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Abstract

In this thesis, we present a novel real-time computer vision-based system for facilitating

interactions between a single human and a multi-robot system: a user first selects an indi-

vidual robot from a group of robots, by simply looking at it, and then commands the selected

robot with a motion-based gesture. We describe a novel multi-robot system that demon-

strates the feasibility of using face contact and motion-based gestures as two non-verbal

communication channels for human-robot interaction.

Robots first perform face detection using a well-known face detector. The resulting

“score” of the detected face is used in a distributed leader election algorithm to estimate

which robot the user is looking at. The selected robot then derives a set of motion features,

based on blurred optical flow, which is extracted from a user-centric region. These motion

cues are then used to discriminate between gestures (robot commands) using an efficient

learned classifier.
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Chapter 1

Introduction

Over the past two decades, the mobile robotics field has seen an increase of research related

to multiple robot systems and distributed intelligence [76]. Prior to this shift, roboticists

focused on single robots. Having a robot autonomously navigate between different rooms

was a challenge [72]. As robot designs materialized, the multi-robot field emerged; rather

than studying interactions between a robot and its environment, attention shifted to in-

teractions among teams of robots. Early work involving foraging tasks with relatively low

communication explored emergent properties of the system [61]. As larger groups of robots

were experimented with, researchers developed methods for autonomously allocating tasks

between robots [30].

An example of the maturity of the multi-robot field is the annual RoboCup competition.

The aim is to develop a team of autonomous soccer playing robots in order to further

research and education in the robotics field [50]. The official goal (perhaps tongue-in-cheek)

is to produce a team of robots capable of beating Brazil (or the most recent World Cup

champion) in a standard FIFA1 game of soccer.

As the momentum of the robotics community increased, in particular with behaviour

based reactive robots, interactions between robots and humans increased. Robots no longer

exist solely in science fiction, and are now turning up in our homes as children’s toys or

vacuum cleaners. These daily interactions are studied in the field of human-robot interac-

tion (HRI). HRI is a relatively young field; one might argue it first appeared as Asimov’s

three laws of robotics [2]; however, the first HRI-dedicated scientific conference, the IEEE

1Fédération Internationale de Football Association (International Federation of Association Football)

1
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International Symposium on Robot and Human Interactive Communication (RoMan), first

appeared in 1992 and occurs annually [33].

HRI is a broad multidisciplinary field which obviously includes robotics, but also includes

(and is not limited to) psychology, sociology, and philosophy. The primary objective is to

study the interactions between humans and robots; or in some cases between humans and

what the human perceives to be a robot. These robots are not necessarily autonomous; in

some cases teleoperation2 is used to imitate intelligent behaviours (e.g. [37]).

The work presented in this thesis presents a complete autonomous multi-robot system

with a computer vision-based task delegation interface.

1.1 Motivation

While you might still be waiting for your personal jetpack, robots are no longer a thing of

the future; they are here, and here to stay. The robotics industry has already moved to

mass production (e.g. iRobot), and daily interactions with robots are increasing. As these

interactions increase, the question of how to effectively communicate with robots becomes

a valid question. Robots with a low level of autonomy will require a great deal of human

instruction to complete basic tasks such as navigation; however, as robots achieve higher

levels of autonomy our communication methods will change.

Robots are found in many different environments, performing many different tasks. For

example, robots are often used in hazardous environments, which are too dangerous for

humans, performing tasks like space exploration (e.g. Mars exploration rovers [90]), search

and rescue (e.g. [15]), and demining (e.g. [81]). These robots are teleoperated from re-

mote locations – no sensor-mediated human-robot interactions occur, since the humans and

robots are not co-located. On the other hand, robots can also be found in our environment

performing tasks such as delivering items in an hospital (e.g. [67]), entertaining us (e.g.

[28]), aiding with robot-assisted therapy (e.g. [53]) and activity (e.g. [100]), or cleaning our

home (e.g. iRobot Roomba). These are the robots we focus on in this thesis: robots that

share the same environment as us.

These robots are embodied in the same environment as us, and will interact with us on

a daily basis in a face to face manner. It is important that they are able to communicate

2commonly referred to as the Wizard of Oz technique
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with us in some convenient manner, and therefore must be able to understand our various

communication channels including non-verbal communication. Below, we will investigate

the use of two of these non-verbal communication channels, face engagement and motion-

based gestures, as an interface for a multi-robot system.

1.1.1 Face engagement

We use the term Face engagement, coined by Goffman [31], to refer to the process in which

people use eye contact and facial gestures to interact with people. We believe that face

engagement could be an effective non-verbal communication channel for human-robot inter-

actions. There is limited work in HRI that focuses on communication between a human and

multi-robot system; to our knowledge, no work has investigated the use of face engagement

as a selection mechanism for multi-robot systems. In this thesis we will investigate the

feasibility of using face engagement to select individual robots from a group or robots, by

building and demonstrating a real system.

1.1.2 Motion-based gestures

Once an individual robot has been selected from the group of robots, motion-based gestures

will be used to command the selected robot.

1.2 Contributions

In this thesis we address and contribute to the following problems:

• How to build a computer vision-based interface for an autonomous multi-robot system.

We focus on the various components that make up such a system and describe how to

effectively combine them together to produce a complete working system.

• How to select a particular robot from a group of robots with face engagement. We make

a novel observation, that it is possible to use a frontal face detector to estimate which

video camera a user is looking at by comparing the detected-face scores of each video-

camera (which simultaneously captures the same person under similar lighting, but

from different angles). Each robot then compares its score by means of a distributed

leader election algorithm to guarantee only a single robot will ever be elected at a given

time. This method is proposed as an alternative to performing eye gaze detection.
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(a) A user selects an individual
robot by looking at it, and assigns
it a task by waving his hand.

(b) A user-centric region is iden-
tified; a learned classifier uses op-
tical flow from the region to dis-
criminate between gestures

(c) Robots travel to one of two
zones as commanded by the user;
colours are only used to illustrate
different zones – robots use fidu-
cial markers for localization

Figure 1.1: An example of selecting and commanding an individual robot from a group of
robots.

• How to use motion-based gesture as a human robot interface to assign tasks to robots.

We describe a real-time motion-based gesture recognition system based on machine

learning techniques.

1.3 Outline

In this thesis, we will describe the various components required to produce a complete,

working multi-robot system. To investigate the feasibility of our proposed interface, we

will provide a demonstration task as a proof of concept. A three minute video [17] of our

demonstration was published in the video track of the 5th annual ACM/IEEE International

Conference on Human-Robot Interaction (2010), held in Osaka, Japan. Sample frames from

our video, shown in Fig 1.1, illustrate a user selecting and commanding an individual robot

from a group a robots. A follow-up paper [18] describing our system will appear in the

seventh Canadian Conference on Computer and Robot Vision (CRV2010), to be held in

Ottawa, Canada

The outline of this thesis is as follows:

Chapter 2: Background

First, we give an overview of background work describing the importance of eye gaze in

social interactions. We then describe related works that make use of eye gaze in human-

computer interactions and socially interactive robotics, as well as describe other methods
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for robot selection and gesture-based human-robot interfaces.

Chapter 3: Robot selection

Next, we present the robot selection problem, and discuss our method for selecting an indi-

vidual robot from a group of robots by using face engagement. Our implementation makes

use of a distributed ring-based leader election algorithm over a wireless network to select

the robot with the highest detected-face score.

Chapter 4: Motion-based gesture recognition

In chapter 4, we describe a real-time system for gesture recognition. Given a set of in-

put frames, we derive a user-centric set of motion features based on smoothed optical flow

estimates and face detection. An efficient classifier is learned to discriminate between dif-

ferent gestures, which will effectively be used to command robots. Experimental results

demonstrate the speed and efficacy of our system.

Chapter 5: The robot: putting it together

A detailed description of the multi-robot system is described in chapter 5. The two com-

puter vision components, described in the previous two chapters, are combined to build a

functioning multi-robot system. A fiducial based localization system is used to navigate the

described environment. A demonstration task, which is used to test the system, is presented.

Chapter 6: Discussion

A discussion of the observations of the demonstration task, performed by 7 participants,

follows in chapter 6.

Chapter 7: Conclusion

Finally, we conclude the thesis and outline possible future work in chapter 7.



Chapter 2

Background

2.1 Face Engagement

Before two or more people can enter into a focused interaction, they must somehow mutually

signal their mental focus and readiness. Eye contact and eye gaze plays an important role

in initiating and regulating communication between people [48]. Goffman uses the term

face engagement to describe the process in which people use eye contact, gaze and facial

gestures to interact with or engage each other. Eye contact and gaze can be used to signal

turns and roles throughout conversations. Face engagement is often used to signal one’s

attentiveness during exchanges of verbal statements; however, young children who have yet

to master language use face engagement to signal their cognitive focus and visual attention

[31].

The role of eye contact plays such an important role in the development of humans

[51, 97] that the ability to detect eye contact is present at birth [23]. Newborns are par-

ticularly interested in faces with opened eyes rather than closed eyes [5]. Attentiveness to

gaze direction quickly develops during a child’s infancy; by 3–4 months, infants are more

responsive to faces with direct gaze rather than averted gaze [24], by 10–11 months, infants

develop gaze-following behaviour [12]. Those infants who showed gaze following behaviours

at a younger age also showed a quicker vocabulary growth rate [13]; slower development of

eye contact and gaze awareness however, can be an early indication of autism [106].

Eye contact and gaze play an important role as a non verbal communication channel in

social interactions. Field experiments have shown that hitch-hikers who made eye contact

were more likely to be offered a ride [89], library patrons were more likely to approach a

6
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librarian when eye contact was made [82], and strangers on the street were more likely to

answer a survey when confederates maintained eye contact throughout the request [35].

2.2 Gaze as an input device

From its origins in psychology, gaze tracking research can now be found in computing

applications [20]. Eye gaze trackers range from intrusive systems which measure electrical

voltage induced by a coil embedded in a contact lens [84] to non-invasive computer vision-

based systems which never come into contact with the user [3]. Morimoto and Mimica

provide an in-depth survey of gaze tracking techniques [66].

Gaze tracking systems have become tools in usability studies, where researchers are in-

terested in recording the eye movements of humans as they interact with computer interfaces

[32], navigate websites [9], perceive advertising in the Yellow Pages [55] and even fly a plane

[93]. In addition to recording eye gaze for subsequent analysis, the human computer inter-

action (HCI) community has studied real-time eye gaze tracking systems as input devices

[44]. One of the earlier interactive systems, presented by Jacob and Karn, uses gaze to select

objects and display corresponding information which can be scrolled through by the eye.

He presents a variation of the “Midas touch” problem1: how can one differentiate between

looking at versus selecting an object since there’s no way to click with eye gaze. He observes

that the use of dwell time acts as a good “clicking” mechanism [43]. Another early system,

developed by Starker and Bolt, present a virtual 3D world2 with an interactive story that

changes depending on which objects the user is looking at [91].

Gaze based interfaces are of particular interest for developing hands-free systems such

as helmet tracking systems for fighter jet missile controllers where a pilots hands are occu-

pied flying a jet [26], or for developing communication devices such as text-input systems

for disabled users who cannot use their hands [57]. Gaze pointing devices, however, are

inaccurate; Zhai et al. propose a hybrid cursor system where eye gaze indicates a general

region to reposition the cursor to, and then a mouse is used to precisely select objects [107].

While face engagement is not directly an input device for video-teleconferencing, it is

often unachievable between participants due to the different location of the video screen

versus the video camera – which results in unnatural conversations. In order to simulate

1His problem does not produce any gold
2likely inspired by the French novel “Le Petit Prince” by Antoine de Saint-Exupry
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natural face engagement, participants’ eye gaze must be corrected [104].

2.3 Gaze and interactive robots

With the HRI community’s interdisciplinary roots drawing upon fields like psychology and

cognitive science, the importance of eye contact and gaze awareness, especially with hu-

manoid robotics, is well known [54, 86, 68]. A trend in HRI is to give robots human

characteristics; researchers argue that anthropomorphizing robots will lead to more natural

interactions with humans. By exploiting human familiarity, implementing basic social cues

in robots can help people develop social relationships with robots [21]. When people talk

about these social robots they may linguistically anthropomorphize robots by using words

like “love” or “hate” (e.g. the robot loves to recharge); however, when asked whether or not

a robot could feel affection, or could have a certain mood, their judgements remain inanimate

[29]. While creating a synthesized human [41] may lead to unrealistic prior expectations,

some level of anthropomorphization of communication channels should be investigated [21],

and in particular to this thesis, the use of eyes as a non-verbal communication channel for

a human-robot interface is explored.

A highly whimsical responsive sociable robot is Kismet, shown in Fig 2.1, which was

developed by Breazeal at MIT [11]. Kismet was designed to explore and study emotional

behaviours in robotics. Inspired by infant social development, Kismet was designed to be

sensitive to highly saturated and skin tone colours, faces, motion, the distance or size of the

person or object, and voice intonation. Kismet, however, does not respond to or commu-

nicate with speech – but rather limits interactions to synthesized emotions. Nonetheless,

the sounds, facial gestures, and gaze produced by Kismet is effective in communicating the

emotional state and attentiveness of the robot.

One humanoid robot at the center of several papers is Robovie, which was developed

by Ishiguro et al. at ATR [42]. Robovie, seen in Fig 2.2, has two controllable eyes, thus

allowing the use of gaze as a communication channel [40].

In an experiment by Mutlu et al. gaze is used to regulate conversations between Robovie

and two human participants [68]. The participants are assigned one of three roles which

determine the amount of interaction with the robot: an addressee who the robot speaks

to, a bystander whose presence is only acknowledged, or an over-hearer who witnesses the

conversation from a distance. Three different participant configurations are explored in the
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Figure 2.1: Kismet, developed by Breazeal, on display in the MIT museum. Picture by
Nadya Peek; used by permission.

Figure 2.2: The humanoid robot Robovie, developed at ATR by Ishiguro et al. Picture by
Bilge Mutlu; used by permission.
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experiment:

1. Two addressees: Both participants are acknowledged during the greeting phase and

throughout the entire conversation by the robot. The robot’s attention is equally

divided between the two addresses, and eye contact is used to yield speaking turns to

a particular addressee.

2. An addressee and a bystander: During the greeting phase, the robot acknowledges

both participants. The majority of the robot’s attention throughout the conversation

is focused on the addressee with quick less frequent glances towards the bystander.

3. An addressee and an over-hearer: The final configuration involves an addressee

as usual and an over-hearer who is never acknowledged or greeted throughout the

entire conversation.

From the subjective evaluation of the 72 participants, the authors found that participants

who were assigned the over-hearer role (who were never acknowledged by the robot) liked

the robot significantly less than the other participants. Eye gaze was also a factor in the

“feeling of groupness” score, which addressees significantly rated a higher. In addition to

increasing user experience ratings, the authors also found that gaze was an effective tool for

yielding speaking turns and reinforcing conversation roles.

In an earlier experiment with Robovie, Imai et al. investigated the relationship between

the robot’s gaze and head position [39]. Eight participants were seated in a circle cen-

tered around the robot, whose head and gaze would try to follow whoever was speaking.

The authors found that participants only noticed Robovie’s gaze after noticing the head

movement.

Besides yielding speaking roles and regulating conversation, gaze can also be used to

establish joint attention between a speaker and addressee. Joint attention is the phenomenon

where two or more people mutually focus on the same visual stimuli as alerted by one of

the parties through a non-verbal channel such as eye gaze, head movement or pointing. The

work of computational linguists Staudte and Crocker explores the effects of joint attention

between a robot and a human participant. 48 participants (unfortunately) watched pre-

recorded videos of a robot making a statement related to objects lined up in front of it,

as seen in Fig 2.3. The robot would then gaze at a particular object to focus the joint

attention to the relevant object; in some cases the robot purposely gazed at an irrelevant
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object which lead to higher cognitive response time from the participants. The authors

claim that implementing human-like gaze in the robot improves human comprehension of

robot speech [92]. Similar work by Mutlu et al. investigate the role of nonverbal leakage,

that is, seemingly unintentional cues containing information, in human-robot interactions

[69].

Figure 2.3: A modified MobileRobots PeopleBot, used by Staudte and Crocker, gazes at an
object in order to establish joint attention with a human partner. Picture by Maria Staudte;
used by permission.

So far we have only looked at human responses to a robot’s gaze, Kuno et al. argue that

joint attention must be perceived by both the human and robot. Their work emphasizes

the need to synchronize speech and vision processing in order to build a useful human-robot

interface [54]. Without vision, the robot would be unable to pick up on joint attention cues

such as gaze or pointing. The authors present a prototype museum guide robot which is

activated by eye contact. Rather than truly performing gaze detection of the pupils, the

system relies on the detection of frontal faces. Once a face has been detected, a telephoto

lens is used to capture a high quality image; the robot then estimates if the user is looking at

it by detecting if the nostrils are centered between the eyes. Their “eye contact” detector, or

perhaps what should be referred to as a “face engagement” detector, allows for interactions

up to a distance of six meters. When a museum visitor makes eye contact or visually engages

the robot, the robot approaches the user and offers to explain the exhibit.

Another eye gaze aware robot is presented as a “daily-partner robot” by Yonezawa et

al. in [105]. The authors claim the robot will help satisfy the emotional needs of patients
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that require nursing care – albeit in reality the robot in its current prototype appears to be

little more than an augmented answering machine dressed in a teddy-bear outfit. The cross-

modal perception technology behind it, nonetheless, is exciting. The robot performs both

eye gaze tracking through a high resolution wide angle camera as well as speech recognition.

To interact with the robot the user must first look at the robot to make eye contact and then

utter a command; in this case eye contact is used to designate the robot as the addressee

of the user. This is done to disambiguate situations where the user is talking to the robot

versus someone else in the room. When the robot needs to alert the human user of a

message, rather than potentially disturbing the user with an audible message when the user

is preoccupied, the robot waits to make eye contact before communicating the message.

Literature on eye gaze or face engagement aware human-robot interfaces is limited.

While some of the robots discussed here only respond when looked at, it is not absolutely

clear how precise their gaze tracking system is or how well it would fare in multi robot

situations. We believe that the system presented in this thesis which proposes the use of

face engagement for the selection of a particular robot amongst a group of closely spaced

robots is the first of its kind.

2.4 Robot selection and task delegation

There is little work on human-robot interfaces for multi-robot systems. However, as multi

robot systems, such as the iRobot Swarmbots, become more common one becomes aware

that not all interaction methods for a single robot will be able to transfer to multi-robot

system interfaces. Take for example switching on a robot or initiating a controller with a

button push, while this works for one or two robots, there will come some point, perhaps

when dealing with 50 or 100 robots, when this strategy will no longer be practical.

McLurkin et al. are familiar with the difficulties of maintaining and interacting with

more than 100 robots [62]. In addition to presenting a data terminal interface, a more

advanced graphical interface coined “SwarmCraft” is presented in their work: inspired by

real-time strategy game interfaces from StarCraft and WarCraft (Blizzard, 1998), “Swarm-

Craft” allows remote control and debugging information of individually selected robots from

the swarm. Fortunately their system contains navigation beacons which allows them to spa-

tially organize their robots in a graphical tool. When extensive infrastructure such as ceiling

mounted cameras exists, a live video feed can be used to present a real view of the world
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including obstacles. The system presented by Kato et al. displays a live video feed on an

interactive multi-touch computer table; users can control the robots’ paths by drawing a

vector field over top of the world [47].

On the other hand, systems with noisy localization, or worse without any localization

can not conveniently be organized into a correct spatial representation of the world. It

is conceivable to individually label each robot with a unique identifier (for example an IP

address), which a user can then use to remotely connect to the particular robot. While this

easy to implement technique works for experimental research and debugging, it becomes

problematic when a user wants to quickly interact with that robot (for example the robot

that keeps bumping into the user’s feet) rather than robot #613. This concept is similar to

deictic representation, as described by Agre and Chapman [1].

An earlier multi robot system presented by Payton et al. makes use of infrared (IR)

LEDs for communication between robots among a swarm [78]. Each robot is equipped

with eight directional IR transceivers that transmit orientation specific information for

each transceiver; this elegant design effectively captures a vector flow towards some tar-

get pheromone without any map of the world. A remote control device also exists for

communication with either the entire swarm via means of an omnidirectional IR LED3 or a

particular robot which is selected by the user by pointing a directional IR LED at the robot

of interest. While this remote is not explicitly described in any of Payton’s papers, Payton

modestly pointed us (through personal communications) to slides from his presentation at

the International Conference of Simulation of Adaptive Behavior (SAB) 2004 [77].

A similar system currently being developed by Naghsh et al. attempts to help firefight-

ers navigate smoke filled buildings where visibility is limited or non-existent [70]. Much

like Payton’s work, an augmented helmet device is used to point firefighters to goals and

more importantly exit points. The authors outline firefighter-specific human-robot swarm

interaction issues; however, the problem of selecting a particular robot from the swarm is

never addressed.

While swarms can scale to thousands of robots [98] humans can not effectively monitor

or interact with such a large number of robots [73]. The work of Bashyal et al. questions

how much of a swarm should a human interact with [4]. While they make a distinction

between human-robot and human-swarm interfaces, their simulation-based experiments fail

3robots propagate broadcast messages to robots which are not in direct line of sight of the remote



CHAPTER 2. BACKGROUND 14

to address the robot selection problem and simply make use of a point and click god-like

interface for an unrealistic simulated environment.

A novel human-robot interface designed for cleaning robots is described by Zhao et

al.[108]. Rather than interacting directly with the robots, they propose the user interacts

with the environment by leaving “notes”, such as “vacuum the floor” or “mop the floor” for

the robots at work site locations. An overhead camera recognizes fiducials printed on the

notes, and dispatches an appropriate robot to complete the task. A robot equipped with a

printer is also used to leave notes for the user, e.g., when a failure occurs and the task can

not be completed, the printer robot will leave a note with the appropriate error code.

2.5 Gesture based robot interaction

Gestures – intentionally choreographed body poses and actions – are commonly used in day

to day human interactions [49]. Gestures are a form of non-verbal communication; they

can be used to convey geometric and spatial information (e.g. pointing in a direction), as

a visual representation of an object or action, or simply as a greeting (e.g. waving hello

or good-bye). Gesture-based robot control systems have the advantage of allowing users to

freely walk in the same environment as the robot, and can provide a natural interface for

issuing commands.

Many techniques exist for recognizing gestures; however, computer vision methods have

the advantage of being passive and do not require the user to wear any specialized hardware.

There is a vast computer vision literature on the gesture recognition domain: Mitra and

Acharya provide a survey [64].

Several gesture-based robot interfaces exist; we do not attempt to provide an exhaustive

survey, but rather mention some interesting examples. Systems may use static gestures –

where the user holds a certain pose or configuration – or dynamic gestures – where the user

performs a combination of actions. The speed of dynamic, or motion-based gestures can be

used to indicate the urgency of the command or task.

Static hand gestures are used by Becker et al. to command a robotic arm to pick up

objects. The position of the hand is used to indicate which object to pick up, and the

gesture of the hand, based on a certain finger configuration, specifies how to pick it up, e.g.,

from the top or side [7]. A similar gesture-controlled robotic arm is presented by Rogalla et

al. in [85].
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Both static and motion-based gestures are used in the work of Waldheer et al. They

present a gesture based human-robot interface for directing a robot to pick up trash; the

robot then autonomously drives to a garbage bin. They argue that static gestures are good

for issuing commands such as “stop” which must be quickly issued and classified [101].

Work by Loper et al. demonstrates a mobile robot designed to follow a person in both

indoor and outdoor environments. An active depth sensing camera is used to recognize static

arm gestures, which are used to command the robot; the user can additionally use speech-

based commands [56]. Earlier work by Kortenkamp et al. used an active vision system to

track the position and configuration of a user’s arm, which is then used to build a skeleton

model. Static arm gestures are classified by comparing the angles of the skeleton joints

to hard-coded values; in addition to recognizing an extended arm as a pointing gesture, a

vector of the arm is extracted and can be used to direct the robot to a particular point [52].

A multimodal interface based on speech and gestures is presented by Perzanowski et

al. in [80]. An active vision system is used to interpret pointing gestures as directional

vectors, and to measure distance between the user’s two hands. Even though their system

allowed users to control the robot by joystick, or to specify an (x, y) coordinate on a PDA,

they found that users preferred to direct the robot using natural language combined with

gestures. In a subsequent paper [79], Perzanowski et al. consider a team of multiple robots,

and discuss the possible use of gaze for directing an utterance at a particular robot; however,

no evidence suggests they actually built such a system. The authors instead choose to give

each robot a unique name which is used to direct an utterance at a particular robot, e.g.,

“Coyote, go to the north side of the nearest building”.

All gesture-based systems discussed so far are designed to work with a single robot, with

exception of the work of Perzanowski et al. described in the previous paragraph. Their

system, however, made use of speech; there are no examples of gesture-based interfaces

designed for multi-robot systems which rely solely on non-verbal communication. In this

thesis, we present such a system: a user first selects an individual robot with face engage-

ment, then uses motion-based gestures to command it. Our system allows a user to interact

with multiple robots in a shared environment by only using visual cues.
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Robot selection

This chapter addresses the interaction between a human and a single robot located among

a group of robots. Before assigning a task to an individual robot, the human operator must

first somehow designate a particular robot of interest as the selected robot he or she will be

addressing. We will refer to this as the robot selection problem: how does a user interact

with a particular robot within a group of robots without accidentally selecting or issuing

commands to multiple robots?

The difficulty of the robot selection problem depends on the particular human-robot

interface of the system. For example, interfaces that have physical buttons or touch screens

located on each robot are immune to the problem since there is no disambiguation when the

user issues a command to the robot. In this case a private communication channel exists

between the human and each robot since the user must physically approach and touch each

robot. However, systems that do not have a private communication channel for each robot

and rely on broadcasting commands through a shared medium are susceptible to the robot

selection problem. These media include audio, infrared, radio and vision. Most systems

assign a unique name or identifier which can be used to specify which robot the message

is intended for. The Internet, for example, uses IP addresses to deliver a message over a

shared medium to a particular host; however, while IP addresses are easy for computer-to-

computer communication, long unique identifiers are not appropriate for HRI as suggested

by Fig 3.1. Assigning names to each robot (similar to the way hostnames are mapped to IP

addresses) would provide a more usable interface; however users would still have to learn

each robot’s name; furthermore, as the system grows to large numbers of robots, coming up

with unique names may be an issue.

16
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Figure 3.1: We suggest using face engagement is much more natural than a unique identifier

As mentioned in the previous chapter, eye gaze and eye contact are natural non-verbal

communication channels used for showing attention. Our approach to the robot selection

problem is focused on maintaining face to face communication between a human and an

individual robot. Face engagement serves as the means for designating that robot (the one

the user is looking at) as the selected robot. However, since face engagement occurs in

a shared communication channel between the user and all robots within line of sight, the

robots must collectively agree upon a single robot designation to ensure only one robot will

ever respond to the user at any given time.

The human operator should be able to select and interact with a robot at different dis-

tances; however, implementing eye gaze on a mobile robot for use at larger distances can

be a costly endeavour since the use of a telephoto lens or high resolution camera must be

used to capture a high quality image of the human’s eyes [102]. We on the other hand, use

face detection rather than estimating eye gaze; this allows us to use smaller (and cheaper)

cameras without zooming capabilities. Our system assumes only a single human will be

interacting with the system at any given time; however, this single human will be simul-

taneously visible to multiple robots. Our system is designed to work at distances varying

from 1 to 4 meters. The challenging aspect of our proposed solution to the robot selection

problem is disambiguating which robot is currently being looked at through means of a

distributed leader election algorithm based on the score of the detected face.
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3.1 Face detection

The first phase of robot selection involves face detection. Each robot is equipped with a

Lenovo ThinkPad R61 7744 laptop with an Intel Core 2 Duo 2.2GHz dual-core processor

and 2GB of memory; we use the built in 640x480 resolution video camera to capture upward

pointing images. Given an image such as the one presented in Fig 3.2, we are interested in

locating a rectangular region in the image that contains a face. Furthermore, we want to

extract a corresponding score indicating how likely is it that a frontal face has been detected.

Figure 3.2: Sample video frame of a user looking at the robot

Faces are detected with the Viola-Jones method [99], a widely used1 real-time object

detection algorithm. We use an implementation provided by the OpenCV software library

[10]. An overview of the algorithm, originally described by Viola and Jones is presented in

the following section.

3.1.1 Viola-Jones face detection

The following sections provide an overview of the various components of the Viola-Jones

method.

1Viola-Jones is the standard method for face detection in OpenCV, which reached 2 million downloads
as of 2008 [10]
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Haar-like features

Haar-like features, which are named after Haar wavelets [58] due to their similarity, are used

to extract features from an image. Rather than working with individual pixels, Papageorgiou

et al. suggested using Haar-like features as basis functions of the image [75]; however, real-

time performance was never addressed in their paper. The Viola-Jones method makes use

of Haar-like features; examples can be seen in Fig 3.3.

Each feature used by the Viola-Jones method is located relative to an enclosing detection

window, shown as the outer border of the examples provided in Fig 3.3. The features’ values

are calculated by taking the difference of the summed pixel values of the white rectangle

from the summed pixel values of the black rectangle.

(a) (b) (c) (d)

Figure 3.3: Example rectangle features used by the Viola-Jones method

Efficient Computation

One of the novel contributions of Viola and Jones is the efficient computation of Haar-

like features. An integral image is first computed: each pixel (x, y) in the integral image

represents the summation of all pixels within the rectangle formed between the two points

(x, y) and (0, 0) of the original image. Once this integral image has been calculated, each

Haar-like feature can be computed in constant time by looking up the cached pixel sums at

each corner and taking the appropriate differences2; this process is described in detail with

excellent figures in their paper.

2rather than summing each individual pixel that lies in the rectangular area
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(a) The detector is scaled
and slid across the image

(b) Two Haar-like features used to detect
faces. The one on the left matches a hor-
izontal edge created by the eyes, and the
one one the right matches vertical edges
created by the nose

(c) Multiple pos-
itive sub-windows
clustered around
the face represent a
high probability of a
detected frontal face

Figure 3.4: Face detector

Sub-windows

These features are computed at many different scales and positions. During the offline

training phase, an exhaustive set of features (reported size of 160,000) is calculated for

each positive and negative 24x24 resolution training image. A classifier is learned with the

adaBoost [27] machine learning technique. Once the offline learning phase is complete, the

learned classifier can then classify an image by selecting a small subset of the exhaustive

feature set; this reduces a significant amount of computation as only a smaller number of

features must be calculated.

During the detection process a sub-window is effectively slid across the image at various

scales and positions as depicted in Fig 3.4(a). Rather than resizing the image to 24x24 pixels

which would be prohibitively expensive, the detector is scaled and repositioned to match

the corresponding sub-window. This allows features to be computed in constant time with

the integral image. The classifier accepts or rejects each sub-window as a detected face

based on the calculated features. The example shown in Fig 3.4(b) shows the top two

positively matched Haar features used to classify the image: the first feature corresponds

to a horizontal edge formed by the eyes of the face, and the second feature corresponds to

vertical edges formed by the nose.

A true face in an image will likely cause multiple overlapping sub-windows to return

positive results; an example can be seen in Fig 3.4(c). This occurs because the detector is

insensitive to small changes in scale or position of the sub-window. Recall that each feature
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is calculated based on a summation of pixels; a small variation in the sub-window position

will only effect the inclusion of pixels near the border of the feature rectangles; however, the

majority of the pixels lie in the center of the rectangle and will equally contribute to the

overlapping features’ values.

These overlapping detected regions are most often clustered into a single detected rect-

angle. The number of overlapping regions can be used to assign a score to the detected face3.

By default, the OpenCV object detector implementation rejects detected regions with fewer

than three neighbours. We use the number of neighbouring regions to both reject low scoring

regions and more importantly determine how frontal the detected face is.

3.1.2 Face score

The face detector is trained on frontal faces only; the training set4 does not contain any

images of face profiles. Therefore, the best matches occur when the detected face is looking

directly at the camera. Using the number of overlapping neighbouring sub-windows as the

score does not necessarily indicate how frontal the face is. An obscured frontal face, for

example, may receive a lower score than a visible and well lit non-frontal face. However, if

the same face is captured simultaneously by multiple cameras, then the scores can be used

to detect the most frontal face. This observation is a novel contribution of this thesis.

Fig 3.5 provides an example of three different images of a person looking in three different

directions. A frontal face is captured in the first image (Fig 3.5(a)) which has the highest

score; as the person looks away from the camera the score decreases. In the extreme case

where only a profile of the face is captured, the face is barely detected and receives a very

low score.

3.2 Leader election

The second phase of our solution to the robot selection problem is to perform a leader

election algorithm; this ensures only a single robot will ever be designated as the selected

robot. The election determines which robot is most likely being looked at “head-on” by the

user, as estimated by the highest detected face score.

3The Viola-Jones classifier score could also be used; however, the OpenCV implementation makes it
difficult to retrieve, and using multiple detections is arguably more robust.

4We use the pretrained frontal face Haar classifier supplied with OpenCV.
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(a) front - score: 34 (b) 45 degree - score: 19 (c) side - score: 1

Figure 3.5: Candidate rectangles detected by the OpenCV Haar classifier cascade for frontal
faces. The number of candidate rectangles are used to indicate how likely the face is a frontal
face.

Since the user might be visible to multiple robots, it is crucial that only a single robot

ever respond to the user at any given time. This in effect, requires some form of mutual

exclusion among the robots, which are hereafter referred to as nodes. Our leader election

algorithm must meet the following conditions, based on the conventional definition of mutual

exclusion [94, p. 102]:

LE1: (safety) Only a single participating node can ever be elected at any given time.

LE2: (fairness) Each node shall have the opportunity to participate in an election, re-

gardless of whether or not any node is elected.

LE3: (liveness) If a node exists with a score greater than any other node, it will eventually

be elected.

The condition LE1 is motivated by our goal of individually controlling a particular robot

in a group of robots; it is therefore required that no two robots ever simultaneously respond

to a command which was addressed to a single robot. When a robot is first selected by a

user with face-engagement, that robot begins to glow to offer visual feedback to let the user

know it is ready to accept a command; the visual feedback must be mutually exclusive, i.e.,

only a single robot can ever glow at any given time.
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Any robot may be selected by the user; therefore, the fairness condition, LE2, requires

that each node is given a chance to run as a candidate in any election at any time regardless

if any other node is currently elected. Each node must be capable of raising a “vote of no

confidence” if it believes it should be elected. For example, as the user shifts his or her

attention from the currently selected robot to another robot, the newly addressed robot

must be able to force a new election in order to become the newly elected robot.

The last condition, LE3, states that eventually some robot must be elected – given no

ties occur. While the nodes in our network are totally ordered, and therefore ties could

be broken by comparing the unique IP address of each node, we choose not to break ties.

Consider two robots placed side by side; if the user looks at the location between the two

robots, both robots will likely have the same detected-face scores. Rather than have the

network ordering arbitrarily break the tie, we choose not to elect any robot, and instead

force the user to break the tie by repositioning him or herself – this gives the user the ability

to select the robot they intended to select, rather than arbitrarily selecting a robot that the

user may not have intended to select.

Given a robot does have the highest score, condition LE3 states that our system can not

result in deadlock.

To solve this problem, we use a variation of the ring-based election algorithm first de-

scribed by Chang and Roberts [16]. In their algorithm, a ring network with reliable com-

munication is used to pass an election message in a circular manner around the ring. Each

node is assumed to have a unique identifier (UID); in our case, we have a unique IP address.

The general concept behind this algorithm is each node creates a message containing its

UID and sends it to its neighbour. When a message is received at a node it compares the

number to its UID and either:

1. passes the message to the next node if the number is greater than its UID,

2. discards the message if the number is less than its UID, or

3. declares itself the elected node if the number equals its UID.

A node will only ever declares itself elected after hearing its own message; this implies

that its own message must have travelled completely around the ring, thus passing by every

other node in the network. Condition LE1 is therefore met, since the node with the greatest

UID will discard every other nodes message (because it contains a lower UID) before it has
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the chance to return to its owner. The elected node’s message will not be discarded by any

other nodes since its number is greater than every other node in the network.

In the Chang-Roberts leader election, once a node has received its own message it de-

clares itself the elected node and sends out an elected message around the ring indicating it

has won the election (and therefore the election is over). Our variation of the leader election

algorithm does not send an elected message and is described in the next section.

3.2.1 A continuous leader election

Our variation of the ring based leader election algorithm contains the following differences:

1. the election is only initially called by a predefined node,

2. the detected frontal face score is used in addition to the UID,

3. only the elected node is informed it has been elected; other nodes need not know which

node was elected, but simply that they were not elected, and

4. a new election is called immediately by the elected node, which stays elected until it

receives a vote of no confidence.

The initial election is called by a predefined node in the ring5. Once the election message

has been created, no other nodes can create a new message. A node can however, modify

the contents of the election message before sending it to the next node. In some sense, the

election message is treated as a token: a node can only transmit a message when it has

ownership of the token. And specific to this case, since the token is the election message,

transmitting a message causes a token transfer.

When a node receives an election message, the number contained in the message is

compared to its own number in a similar fashion; however, in this case the number used is

the detected face score. Since the score is not guaranteed to be unique, the message contains

both the detected face score and a UID, which are recorded as an election tuple (uid, s),

where uid is a unique identifier, and s is the detected face score. When a node receives an

election tuple it either:

5initiated by the ring owner; section 3.2.2 explains the ring creation process
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1. recognizes itself as the elected node if the received tuple contains its own UID, and

starts a new election,

2. passes the unmodified tuple to the next node if the contained score is greater than its

own, or

3. replaces the contents of the tuple with its own score and UID if the contained score is

less than or equal to its own.

This message passing routine is described in Algorithm 1. When an election tuple is

received at a node the RECEIVE((uidrx, srx), uidi, si) routine is called, where (uidrx, srx) is

the received tuple, and uidi and si are respectively the unique id and current score of the

receiving node i.

Algorithm 1 message receiving algorithm

1: procedure Receive((uidrx, srx), uidi, si)
2: if uidrx = uidi then
3: electedi ← true . the tuple completed a cycle
4: SEND(uidi, si) . start a new election
5: else
6: electedi ← false
7: if srx > si then
8: SEND(uidrx, srx) . pass unmodified tuple
9: else

10: SEND(uidi, si) . set node as highest score
11: end if
12: end if
13: end procedure

The example in Fig 3.6 shows the initial election being called by node a. Node a records

its score of 8 and UID of a in the tuple (a, 8) and passes it to node b, which has a larger score.

Node b replaces the tuple with (b, 12) to indicate it has a higher score, and forwards it to

node c. Node c has a lower score and therefore forwards the tuple without any modifications.

The tuple is passed from node to node and eventually ends up back at node b as illustrated

in Fig 3.6(b). Since no other node in the ring has a greater score, the unmodified tuple

(b, 12) has made a complete cycle, thus visiting each node before returning to b. Node b

recognizes itself as the node with the highest score and determines it is the winner.
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node: a
score: 8

node: b
score: 12

node: c
score: 11

node: d
score: 8

( a, 8 )

( b, 12 )

( b, 12 )

8 < 12 : replace

12 > 11 : pass

12 > 8 : pass

(a) node a initiates the election

node: a
score: 8

node: b
score: 12

node: c
score: 11

node: d
score: 8

( b, 12 )

( b, 12 )

UID matches: 
'b' is elected!

12 > 8 : pass

(  b, 12 )

12 > 8 : pass

(b) the election continues until node b receives its own UID

Figure 3.6: The tuple (uid, score) is passed between nodes in the ring. A node compares
the received face score with its own score, if the received score is larger than its own, it
passes the unmodified message. If the received score is less than or equal to its own score,
it replaces modifies the tuple with its own score and UID before forwarding the message. A
node is declared the winner once it receives a tuple containing its own UID. We intentionally
modify the message if the scores are equal to avoid electing any winner in the event of a tie.
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Condition LE1 (safety) is still met with our modifications; at most only a single node

will ever be elected the winner. Before a node can receive its own message containing its

UID, it must pass by every other node in the system. In order for the UID to be preserved,

every other node must have a smaller score – otherwise the tuple would have been modified

before completing the cycle, resulting in a UID mismatch.

The liveness condition, LE3, is met since each node must pass on the message – either by

replacing the tuple with its own score and UID, or by passing the unmodified tuple. If two

or more nodes have equal scores, each node will replace the UID of each other’s modified

tuple; this prevents any UID from completing a cycle, thus never allowing any node to be

elected during a tie. This will not result in a deadlock since the scores are dynamic, and

will change as the user repositions his or her face. This strategy ensures small variations in

the face score does not cause robot selection to sporadically jump between two robots.

In order to meet condition LE2, our system must be fair to all nodes and give each node

the opportunity to partake in the election process – regardless if any other node is currently

elected or not. If a non-elected node receives a higher score than the currently elected

robot, e.g., the user looks away from the elected robot to focus on a different robot, then

that node must be able to become the newly elected node. To achieve this, once a node is

elected it immediately calls a new election. It creates a new tuple with its UID and its most

up-to-date face score. If this tuple reaches a node that has, in fact, a higher score, then, like

before, the election tuple is updated with the higher score and corresponding UID. Once

the modified tuple reaches the currently elected node (which started this new election) it

notices a different UID contained in the tuple and considers this as a vote of no confidence.

Upon receiving the vote of no confidence, the node marks itself as un-elected and passes the

unmodified tuple to its neighbour; the tuple is passed in the same manner until it completes

a cycle, resulting in a newly elected node.

3.2.2 Ring network

In this section, we describe how the ring network is constructed. Our implementation

focuses on creating a unidirectional ring network: adjacent nodes are connected in a circular

arrangement to form a closed loop. Each node is connected to two neighbours: one which

it receives from, and the other it sends to. Sample ring networks can be seen in Fig 3.7.

Token passing in a ring network can be used to provide mutual exclusion between nodes

on a ring. A node may only enter its critical section, i.e., a section of code which must
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(a) 1 node (b) 2 nodes (c) 3 nodes

Figure 3.7: Examples of different sized unidirectional ring networks

be executed separately from any other node, when it has ownership of the token. Once

the critical section has been executed, the token is released and passed to the next node in

the ring. Our system is similar to a token-ring network [14], in that only a single election

message is ever transmitted on the ring at a given time; nodes can only announce a higher

face score when they have ownership of the election message.

Our ring network is implemented on top of an Ethernet-based TCP/IP network; nodes

communicate using TCP and UDP and are located on the same subnet. The goals of our

ring network are:

RN1 no a priori information is required by any of the nodes, i.e., nodes are assigned

dynamic IP addresses and are not given any address to initially connect to,

RN2 the ring has a unique owner node which is responsible for calling the initial election,

and

RN3 multiple rings should eventually reform into a single ring.

Ring Owner

Each ring has a owner node which is the coordinator of the ring. When a new node wishes

to join an existing node, a join request is sent to the ring owner. The owner responds to the

node’s request with the IP address of a neighbouring node to forward messages to, and a

unique token identifier used to verify received messages originated from the correct ring 6.

6as supposed to an incorrectly sent message from a previously crashed ring
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owner

a b

(a) before

owner

a

bnew node

(b) after

Figure 3.8: Joining a ring

The node insertion procedure is illustrated in Fig 3.8. A new node is always inserted

directly in front of the ring owner – the new node will receive messages directly from the

ring owner. The newly inserted node will then forward messages to the whichever node the

ring owner previously sent messages to.

A ring is guaranteed to have a single owner. During node initialization, nodes can do

one of two things: 1) form a new ring, or 2) join a preexisting ring. Nodes which form a

new ring become the ring owner. The ring has an initial size of 1; messages are sent directly

from the owner to the owner as shown in fig 3.7(a). As nodes join a preexisting ring, they

are assigned positions in the ring, but ring ownership is non-transferable. This ring owner

can be responsible for calling the initial election upon ring creation, and thus our goal RN2

is met.

Ring Creation and Membership

When a node is first initialized, it has no knowledge of other nodes, i.e., no addresses of

existing rings are known. Each node is assigned a dynamic IP address (via DHCP). We

assume each node is located on the same subnet, and a common port is known to all nodes.

Nodes can therefore communicate via broadcast UDP messages using the predefined port.

Once initialized, the newly created node passively listens for broadcast messages for a

set number of seconds. The owner of each ring is responsible for periodically broadcasting a
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message advertising the existence of its ring. In our implementation, the broadcast occurs

every 2 seconds; therefore, the newly created node must wait double that time, 4 seconds,

to ensure a message is transmitted at least once. However, since this message is broadcast

over UDP, there are no guarantees the message will be heard during that 4 second window.

One of two possible outcomes occur: 1) one or more messages are received that advertise

the existence of a ring, or 2) no messages are received. The first approach which comes to

mind is to join the first detected ring; however, we take a different approach: if a ring is

detected which is owned by a lower IP address than its own, it will request to join the ring

with the lowest IP address. If, however, no messages were heard from lower IP addresses

(or none at all), then the node creates a new ring which it begins to advertise.

Once a node has joined, or created a ring, it continues to monitor broadcast messages

for the existence of other rings. If at any point, it detects a ring advertised by a lower IP

address than its ring’s owner, then it shall immediately disconnect – regardless if it is the

ring owner or not – and join the newly detected ring with the lowest IP address.

By broadcasting the existence of rings over UDP message, we are able to reach goal

RN1, with out any a priori knowledge except for a predefined port number. Furthermore,

by favouring membership in rings which are owned by the lowest IP address, multiple rings

will eventually reform into a single ring, thus meeting our goal RN3.

An overview of creating or joining a ring is given in Algorithm 2. Upon initialization,

the node either calls CreateRing or causes Join to be called on the ring owner’s node.

Implementation Details

As mentioned previously, UDP messages are broadcast to advertise the existence of rings;

however, these broadcast messages are not guaranteed to be reliable. However, in prac-

tice, we did not encounter any large loss of broadcast messages during our experiments.

Nonetheless, once a node has detected a ring, all subsequent connections are performed over

a reliable TCP connection.

Election messages are encoded using JavaScript Object Notation (JSON) [19], which

is a text-based data exchange format. A sample election message is shown in table 3.1.

The election message is then sent to the next node in the ring via a JSON-based remote

procedure call (RPC), as specified in the JSON-RPC specifications[34]. An example of the

data sent is shown in table 3.2.
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Algorithm 2 Ring membership and creation algorithms
1: ring owner ←∞ . the UID of the ring owner
2: is owner ← false . Boolean indicating if node owns ring
3: next← NULL . which node to forward to
4: my uid be the node’s address
5:

6: procedure ReceiveBroadcast(i) . called upon hearing node i advertising a ring
7: if i < ring owner then
8: disconnect from current ring
9: request to join ring i

10: end if
11: end procedure
12:

13: procedure Join(i) . called by other nodes wanting to join this ring
14: if is owner = false then
15: return an error
16: end if
17: nexti ← next
18: next← i . ring owner now forwards messages to the joining node i
19: return nexti . return address of node the joining node will forward to
20: end procedure
21:

22: procedure CreateRing . create a new ring
23: next← my uid
24: is owner ← true
25: ring owner ← my uid
26: end procedure

Table 3.1: Sample election message encoded in JSON. The UID is referred to as “owner”;
“score” represents the detected face score

{"owner":"192.168.1.101","score":47}

Table 3.2: Election messages are sent between nodes using JSON-RPC

{ "id":15432, "method":"token", "params":{ "tokenid":"192.168.1.100",
"value":{ "owner":"192.168.1.101", "score":47} } }
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3.3 Conclusion

In this chapter we described a computer vision-based method to solve the robot selection

problem. We used a well-known face detector trained to detect frontal faces, and observed

that the score of the detected face can be used to estimate which camera the user is looking

at. The score is used in a distributed leader election algorithm to elect at most a single

robot, which will then respond to the user. Its use is demonstrated in chapter 6.



Chapter 4

Motion-based gesture recognition

In this chapter we describe a real-time system for gesture recognition; these gestures are

interpreted as commands for the selected robot. The work discussed in this chapter is based

on the paper “Real-time Motion-based Gesture Recognition using the GPU” by Bayazit,

Couture-Beil, and Mori [6], which was presented at the IAPR Conference on Machine Vision

Applications in Yokohama, Japan.

Given a live input video-feed, we derive a set of motion features based on smoothed

optical flow estimates. A user-centric representation of these features is obtained using face

detection, and a classifier is learned to discriminate between gestures. We develop a real-time

system using GPU programming for implementing the classifier. We provide experimental

results demonstrating the speed and efficacy of our system. Finally, we describe how this

general gesture recognition system was retrained to be used on a mobile robot.

4.1 Introduction

Human gesture recognition in image sequences has many applications including HRI, HCI,

and surveillance. We describe a system for real-time gesture recognition that uses motion

cues to discriminate between different gestures. Examples of the set of gestures we use in

our experiments are shown in Fig. 4.1. Consider the video frames shown in Fig. 4.2, these

show examples of motion cues that are used to discern which gesture is being performed.

In this work we focus on recognizing gestures – intentional, choreographed motions

performed by a co-operative subject. The main contribution of this work is developing a

real-time system for gesture recognition based on optical flow features. The core algorithm

33
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Punch-Right Wave-Left Sway Waves

Figure 4.1: Example frames from a subset of the gestures used in our experiments.

for recognition is based on the work of Fathi and Mori [25], in which discriminative portions

of optical flow are learned for recognizing actions. We use a variant of this algorithm, and

combine it with a standard face detector [99] to localize the human figure in a video. We

use the CUDA GPU programming API to create an efficient implementation of our action

recognition algorithm. This results in a real-time system that can be used for applications

in human-computer interaction. We demonstrate experimentally that it is fast and effective

for gesture recognition.

There is a vast computer vision literature in the “looking at people” domain. Moeslund

et al. [65] and Mitra and Acharya [64] provide surveys of this area, in general and as

it pertains to gesture respectively. Closely related pieces of work in the motion-analysis

vein include Bobick and Davis [8], who represent global silhouette shape and motion using

temporal templates. Shechtman and Irani [88] develop a motion-consistency method that

avoids aperture effects. Efros et al. [22] recognize the actions of small scale figures using

features derived from blurred optical flow estimates. In contrast to these methods, which are

based on nearest-neighbour classification, we learn an efficient classifier suitable for real-time

applications. Further, our classifier contains the specific parts of motion that are important

for discrimination between gestures, and previous work has demonstrated their success on
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(a) (b) (c) (d)

Figure 4.2: (a,c) Input frames overlaid with an illustration of motion features used to
discriminate this gesture from others. The heaviest weighted motion features chosen by
our algorithm are shown as arrows noting direction of motion. A face detector identifies a
rectangular region (a) which is used to crop a user-centric image (c) before calculating the
corresponding optical flow (b,d). Colour is used to denote direction of motion.

standard action recognition datasets [25].

Another group of methods analyzes the motion trajectories of skin-coloured blobs (typ-

ically hands, sometimes with face) [83, 103]. Reliably detecting and tracking hands, espe-

cially with fast motions, can be challenging. In addition, our optical flow-based method can

incorporate motion cues beyond those in just the tracked hand regions.

Real-time systems include Ike et al. [38], who develop an efficient hand gesture system

using multi-core processors. Our approach shares similarities, but is based on motion rather

than shape and uses the CUDA API for efficient computation on the GPU.

4.2 Algorithm

The algorithm presented here is based on the work of Fathi and Mori [25]. In that work,

which can handle data acquired from a moving camera, a stabilized human figure-centric

representation is obtained by running a pedestrian detection algorithm. Human actions are

then recognized using a classifier learned from optical flow features.

In our algorithm, motion features are first computed on the input image sequence (sta-

tionary camera assumed). A standard face detector is then employed to obtain a user-centric

representation, and again a classifier to discriminate between gestures is learned using a vari-

ant of AdaBoost. A real-time version of this classifier is deployed using the GPU. In the

following sections we provide the details of this algorithm.
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4.2.1 Motion features

To calculate the motion features, we first compute the optical flow for each frame. The

optical flow vector field F is then split into horizontal and vertical components of the

flow, Fx and Fy, each of which is then half-wave rectified into four non-negative channels

Fx+ , Fx− , Fy+ , Fy− , similar to the method of Efros et al. [22]. We add another channel

corresponding to motion magnitude F0 which is obtained by computing the L2 norm of

the four basic channels. These five non-negative channels are then normalized to facilitate

gesture recognition in soft-real time where frame rates can be variable, and to account for

different speed of motion by different users. Given a vector v that represents the optical

flow for a given pixel, compute v′ = v
||v||+ε , where ε is used to squash optical flow vectors

with very small magnitude, most likely introduced by noise. In experiments we set ε = 0.5.

Next, each of the five channels is box-filtered to reduce sensitivity to small translations

by the user performing the gesture. This final set of five channels: F̂x+ , F̂x− , F̂y+ , F̂y− , F̂0

will be used as our motion features for each frame.

We represent a gesture as a collection of movements required to complete a single period

of the gesture, rather than just capture a subset of the gesture phase. Hence, we aggregate

the motion features over a temporal history of the last k frames, for some k which is large

enough to capture all frames from a gesture phase. In practice, we set k to be the frame rate

of our capture data; in other words, we assumed a gesture’s phase was less than 1 second.

Setting k too high will increase the classification response time when switching from one

gesture to another. Setting k too low would increase the sensitivity of our algorithm to

noise and variations in users’ gesture speeds.

4.2.2 Face detection

Since we are working with an input video where the location of the user is unknown, to

use the above motion features for gesture recognition we must obtain a coordinate frame

relative to the user. Face detection is used to create a normalized, user-centric view of the

user. The image is scaled based on the radius of the detected face, and is then cropped and

centered based on the position of the face.

The frame is converted to grayscale and can be resized to a smaller resolution to speed

computation time.

In our experiments, we crop and resize to a 30×40 pixel region centered around the user.
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All five motion feature channels described above are flattened into a single vector v ∈ <6000

(6000 = 30× 40× 5), which will be used to determine the gesture being performed.

4.2.3 Classification

The aforementioned motion features describe the user’s entire motion. While these could be

used directly for classification (e.g. nearest neighbour [22]), recent work [25] has suggested

that learning a discriminative classifier from these features can highlight the important

motions for characterizing particular gestures. Further, learning a classifier that uses a

subset of the motion features, and does not have to compare to all training data, will lead

to a more efficient system.

Given the labelled training data, we have a multi-class classification problem, separating

the data into the different provided gesture classes. In this work we use the multi-class

boosting algorithm AdaBoost.MH [87]1 that takes the motion features v as input. The

supervised training is based on a set of labelled gestures. In the usual fashion we define a

set of weak learners that are based on thresholding a value from a particular component of

the motion feature vector v. For a gesture class l, each weak learner ht(v, l) is of the form:

ht(v, l) =

 1 if pt,lvτ(t) > pt,lθt

0 otherwise
(4.1)

for a motion feature v, where τ(t) selects a component of the feature vector, θt ∈ (−∞,∞) is

the classification threshold of the classifier, and pt,l ∈ {−1,+1} is a parity for the inequality

sign.

The output of the final strong learner on motion feature v for class label l is:

Ht(v, l) =
N∑

t=1

αtht(v, l) (4.2)

where αt are the weights chosen by AdaBoost.MH. The maximum output value can be found,

or, as in our experiments, these values can be used to produce precision-recall curves2 to

analyze the sensitivity of our algorithm.

1We used the implementation available at http://multiboost.sourceforge.net/.
2For an overview of precision-recall curves, and other evaluation techniques, see chapter 8 of [59].
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4.3 Implementation

Our implementation uses the OpenCV library [10], which provides an implementation of

Viola-Jones [99] face detection, and Horn and Schunck optical flow [36]. We assume a multi-

core system and dedicate a thread for face-detection. This non-real-time thread runs at a

lower FPS than the main thread; however, since our gestures have minimal torso movement,

it is acceptable to create a figure-centric frame based on the last known face position from

some previous frame.

4.3.1 CUDA classification optimization

The classifier, which accounts for roughly 10% of CPU time, computes the summation of

a set of independent weak-classifiers. Blocks of 512 weak classifiers for a given class l are

computed in parallel with the CUDA GPU programming API [71].3

The four parameters associated with each weak classifier ht(v, l) are stored as elements

of the arrays:

float alpha[ N ], theta[ N ]

int parity[ N ][ K ], column[ N ]

where the column[t] stores the value of τ(t) used to select the feature vector component,

N is the number of weak classifiers, and K is the number of classes. The parity values are

encoded as boolean values by mapping {−1, 1} to {0, 1} respectively. Our implementation

used N = 1024, and K = 7.

The classification is computed for a given 512 block and class l with the work kernel:

3A similar approach can use SIMD instructions on the CPU.
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__global__ void classify_kernel(

float* votes , int l, int offset )

{

extern __shared__ float d[];

const unsigned int tid = threadIdx.x;

const unsigned int t = tid + offset;

d[ tid ] = data[ column[ t ] ];

d[ tid ] = d[ tid ] > threshold[ t ];

d[ tid ] = d[ tid ] == parity[ t ][ l ];

votes[ tid ] = d[ tid ] * alpha[ t ];

}

where votes is an array of length 512 used to save the votes, and offset is a multiple of

512 used to select the appropriate block to compute. Upon completion, the individual votes

stored in votes are summed via the reduce algorithm provided as a sample in the CUDA

SDK. This process is repeated for each class parity p ∈ {0, 1, ...,K − 1} and block offset.

Fig. 4.3 compares the GPU and single-threaded CPU implementations on an Nvidia

9800GX2 and a dual-core Intel Xeon 3.2GHz. Each classifier was sampled 30 times, and

ranges from 512 to 8192 weak classifiers. The CUDA-based implementation provides a

speed-up factor of roughly four compared to the CPU method.

4.4 Results

We created a dataset consisting of seven gestures (punch-left, punch-right, sway, wave-left,

wave-right, waves, and idle) performed by ten different people. The videos were recorded

indoors against various backgrounds at 29.97 frames per second (FPS) at 720× 480 with a

stationary Canon GL2 camera. Each gesture lasted from five to ten seconds, and included

a minimum of five continuous cycles of the action. Samples of our dataset are displayed in

Fig. 4.1.

The waves and sway gestures produce motion in the lower and upper sections of the

frame respectively, and similar motion around the torso. Two pairs of gestures: punch-left

and wave-left; and punch-right and wave-right produce similar motions on their respective
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Figure 4.3: A parallel classifier implementation using the CUDA GPU programming API
provides a speed-up factor of four compared to the single-threaded CPU implementation.

Table 4.1: Calculating optical flow on a smaller resolution significantly improves efficiency,
measured in frames per second (FPS), while not significantly affecting classification accuracy.

resolution accuracy FPS mean FPS std dev
160×120 0.867 38.0 1.127
320×240 0.873 20.7 0.831

sides of the frame. While it is easy to distinguish a left pair from a right pair, determining

a wave from a punch may be more challenging.

We achieved real-time results by resizing the user-centric frame before optical flow com-

putation. We randomly selected a set of 30 videos from our dataset, and measured the FPS

based on the processing time for the complete video. Table 4.1 show a smaller resolution

gains a significant speed-up with minimal loss of accuracy, where accuracy is defined as the

percentage of the time the correct gesture receives the highest classification. The remainder

of this section is dedicated to a more detailed analysis of our results, which were obtained

using a resolution of 320× 240.

We tested the classifier by performing leave-one-out cross-validation on three different

configurations of our dataset.

1. The first configuration was a subset of gestures that eliminated the wave-left and wave-

right gestures. The punching gestures can easily be identified by motion on either the
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Figure 4.4: Precision-recall graphs for different configurations of the gesture dataset. (a) a
set of five gestures from distinct locations of the frame is performed by all ten subjects, (b)
all seven gestures are performed by all ten subjects, (c) all seven gestures are performed by
seven subjects who have minimal horizontal motion in the punching gestures.
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Table 4.2: Confusion matrix for all seven gestures performed by all ten subjects. Rows
represent the true action, and columns represent the percentage of actions returned by the
classifier.

sway idle waves punch-left wave-left punch-right wave-right
sway 1.00 0.00 0.00 0.00 0.00 0.00 0.00
idle 0.00 0.99 0.00 0.00 0.00 0.01 0.00

waves 0.06 0.00 0.94 0.00 0.00 0.00 0.00
punch-left 0.00 0.00 0.00 0.87 0.13 0.00 0.00
wave-left 0.00 0.00 0.00 0.32 0.68 0.00 0.00

punch-right 0.00 0.00 0.00 0.00 0.00 0.93 0.07
wave-right 0.10 0.00 0.00 0.00 0.00 0.14 0.76

left or right side of the frame; however, the sway and waves gestures produce motion

in overlapping areas. The precision-recall graph in Fig. 4.4(a) verifies our algorithm is

capable of recognizing this subset of gestures with both precision and recall over 95%.

2. The second configuration we tested contained all gestures, including the two waving

and punching pairs. The classification of these pairs proved to be difficult, as shown

in Fig. 4.4(b). The confusion matrix in table 4.2 shows we were able to distinguish a

left pair from a right pair, and only confused the gestures within a given pair.

3. After reviewing our dataset, we noticed that three of our subjects punched horizontally

to the sides rather than vertically. It is not surprising that those three subjects had

the poorest results; they were trained against seven vertical punchers and only two

horizontal punchers. Fig. 4.4(c) confirms that limiting our dataset to the seven vertical

punchers, and thus employing a stricter control over the gestures, increases our results.

The disadvantage of this; however, is that we must provide more detailed instructions

to our subjects.

4.5 Retraining for use on a mobile robot

The dataset used for our experiments was recorded at the eye-level of the subjects; however,

the robot-mounted camera is only 50cm from the ground. As a result, the input video from

the robot captures the subject from a different perspective, as seen in Fig 4.5. Therefore, it

is necessary to retrain the classifier with images captured from the robot’s perspective.
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(a) wave-left (b) wave-right (c) idle

Figure 4.5: Example frames from our robot-specific dataset used for training

Our robot-specific dataset consists of the gestures: wave-left, wave-right, sway, and idle.

An additional negative “junk” gesture, which contains people walking around, is used as a

negative-class to prevent false-positives. Each gesture is performed for 30 seconds by five

different subjects.

4.6 Conclusion

In this chapter we presented a real-time gesture recognition system capable of classifying

gestures. We employed a standard face detection algorithm to give a user-centric coordinate

frame in which motion features were used to recognize gestures. Our system is capable of

real-time performance. In particular, we use the CUDA API for GPU programming to

obtain an efficient implementation of our classifier. One could also use the GPU for the face

detection and optical flow computation, the other major processing needs of our system.

Our gesture recognition system is used by the robots to interpret gestures as commands;

a demonstration is presented in chapter 6.



Chapter 5

The robot: putting it together

In this chapter, we describe how the physical and software components fit together to achieve

a functioning mobile robot. In addition to building the robot, we describe a task, which is

used to demonstrate our human-robot interface.

5.1 The physical robot

We use an iRobot Create as the base of the system, as seen in Fig 5.1. The Create is a

controllable mobile robot platform targeted at educators, researchers, and hobbyists. The

Create includes left and right bumpers on the front for sensing collisions, cliff sensors to

prevent the robot from falling down stairs, a wheel-drop sensor for detecting if the robot

has been picked up, and a single short IR sensor mounted on the right side for right wall

following. The Create can detect collisions by using the front bumper; however, there are

no sensors for avoiding collisions.1

One of the ongoing projects at the Autonomy Lab at Simon Fraser University is the

Chatterbox project: the goal of the project is to build a swarm of fully autonomous robots

which manage their energy resources and recharge when necessary to stay “alive”. Jens

Wawerla, a member of the lab, has been a major driving force behind the project. Jens

developed a custom-made integration board for extending the sensors and computational

power of the Creates. During the summer of 2009, members of the lab participated in

a “build-fest” involving three consecutive exhilarating days of soldering and component

1except for the single sensor used for right-wall following

44
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Figure 5.1: Out of the box iRobot Create

assembly; the process and results are shown in Fig 5.2. To date, 16 customized Creates,

hereby referred to as Chatterboxes, can proudly be seen whizzing and whirring about in our

lab.

Figure 5.2: Photos from the Chatterbox build

The Chatterbox’s integration board, seen in Fig 5.3 is controlled by a gumstix single

board computer, measuring 2x8cm. Features include an 802.11 wireless network interface,

five colourful LEDs, which we use for user-feedback, and six IR range sensors, used for

obstacle avoidance. The gumstix computer runs Linux, and controls the Create through a

serial connection.

One feature not provided by the Chatterbox is a video camera. Since the gumstix

computer, which is designed for low power consumption and a small size, does not offer
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Figure 5.3: Gumstix integration board attached to an IR sensors

enough computational power for video processing, we have chosen to mount a laptop with

a built in video camera on each of the three robots used in our demonstration. The final

robot configuration is shown in Fig 5.4.

5.2 Demonstration task

To demonstrate our system, we perform a robot navigation task. Three robots and a human

operator are located in a 7x10 meter room clear of static obstacles2. The robots:

1. first approach the user, who is located at a predefined location,

2. wait to be selected by the user,

3. receive a command, and

4. travel to a predefined zone which corresponds to the command they were issued.

Robots either travel to a red zone or a green zone which corresponds to the received

gesture: wave-left or wave-right respectively. Upon reaching the two meter wide circular

zone, each robot then returns to the user to await a further command. Red and green

coloured lights are placed at each zone to represent the zone location for the users – these

2the existence of other robots and the user still poses a navigational issue
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Figure 5.4: Create with custom sensor board and laptop

lights are not used by the robots in any way. The robots use a global coordinate system to

locate these zones; three unique fiducial markers are placed on the walls near each target

zone to aid robot localization, which is described in section 5.3.1. An overview of the zones

and room layout is shown in Fig 5.5.

5.3 The robot controller

The robot controller runs under Linux on the gumstix computer and interfaces with the

Create through the Autolab RAPI3 library. The primary task of the controller is to perform

navigation, but also includes gluing together the different components of the system; all

visually sensed information is first captured and processed by the laptop and then sent to

the controller over the wireless network. The laptop operates in one of two modes:

1. robot-selection and gesture recognition mode, as described in chapters 3 and 4, which

is activated when the robot is stationary and awaiting a task from the user, or

2. fiducial detection mode, which is activated when the robot is navigating to or from

any of the zones, i.e., performing work.

3Robot Application Program Interface
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Green 
Zone

Red 
Zone

Instruction Zone
(user waits here)

Figure 5.5: Robots first begin in the larger instruction zone where they are selected and
assigned tasks by a user. Then, depending on the assigned task, robots either travel to the
red zone, or the green zone. Fiducial markers are placed on the walls near each zone.

The laptop does not keep track of the robot’s state, but rather acts as a sophisticated

sensor. It can sense face engagement and classify motion-based gestures, or it can be

used to sense fiducial markers; however, it lacks the processing power to perform both

simultaneously. Therefore, the controller is responsible for switching the laptop, via a remote

procedure call, into the appropriate state as needed. A break-down of the responsibilities

of each device is shown in table 5.1.

Table 5.1: Responsibilities of the controller and laptop

Controller Laptop
obstacle avoidance
navigation
driving LEDs

← RPC →
leader election
gesture recognition
fiducial tracking

Communication between the robot and laptop occurs over the wireless network and uses

JSON-RPC. Each robot is assigned a static IP, which is known by the corresponding laptop
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– the reverse is not true. Once the computer vision program starts, the laptop connects

to the robot and identifies itself as the client. The controller can then set the laptop into

either mode: gesture or fiducial.

Fig 5.6 provides an example of a typical communication exchange. We assume the robot

is already located in the “instruction-zone” awaiting a command. The communication is

broken down as follows:

1. first, the laptop connects to the controller and identifies itself as the client,

2. the controller responds by setting the laptop to the appropriate mode: in this case,

the gesture mode,

3. once in the gesture mode, the laptop continually sends the controller updates, at 3

hertz, on whether or not the robot won the leader election,

4. if a gesture was detected while the robot was selected, then the laptop sends the

gesture to the controller,

5. once the gesture is received by the controller, the robot enters the navigation mode,

and switches the laptop to the fiducial mode, and finally

6. as the robot navigates about the room, if the laptop detects a fiducial, the laptop

sends the corresponding information which is used to localize the robot.

For further information on the commands used in our system, refer to appendix A which

has a complete list of the RPC methods.

5.3.1 Localization

In order for the robots to drive to and from assigned zones, some form of localization is

required. There is a large literature on mobile robot localization (and mapping) [95]. Our

robots use a shared global coordinate system to navigate between different zones. Three

unique fiducial markers are strategically placed on the walls near each zone. As the robot

moves, the fiducials may or may not be visible by the robot. If a fiducial is detected, then a

global position is estimated based on the detected size and normal of the fiducial, otherwise,

a wheel encoder is used to update the estimate of the robot’s position relative to last seen

fiducial.
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Controller Laptop

init()

setmode( "gesture" )

face( x, score )

gesture( gesture )

setmode( "fiducial" )

fiducial( x, y, z )

Figure 5.6: Network timing diagram
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The robot’s odometry, which is calculated by measuring the number of wheel revolutions

with the wheel encoders, is used for measuring the robot’s position relative to a starting

position. Odometry-based localization works well for short-term distances; however, since

odometry is computed by integrating motions of movement, small amounts of error intro-

duced at each integration step will accumulate and lead to unusable long-term data. It

is therefore critical that the robot’s position is periodically corrected; our system corrects

odometry errors by resetting the robots position whenever a fiducial marker is detected.

To demonstrate our robot’s localization implementation, consider a right-wall-following

task. The robot is located in an enclosed rectangle, as seen in Fig 5.7(a), and indefinitely

drives parallel to the wall. When an obstacle is detected in front, the robot first turns to the

left to avoid the wall, then continues to drive forward. Raw odometry from a single wall-

following cycle, displayed in Fig 5.7(b), shows that the wheel-encoder records a smaller angle

( < 90 degrees) compared the 90 degree turn the robot actually performed. The position

error, most noticeably introduced at each turn, accumulates over time and ultimately leads

to unusable data, as illustrated in Fig 5.7(c). In the following sections, we will explain how

we correct the raw odometry in order to produce a usable robot path as displayed in Fig

5.7(d).

Fiducial markers

Unique fiduciary markers, shown in Fig 5.8, are mounted on the wall in known locations;

The global coordinate and orientation of each fiducial is given to each robot a priori. We

use the ARToolkit software library [46], which provides a template matching based fiducial

detector. The detector extracts a unique ID corresponding to the detected fiducial, and

estimates both the distance to the fiducial and the normal. With the distance, normal, and

the fiducial’s global pose, which is looked up in a table based on the unique ID, the system

is capable of estimating the global pose (x, y, a) of the robot:

a = adetected + ainitial

x = xdetectedcos(a)− ydetectedsin(a) + xinitial

y = ydetectedcos(a) + xdetectedsin(a) + yinitial

where xdetected, ydetected, adetected represent the detected fiducial pose, relative to the

robot, and xinitial, yinitial, ainitial are the components of the fiducial’s known global pose.
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Figure 5.7: The need for odometry correction is illustrated by a (a) small wall-following
experiment. (b) The start and end points of a complete cycle inside the boxes do not line
up. (c) Overtime, small errors (especially rotational) accumulate in the raw odometry, which
is unusable on its own; (d) however, it can be corrected every cycle when a fiducial marker
is detected; an extended Kalman filter is used to smooth out errors.
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Figure 5.8: A wall-mounted ARtoolkit fiducial used for localization

The robot’s orientation is first estimated by looking up the given global orientation of the

mounted fiducial. If the fiducial was detected at an angle, i.e. not head on, then the detected

angle, which is relative to the global orientation, is added. Once the robot’s global orienta-

tion is estimated, the detected distance and offset is treated as a vector (xdetected, ydetected)

which is rotated about the robot’s orientation a. This rotated vector is relative to the fidu-

cial’s known global pose, and must therefore be added to the given pose of the fiducial in

order to estimate the robot’s global pose.

The estimated pose of the robot can be erroneous and may contain noise. Ideally, a

perfect fiducial detector would constantly estimate the correct pose without any variance;

however, our detector is not perfect and produces many estimates. Fig 5.9(a) shows the

estimated pose of a stationary robot observing a wall-mounted fiduciary marker: black

circles indicate the (x, y) pose of the robot relative to the fiducial, which is indicated by

a red triangle. The plot immediately shows that we can not always trust the estimated

pose; however, if we assume the estimated pose errors are normally distributed along the

arc, then we can safely assume the average estimated pose is likely to be correct. Further

investigation of the density distribution of the estimated orientation of the fiducial, plotted

in Fig 5.9(b), shows a Gaussian-like distribution.

Kalman filtering

We filter the detected robot pose with a Kalman filter [45]. The Kalman filter is a recursive

filter used for estimating the state of a linear dynamic system based on a series of noisy

measurements. The filter assumes that all noise in the system is Gaussian and independent,
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(a) Pose estimates of a stationary robot (black circles)
observing a single wall-mounted fiducial (red triangle)
appear to be normally distributed along a circular arc
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(b) Density plot of orientation estimates of the fiducial
relative to a stationary robot

Figure 5.9: A sample of pose estimates of a stationary robot observing a wall-mounted
fiducial marker
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and merges all sensor data together by minimizing the mean of squared error.

Our system’s fiducial detector appears to have Gaussian noise (as previously shown in

Fig 5.9); however, since our fiducial detector can only estimate a pose periodically, when

a fiducial is visible, our system is not linear. Therefore we use an extended Kalman filter

(EKF) to overcome this limitation. The EKF used in our system was adapted from a sample

given in Probabilistic Robotics [96, p. 204].

5.3.2 Navigation

Our robots achieve obstacle avoidance with the nearness diagram (ND) algorithm [63]. ND

navigates the robot from its current position p to a goal position p′ while avoiding both static

and dynamic obstacles. The algorithm computes free-walking areas which are safe for robot

navigation, by searching for “gaps” between obstacles. Large differences in range sensor

readings between contiguous sensors are used to detect a gap, or edges of obstacles. Once

all gaps have been detected, “regions” are identified by contiguous gaps. ND then selects

an appropriate region which directs the robot towards the goal, but away from obstacles.

Group formation

When the robots approach the user for further instructions, the robots arrange themselves

in a circular-arc arrangement around the user. This arrangement, as seen in Fig 5.10(a),

provides a direct line of sight between the human and robots to aid task assignment without

forcing the user to move about the room. This arrangement is simply formed by having

all the robots navigate to a single goal point p′; however, once the robot is 4 meters away

from p′, the robot stops and considers itself at the goal. The robot then orients itself in

the direction of p′. If a stationary robot is already located along the circular arc, then the

navigating robot will detect the stationary robot as an obstacle, and will navigate around

it. ND will steer the robot around the stationary robot, and will then redirect it to p′ once

a free-walking region has been found. Eventually the robot will have cleared the obstacle

and will halt once it has crossed the circular arc as shown in Fig 5.10(b).

Once the robots have stopped somewhere along the circular arc, 4 meters away from

the user, the robots will orient themselves towards p′. If a face is detected, then the robots

will pivot in order to center the face in the video camera frame. This ensures that the

motion-based gestures will be captured when the user waves his or her hand.
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(a) Three robots awaiting instruction in
a circular arc formation. The arrow rep-
resents the currently selected robot

(b) Robots form a circular arc
by driving towards a single point
and stopping 4 meters away

Figure 5.10: Robots form a circular arc formation by stopping 4 meters away from a single
shared point

5.3.3 Controller summary

Pseudo code giving a high-level summary of the robot controller’s navigation, can be found

in Algorithm 3. A flowchart diagram in Fig 5.11 illustrates the components of the vision

processing system.

5.4 Conclusion

In this chapter, we gave an overview of how the physical robot was put together. We

described the layout of our environment the robot was designed for, and gave an overview

of a demonstration task which we will use to showcase our system. We also described how

the various models fit together to form the robot controller.
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Algorithm 3 Robot navigation controller
1: if working = true then
2: if distance to p′ < 2 then
3: working = false
4: p′ ← phuman

5: else
6: Drive to goal p′ (with ND)
7: end if
8: else
9: if distance to p′ < 4 then

10: pivot to center detected face
11: if gesture = "left" then . set by the laptop if it won the election
12: p′ ← pred

13: working ← true
14: else if gesture = "right" then
15: p′ ← pgreen

16: working ← true
17: end if
18: else
19: Drive to goal p′ (with ND)
20: end if
21: end if
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Figure 5.11: Flowchart of the leader election and motion-based gesture recognition process



Chapter 6

Discussion

6.1 Demonstration

We have tested our system with 7 participants who were not involved with the development

of the system. Three of the participants were members of the Autonomy Lab, and the other

four were SFU students or faculty who were not associated with our lab. A single partic-

ipant interacted with the robots at any given time. The goal of the demonstration task –

to investigate the feasibility of using face engagement and motion-based gestures for com-

manding an individual robot in a multi-robot system – was explained to each participant. A

brief overview of the demonstration task, as described in section 5.2, was orally explained to

each participant. The explanation introduced the participant to the human-robot interface

and instructed the user to:

1. first select a robot by looking at it, then once the robot started to glow,

2. direct the robot to one of two zones: a green zone, by waving your right hand, or a

red zone, by waving your left hand.

Each participant was asked to command two robots to the same zone, and to command

the third robot to the other zone. Once the robots reached the zone, they returned to the

user. Participants were then encouraged to assign new tasks to returning robots as they saw

fit. Some participants waited for all three robots to return before assigning tasks, where as

others decided to immediately assign new tasks as each robot arrived. Cases where users

waited for all robots to return allowed us to better gauge the effectiveness of face engagement
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for robot selection (since the leader election was between three robots). However, since each

trial began with all three robots waiting for tasks, we were able to observe each participant

selecting a robot from the group of three robots at least once.

Throughout the demonstration, a total number of 77 tasks were assigned to the robots.

The next two sections are an informal description and discussion of the performance of the

human-robot interface and is split up between robot selection (selecting a particular robot),

and task designation (assigning the task to the selected robot). A comprehensive user study

is beyond the scope of this thesis.

A three minute video [17] of our demonstration was published in the video track of the

5th annual ACM/IEEE International Conference on Human-Robot Interaction (2010), and

is available at http://www.cs.sfu.ca/∼vaughan/movies/hri10.mov

6.2 Robot selection

Our leader election algorithm performed as intended: only a single robot ever responded,

by glowing, at a given time. In some cases no robots were elected due to equal face scores

resulting in a tie. In these cases, participants were encouraged to reposition themselves to

break the tie. Ties occurred when two robots awaiting instructions were located very close

to each other as illustrated in Fig 6.1(a); however, once the user approached a particular

robot, as illustrated in Fig 6.1(b), the angle at which the user had to turn his or her head

increased, resulting in a single robot seeing a full frontal face.

In some cases, rather than re-engage one of the two side by side robots, users appeared to

be discouraged by a tie and simply tried to select a third robot which they did not originally

intend to select.

The face detector implementation provided with OpenCV worked well provided the faces

were not too far away from the camera. In our demonstration, the user was at most 4 meters

away from the camera and was in a well lit environment. Even with the camera pointing

upwards towards the overhead lights, the system was still able to detect faces.

To provide visual feedback, the selected robot would glow with randomly alternating

colours. Unfortunately the laptop partly covered the LED which made it hard to see for

taller participants. We tried using the laptop’s screen as a giant “LED” to provide feedback,

but users reported that it was not as satisfying as the glowing LEDs.

Initially, two of the seven participants were unsure which robot was selected and issued
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(a) Standing too far from the robots
creates a small angle between the line
of sight between each robot. Each
robot sees a very similar face, result-
ing in equal face scores

(b) Moving closer to the robots in-
creases the angle the user must turn
their head between robots. The
robots see different sides of the face:
one sees a frontal face, the other
sees a profile, thus producing different
scores.

Figure 6.1: Varying the distance between the user and two closely located robots can be
used to break ties.
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commands before any robot had started to glow. However, after we encouraged them to

move closer to the robot (and into its video-frame), these two participants were able to

command the robots. In other cases, the robots were too close to both the wall and the

user, ultimately forcing the user’s back up against the wall. These localization-related

problems forced the participants to squat down in order to be in the robot’s field of view.

In addition to using the laptop to display the same colours as the LEDs, the laptop

displayed a copy of the video feed captured by the webcam. This video screen provided

the users with visual cues used to help center them in the frame; however, in some tri-

als the screensaver became active and participants could no longer rely on the video-feed.

Nonetheless, all participants were able to select their intended individual robot.

6.3 Task designation

Participants then assigned tasks to the selected robot with a motion-based hand gesture.

We explicitly demonstrated the two gestures: left hand waving, and right hand waving,

hereby referred to as wave-left and wave-right respectively. Using hand waving gestures to

assign robots location dependent tasks proved to be challenging in three cases:

1. two of our participants, at first, extended their hands to point left or right rather than

wave their hands in a continuous motion,

2. the full hand waving motion of participants who were located too close to the robot,

was never captured by the video camera, and

3. the one second optical flow history window required for gesture recognition gave the

interface a slow feel.

The accuracy of the system was good: 74 out of 77 commands were correctly executed.

The 3 errors occurred when a user issued a command to a robot, and then quickly selected

a different robot. This resulted in the newly selected robot classifying the previously is-

sued gesture based on the motion features stored in the optical flow history window. This

unintended behaviour could be remedied by reinitializing the optical flow history window

whenever a robot is not elected.

To avoid classification errors, robots used a high classification threshold. Choosing a

high threshold gives a high level of precision, which prevents the robots from incorrectly
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classifying a command resulting in opposite behaviour; however, setting the threshold too

high limits our level of recall which became an irritant to some participants. After some

exposure to the system participants were able to fine tune their gestures to achieve quicker

recognition. Providing some sort of feedback mechanism may have decreased the interface’s

learning curve.

6.4 Navigation

The system occasionally suffered from poor localization issues. The fiducials were difficult for

the robots to see from the center of the room, and the odometry of the Creates accumulated

error quickly. The poor odometry may have been related to the 5.5 lbs laptop which caused

the rear caster to drag whenever the robot turned. Without any ground truth robot position

data, it is difficult to truly assess the quality of our navigation; however, the system was

usually able to navigate between our purposely large radius zones.

Collisions between robots (sensed by the bumpers), however, were so detrimental, that

the robots had to be subsequently repositioned in view of a fiducial before they would

localize correctly. Fortunately, collisions were not too common in our system. During

the demonstrations, only 4 collisions were observed on our recorded footage. The laptops

mounted on the robots hang over the body and bumper of the robot; in one humorous

collision, a laptop’s DVD eject button was triggered. Partly due to this fact, we decided to

limit the driving speed to a slow 0.2 m/s.
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Conclusion

In this thesis, we presented a computer vision-based human-robot interface for selecting and

commanding an individual robot from a multi-robot system. A user first selects a robot

with face-engagement by simply looking at it. As described in chapter 3, we employed a

standard frontal face detector to detect the user’s face. The detected-face score of each

robot is used in a distributed leader election algorithm to guarantee at most a single robot

is selected.

Once a robot has been selected by the user, it can then be commanded by using a

motion-based gesture. In chapter 4, we described a real-time classifier which uses motion-

cues to discriminate between gestures. Optical flow is cropped in a user-centric region, and

classified with a learned adaBoost classifier.

In chapter 5, we described how these two vision components were combined with a

customized Create robot. A demonstration task was described to investigate the feasibility

of using face engagement and motion-based gestures for commanding an individual robot in

a multi-robot system. A discussion of our demonstration in chapter 6 showed that our face-

engagement based leader-election could be used to select an individual robot, which could

then be commanded to autonomously travel to one of two zones by using motion-based hand

gestures.

7.1 Contributions

There has been little work in the human-robot interaction field related to interactions with

multi-robot systems. Our vision-based human-robot interface for selecting a particular robot
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from a group of robots is a contribution – the first of its kind.

We contribute an observation that it is possible to estimate which camera a user is

looking at by comparing the detected-face score from a frontal face detector.

Our final contribution is a real-time motion-based gesture recognition system used for

commanding robots.

7.2 Future work

A proper user-study with a larger number of participants would be the next step for eval-

uating the system; however, the observations so far suggest some useful improvements: the

human-robot interface could first be improved by providing a better feedback mechanism.

The use of LEDs works well for quickly determining the current robot state; however, it

would be valuable to see how users respond to an anthropomorphized robot with eyes.

Rather than using glowing LEDs, the robot’s “eyes” could be used to show readiness for

a command by mimicking bi-directional face engagement (e.g. [74]). This could easily be

implemented with virtual eyes on the laptop screen.

Mounting a laptop on the robot was cumbersome. It obscured the robot LEDs and

the underlying robot controller software. Velcro is a wonderful technology; however, a

better laptop mounting solution (or embedded computer) which does not allow laptop–

laptop collisions could be created. Better localization could be achieved using scanning

laser rangefinders.

An extension to this system would be to allow users to first select a subset of the

robots and then assign that selected group a particular task. The set of gestures could also

be extended to allow more dynamic tasks, such as the ability for a user to point to any

direction or arbitrary place in the environment, and have the robots drive to that location.

Detecting pointing gestures and estimating the corresponding vector and intersecting point

on the floor has been done for a single robot system (e.g. [52, 60]); however, a challenging

task would be to coordinate multiple robots to cooperatively estimate the vector given the

system’s ability to simultaneously capture images of the user from multiple angles.

In addition to commanding robots with gestures, speech could be used. A user could

first select a robot with face-engagement and then utter a command.
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7.3 Final comments

Our system provides a proof of concept demonstration that shows it is possible to use face

engagement and motion-based hand gestures to select and command an individual robot

from a multi-robot system.

As robots become more common in our homes, workplaces, and our society in general,

human-robot interactions will become a frequent occurrence. It is therefore important to

develop natural and intuitive interfaces to effectively communicate with robots. Face en-

gagement plays a important role in human interactions, and we believe it is a key aspect in

creating natural human-robot interactions, as suggested by our system.



Appendix A

RPC methods

This appendix lists the remote procedure calls (RPCs) which are used to communicate

between the robot controller, which runs on the Chatterbox’s gumstix computer and the

laptop, which is responsible for the computer vision related capture and processing. Both

controller, and laptop implements a TCP and UDP server; the RPC messages they respond

to are documented in the following two sections.

A.1 Controller RPC definitions

init()

Arguments

(none)

Return

{} (empty object)

Description

Initialization call made to register laptop’s IP with the controller.
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gesture( gesture )

Arguments

gesture (string) detected gesture

Return

{} (empty object)

Description

Called by the laptop whenever a gesture is detected and the robot is elected (i.e. selected

by a user).

fiducial( x, z, angle, id )

Arguments

x (double) horizontal off-centered location of the fiducial relative to the

center of the captured image (in meters)

z (double) distance from camera to fiducial (in meters)

angle (double) orientation of the fiducial relative to camera (in radians)

id (int) fiducial identifier

Return

{} (empty object)

Description

Called by the laptop whenever a fiducial is detected. Robot odometry is corrected based

on the estimated position and orientation which are relative to the known position of

the fiducial, identified by id, which is given a priori.
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face( x, elected, score )

Arguments

x (double) horizontal off-centered location of the detected face relative to

the center of the captured image (in percentage ranging from -0.5 to

0.5)

elected (boolean) whether or not the face is elected

score (int) score of the detected face

Return

{} (empty object)

Description

Called by the laptop whenever a face is detected. If elected is true, then the robot

glows. The value of x is used to pivot the robot in order to center the camera on the

face.

A.2 Laptop RPC definitions

setlight( r, g, b )

Arguments

r (int) value of the red channel, ranging from 0 to 255

g (int) value of the green channel, ranging from 0 to 255

b (int) value of the blue channel, ranging from 0 to 255

Return

{} (empty object)
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Description

Called by the controller to sync up the LED colours of the robot with the colours

displayed on the laptop screen.

join()

Arguments

(none)

Return

{ next : (string), tokenid : (string)}: an object containing the next node in

the ring, and a tokenid used to validate messages passed in the ring.

Description

Called by laptops wishing to join a pre-existing ring. Only laptops which are the owner

of a ring will respond to this RPC.

update( next, tokenid )

Arguments

next (string) next node in the ring to pass messages to

tokenid (string) an id used to validate messages passed on the ring

Return

{} (empty object)
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Description

Called by ring owners whenever a node joins or leaves the ring. Only nodes which are

currently connected to a ring respond to messages received only by the appropriate ring

owner.

token( value )

Arguments

value (election tuple object {uid : (string), score : (int)}) election tuple used

for electing a single robot as the selected robot

Return

{} (empty object)

Description

Called by the previous node in the ring during an election. If a node receives a message

containing its own UID, then it is declared the elected node. Otherwise, if the score is

less than or equal to the nodes score, then it replaces the value of uid and score with

IP address and its own score respectively.
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