent immigrants and deprivation index. So, the
relationship between recent immigrant and deprivation indices are developed from
outputs, which are consistent with the data from which they are developed, and at

various spatial resolutions whose patterns have been observed carefully.

Figure 3.5: Deprivation Index for the entire census unit population - CT

Census Tract Deprivative Indicator (DI) Map - GVRD
~ 0\
- T - N
o7 —__Z
\‘\
! y
d {
4 o 3
- h k\gg Goeary Vancouwer A \‘n_.‘
u,ﬁ,ﬁ, Y . h
- ! oa d \ Ny \T & f
R R . { Y Py 7 /
— F [ L \ N
, , ‘ f ! s
LT : . L " i
{ N o4 s . /
: £ ' SN A §ue GreserGanconwer &
~ Bowsn ldand o N ; [ J ¢ !
¢ { Wit Vandouver | 3 prti Ve o : |3 N ’
N .-""l Y . \\ o '~"~|PM“JI I,"\ . Horth !uu:vu-t:'_ ; : y f‘\ N o/ J
. - . . g - A Vheme ————— ,
i B ,,.ﬂ.“‘ R Lj__,r — I\, ES ?_‘_ J E ?‘] { r H‘?q.l , ) . X - .
Captens_ apcdugr /- ‘ﬂ:r(j‘ A ) oquitam [/ L.
(N wh L {
Al hver <7 ~ N .
s P
T e,
‘{r T y:_ . =
Gcnlleau\}(\r\fk —‘_{——r T
‘\-_;,1 Y : )
M 2NN N R
RN ) —_—
T = L RN -
chomond | ca-u] :
. / it ) )
Legend R . LN Ma illllm!Q::;‘C "
Deprivative Index (DI) Categories ) - ~
] 0.00 -0.20 (Vexy owDT) ) —
B 0.21-040 LowDI) - . .
— 3
0.41 -0.60 Pledim DI) Richatol . & |
4 - . v y ~
_61-080 (HighD) ) : 7 - —
{ . Rl
81100 (Ve Hgnpp T\ - . -
. . —
1 CSD Boundry Taugrazzen i ‘\\
. 1 Wi K #
— K ® R i
< ’l.__L _J Semiakmoo ! R ME__J
0 3 3 12 12 24
[ T— il mete s

72



L1y
# wmng

.

S, AT : apa

Swembm (qqnawEE 228 (0T - 180

Amprog @so

Garw®H) 80- 190
Ganuneend 090 - 160
QapgmoD oro- 12

Garam 148 020- 030

o = xpurucotndeg sreuaun] sk
fTonsfoms 7 aypeerw |l - -
g P o 3
[ e \ - P
. . N ARRSEN R —-"; ) e
| ] N - : by
N~ T =
\ NSt W - ,.VFI ) N
P I R i . W iheaea e
& . ~ N
S ‘ : 2
. .l
- ;
E . o o
2
) 0 , R,
e wepnbe SR
‘ L F h S, A
. o S [ .
PR .
. 0 N
[ 0 Lo T ; P wmeg
. . '
T b,
g - — —
s

@IAD - dey (1ary) Xopu] topesndaq wres nuuy 1oy 10w Snsua)

vin mpaatin

frpanany

o (3 a1 £ 9 3 0
i |\ pornrtang N
- ~— ~r mo . . B
s
# 1y Axpuno g 53
& st e S 0g 1 - 180
- . N # o
e R R ana L aBHE0 - 150
o ﬂ T egmen S (e and050 - 150
p o Pgrg - 120
, Trigs P e fog)nzo - oo
e h £ £1.3 - Qurdunug naesmy
T ,. iU me.. - = -
rm._...! S e puadey
o N v i T L ey
\K(_\/:_J - " l
. r - * ) Loy raraD
- atpey ming t ¥ - _
[ mormeuy . . -
. - NE AR
s i e
. : ~ e - xira ~
g ' \t v  temwmsg ) ’ ermlas
\\\ A wpaben nh I i
vibog . 4 o -— . . o
— T Tl N . - .
N 1o T pwemmg ey - . N f
4 % RANSENTA THIY L
Vo emapiun g MR hm N S reuie
s . - : E . .
) [ — , J
[ ) \ M
- s : 5 M ¢ Datenera aTID
o - e Y
‘ o : . .
. o 5 X
vonn —somme Ny
- B
I

S17eX], snsw)) - depy :.u_unh:uu:oUIEEm_HEE W3y

LD - xdpu1 uonearrda Juesturury Juaddy s/ ¢ 2inSi]

1D - SUOLIEIIUDUO0D JueIFIurw] JUdIY :9°¢ 2In31]

73



Spatial relationships are developed at specific census resolutions; CSD, CT and
DA. The problem becomes: are there indices that quantify and translate values from
one resolution to another? While the relative generalized pattern observed for the
three census units are consistent suggesting unbiased data reporting for the census
resolutions, the individual data pattern are incoherent. For example, recent immigrant
concentration in one census unit, say, CT can be traced to a similar proportion of
recent immigrants at DA level. But, the variance among specific census units (e.g. DA,
CT) and nonlinearity of the multiple variables are non-transferable between different
census units. This individual data disparity discourages the derivation of consistent
spatial relationships among multiple variables. Figures 3.5 and 3.6 illustrate the
individual data disparity, which may exist among multiple variables, and how the

spatial model generated in Figure 3.7 harmonizes the two different data characteristics.

As shown in Figure 3.5, the CT indicates the overall deprivation index due to
the entire population in respective CT units with no dependency on any distinct
population group. Next, the target population group, recent immigrants are shown in
Figure 3.6. The resulting model is a deprivation index due to recent immigrants
indicated in Figure 3.7 at census tract level. This model characteristic has no data
distribution conflict but reflects optimum integration of the two data distributions in
Figures 3.5 and 3.6. The model demonstrates the strength and magnitude of the spatial
relationship between recent immigrants and deprivation index at CT level. The
measure of this spatial association between recent immigrants (RI) and the deprivation
index (DI) that is analogous to the correlation coefficient (r) is determined as ratio of

the number of matched-value-categories to the total number of census units.

number of matched - value - categories

Correlatin coefficient, r = -
total number of census units

The number of matched-value-categories is the number of census units which have RI
and DI values belonging to the same group interval, say; high RI and high DI are
classified into high RIDI (recent immigrant deprivation index) set. The correlation

coefficient at CSD, CT and DA levels are 0.600, 0.549 and 0.468 respectively. The CSD

74



correlation coefficient indicates that 60% of the total deprivation index is linked to
recent immigrants while it is approximately 55% at CT level. The coefficient of
correlation at the DA level has declined significantly illustrating the scale transition
effect even for data manipulation in which data characteristics are retained from one
census resolution to another. The variation in the correlation coefficient value of the
census resolutions shows the inaccurate conclusions, which could be reached, based on
any specific census data resolution. The steady decline in the correlation coefficient
value also demonstrates that census household or individual level data will have a
smaller correlation index. It is worth noting that the CSD and the CT models should
be used for reconnaissance study in order to identify potential spatial locations to be
further examined. While the DA model cannot be used to uniquely describe reality,
the individual level model is not far from it. So, it is essential to investigate the scale
transition over multiple census resolutions to approximate what could describe the

household level model.

From the foregoing, it is necessary to investigate further at smaller extent the
recent immigrant and deprivation index relationship. From patterns observed at CSD
and CT levels, the following CSD units: Burnaby, Vancouver and North Surrey have
shown high RIDI correlations and their compact DA settings will be suitable for
manipulation. Hence, one of these CSD units: Burnaby is examined further with no

characteristic preference.

3.6.1 Household Census Data Approximation using Large Resolution Data

The results for the census resolutions involving CSD, CT and DA have
significant patterns that describe the estimated value characteristics with respect to the
size of census unit. In other words, data characteristic is a function of size of census
unit. Table 3.8 shows the summary pattern defined by various descriptive and

difference measures.
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Table 3.8: Summary of descriptive patterns observed from multiple census
resolutions data

“Small To Large Census Resolution. Large To Small Census Resolution
o {e.g. DA to CSD) (e.g. CSD to DA)
Predicted values defined by the mean of the Predicted values defined by the mean of
census residual (MBE) are smaller the census residual (MBE) are higher
Predicted values defined by the absolute Predicted values defined by the absolute
mean of the census residual (MAE) are mean of the census residual (MAE) are
smaller higher
The error distribution characterized by the The error distribution characterized by the
standard deviation of the residuals are smaller standard deviation of the residuals are higher
Estimated deprivation values indicate a richer Approxnmated deprivation values are I?SS
' A distributed than known values suggesting a
and more varied distribution than the known values . o
less varied prediction

Model index of agreement are generally higher Model index of agreement are smaller

The strength of derived spatial associations and relationships declined significantly with decrease
in size of census resolution

The essence of these patterns is to describe a generalized model for derived
spatial relationship between recent immigrants and deprivation index at a smaller scale
(e.g. household or individual level). Zhang and Goodchild (2002) observed that error
distribution cannot be different from the data characteristics from which these errors
are generated. The census data at CSD, CT and DA resolutions have shown this
property of each error distribution representing their respective data characteristics.
For instance, error distribution for CSD data are less varied while residuals from DA
data showed a more diverse distribution. These error distributions are characteristic of
their respective data traits. The deviation of an estimated value from its known value
however, is characterized by the error magnitude and its distribution. The patterns of
census resolutions and their error characteristics due to the scale transition, and the
approximation process describe the error magnitude and its distribution for the census

household model derivation from larger resolution data.

From the descriptive and the difference measures indicated for the census
approximation residuals and the deviation patterns observed, the census household

(CH) level data derivation from CSD, CT and DA are shown as follows:
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CSD census household data approximation:

CH = CSDvalse - MBE + STD
CH = CSDvalee — 0.0915 + 0.1328

CT census household data approximation:

CH = CTvae - MBE + STD

CH = CTvalue - 0.0360 + 0.1138
DA census household data approximation:

CH = DAvae - MBE + STD
CH = DAvaue — 0.0282 + 0.069

These approximations follow the same estimation procedure used in section 3.4
separately for odd and even numbers of constituent census units. The approximations
have shown a declining trend in both the error magnitude and its distribution from
CSD through CT to DA. These decreasing values (that is, MBE and STD values) show
the increased approximation accuracy from using small resolution census data (e.g.

DA) and its accompanying diverse distribution.

The validation of these estimates is essential to evaluate the reliability of the
method used in the census approximation process. Census data elements reported are
sampled from a particular area, ensuring that samples statistically represent the study
area under consideration (Schuurman 2002). For other spatial analysis methods, the
number of census households used in the sampling process will affect the accuracy of
the approximation. The rough sets census approximation adopted however, is
independent of the number of constituent units used. This is because irrespective of
the number of census entities used, the error and its distribution values ensure that the
average value is retained. So, while the individual census values remained unchanged,
the error magnitude and its variation are the key descriptors for the approximation

process.
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3.6.2 RIDI Relationship for Selected CSD - Burnaby

The derivation of spatial relationships from different census resolutions has
been described for the entire Greater Vancouver Regional District (GVRD) at CSD
and CT levels. A more detailed consideration of the effects of the scale transition and
the size of census resolution on derived spatial associations is addressed in relation to
this selected CSD unit: Burnaby. Figure 3.8 shows recent immigrant concentrations
and their derived spatial relationship with deprivation index at DA and CT levels. The
correlation coefficients for derived recent immigrant and deprivation index
relationship at CT and DA levels are 0.5405 (that is, 20/37) and 0.5590 (that is,
180/322) respectively. The proximity of these two values is remarkable because this
shows that multiple census resolutions can result in very close and similar outputs of
derived spatial relationships from areas characterized with homogeneity and

randomness.

Also the closeness of the two correlation coefficients indicates the versatility
and efficacy of the rough sets process in retaining data characteristics. Appropriate
treatment of conflict within input data variables and convenient representation of
multiple data distributions were recognized as key merits in rough sets analysis. While
the rough sets tool does not improve nor create new data, its worth is in reasoning
with data to develop models, which replicate single or multiple data characteristics.
From the derived spatial relationship, it is evident that regarding the choice of census
resolution for particular policy implementation, there is a limiting threshold within
which derived models from these multiple census resolution could yield very close
results. This approach can be employed in census resolution specification in data
collection and model development for certain applications in order to specify size for
optimal census resolution. This also reduces the uncertainty of selecting census scales
to describe deprivation levels. This is because if small resolution data are expensive to
collect and manage then it becomes inefficient to develop spatial models from small
resolution data if the same model can be generated from large census resolution with

comparable accuracy.

78



Figure 3.8: Recent Immigrant Concentration and their corresponding Deprivation
Index at DA & CT
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It is worth noting however, that while there is no alternative to indicating

spatial specification for areas smaller than the census resolution used in model

development: they can give indications of likely spatial locations within which certain

occurrences are possible. This pattern is apparent in Figure 3.8 where certain

deprivation occurrences at DA level can be traced from a larger area at CT level.
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CHAPTER 4:
SECOND CASE STUDY - BOREHOLE DATA
METHODS, RESULTS & DISCUSSIONS

The preceding chapter discussed census data methods and results, and marked
the end of the first case study. This chapter describes borehole data methods and
outputs. The chapter constitutes the second case study. The second case study uses
rough sets and transition probability to minimize the effects of uncertainty due to
erroneous sediment identification and description problems. The technique is to
identify hydrogeologic properties, specifically, hydrostratigraphic units of subsurface
materials. These are used to approximate geological spaces with the aim of classifying

borehole units for conceptual model development using aquifer-supporting criteria.

The definition of hydrostratigraphic units from geological information, for
example, well-log data are paramount for many aquifer flow investigations.
Hydrostratigraphic units comprise geologic units of similar hydrogeologic
characteristics (Anderson and Woessner 1992). The development of a conceptual
model for groundwater flow system, for example, requires accurate hydrostratigraphic
description. Such hydrogeologic unit information underlies the overall performance of
derived numerical models. The modeling of regional flow systems, aquifers and
confining beds are suitably described, for example, using the concept of
hydrostratigraphic unit (Anderson and Woessner 1992). The reconstruction of material
deposition is also reliant on stratigraphic information to unfold depositional history.
Understanding of depositional account in a study region can be helpful in discovering
the occurrence of sediment types when geologic information is sparse (Anderson and

Woessner 1992).

Generally, hydrostratigraphic information is developed from detailed site-
specific information on stratigraphy and hydraulic conductivity (Anderson and

Woessner 1992; Dolgoff 1996). While hydrostratigraphic information may be most
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suitable for regional simulation of geologic systems, at small scales stratigraphic and
hydrogeologic information are required. Site-specific information becomes necessary
because facies model which are idealized representations of environments of deposition
do not represent the characteristics of any one site (Anderson and Woessner 1992). A
facies is a unit of material with similar physical characteristics that are deposited in the
same geological setting (Dolgoff 1996; Anderson and Woessner 1992). Metamorphic
facies, for example, are formed by material assemblage under the same set of
temperature-pressure conditions regardless of their original compositions (Dolgoff
1996). Thus, facies models describe the expected distribution of predicted geologic
units (Anderson and Woessner 1992) and such information can be used to define

hydrostratigraphic units.

41  HYDROLOGIC CHARACTERISTICS OF SUBSURFACE MATERIALS

To investigate the occurrence of groundwater necessitates a clear understanding
of the geological settings that support its existence, distribution and movement.
Subsurface environments are not homogenous, but highly heterogeneous with varied
hydrologic characteristics which control the quantity and distribution of groundwater
(Tolman 1937; Tood 1964). Geological settings, formations (or structures) that are
sufficiently porous to store water and permeable enough to transmit water in adequate
and economic quantities are called aquifers (Price 1985; Tolman 1937). The defining

characteristics of these subsurface water repositories - aquifers are discussed below.

The principal hydrologic characteristics of rocks are porosity, effective porosity
or specific yield, specific retention, permeability and the direction of maximum ease of
percolation (Tolman 1937; Price 1985; Tood 1964). These hydrological properties are
dependent on porosity, size of openings or voids (or interstices) and shape,
arrangement, interconnection and continuity (Tolman 1937). Porosity is the ratio of
the volume of voids (that is, openings or pores in rock) in the rock to the total volume
of the rock (Price 1985; Tood 1964). Porosity controls the entrance of water into

aquifers by assessing the rock’s capacity to hold water. Tolman (1937, 111-112)
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investigated the pattern of voids in relation to porosity and the direction of ease of

water percolation and identified the following:

»  “percentage of void space does not increase with the size of material

» from the previous, rock heterogeneity reduces pore space

» the size of the finest void material which occurs in sufficient amount to
surround the coarser grain materials controls the velocity of percolation in
heterogeneous material

» the larger the proportion of large grains enclosed in fine material, the greater

the reduction in average porosity of the formation”.
Appendix A1 shows the porosity of selected geological materials.

Permeability controls the combined effect of material void size and their
interconnectedness to enable appreciable passage of water through them. Simply,
permeability is the measure of the ease with which water flows though rock pores.
Tolman (1937) observed that permeability varies with the degree of material
assortment or the percentage of fine material and arrangement of coarse grains with
fine material (that is, sedimentary structures). Water permeability is called hydraulic
conductivity which is the volume of water that flows though a unit cross-sectional area
of a geological formation in unit time under unit hydraulic gradient at a particular
temperature (Brassington 1988). Permeability is, thus, measured by assessing the
hydraulic conductivity of rocks. Specific yield also called effective porosity is a
measure of the water moved under gravity influence or the volume of water that is
drained from a rock or soil material under gravity effect when initially saturated
(Tolman 1937; Price 1985). Specific yield increases with grain size and assortment.
Specific retention is the measure of water that is not drained from the pores when a
saturated rock or soil material is drained under gravity (Price 1985). Apparently,

specific retention decreases with grain size and assortment.

Specific yield and specific retention contributes to the water-holding ability

described as porosity (Price 1985; Tolman 1937). Specific yield and permeability are
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also broadly related. In general, geological formations with high specific yield tend to
be more permeable and vice-versa (Brassington 1988). Appendix A2 indicates the
specific yield in percent and Appendices A3 and A4 show the permeability in terms of
hydraulic conductivity of selected geological materials. Tolman (1937) observed that
decreasing grain size and increasing fineness and proportion of void material can
gradually alter the geological settings from an aquifer to aquiclude. An aquiclude is a
geological formation which although porous and capable of absorbing water, will not
transmit it fast enough to furnish an adequate supply of water. Essential aquicludes are
silt and clay and their extent and structure formation control groundwater distribution

and movement in aquifers.

42  STUDY SITE AND HYDROGEOLOGIC CONSIDERATIONS

Major hydrologic properties which support the existence, flow and distribution
of groundwater are outlined in the preceding section. This section describes
hydrogeologic characteristics of the study area (ORM) and its major depositional
information. Depositional information provides a baseline for evaluating the
subsurface environment. Depositional history may be reconstructed from stratigraphic
information. The ORM deposition environment is a moraine. A moraine is a general
term for debris of all sorts originally transported by glaciers or ice sheets that have
since melted away (Wicander and Monroe 1995; Skinner and Porter 1989). That is, a
moraine is accumulation of glacial sediments (drift) deposited directly by glaciers
(Levin 1981). Moraines are characterized with sediments (e.g. sand, silt, gravel, etc) and
unconformity. The ORM, as an example, is built on high relief, erosion surface
(unconformity) and a network of tunnel valleys (Barnett et al. 1998). So, geological
deposits are predominantly sediments as evident from the golden spikes, MOEE data
and depositional information. This limits the geologic units (that is, gravel, silt, etc) to
be considered in the modelling process. However, the key problem is excessive
complexity in sediment distribution due to varied extents of subsurface deposits. These

are revealed in aquifers and aquitards having varied extents and geometry (Sharp et al.
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1996). This problem requires modelling tools to accommodate local geologic property.

The section following outlines varying sediment types present in the ORM.

4.2.1 Oak Ridge Moraine (ORM) - Southern Ontario

Oak Ridge Moraine (ORM) is located in southern Ontario adjacent Lake
Ontario. The ORM (Figure 4.1) subsurface environment is an aquifer complex which
provides large amounts of potable water within the Greater Toronto Area (GTA)
(Sharp et al. 1996). Groundwater potential of the ORM has attracted many researches
into understanding its origin, nature and architecture. The Geological Survey of
Canada (GSC) in 1993 initiated a three year regional hydrogeological study of ORM
principally for aquifer delineation (Sharp et al. 1996). Among many research

objectives, the following problems constitute core ORM challenges:

» weak geological framework for addressing hydrogeological and planning
related problems,

»  excessive complexity due to complex subsurface glacial deposits because
aquifers and aquitards have varied regional extents and geometry,

»  groundwater flow-paths are difficult to trace and

= 3.D geological mapping is necessary to identify geological controls on

groundwater flow (Natural Resources, Canada 2003).

In their paper, ‘On the origin of the Oak Ridges Moraine’ Barnett et al. (1998)
outlined past and present geological model of major sediments and their distribution in
the ORM. ORM forms a drainage divide of high sandy ground between Lake Ontario
and Georgian Bay, extending from the Niagara Escarpment to beyond Rice Lake
(Barnett et al. 1998). Barnett et al. (1998) and Sharp et al. (1999) observed that the
Peterborough drumlin field occurs to the north of ORM (Chapman and Putnam 1943;
1951; 1984) that forms a regional NE-SW-oriented surface underlain by thick, deposits
of Newmarket Till.
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Figure 4.1: Study area location for golden spikes and MOEE data
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The drumlin field is cut by a complex NE-SW-oriented, network of deep
valleys. The valleys have deep sides, a branching pattern, inset eskers and large
bedform. These features have being suggested as tunnel channels by high energy
subglacial meltwater flow (e.g. Barnett 1989; 1990; Shaw and Gorrell 1991; Brennand
and Shaw 1994). In their paper ‘Regional geological mapping of the Oak Ridges
Moraine, Greater Toronto Area southern Ontario’ Sharp et al. (1999), described seven

physiographic areas of the ORM as the following:

=  the Niagara Escarpment is an elevated landform that affect melt water flow
across the area (Barnett et al. 1998)
* drumlinized uplands of the Peterborough drumlin field occur north and

south of the ORM and they underlie it (Barnett et al. 1998)
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large flat-floored valleys are eroded into the drumlin upland north of the
ORM,; some continue south of the moraine (Sharpe and Barnett 1997; Kenny
1997)

ORM forms a drainage divide of high sandy ground between Lake Ontario
and Georgian Bay, extending from the Niagara Escarpment to beyond Rice
Lake (Barnett et al. 1998)

broad, gently sloping plains border the south-western margin of the ORM
(Barnett et al. 1991)

Lake Iroquois shoreline truncates this plain

river valleys dissect the area rising in drumlinized uplands or in the ORM.

Depositional information of the ORM is crucial to understand sediment

distribution in the subsurface environment. Sharp et al. (1999) identifies sediment

origin and thickness for the ORM subsurface environment. Major sediment units are:

Halton till: are drifts occurring as surface tills and lake sediments. It comprise
clayey silt to silt till with interbedded sand and silt (Sharpe 1996).

Oak Ridge Moraine: constitutes extensive surface deposit, 160km long and 2
to 11km wide but may be more extensive beneath the Halton drift (Sharpe
1996). Interbedded fine sands and silts constitute major sediments, but coarse
sands and gravel are prominent locally (Sharpe 1996).

Newmarket till: have drumlins and erosion elements and occurs at the surface
north of ORM. It comprise a thick gravel, silty sand to sandy diamicton
separated by sandy interbeds ( Sharpe 1999; Sharpe 1996).

Unconformity: is regional erosions surface marked with channels and
drumlins (Barnett et al. 1998). Coarse grained drifts form part of the erosion
surface.

Lower deposits: lies between the bedrock at the bottom and Newmarket till
at the top. It comprises mainly sand, silt, clay and till. White (1975) observed
that outcrops of this formation occur north of Lake Ontario shoreline

(Sharpe 1996).
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*  Channel fill: comprise dense buried drifts with 10 to 25m thick of gravel
sequence. This unit has 10 to 75m thick of sandy drifts that fine upwards to
silt and clay (Barnett et al. 1998). But surface sediments contain fine sand, silt
and organic material. Gwyn and Dilabio (1973); Sharpe et al. (1994) observed
that sandy and stony till extend beneath the ORM.

In sum, the ORM is built on regional unconformity comprising irregular
drumlins of Newmarket Till in the broad upland areas and the base of the deep, wide,
inter-upland valleys (Barnett et al. 1998). The section below describes ways to
accommodate varied sediment distribution for characterizing the subsurface

environment.

4.3  APPROXIMATING GEOLOGICAL SPACES USING BOREHOLE
UNITS

Depositional information which describes the nature of geologic units that
make-up the ORM is outlined in the preceding section. This section discusses the
means of combining aquifer characteristics in order to characterize the subsurface
environment. Geological spaces are inherently heterogeneous with increasing material
variability exhibited by borehole units. Approximation of these borehole units that
give descriptive properties of the geological formation is essential for geographic
analysis and decision-making. Hydrological properties of water-bearing rock materials
identified from the preceding section are employed in geological space approximation.
However, this approximation process is only accurate as the available data, so the
accuracy of the modelled or the resulting geological space must retain the original data
distribution and inherent variability. A rough sets approach is employed here as the

approximation tool in classifying or categorizing these borehole units.

Borehole units referred to as subsurface materials are identified with aquifer
characteristics as: porosity, permeability, specific retention, specific yield and grain
size. The approach categorizes well-log units using these hydrologic properties. The

rough sets method aims at retaining individual variability of input variables
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irrespective of spatial granularity of observed variables. This characteristic will enable
accurate assessment of disparities in outputs for different uncertainty levels of data. For
example, to define whether an area is classified as an aquifer, we start by imposing
elementary sets using borehole units. Borehole units considered as elementary sets are
characterized by discernible information, that is, well-log units (e.g. sand, clay, etc) are

elementary granules of an aquifer formation.

For example, in Figure 4.2, we consider the area in set A as a borehole and then
use borehole unit labels; al, a2, a3, a4, a5 as elementary sets or partitions of set A.
These borehole units are used to define the lower and upper approximations of set A
as LA and UA respectively. The elementary sets are analyzed for set criteria using the
hydrologic properties, and LA and UA are derived accordingly, for example, as shown
in Figure 4.2. The set A in Figure 4.2 is an individual borehole and the elementary sets
are the various layers of subsurface material for a specified borehole (set A). LA and

UA specified for the individual sets will be identified with heights.

Figure 4.2: Rough set characterization into approximation sets (LA & UA) using
elementary sets

Set A ) a1 Set A
| \3.1 ‘ _1

I N '
\,‘U ™ Lower approximation (LA} —J as |
as as as \ v

\ v Upper approximation (UA}—— - '

By this way, boundaries could be defined in three dimensions because each LA
and UP have both spatial and height information. Table 4.1 which comprise porosity,
permeability, specific yield and grain size have been designed into five categories for
the borehole material group approximations. Increasingly, the moderate/medium
categories in the various hydrologic characteristics except for permeability have been
identified consistently as ideal geological setting for optimal groundwater conduction
and storage. Table 4.2 shows the key for the various material groupings which specify

their levels of aquifer-supporting characteristics.

88



‘uoijedldde yoiessal 1ns 0} pazLobajed pue psiIpon
(I xipusdde ‘gge | uojbuIsselg) WOl OS[e PUB Y 3 £V 2V 'LV Sedipuaddy wouj s|ge} Alewwns e se pedojgaasQ

sa|qgad ab.eq

sa|qged wnipay pues aul4
slspnog [oABID) [ene.b sul Aern
8|qQqoD sa|nuels pues asleo) pues Wwripap ns
95 — /L 9L —200°0 e661 — r10g noos —rsz¢ iy e - reg
obie Aap obieq WNIPaN/e1elopoN lews llews Asp
(Ww) 371 NIVYD
pues aung WIS ‘pues aul4
pues wnipay pues Ajaael [anelb asie0D) [oAelb aul 9 wnipapy (1s ‘|enelb ‘pues) |11
pues asleo) pues aui4 [one.lb wnipapy joaelb 9s1e0) Aeln
lZ2—9C T4 £€C —¢¢ lZ —¢l Zl—-0
ybiH Aep ybiH WINIpajn/e1elapoy MO Mo Alep
(ebelane yuoo Jod) @T3IA O14103dS
pues AoAe|o ‘s}jis Apues
pueg pues Ayis (11s g Aepo ‘pues) ||
[oABID pues ues|p pues aul L s ‘Aejn
LOF =01l 0L—01L }—,.0l 0L =01 0} — 0}
ybiH Auap ubiH WNIPS|A/S1BI9PON MO mo Juop
(Aep sod sonow ul ANARONPUOD D1INBIPAH) ALITIGYINYId
pues aung ‘Ae|p (ns) 11
pues aul/wnipajy (pues) | L
Aea o1uebliQ pues 9sIe0) |[oaelf wnipap
lead Ws joaelb aui4 [eaelb as1e0) [} [ee|n
G6 — 1§ €6 — 97 St — ¢ ge—1¢ 0c—-0
ubiHq Aop ubiH WNIPaA/o1RISpO MO MO AuBp

(Jueo sed) A11SOHOd

uonewixoldde A10831ed (SJUSTIPIS) [L1IDILL J[OYI0q 0] $ITISLIIILIRYD JISO[OIPAY JO ISI[ ATewwung :1°4 J[qe,

89



Very good Ag dicators
Good Aquifer Indicators (GAl)

S

ie

er In (VGAI)

Poor Aquifer indicators (PAI)

Moderate Aquifer Indicators (MAI) Non — Aquifer Indicators (NAI)

These grouping constituents do not form consistent material categories for the
various hydrologic properties. Some materials belong to more than one category and
even within one group, category material constituent are not consistent. These
material distribution and category characteristic are evident in the real world. The
material group characterization illustrated by these hydrologic properties describes
what Pawlak et al. (1995) defined as a set that is indefinable by given attributes called a
rough set. The set of good aquifer indicators, for example, has material constituents
that are inconsistent for each hydrologic property. This inherent data characteristic
can be appropriately handled using the rough set for set approximation. In rough set
fashion, each material category (e.g. low, medium, etc) can be said to comprise lower
and upper approximation sets, with each material considered as elementary entity
constituting a particular category. It is worth noting that the approximation sets are
not uniquely defined for probabilistic applications which require exact and known

population of sample spaces

4.3.1 Approximation and Set Derivation from Well-log Material Characteristics

The preceding section outlined geologic material grouping using aquifer
properties for subsurface materials. This section employs rough set rules to categorize
geologic materials into different levels of aquifer index. As apparent from Table 4.1
(see section 4.3), well-log materials exhibit multiple categories for the various material
characteristics. Distinct material classification is not possible using the individual
borehole material properties, because of inconsistency of constituent well-log

materials which characterize the material properties.
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However, borehole materials for different properties can be classified into various
levels for aquifer indicator suitability. This allows the possibility of applying set rules
using the four aquifer properties to approximate well-log materials into set categories.
The result of this approximation for the material properties from Table 4.1 is shown

in Table 4.3.

In fuzzy set theory, membership functions enable elements to exhibit partial
class memberships of different and overlapping sets. Confusion sets, however, may
result in cases where zones of different fuzzy sets intersect (Burrough and McDonnell
1998). This may arise where an element is a partial member of three or more fuzzy sets
to generate two or more intersecting fuzzy zones. As indicated in Table 4.1, silt for
example, is a partial member of three different sets (that is, poor aquifer indicator, non-
aquifer indicator and good aquifer indicator). This and similar situations where an
element is characterized by multiple set memberships require tools that categorize
individual elements while retaining their varied class characteristics and fuzzy
memberships. It worth noting that no particular tool can account for this data
characteristic, so the approach is to implement these analytical tools (that is, rough set
theory and fuzzy set theory) to accommodate different aspects of the data.
Consequently, the rough set process for borehole material categorization does not
account for the inherent geologic unit transition within boreholes, but allows the

classification of any geologic unit into a single group.

4.3.2 Application of Geologic unit Categories to MOEE Data

In the above section, a generalized grouping of unconsolidated subsurface
materials is developed by characterizing sediments using major aquifer properties such
as porosity, permeability, etc. This section applies this grouping to MOEE data which
are standardized by the Geological Survey of Canada (GSC) with predefined sets of
materials. Appendix A5 lists major subsurface sediments present in MOEE data after
standardization by the GSC while Appendix A6 shows geologic material groupings for

the MOEE data using rough sets. In reference to Table 4.3, which illustrates geologic
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materials into aquifer index categories, Appendix A6 shows GSC material details
which constitute different aquifer indicator groups. These materials are further detailed
into Table 4.4 with ‘fill’ regrouped into ‘others’. These material clusters are used in

subsequent subsurface characterization process such as Markov chains.

Table 4.4: List of geologic material details grouped into categories
Material ) Material | Material . . i
Tag Material | Details Tag Material -Material Details .
fill fill Gravel | gravel gravel
organic organic sand sand
covered,
covered previously Sand sand_diamicton | sand, diamicton
bored
bedrock bedrock sand_diamicton | gravel,diamicton
limestone limestone silt silt
Others shale shale Silt silt sand, clay
granite granite silt_diamicton silt, sand
dolomite dolomite silt_diamicton gravel, clay
potential
pot_bedrock bedrock Clay clay clay
sandstone sandstone clay_diamicton | clay, silt
limestone_shale_inter limestone,
- shale
unknown unknown

44  ASSESSING GSC STANDARDIZATION SCHEME

In the preceding section, different sediment types have been categorized using
aquifer supporting properties. But these groupings are standardized geologic units from
MOEE water well data which are characterized with diverse geologic units and terms.
The accuracy and extent of the standardization process however is not known. So, this

section evaluates the representation of original data in the standardized MOEE data.

MOEE water well data for ORM is mainly collected by private well drillers
(pwd). The quality of MOEE data undermines its application into research and
subsurface studies. Lack of training for pwd have been identified as one major factor
limiting geologic accuracy of the MOEE data (Russell et al. 1998; Schuurman 2002). A
rational approach to resolving this problem is the use of standardization schemes to

homogenize the data onto a common platform. This is a necessary step to both
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prepare the data for modelling processes and derive relevant geologic information.
Standardization, however, should retain original data variability. The variability of

output data from the standardization process is crucial for at least two reasons.

First, variability output data from standardization with respect to the original
data evaluates the accuracy and the extent of the classification system. This is
important because different classification systems have different goals. This goal may
be data reduction and filtering while others may aim at replicating original data
distribution. The measure of accuracy is the degree of how standardized outputs
represent original data. The accuracy assessment describes not only explicit
representation of terms such as gravel, silt, etc but also descriptive information carried
by those terms. For example, ‘sand and clay’ classified as silt has 100% accuracy. The
extent of classification is the degree by which standardization rules reduce original data
into standard terms. For example, all instances of ‘gravel and clay’ are converted to

‘silt_diamicton’.

Second, standardization scheme assessment could be used to design training
programs for well-log data collectors (e.g. pwds). Hence, the assessment result should
identify geologic materials with excessive high degree of error and vice versa. There are
however, problems in assessing data variability, particularly, categorical data. The

section below outlines few of these problems.

4.4.1 Challenges in Assessing Variability of Categorical Data

The above section discussed the need to assess classification systems and
incorporate assessment outputs into validating rule-based standardization processes.
This section, however, identifies some problems associated with categorical data
classification using standardization schemes. Data variability assessment is a measure of
variance between original data and the output data from standardization process. It
includes both the magnitude and the direction of the variance. Variance assessment for
numerical data is relatively easy because prior understanding and domain knowledge

are not necessary preconditions to determine variance. Numerical data, though, not
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independent of the parameter under study (e.g. income levels, elevation, etc) have
properties, and are understood by their magnitude. Population counts, elevation,
income level, etc are examples of numerical data. Data variability can be assessed

without underlying information about the data or consulting domain experts.

Conversely, variability of categorical data requires domain knowledge.
Variance of categorical data is not just the disparities that exist between two or more
data elements but the unique properties inherent in them. For groundwater
considerations for instance, fill, overburden and topsoil are considered one geologic
unit since their hydrogeologic property is similar - hence no (or zero) variance. So,

expert knowledge is a precondition to establishing variance in categorical data.

A common approach to handling poor quality categorical data is to classify its
terms to standard terms so relevant information are embedded into specific terms. This
enhances information retrieval (Russell et al. 1998) and accuracy parameters can be
assessed easily. Validation of such classification systems do not fall into mainstream
standardization approaches. But, not until we have validated rule-based schemes which
impose strict grouping of data elements (e.g. geologic units), do we actually begin
relating standardization scheme to the real world. Original data collected by pwd
express the variability inherent in the real world. Hence, the assessment of the
standardization should enhance ways to incorporate original data variation into
standardized outputs. The derivation of this variability is illustrated in the following

section.

4.4.2 Determination of Variability Index

Problems encountered during categorical data assessment are discussed in the
above section. This section outlines the approach adopted for computing the
variability index for categorical borehole data. The variance computation employs set
rules to derive three identification categories. First, if the original material is fully
represented in the standardized output then identification index (IDI) of one (1) is

assigned to that borehole unit (for example, if silt is standardized as silt then its IDI is
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1). Second, a borehole unit is assigned half (0.5) if the original data element is partially
represented in the output. For example, if ‘sand and gravel’ is classified as ‘gravel’ then
IDI is 0.5. Third, a unit is given zero (0) IDI if there is no relationship between the
original data and the standardized output. The set rule essentially compares the sum of
all identifiable materials to the standardized material for each well-log unit within a
particular borehole. All borehole units with IDI values less than one (1) are extracted
in order to identify geologic units in error and also to compute percent error for
material identification within each borehole. A summary table is constructed to
outline the minimum, maximum, mean, standard deviation and coefficient of variation
for the percent error of all boreholes. The summary table also includes the percent

accuracy for identifying a particular geologic unit, say sand, gravel, etc.

45 ACCOMMODATING GRADUAL TRANSITION BETWEEN
BOREHOLE UNITS

The preceding section illustrated methods for assessing the GSC
standardization scheme. This section describes techniques for accommodating gradual
transition between geologic units. The approximation of borehole units developed
towards categorizing geological space must also accommodate gradual transition
between these geologic materials which are continuous entities. The transport of
geologic materials from their source origins to various deposition sites through agents
such as streams, glaciers, winds, etc accumulate sediments into layers whose transition
from one to the other vary (Dolgoff 1996). While other geological investigations and
deposition history of sediment accumulation sites can be employed to model the
pattern of various geologic units, the geologic unit transition from one material to the
other can hardly be estimated. Also such information is often lacking from mainstream
well-log information. In cases where knowledge of geologic unit pattern may be
sufficient for certain applications, an account of this added information on transition

zones of various materials can enhance the performance of derived numerical models.
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The essence and model performance capability of this information for
environmental and geologic applications are not farfetched. Control of contaminant
transport in groundwater systems may be endangered resulting in failure of numerical
models that are used for the location and design of waste disposal sites. Road and dam
settlements may also occur where there are significant transition zones between major
geologic units that are ignored. The definition of the transition zone in fuzzy objects is
related to the limits at which the object indicates differing characteristic which is
significantly dependent on' the precision of measuring the phenomena under
consideration (Burrough and McDonnell 1998, 271). For data measured at certain
locations (or points) the width of the transition zone could reflect the known accuracy
of the measurement technique; for interpolated grid data using Kriging, the width of
the transition zone could be given by the Kriging standard error (Burrough and
McDonnell 1998, 271). For diffuse geographic boundaries, width of the transition zone
of the membership functions related to geographic boundaries could be defined using

expert knowledge from the terrain (Burrough and McDonnell 1998).

To accommodate indeterminacy in geologic unit transitions, relevant data on
transition zone of geologic unit is essential coupled with application of an appropriate
analysis tool that fully represents the fuzzy phenomena. Geophysical borehole logging
such as resistivity and radiometric logs are potential means of estimating the width of
transition boundaries between subsurface units. Lagacherie, Andrieux and Bouzigues
(1996) identified the collection of soil indeterminacy information and the selection of a
theoretical framework to model soil indeterminacy. The collection of geologic unit
transition zone information in well-log data are required in the simulation of gradual
transition between geologic units. The estimation of transition zone width may be
highly inaccurate from geologic unit characteristic because transition boundary length
between two geologic units is a property of the boundary rather than the geologic unit
characteristics in consideration. That is, the boundary width of a transition zone may
be defined separately for geologic unit and study area in question. It is worth noting,

however, that the depositional history of a particular geological setting may influence
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the boundary width and the arrangement of constituent sediments. Hence, fuzzy set
theory is not implemented in this study due to lack of boundary information for

different geologic units.

46  STOCHASTIC SIMULATION USING MARKOV CHAIN MODEL

The above section discussed information requirement for applying fuzzy sets to
borehole data for characterizing the subsurface environment. This section describes
stochastic approach for simulating material transition sequence in the subsurface. The
modelling of spatial surfaces using various interpolation techniques, for example,
Kriging is employed to approximate possible estimates at unsampled locations
(Burrough and McDonnell 1998). Variograms and the variance of estimated
regionalized variable in Kriging do not necessarily exhibit original data characteristics,
but ensures minimum error in the interpolation process. These interpolation
techniques strive for the accuracy of the approximation process with little regards to

geographic reality.

Geographic simulation, on the other hand, attempts to provide infinite number
of realizations (or renditions) that replicate the distribution and variability of original
data (Shibli 2003). Hence, simulation attempts to reproduce reality by considering the
uncertainty involved in data characteristics. Stochastic simulation is an alternate
approximate probability simulation (Bardossy 2003) employing the use of random
number sequence to generate multiple representations of reality. Stochastic simulation
by Markov chains generates geographic representations of random field by employing
simulated annealing, a generalization of a random sampling from probability
distributions for examining a system’s varying states in finite transitions (Bardossy
2003; Bevington and Robinson 1992). Simulations are very useful for possible

representations of reality that are not final outputs of analysis (Bardossy 2003).

Markov chain models are applied in geology for categorical data (e.g. lithologies
or geologic units) modelling to provide random patterns of spatial variability and also

for relatively structured patterns with asymmetry and cyclical trends (Elfeki and
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Dekking 2001; Carle and Fogg 1997). Increasingly, spatial heterogeneity (e.g. lens
length variation) common in geological material units requires analytical tools to
simulate the geological distribution characterized with random geological states. Carle
and Fogg (1997) contended for the appropriateness of the use of transition probability
in Markov chains for accommodating asymmetric geological patterns. Most indicator
geological models assume geological symmetry to quantify geographic variability, for

example, cross-variogram or indicator models.

Figure 4.3: Sample illustration of transition probability estimation using borehole
geologic units
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Markov chain models were developed in Groundwater Modeling System
(GMS) by Brigham Young University into T-PROGS interface in the Borehole
Module of GMS. T-PROGS application performs a transition probability geostatistics
to generate multiple realizations of aquifer heterogeneity which are conditioned to a
well-log data (Jones 2003). The Markov chain model in geological applications starts
by defining n number of possible geologic material states e.g. Si, Sz, Ss, ..., Sa. The

probability Pj of material transition from state Si to state §; is estimated. Stationary and
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transition probabilities are then generated from the borehole material to develop the
Markov chain model. Figure 4.3 illustrates the superimposition of a vertical line of

equidistant points along a borehole at a particular interval.

The transition frequencies between material states are determined as the ratio of
the number of times a given state Si is followed by itself or the other states Sjin the
process to the total number of transitions (Elfeki and Dekking 2001). The transition

probability of material j to k, ti (h) is defined by the conditional probability as:
tik (h) = Pr{j occurs at x+h| k occurs at h)

where x is the spatial location, h is the lag spacing and j, k are the material categories
(Jones 2003; Carle and Fogg 1997). A curve of transition probability against the lag
spacing represents the Markov chain. Multiple material sets are generated during the
simulation phase by fitting Markov chain curves to measured transition probability
curves (Jones 2003). Markov chain model applied to one-dimensional categorical data

in a direction ¢ assumes a matrix exponential form:
T (h,) = exp (R,h,) and
e - Tieo
R, =
o o T
where ¢ is a lag in the direction ¢, R, represents the transition rate matrix
and r, , denotes the conditional rates of change from material category j to k per unit

length in the direction ¢ (Jones 2003; Carle and Fogg 1997). Transition rates ensure an
optimum fit between Markov chain model and the observed transition probability

data.

The Markov chain plot is characterized by three key descriptive features;
material proportions, lens length and transition rates as illustrated in Figure 4.4. In the
sample Markov chain shown in Figure 4.4, the transition probability corresponding to

the flat portion of the curve represents the mean proportion for the material
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considered. The mean lens length corresponds to the lag separation on the horizontal
where the tangent drawn against the initial portion of the curve intersects the

horizontal axis. The initial gradient of the curve represents the transition rate.

Figure 4.4: Sample transition curve demonstrating key descriptive features
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The preceding computations for the Markov chain is considered for only the
vertical direction, horizontal transition probability matrix need to be estimated to
generate the horizontal Markov chain. Borehole data are generally rich in vertical
direction but not sufficiently dense in the horizontal direction. Walther’s law is
employed to approximate the horizontal Markov chain model from results generated
from the vertical direction calculations. Walther’s law states that “any juxtapositional
tendencies observed in the vertical direction will also hold true in the horizontal
directions” or in other words, the vertical successions of deposited facies represent the
lateral successions of environments of deposition (Jones 2003). The application of
Walter’s law assumes uniform material proportions in all directions to allow the

derivation of horizontal transition rates from the vertical transition rates.
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47 BOREHOLE DATA RESULTS AND DISCUSSION

The preceding sections outlined methods for implementing the borehole data in
order to enhance the means of characterizing the subsurface environment. Outputs
from the borehole data are discussed in the following sections and are categorized into
three groups. First, the GSC standardization system is assessed to estimate the extent
of data variability reduction. It also identifies specific sediment frequencies and the
accuracy of geologic material identification level for all water wells in the MOEE data.
Second, the transition probability matrix (tpm) for sediments grouped by rough set
process is determined in order to simulate sediment transition sequences in the vertical
direction. T-PROG simulations which describe sediment transitions are defined for
- golden spike clusters and sample MOEE data. Conflicting and similar sediment
transition patterns are identified to describe relative correlation between both golden
spikes and MOEE data. Third, limitations of T-PROG simulation are outlined in the
subsurface characterization process. While the tpm outputs have both theoretical and
practical relevance, its drawbacks are also carefully noted and outlined. Finally, a
simple illustration is used to estimate depth and spatial information where specific

sediments and sediment transitions are likely to occur.

48  STANDARDIZATION ASSESSMENT RESULT

The standardization assessment result is summarized in two tables: Tables 4.5
and 4.6. In Table 4.5, original geologic descriptions are standardized into specific terms
defined by the GSC. All possible geologic unit descriptions are identified from the
original description and labelled as ‘mat1’, ‘mat2’, ‘mat3’, etc. These geologic units
approximate the variability inherent in the initial description and are compared to the
GSC standardized terms. Identification index, IDI is assigned to each description (that
is, borehole unit) and for each borehole, percentage accuracy (ratio of the sum of IDI
values for each geologic unit to the total number of geologic units that constitute the

borehole expressed as a percentage) is computed.
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It IDI is less than one (1), then geologic units corresponding to the original description

are identified as inconsistent materials.

Table 4.6: Geologic material characteristics from MOEE data and summary statistic

measures
Number of Cverall '
. . . Occurrences From Number _ Number of Percent
Material Material details . of Overall Occurrences
o : . T -..Golden Spike Ocourrences |° in Erfor Error
data (32 wells) oo
Gravel gravel 62 75844 28705 37.847
Sand sand, sand_diamicton 998 92404 35626 38.555
Silt silt, silt_diamicton 615 12370 10152 82.070
Clay clay, clay_diamicton 447 120977 25573 21.139
bedrock, pot_bedrock,
sandstone, shale,
limestone_shale inter,
Others limestone dolomite. 459 113456 17826 15.712
covered, fill, organic,
unknown
Total 2581 415051 117882 195.445
Summary Statistics for Percent Accuracy of geologic units within Boreholes :«
Sum 5620220.56 Number of borehole units 262,650
Minimum 16.67 Number of boreholes 62,325
Maximum 100.00 Standard deviation 5.2504
Mean 90.18 Coefficient of variation 0.0583

In Table 4.6, the number of instances a geologic unit occur both in original
description and as inconsistent material are used to compute the percentage error (ratio
of the number of occurrence in error to the number of overall occurrence expressed as
a percentage). The geologic units considered are gravel, sand, silt, clay and all other
subsurface materials are labelled ‘others’. This material grouping is in reference to the
rough set approximation. The geologic material details are shown in Table 4.6. The
grouping illustrates the insignificant presence of other geologic units with respect to
gravel, sand, silt and clay. Silt has the highest percentage error and ‘others’ records the
least percentage error. The significant percentage error for silt raises many questions.
Silt has the least occurrences both in error and in the original description; but for
every ten (10) occurrence, at least eight (8) cf these occurrences will be in error. This

represents a considerable error and limits the accuracy of the classification system.
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Clay has the highest overall occurrence but registers a small presence in error. This
suggests most occurrences of clay have consistent classification and without ‘others’
geologic units, clay represents the most consistent sediment classified. Hence, the GSC
rule has well represented (or targeted) clay in the classification process. Sand and gravel
have approximately the same percentage error, though sand has higher occurrences

both in original description and as inconsistent material.

From golden spike data, the number of occurrence of these geologic units is
also computed (see Table 4.6). Sand has the largest number of occurrences while gravel
has the least. Comparing overall occurrence of these sediment groups, sand is well
represented in both golden spike data and MOEE data. Clay is over-represented in the
MOEE data; hence it is reduced significantly (78.9%) in the classification process. This
supports what Russell et al. (1998) observed for two boreholes in the Humber River
watershed that less than 2% of clay was over-represented to about 40% in the MOEE
data (Russell et al. 1998-E). The significant percentage error for silt may be because it is
the least (17.9%) reduced material unit despite its predominance (approx. 24%) in the
golden spike data. Significant reduction targeted on clay should also be directed onto

silt in order to reduce its presence in error.

Table 4.6 also shows summary statistic values for the accuracy of all geologic
units that constitute each borehole. The accuracy for each borehole is computed as the
sum of IDI values for each geologic unit to the total number of geologic units that
constitute the borehole expressed as a percentage. For 62,325 boreholes in the MOEE
data; there are 262,650 geologic units, the minimum and maximum accuracies are
16.67% and 100% respectively. There is, however, only one occurrence of 16.67% and
the average accuracy is 90.18% with a standard deviation of 5.25. Hence, for one
standard deviation from the average, the accuracy range is between 95.43% and

84.93%. This represents a high accuracy measure for the classification system.
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49  CHARACTERIZING SEDIMENT VARIABILITY - ORM
SUBSURFACE

The above section assessed the GSC classification system which standardizes
diverse geologic units into specific terms. It also illustrated major sediment types
present in the ORM and their relative frequency of occurrence. This section however,
employs golden spike data to characterize the subsurface in a vertical direction using

transition probability matrix from Markov chains.

4.9.1 Group Selection for Golden spikes

The spatial distribution of golden spike data requires the grouping of golden
spikes into small clusters based on proximity and similar sediment types. The accuracy
of determining sediment transition sequence is a function of a deposition environment
that exhibit similar sediment distribution. The grouping is very crucial to the accuracy
of determining sediment proportions, lens lengths and the measure of transition of one

sediment to another. Figure 4.5 illustrates sample borehole grouping.

The boreholes which constitute group 6 (constituent clusters are groups 6a, 6b
and 6c) are related by proximity and can be categorized as one cluster. But, the
sediment distribution patterns observed for this group of boreholes have directions to
it. The depositional pattern has north-west (NW) to south-east (SE) direction where
sediments of larger sizes are towards NW side and small sized sediments are to the SE.
Hence, sediments are generally transported from NW to SE. Employing these
properties of proximity and sediment distribution, golden spikes are grouped into

small clusters shown in Table 4.7.
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Figure 4.5: Sample borehole grouping prior to subsurface characterization
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Table 4.7: Golden spike clusters for T-PROG simulation

Group Tag Golden Spikes Group Tag Golden Spikes
Group 1 GSC-BH-S-RICE GSC-BH-S-NOBL
Group 2a GSC-BH-S-PON GSC-BH-S-VGHN
Group 2b GSC-BH-S-GHR Group 6a GSC-BH-V4-18/110
Group 3 RMD-UX-01 GSC-BH-V4-4/158
GSC-BH-VSR GSC-BH-V4-9/86
0OGS-PJB-14 Group 6b GSC-BH-S-SHMB
OGS-PJB-15 GSC-BH-S-KING
Group 6¢
OGS-PJB-16 OGS-PJB-0OGS-82
OGS-PJB-17 GSC-BH-C34B-14
Group 4
OGS-PJB-18 GSC-BH-C34B-17A
OGS-PJB-19 GSC-BH-C34B-21
Group 7a
GSC-BH-S-AUR GSC-BH-C34B-28A
GSC-BH-S-BAL GSC-BH-C34B-29
GSC-BH-S-MSR GSC-BH-C48-4A
Group 5 GSC-BH-EE11-1/1 Group 7b GSC-BH-S-CVC
P GSC-BH-EE11-9/1 Group 8 OGS-PJB-10
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4.9.2 Transition Probability Outputs

The preceding section described factors considered for grouping golden spikes
in order to enhance sediment transition determination. This section employs these
golden spike clusters into simulating sediment distribution. These golden spike clusters
are used in Groundwater Modeling System (GMS) employing T-PROG simulation to
characterize sediment distribution in the vertical direction. For each simulation, the
predominant sediment type is chosen as the background material and lag is specified.
The T-PROG vertical simulation output includes; sediment proportions, lens lengths,
transition rates, embedded transition probabilities and frequencies, maximum entropy
factors and Markov chain graphs. These outputs for all the golden spike groups are

shown in Appendices C1 to C24.

In Table 4.8 and Figure 4.6 is a sample output for group 4 (see Figure 4.6)
golden spikes. Background material is sand (most predominant sediment) and lag is
0.3m. The transition rates corresponds to the slope of the transition probability curve
at the initial lag (that is lag = 0). Diagonal values of the transition rate matrix are
negative because for the same sediment type, transition rate decreases with an increase
in lag (see Figure 4.7). For the same sediment type, consistent transition occurs when
transition probability varies uniformly with lag. Sand transits most uniformly than
any other sediments and have a transition rate of -0.084, while gravel and clay exhibit a
relatively rapid transition. Transition rates for different sediments (off-diagonal terms)
are positive; transition probability increase together with lag. Clay to sand (0.181) and
gravel to sand (0.169) transitions have the highest rates. The converse of this is not true
because sand to clay (0.028) and sand to gravel (0.029) transition have smaller rates.
Hence, it is more likely to transit from clay to sand and from gravel to sand than the

opposite of these transitions.

Embedded transition probabilities (or transition frequencies) are also computed
so that they are conditioned to the sediment lens lengths. So, diagonal entries for the

tpm correspond to the lens length values. Off-diagonal values are transition
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probabilities for different sediment transitions. Clay to sand (0.727) and gravel to sand

(0.571) transitions again, indicate the highest probabilities.

Table 4.8: Vertical T-PROG simulation output for group 4 golden spikes

Transition Rates Embedded Transition Probabilities
Material | Proportion | Gravel | Sand Silt Clay | Gravel | Sand Silt Clay
Gravel 0.068 -0.312 [ 0.169 | 0.092 |0.051 | 3210 |0.571 |0.238 | 0.190
Sand 0.538 0.029 | -0.084 | 0.028 |0.028 | 0.346 | 12.762 | 0.362 | 0.292
Silt 0.296 0.016 | 0.055 | -0.086 | 0.015 | 0.217 | 0.522 11.609 | 0.261
Clay 0.098 0.008 | 0.181 0.045 |-0.234 1 0.045 | 0.727 ]0.227 | 4.265
Embedded Transition Frequencies Maximum Entropy Factors
Material | Lens Length | Gravel | Sand Silt Ciay | Gravel | Sand Silt Clay
Gravel 3.210 3.210 | 0.106 | 0.046 | 0.036 [3.210 | 0.889 1.256 | 0.797
Sand 12.762 0.133 | 12503 ]10.135 | 0.113 | 1.092 | 12.503 | 0.914 | 0.874
Silt 11.609 0.046 |0.126 | 11.609 | 0.055 [ 0.962 | 0.578 | 11.609 | 0.833
Clay 4.265 0.009 | 0.150 [0.046 |4.265 | 0.190 | 1.090 |{0.795 | 4.265
Background material: sand lag: 0.3m
Golden spikes: GSC-BH-VSR, OGS-PJB-14, OGS-PJB-15, OGS-PJB-16, OGS-PJB-17,
0OGS-PJB-18, OGS-PJB-19, GSC-BH-S-AUR, GSC-BH-S-BAL, GSC-BH-S-MSR.
Figure 4.6: Spatial and sediment type distribution for group 4 golden spikes
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Finally, maximum entropy factors (mef) represent the ratio of the transition
rate to the maximum entropy transition rate. A mef of 1.0 represents maximum
disorder in depositional tendencies (Jones 2003; Environmental Modeling Systems
2004). A mef greater than 1.0 indicates that two sediments tend to occur next to each
other and when the rate is less than unity then the opposite occurs (Environmental
Modeling Systems 2004). In other words, for a mef of 1.0, the transition probability of
single sediment to another is consistent with random distribution of the sediments. So,
transition rate is dependent only on sediment proportions of these two materials
(Jones 2003). This is an intuitive method of generating Markov chains because it
enables logical incorporation of anisotropy into the model with the maximum entropy
factors (Environmental Modeling Systems 2004; Jones 2003). In Table 4.8, high
maximum entropy factors close to or greater than unity are; gravel to silt (1.256), sand
to gravel (1.092), sand to silt (0.914), silt to gravel (0.962) and clay to sand (1.090)
transitions. These transitions have high juxtaposition tendencies while the least

transition is clay to gravel (0.190).

4.9.3 Sample Transition Probability Outputs for Golden spikes and MOEE Data

In the section above, golden spikes data are used to characterize the ORM
subsurface in the vertical direction using T-PROG by generating transition probability
simulations. This section outlines a common spatial extent for which both golden
spikes and MOEE data coexist and are used to generate transition probability
simulations. This is necessary in order to examine sediment transitions for the two

data in order to identify comparable and dissimilar patterns.

A subset of group 4 golden spikes used in the above section (that is, section
4.9.2) is selected for this exercise. This sub-selection becomes necessary due to lack of
spatial coordinates for MOEE data covering the entire group 4 golden spikes area. A
combination of golden spikes and MOEE data chosen is shown in Figure 4.8. The
widths of golden spikes are exaggerated relative to the MOEE data, but this does not

affect sediment states and transitions. T-PROG simulations were run for golden spikes
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and MOEE data separately. The outputs for transition probability results are shown in
Tables 4.9 and 4.10 while Markov chain graphs are displayed in Appendices C25 and
C26 respectively.

Figure 4.8: Spatial and sediment distribution of sample golden spikes and MOEE
data
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The tpm for the golden spikes are very distinct, that is, specific sediment
transitions such as silt to clay, clay to sand, etc are consistently measured with unique
values that separate them from other transitions. Silt to clay transition measured using
transition rate, embedded transition probability and frequency and maximum entropy
factor all indicate zero (0.000) (see Table 4.9). The converse of this transition is true;
that is clay to silt transition exhibit the same properties. Hence, possible sediment
transitions and juxtaposition tendencies are non-existent for silt to clay and clay to silt
transitions. The opposite of this transition property is clay to sand. Clay to sand
transition measured using transition rate, embedded transition probability and

frequency and maximum entropy factor indicate 0.211, 1.000, 0.172 and 1.844
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respectively (see Table 4.9). These values show that wherever clay occurs in this
environment, the only sediment type to transit to will be sand. The clay to sand
transition has 100% probability and shows the most prevalent juxtaposition trend. So
clay to sand transition properties are unique based on measured tpm values. The other
transitions exhibiting transition properties close to clay to sand are gravel to silt and
silt to gravel. These observed transitions (that is, clay to silt or vice versa and clay to
sand) show two extreme transition patterns which characterize vertical sediment

distribution for this environment.

Table 4.9: Vertical T-PROG 51mulat10n output for sample Golden spikes

- | Transition Rates o Embedded Transmon Probabllltles
Material | Proportion Gravel .| Sand Silt - Clay Gravel | Sand Siit-~ | Clay:-
- Gravel | 0.028 -0.792 [ 0.251 | 0452 | 0.090 [1.262 | 0.333 | 0.500 | 0.167
Sand . | 0.499 0.027 {-0.072 | 0.018 ] 0.027 | 0.285 | 15.647 | 0.338 | 0.377
St | 0.399 0.022 | 0.033 | -0.055 | 0.000 | 0.600 | 0.400 | 18.242 | 0.000
Clay 0.074 0.000 | 0.211 | 0.000 | -0.211 | 0.000 | 1.000 | 0.000 | 4.730
- N Embedded Transmon Frequén,cies Maximum Entropy Factors '
Material | Lens Length | Gravel | Sand | Silt | Clay .| Gravel | Sand | Silt Clay
Gravel | 1.262 1262 |0.068 | 0.130 |0.043 | 1.262 |0.522 |1.650 | 0.511
Sand 15.647 0.112 | 15638 | 0.108 | 0.128 | 0.499 | 15.638 | 1.401 1.010
Siit | 18.242 0.130 | 0.108 | 18.242 | 0.000 | 1.123 | 0.445 | 18.242 | 0.000
~Clay | 4.730 0.000 | 0.172 | 0.000 |4.730 | 0.000 |1.844 | 0.000 |4.730
Background material: sand lag: 0.3m

Golden spikes: OGS-PJB-17, OGS-PJB-18, OGS-PJB-19.

Table 4.10: Vertical T-PROG simulation output for sample MOEE data

: . Transition Rates Embedded Transition Probabilities
Material P-ropor_tion | Gravel |'Sand Silt:. Clay Gravel | Sand | Silt Clay -
Gravel 0.135 -0.088 | 0.059 | 0.018 | 0.011 | 11.420 | 0.600 0.250 0.150
Sand | 0.423 0.018 | -0.090 | 0.052 | 0.019 | 0.172 13.657 | 0.638 0.189
Sit ] 0.320 0.008 | 0.050 | -0.083 | 0.024 | 0.140 | 0.488 | 12.117 | 0.372
Clay 10123 0.012 | 0.114 | 0.016 |-0.142 | 0.158 |0.632 | 0.211 | 7.024

| Embedded Transition Frequencieé >_ Maximum Entropy Factors

Material | Lens Length | Gravel | Sand | Sit" | Clay | Gravel 1 Sand | Sit | Clay .

-Gravel 11.420 11.420 | 0.073 | 0.040 | 0.024 | 11.420 | 0.880 0.709 0.743

Sand | 13.657 0.065 14.013 | 0.235 | 0.051 | 0.661 14.013 | 0.523 0.755

Silt 12.117 0.048 | 0.131 12.117 1 0.128 | 0.804 0.555 12.117 | 1.463

Clay- - | 7.024 0.024 | 0147 |0.032 | 7.024 | 0.759 0.568 0.370 7.024
Background material: sand lag: 0.3m
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For the MOEE data, while there are similar transition patterns, important
sediment transition conflicts persist. First, clay to sand transition is consistent with its
observed pattern in golden spikes. The similarity in this transition is only limited to
sediment sequences but not in juxtaposition trend. That is, transition rate, embedded
transition probability and frequency have high (see Table 4.10) values (0.114, 0.632 and
0.147 respectively) enforcing a similar clay to sand transition sequence in golden
spikes. But, entropy factor (0.568) is considerably below unity (less juxtaposition
tendency) indicating that it is less likely to tranmsit from clay to sand in this

environment. This juxtaposition pattern is opposite to that observed for golden spikes.

Second, the only sediment transition which exhibits juxtaposition pattern is silt
to clay transition with mef of 1.463. But, this transition (silt to clay) constantly
indicate a zero (0.00) value for all tpm measures (that is, transition rate, embedded
transition probability and frequency and mef) for golden spike simulation. Hence, silt
to clay transition sequence in MOEE data in this environment is the most conflicting
sediment transition. So to adjust sediment transition sequence, silt to clay transition
should be the first to correct in order to simulate or replicate sediment transition

pattern from golden spikes into MOEE data.

4.10 SEDIMENT DISPARITIES FOR GOLDEN SPIKES AND MOEE DATA

The preceding section characterized sediment variability in the vertical
direction using state transitions of geologic materials. T-PROG simulations were used
to describe material distribution for sample golden spikes and MOEE data and
disparate sediment transition patterns are identified. Geologic material arrangement
patterns described by T-PROG simulation in the subsurface environment are not the
only characteristics hydrogeologist need. For example, while sediment transition
sequence becomes vital input to determine depth limits for water wells during drilling

processes, the exact depth and spatial information may remain unknown.

Also when adjusting sediment transition sequence in MOEE data to conform to

observed pattern in golden spikes, there is no depth information to indicate where
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specific transitions and sediments are likely to occur. For example, if sand to gravel
transition has predominant juxtaposition trend in golden spikes then to replicate this
pattern in MOEE data, one of these sediments (that is, either sand or gravel) must
occur in the MOEE data. This becomes a necessary precondition to determine
discrepancy patterns for different sediments in both data and such conditions may be
difficult to accomplish. So, this section illustrates a means of identifying conflicting

sediment types in golden spikes and MOEE data.

Figure 4.9: Spatial and sediment distribution for selected golden spikes (horizons
between sediment contacts are in metres)
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Figure 4.9 shows spatial and sediment distribution for sample golden spikes
MOEE data. Figure 4.10 illustrates a cross section between golden spikes: OGS-PJB-
OGS-82 and GSC-BH-S-KING. Boreholes from MOEE data which intercept this
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golden spike profile (that is, cross-section) are also inserted. This illustrates sediment

differences in golden spikes and MOEE data.

Clay is rare sediment in the golden spikes cross section where the MOEE
boreholes occur. Hence, it 1s less likely to have significant clay occurrence in the
MOEE data in this environment. The MOEE data should exhibit trace presence of
gravel at depths between 317m and 288m. The lens length of sand in MOEE data is
overstated compared to its occurrence in golden spikes. There are few occurrences of
silt which are similar in both data but this is limited to only five MOEE boreholes and
their lens widths vary considerably. Also the pattern of sediment states shown in GSC-
BH-S-KING at the immediate surface (between 289m and 280m) is characterized with

unconformity. This pattern is not represented in MOEE boreholes.

Figure 4.10: Sediment profile between two golden spikes and intercepted boreholes
from MOEE data (horizons between sediment contacts are in metres)
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This illustrates unique sediment differences between golden spikes and MOEE
data. Sediment states in the MOEE data can be modified at specific depths in order to
replicate sediment distribution pattern from golden spikes. Hence, this section

provides a means of simulating sediment states from golden spikes into MOEE data.

In sum, rough sets use major aquifer properties (porosity, permeability, grain
size and specific yield) to appropriately group borehole geologic units. The sediment
grouping enables better classification of geologic units into different aquifer suitability
levels. This sediment clusters were applied to MOEE data in order to assess sediment
variation in the subsurface environment. Sediment variation assessment was, however,
preceded with the assessment of GSC classification system which was used for
standardizing the MOEE data. The GSC scheme was assessed using rough sets. The
assessment results unveil significant extent of the GSC classification and provide a
metadata equivalent for the MOEE borehole database. The metadata information such
as: percent accuracy of borehole characterization, inconsistent sediments in each
borehole, accuracy of sediment identification, etc provide relevant ingredients for

uncertainty assessment.

Further, transition probability was used to simulate sediment state and
transition for both golden spikes and MOEE data. This technique incorporates
sediment variation from golden spikes into MOEE data. Both comparable and
conflicting patterns were described in order to enhance sediment distribution in the
MOEE data. This method showed great potential for sediment simulation from one
borehole data into another. Apparent limitations, however, such as presence of

consistent sediment requirements were also described.
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CHAPTER 5: |
CONCLUSIONS AND FURTHER WORK

The preceding two chapters have discussed data uncertainties, methods and
outputs illustrating specific uncertainties in two data: census data and borehole data.
This chapter brings together observed uncertainties in these two case studies and
provides concluding remarks and recommendations for further work. The chapter also
provides an overview for integrating these unique case studies into one research. The

section below discusses research implications for integrating the two case studies.

5.1 INTEGRATING BOTH CASE STUDIES

The research techniques and the data used in this study raised many questions.
One question is: why use data that are different in many ways. For example, census
data are used to measure socio-economic and demographic information, and borehole
data are used to characterize subsurface geology. There are many factors which
influenced the choice of data and their subsequent uncertainties - which are examined

in this study.

First, uncertainties in both case studies are different and they reflect their
respective data distribution. Census data are different from borehole data, so also are
their subsequent uncertainties. The scale problem in census data is different from
erroneous sediment description in borehole data. These differences provide a
computational opportunity to assess different uncertainties with one analysis tool (i.e.
rough sets). Second, data availability also affected the research technique. The data used
in this study were made accessible by research communities who are ready to provide

data for research without cost.

Third, most methods for assessing uncertainty are plagued with the tendency to
examine problems in a specific data or area of application. Fuzzy sets, for example,

have experienced huge applications in environmental and physical systems (Lagacherie
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et al. 1996; Fortin and Edwards 2001; Allen et al. 2002; Carranza and Hale 2001;
Dragicevic et al. 2001) but little applications in human systems. One may find mény
articles on uncertainty but they are often specific to particular data property or
analytical process. For example, Warren et al. (2003) developed a technique for
representing and propagating uncertainty through predictive model for species richness
in order to estimate different levels of biodiversity. Their method was unique and may
be useful for ecosystem models. But a broad perspective of geographic uncertainty is
needed to enhance integrity of geographic analysis. For example, Goodchild (1989)
discussed ‘modeling error in objects and fields’. He described a generic technique that
is sensitive to the nature of data and its uncertainty when minimizing error. This
method provides a broad perspective for data uncertainty and accounts for basic
properties of data which may be subject to uncertainty. Hence, the use of rough sets in
this study was to provide a broad technique for reducing uncertainty that is sensitive

to data characteristics and their uncertainties.

However, rough sets have not gained popularity in GIScience partly because
many researchers tend to focus narrowly on specific data or area of application. In this
study, the utility of rough sets was applied to reduce uncertainty in census data and
borehole data. The technique was not only to minimize uncertainty in these data but
to demonstrate rough sets as a knowledge base tool for characterizing uncertainty
irrespective of the data or area of application under study. Hence, this research have
show-cased the use of rough sets as a broad uncertainty characterization tool. A brief

outline of uncertainties in each case study is described below.

The study has described uncertainties which plagued census data and borehole
data. It recognized that these uncertainties result in marginal data quality and
erroneous geographic information. These uncertainties threaten the integrity of
GlIScience applications, but this study provided a technique for reducing the effects of
uncertainty in both data independently. For the first case study, rough sets enhanced
spatial characterization of the relationship between recent immigrants and deprivation

indices by mitigating the scale problem. The rough sets technique used can be applied

119



to any spatially grouped data for which scale distortion is encountered. Hence, for
census data, the effects or extents of uncertainty resultant from scale issue are

minimized using rough sets.

In the second case study, rough sets and transition probability were used to
assess GSC classification scheme. The techniques replicate sediment variation by
enhancing geologic understanding in the subsurface environment. This case study
enriched borehole data of marginal quality by providing metadata information and
integrating accurate sediment distribution. Hence, for borehole data, the implications
of uncertainty ensuing from erroneous sediment identification and description were

reduced using rough sets and transition probability.

The following sections discuss research findings and conclusions separately for

both case studies in: census data and borehole data.

52  CONCLUSIONS AND FURTHER RESEARCH: FIRST CASE STUDY

The study has identified problems associated with common spatial analysis
tools and illustrated the utility of rough sets in spatial data analysis. Common
geospatial data characteristics such as spatial dependency, spatial autocorrelation and
heterogeneity of geographic phenomena confound most analytical tools and discourage
representation of data distributions into derived models. The study used rough sets to
accommodate different data characteristics. So, outputs from the rough sets method
showed the preservation of data distribution during spatial analysis. This ensured
relative accuracy and reduced excess discrepancies between data distribution and model
characteristics. Appropriate treatment of conflict within input data variables and
convenient representation of multiple data distribution were recognized as key merits
in rough sets analysis. The rough sets tool did not improve nor create new data, but its
worth is in reasoning with data to develop models which replicate single or multiple

data characteristics. These properties enhance spatial integrity in attribute space.
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Next, the scale dimension of MAUP has been explored to estimate scale
transition parameters in order to translate data characteristics across different scales.
Different patterns of data distribution have been examined at multiple census scales:
CSD, CT and DA. Scale transitions from large resolution data to small areas are
necessary because policy decisions are often made for small areas using large resolution
data. Accuracy indicators were also computed to describe the thresholds within which

these census data estimates can be applied satisfactorily across scales.

Finally, the spatial relationships of recent immigrant and deprivation index
were derived and were characterized with model strength and magnitude. The strength
of recent immigrant and deprivation index relationships computed at CSD, CT and
DA levels were 0.600, 0.549 and 0.468 respectively. The variation in the strength of
this relationship at the various census scales showed the erroneous conclusions which
can be reached based on any specific census scale used. The steady decline in the
strength of this relationship showed that census household or individual level data
would have a smaller correlation index. While the DA model cannot be used to
uniquely describe reality (i.e. individual level pattern), the individual level model is not
far from it. This quantitative method of neighbourhood characterization may not be
recognized for its validity of using indicators to describe human phenomena.
However, for quantitative analysis of spatial aggregate data, rough sets minimized the

scale problem and better characterized spatial relationships.

A number of questions, however, remain unanswered and require further
investigation. Census household level data estimates should be analyzed with known
data to validate the actual residual and evaluate the rough sets approximation process.
Census data used in this study is subject to a single aggregation pattern homogenized
for specified area units, and it is apparent that different census grouping will unearth
different data patterns. Subsequent studies should extend this analysis to disaggregate
data at different census resolutions to explore the aggregation pattern over multiple
resolutions and also to compute transformation parameters to translate between

different scales. Finally, the rough sets technique estimated deprivation levels for small
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census areas using large resolution census data, but the spatial specifications (or

location) for these small areas remained unknown.

5.2.1 Research Contributions: First Case Study

Research findings observed in this study have both practical and theoretical

relevance. Research contributions for the first case study are itemized below:

»  Data distributions for multiple variables were retained during spatial analysis.
Rough sets provided a means of translating socio-economic characteristics
across different census scales: CSD, CT and DA. This sequence of analysis
may be applied in other research areas, for example, population health
studies. First, to harmonize nonlinear patterns among multiple variables,
which may characterize the same health neighbourhood differently. Second,
to describe health scenarios at different area units. In other words, population
health analyst may assess the effects of data aggregation on their analysis.

*»  Openshaw (1984a) suggested that accuracy of parameter estimates be
computed in order to examine the effects of data aggregation. The first case
study has computed accuracy measures for different levels of census
aggregation (CSD, CT and DA). Estimated scale sensitivity measure enhanced
spatial analysis operation with minimum scale distortions. Rough sets method
provided a unique technique of simulating topological relationships for
attribute data so we may know the amount of distortion introduced by data
aggregation.

»  Considering the city of Burnaby, the relationship between recent immigrants
and deprivation index for different census scales: CT (0.5405) and DA (0.5590)
have very close outputs. Hence, for compact study areas characterized with
homogeneity and randomness, spatial relationships at different census units
(e.g. CT, DA) can be identical. This could minimize the uncertainty of
choosing which census units (or scales) to characterize deprivation levels. So,

regarding the choice of census scale for particular policy implementation,
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there is a limiting threshold within which derived models could yield very

close results in order to inform census scale specification.

The section below discusses conclusions and future work for the second case study.

5.3  CONCLUSIONS AND FURTHER WORK: SECOND CASE STUDY

The effects of uncertainty examined for the second case study were aimed at
enhancing the use of borehole data of marginal quality for accurate geological inquiry.
The sequence of methods applied on borehole data addressed sediment variation and

erroneous description problems.

First, the GSC standardization scheme was assessed using MOEE data. The
assessment examined sediment variation as perceived by private well drillers (pwd) in
MOEE data. This sediment distribution pattern was examined against outputs from
the GSC classification system. The assessment identified sediments with high
percentage error (e.g. silt) and computed accuracy measures for sediment descriptions

within each borehole.

Second, transition probability simulation characterized sediment distribution in
the subsurface using both golden spikes and MOEE data separately. The method
compared sediment state and transition patterns in golden spikes and MOEE data in
the vertical direction. The T-PROG simulation was a further step for enhancing and
validating MOEE data beyond the GSC standardization scheme assessment. For
example, silt occurred as the most abundant sediment in error when standardized by
GSC scheme. Clay, on the other hand, occurred as the overall predominant sediment
in the MOEE data. But, the GSC scheme has reduced its occurrence of error, and it
was the most standardized sediment. From T-PROG simulation, clay and silt were
identified for exhibiting the most conflicting sediment state and transition pattern
compared with other sediment distributions in golden spikes. Hence, though clay had
less error during GSC scheme assessment, its significant occurrence in error was

exposed through transition probability simulation.
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Third, T-PROG simulated sediment distributions in the subsurface, but specific
depth and spatial information where these sediment state and transitions occurred
remained unknown. So, this final stage showed a simple profile between two golden
spikes. Boreholes in the MOEE data which intersected the golden spike profile were
examined to estimate depth and spatial information where sediment differences

occurred.

Further questions, however, remain for future investigation. Fuzzy sets should
be used to describe gradual sediment state and transition. But, specific data on sediment
transition which describe boundary properties are needed. Further, sediment state and
transition simulation were focused in the vertical direction. Sediment distribution
pattern should also be examined for the horizontal direction. Also sediment differences
observed were sampled from both golden spikes and MOEE data. The same approach
should be extended for other golden spike sub-clusters and MOEE data. Sediment
distributions cannot be replicated from one golden spike cluster to another, but
specific sediment states and transitions which are consistently in error could be

identified.

5.3.1 Research Contributions: Second Case Study

In the second case study, which focused on sediment identification and

description problems in borehole data, below are its research contributions:

*  OQutputs from GSC standardization assessment and sediment variability
should support training programs for private well drillers and enhance
borehole data quality. The output for the GSC scheme assessment provided a
metadata equivalent for the MOEE database.

*  Accuracy measures, which indicate the reliability of sediment distribution for
specific boreholes, should form part of the GSC or MOEE borehole database,
so researchers may quantify the level of uncertainty when using this data.

»  Sediment state and transitions simulated using transition probability are

valuable for estimating depth information for water wells in order to reduce
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the cost of drilling and provide productive water wells. The methods applied
on borehole data represent a unique approach to enhance data of marginal

quality using high quality data.

To conclude, the analysis process for both census and borehole data emphasize
the need to develop knowledge base techniques uniquely for different uncertainties,
however these methods should be designed to resist distortions in scale and data

distributions.

54  FINAL CONCLUSIONS

The sources and effects of uncertainty have been examined in two disparate
data: census data and borehole data. Scale issues in census data and sediment
identification and description problems in MOEE borehole data have linked these data
under a single umbrella of uncertainty. Hence, this study focused on providing tools to

reduce the effect of these uncertainties in order to enhance geographic inquiry.

In census data, applying rough sets to spatial analysis has provided a scale
sensitivity measure to translate geographic relationships over multiple census scales. So
while the rough set tool cannot eradicate uncertainty during spatial transition, it does
provide accuracy thresholds within which rough sets estimates apply. It also enhances

data distribution retention across census scales.

In borehole data, rough sets enabled sediment grouping using aquifer-
supporting properties. These sediment clusters highly facilitated the GSC
standardization scheme assessment and T-PROG simulation. The sequence of
techniques employed enhanced the quality of MOEE data in accurate geological
inquiry. The utility of rough sets and transition probability is not limited to ORM
southern Ontario alone, but also any aquifer with borehole data of marginal quality.
However, the ORM provided a unique opportunity in order to enrich data of

marginal quality from high quality data.
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APPENDIX A

Apendix A1l:  Descriptive values of porosity for a range of geological
materials

Material | Porosity (per cent) |- Material Porosity (per cent)
Coarse gravel 28 Loess 49
Medium gravel 32 Peat 92
Fine gravel 34 Schist 38
Coarse sand 39 Siltstone 35
Medium sand 39 Claystone 43
Fine sand 43 Shale 6
Silt 46 Till = mainly sand 31
Fine-grained sandstone 33 Till — mainly silt 34
Clay 42 Tuff 41
Medium grained sandstone 37 Basalt 17
Limestone 30 Gabbro (weathered) 43
Dolomite 26 Granite (weathered) 45
Dune sand 45

Adapted from Water Supply Paper 1839-D by permission of the United States Geological
Survey (Brassington 1988, p53)

Apendix A2:  Descriptive values of specific yield for a range of geological

materials
| | Material Srzgglrﬁge\r?t()eld * Material Srzgg:flgeﬁlt()eld -
Coarse gravel 23 Limestone 14
Medium gravel 24 Dune sand 38
Fine gravel 25 Loess 18
Coarse sand 27 Peat 44
Medium sand 28 Schist 26
Fine sand 23 Siltstone 12
Silt 8 Till = mainly silt 6
Clay 3 Till — mainly sand 16
Fine-grained sandstone 21 Till — mainly gravel 16
Medium grained sandstone 27 Tuff 21

Adapted from Water Supply Paper 1662-D by permission of the United States Geological
Survey (Brassington 1988, p53)
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Apendix A3:

List of descriptive porosities and hydraulic conductivities for
unconsolidated sediments and rocks

Geological Material .

Grain size (mm)

Porosity”

Hydraulic conductivity,
K (metres per day)

Unconsolidated Sediments
Clay 0.0005 - 0.002 45— 60 <107
Silt 0.002 — 0.06 40 - 50 102-1.0
Alluvial sands 0.06-2.0 30-40 1.0 = 500
Alluvial gravels 20-064 25 -35 500 - 10 000

Consolidated Sedimentary Rocks

Shale Small 5-15 5x10%-5%x10°
Sandstone Medium 5-30 10*-10
Limestone Variable 0.1-30 10°-10
Igneous and Metamorphic Rocks

Basalt Small 0.001 -1 0.0003 - 3
Granite Large 0.0001 -1 0.0003 -3
Slate Small 0.001 -1 10%-10°
Schist Medium 0.001-1 107 - 10™

Reproduced from $248 by permission of the Open University (Brassington 1988, p56)

Apendix A4:  Hydraulic conductivities in metres/day for various rocks
S ' Hydraulic Conductivity in m/d
10” 107 107 10 10" 1 10 10°
10° 10
Relative Hydraulic Conductivity
Very low Low Moderate High
Very high
Represented Materials
Unconsolidated deposits
Silt, clay and Clean
Massive mixtures of Fine sand &
clay sand, silt and sand sand & Clean gravel
clay gravel
Consolidated Rocks
Clean Vesicular &
Massive Laminated sandstone & .
. scoriaceous basalt
igneous & sandstone, fractured 3
. . cavernous
metamorphic shale & igneous & :
. limestone &
rocks mudstone metamorphic .
dolomite
rocks
Adapted from the Groundwater Manual by permission of the United States
Department of the Interior (Brassington 1988, p56)
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Apendix A5:  Geologic units present in MOEEE data identified by the
GSC
GSC: mat code Description
1 Bedrock
10 Fill
11 Covered
1-1 Limestone
1-2 Shale
1-3 Granite
1-4 Dolomite
1-5 Pot_Bedrock
1-6 Sandstone
1-7 Limestone Shale_Inter
2 Sand_Diamicton
3 Silt_Diamicton
4 Clay_Diamicton
5 Gravel
6 Sand
7 Silt
8 Clay
9 Organic
99 Unknown
Apendix A6:  ORM geologic unit approximation into aquifer supporting
groups
Modified Upper S Lower
- Sgt‘Catego,ry e Approximation set . - Approximation set
Very Good Aquifer Indicators (VGAI) | Gravel
Good Aquifer Indicators (GAI) Sand_Diamicton Sand
Moderate Aquifer Indicators (MAI) Silt_Diamicfon Silt
Fill Clay

Poor Aquifer Indicators (PAI)

Clay_Diamicton

Non—Aquifer Indicators (NAI)

Organic

Bedrock, Pot_Bedrock

Limestone, Shale

Sandstone

Limestone_Shale_Inter

Granite, Dolomite
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APPENDIX B

Apendix Bl:Individual variable constituents of major deprivation categories

Deprivation Indicator Categories

Education Employment Housing Income

Percent of 15to 24 Unemployed population Average value

) X Employment
years population 15 years and over by of dwelling $ . o

! Y income %
not attending school labour force activity %
Population 20 years
Government

and over by highest
level of schooling—less
than grade 9(%)

Unemployment rate

transfer payments %

Without high school
graduation certificate

Unemployed population
25 years and over by
labour force activity %

Population 15 years
and over without
income %

Unemployment rate

Incidence of low
income in 2000 %

Apendix B2:Deprivation index derivation process with no assumption of spatial
dependency on Recent immigrants

.1r
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Apendix B3:Frequency distribution chart for low income

Frequency Distribution of Low Income - Census Tracts
140 - 7 |

120 7 - T

e e T ' -

so | | T

Frequency

60'. ] | - [ : . .

40 =

02 C4 C6 08 1.0
Data Range

Apendix B4:Frequency distribution chart for Incidence of low income

Frequncey Distribution of Incidence of
Low Income - Census Tracts
140 1
120 T
100 1
oy
§go J»—o—l W
g
(60 ;- — — ] -
40 - - -
20 7 - [
0 T T
02 0.4 C.6 0.8 10
Data Range
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