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ABSTRACT

Spatial classification is the task of learning models to predict class labels for spatial entities based

on their features as well as the spatial relationships to other entities and their features. One way to

perform classification on spatial data is to use a multi-relational database, by transforming the

spatial data into multi-relational data, and then applying Inductive Logic Programming (ILP) onto

it. However this presents novel challenges not present in multi-relational data mining problems.

One such problem is that spatial relationships are embedded in space. When applying a multi-

relational data mining algorithm, the algorithm needs to determine which relationships are

important and what spatial features of the entity to consider. In order to determine when two

entities are spatially related in an adaptive and non-parametric way, a Voronoi-based

neighbourhood definition is introduced in this thesis upon which spatial literals can be built.

Compounding the complexity is the need to use aggregation since the effect of a single spatial

entity is negligible when in the neighbourhood of hundreds or thousands of other such entities.

Properties of these neighbourhoods also need to be described and used for classification purposes.

Non-spatial aggregation literals already exist within the multi-relational framework of ILP, but

are not sufficient for comprehensive spatial classification. This thesis adds a formal set of

additions to the ILP framework, to be able to represent the aggregation of multiple features,

spatial aggregations as well as spatial features and literals. These additions allow for capturing

more complex interactions and spatial occurrences such as spatial trends.

In order to more efficiently perform the rule learning and exploit powerful multi-processor

machines, a scalable parallelized method capable of reducing the runtime by several factors is

presented. The method is compared against existing methods by experimental evaluation on

several real world crime datasets.

Keywords: spatial data mining; multi-relational; spatial classification; aggregation;
parallelization; Voronoi Diagrams

Subject Terms: Multi-Relational Data-Mining, Algorithms, Experimentation, Theory
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CHAPTER ONE:
INTRODUCTION

Will a specific house be burgled, or a new mall yield profit? How do profitable malls differ from

non-profitable malls? Are they located near businesses, or in neighbourhoods with high income

levels? How can knowledge about existing profitable and non-profitable malls allow for the

selection of locations which are likely to be profitable? These are inherently spatial problems

which rely on the interaction of spatial events that must be found and accounted for. Non-spatial

analysis is not capable of capturing these interactions, and hence non-spatial analysis methods

must be adapted or new ones created in order to work in the spatial domain [67]. In non-spatial

domains this type of analysis has been available, but with the large quantity of spatial data being

captured, the need is there to discover these models in the spatial domain. These models would

allow for describing the differences between instances of spatial data (ex: malls) belonging to

different groups (ex: profitable/not-profitable) and then predict the group membership for those

instances for which group membership is not known. In this thesis, a novel spatial classification

method is introduced to answer such questions.

Spatial data mining is defined as the “nontrivial extraction of implicit, previously unknown, and

potentially useful information from (spatial) data” [40]. Data mining is also viewed as a step in

the process of Knowledge Discovery in Databases (KDD) of which the goal is to find knowledge

in data [34]. In this process, once the data is prepared and pre-processed, an algorithm is applied

to the data which analyzes it to discover interesting knowledge in the form of patterns. This

algorithm is the data mining algorithm, an algorithm designed to find patterns in data.

In general, the database shown in Figure 1 is used as the running example in this thesis. The

Malls Roads Houses Owner

ID ID ID ID
# Employees # Lanes Size Name

# Managers Type Value Age
Profitable (label) Speed Limit Income Gender

SHAPE SHAPE SHAPE

Figure 1 – Sample spatial database schema
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database is spatial since it contains information about three spatial and one non-spatial entity-

types. Note the lack of (non-spatial) relationships between the spatial entities. Each spatial entity

has a shape feature that contains the polygonal representation of the entity, from which the area,

perimeter, location and other spatial features can be derived.

1.1 Data Mining

The underlying foundation of many data mining problems is a database. A database is a collection

of facts about some domain(s) in the real world structured according to a database schema. Its

aim is to organize the data in a logical format that can be queried and searched in an efficient

fashion. For example, it can contain information about customer purchases at a store, student

grades or information about houses.

There are many interesting data mining tasks that can be performed on a database [5, 100, 30, 87,

107, 53, 55]. These tasks include the identification of groups that are similar to each other, called

clusters, or identifying individual pieces of data, called outliers, which do not fit well with other

pieces of data. This thesis is focused on classification, which identifies patterns within the data

that may yield a better understanding of the domain(s) depicted by the database. The process

involves the analysis of the datasets within the database, made of individuals called entities, by

applying conditions on the data which match certain portions of the dataset, called a subgroup.

For example, malls which contain a bank would be such a subgroup. Not all subgroups are

interesting, but there are those that are different from the rest of the dataset in some aspect that

will make that particular subgroup interesting. For example, if the malls subgroup that satisfy

contain a bank also happen to have the property that they are profitable, it is now reasonable to

conclude that there might be a dependency between the properties contain a bank and profitable.

Due to the large amount of entities and features, it is impossible to identify such dependencies

manually. The goal of a spatial data mining algorithm is to identify these dependencies

automatically.

Individually such a dependency would not be so interesting, as it usually describes only a small

portion of the entire dataset. Hence the goal of this task is not to discover individual distinct

dependencies, but multiple subgroups each with multiple different dependencies. A collection of

such subgroups can describe a significant portion of the dataset, and is known as a model. A

model is useful because it describes the entire dataset, and not the individuals in it, and hence

allows for reasoning about the entire dataset. Even better, if the dataset is large enough to

represent a realistic sample of the real world, then the model can be used to predict additions to
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the real world, such as a model describing the profitability of malls used to estimate the

profitability of different locations for a potential new mall.

1.2 Propositional Data Mining

In propositional data mining [50, 89], a database S contains information about a single entity-

type, represented as ti. Each type ti contains a set eiϵ{ei,1,ei,2,…,ei,q,…,ei,Q} of Qi distinctly

identifiable entities. For example, a database containing people would have a Person as a

distinctly identifiable thing (Figure 2). An entity is uniquely identified by some feature(s) called

the Primary Key, simply denoted using functional notation as ID(ei,q, I) where ei,q is the input

entity, and I is the output variable representing the ID of ei,q. All entities in this type of data are

described by a fixed set of features, age for example, where each feature g is written in functional

notation as g(ei,q, G), where the variable G has value corresponding to the result of function g

applied onto ei,q. For example, the age of person P4 can be written as:

age(ePeople,P4, A), A=17.

This type of database contains no relationships between any of the entities, or any other entity-

types.

1.3 Multi-Relational Data Mining

Most existing data mining methods are propositional, and hence unfortunately do not work with

many current databases, which contain multiple tables, such as those typically required for spatial

data. Current databases need to store data that is simply too complex to be expressed as a single

type of entity, or could contain relationships between entities. Propositional data mining in these

cases is replaced by Multi-Relational Data Mining (MRDM) [5, 100]. MRDM works with data

stored in a multi-relational database that contain |T| types of entities, Tϵ{t1, t2, …, t|T|}, as well as

(a) People

P_ID First Name Last Name Age

P1 Mark Doe 34

P2 John Smith 45

P3 Betty Smith 39

P4 Fred Flint 54

Figure 2 – A typical propositional database
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the relationships between these entities. In this type of database, all the relationships between the

entities are explicitly given and are expressed through the use of Foreign Keys (FK) which

reference the Primary Key (PK) of other entity-types. Figure 3(a) illustrates an entity-type in a

multi-relational dataset which (b) references. In this example, the column ‘P_ID’ of House is

acting as the FK column since it references values from the PK feature of People.

It is not trivial to extend techniques that mine propositional data so that they work efficiently and

accurately on multi-relational databases [26, 5, 100]. One alternative is to convert the multiple

relationships and entity-types to a single relation, the so-called universal relation (Figure 4), that

represents all of the data in the database. The result of this process can be huge, contain much

duplicate information and still loose essential information [100, 101]. For example, if similar

entities are grouped, a single entity might end up in multiple groups even though conceptually it

is a single entity. Assume two groups are created: G1={H1, H3} and G2={H2, H4}, i.e.: people

with a house worth <$200,000 and >$200,000 respectively (groupings shown in Figure 4). While

this is a valuable grouping, Person P1 would belong to multiple groups since he owns houses of

both types. Aggregation would be able to resolve this predicament but if House was to be

aggregated (resulting in Figure 5) then the fact that ‘John Smith’ owns multiple houses is lost.

(a) People (b) House

P_ID First Name Last Name Age H_ID P_ID Value Size

P1 Mark Doe 34 H1 P1 60,000 400

P2 John Smith 45 H2 P1 240,000 1500

P3 Betty Smith 39 H3 P2 120,000 500

P4 Fred Flint 54 H4 P3 232,000 800

Figure 3 – Sample multi-relational table

People-House

First
Name

Last
Name

Age Value Size

Mark Doe 45 60,000 400 G2

Mark Doe 45 240,000 1500 G1

John Smith 34 70,000 500 G2

Betty Smith 39 232,000 800 G1

People-House aggregated

First
Name

Last
Name

Age Average

Value

Total

Value

Size

Mark Doe 45 150,000 300,000 400

John Smith 34 70,000 70,000 500

Betty Smith 39 232,000 232,000 800

Figure 4 – Universal relation Figure 5 – Aggregated table
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Even if the aggregation function count of houses is added, it would still not be possible to

discover rules which involve the fact that ‘John Smith’ owns one expensive and one inexpensive

house. In most cases, some form of information gets lost when aggregating.

As another example where propositional data mining methods fail on multi-relational data,

consider the self-referencing recursive (but still multi-relational) database in Figure 6, denoting

parent-child relationships between the different entities within the People entity-type. Creating a

‘universal entity’ for this database consists of doing a self-join, possibly multiple times, to create

the hierarchy of parent-child relationships over multiple generations. Creating the self-join,

Figure 7, introduces multiple features of the same name which would have to be kept track of

during data mining. The number of self-joins could also get very large creating a ‘wide’ table

with lots of features and duplicate information. In fact, all features outside of the first four

features (of Figure 7) contain duplicate information since they exist in the original People (Figure

6). Aside from duplicating the information in ‘new’ features, a person with two parents would

create almost-identical tuples in the database. In this case, the main problem would be how to

modify the algorithm to handle the identification and duplication of information.

1.4 Propositionalization of Multi-Relational Data

People

People_ID First Name Last Name Age

P1 John Smith 45

P2 Mark Doe 60

P3 Betty Smith 39

P4 Julie Beth 17

Parent_Child_Relationship

Person Parent_of

P1 P4

P2 P1

P3 P4

Figure 6 – Recursive multi-relational database

People_Child_Joined

First
Name

Last
Name

Age First
Name

Last Name Age First
Name

Last Name Age

Mark Doe 60 John Smith 45 Julie Beth 17

Betty Smith 39 Julie Beth 17

… … … … … … … … …

Figure 7 – Result of self-joining a recursive multi-relational table
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An approach to reduce the duplicate information contained in the universal entity is to transform

the information from the multiple related entities into features of the entity used for classification.

The transformation can make use of different aggregation functions, such as sum or max, for each

feature. After this, conventional data mining techniques can be applied. This process is called

propositionalization or constructive induction. Multiple algorithms, such as RSD (Relational

Subgroup Discover) [62, 103], SINUS [60] and RELAGGS [58] take this approach of introducing

aggregate features. According to the authors in [103], this approach is relatively successful in

practice.

This technique however has a major weakness. Once the set of features are introduced, they are

fixed. Data-mining algorithms might introduce conditions which invalidate the pre-calculated

aggregate features. New techniques must be employed in order to effectively mine multi-

relational (MR) databases by taking advantage of all the other entity-types represented in the

database including the relationships between them. CrossMine [100] is one such MR data mining

algorithm. The user selects the entity-type tτ that they are interested in, and in order to build

subgroups, the algorithm attempts to add conditions onto this entity-type, and all other entity-

types related to tτ. There is an important pre-requisite for these algorithms: the relationships

between the entities must be known. This however does not hold for spatial data.

1.5 Spatial Data Mining

A spatial entity is an entity that also contains a spatial feature. A spatial feature describes the

spatial properties of an entity such as area, location, perimeter, and contains coordinates (for

example, longitude and latitude) that identify a specific location for the entity. A simple spatial

entity could consist of a single coordinate defining a point in space, while a more complex spatial

entity can contain multiple ordered coordinates that define the linear path that a river forms, or

even the entire boundary of the river. Non-spatial features are explicitly stated within the database

(as in MRDM), while spatial features are only implied by the spatial location of the entity or its

embedded point/line/polygonal representation.

At the database level, in contrast to multi-relational databases, spatial data lacks the explicit

relationships between the entities. All entities are embedded in a 2D or 3D space, a map for

example, and even though the relationships are not specified in the database, a relationship could

exist between entities ei,q and ej,r. This relationship, denoted as β(ei,q, ej,r), could take many forms,

for example, close, distance of 6km, or travel time of 5 minutes. The relationship is implicit,
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namely implied by the spatial location and possibly influenced by other entities near them (for

example, a road influences travel time between two entities). In order to apply a MRDM

algorithm, the relationships need to be made explicit. Due to the relational nature of spatial data,

it is logical to approach the data mining tasks as if one were to perform data mining on a multi-

relational database. Although a number of techniques employed in this thesis indeed stem from

the multi-relational domain, it is going to be shown that the MR techniques are not expressive

enough and novel methods are required to deal with the unique issues of the spatial domain.

One of these differences between MR and spatial data is in the way relationships between entities

are defined. In an MR database, the relationships are explicitly given, but with spatial data,

relationships are only implied through the spatial location of the entities themselves. If all

possible spatial relationships are considered then the number of combinations between each entity

becomes quadratic which is prohibitively expensive to compute for large datasets/maps [2]. The

data mining algorithm must cut down this search-space and possibly only consider

neighbourhood relationships, which presents the problem that generally it is not known a-priori

what the suitable neighbourhood relationships are. Another factor to consider when trying to

figure out which entity is a neighbour to which other entity: the influence between spatial entities

differs based on how close they are. This is according to Tobler’s First Law Of Geography which

states that ‘everything is related to everything else; but that near things are more related than

those far apart’ [95, 59, 32]. The question becomes “When do ‘near things’ become far enough

apart that their influence over each other becomes negligible?”. Several neighbourhood

definitions exist in the literature, but these are mediocre: they require user input and do not take

into account the number of entities or their distribution. A novel method is needed which

overcomes the shortcomings of the current methods.

As an additional complication, relationships in spatial data are numerous: for a typical mall there

are literally thousands of houses scattered nearby. Each individual relationship might be

insignificant on its own, requiring the use of some form of (spatial) aggregation. At best, the

current state-of-the-art classification methods use simple aggregation operators [52], those taking

one parameter – sum or count for example. These operators however cannot describe the

interaction between distance from mall and neighbouring household income, even though

intuitively this might be a good way to distinguish profitable malls from failures. Aggregation

operators capable of considering multiple features are required to incorporate this necessity into

the data mining method. Spatial statistical independence cannot be assumed and hence many
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statistical methods which are useful for single- or multi-relational data are not appropriate when

analysing spatial data [54]. Spatial-specific aggregation operators are needed.

A spatial database also contains spatial entities, each with a spatial component, such as a

geometric representation of the entity, which could be a point, 2D or 3D polygon, and could

contain location and perimeter. This type of information cannot be used in a multi-relational

database unless it is pre-materialized, but the information that is needed can vary depending on

the dataset and application. It usually includes distance, direction, or amount of overlap. The

authors of [87] suggested the following features to extract:

 Location, XY coordinates, longitude or latitude

 Distance relationships, such as Euclidian distance, Road-network distance, Manhattan

distance. The measures could be discretized, such as: {close, far, very far}

 Geometrical features, such as perimeter or area

 Directional features, such as {North, East, South, West} or 35° East of North

 Topological features, such as intersect, coincide, overlap

This list is not exhaustive and contains redundancy. In order to not complicate or overwhelm the

data mining task (and user!), the list of spatial features needs to be designed to be a concise

selection of spatial features without redundancy.

Spatial data mining is also a computationally intensive process; there are many entities and

possibly millions of neighbourhood relationships between them. For example, one of the real-

world datasets used for this thesis contained over 60,000 entities, but the number of relationships

was on the order of 3-4 million, depending on the neighbourhood definition used. In existing

algorithms, the data mining is performed serially, with each neighbourhood relationship explored

one after the other [100]. This type of algorithm is inefficient since it is unable to exploit the

available processing power of the multi-processor machines available today.

1.6 Spatial Data to Multi-Relational Data

This thesis will present a way of formulating the spatial classification task as a multi-relational

(MR) classification task. As a common way of representing multi-relational classification, the

Inductive Logic Programming framework will be used to represent the results of the spatial data

mining. Spatial data is different from MR data. In MR databases, the database contains all the

information in explicit form, whereas with spatial databases, much of the information contained
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in the database itself is implicit. This implicit information must be explicitly stated somewhere in

the database in order for MR classifiers to be able to properly handle the data.

Probably the biggest reason MR classifiers cannot be applied to spatial data is because these

algorithms were designed to take advantage of all explicitly stated features within the database.

With spatial data, the relationships between the entities and features of both the relationships and

the entities themselves are missing. A way must be found to extract the relationships and features,

then store them in the database, and only then can a multi-relational classifier can be applied. The

approach in this thesis extracts the relationships between the entities via Voronoi-based

neighbourhood definitions, and then extracts a carefully selected set of features from the entities

and from the relationship between them. This process (Figure 8) converts a spatial database into a

multi-relational database, appropriate for a MR classifier to mine for classification rules.

Although the spatial database itself can be converted into a multi-relational database, the MR

classifier also needs to be enhanced in order to deal with the peculiarities of spatial data.

According to established laws (for example, Tobler's First Law of Geography [95]), and to

statistical approaches (for example, those presented in Cressie [24]), entities in space influence

each other to different degrees based on the distance between them. The classifier must be

modified in order to handle these influences. Currently no data mining algorithm does this in an

Figure 8 – Converting a spatial database to multi-relational database
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exhaustive, but generic, way. The approach in this thesis is capable of capturing these interactions

either by performing multi-feature aggregations (for example, covariance between two features of

a set of entities), or calculating spatial aggregations (such as spatial trends).

Thus, the spatial database is first transformed into a multi-relational database, and then a

classifier, based on an established MR classification algorithm, is extended and applied. This

allows the modified-MR classifier to take all the benefits and strengths of a multi-relational

classifier and apply them to spatial data. In the end an aggregation-based multi-relational

approach to spatial classification is created.

1.7 Crime Data-Warehouse: A Criminology Application

In this thesis a spatial classification framework is described. The framework is called the Unified

Multi-relational Aggregation-based Spatial Classifier (UnMASC), which contains two

components. One part of it is the actual classification rule-learner, which is simply called

UnMASC, and the other is the collection of databases that UnMASC learns the rules from. This

collection of databases is called the Crime Data-Warehouse (CDW). The CDW was achieved in

collaboration with the ICURS lab at the Criminology Department of SFU, where UnMASC was

developed, implemented, and the experiments carried out.

As a result of an initiative between the ICURS lab and the Royal Canadian Mounted Police

(RCMP), a secure computing facility was set up at ICURS to house, amongst other datasets, five

years of real-world crime data for research purposes. This data was retrieved from the RCMP’s

Police Information Retrieval System (PIRS). PIRS, integrated with non-secure commercially

available datasets such as the road-network, formed the core of the CDW. These source datasets

first needed to be cleaned, the addresses contained in them verified before transforming into the

final Crime Data-Warehouse. See Chapter 6 for full details.

Two cities were selected: Burnaby and Surrey. Datasets within the CDW were created about

these two cities: Burnaby contained 66,260 entities with 2.9-4.1 million relationships between the

entities, and Surrey contained 130,993 entities with 4.6-7.5 million relationships. Experiments for

this thesis were done on these two cities to highlight both the power and benefit of the UnMASC

framework and the Crime Data-Warehouse. See Chapter 7 for full details.
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1.8 Outline of Thesis

In this thesis a novel comprehensive spatial classification rule-learner is proposed, called Unified

Multi-relational Aggregation-based Spatial Classifier (UnMASC). It creates neighbourhood

relationships via a novel Voronoi-based approach, analyzes multiple relationships

simultaneously, and learns classification rules incorporating a broad range of spatial, single- and

multi-feature, aggregation literals that are created on-the-fly.

The contributions of this thesis are as follows:

 Formulating the spatial classification problem as a multi-relational classification problem.

This gives the rule-learner a solid theoretical foundation and allows for new insights into

the spatial classification problem and solution.

 Establishing explicit neighbourhood relationships between entities via a novel non-

parametric Voronoi-diagram based approach which yields a unique neighbourhood

structure, materializing only relevant relationships and filtering out irrelevant ones.

 Introducing novel extensions into the MRDM framework, to allow for representation of

multi-feature and spatial aggregation using MR terms and literals. This allows UnMASC

to evaluate dependencies between multiple (spatial) features of an entity. A concise list of

varying aggregation operators and spatial features without redundancies are used.

 Presenting a parallel, scalable spatial classifier which is able increase the efficiency of the

data mining task to utilize all the computing power available while not sacrificing the

quality of the data mining results.

 Experimentally evaluating UnMASC on a Crime Data Warehouse built on real-world

data with real crime data from the federal police.

Chapter 2 focuses in on specific tasks commonly found in spatial data mining. Chapter 3

discusses alternative methods of defining the neighbourhood while proposing a superior method.

Chapter 4 lays the language foundations and explores the additions required to this language.

Chapter 5 covers spatial rule-learning on a theoretical level, while Chapter 6 presents the actual

implementation details of the UnMASC algorithm. Chapter 7 presents the results of

experimentation on the Crime Data-Warehouse, and Chapter 8 concludes the thesis.
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CHAPTER TWO:
SPATIAL DATA MINING

There are many sub-areas of spatial data mining. Amongst these are spatial clustering, spatial

outlier detection and spatial co-location. This Chapter briefly introduces a selection of sub-areas

within spatial data mining in order to provide an overview of the domain. All of the tasks

described in this Chapter assume that the neighbourhood relationships already exist or are

calculated somehow on-the-fly.

2.1 Spatial Clustering

Clustering is the process of grouping entities in a database into meaningful subgroups. DBSCAN

(Density Based Spatial Clustering of Applications with Noise) [29] is a propositional clustering

algorithm which relies on density-based clustering to discover clusters of arbitrary shapes in a

spatial database disturbed by noise. DBSCAN makes use of three concepts, direct density-

reachability, density-reachability and density-connected. Two points p and q are direct density-

reachable if q is within distance ε of p and p has enough surrounding points that p and q are both

part of a cluster. p and q are density-reachable if they are not directly density reachable

themselves but are directly density-reachable via a sequence of intermediary nodes (Figure 9). p

and q are density-connected if a point r exists such that both p-and-r, and q-and-r are density-

reachable (Figure 10). Thus, each cluster must have all points within the cluster mutually density-

Figure 9 – Density reachability Figure 10 – Density connectedness



13

connected, and vice-versa, each point which is density-connected to any point in the cluster is

part of the cluster [30].

CLARANS has also been extended to handle clustering of spatial polygons. Given a set of

polygons P, where each polygon of the set has a boundary, a set of features, and a set of spatial

events, the method presented in [70, 106] partitions P into clusters with respect to some similarity

measure. This similarity measure can be a generalized distance, which combines three

independent similarity measures calculated from the different features and spatial locations of

each polygon. By taking into account the polygon associated to each entity, more accurate

classification was achieved.

Another type of clustering is clustering of spatial networks. ELink, a propositional clustering

approach, [66] performs in-network clustering of sensor nodes by building within each node an

auto-regression model of readings from all neighbouring nodes. The distance measure between

two nodes depends on the parameters of the auto-regression model of the nodes. ELink grows

clusters as follows. The set of nodes to be clustered are recursively broken down into cells at

different levels (as in a quad-tree), with level i having 4 times the number of nodes as level i-1,

and the root-cell being defined as level 0. Each cell elects a leader. Since the cells are structured

as a tree, each cell has a parent-cell. Starting from the leader of level 0, the cluster is grown until

the cluster is δ-compact. That is, all pairs of nodes within the cluster are within distance δ of each

other, where the distance is based on the auto-regression model, as discussed above. Once the

clustering is complete at a specific level, the clustering is repeated from the leader nodes of the

next level, until all nodes belong to a cluster.

2.2 Spatial Association Rules

Spatial association rules are a descriptive task intended on identifying frequent related entities in

spatial data [87]. Unlike Spatial Co-Location (Chapter 2.3), the items in the association rule do

not need to be located in the same neighbourhood and are expressed as explicitly stated

transactions. Conceptually, spatial association rules are similar to non-spatial association rules.

Non-spatial association rules show the dependency relationships between different features for a

set of entities (items in a transaction, for example) [44] and are of the form Y ← X, i.e.:

antecedent ← precedent, with some confidence and support measures assigned. Spatial

association rules however reference at least one spatial entity in their precedent or antecedent. For

example, the following spatial association rule states that if a house is close to a beach, it is

expensive:
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R1: expensive(H) ← house(H), beach(B), close_to(H, B).

The support and confidence measures are calculated identically to their non-spatial counterparts

[91]. A spatial association rule

Pj ← P1, P2, …, Pi (support: S%, confidence: C%)

states that if a P1, P2, …, Pi are true then so is Pj with probability C%, and, of the entire dataset,

S% of the entries in the database contain all the components of the rule. The confidence value is

given by

1

1

( ,..., , )
( ,..., )

i j

i

Support P P P
Confidence

Support P P
 (2.1)

This confidence value measures the correlation between the body and head of the rule, signifying

the rule’s strength. The support value is given by:

1tuples with items { ,..., , }
all tuples

i jP P P
Support  (2.2)

This can be thought of as the percent of the data that contains all the items in the rule. The

minimum support value desired by the end-user is controlled by a value they specify a-priori,

called the minimum threshold.

Complex rules are discovered in a similar fashion to non-spatial association rules. Initially, the

occurrences of P1 and Pj are counted, i.e.: the support of Pj ← P1 is tested, and, assuming that it is

found to be infrequent (unsupported), then no specialization of Pj ← P1 (for example: Pj ← P1,

P2) is going to be tested. If, however, the number of occurrences is above the minimum threshold

then more features will be added and these specializations will be recursively tested for support

and confidence. This process of adding more terms is referred to as refining the rule, and is

continued until the support of the rule falls below the threshold. At the end, for all frequent rules

the confidence is calculated, and assuming it is greater than a given minimum confidence

threshold, the rule is added to the collection that is returned to the user (or further analyzed for

‘interestingness measures’ [41]).

While the above is a propositional association rule, multi-relational ILP based spatial association

rules [5] have also been used to create a set of association rules from spatial data. The support and

confidence levels of a specific rule are defined as in non-spatial association rules. As opposed to

propositional data, the entities in multi-relational data can form a hierarchy relationship with each

other. Due to this, there is another approach to refining association rules that cannot be done with
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propositional rules: entities in rules can be substituted for other entities at different granularity

levels. For example, if a rule contains

house(H), neighbour(H,S), transportation_stop(S)

it can either be extended by adding a restriction to the rule

house(H), neighbour(H,S), transportation_stop(S), size(H, S), S>100m2

or an entity can be exchanged for something at a finer granularity level, such as

house(H), neighbour(H,S), metro(S).

The drawback of this type of restriction is that a different set of minimum support and confidence

thresholds might need to be set for each granularity level. The approach presented in [5] pre-

processes the relationships between the entities (as was done for the experiments presented in this

thesis); however, no form of aggregation is performed when the association rules are calculated.

Further, numerical data is discretized into ordinal data, which is not a limitation with the

approach presented in this thesis.

2.3 Spatial Co-Location

As opposed to spatial association rules, where the entities do not need to be located in the same

neighbourhood, the goal of spatial co-location is to detect entities that frequently share the same

neighbourhood. In addition, spatial association rules have explicitly expressed transactions which

involve the entities. This does not hold for spatial co-location, where the entities are embedded in

space and contain a variety of spatial relationships [91]. More formally, given spatial entity-types

J, K,…, L with each type containing multiple entities, a spatial co-location pattern P is the subset

of types which frequently (more than some threshold value) co-exist in the same neighbourhood

[107]. The spatial entities are embedded in space and hence only implicitly form spatial

neighbourhood relationships. Spatial co-location however depends on an established

neighbourhood graph which must be given as input: all neighbourhood relationships must be

established a-priori somehow. The neighbourhood relationships must be pre-processed and

provided as input to the algorithm.

Co-location rules are of the form “P: K ← J (SJ,K, CPJ,K)” [48], where:

 P denotes the pattern

 J, K are co-located entity-types
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 SJ,K is the support of the rule

 CPJ,K is the confidence of the rule, i.e.: the conditional probability of an instance of K

occurring given J occurs

Multiple such techniques for discovering such co-location patterns exist [99, 32, 20, 48, 91, 107].

Two of the common approaches to finding spatial co-locations include using Extended Spatial

Entities or using Extended Event-Centric Models.

The Extended Spatial Entities approach can find co-location patterns with 2D (polygonal) spatial

entities [99]. First, all entities are labelled (for example, entity 2 of type J would be labelled J2).

Then an area of a user-specified diameter, called a buffer-zone, is created around each entity with

intersecting buffers establishing neighbourhood relationships. The neighbouring entities are then

listed and frequent neighbouring entities are recorded. Supersets of those frequent types are tested

for frequency and non-frequent types are pruned from the search-space. The support is calculated

by using the coverage ratio (the fraction of the total area covered by the set), given by

1 2 3( , , ,..., )
, _ _ _= kN f f f f

P K Total Area of PlaneS (2.3)

where 1 2 3( , , ,..., )kN f f f f represents the area covered by the buffer-zones of the set. The

algorithm can be modified to be more efficient (but less accurate) by using the bounding-box of

the buffer-zone as a coarse-level estimator of the neighbourhood relationship (since testing the

bounding-box for intersections is less computationally expensive). After all the coarse-level

estimators have yielded neighbourhood relationships, they are then tested again using the original

buffer-zone.

An alternative approach to co-location detection uses an Extended Event-Centric Model [48]. The

algorithm looks for instances of different entity-types that form a clique (fully connected sub-

graph). Each entity-type K that is involved in a pattern P is assigned a participation ratio

# of instances of that participate in pattern
, # of instances of feature

K P

P K KPR  (2.4)

The support of the entire pattern is calculated by the use of a measure called the Participation

Index (PI). The PI for a pattern P, denoted PIP, is defined as the minimum of all the participation

ratios across all entity-types involved in pattern P, i.e. all entity-types
i=1 ,min { }P P iPI PR . All patterns

with a high PI value are then evaluated for supersets with a high PI value. As the set grows, the

value of the index cannot increase (since min(PRP,K) cannot increase), and hence the PI value can

be used to prune supersets of entity-types from further consideration.
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The Extended Event-Centric Model finds cliques, but if the user wants to look for relationships

that are not cliques then this is not an optimal approach, in which case the Extended Spatial

Entities could find appropriate co-location patterns. Neither approach is able to find patterns that

span to further entities, i.e.: where all entities in the rule are not neighbours of each other but

could be neighbours-of-a-neighbour. Finding neighbourhood relationships with neighbours other

than direct neighbours of the target entity seems to be a drastic shortcoming. The method could

probably be modified to involve further neighbours by scanning the database to find an

interesting pattern P1 involving entity K and then performing another scan to find an interesting

pattern P2 that contains entities co-located with some entities from P1 (as opposed to all entities

from P1).

2.4 Spatial Statistics

The study of spatial statistics contains a set of techniques for the purpose of studying spatial

entities using their spatial representation, such as topological properties or relationships between

the entities [24]. One example of this is the measure of spatial correlation between multiple

spatial features in order to describe the relationships between them. Usually data is analyzed

under the assumption that processes or relationships apply equally across the study area. The

analysis can include location as a variable, but this does not necessarily improve the accuracy of

the model [59]. More specifically, considering location could be irrelevant if the density is too

low to sufficiently represent the actual spatial variation. Stationarity, as stated in [19], “is defined

as a quality of a process in which the statistical parameters (mean and standard deviation) of the

process do not change with time”. Spatial stationarity hence can be described as a ‘process not

changing over space’, that is, the distribution of the values of the incidences do not change with

location or distance from an entity. The incidences of sickness is an example in which the

stationarity assumption would imply that the incidences are uniformly distributed across a spatial

space, but in real life a single heavily-polluting factory would most likely cause more sickness to

occur near the factory1, invalidating the stationarity assumption.

Assuming enough sample points are available, there are two basic approaches to measuring

spatial statistics geographically: global and local. Geographically global approaches assume that

1 For an example, see http://www.ctv.ca/servlet/ArticleNews/story/CTVNews/1024895514366_20304714
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spatial non-stationarity does not have an effect (i.e.: the data is stationary spatially), which can

cause decreased model accuracy since this assumption might not hold in real datasets. With this

method, the spatial statistics are based on the entire dataset. The geographically local methods

include in the analysis the contribution of each entity along with their location and are done using

a moving window approach. The method only calculates the spatial correlation for the data points

in the window and hence would not able to capture spatial trends that do not ‘fit’ into the window

[59]. Although the data (including spatial stationarity) is the same with both approaches, the

global and local approaches measure the statistics differently with different results.

Although the majority of the spatial statistics apply only to propositional data, there are spatial

statistics that take as input the spatial location of the entities and hence can be applied to a set of

entity-types (represented as multi-relational data). The spatial statistics, such as spatial trend, that

can be applied onto a set of entity-types are used in this thesis and discussed in Chapter 4.3.4.

2.5 Spatial Classification

Classification, covered in detail in the rest of this thesis, in general, involves the mapping of data

into classes or categories where similar entities are mapped into the same class and entities

significantly different are mapped into different classes. The number of classes is much smaller

than the number of original entities. If the data mining task is to find classification rules, then the

rules ideally should describe a single class of entities fully without describing entities of another

class. There are two main approaches, data characterization and data discrimination [44]. Data

characterization, or classification based on shared/similar characteristics, compresses the data into

increasingly general relations while data discrimination generates statistical summaries in order to

show the differences between the classes.

In spatial classification, a set of spatial entities (such as a set of malls) are given, each with a

specific class label (such as profitable) on which rules are built. This can be done either by

finding rules that partition the entities in the database into a set of classes [5] or through Inductive

Logic Programming (Chapter 4) where a hypothesis is found that can predict class labels of the

examples [101]. Ideally, the literals should take into account the distance, direction or

connectivity relationships of the entities and learn the rules based on all spatial and non-spatial

features. For example, the sample rule

profit(M,'Yes') ← mall(M), neighbour(M,H), house(H)
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expresses that a house is profitable if there are houses neighbouring the mall. A set of such rules

are built in order to create the classifier.

Spatial association classification rules are built as described in Chapter 2.2, using spatial literals

and relationships. The advantage is that both association rule mining and classification are done

simultaneously. However, the disadvantage is that small changes to features could cause sudden

classification changes because the rules are relatively independent. Association rules have been

previously used for classification purposes but most of the existing methods only work for a

single table and not multi-relational data [17].

SPADA [17], a spatial associative classifier, builds classification rules based on multiple entity-

types taking into account the hierarchy information between the entities (for example, that a city

is within a county). The approach presented in [17] is able to build these rules from a spatial

database which has been pre-processed into a multi-relational database. Although no types of

aggregations are performed, they do use Naïve Bayes Classifiers to fill in missing values.

As another approach, a few methods convert the spatial database into a multi-relational database

by explicitly calculating the spatial relationships between the entities and storing them in a spatial

join index [21]. The spatial join index could identify just the pairs of entities in a relationship

[96], or alternatively it can contain an extra piece of information which describes the property of

the spatial join [102]. While this thesis also uses a spatial join in order to be able to transform the

spatial database into a multi-relational database, the current approaches do not materialize any

significant features about the neighbourhood relationship, which the approach in this thesis does.

This allows the spatial classifier to make much more informed decisions while building the

classifier.

Another method, RELIEF [53], builds classifiers on a spatial database using the Inductive Logic

Programming approach commonly used on multi-relational data. As opposed to pre-processing

some or all of the literals, 'rough' literals are calculated and are refined if they turn out to be

promising. Aggregate information can also be constructed based on the non-spatial information of

other entities in the neighbourhood. Unlike the approach presented in this thesis, the aggregates

are based on the features of all the neighbouring entities, not only those that match the conditions

already in place in the rule.
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2.6 Spatial Trend

Spatial trends illustrate the correlation of one or more non-spatial features and the distance away

from a central entity [87, 5]. This concept works equally well on propositional data, where the

trends are calculated between all entities, or on multi-relational data, where the trend is calculated

between a specific entity (factory, for example) and entities of another type. It allows for the

detection of changes along the spatial dimension, such as follows, coincides or parallels. It is very

similar to pattern-mining [77] since if the spatial relationship between a central entity and other

entities is calculated and stored as a feature of the entity, then subsets of features should form

patterns. This pattern, since it is spatial in nature, is the equivalent to a spatial trend.

Spatial trends have been defined as a pattern of change of some non-spatial feature within the

neighbourhood of some entity [31, 33]. For example, “when moving away from an industrial

area, the amount of pollutants in the air decreases” is a spatial trend. There are two types of

trends: global trends and local trends:

 Global trends show a pattern in all neighbourhood directions of the spatial entity (Figure

11)

 Local trends only show the pattern in a specific direction, along a river, for example

(Figure 12)

Trends are detected through the use of regression analysis using feature values vs. distances of

entities from an established center. The analysis starts with direct neighbours and is extended to

neighbours-of-neighbours if a possible correlation is found.

Figure 11 – A spatial trend radiating out from the
central mall.

Figure 12 – A spatial trend following the path of
a river.



21

2.7 Spatial Outliers

Spatial outliers are entities which are inconsistent with their spatial neighbours on their non-

spatial attributes even though the non-spatial values could be normal for the rest of the entities of

the same type [92]. Outlier detection methods include distribution-based using standard statistical

distributions, depth-based methods which map entities into an m-dimensional information space

and distance-based approaches which calculate the proportion of entities that are a specified

distance from a target entity [44]. For each entity, based on the feature values of neighbouring

entities, the expected value of some feature of the entity is calculated then compared to the actual

value, if the difference is above a threshold, then the entity is deemed an outlier. For example, a

bank could be deemed an outlier in the middle of a residential area since it has very different

feature values that are normal in its neighbourhood, even if the bank has typical feature values

when compared to all banks.

The above-mentioned spatial outliers are applicable mainly to global outliers, where the outlier is

determined with respect to the entire space of entities. Outliers can also be detected in local

neighbourhoods where the outliers are different from the neighbourhood they are in [39]. This

type of detection is different from detecting outliers in the entire space of entities since it also

involves detecting the optimal neighbourhoods which produce the biggest outliers. The approach

presented in [39] "grew" the neighbourhood around each entity, and at each growth cycle

determined how much of an outlier the entity is with respect to the local neighbourhood.

Although the neighbourhood was restricted to city-block size rectangles, the approach can be

generalized to detect outliers in neighbourhoods of any shape or size.
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CHAPTER THREE:
RELATIONSHIPS IN SPATIAL DATA

Spatial data contains multiple types of entities arranged in space, such as a map representing a

city. When looking at a map, the reader cannot see explicit relationships between the houses,

malls or other types of entities on the map. Similarly, spatial data also does not contain

relationships between the entities. Simply because there are no relationships visible on a map

does not mean that the entities live in isolation. They do in fact influence each other through

different means, noise and pollution of a highway influences nearby property-values for example.

To make an informed decision about a neighbourhood these influences or interactions must be

captured and used.

The fundamental difference between spatial and multi-relational data is the implicit nature of the

relationship between the two entities, instead of the links that exist as in multi-relational data.

Spatial data only indirectly implies relationships via the spatial location of the entities, thus some

work has to be done to explicitly materialize relevant relationships between the entities. This

needs to take into account Tobler’s First Law of Geography [95, 59, 32]:

Definition 1 – Tobler’s First Law of Geography – “Everything is related to everything else; but
that near things are more related than those far apart.”

This law implies that relationships are important to different degrees, and the importance is

influenced by distance. Thus there is a need to prune the huge space of pair-wise relationships for

two reasons. The first is to save analyzing unlikely dependencies between distant entities. The

second is to avoid constructing misleading rules.

It is argued in this Chapter that current state-of-the-art methods, topological relationships [17, 75,

87] (Chapter 3.1.1) and buffer-zones [21, 5] (Chapter 3.1.2), produce relationships that are

somewhat arbitrary. Topological relationships have been used in the literature but are very

restrictive due to the fact that they cannot establish or remove neighbourhood relationships based

on any form of distance criteria. The majority of approaches establish around each entity a buffer-

zone using a fixed distance threshold, which is provided by the user, to find neighbourhoods. The

disadvantage of this approach is that theoretically the distance threshold can take on a large

number of possible values or might be inappropriate for different entities of the same type.

Selecting the right distance threshold is crucial for identifying meaningful classification results,
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as different thresholds yield different results [90]. Currently no work exists that provides a unique

neighbourhood relationship with no user-definable parameters that also takes into account the

number and distribution of entities. The notion that is used in this thesis is that of the Voronoi

diagram (Chapter 3.2). Voronoi diagrams partition a plane into regions, called Voronoi cells,

which contain all the points that are closest to the entity contained in the Voronoi cell, naturally

representing relationships between entities [10]. The benefits of spatial classification using

Voronoi diagrams are analyzed in Chapter 3.3.

3.1 Existing Neighbourhood Definitions

Two main approaches exist for defining neighbourhoods in the literature: topological

relationships and buffer-zones.

3.1.1 Topological Relationships

Topological relationships, listed in Figure 13, can describe the relationship between two entities,

and are defined as [28, 75]:

Definition 2 – Topological Relationship – The set of topological relationships is the set of eight
types of interactions which are based on the intersections of the entity’s
boundaries, interior and exterior. These relationships are preserved under
translation, rotation or scaling.

These relationships are very common and easy to understand, but do not always capture the

intuitive notion of a neighbourhood.

The neighbourhood definition can be defined two different ways: with or without the topological

relationship disjoint. The disjoint relationship is based on a Boolean operator which returns true

disjoint

meet

overlap

covered_by

inside

equal

covers

contains

Figure 13 – Topological relationships
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in case the entities have no spatial area in common and false if they do (partially) share the same

spatial area. For example, in Figure 14, House 1 meets House 4 but is disjoint from House 2. If

the neighbourhood definition does include the disjoint relationship then this definition is going to

explicitly state a relationship between all pairs of entities, with the vast majority of entities being

simply disjoint from each other. This is because there are no limits to the pairs of entities onto

which disjoint is applied, just the fact that two entities are disjoint is enough for it to explicitly

establish the relationship. Thus one of the topological relationships always applies to any two

entities, meaning no relationships can be pruned and the search space remains huge.

If the definition does not use the disjoint relationship, then the relationship between two entities

can only be measured by the degree of the overlap of their boundaries. This however restricts the

relationship to be between entities that do have some overlap of their boundaries. For entity pairs

which do not have any overlap, no relationship could be defined. Many people would define

themselves as living in the neighbourhood of a mall even if they lived in the close vicinity and not

directly adjacent to it. Saying that ‘a mall is profitable if it meets 5 houses’, although possibly

true, is not nearly as strong as stating that ‘a mall is profitable if more than 20,000 people live in

its close vicinity’. In order to capture this information, disjoint is needed, but such a concept is

missing from the definition and cannot be expressed otherwise.

Either way, basing a neighbourhood definition on topological relationships does not yield a viable

set of relationships for classification purposes.

3.1.2 Buffer-Zones

Another common approach to defining neighbourhood relationships is through the use of buffer-

zones [53] where a region of a user-specified size is constructed around the entity and any other

Figure 14 – House 1 meets House 4 but not
House 2. House 5 overlaps House 3.

Figure 15 – Buffer-zone neighbourhoods
(grey areas denotes the buffer-zone)
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entity inside is considered to be a neighbour, as in Figure 15. More formally:

Definition 3 – Buffer-Zone – A buffer-zone with distance threshold d around an entity i of type
tj, denoted ej,i, is the area that is within distance d to ej,i. An entity ej,r, if it
intersects the buffer-zone of ej,i, is defined to be a neighbour of ej,i, that is two
entities are neighbours if dist(ej,i , ej,r, D), D < d.

For example, using Figure 15 (the houses are numbered) the buffer-zone of ehouse,1 encompasses

ehouse,2 but not ehouse,3, hence ehouse,1 and ehouse,2 are neighbours, but ehouse,1 is not a neighbour of

ehouse,3.

Although distance-based approaches, such as buffer-zones, are very common ways of

determining the neighbourhood of an entity [21, 5, 53], they do have major drawbacks. First, they

assume that the same threshold applies for every entity-type. For entity-types of greatly varying

size and range of influence, a constant sized buffer-zone either becomes too large or becomes

irrelevant. For example, using Figure 16, while a buffer-zone of 3km is realistic for cities (a), it is

too great for houses (b) where the neighbourhoods are measured in 10s of meters, and too small

for provinces (c) where ‘neighbourhoods’ might be measured in 100s of kilometres. Second, in

principle, an infinite number of buffer-zone thresholds could be selected, but each can possibly

change the result of the analysis [90], so how can one result be trusted over another? Third, for

entities of the same type, the distribution of the entities across space can change significantly

across the entire dataset (Figure 17), so while the size of a buffer-zone might be correct in one

region, it could be inappropriate in another.

A solution to the above problems is to have multiple buffer-zone thresholds, perhaps one per

entity-type, or even multiple thresholds for entities of the same type. If the result of classification

can vary so greatly based on the choice of the buffer-zone threshold [90], then how can the user

be trusted to select multiple such sizes? Therefore, it is desirable to have an automatic way to

select the thresholds, both for entities of different types and for entities within the same type.

Delta Surrey

New
Westminster

North Vancouver

Vancouver

Richmond

Burnaby

Coquitlam
Port
Moody

Vancouver

Delta Surrey

New
Westminster

North Vancouver

Vancouver

Richmond

Burnaby

Coquitlam
Port
Moody

Vancouver

a) 3km buffer around a city b) around a house c) around a province

Figure 16 – 3km buffer-zone around different entity-types Figure 17 – Buffer-zone of
entity with varying density
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3.2 Neighbourhood Definition Based on Voronoi Diagrams

Without a neighbourhood definition all spatial relationships need to be evaluated for all pairs of

entities as they can potentially be constructed. In this thesis, the Voronoi Neighbourhood is

introduced as a way of explicitly creating only those relationships which involve entities that have

an influence on each other. The classification algorithm now cannot learn a classification model

using any arbitrary pair of entities. This could be thought of as undesirable, but following

Tobler’s First Law of Geography [95, 59, 32] it is actually a necessity in order to avoid

constructing a potentially misleading classification model.

When working with maps and spatial information, Voronoi diagrams, named after their creator

Georgy Feodosevich Voronoy, are prevalent as they naturally represent relationships between

entities [8, 47, 65]. Voronoi diagrams have been used in the domain of computational geometry

[47] as well as data mining. In clustering, Voronoi polygons have been applied in order to cluster

entities of a single type [34]. Voronoi polygons have also been used to establish neighbourhood

relationships between entities of a single type (sensors) for the purposes of outlier detection [1].

As opposed to analyzing only a single entity-type, Voronoi polygons have been used for finding

spatial association rules for multiple entity-types [10]; however, though the dataset contained

multiple entity-types, the Voronoi polygon itself was created as if all entity-types were the same.

This strategy does not take advantage of the fact that the entity-types are of different

characteristics, and creates a neighbourhood structure that connects adjacent entities only.

A definition is required that creates meaningful neighbourhood relationships between multiple

types of entities in spatial data while preserving the fact that they are of different types. People

tend to go to the closest mall, grocery-store, hospital or airport, and the definition needs to take

advantage of this. Voronoi diagrams accomplish this by partitioning a plane into regions, called

Voronoi cells, which contain all the points that are closest to the entity contained in the Voronoi

cell. Based on this idea, as the basis for the neighbourhood definition in this thesis, for each

entity-type a different neighbourhood structure is created using Voronoi diagrams.

3.2.1 Voronoi Diagram

The definition of a Voronoi diagram is as follows [81]:

Definition 4 – Voronoi Diagram – Given a set S of distinct entities e in d-dimensional Euclidean
space Rd, the Voronoi diagram is a partitioning of the space of S into e polyhedral
regions. The region associated with entity e is called the Voronoi cell of e and is
the space in Rd that is closer to e than to any other entity in S.”
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Sample Voronoi diagrams for two different entity-types are shown in Figure 18(a) and (b). In

general, the size of Voronoi cells gives an indication of how frequent entities of the same type are

in an area and thus is a good aid when determining the importance of the entity. The sparser the

entities in the dataset, the larger the Voronoi region, and typically the more important the entity-

type (ex: museums, airports, malls), as seen by contrasting malls and houses in Figure 18(a) and

(b).

Voronoi diagrams can also adjust for changes in distribution for a single entity-type. If entity ei,q

is in a region where many entities of the same type are also located, then the individual entity ei,q

is less important than if ei,q was far from any others of the same type. For example, a specific

grocery store is not too important if it is surrounded by five other grocery stores since people

have choices as to where to go. If that same store is far from other grocery stores, then people will

have less choice and are going to depend on that grocery store. Voronoi diagrams are able to

reflect this information: the Voronoi cell of ei,q is going to be small if it is surrounded by other

entities of the same type, and if entities of the same type are far, then the Voronoi cell is going to

be large. This change in density is seen in Figure 19.

The Voronoi diagrams can also help with determining neighbours of entities by using the dual of

Voronoi diagrams – the Delaunay triangulation (Figure 18c), which is defined as [81]:

Definition 5 – Delaunay Triangulation – For a set of entities e in d-dimensional Euclidean
space, the Delaunay triangulation is a triangulation DT(e) such that no point in e
is inside the circum-hypersphere (circumcircle if d=2) of any simplex (triangle if
d=2) in DT(e).

In essence, the Delaunay triangulation connects neighbouring Voronoi cells together, examples

are shown in Figure 20(c) and (f). If Voronoi calculations are to be used for establishing

neighbourhoods, then the structure yields a consistent and rigid neighbourhood which is not going

to change, but most importantly, this is done without user parameters.

a) Voronoi structure for
malls

b) Voronoi structure for
houses

c) Delaunay triangulation
for houses

Figure 18 – Sample Voronoi neighbourhood relationships for houses
and malls

Figure 19 – Voronoi
cells for varying
distribution
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3.2.2 Asymmetric Voronoi-Based Neighbourhood Definition

By combining all entities on a map and using that as the input to the Voronoi algorithm, the

resulting Voronoi cell structure is not desirable since each cell is going to be very small and the

Delaunay triangulation is going to yield (by definition) adjacent relationships only. An alternative

approach is to calculate the Voronoi diagram for each entity-type ti and assign all other entities of

different types into the Voronoi cell of each entity of type ti. The following definition does this by

establishing neighbourhood relationships between entities of the same and different types:

Definition 6 – Asymmetric Voronoi Neighbourhood – The Asymmetrical Voronoi
Neighbourhood defines two entities, ei,q and ej,r, as neighbours iff:

 ei,q intersects the Voronoi cell of ej,r, where ei,q and ej,r are different entity-types,
i.e.: i ≠ j, or,

 the Voronoi cells of ei,q and ej,r are adjacent, and ei,q and ej,r are of the same type,
i.e.: i = j.

This definition is applied to part (a) in Figure 20 which illustrates a map containing 5 houses and

3 malls. The Voronoi diagram from the perspective of the malls is calculated (b), the adjacent

Voronoi cells for malls are connected as neighbours (c), and finally the houses that belong to each

mall are also connected to the corresponding mall (d). Similarly, the same is done from the

(a) Original Map containing
Malls and Houses

(b) Voronoi cells of Malls (c) Malls’ neighbour
relationships according to

their adjacent Voronoi cells

(d) Houses that intersect the
Voronoi cell for each Mall

(e) Voronoi cells for the
Houses

(f) House neighbour
relationships according to

their adjacent Voronoi cells

(g) Malls that fall into the
Voronoi cell for each house

Figure 20 – Establishing neighbourhood relationships using Definition 6.
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perspective of the houses (e, f and g) giving all the neighbourhood relationships needed.

There is a very significant drawback to the above definition however: When exploring the

neighbouring entities, the neighbourhood relationships are not symmetric (an entity ei,q can be a

neighbour to ej,r but ej,r might not be a neighbour to ei,q). This could have the consequence that, in

a more complex example (Figure 21) the mall in the center is going to have many houses as

neighbours, but only a few houses is going to have the mall as neighbours. Assume the

neighbourhoods are being explored by the data mining algorithm and the central mall and its

neighbourhood is being analyzed (c). Further assume that the best condition the classification

algorithm finds is satisfied by a house in the neighbourhood of the central mall (this house is

indicated with a star in Figure 21). Continuing the analysis, the set of entities considered in the

next step is going to almost be identical to the set that was just previously considered since the

new addition only has 2 new neighbours; hence the classification algorithm would be considering

almost the same situation as it did previously. In this fashion, the classification algorithm would

be ‘stuck’ considering almost the same set of entities over and over unless by chance it

encountered a house that was adjacent to an entity of a different type.

The house entity-type is ‘dense’, meaning that the houses are close together and thus their

neighbourhoods are small. Adding a new house to the analysis does not provide more than a few

a) Mall Voronoi structure b) Resulting neighbourhood for malls c) Neighbourhood considered for the
central mall

d) House Voronoi structure e) Resulting neighbourhood for houses
based on (d)

f) Neighbourhood of central mall and
house with star

Figure 21 – Simple unsymmetrical neighbourhood definition (shadings represent roads)
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extra neighbours to base classification on, this can be seen by comparing (c) to (f). Hence further

analysis is based on almost the same entities and the classification progress would proceed

slowly. For example, using (c), in order to reach a non-house entity-type which could add

something new to the classification process, the algorithm would require the addition of 3 more

houses which could require multiple iterations of the classification algorithm. This leads to very

slow classification progress.

In the context of the illustration in Figure 21, a mall could be profitable if there is a house which

is really expensive within the neighbourhood of mall, but a house itself could be really expensive

because it is in the neighbourhood of 3 malls (Figure 21b). The second component, house being

in the neighbourhood of 3 malls, cannot be found with this definition. The reason for this is that

when the algorithm looks at the rationale for the expensive house there are only other houses as

neighbours and no mall is reachable (Figure 21e).

3.2.3 Symmetric Voronoi-Based Neighbourhood Definition

The drawback of the asymmetrical definition (Chapter 3.2.2) can be eliminated by modifying a

portion of the definition in order to enforce symmetry. The symmetric version of the Voronoi

Neighbourhood becomes:

Definition 7 – Symmetric Voronoi Neighbourhood – The Symmetricl Voronoi Neighbourhood
defines two entities, ei,q and ej,r, as neighbours iff:

 ei,q intersects the Voronoi cell of ej,r or ej,r intersects the Voronoi cell of ei,q, where
ei,q and ej,r are different entity-types, i.e.: i ≠ j, or,

 the Voronoi cells of ei,q and ej,r are adjacent, and ei,q and ej,r are of the same type,
i.e.: i = j.

For example, the neighbourhood structure for each house eHouse,q is the union of the entities which

neighbour eHouse,q and the entities to which eHouse,q is a neighbour. Figure 22 illustrates the Voronoi

(a) Original Map containing
Malls and Houses

(b) Voronoi cells of Malls (c) Voronoi cells of Houses (d) Final neighbourhood
relationships

Figure 22 – Establishing neighbourhood relationships using Definition 7
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structure for both malls and houses, and the resulting neighbourhood relationships using this

definition. This definition has a unique property: each entity-type will have at least one

neighbourhood relationship with an entity from all entity-types.

Proposition 1 – Let ti and tj represent two entity-types. Every entity of type ti has at least one
neighbouring entity of type tj.

Proof – The union of Voronoi cells of entities of type ti covers the entire spatial domain with
every entity of type ti intersecting the cell of at least one entity of type tj. Since each
entity of type ti intersects a cell of type tj, this yields at least one neighbour
relationship between entities of type ti and some entities of type tj, thus in total
each entity of type ti is related to 1 ≤ n ≤ |j| entities of tj. ■

This symmetrical definition has the advantage that if the goal is to classify types containing a lot

of entities (ex: houses) then the algorithm can always find a neighbouring entity of every other

type. It never gets ‘stuck’ considering almost the same set of entities. For example, each house

has at least one mall (along with at least one entity of every other type) as neighbour. In effect,

the neighbourhood structure for each house eHouse,q becomes the union of the entities which

neighbour eHouse,q and the entities to which eHouse,q is a neighbour. The result from the previous

example can be found in Figure 22(d). With |T| types and Q entities per type, this would imply

that there are at least O(|T|2Q) neighbourhood relationships with entities of different types, at

least |T|-1 per entity.

The advantages of this definition of a Symmetrical Voronoi Neighbourhood are that:

 it creates a more complex neighbourhood structure than direct neighbours,

 it is uniform across all of the map,

 it is intuitive,

 it does not require any user parameters.

The Symmetrical Voronoi-Based Neighbourhood cannot, and purposely does not, find

relationships at arbitrarily fixed proximities (such as the buffer-zone). It also does not capture

neighbour-of-neighbour relationships (this is left up to the rule-learner to explore). The reason for

that is based on Tobler’s First Law of Geography in that patterns which do not appear in close

proximity, based on the distribution of entities, are not interesting.

3.3 Comparison of the Efficiency of Different Neighbourhoods

This section analyzes the runtime complexities for computing the buffer-zone and the Voronoi-

diagram based neighbourhood definitions. The classification model is constructed around a set of
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entities eτ of entity-type tτ, called the target entity type Assume that there are |T| entity-types,

where Tϵ{t1, t2, …, ti, …, tτ, …, t|T|}. Let Qi represent the number of entities of type ti and let Q

represent the total number of entities. The target entity-type has Qτ entities, and the rest of the

dataset has
| |

1,

T

i
i i

Q
 

 = Q-Qτ entities. The Buffer-Zone and the Symmetric Voronoi Neighbourhood

are compared below and summarized in Figure 23.

3.3.1 Determining Neighbourhood using Buffer-Zones

The buffer-zone definition relies on the distance between two entities being smaller than a

threshold distance. Thus, each entity of type ti will need to be compared against all entities of

other types, and against all entities of the same type:

=  
| |

1
comparing against entities not of + comparing against entities of

T

i i i
i

Q t t


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| |

1
( ) +

T

i i i
i

Q Q Q Q


 = O(Q2).

3.3.2 Analyzing Neighbourhood using Buffer-Zones

Assume that the buffer-zone for each entity covers p% of all the area covered by the dataset.

Thus, on average, Qp% entities are going to be neighbours of each entity. To analyze this

neighbourhood structure, as the classifier will do, for each entity-type ti that needs to be analyzed,

the Qi entities of that type are going to be compared to their Qp% neighbours, leading to a

complexity of O(Qi × Q p%)=O(Qi Q).

Buffer-Zone
Voronoi-based neighbourhood

relationship

Cost of determining
neighbourhood relationships

=O(Q2) =O(Q2)

Analysis (Run-Time) Cost =O(Qi Q) =O(Q)

Q = entities in the database
Qi = entities of type ti

Figure 23 – Runtime analysis
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3.3.3 Determining Neighbourhood using Voronoi Neighbourhoods

With a Voronoi neighbourhood relationship enforced, the runtime complexity is different. For

each entity of type ti, to determine relationships between entities of different types, the Voronoi

cell is explicitly computed, which has runtime O(Qi logQi) [11], then all Q-Qi entities not of that

type are assigned to the Voronoi cell they fall into. For relationships between entities of the same

type, the Delaunay Triangulation must be calculated which can be done during the calculation of

the Voronoi cells and hence presents no extra runtime requirements. The total cost of this pre-

processing is:
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1

T
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Q Q


 i.e. the sum of entities per class

over all classes equals the number of entities.

3.3.4 Analyzing Neighbourhoods using Voronoi Neighbourhoods

At this point, since the Voronoi-diagram partitions the dataset, each of the Qi entities of that type

are going to have, on average, Q/Qi entities assigned to it as neighbours. To analyze this

neighbourhood structure, as the classifier will do, for each entity-type ti that needs to be analyzed,

each entity in ei is compared only to its neighbours, leading to O(Q/Qi) = O(Q) comparisons.

Hence introducing the Voronoi neighbourhood has a similar pre-processing cost but only linear

cost when analyzing this neighbourhood.
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3.4 Discussion

The Voronoi-diagram based neighbourhood definition makes intuitive sense, based on the

examples and other research findings shown above. It also is able to address the shortcomings of

the buffer-zone especially the need for a user specified parameter. Theoretical runtime

comparisons are also similar to the traditional buffer-zones, and hence complexity is not

increased significantly.

However, there might be times when, due to domain requirements, neither neighbourhood

definition works intuitively. The police might define a city block as a neighbourhood, for

example. In these instances, the neighbourhood definition can be modified as required, as the

exact definition does not impact the rule-learning process that is presented next. The rule-learner

simply treats the neighbourhood definition as a black box.
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CHAPTER FOUR:
EXTENDING ILP FOR AGGREGATION AND SPATIAL
DATA

Although there are approaches to spatial classification other than ILP, such as kernel methods, as

customary in Multi-Relational Data Mining, this thesis is going to also use Inductive Logic

Programming (ILP) [18, 60] as its underlying formalism. One of the advantages of ILP is its

ability to handle multi-relational data, as opposed to limited to propositional data, which would

have presented problems associated with propositionalization. As opposed to kernel methods, for

example, ILP is also able to produce rules that are more understandable.

The word induction refers to the process of deriving general principles from particular facts or

instances, which is what ILP accomplishes when applied to data as part of a data mining task. In

ILP, the following components are given:

 a set of known positive and negative instances of data (or only the positive instances are

given with the closed world assumption that everything not given is negative),

 some background knowledge used to allow for more concise conditions (for example: A

is a parent of B, and A is male, then A is the father of B),

 a language specifying syntactic restrictions (for example, someone cannot have 3

parents).

The task of ILP is to learn a model which entails as many positive examples and as few negative

examples as possible. If the model is used for classification, one of the entity-types (called the

target entity) has to be selected, around which the classification model is built. As in single-table

classification, one of the (categorical) descriptive features of this entity-type is selected as the

class label. The goal of the classification task is to predict the class label for new entities. For

example, the class label of the entity mall is the value ‘Yes’ or ‘No’ of feature Profitable.

Although the method detailed in this Chapter can be expressed for non-Boolean class labels, this

thesis deals with only Boolean class labels.

Existing non-spatial ILP approaches, such as CrossMine [100, 101] and MDRTL-2 [7], have been

used to mine multi-relational data, by learning classification models from a relational dataset.
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These models however incorporated only the existential aggregation operator. The drawback to

using the existential operator is that it is a very simplistic aggregation, testing whether a

relationship between two entities exists. Spatial data is dense (spatially) with many entities being

the same type (houses, for example) hence the effect of a single entity becomes relatively

negligible. A shopping center for example is successful not because there is a single wealthy

household in its neighbourhood, but rather because the average purchasing power of the

neighbourhood that it is in is above a certain value. The crime-rate in a certain area is typically

not considered high because a certain building got robbed many times, but because the aggregate

number of robberies over all buildings in the area is above a certain value. Dealing with

aggregation in spatial data is much more of a necessity since spatial data contains information

much richer than what the existential operator can describe. In order to capture that information,

aggregation other than the existential operator needs to be used. For example, using solely the

existential quantifier the relationship “an entity is related to 5 entities whose average value is 20”

cannot be expressed. To fully exploit the potential of multi-relational classification, aggregate

information needs to be used during the process. Aggregation operators are used to summarize a

set of values into a single value or a vector of values which describe the original set. The original

set often comes from the ‘many’ part of a one- or many-to-many relationship for each entity.

Unlike global features, which describe the entire dataset, aggregation operators act similar to

local features, describing the area around a specific entity [59].

This Chapter first provides an overview of aggregation (Chapter 4.1). Since this thesis uses

Inductive Logic Programming (ILP) to express the results of classification, this process is going

to need to involve aggregation. First, the standard state-of-the-art ILP terminology is discussed,

including existing aggregation techniques (Chapter 4.2), followed by novel multi-feature and

spatial extensions introduced in this thesis (Chapter 4.3). Although this thesis uses ILP for

classification, the data itself is stored in a database. The connection between ILP and databases is

discussed last (Chapter 4.4).

4.1 Preliminaries

Aggregation can be performed in many different ways, such as aggregating over a single

argument of a P/α predicate, also called a feature, or aggregating features over multiple

neighbouring entity-types (Chapter 4.1.1). Aggregation can also be applied to different types of

data (Chapter 4.1.2), each with specific restrictions. There are a few approaches to aggregation
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that are considered state-of-the-art, such as Virtual Features (Chapter 4.1.3) and Selection Graphs

(Chapter 4.1.4), but neither is appropriate for spatial data.

4.1.1 Types of Aggregation

The aggregations possible involving a single entity-type ti include [78]:

 Simple aggregation. A mapping of zero or more independent single values to a single

categorical/numerical value, for example: sum, mean, max. This type of aggregation can

be used to summarize a single feature occurring in multiple entities of type ti.

 Multi-dimensional aggregation. Mapping of zero or more entities of type ti, each with n

features (i.e.: a feature vector) to a single or multiple values. This type of aggregation can

be used to capture relationships between two or more features, by using the covariance

for example.

 Multi-type aggregation. Mapping zero or more entities of type ti (possibly feature

vectors with different numbers of features) to a single or multiple values. For example,

the “total value of products that a customer has returned” would require the aggregation

of a number of numerical and categorical data pieces.

Aside from doing multiple types of aggregations within a single entity-type, aggregation can also

be done involving multiple entity-types. The difference is that in the latter case entities of type tj

which are related to ti can be aggregated even though the number and types of features can be

different. The types of aggregations which involve relationships between entities are [78]:

 Propositional. This aggregation involves a relationship between entities of type ti and tj

where there is a 1:1 correspondence between the entities. Thus, for each entity of type ti

there is a single entity of type tj. In this situation, no aggregation needs to be performed

since each entity is related to only a single entity of another type.

 Independent features. This type of aggregation summarizes a feature of entities of type

tj related to entities of type ti. The aggregations that are possible include max, count, etc.

For example, calculate the maximum size over all neighbouring houses to each mall.

 Dependent features. This type of aggregation summarizes relationships between

multiple features of the entities of tj related to each entity of type ti. The aggregations that

are possible include aggregations such as covariance or correlation. For example,

calculate the relationship between house-hold income and house-size for each house.
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This thesis introduces a framework capable of dealing with the above aggregation types.

4.1.2 Aggregation of Different Data Types

Aside from operations on unstructured text features, such as names and descriptions, there are

four basic types of data each requiring different types of aggregations: date, numeric, categorical

and ordinal values. The corresponding aggregation operators for these types are discussed below:

 Date data-type. Adding dates, although possible mathematically is non-sensical.

Average, mean and median can be applied to dates using the offset of a given set of dates

from a fixed date.

 Numerical data-type. This is the most flexible type of data to which generally any kind

of mathematical operation could be applied. There could be domain restrictions to the

numeric being an integer-type for example.

 Categorical data-type. This type of data contains a fixed set of possible values. There

does not need to be a concept of one category being ‘better’ or ‘greater’ than another

category.

 Ordinal data-type. This is categorical data, with an ordering on the distinct values which

imply that the ordinal values can be compared using the > and < operators. Aggregation

operators applicable to categorical data are also applicable to ordinal data.

 Spatial data-type. Spatial entities have features, such as location, which might not be

explicitly given, and hence must be ‘extracted’ from the spatial entity itself. Once this

extraction process is done, the resulting feature-value is going to be of one of the above

data-types.

This thesis will introduce a framework capable of aggregating all of the above data types.

4.1.3 Virtual Features

Aggregation within ILP can be achieved by the use of virtual features [78]. A virtual feature is a

feature which is ‘invented’ and then added to entities in eτ where the new feature-value of eτ,q

(entity q of type tτ) is derived from the aggregated values of entities related to eτ,q. These virtual

features can aggregate a single feature, multiple features, or even categorical features. Once the

new features are added to eτ, they can be used as consideration during the classification process.
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The values of non-categorical features can be calculated by an aggregation function such as sum

or max, but can be much more complex than those.

One approach for aggregation is to create a ‘case vector’ (CV) describing the values related to

each labelled target entity eτ,q [78]. In a simple case, a CV can describe the most frequent values

of a categorical feature related to eτ,q. Thus there is one CV per entity in eτ. For each class, from

all the CVs of entities in the training data which belong to that class, a reference vector (RV) and

variance vector (VV) is constructed containing the sum and variance of all the CVs respectively.

During classification, when trying to assign a label to a specific unlabelled instance of eτ,i, a case

vector (CV) is constructed from the features of eτ,i, and a class label is determined by calculating

the distances between the specific CV and all RVs. The CV inherits the class-label of the RV to

which it is closest. Distance can be calculated via any distance measure such as edit distance,

cosine distance or the Mahalanobis distance 1( , ) ( ) ' ( )MD x y x y C x y   .

Virtual features have also been used to summarize high-dimensionality features, such as product

IDs [79]. In this instance, using training data, an RV is constructed for both classes along with an

RV for the global data-set. The RVs are constructed from all the feature-values from the entities

linked to each target entity. Distribution Vectors (DV), essentially normalized RVs, are also

constructed to approximate the distributions within each class and globally. The classification

model will use these DVs to find differences in the distributions with the assumption that all

entities related to the target entities have been created from the same distribution. During

classification, the classifier labels each entity by determining which distribution generated the

CV, by calculating the distance between the CV and RV. For numerical attributes, RVs can be

constructed from standard aggregates, such as MIN or SUM.

Another approach is to simply add a series of features to the target entity, created via aggregation

from the information contained in features of related entities. Multiple algorithms, such as RSD

(Relational Subgroup Discover) [62], SINUS [60] and RELAGGS [58] take this approach. RSD

and SINUS are both logic-oriented approaches (whereas RELAGGS is database-oriented) and

perform virtual feature creation in a similar fashion, with minor differences, such as SINUS

allowing the user to constrain the number of literals while RSD can constrain the variable depth

and occurrences of specified predicates [57].

The technique of using virtual features has a major drawback. Once the virtual features are

created and added to the entity as a new feature, they are fixed. Conditions applied to any of the

neighbours of a specific entity can change the set of neighbours, but this change is not going to be
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reflected in the values of the virtual features, since those were pre-computed. Classification rules

based on these virtual features may not yield accurate results.

4.1.4 Selection Graphs

Selection graphs, defined below, have previously been used to represent the results of the

classification process [7].

Definition 8 – Selection Graph – A selection graph is a directed graph S, with nodes N
representing a set of entities, and edges E representing some conditions C on N.
Each node N contains the set of entities which satisfy all the conditions between N
and the root of S.

Each path in S can be represented by an SQL query. Each node along the path is equivalent to an

additional condition in an SQL query’s WHERE clause. The selection graph is refined by adding

conditions as branches to an existing tree. This technique of representing rules as selection graphs

was extended by including aggregations, where the edges, which originally could represent only

the existential quantifier, now are complimented with aggregation functions (sum, max, etc) [52].

The authors use a measure called Novelty [61], the difference between the joint probability and

the individual probabilities of features K and L:

Nov(K←L) = p(KL) - p(K) - p(L).

Selection graphs are a way of representing SQL queries or inductive logic constructs since simple

mappings exist between them [52]. In order to incorporate aggregation that is more complex than

simple aggregation, the framework of selection graphs needs to be extended by introducing

conditions on the edges capable of dealing with spatial aggregation and aggregation of multiple

features. These extensions are similar in complexity to the extensions that inductive logic

programming requires.

4.2 ILP Rule Language

One method of dealing with information contained in multi-relational databases is to transcribe

the information contained in them into logic-rules against which hypotheses can be evaluated [5].

This is done by converting all entities, their features and spatial relations, into the language of

Inductive Logic Programming (ILP). This Chapter introduces the fundamentals of ILP (Chapter

4.2.1), before moving on to expressing aggregation with ILP (Chapter 4.2.2).
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4.2.1 Basic ILP Rule Formalism

Rules are built using the format of first-order logic (FOL). The formal syntax which forms the

ILP structures are defined below [82, 26, 56, 71, 72, 18, 27]. ILP can be thought of as a language,

with a distinct alphabet, words and structure. With each language, in order to construct proper

sentences, first the alphabet must be established.

Definition 9 – Alphabet – An ILP alphabet consists of the following:
 A set of constants, denoted by lowercase letters a, b, c, … .
 A set of variables, denoted by uppercase letters X, Y, Z, … .
 A set of functions, each having an arity α (a natural number) assigned to it.

Functions are denoted by uppercase letters f, g, h, …, and written as f/α. A
function of arity 0 is a constant.

 A non-empty set of predicates, each having an arity α (a natural number)
assigned to it. Predicates are denoted by uppercase letters P, Q, R, …, and
written as P/α. A predicate is a mapping from a domain Dn , n>0, to a Boolean
value.

 The set of five logical connectives { , , , ,     } respectively denoting

logical negation, disjunction (logical OR), conjunction (logical AND),
equivalence and implication.

 Two quantifiers: the universal quantifier  and the existential quantifier .
 Three punctuation symbols: ‘(’, ‘)’ and ‘,’.

Similarly to natural languages, where entities of the described world are represented by nouns,

entities in predicate logic are represented by terms:

Definition 10 – Terms – The set of terms of a given alphabet are recursively defined as follows:
 constants and variables are terms;
 f/α is a function with arity α where each of the n arguments is a term.

Just as in natural languages only certain combinations of words form meaningful sentences; the

sentences in predicate logic are formed via well-formed formulas (or simply formulas) and are

defined as:

Definition 11 – Formulas – A formula is valid if:
 P/α is a predicate and t1, t2, …, tα are terms, then P(t1, t2, …, tα) is a formula;
 F and G are formulas, then so are F , F G , F G , F G , F G ;

 F is a formula, x a variable, then xF and xF are also formulas.

Those formulas which are not atomic, for example P(a)˅Q(b), are called composite formulas.

Intuitively a term refers to an entity while a formula represents an assertion about entities.

Definition 12 – Atom – The smallest possible formula is called an atom and is constructed by
assigning α terms to a predicate of arity P/α. If all α terms are constants then the
atom is called a ground atom.
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For example, a predicate neighbour can be applied to the pair of variables M and R, representing

atoms mall(M) and road(R), producing an atom of arity 2: neighbour(M, R). If the constants

‘Lougheed Mall’ and ‘Highway 1’ are substituted for M and R respectively, then there is a ground

atom: neighbour(‘Lougheed Mall’, ‘Highway 1’).

Definition 13 – Literals – A literal is either an atom, called a positive literal, or its negation,
called a negative literal, or a comparison θ of a term to a constant value T.

Intuitively, the distinction between the three definitions of predicate, atom and literal can be seen

as follows. A predicate is a mapping from some domain of some values to a Boolean value,

similar to the mathematical mapping squared which maps real numbers to the domain of non-

negative real numbers. An atom however actually applies some terms to the predicate, like

applying the variable x to the mathematical mapping squared to get f(x) = x2. Although in this

thesis all literals are going to be positive, the meanings of atoms and literals are still distinct since

literals can also express a comparison of a term to a constant. This would be similar to specifying

that the literal maps to true only if the mapped value is less than 100, for example: x2 < 100. This

cannot be expressed with an atom.

Definition 14 – Full Clause – A full clause is a set of literals of the form head ← body. Both the
head and body are conjunctions of literals Li, denoted as L1 Λ L2 Λ…Λ Ln, or
simply as L1, L2, …, Ln.

Definition 15 – Horn Clause – A Horn clause is a clause of the form head ← body where the
head is made up of at most a single positive literal L0, while the body is a
conjunction of literals Li, denoted as L1 Λ L2 Λ…Λ Ln, or simply represented as
L1, L2, …, Ln. Hence a Horne Clause is of the form L0 ← L1, L2, …, Ln.

As an example, the notion “if there exists a mall which is close to a house, then the house is a

neighbour to the mall" is written

R2: neighbour(H,M) ← mall(M), close(M,H), house(H)

Since a formula can contain implication (F ← G) and conjunction (F Λ G) thus a full clause is

simply another representation of a specific type of formula. Similarly, a Horne clause is a type of

formula where the implied head contains only a single positive literal.

Definition 16 – Classification Rule – A classification rule is of the form head ← body. The head
is made up of at most a single positive literal L0 specifying one of the values of the
term used for the classification task. The body is a conjunction of literals Li,
denoted as L1 Λ L2 Λ…Λ Ln, or simply as L1, L2, …, Ln.



43

The goal of multi-relational classification using ILP is to find rules, using the format of Horn

clauses, which form a well defined and accurate model. As an example, assuming the task is to

classify malls as profitable or not profitable, the following rule can be constructed:

R3: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H)

R3 states that “if there exists a house neighbouring a mall then the mall is profitable”. The literals

mall(M), neighbour(M,H) and house(H) make up the body of the rule and profit(M,‘Yes’) makes

up the head. When a predicate mall is applied to the term M it creates the atom mall(M). house(H)

is implicitly existentially quantified, which is defined as follows:

Definition 17 – Existential Quantification – The existential quantifier (EQ), symbolized with the
symbol  , expresses that the literal holds for some (at least one) value of the
variable in the literal. EQ literals can take the form predicate(term) in the case of
unary predicates or predicate(term1, term2, …, termα) in the case of predicates
with arity α.

In clauses, the symbol  is typically left out of the notation. One of the forms of a literal

performs a comparison, using a comparison operator, of a term to a constant value, called a

threshold value. They are defined as follows:

Definition 18 – Comparison Operator – A comparison operator θ is one of the following
arithmetic operators: =, <, <=, >, >=.

Definition 19 – Threshold – The threshold value T is a constant that the term in a literal is
compared against. It is used to divide the dataset into two partitions, one not
meeting the criterion expressed by the comparison operator and threshold (these
are said to be not covered by the literal), the other one matching (covered by) the
comparison operator and threshold. It has the format literal θ T.

A summary of the above is illustrated in Figure 24.

Figure 24 – Horn Clause format
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4.2.2 ILP Rule Language Involving Aggregation

Typically the number of spatial entities in a spatial dataset (a city for example) is very large,

possibly on the order of millions. Clearly, the importance of any single entity, when in the

presence of thousands of other entities of the same type, is questionable. From above, take as a

running example the sample rule:

R3: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H)

It is relatively weak since all malls would most likely have some neighbouring houses. By adding

an additional literal, for example, that the income at that house is greater than $50,000, it is

possible to create the rule:

R4: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H), income(H, I), I > 50,000

Even R4 is relatively weak since it is highly unlikely that a mall is profitable because of some

distinct feature of a single neighbouring house unique only to profitable malls. Since spatial data

is, in general, (spatially) dense with many entities neighbouring entities of another type hence the

effect of a single entity is negligible. A mall, for example, is going to be successful not because

there exists a single house in its neighbourhood with high income, but rather because the average

purchasing power of the neighbourhood that it is in is above a certain value. The crime-rate in a

certain area is typically not considered high because a certain building got robbed many times,

but because the aggregate number of robberies over all buildings in the area is above a threshold.

These notions cannot be expressed by the existential quantifier. To solve this problem, the ILP

formalism was extended to allow for the aggregation over a single argument of a P/α predicate,

referred to as a feature, to be used in ILP via single-feature aggregation functions as follows [98]:

Definition 20 – Single-Feature Aggregation Function – A single-feature aggregation function
maps a bag of elements from the domain of the feature being aggregated to a
single value from another (possibly different) domain.

This function is integrated into ILP via single-feature aggregation literals:

Definition 21 – Single-Feature Aggregation Literal – A single-feature aggregation (SFA) literal
has the form Agg(input, {conditions}, result) where input is a variable specifying
the bag of feature values to be aggregated by Agg, constrained by conditions, and
result is an output variable referencing the result of the aggregation.

With SFA literals another literal in the rule can reference result in order to add further constraints.

For example, R2 could be extended by the SFA literal avg (average) as follows:

R5: profit(M,'Yes') ← mall(M), avg(income(H), {neighbour(M,H), house(H)}, A), A > 50,000



45

Rule R5 denotes that “a mall is profitable if the average income of neighbouring houses is above

$50,000”. Figure 25 shows a compilation of SFA literals from [78, 42, 98] and the SQL language

[52]. These literals describe the major properties of the input dataset and are non-redundant (with

the exception of sum
countavg  , but avg does not increase computational complexity, and is a

critical function). The advantage of including SFA literals in classification rules is an increase in

accuracy, coverage and expressiveness [52]. The disadvantage is an increase in computational

complexity.

4.3 Extensions of ILP for Spatial Classification

The ILP formalism cannot express feature-dependencies or spatial aggregation. It is constrained

by the existential quantifier and aggregation of a single feature [98]. In the context of spatial

entities, it is known that dependencies between features of an entity exist. This is illustrated by

Tobler’s First Law Of Geography which states that ‘everything is related to everything else; but

that near things are more related than those far apart’ [95]. Tobler’s law clearly states that there is

a relationship between the distance of two entities and their feature values. In order to mine for

useful spatial classifiers, this dependency must be exploited along with the information contained

in the implicit spatial dataset, such as spatial features and relationships.

Applicable to

Literal Result Numeric Date Ordinal Categorical

sum(input, {conditions}, result) the total of all input values 

min(input, {conditions}, result) the smallest of all input values   

max(input, {conditions}, result) the largest of all input values   

avg(input, {conditions}, result) the average of all input values  

count(input, {conditions}, result) the number of input values    

range(input, {conditions}, result) difference between max and min  

standard deviation (input,
{conditions}, result)

the dispersion or variation in a
distribution of the given input values

 

least_frequent(input,
{conditions}, result)

the value which is repeated the fewest
number of times

 

most_frequent(input,
{conditions}, result)

the value which is repeated the most
number of times

 

Figure 25 – Single-feature aggregations and the feature-types they are applicable to. The
conditions need to be applicable to the entities in input.
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To do these tasks, this Chapter introduces a way of analyzing dependencies of features via multi-

feature aggregation (Chapter 4.3.1). Also introduced into the ILP framework is a set of spatial

features (Chapter 4.3.2) and literals (Chapter 4.3.3) which are extracted from the dataset for

classification. Spatial techniques for aggregation are introduced into the ILP framework to allow

for analysis that provides reliable results on spatial data (Chapter 4.3.4).

4.3.1 Multi-Feature Aggregation

Due to Tobler’s First Law Of Geography, dependencies between features of spatial entities must

be considered. Analyzing and aggregating multiple features of the same entity-type

simultaneously can yield valuable information in accordance with this law. For example, if house

sizes increase as distance from a mall decrease, it could indicate that a mall is in a wealthy

neighbourhood. There are multivariate functions, for example correlation [94], in other domains,

such as statistics, which are able to express these dependencies, but these have not been explored

in an ILP or classification context. Single-feature aggregation literals are adapted to multi-feature

aggregation literals by allowing multiple features as arguments resulting in the following

definitions.

Definition 22 – Multi-Feature Aggregation Function – A multi-feature aggregation function
maps multiple lists of elements from the domains of the features to a single value
possibly of another domain.

Applicable to cases where features are:

Literal Returns Numeric Numeric
or date

All ordinal or
categorical

linear_regression_coefficient
({input1, input2} {conditions},result)

the slope of the line-of-best-fit, indicates
relationship between two inputs

 

correlation({input1, input2}
{conditions},result)

the degree to which the values are
positively/negatively associated to each other

 

covariance({input1, input2}
{conditions},result)

the measure which indicates how two values
vary together

 

most_frequent_combination({input1,
input2,…inputi},{conditions},result)

the value which is repeated the fewest number
of times



least_frequent_combination ({input 1,
input2,…inputi},{conditions},result)

the value which is repeated the most number
of times



chi-square({input1, input2,…inputi}
{conditions},result)

indicates whether there is a dependency
between two sets of categorical values



 Treated as numbers by calculating the number of days from a certain date.

Figure 26 – Proposed multi-feature literals and the conditions need to be applicable to the entities in
input.
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Definition 23 – Multi-Feature Aggregation Literal – A multi-feature aggregation (MFA) literal
has the form Agg({input1, input2,…inputi}, {conditions}, result) where {input1,
input2,…inputi} specifies lists of corresponding feature values aggregated and
constrained by conditions. result is the output variable of the MFA function
corresponding to Agg.

For example, instead of the single-feature aggregation (SFA) literal average (as in R5), R3 can be

extended with the more powerful multi-feature aggregation (MFA) literal correlation to denote “a

mall is profitable, if, for neighbouring houses, the correlation between household income and

house size decreases” (i.e.: profitability of mall occurs if people have money but live in small

houses). This is written as follows:

R6: profit(M,'Yes') ← mall(M), covariance({income(H), size(H)},
{neighbour(M,H), house(H)}, C), C < 0

A few common functions are used to measure relationships between features [94]. These same

functions are also irreducible and complement each other in the properties of the relationship they

measure. To capture these, this thesis introduces them to the ILP framework as Multi-Feature

Aggregation literals (Figure 26). For example, using the data in Figure 27, these MFAs return the

following values:

 Linear regression coefficient measures the relationship between the features and yields

a value of 2.

 Correlation coefficient measures the departure of those features from independence and

has value 1 (i.e.: they are dependent).

 Covariance measures how the features vary together and has value 4.125.

As opposed to regression, correlation, or covariance, which works on numeric values, the chi-

square takes as input categorical values and measures their dependence. The ILP framework

presented here generalizes to any type of multi-feature aggregation, non-linear correlations or
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bivariate dependencies, for example. If the appropriate aggregation functions are added to the

framework, the rule-learner will evaluate them and use them to construct rules. The literals

presented in this thesis were specifically selected for their expressive power and it was found not

to be necessary to add more complex aggregations.

With these additional aggregations the expressiveness of rules increases, but due to pair-wise

features being evaluated for each MFA literal, the search-space increases significantly. As part of

this thesis, the paper “A Method for Multi-Relational Classification Using Single and Multi-

Feature Aggregation Functions” was published at the 11th European Conference on Principles

and Practice of Knowledge Discovery in Databases (PKDD ‘2007) [38]. Experiments presented

in that publication confirm that indeed the inclusion of MFA literals indeed improve classification

precision and/or coverage. Runtime analysis is done in Chapter 5.4.

4.3.2 Spatial Features

Spatial data is unique from non-spatial data in that the entities can have associated to them a

polygonal shape (e.g. the outline of a building or park). This polygonal shape implicitly contains

important information, such as location or size, which must be extracted from the polygonal

Spatial Features Description

length(input, L) the length L of the polygon representing entity input

width(input, W) the width W of the polygon representing entity input

perimeter(input, P) the perimeter P of the spatial polygon representing entity input

area(input, A) the area A of the spatial polygon representing entity input

x_coord(input, X) the X-coordinate X of the point entity

y_coord(input, Y) the Y-coordinate Y of the point entity

Figure 28 – Existing spatial features expressing spatial properties of an entity

Spatial Features Description

start_y(input, Y) the starting Y-coordinate Y of the input entity

end_x(input, X) the ending X-coordinate X of the input entity

end_y(input, Y) the ending Y-coordinate Y of the input entity

start_x(input, X) the starting X-coordinate X of the input entity

– represents
the ends of
road-
segments, for
example

catchment_area(input,C) the area C enclosed by the Voronoi cell of input, represents the region ‘attracted’ by the entity

centroid_x(input, X) the X-coordinate X of the centroid

centroid_y(input, Y) the Y-coordinate Y of the centroid

Figure 29 – Novel spatial features expressing spatial properties of an entity
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shape before it can be used for classification. For example, the area of a parking-lot might be

relevant when searching for causes of theft from automobiles. Spatial features are used to

describe these implicit features of entities:

Definition 24 – Spatial Function – A spatial function is a function having an arity greater than
0 and returns the value of an implicit property derived from the input’s polygonal
shape.

Definition 25 – Spatial Feature – A spatial feature is the result of a spatial function when
applied to a variable. It describes some property of the input entity and has the
form SpatFeat(input, result). A constraint and a threshold could be applied to
create literals.

Some simple spatial features have been used in the literature [5, 87] (Figure 28). These however

are not appropriate in describing entities such as road-segments or parks (the perimeter of

‘Highway 1’ is not useful). In order to increase the expressiveness of the language and measure

all interesting properties of 2D entities, new features appropriate to 2D data are introduced

(Figure 29). Since the proposed approach makes use of Voronoi calculations, an additional spatial

feature, called catchment_area(), is added to the proposed set. For a mall or store entity, the

catchment area is defined as the area from which it attracts customers. The catchment area is

given by the features of the Voronoi cell that the entity is in. The addition of this feature is

motivated by research in marketing which use the catchment area in order to infer profitability

[73]. To capture information like that in ILP rules, such a feature needs to be integrated into the

rule language. Other features from other domains may be incorporated into this framework by

following the format of spatial features.

4.3.3 Spatial Literals

Spatial data, by default, does not contain explicit relationships between entities. These

relationships however need to be expressed by using a generic ILP construct. This thesis

explicitly expresses spatial relationships with the use of spatial literals, as defined below:

Definition 26 – Spatial Literal – A spatial literal represents a spatial relationship between two
entities. It has the form SpatLit(input1, input2) or SpatLit(input1, input2, S), S θ T,
depending on whether an output variable is applicable.

Definition 27 – Neighbour Literal – A neighbour literal is a special spatial literal representing
the existence of a relationship between two spatial entities, as defined by a
neighbourhood definition. It has the form neighbour(input1, input2).
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For example, house(H) and mall(M) can be connected with spatial literal neighbour(H, M). The

literal neighbour(H,M) was created because, according to the neighbourhood definition, such as

the buffer-zone or Voronoi neighbourhood, there is a relationship between H and M.

There are three types of spatial literals: topological (8-intersection model), distance and direction

[5, 28, 31, 32, 51, 75] (Figure 30). As these types of spatial literals are orthogonal, it is not

possible to use any two to express all types of relationships. For example, without distance, it is

possible to express that two entities are distinct and which relative direction, but not how

close/far, they are relative to each other. Although distance and direction are needed only if the

disjoint literal is true, in most cases all three types of literals are needed. In order to be complete,

the set of topological relationships must be complemented by distance and direction. The

approach presented in this thesis however uses Voronoi diagrams and the road network; hence

very critical novel spatial literals need to be added to take advantage of these concepts (Figure

31). The literature sometimes makes use of literals such as north_of(), but since the definition of

literal used in this thesis encompasses a comparison operator and a threshold, the different

Literals Description

disjoint(input1, input2) true if input1 is completely separate from input2

meet(input1, input2) if input1 is strictly immediately adjacent to input2

overlap(input1, input2) if input1 extends over, or partially covers, input2

covered_by(input1, input2) input1 completely envelops input2

inside(input1, input2) if input1 is within input2 (a building in a city or park)

equal(input1, input2) if input1 is identical and in the same location as input2

covers(input1, input2) if input2 completely envelops input1

contains(input1, input2) if input2 is within input1

direction(input1, input2, D), D θ T specifies angular position of input2 relative to input1 as a number or value such as ‘East’

distance(input1, input2, D), D θ T the distance between input1 and input2 when travelling in a straight line

Figure 30 – Existing spatial literals. θ denotes a comparison operator and T a threshold.

Literals Description

voronoi_neighbour(input1, input2) if input1 shares a relationship, according to the Delaunay triangulation with input2

road_distance(input1, input2, D), D
θ T

the distance between input1 and input2 when travelling along the road-network of a map

travel_time(input1, input2, D) D θ T time required in order to cover the distance from input1 to input2 along the road network

Figure 31 – Novel spatial literals. θ denotes comparison operator, D the output, and T a threshold.
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directions can be captured using the literal direction(). For example instead of north_of(H, M) the

literals direction(H, M, D), D = ‘North’ can be used.

4.3.4 Spatial Aggregation Literals

Entities in spatial data are not independent and these dependencies must be captured through

functions tailored to take into account this dependence. Non-spatial aggregations that are

performed on spatial data might yield unreliable results, for example, regression analysis does not

adjust for spatial dependency and thus can have unreliable parameter estimates and significance

tests [67]. Spatial regression models allow for capturing these relationships and do not suffer

from this weakness. Aside from spatial_trend, which is only one of multiple spatial statistics

methods, currently no work has been done in expressing these dependencies in ILP rules.

Following the multi-feature aggregation format, this thesis expresses these spatial dependencies

via spatial aggregation literals incorporated into the ILP language as follows:

Definition 28 – Spatial Aggregation Literal – A spatial aggregation (SA) literal has the form
Agg({input1, input2,…inputi}, {conditions}, result) where i>0 and input specifies
the lists of corresponding feature values aggregated and constrained by
conditions. The variable result references the result of the aggregation function
corresponding to Agg.

As an example of the spatial aggregation literal, R7, spatial_trend can be used to denote the rule

“a mall is profitable if there exists a spatial trend between the mall and neighbouring houses such

that the further the house from the mall, the larger the value of the house”:

R7: Profitable(M,’Yes’) ←

mall(M),spatial_trend({distance(M,H),value(H)},{house(H), neighbour(H,M)}, S), S >0.

The result is given in variable S onto which a restriction is placed such that it is greater than 0, to

Literals Description

spatial_trend({input1, input2}
{conditions},result)

indicates a tendency for a feature-value of input2 to change with respect to
distance from input1

spatial_autocorrelation({input1, input2}
{conditions},result)

analyze the degree of dependency among observations of input1 and input2

with respect to their location

area_adjusted_mean({input1,
input2},{conditions},result)

the mean value of all input2 entities, weighted by their Voronoi area, that are
neighbours to input1

v_count({input1, input2}, {conditions},result) the count of all entities of input2 in the Voronoi cell of input1

Figure 32 – Spatial Aggregation Literals, the conditions need to be applicable to the entities in
input.
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indicate a positive relationship between the value of the house H and the distance between house

H and mall M.

According to research in spatial statistics, common spatial occurrences are described by spatial

trends and autocorrelations (also called ‘associations’) [63]. With the exception of spatial_trend

[31], spatial statistics have not been integrated into the ILP framework and have never been

explored. This type of analysis however is critical in order to capture occurrences predicted by

Tobler’s First Law. Hence this thesis incorporates the most common spatial statistics functions

(Figure 32). Spatial trends describe the tendency of a feature-value to change consistently with an

increase in distance away from a central entity whereas autocorrelation measures this change with

respect to location in general. These functions are independent and describe different statistics of

a set of spatial entities [63]. There are other statistics, such as the variogram, but these are very

similar to the spatial aggregation literals in Figure 32 and hence are not included. The addition of

these SA literals is expected to have similar impact, both in computational complexity and

accuracy, as MFA literals. It is an open question how many and which underlying spatial

influences can be captured by these literals, it might be possible that once the spatial processes

are captured, other aggregations are not going to be confounded and thus become more important.

4.4 Relationship between ILP and DB

Although classification results are expressed as ILP rules, the data the rules are derived from are

stored in database D with schema S consisting of entities, tuples, and relationships. Hence literals

are created from the following three database constructs: entity literal, feature literal and

relationship literal:

 Entity Literal. Literals can be derived from entity-types in S. An ‘entity literal’ is a P/1

literal ti(v) where ti denotes entity-type iS and v is a variable representing the feature

which is the primary key of ti. For example, house(H).

 Feature Literal. Each entity-type tiS contains features – properties of ti that are stored

in the database. A ‘feature literal’ is a P/2 literal f(v, r) where f ti denotes a feature such

that f is neither a primary nor foreign key, and v is a variable representing the primary key

of E, and r the resulting value. For example, size(H, r), r = 956.

 Relationship Literal. Relationships in S contain information about linked entities. A

‘relationship literal’ is associated with a pair of entity-types tiS and tjS, such that

there is a foreign key relationship between ti and tj. This relationship can be represented
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by a P/2 literal r(i,j) where r denotes the relationship with i and j being the primary keys

of ti and tj respectively. i could equal j.

Due to extensions for spatial and aggregation literals, more links are established:

 Spatial Feature Literal. Similar to a Feature Literal, except the feature is derived from

the spatial representation of the entity.

 Spatial Relationship Literal. Similar to a Relationship Literal, except the feature is

derived from the spatial properties of the relationship.

 Aggregation Literal. An aggregation literal represents the aggregation of a single or

multiple feature values of entities from entity-type tiS, all related to the same entity of a

different type tjS. They can be aggregated via single- (or multi-) feature aggregations.

An aggregation literal is represented by a literal Agg({input1, input2,…inputi},

{conditions}, result) where all input parameters are features in ti and {conditions}

contains a feature literal referencing tj along with a relationship literal referencing both ti

and tj.

For example, consider:

R3: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H)

the predicate mall() corresponds to a mall entity in the database. Since the literal neighbour(M,H)

references the terms M and H which are applied to a predicate neighbour(), this implies that in the

database there exists a neighbour table which references both the mall and house entity-types. All

substitutions for M and H which are allowed for predicate neighbour() consist of the set of tuples

in the database table neighbour. The above database and ILP terminology equivalencies are

illustrated in Figure 33.
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Figure 33 – Comparison of DB and ILP terminologies (underlined text is DB, non-underlined text is
ILP terminology)
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CHAPTER FIVE:
SPATIAL RULE LEARNING

This chapter explores the details of the method used to create spatial rules using a multi-relational

foundation. Spatial data can be represented as multi-relational data, but it presents novel

challenges not present in multi-relational problems which current multi-relational classifiers

cannot solve. A novel, comprehensive spatial classification rule-learner, called Unified Multi-

relational Aggregation-based Spatial Classifier (UnMASC), is introduced which addresses these

challenges.

In order to learn classification rules on a multi-relational dataset, one of the entity-types from the

dataset has to be selected by the user. This special entity-type is called the target entity-type, and

is denoted as tτ. Each entity in the set of entities eτ of type tτ has exactly one class label assigned.

The meaning of the class labels depends on the classification task. The task could be to either

classify the entities into a discrete set of labels, or into a Boolean value. For example, the task

could use a non-Boolean classifier to learn how profitable a mall is on a scale of 1 to 10, or use a

Boolean classifier to simply classify whether it is Profitable or not

In general, the model can be built to describe all of the class labels simultaneously [68]. This

thesis focuses on the two-class classification problem whereby the model is built to describe the

class label selected by the user, referred to as the positive class, with the assumption that

whichever entity is not described by the model does not belong to the positive class, but belongs

to the negative class. The method presented in this thesis can however be generalized to work in a

multi-class classification scenario. The goal of the classification task is to predict the class label

for new entities not used to learn the model by looking at the feature values of related spatial and

non-spatial entities, along with the relationships between them. Positively labelled entities refer to

entities with the same label as the one the user selected, while negative entities refer to the non-

positive target entities.

To learn the model, a rule-learner, based on the sequential covering algorithm [68], is applied.

First, the spatial features are extracted and neighbourhoods established. Then the algorithm learns

the classification model by generating one rule at a time and refining them incrementally by

adding literals to the rule until some termination condition applies. The refinement is guided by
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statistical measure so the rule quality improves during each refinement. The result is a set of rules

which cover (ideally all) positively labelled entities in the dataset while covering a minimum

number of negative ones.

There are multiple ways to construct the classification rules (Chapter 5.1), but in general they are

guided by a series of refinements using a few standard measures (Chapter 5.1.3). However, this is

a complex task (Chapter 5.4). Additional opportunities to prune the search space are still present

(Chapter 5.5), which UnMASC considers. When the model is complete, statistics can be collected

to measure the quality of the model (Chapter 5.6).

5.1 Rule Learning Strategies

Rule learners create models consisting of a set of rules. Each rule contains multiple conditions

and describes a subset of entities which ideally contain the same class label. In order to find this

rule, the set of all possible conditions that can be placed on the rule, called the rule-space, needs

to be searched [88, 76]. This rule-space can be illustrated as a lattice, where each node is a

condition (literal) that can be added to the rule. A small lattice, denoting the rule-space for

conditions (literals) A, B, C and D, is shown in Figure 34.

There is a combination of conditions, corresponding to a specific node in the lattice, which is

optimal according to some quality measure (discussed in Chapter 5.1.3); the task is to find this

node. Rule learners need to search the rule-space in order to find the optimal combination of

Figure 34 – Lattice showing a small rule-space
being explored top-down

Figure 35 – Lattice showing a small rule-
space being explored bottom-up
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conditions. There are two basic strategies to how rules are constructed:

- a strategy called top-down search (Chapter 5.1.1) starts at the {empty rule} and traverses

the lattice down by adding conditions (Figure 34), and

- a strategy called bottom-up search (Chapter 5.1.2) starts at the most specific set of

conditions and generalizes the rule by removing conditions (Figure 35).

In order to not evaluate each specific combination of conditions, a greedy strategy is typically

used where only the best combination of conditions is evaluated further. For example, in the top-

down strategy, if {AD} is found to have the best quality, only supersets of {AD}, that is {ABD}

and {ACD}, will be evaluated further. Similarly, in the bottom-up strategy only {A} and {D}

would be evaluated. Since a decision is made at each level, this strategy of evaluation will only

evaluate a small subset of the possible set of conditions. UnMASC uses a top-down strategy, as is

typical for ILP rule-learners.

5.1.1 Top-Down Rule Construction

A top-down classification method, such as CrossMine [100], starts with an empty rule that covers

all entities not covered by any other previous rule. Then new conditions, in the form of literals,

are added to narrow the subset of entities satisfying the conditions of the rule, but only if the

additional condition meets two criteria. First, the rule quality must improve according to some

quality measurement (see Chapters 5.1.3). Second, the number of entities covered by the rule

must stay above a minimum threshold, said to be supported. This is repeated until no further

conditions can be added, at which point the current rule is considered complete and added to the

set of other rules. When a new rule is added to the existing set of rules, the set of corresponding

entities satisfying that rule are removed from the dataset, and a new blank rule is started.

Measures which decide whether a rule should be refined further depend on the support value. The

support of a rule is the number of possible substitutions for the variables in the rule. As an

example, using the rule from a previous chapter:

R3: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H).

One possible substitution is the replacement of the entity M in mall(M) by the value ‘Lougheed

Mall’ and entity H in house(H) is replaced by '45 Main St.'. If the rule is supported, it is changed

by either applying a substitution to one of the literals or adding a new literal to the rule. R3, by

using substitution, could be refined into:
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R8: profit(M,'Yes') ← mall('Lougheed Mall'), neighbour(M,H), house(H)

or alternatively the algorithm could add a literal to the body of the clause generating the rule:

R9: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H), size(H, S), S > 1,000.

Once the substitution or addition is done, the new rule is tested for consistency and support. If the

new clause is found to be inconsistent with, or unsupported in, the dataset, then it is discarded.

This is equivalent to the apriority pruning strategy where supersets of the current

unsupported/inconsistent rule are pruned from the search-space and any further rules including

those literals are not refined [26]. User-imposed constraints, representing the preferences of the

user, on the head or body of the pattern can also influence the rule learning process [9]. One such

constraint could be that the head/body must (not) include a specific literal.

5.1.2 Bottom-Up Rule Construction

A bottom-up approach covers all the positive examples by starting with very specific rules,

possibly one per positive example, and generalizes them so that the set of rules is compacted but

the coverage and accuracy are maintained. The idea is that the algorithm constructs a rule that is

going to make other rules redundant, the more rules it makes redundant, the more compact the

rule-set is, the more likely that that rule is going to be used in the rule-set. If the new generalized

rule covers negative entities (i.e.: the rule is too general) then an attempt is made to specialize it

so that no negative examples are covered. The end result is a compact set of rules which covers a

minimum number of negative entities. Compactness can be measured by a metric which simply

measures the size of the rule-set. [105]

5.1.3 Rule Quality Metrics

For the top-down rule construction method, the benefit of adding a specific literal to the rule must

be measured. Two metrics are commonly used, FOIL-Gain and Information-Gain, but the two are

very similar in their application. [100, 36]

FOIL-Gain

FOIL-Gain is a metric that is used to capture the total number of bits saved by the addition of an

extra literal p to the rule r under consideration. The FOIL-gain for a literal p, given rule r, is

defined as [100]:

FOIL-Gain ( )p r p r r pP I I    (5.1)
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where the variables Pr and Nr denote the number of positive and negative target-entities satisfying

rule r. When considering appending literal p to rule r, in order to create a new rule r+p, the

number of positive and negative target-entities still satisfying rule r+p are denoted as Pr+p and

Nr+p respectively.

Information Gain

For decision trees, where there are k splits at each node in the tree, the main criterion is usually

the information gained by adding literal A to the rule [36]. Information gain is defined as follows:
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and where Nr and Pr are the number of entities having a negative and positive label, respectively,

on rule r. The literal with the highest possible information gain is added to the rule.

Information Gain vs. FOIL-Gain

The information gain measure is applied to a decision tree where each node can be split k ways

(classes), and each split has to be as pure as possible. This is not the case with the two-class

classification problem dealt with in this thesis, where, instead of k classes there are only 2, and

instead of considering the purity of each class only the purity of the positive class is measured.

Given these two restrictions, the information gain simplifies into the FOIL gain measure as

follows:

1
_ ( ) ( , ) ( , )

k
ri ri

r r ri ri
i r r

P N
info gain A entropy P N entropy P N

P N


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
 (5.5)

Since the concern is only on the positive class when adding literal p to rule r, hence k = 1 and

equation (5.5) simplifies into
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Given that the type of classification UnMASC performs does not consider the accuracy of the

negative class, those terms can be removed from the equation.
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Which is equivalent to (5.1). Hence the FOIL-Gain is used for UnMASC.

5.1.4 Dealing with Local Optima

As is standard in rule learning, the algorithm is greedy since at each step it makes the best

decision at that step. It does so without a global view of the rule-learning. As such, it is capable of

making locally optimal, yet globally sub-optimal, decisions in which literal to select. Since in a

multi-relational setting the search-space is much larger, this weakness could be even worse.

Multiple methods for dealing with this global sub-optimality exist, such as beam search [35],

simulated annealing [86], or randomized restarts [104]. While these methods have been shown to

improve the classification process, the focus in this thesis is on the introduction of multi-feature

and spatial literals into the ILP framework, and hence these methods will not be used.

5.2 Rule Learning

The classification process starts with an initial rule which references the target entity-type tτ,

malls for example. When evaluating refinements to the rule, all entity-types which are related to

entities in the rule via a foreign key relationship need to be evaluated (at this point spatial

relationships are already explicitly stated and hence have foreign-key relationships established).

Different entity-type combinations (called neigEntity) need to be considered, depending on what
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the rule already contains. The set of all neigEntity's is called neigEntitySet. For example, malls

have as neighbours other malls, houses and roads, hence neigEntitySet would contain the

neigEntity’s {malls}, {malls, malls}, {malls, houses} and {malls, roads}. Had the rule already

referenced houses as well, neighbours of houses would also require exploration, thus the

neigEntity‘s {malls, houses, malls}, {malls, houses, houses}, {malls, houses, roads} would also

need to be added to neigEntitySet. The more entity-types the rule references, the more

neigEntity’s neigEntitySet contains.

For each neigEntity, the goal is to search that specific set of neighbouring entities for the

candidate literal with the highest FOIL-Gain, then return the feature, aggregation, constant value

and comparison operator yielding this high FOIL-Gain. The decision of which literal to add to the

rule is made only after the FOIL-Gain has been evaluated for all candidate literals for all

neigEntity’s. If the entity-type in the literal has not been referenced in the rule, then up to three

literals are added: an Entity Literal referencing ti, a Neighbour Literal denoting the relationship of

ti to an entity-type already in the rule, and possibly a Feature Literal or Aggregation Literal with

a condition on a (some) feature(s) from ti. For example, if the classification process starts with

rule:

R10: profit(M,'Yes') ← mall(M)

This could be refined to

R11: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H)

by adding house(H) as an Entity Literal, neighbour(M,H) as a Neighbour Literal. Alternatively, a

third literal (a Feature Literal) can also be added, for example size(H, S), S > 1,000, to create the

rule

R12: profit(M,'Yes') ← mall(M), neighbour(M,H), house(H), size(H, S), S > 1,000.

For non-empty rules, the search is more complicated since any entity-type with a relationship to

another entity-type referenced by the rule must be evaluated. The more entity-types referenced,

the more relationships there are, and the larger the neigEntitySet is. Note that depending on the

neighbourhood definition and dataset, entities of type ti could be neighbours to other entities of

type ti.

For each neigEntity, the relevant neighbourhood relationships are exploited, and the features for

the required entities are retrieved from the database. These entities, their neighbourhood

relationships and features, are then passed to the spatial rule learner which calculates the
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aggregations and spatial features. The rule-learner then evaluates all features, keeps track of a set

of candidate literals, and when the search is complete, adds the best candidate literal to the rule.

This is repeated until the rule is finalized, at which point the entities which match the conditions

in the rule are removed from the dataset, and another rule is started. If no further rules can be

started, then the classification model is deemed to be complete.

5.3 Candidate Literal Search in Parallel

In order to determine the best literal to refine the rule with, numerous candidate literals (both

spatial and non-spatial) need to be considered. In most state-of-the-art algorithms, such as

CrossMine [100], the consideration of the candidate literals takes place one after another. Once

all have been considered, the best is selected. This is highly inefficient given that current

computers usually have multiple CPUs and that in most cases the candidate literals have to be

evaluated independently from each other.

One technique of decreasing the time required to evaluate all literals is with the use of a query-

pack, a set of ordered and related queries. If each database-query has similar internal logic, this

approach relies on the DB or customer application to cache the search results, such that when a

similar query is executed, part (or all) of the computation does not have to be redone [12]. This

could have a benefit when exploring extensions to ILP rules, since the main body of the rule is

generally the same, but with the last literal either modified or changed. Referring to Figure 34

above, in order to evaluate rule ‘ABC’ and ‘ABD’, the database has to evaluate ‘AB’, which it

has to do twice in a normal scenario, but can do a single time with query-packs. This

implementation speed-up technique however has been evaluated by modifying existing rule-

learners such as TILDE [13] and WARMR [25], with a net speed-up factor between 1.5 and 5.7.

Another approach to decreasing the time required for candidate literal evaluation is to evaluate all

literals in a parallel and independent fashion. Since the decision of which literal to add to the rule

is made only after the FOIL-Gain has been evaluated for all possible rule extensions within all

neigEntity’s, the evaluation of multiple rule extensions can be performed independently and in

parallel. This would considerably speed up the search for the best literal to refine the rule with.

The benefits of this would be the speed up of the set of candidates, at the expense of needing to

implement a parallel architecture for evaluating the rules. Due to preliminary experimental

testing, in the setup used for the thesis it was found that the database retrieval was a relatively

small portion of the runtime, and the majority of the runtime was spent on performing the

applicable aggregations, which would significantly change depending on what candidate
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extension was being evaluated, hence a totally independent and parallel architecture would make

a more significant difference in run-time than query-packs. Chapter 6.2 illustrates one way of

implementing parallelization, by arranging the system into a server-client architecture. This

allows for simultaneous evaluations of multiple rule extensions.

5.4 Complexity Analysis

In this section, the worst case runtime of the UnMASC algorithm is analyzed. Let Qτ be the

number of target entities eτ around which rules are built and β the average number of Voronoi

neighbours for each entity i in eτ, denoted eτ,i. Assume that fc, fd, fn and fs respectively represent

the number of categorical, date, numeric and spatial features of an entity. Let | f | = fc + fd + fn + fs.

As described in Chapter 4.4, there are 7 types of literals, of which one already exists in the

database, three are extracted beforehand as part of pre-processing (Chapter 5.4.1), and the three

aggregation literals are done on-the-fly (Chapter 5.4.2).

5.4.1 Features from Pre-Processing

Spatial features require extraction from the entity before they can be used in the rule-learner.

From Figure 28 and Figure 29, out of the 13 spatial features, 12 can be extracted via composite

spatial SQL functions of the DB2 Spatial Extender [49]. For example, the literal start_y(input,

result) is equivalent to the composite DB2 spatial function ST_Y(ST_StartPoint(input)). For these

12 features, the runtime for each spatial feature extracted is O(k Qτ β) where k represents the time

required for the extraction by the database. The last spatial feature, catchment_area(), cannot be

expressed as a composite SQL function with DB2 Spatial Extender, since it requires Voronoi

diagram calculations, which have complexity O(Qτ log Qτ) [47]. Thus, to calculate all 13 spatial

features, a total complexity of O(Qτ log Qτ + 12k Qτ β) is required.

Spatial Literals and Neighbour Literals analyze the link between a target entity and its

neighbours. There are 13 spatial literals (Figure 30 and Figure 31) and 1 neighbour literal, and Qτ

target entities each with β neighbours. Hence total complexity is O(14 Qτ β).

Thus the total pre-processing complexity is O(Qτ log Qτ + 12k Qτ β + 14 Qτ β) .
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5.4.2 Features from Run-Time

For each entity in eτ, Single-Feature Aggregation Literals (Figure 25) aggregate the values of

all β neighbouring entities, each having | f | features. Hence the computation of SFA literals

requires a runtime of O( β Qτ | f | ).

For Multi-Feature Aggregation Literals (Figure 26), 3 literals are evaluated by choosing 2 out

of fc categorical features and another 3 by choosing 2 out of ( )d n sf f f  features yielding

 2 2(3 3 )c d nf f fO Q C C
  = O(β Qτ | f |2).

Complexity for Spatial Aggregation Literals (Figure 32) are as follows: spatial_trend()

expresses relationships between distance and a feature value, hence is linear in | f | leading to

O(β Qτ | f |). area_adjusted_mean() is also O(β Qτ | f |) since it requires the values of a single

feature. spatial_autocorrelation() works with pair-wise features, thus is of O(β Qτ | f |2). v_count()

does not analyze features, but entities, hence is O(β Qτ).

Thus, the total run-time complexity required is O( β Qτ | f | + β Qτ | f |2 + β Qτ) = O(β Qτ | f |2).

5.4.3 Single Literal Search Complexity

For each literal, the runtime complexity, calculated above, is given by:

= O(features extracted during pre-processing + features extracted during run-time)

= O(Qτ log Qτ + 12k Qτ β + 14 Qτ β) + O(β Qτ | f |2)

= O(Qτ log Qτ + 12k Qτ β + 14 Qτ β + β Qτ | f |2)

= O(12k Qτ β + β Qτ | f |2)

= O(β Qτ | f |2) assuming 12k << | f |2.

Thus, per each literal, the runtime depends on the number of features and neighbors O(β Qτ | f |2).

5.4.4 Rule-Learning Complexity

Let l represent the number of literals per rule learnt during the rule-building process. Let s, where

the domain of s is (0,1), represent the user-specified minimum support. The overall worst-case

complexity of the rule-learning is thus:

= Number of rules × number of literals per rule × complexity of single literal search
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= 1/s × l × O(β Qτ | f |2)

= O(β Qτ | f |2) assuming O(s) = O(l), i.e. the number of rules is approximately

the same as the number of literals per rule

Thus, the limiting factor in the rule-learning process is the evaluation of the multi-feature and

spatial aggregations which introduce the | f |2 term into the equation and dominate the run-time.

5.5 Pruning

In order to improve the efficiency of the spatial rule-learning, UnMASC makes use of a few

optimizations.

5.5.1 Pruning Threshold Values

The goal of adding literals to the rule is to make the entities that the rule covers purer, that is, to

have all the entities be of the same class with as few exceptions as possible. In order to do this, a

threshold value needs to be found which best splits the dataset into two partitions, with one of the

partitions containing a set of entities having a purer set of class-labels than the original set. For

example, the best threshold for the dataset in Figure 36 would be 423000 because the set of

entities which have an average value less than 423000 have purer class-labels (3 out of 4 positive

labels whereas before 3 out of 6 entities had positive labels).

When searching for the best literal and threshold value combination, each possible threshold

value can be evaluated in order to find the best one. If there are Q entities, then there are up to Q

distinct threshold values which must be considered. For example, when evaluating the average

value feature in Figure 36 (an extended aggregated version of the data shown in Figure 5 – page

4), there are six feature values which need to be considered as threshold values: {70000, 150000,

232000, 340000, 423000, 500000}. The naïve rule-learner would evaluate all possible thresholds

individually to find the one with the highest FOIL-Gain.

Although FOIL-Gain can be evaluated quickly for each individual threshold, it is not efficient to

evaluate all thresholds in a large dataset. Assume that a candidate literal is being evaluated, and a

feature is being searched for the best threshold, i.e. highest FOIL-Gain value. The FOIL-Gain

formula requires that the number of positive and negative entities satisfying the literal be known.

This is done most efficiently if the entities are sorted by increasing (or decreasing) feature values,

at which point the list of thresholds can be scanned and a running count of positive and negative

labels can incrementally be updated for each entity (Figure 37). With these running counts, the



66

FOIL-Gain can quickly be calculated for any threshold. It is however enough to evaluate the

FOIL-Gain only for the entities where there is a change in class-labels with respect to the

previous entity. This is because any entities that follow an entity of the same class-label will

further improve (or reduce) the purity of the class, but will not alter the direction of the change. It

does not make sense to consider a threshold value, when it is known that the next n entities have

the same class-label and hence each will further refine/reduce the class-label purity. It is

sufficient to evaluate only the entities where the class-label changes (with respect to the previous

entity) since those are the entities that represent the local maxima/minima in class-label purity.

Given this, instead of the six evaluations in Figure 37, only three need to be evaluated ({70000,

150000, 423000}). UnMASC performs this pruning to considerably reduce the number of

threshold evaluations required.

5.5.2 Pruning within the Existential Operator

Literals can include a comparison operator and a threshold value v. Assume the neighbourhood of

entity et,i is being evaluated. When applying the existential operator to the feature values of the

neighbourhood, the possible threshold values that need to be evaluated is the set of all unique

feature values of the neighbours of et,i. The computation of the existential operator can be

expensive for numerical data due to the possibility that all the values can be distinct, and each

numerical value would have to be considered as a possible threshold. This is expensive because

then entity counts (of the number of entities having higher and lower feature values) would need

to be prepared, the FOIL-Gain calculated, etc.

There are three possible comparison operators: =, > or <. For numerical data, if the literal

contains the = comparison operator, then the resulting literal is too specific and not interesting

People-House aggregated

ID First
Name

Last
Name

Age Average
Value

Total
Value

Label

1 Mark Doe 34 70000 70000 -

2 John Smith 45 150000 300000 +

3 Betty Smith 39 232000 232000 +

4 Fred Flint 54 340000 340000 +

5 Brian Lam 70 423000 600000 -

6 Jason Roth 25 500000 780000 -

People-House aggregated

Average
Value

Label +ve -ve

70000 - 0 1

150000 + 1 1

232000 + 2 1

340000 + 3 1

423000 - 3 2

500000 - 3 3

Figure 36 – Aggregated table (Sorted by Average Value) Figure 37 – Class label count
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(ex: the rule "the mall is profitable if a bank is exactly 4.5298km away"). However, if, for

numerical data, the = comparison operator is not evaluated, then significant efficiency gains can

be realized.

Ignoring the = comparison operator, a literal can be created with two comparison operators, > and

<. Assume a literal L is selected with comparison operator > and threshold value v. An entity is

covered by L if any of its neighbors have a feature-value greater than v. Let's say ei,q has β

neighbors with feature values {f1, f2, … fj, …, fβ} and is covered because fj >v. The critical

observation is that: if fj >v, then
1 j

j
MAX f




>v, that is, if there is a neighbour of ei,q with feature-

value larger than v, then the largest feature-value of any neighbour of ei,q must also be larger than

v. This implies that, instead of evaluating β thresholds, it is only necessary to evaluate one. Thus,

it holds that for the > operator, only the maximum neighbouring feature-value needs be

considered against v in order to determine coverage. The converse is true for <, where only the

minimum neighbouring feature-value needs to be considered against v.

The naïve computation requires the analysis of all Qi entities, each with their β neighbours’

feature-values, leading to a runtime of O(Qi β). Since the Existential operator can be optimized,

and by ordering the evaluation of the aggregation functions such that min and max are evaluated

before the existential operator, the runtime can be reduced to O(Qi). UnMASC makes use of this

pruning strategy.

5.5.3 Pruning Aggregation Functions

All the aggregation functions used in this thesis were selected because they are representative of

the common statistics measures that are used, while being relatively independent from each other.

The exception to this is the interrelationship between the sum, count and average aggregation

functions, but all have important meanings and hence all three are included. While these three

aggregation functions have a dependency between them, the rest are independent and knowledge

of one does not help in evaluating another, hence the set of aggregation functions cannot be

decreased further without losing expressiveness. If there are a small set of basic aggregation

functions, such as those used in this thesis, then pruning this set of aggregation functions does not

seem profitable.

Single-feature aggregations allow a few pruning strategies. An efficient strategy for calculating

some of the SFAs can start by evaluating sum and count leading immediately to avg values. If a

literal such as avg()>v can be found then it will immediately prune literals such as min()>v or
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max()<v since they possibly cannot be true. Hence two of the aggregations do not have to be

evaluated.

The multi-feature and spatial aggregations presented in this thesis analyze pair-wise subsets of

features, hence the complexity is exponential in the number of features, i.e.: O( f 2 ). Both sets of

aggregation operators were selected to not include any redundant aggregation operators; hence

the sets cannot be decreased further.

5.5.4 Pruning Spatial Features and Literals

Spatial features also do not present pruning possibilities. centroid_x, for example, has no bearing

on area or start_x. However, there are some pruning possibilities for spatial literals, but these

must be done on-the-fly. If the literal disjoint(A,B) is evaluated to true, meaning that entities A

and B do not share a common area and their edges do not touch, then the rest of the topological

relationships from the 8-intersection model [75] will automatically evaluate to false. The other

spatial relationships (distance, direction, road_distance and travel_time) will however require

evaluation. Conversely, if disjoint(A,B) is false, then distance, direction, road_distance and

travel_time do not require evaluation, since the edges of A and B intersect in at least one location,

Figure 38 – Pruning of spatial literals



69

meaning the distance between A and B is 0 (note: neighbourhood for 2D entities can be defined

in other ways). The other topological relationships can be evaluated one-by-one until one is found

to be true, after which the rest of the topological relationships do not need to be evaluated since

they are mutually exclusive and only one can be true. A summary of the pruning techniques

available to spatial literals is shown in Figure 38. Instead of all 13 spatial literals being evaluated,

with pruning, the expected number of evaluations is decreased to 5.

5.5.5 Monotonicity Properties of Aggregation

The results of the classification process are rules which are only applicable to a subset of the

entities from the dataset. Each condition in a rule further reduces the subset until a new set of

conditions is started. Conditions can also be placed within other conditions, but this can introduce

inconsistencies into the results. Take a rule, stating that “a mall is profitable if the count of houses

in its neighbourhood is 2”:

R13: profit(M,'Yes') ← mall(M), count(H,{neighbour(M,H), house(H)}, C), C > 2

A further refinement can be placed onto R13 to continue the classification process. For example,

to refine the count of houses to only those with “values over $200,000”:

R14: profit(M,'Yes') ← mall(M),count(H,{neighbour(M,H), house(H),

value(H)>200,000},C),C>2

The problem with this type of refinement is that, had the original example been

R15: profit(M,'Yes') ← mall(M), count(H,{neighbour(M,H), house(H)}, C), C < 2

and a similar restriction added onto it to yield:

R16: profit(M,'Yes')←mall(M),count(H,{neighbour(M,H), house(H), value(H)>200,000},C),C<2

The rule now would have been an invalid refinement. Notice that it now states that “a mall has

less than 2 houses with values more than $200,000 neighbouring it”, using the ‘<’ comparison

operator and not ‘>’. The two rules use the same literals; R14 however represents a valid

refinement whereas R16 does not. This is better illustrated with an example using a dataset of

malls and the values of their neighbouring houses:
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Mall Value of Neighbouring Houses

1 $500,000 $140,000 $150,000

2 $150,000

3 $650,000 $430,000 $390,000

4 $620,000

The following sets satisfy the rules from above:

Rule Malls Satisfying Rule

R13 {1, 3}

R14 {3}
R15 {2, 4}

R16 {1, 4}

When R13 is refined into R14 the result is a proper subset of the set satisfying R13. This is

because the combination of count operator with the greater-than comparison operator has a

monotone property. Monotonicity, in the context of ILP rules, is defined as:

Definition 29 – Monotone – Given a Horn Clause H of the form L0 ← L1, L2, Ln, and a set E of
entities which satisfy H, an aggregation operator and comparison operator are
said to be monotone if adding any other literal Li to H yields a Clause H’: L0 ← 
L1, L2, Ln, Li which is satisfied by entities E’E.

For example, adding a restriction into count()>t is always going to yield a proper subset, while

the count() < t might yield a proper subset, but is not guaranteed to. The count aggregation and

the less-than comparison operators do not yield a monotone refinement and hence any rule using

those operators cannot be refined by adding another condition into an already existing condition.

There is no generic rule that is able to predict which combination of aggregation and comparison

operators is going to satisfy this monotonicity requirement. Some, such as average, are not

monotonic with either > or < comparison operators, whereas count is monotonic with the >

comparison operator. Hence the only solution would seem to be to individually categorize

whether an aggregation and comparison operator combination is monotonic or not. Since this

restriction exists, care has to be taken when introducing conditions into aggregation literals.
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5.6 Measuring the Quality of Rules

During rule construction, the quality of each candidate literal is measured using FOIL-Gain

(Chapter 5.1.3). While the quality of each addition to the rule must be measured, the quality of

the entire rule must also be measured. There are several ways in order to measure the quality of

the final rules. These measures are: precision, recall and accuracy [41]. The following

subchapters will refer to Figure 39.

5.6.1 Precision

Precision is a measure which represents the exactness of the rules. It can be thought of as the

number of true positive labelled entities identified by the classifier out of the set of all entities

identified as positive. The larger the variability in the results, the smaller the precision will be. It

is given by this formula:

true positiveprecision
true positive + false positive

 (5.10)

High precision does not imply high accuracy, as results could always be the same (high

precision), but inaccurate. A precision score of 1 means that all the results that were retrieved

were truly positive, even if the number of missed positive entities is unknown.

5.6.2 Accuracy

In classification, this measure denotes how well a classifier identifies the true positives and true

negatives out of the set of all entities. It is given by this formula:

true positive + true negativeaccuracy
true positive + false positive + false negative + true negative

 (5.11)

Known Positives Known Negatives

Positives according to test True Positive False Positive

Negatives according to test False Negative True Negative

Figure 39 – Binary classification possible outcomes
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5.6.3 Recall

Recall is a measure of completeness. It measures the number of positive entities identified out of

the set of all true positive entities.

true positiverecall
true positive + false negative

 (5.12)

A recall score of 1, perfect, means that all true positives were identified, but the number of false

positives identified along with the true positives is not measured.
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CHAPTER SIX:
THE CRIME DATA-WAREHOUSE AND THE
IMPLEMENTATION OF UNMASC

This thesis introduces several novel techniques towards mining spatial data: a Voronoi-based

neighbourhood definition, additions to the rule-language capable of capturing dependency

between features and spatial analysis, and lastly, the parallelization of the rule-learning. This

chapter discusses how these techniques are implemented in what is called the UnMASC

Framework (Figure 57). The framework is composed of a spatial database system, called the

Crime Data-Warehouse, and a data-mining algorithm called Unified Multi-relational

Aggregation-based Spatial Classifier (UnMASC).

As a result of collaboration between the Institute of Canadian Urban Research Studies (ICURS)

research center at the School of Criminology at SFU and the Royal Canadian Mounted Police

(RCMP), five years of real-world crime data was made available for research purposes at ICURS.

This data was retrieved from the RCMP’s Police Information Retrieval System (PIRS). PIRS,

integrated with publically available datasets such as the road-network, formed the core of the

Crime Data-Warehouse (CDW).

UnMASC and the Crime Data-Warehouse were both developed inside the secure computing

facilities at the ICURS research center. ICURS is based at the School of Criminology at SFU and

directed by Dr. Patricia Brantingham (Professor of Computational Criminology) and Dr. Paul

Brantingham (Professor of Crime Analysis). Their leading research into Environmental

Criminology made them, and the ICURS research center, perfect collaboration partners for

developing a spatial classifier which mines entities in an urban setting for explanations on how

crime patterns change due to their surrounding environment.

The set of experiments carried out in this thesis required a different dataset to be used, each

requiring three parameters to be specified: the city, type of crime and entity-type, denoted

hereafter as ψCITY, ψCRIME and ψLABEL, respectively. For example, if ψCITY=Burnaby,

ψCRIME=burglary and ψLABEL=Commercial, then this results in a dataset capable of classifying

burglary crimes for commercial entities within Burnaby.
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The selection of a specific city led to the imposing of artificial boundaries within the dataset since

those cities do not live in isolation, but are affected by other surrounding cities and towns. Crime

does not stop just because the other side of the street is another police jurisdiction. Due to this

cut-off, neighbourhood relationships are also affected. Any neighbourhood relationship is now

built on ‘empty space’ where there should be data from another city. This would cause, for

example, the Voronoi diagrams to extend forever out of the dataset, whereas otherwise they

would be bounded. In order to bound the neighbourhood relationships, the relationships could be

built on entities from the areas surrounding the target area, but then the surrounding area ignored

for the classification process.

First the Crime Data-Warehouse had to be created, involving extensive data-cleaning and data

consolidation into a cohesive database schema (Chapter 6.1). Only then could the data-mining

application be constructed (Chapter 6.2), with the goals significantly improving upon existing

methods (Chapter 6.3).

6.1 Creating the Crime Data-Warehouse

The following discusses the data sources that were the input into the CDW and the modifications

required to transform them into the CDW. There were several requirements which had to be met

(Chapter 6.1.1) by the datasets (Chapter 6.1.2). The specific datasets used to build the CDW

however first need to be cleaned (Chapter 6.1.3), then the addresses contained in them verified

(Chapter 6.1.4) before they could be transformed via multiple processes (Chapter 6.1.5) into the

final Crime Data-Warehouse (Chapter 6.1.6).

6.1.1 Input Requirements

The UnMASC framework is a spatial classification framework capable of using any spatial or

non-spatial dataset given, with a few restrictions. First, the spatial datasets must contain some

spatial information for each entity. This must be one of:

 Point data – An X-Y coordinate must be present indicating the location of the entity. It

must contain exactly one vertex of the form , ( , )i q
pe x y where ,x y .

 Line data – An ordered set of vertices ( , ( , )i q
pe x y where ,x y ) must be associated

to the entity. Spatial features can then be used to make explicit the different properties of

the line, such as length.
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 Polygon data – A closed ordered set of vertices ( , ( , )i q
pe x y where ,x y ), forming

a 2D polygon, must be associated to the entity. Spatial features can then be used to make

explicit different properties of the polygon, such as area.

Second, all entities of all types, both spatial and non-spatial, must each contain a unique

identifier, which is required when explicitly establishing relationships between entities. Finally,

relationships involving any non-spatial entities must be explicitly stated as these cannot be

extracted. Spatial entities contain implicit relationships with other spatial entities, no explicit

relationships between spatial entities are necessary as UnMASC is able to extract these. Although

UnMASC is able to extract the relationships on-the-fly, the datasets used for experiments had the

spatial relationships pre-processed.

6.1.2 Data Sources

The following datasets were used as input to the pre-processing algorithm which transformed

them into the crime data-warehouse:

Police Information Retrieval System (PIRS). Data made available by the RCMP containing the

location, time, and type of calls for service for the entire division of RCMP in British Columbia

(BC) between August 1, 2001 and August 1, 2006. It records all calls, and contains data about the

subjects (people), as well as vehicles and business, involved in the event and what their

involvement is.

British Columbia Assessment Authority (BCAA). Data containing information for all plots of

land within British Columbia, Canada. The price, location (address) and size of the plot of land

and building are some of the features contained in this dataset. Each plot of land has a designated

use assigned to it, such as Bank, Duplex, High-Density Housing which denotes the type of

property it is supposed to be. This dataset is dated 2005.

Road-Network. The road-network data is from the GIS Innovations 2007 dataset and contains

the set of roads in BC. This dataset contains features such as number-of-lanes, length, number of

stop-signs, speed limit and location.

Parks. The set of parks, containing features such as the type of park, area and perimeter. The data

is from the GIS Innovations 2007 dataset.
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Lines. This dataset includes electricity transmission lines, railroad tracks and hiking trails. Spatial

features, such as length, can be derived from the polygon associated with each entity. The data is

from the GIS Innovations 2007 dataset.

The schema of the input datasets is shown in Figure 40.

6.1.3 Data Cleaning

The original data came from multiple sources. The Roads, Lines and Parks came from a

commercial source (GIS Innovations). The BCAA dataset likewise was from a commercial

source. Both were in good shape and neither required cleaning.

The PIRS dataset, which contains the activities of the RCMP officers, came directly from the

RCMP. It was mainly created by the activities and reports of the RCMP officers themselves,

usually immediately after they finished some activity (search, arrest, ticket, etc) as part of their

regular duties. This leads to minimal information entry, and hence missing fields are very

common. The type of crime for each event was a required field. This dataset posed a very serious

challenge. The Address field was very difficult to decipher and convert to a properly recognizable

address, because:

 On-the-road police officers might stop someone in the middle of a rural area, with no

apparent address to denote their exact location. This lead to entries in the Address field

Figure 40 – Original database setup
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which are not composed of the standard address components. For example, the Address

field might contain an address between two consecutive houses or an intersection.

 Officers might enter in an address that is so imprecise that nobody out of that locality

would know where the location is (for example, “Joe’s bar”).

 Different people use different syntax for entering addresses. Some enter the house

number and street-name followed by city (for ex: “88 Main St., Burnaby”), while others

enter it in reverse order (for ex: “Burnaby, Main St. 88”). The separator between the

address components could be a comma, a period, or a space. Apartment numbers confuse

the issue further, with some entering it immediately behind the house-number, possibly

separated by a dash or space, while others enter it after the street-name. Some denote it

by a #, while others add “apt.”.

Before the addresses can be used for any sort of analysis, they had to be converted into a standard

format. This was done using a custom written complex parsing algorithm which attempted to

determine what each segment of the address meant, based on its location within the address-

string. The result of this process was an address in a standardized format, which a geography

program would automatically understand. For example, “88 Main Str., Burnaby Apt 9” was

converted into “88 Main Street, Apt 9, Burnaby”. Any addresses which could not be parsed

cleanly were discarded. This does not however mean that the address actually exists (for example,

there is no “Main Street” in Burnaby), only that the string is now in a standard format.

Figure 41 – Address cleaning process
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6.1.4 Address Geo-coding and Validation

The result of the data cleaning process was a set of addresses which were in a standard format.

The next step was to assign an X/Y coordinate denoting their real world geographic location, in

the form of a longitude/latitude coordinate. This process is called geo-coding. ArcGIS 9.2 was

used to geo-code the addresses from PIRS. The above mentioned GIS Innovations 2007 Road-

Network dataset was used to geo-code against, which pruned out addresses that cannot exist

because the specified street does not exist in the specified city, or the street does not extend to the

house number specified. For example, “88 Main Street, Burnaby” would not geo-code because

there is no “Main Street” in Burnaby. As another example, “4000 Carrigan Court” would not geo-

code because Carrigan Court does not extend to the 4000-block.

The addresses that pass the geo-coding phase do not automatically fall into the set of valid

addresses. The geo-coding process maps each address to a specific location on a specific street,

but it does not mean that there is actually a building at that location. For example, “3906 Carrigan

Court, Burnaby”, although a valid address, does not exist, but “3901 Carrigan Court” and “3911

Carrigan Court” do. The BCAA dataset (Chapter 6.1.2), containing the known list of valid

Figure 42 – Data pre-processor program
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addresses, was used to validate the addresses. Thus, all crime addresses which could be parsed

and geo-coded were checked against addresses in BCAA. If they existed then they were used for

calculating the class label (see Chapter 6.1.5), otherwise they were discarded since they cannot be

valid.

The process described here can be visualized as the Venn diagram in Figure 41. This process

starts out with the set of all PIRS addresses, the addresses are cleaned, geocoded, and validated

against the true set of addresses. The result is the subset of addresses which actually exist in real

life. These addresses were then assigned class-labels derived from the PIRS dataset.

6.1.5 Data Transformation

The initial data was spread across multiple data sources. Even the class label of the target entities

were not known explicitly. To get from the source datasets to the final Crime Warehouse, the data

was transformed. In Stage 1, the class label was derived from the police data. In Stage 2, to store

the neighbourhood relationships in an obvious and self-explanatory manner, the BCAA database,

which consisted only of a single table, was split into multiple entity tables, one table per each

entity-type. In Stage 3, all spatial features of all spatial entities were extracted since they never

change. In Stage 4, the relationship between all entities was extracted, since the location and

extent of the entities does not change, hence the relationship will never change either. Aggregate

features, such as single and multi-feature aggregation literals, could not be calculated a-priori

since they will constantly change depending on the conditions put on the rule-learner by the rule

Figure 43 – Stage 1) Creating class labels
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that it is learning. Had this been necessary, this would have been the final stage, Stage 5.

These different stages are described in detail below. The pre-processing program interface is

shown in Figure 42.

Stage 1) Creating the class label

To start the pre-processing stages, each entity in BCAA was assigned a Boolean class label,

which was initially set to false. Using the PIRS dataset from the RCMP, each crime of type

ψCRIME from PIRS that was within the city selected (ψCITY) was matched by address (if an exact

match was possible) to an entity in BCAA, and the Boolean class label for that entity in BCAA

was changed to true. This process is shown in Figure 43. For example, if a burglary occurred at

“8888 University Dr., Burnaby, BC”, the class label for the entity representing Simon Fraser

University (which is located at “8888 University Dr.”) was changed to true. For example,

information from PIRS was used to infer the class label for all residential properties in Burnaby:

if a residence has been burglarized according to PIRS then the entity is labelled burglarized,

otherwise it is labelled as not-burglarized. The respective task is to learn rules to determine why

those residential properties were burglarized.

Figure 44 – Stage 2) Separating BCAA entity-types
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Once an entity’s class label has been changed to true, it cannot be changed anymore, it is going to

stay true regardless of how many further crimes of type ψCRIME occur at that location. After an

attempt was made to assign each crime to a BCAA entity, all the entities in the BCAA dataset are

considered labelled and Stage 2 in the pre-processing is started.

Stage 2) Separating the different entity-types

Initially, the BCAA database consisted of a single table, listing all of the properties within the

Greater Vancouver Regional District. One of the fields of the BCAA table was Type which

contained one of 26 different codes denoting different entity-types (low-density housing,

commercial, etc). All entities of the same type were separated from BCAA into a table of their

own, resulting in 26 tables, each containing entities of only a single type. In addition to these 26

entity-types, the entity-type roads, lines and parks were also integrated into the CDW, resulting

in 29 entity-types in total. This process is shown in Figure 44, while the full list of entities after

this stage is shown in Appendix Appendix B.

Stage 3) Extracting spatial features

Another critical component in spatial databases is the full set of features for each spatial entity.

For example, the area of entities might not be explicitly stated, but is important when working

with house-plots, forests, lakes, etc. These spatial features are implied by the polygon that is

associated with the entity itself. This step makes them explicit. From the polygons the spatial

features are extracted by the use of spatial functions (see Chapter 4.3.2 for more details) and the

resulting value stored as part of the CDW. For each entity-type now in the database, the spatial

features listed in Figure 28 (page 48) and Figure 29 (page 48) are extracted and stored in the

database along with the other features of that entity-type. This is shown in Figure 45.

Figure 45 – Stage 3) Extracting spatial features during the preparation of the CDW
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Stage 4) Extracting the Relationships

The rule-learner makes use of all available information contained in the database, including the

relationships between entities. These relationships are usually not explicitly stated, but only

implicitly defined by their spatial location. This step makes them explicit by calculating them and

storing them in the CDW. Following Figure 46, in the first step, all pairs of entities are retrieved

and analyzed to determine whether they are neighbours or not. If there is no neighbourhood

relationship between a certain pair (Stage 4a), the algorithm moves onto the next pair (Stage 4b).

However, if there is a relationship, then the features of that relationship are calculated (Stage 4c)

and stored in the database in a table which corresponds to the two entities being analyzed (Stage

4d). The algorithm for this process is shown in Figure 47.

Information about relationships between each type of entity must be stored in the database.

Therefore, a relationship-table was created for each entity-type combination, hereafter denoted as

J{ti, tj}, where ti and tj denote 2 types of entities (Figure 47, lines 2 and 7). If ti equals tj, then the

relationship-table stores the relationships between entities of the same type. To establish the

relationships between entities, UnMASC uses Voronoi Diagrams and its dual, the Delaunay

Triangulation, as defined by Definition 7 (page 30). The Voronoi Cells and Delaunay

Triangulation are calculated for entity-type ti by the QHull algorithm [80] which is treated as a

Figure 46 – Stage 4) Extracting Neighbourhood Relationships
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black-box (Figure 47 – Line 3). The output of this black-box is the Voronoi structure, and a list of

entity-pairs {ei,1, ei,2} denoting the existence of a relationship between entities ei,1 and ei,2, both of

type ti. All such pairs are added to the database (lines 4-5). For all entities of type other than ti,

they are assigned to the entity whose Voronoi Cell they fall into (lines 8-10). This establishes the

neighbourhood relationships which exist between all spatial entities in the database. The rule-

learning makes use of these pre-processed relationships.

When this stage is reached, for |T| spatial entity-types there are |T| entity tables in the database.

For the Crime Data-Warehouse that was built for this thesis |T|=29. Since in a spatial database,

any entity-type can neighbour any other entity-type, a relationship table exists between each pair

of entity-types. Since there is a relationship between all spatial entity-types, the database schema

for the spatial entities forms a clique (see Figure 48 for a depiction of a subset of the CDW). In

addition, entities are also related to other entities of the same type. For |T| entity-types, there are

 | |
2
T

relationship tables between entities of different types, and |T| tables between entities of the

same type, resulting in  | | | |!
2 2!(| | 2)!| | | |T T

TT T   relationship tables. In the Crime Data-

Warehouse, where |T|=29, the number of relationship tables that are generated is 435.

Whether two entities are connected via a relationship depends on the neighbourhood definition

being used (see Chapter 3). If two entities are not neighbours, there is no corresponding entry for

Algorithm 1 CalculateNeighbourhood (database DB)
1: For each spatial entity-type ei in DB

2: DB ← DB + J{ei, ei} // create table in DB referencing ID of ei twice to store relationships
between ei

3: // calculating relationship between entities of the same type ei

{D, V} ← QHull(ei) // QHull is an external program and treated as a black-box
// D: a set of neighbouring entities according to the Delaunay Triangulation based on entities in ei

// V: a set of Voronoi cells according to the entities in ei

4: For each pair {ei,1, ei,2}D
5: Add pair {ei,1,ei,2} into J{ei, ei}

// calculating relationship between entities of different types
6: For each spatial table ej DB-ei

7: DB ← DB + J{ei, ej} // create table in DB referencing ID of ei and ej to store relationships
between ei and ej

8: For each entity ei,k  ej

9: ei ← entity corresponding to the cell V that ej falls into
10: Add pair {ei, ej} into J{ei, ej}
11: Return (DB)

Figure 47 – UnMASC Algorithm to calculate neighbourhood relationships in a database
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those entities in their relationship table. However, if two entities are neighbours, the relationship

table contains the unique identifiers of the entities involved in the relationship, along with details

of the relationship, such as direction, distance, etc (for a full list, see Figure 30 and Figure 31).

Stage 5) Creating neighbourhood features via aggregation

As each classification rule is being built, conditions (literals in the rule) are applied to the rule

during run-time. These conditions change the set of entities under analysis; hence the results of

the aggregation function are going to change. This dictates that the features of neighbourhoods

(aggregation literals) must be extracted during the classification task and cannot be done as a pre-

processing stage.

6.1.6 Dataset Descriptions after Pre-processing

As discussed above, for |T| spatial entity-types there are going to be |T| entity tables in the

database. However, a relationship table exists between each pair of entity-types ti and tj (where ti

could equal tj) resulting in  | |
2 | |T T relationship tables in the database. Aside from the

relationship tables between entities of the same type, the schema is a clique. A full list of the

Figure 48 – Partial schema of the crime data-warehouse. Entities are shown in red. The full schema
contains 29 entity tables, and 435 relationship tables
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entity-types used for the experiments can be found in Appendix Appendix B, but since the

database schema used for the experiments requires 435 relationship tables, visualising the full

schema is impractical. A subset of the schema is shown in Figure 48. The Crime Data Warehouse

did not contain any non-spatial entity sets, but those would have integrated seamlessly.

6.2 UnMASC Implementation Details

The following section describes how rules are built with UnMASC, a spatial classifier capable of

performing rule-learning in parallel using spatial and non-spatial aggregations. Based on the

database schema illustrated in Figure 1, page 1, the following chapter will use the rule R17:

profit(M,'Yes') ← mall(M) as the basis for the examples.

UnMASC uses a top-down method of learning rules. It is based on the popular sequential

covering algorithm [45], similar to CrossMine [100], which works as follows. The classification

model is generated one rule at a time and refined incrementally by adding literals until a

termination condition applies (for example Minimum Support). Once a rule is finalised, the

covered entities are removed from the training set, and a search for another rule starts. The rule-

learning process ends when it is impossible to generate a new rule.

For any pair of two entity-types ti and tj, where possibly ti = tj, that need to be evaluated for any

candidate literals, the rule-learner finds the next best literal by retrieving from the spatial join

index the necessary neighbourhood relationships between ti and tj (Figure 49 steps 1-2). For the

entities of type tj that are deemed to be neighbours to entities of type ti, all features of tj are

retrieved for additional analysis (steps 3-4). The relevant entities, their neighbourhood

relationships and features, are then passed to the spatial rule learner (step 5) which calculates the

aggregations and spatial features (step 6). The rule-learner then evaluates all features, keeps track

of a set of candidate literals, and when the search is complete, adds the best candidate literal to

the rule. Once no further candidate literals can be found, the rule is aborted, the entities satisfied

by the rule removed from the dataset, and a new one started. The classification model is deemed

complete, when no further rules can be created.

6.2.1 UnMASC Details

In most state-of-the-art algorithms, such as CrossMine [100], the evaluation of all candidate

literals takes place one after another. This is highly inefficient given that current computers

usually have multiple CPUs. When evaluating refinements to the rule, different neighbouring

entity-type combinations (called neigEntity) need to be considered, depending on what the rule
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already contains. The set of all neigEntity's is called neigEntitySet. Since the decision of which

literal to add to the rule is made only after the FOIL-Gain has been evaluated for all possible rule

extensions within all neigEntity’s, the evaluation of multiple rule extensions can be performed

independently and in parallel. UnMASC takes advantage of this by searching for the best

candidate literal (i.e., possible rule extension) within multiple neigEntity's simultaneously.

UnMASC itself is composed of two methods, RuleLearner (Chapter 6.2.2) and LiteralEvaluator

(Chapter 6.2.3), which are structured in a server-client relationship. This is shown in Figure 50.

Figure 49 – Steps in candidate spatial literal generation. Components specific to spatial classification
are highlighted.
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Upon inception, RuleLearner launches multiple LiteralEvaluator threads simultaneously, each of

which wait for RuleLearner to assign it a neigEntity to search. The number of simultaneous

threads is limited by the number of CPUs in order to have each run on a separate CPU. If the size

of neigEntitySet (i.e., the number of neighbourhood relationships that need to be searched in order

to find the best candidate literal) exceeds the available CPUs, then they are placed into a queue

and are evaluated when a CPU becomes available. This setup is illustrated in Figure 51. The

different LiteralEvaluator threads all share the same main memory, although each has its own

independent portion since each works with a different subset of the data. For each thread, the

relevant entity-types, entities and features are retrieved from the database and loaded into main

memory. LiteralEvaluator performs all aggregations and spatial analysis in order to find the best

rule extension for that specific neigEntity. When the best candidate literal (for a specific

neigEntity) has been found, LiteralEvaluator returns the best literal and FOIL-Gain to

RuleLearner. At this time, LiteralEvaluator releases the memory, RuleLearner stores the result of

the thread with the other results, and the next queued task is assigned to the available

LiteralEvaluator (Figure 51 - Time 2). RuleLearner waits for all NeigEntity’s to be searched, then

makes a global decision as to what the best candidate literal is.

In this fashion, UnMASC is able to perform the rule learning process in parallel. RuleLearner

manages the rules and literals that have been built so far, while also managing the entity-types

that need to be searched when evaluating the next best candidate literal. For each entity-type that

needs to be searched, RuleLearner retrieves the appropriate data from the database and calls on

LiteralEvaluator to perform the search. All single-, multi- and spatial-, aggregations are evaluated

within each LiteralEvaluator in order to find the best literal for that specific entity-type.

Figure 50 – UnMASC Client-Server Model
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Figure 51 – Search process Example
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6.2.2 Method: RuleLearner

Initially, the rule-learning starts with an empty rule R, with the target-entity-type tτ given (Figure

52, lines 1-5). RuleLearner assembles the set neigEntitySet of neigEntity that require evaluation.

If R is empty, then all entity-types that have a neighbourhood relationship with entities of type tτ

are added into the set. Otherwise any entity-type with a neighbourhood relationship with any

referenced entity-type in R is added to the set (lines 8-10). Once neigEntitySet is complete,

RuleLearner starts to evaluate each. It does so by calling LiteralEvaluator, which, given the

current rule and target entity IDs that satisfy the rule thus far, finds and returns the best literal

(lines 11, 15). UnMASC introduces a queuing system into the algorithm, which allows for the

parallelization of the literal evaluations (lines 12-14). The number of simultaneous threads of

LiteralEvaluator is limited by the number of CPUs present. As a LiteralEvaluator completes the

search for the best rule extension for a given neigEntity, a new neigEntity is assigned to it. This

process is repeated until NeigEntitySet is empty, at which point the neigEntity that returned the

highest FOILGain is selected and, if the resulting rule satisfies the minimum support criteria

minSupp, is added to the rule (lines 16-18). If none of the refinements of a rule achieves the

minimum support, then the current rule is considered complete, a new rule is started and the

entities in the training dataset which satisfy the rule are removed (lines 19-20). The algorithm

Algorithm 1 RuleLearner (minSupp, DB, TargetEntityType, TargetLabel)
1: RuleSet ← 

2: EntityIDs ← IDs of entities of type TargetEntityType
3: UncoveredEntityIDs ← EntityIDs

4: while |UncoveredEntityIDs| > |EntityIDs| × minSupp //start a new rule
5: Rule ← empty rule
6: RuleEntities ← EntityIDs covered by Rule
7: while |RuleEntities| > |EntityIDs| × minSupp //search for literal
8: neigEntitySet ← 
9: for each neigEntity with relationship to entity-type referenced in Rule
10: neigEntitySet ← neigEntitySet + neigEntity

11: while |neigEntitySet| > 0
12: while all threads busy
13: WAIT
14: Start Thread [ LiteralEvaluator(Rule, neigEntity, RuleEntities) ]
15: neigEntitySet ← neigEntitySet - neigEntity

16: BestLiteral ← result with highest FG value from all results
17: Update Rule by adding BestLiteral

18: RuleEntities ← remove from RuleEntities entities covered by BestLiteral

19: UncoveredEntityIDs ← remove from UncoveredEntityIDs entities covered by Rule

20: RuleSet ← RuleSet  {Rule}
21: return RuleSet

Figure 52 – UnMASC RuleLearner (FG = FOILGain value)
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aborts when the set of entities not covered by any rule fall below the threshold minSupp, since at

that point no literal can be constructed to satisfy that condition.

6.2.3 Method: LiteralEvaluator

LiteralEvaluator (Figure 53) returns the best literal and FOIL-Gain, given a neigEntity and

training entities not covered by any previous rule. First, LiteralEvaluator retrieves the required

dataset for analysis (lines 2-3), and, for each feature of neigEntity, applies all appropriate

aggregation functions (lines 4-7). Since UnMASC is capable of performing multi-feature

aggregation, for each feature of the entity, a second feature is selected and aggregated (lines 8-

11). UnMASC also performs spatial aggregation, hence if neigEntity is a spatial entity, then the

spatial features are extracted and spatial aggregation is done (lines 12-17). The aggregation,

feature and threshold with the highest FOIL-Gain for that neigEntity are then returned to

RuleLearner (line 19).

Since this method is part of a server-client architecture, when the candidate literal is returned to

RuleLearner, the LiteralEvaluator method is complete and goes into a stand-by mode until a new

neigEntity is assigned to it.

Algorithm 2 LiteralEvaluator(rule, neigEntity, entities)
1: FG' = 0
2: Determine relationships between entities covered by rule and entities in neigEntity
3: Retrieve relationships from database
4: for all currFeat1 of neigEntity

5: for each singleAgg from all single-feature aggregation functions (incl. existential)
6: FG ← Calculate FOIL-Gain for currFeat1 using singleAgg

7: if FG' < FG then [currFeat1', currFeat2', Aggr', FG'] = [currFeat1, , singleAgg, FG]
8: for all currFeat2 of neigEntity
9: for each multiAgg from all multi-feature aggregation functions
10: FG ← Calculate FOIL-Gain for <currFeat1, currFeat2> using multiAgg

11: if FG’ < FG then [currFeat1', currFeat2', Aggr', FG'] = [currFeat1, currFeat2, multiAgg, FG]
12: if neigEntity is a spatial entity
13: extract spatial features
14: for each spatial feature spatFeat of neigEntity

15: for each spatAgg from all spatial aggregation functions
16: FG ← Calculate FOIL-Gain for <currFeat1, spatFeat> using spatAgg

17: if FG' < FG then [currFeat1', currFeat2', Aggr', FG'] = [currFeat1, spatFeat, spatAgg, FG]
18: candLit ← [neigEntity, currFeat1', currFeat2', Aggr', FG']
19: return candLit

Figure 53 – UnMASC LiteralEvaluator (to denote best solution, an ' is used, FG = FOILGain value)
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6.2.4 Evaluation Optimization

There are considerable differences between the complexities of each neigEntity issued to the

different LiteralEvaluator threads. For example, using the neigEntitys from Figure 51 Time 1, the

cost for evaluating the neigEntity {Malls} is expected to be relatively small since there are only a

few malls in a city and no aggregations are involved (since there's only a single entity-type).

{Malls, Houses} however is expected to incur much higher cost since there are many houses in a

city, and the evaluation requires that houses be aggregated over their neighbouring malls. {Malls,

Roads} incurs a cost that is between the other two threads since the number of roads is likely to

be smaller than the number of houses in a typical city.

Since the cost for each neigEntity varies, sometimes greatly, it is possible that a very costly

neigEntity is evaluated last, in which case all but one of the threads are idle and the benefits of

parallelization are invalidated. The risk of this depends only on the variability of the number of

entities of each entity-type: the larger the variability, the larger the differences in task-sizes. If the

cost can be estimated well enough, the queue containing all the neigEntitys can be reprioritized to

avoid this scenario.

Since the size of each evaluation is unknown a priori, an approach to approximating the

evaluation cost of each literal is introduced in this thesis. This is done as follows. Each neigEntity

is made up of a permutation of n entity-types which can be denoted as {t1, …,tk–1, tk,…, tn}, where

t1 = tτ. Each entity-type tk–1 has, on average, | tk-1 tk | / | tk-1 | neighbours of type tk, where

| tk-1 tk | denotes the number of relationships between all entities of type tk–1 and tk, and | tk-1 |

denotes the number of entities of type tk-1. For example, assume there are 10 malls (| tk-1 |) and in

total 100 neighbourhood relationships between malls and houses (| tk-1 tk |), then this implies

that, on average, there are 100/10 = 10 neighbouring houses per mall. Thus the total number of

relationships between the target entity-type (t1) and the entity-type being searched (tn) can be

estimated by

1
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6.3 Comparison to CrossMine

To highlight the differences between the proposed approach and a popular multi-relational (MR)

rule-learner, CrossMine [100], the search processes of both algorithms are compared. The entity-

types that are referenced by a rule are referred to as activated whereas the entities that satisfy a

particular rule are said to be covered.

CrossMine introduced the concept of TupleID propagation to efficiently mine MR classification

rules using the ILP framework with the existential operator. The propagation appends to each

entity of a non-target entity-type the IDs and class labels of entities which are related to each

entity of the target type. The following example illustrates how TupleID, in the context of

aggregation, cannot do what spatial classification needs. Using the running example of Figure 1

(page 1) CrossMine works as follows. Starting with the target entity-type Malls (Figure 54), the

Malls

MallID Profitable # Employees …

1 Y 50 …
2 Y 20 …
3 N 24 …

Figure 54 – Malls entities from the original spatial database

Roads

RoadID Type … MallID Profitable

1 Highway … 1, 2, 3 Y, Y, N
2 Main … 1, 2 Y, Y
3 Court … 1, 3 Y, N

Figure 55 – Malls propagated to Roads entities

Houses

HouseID Size … MallID Profitable

1 900 … 1, 3 Y, N
2 1300 … 2 Y
3 4000 … 1, 2 Y, Y

Figure 56 – Malls propagated to Roads, then to Houses
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ID of each entity from Malls is propagated and appended to all neighbouring Roads (Figure 55).

During the next iteration of propagations, Roads becomes the source table for the propagation and

the related entity-type House becomes the destination. For each entity of type House, the

neighbouring Roads are determined and the IDs and class labels of Malls are appended to House.

The resulting set of features for House now contains all the original features of House, the feature

ID and class label from Malls (Figure 56). Aggregation of houses can now be performed to find

the ‘total number of unique houses neighbouring each mall’. Aggregating houses over roads to

determine the ‘number of houses neighbouring each road’ however is not possible since there is

no ID information from Roads in House. Due to this, TupleID propagation does not allow for

aggregation over previously referenced tables but only the target table. Furthermore, no spatial

aggregation can occur since there is no distance information within the set of features after

propagation. CrossMine itself, as implemented in [100], does not perform any type of

aggregation.

In order for CrossMine, when applied to spatial data, to perform literal-searches to the extent of

UnMASC, the spatial dataset needs to be fully converted to a multi-relational dataset by pre-

materializing all spatial features and all the spatial features of the spatial join index. Even with all

of these features pre-materialized, the algorithm itself also must be extended to consider multi- or

spatial-aggregation, since no algorithm does any of this.

Furthermore, spatial trends are impossible with the technique CrossMine employs. This is due to

the way spatial trend works. In order to calculate it, information from two tables must be analyzed

simultaneously: distance from the relationship-table and a feature value from the entity table.

With CrossMine this information simply isn’t available since it only concentrates on a single

table at a time. This is by design and is how CrossMine is able to gain runtime benefits.

Performing TupleID propagation is much more complex programmatically than table-joins in the

database, and the run-time benefits of TupleID propagation would most likely be limited by the

single-thread performance of the implementation (when compared to performance of the database

engine on a multi-processor machine). Hence, in conclusion, the technique of TupleID

propagation has too many shortcomings and is not be used by UnMASC.
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CHAPTER SEVEN:
UNMASC EXPERIMENTS ON A CRIME DATA-
WAREHOUSE

This Chapter presents the spatial rule-learning experimental results of UnMASC on the Crime

Data Warehouse. First the experimental setup and numerical results are presented (Chapter 7.1)

followed by anecdotal analysis (Chapter 7.2) as a result of analysis performed with the help of

experts from the School of Criminology at SFU.

7.1 Experiments

Extensive experimentation was performed on the UnMASC framework. The datasets used for the

experiments are discussed in Chapter 7.1.1, with the results being discussed in Chapter 7.1.2 and

onwards. A screenshot of the UnMASC program is shown in Figure 58.

7.1.1 Datasets

Based on input from experts in the Criminology Department at SFU, several classification

scenarios were designed on which UnMASC was evaluated. Each classification scenario

consisted of a city (denoted by ψCITY), a crime type (ψCRIME) and a target class (ψLABEL).

Independent datasets were created within the Crime Data-Warehouse in order to support these

Figure 57 – UnMASC classifier and the Crime Data-Warehouse
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classification scenarios (details in Chapter 6.1). All scenarios were tested and compared for their

impact on precision (Chapter 5.6.1), accuracy (Chapter 5.6.2) and recall (Chapter 0) along with

runtime requirements. The following scenarios, summarized in Figure 59, were selected:

 Burglary from Commercial properties in Burnaby (BCB)

ψCRIME=burglary, ψLABEL=Commercial, ψCITY=Burnaby

The set of 2812 commercial properties were selected as the target entities with 33% of

the properties having been burgled within the 5-year period, hence these were considered

to have a positive class label.

 Burglary from High-Density properties in Burnaby (BHB)

ψCRIME=burglary, ψLABEL=HighDensity, ψCITY=Burnaby

The 1036 high-density (high-rise) properties within Burnaby were selected for learning

rules with the 44.3% of properties which were burgled selected as the target.

Figure 58 – UnMASC program running with 6 worker threads, evaluating all possible literal types.
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 Auto-theft from Commercial properties in Surrey (ACS)

ψCRIME=autotheft, ψLABEL=Commercial, ψCITY=Surrey

The 4902 commercial properties in Surrey created a fairly skewed dataset, only 15.7% of

the properties were involved in an auto-theft.

Hereafter the datasets will be referred to as BCB, BHB and ACS respectively. Experiments were

run on an 8-CPU Windows server tied to a backend database with DB/2 v9.1 Spatial Extender. In

experiments, where multiple instances of the LiteralEvaluator were run in parallel, the operating

system was allowed to set the CPU-affinity of each instance, which meant no two instances were

running on the same CPU simultaneously.

The three datasets, BCB, BHB and ACS, were used to evaluate the benefits of the contributions

presented in this thesis. For each dataset, rules were learnt, and the results compared, using

Voronoi-based neighbourhoods, buffer-zone neighbourhoods, and no neighbourhoods. The

Voronoi-based neighbourhood was constructed according to the details presented in Chapter

3.2. For the Buffer-zone neighbourhood, instead of a fixed or manually selected buffer-zone

size, the area of the buffer-zone for each entity-type was variable and given by area(ψCITY)/Qiπ.

That is, the area of the buffer-zone was set to the average area available for each entity of type ti

assuming all entities of type ti are uniformly distributed in city ψCITY. To highlight the importance

of selecting the proper neighbourhood, rules were also learnt using no neighbourhoods, i.e. only

the target entity-type was used for classification. This alternative uses only information on the

target entity-type and since no neighbouring entity-types are evaluated, the search-space is much

smaller.

Each neighbourhood definition created a very different number of relationships between the

entities. For example, using the Voronoi-based neighbourhood definition, 4.6 million

relationships are established in Surrey, whereas with the buffer-zone, there are 7.6 million

relationships (Figure 59). Determining all entities which share a neighbourhood relationship is a

Entities RelationshipsCity Neighbourhood
Type Total Average Min Max Total Average Min Max

Burnaby None 66,260 2,209 1 66,260
Burnaby Voronoi-based 66,260 2,209 1 66,260 4,133,050 8,888 0 1,342,065
Burnaby Buffer-zone 66,260 2,209 1 66,260 2,906,493 6,251 0 1,396,667
Surrey None 130,993 4,517 1 88,995
Surrey Voronoi-based 130,993 4,517 1 88,995 4,645,816 10,680 0 653,839
Surrey Buffer-zone 130,993 4,517 1 88,995 7,566,783 17,395 0 1,870,312

Figure 59 – Statistics for database used for experiments
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lengthy process, and hence these relationships were pre-processed.

Interestingly, there is a significant difference between buffer-zones and Voronoi neighbourhoods

in the number of neighbours each commercial property has. On average, for each commercial

property, the number of neighbouring commercial properties using buffer-zones was 20 times that

of Voronoi neighbourhoods, while the number of neighbouring non-commercial properties was

only 0.4 times. This clearly indicates that buffer-zone rules were built more on neighbouring

commercial properties and less on non-commercial properties, than the rules built on Voronoi

neighbourhoods. Due to the use of zoning for city planning in Canada, commercial properties (as

well as other property types) tend to be clustered, which the buffer-zone is unable to bypass and

hence precision of the resulting rules suffers. This was also the reason for the large difference in

run-times: when performing the aggregations, the buffer-zone had to aggregate much fewer

values than the Voronoi approach, resulting in a reduction in runtime (and precision).

7.1.2 Experimental Results

The results, shown in Figure 60 to Figure 62, and discussed in this chapter, focus on the following

aspects of UnMASC:

 The effect of the neighbourhood definition (Chapter 7.1.3).

 The effect of adding multi-feature and spatial aggregation to the classification (Chapter

7.1.4).

 The effect of parallelization for the classification task (Chapter 7.1.5).

5-fold cross-validation was performed. Experiments using different combinations of aggregation

operators were also performed: Existential (E), Single-Feature Aggregation (SFA), Multi-Feature

Aggregation (MFA) and Spatial Aggregation (SA).

7.1.3 Evaluating the Effectiveness and Efficiency of the Voronoi Neighbourhood
Definition

As can be seen in the results of the BCB dataset, Figure 60, the precision and accuracy of using

the buffer-zone neighbourhood relationship was very similar to the rules based on the target

entity-type only. However, the recall was strangely lower with the buffer-zone neighbours than

with using only the target entity-type. Using the Voronoi neighbourhood resulted in consistently

higher precision and accuracy than both competing methods.
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City Burnaby Entity Type Commercial Class Label Burglary

931+ 1881-

Neighbourhood

Definition Aggregations Precision Recall Accuracy Serial

Naïve

Parallel Speed-Up

Optimized

Parallel Speed-Up

E 50.7% 70.1% 67.5% 1m
E SFA 50.5% 72.0% 67.4% 1m

E SFA MFA SA 50.8% 71.3% 67.6% 1h 14m

E 51.5% 66.3% 67.9% 11h 31m 4h 25m 2.60 3h 44m 3.08
E SFA 50.6% 66.0% 67.4% 17h 09m 6h 48m 2.52 6h 08m 2.79

E SFA MFA SA 51.8% 66.3% 68.3% 34h 36m 10h 37m 3.26 11h 35m 2.98

E 61.0% 67.5% 74.8% 27h 14m 6h 59m 3.89 6h 51m 3.97
E SFA 61.3% 66.1% 74.9% 59h 30m 16h 31m 3.60 15h 14m 3.90

E SFA MFA SA 64.2% 64.1% 76.0% 119h 34m 25h 12m 4.74 21h 32m 5.55

None

Buffer

Voronoi

Class Label Distribution

Figure 60 – Results for Burglary from Commercial properties in Burnaby (BCB)

City Burnaby Entity Type High Density Class Label Burglary

459+ 577-

Neighbourhood

Definition Aggregations Precision Recall Accuracy Serial

Naïve

Parallel Speed-Up

Optimized

Parallel Speed-Up

E 65.0% 71.7% 70.4% 1m
E SFA 65.0% 71.7% 70.4% 1m

E SFA MFA SA 65.0% 71.7% 70.4% 1m

E 88.8% 78.0% 85.9% 4h 24m 4h 17m 1.02 1h 31m 2.88
E SFA 88.9% 83.0% 87.8% 10h 45m 4h 37m 2.33 4h 16m 2.51

E SFA MFA SA 89.1% 84.0% 88.4% 19h 17m 6h 37m 2.91 5h 37m 3.43

E 88.8% 80.7% 86.9% 14h 02m 3h 18m 4.24 3h 02m 4.62
E SFA 89.1% 81.7% 87.4% 29h 10m 9h 17m 3.14 8h 07m 3.59

E SFA MFA SA 89.4% 86.2% 89.4% 59h 24m 14h 25m 4.12 12h 25m 4.78

None

Class Label Distribution

Buffer

Voronoi

Figure 61 – Results for Burglary from High-density properties in Burnaby (BHB)

City Surrey Entity Type Commercial Class Label Auto Theft

768+ 4134-

Neighbourhood

Definition Aggregations Precision Recall Accuracy Serial

Naïve

Parallel Speed-Up

Optimized

Parallel Speed-Up

E 36.1% 56.9% 77.5% 2h 13m
E SFA 34.7% 62.6% 75.7% 3h 12m

E SFA MFA SA 35.0% 61.6% 76.1% 4h 48m

E 38.8% 52.4% 79.4% 24h 58m 8h 34m 2.91 7h 51m 3.18
E SFA 36.4% 57.3% 77.5% 34h 02m 10h 40m 3.19 9h 49m 3.47

E SFA MFA SA 36.3% 58.8% 77.4% 57h 22m 14h 18m 4.01 13h 01m 4.41

E 42.4% 51.9% 81.3% 23h 55m 7h 17m 3.28 5h 53m 4.05
E SFA 42.2% 58.5% 80.8% 58h 52m 11h 11m 5.26 11h 40m 5.04

E SFA MFA SA 43.6% 58.0% 81.5% 164h 30m 31h 50m 5.17 29h 46m 5.52

None

Buffer

Voronoi

Class Label Distribution

Figure 62 – Results for Auto-theft from Commercial properties in Surrey (ACS)
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For the BHB dataset, Figure 61, the results were different than was seen in BCB. With BHB, the

rules from buffer-zones and Voronoi neighbourhood were consistently better than the rules based

on the target entity-type only. The experiments using Voronoi neighbourhood did not yield the

best recall (81.7% vs. 83.0%) or accuracy (87.4% vs. 87.8%) results in only 1 out of the 3

scenarios tested, clearly showing that that method is superior to the other two neighbourhood

definitions.

For the last dataset, ACS, Figure 62, the results show that the precision and accuracy are clearly

best with the Voronoi neighbourhood. The recall value however was a bit worse than the recall

for the target entity-type only classifier. Again, the Voronoi neighbourhood improves the

classification results.

In the case of no neighbourhood, UnMASC was very fast since rules were only built on the

limited number of features of the target entity-type. The runtime requirement for the Voronoi

method, as compared to the buffer-zone, was, on average, a factor of three higher, when the

classifier rules were evaluated in serial fashion. They were a factor of 2.5 higher when the rules

were evaluated in parallel. However, classifiers built on just the target entity-type usually had

only a single rule with a few literals. For example, using Burglary in Burnaby as an example, the

entire classifier based on only the target-entity-type contained the single rule:

R18: burglarized(H,'yes') ← highrise(H), building_value(H,V), V>3,707,000

This rule states that expensive high-rises are more likely to be burglarized. Even though the recall

for this rule is ~60%, no further rules were ever generated given these parameters because no

feature of high-rises provided a good feature for isolating the burglarized ones. This same rule

was discovered even when aggregation features were allowed for rule-building.

Overall, the results indicate that using the Voronoi neighbourhood consistently yields the best

precision and accuracy results, with recall suffering in a few cases.

7.1.4 Evaluating Effectiveness of Aggregations

For each dataset and each neighbourhood relationship, three experiments were run in order to

evaluate the difference between learning a classifier using:

 E: Only the Existential (E) Function

 E-SFA: Existential and Single-Feature Aggregation (SFA) Functions
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 E-SFA-MFA-SA: Existential, Single-Feature Aggregation, Multi-Feature (MFA) and

Spatial Aggregation (SA) Functions

It is expected that the larger the choice of features or aggregations, the better the classification

rules. This turned out to be the case since, in general, all three datasets and all three

neighbourhood definitions performed best when all the aggregations were analyzed. As seen in

Figure 60-Figure 62, the combination of including all aggregations and using the Voronoi-based

neighbourhood definition gave the best Precision, Recall and Accuracy in 7 of the 9 cases. This

clearly indicates the superiority of including the additional aggregations.

The runtime however suffered due to the pair-wise feature analysis required both by multi-feature

and spatial aggregations; in general, including all aggregations took about 1.5 times as long as the

runtime of just the Existential and SFA functions.

As further consideration, since this is a spatial dataset, and there are spatial relationships between

the entities, the meaning of the rules is much more appropriate as they are able to express spatial

trends and other dependencies between the features. The rules produced by the E and SFA were

not able to create rules with that type of meaning. For example, consider the rules shown in

Figure 63. These three rules were found from the same dataset, same parameters

(ψCRIME=burglary, ψLABEL=Commercial, ψCITY=Burnaby), represented the same rule, and make an

excellent basis for comparison. R19 was learnt using only the Existential aggregation operator,

R20 was learnt using the Existential and Single-Feature Aggregation operators, while R21 was

learnt using all available spatial and non-spatial aggregation operators.

R19 depends heavily on the distance between certain entity-types, but all of the comparison

operators are greater-than, which weakens the rule because the fact that there exists a park further

than 7.8km (L3, for example) does not mean that there is no park closer than 7.8kms. Had the

comparison operator been the opposite (less-than 7.8km), it could have been concluded that

somehow the presence of a park near-by influenced the burglary of commercial properties. In the

present form, not much can be concluded.

R20 is a bit more meaningful. L1-L3 are the same as for R19, presenting no greater meaning than

R19 did. L4 and L5 however include single-feature aggregation operators and represent more

meaningful literals. According to L4, the average distance between the neighbouring parks and

duplexes neighbouring those parks is more than 165m. Again, the greater-than comparison

operator weakens the literal. L5 is better, it measures the building-value of neighbouring vacant

properties to be less than $46,100.



101

R21 was built with all available aggregation operators. As the first literal, a spatial trend is

measured. The commercial properties which are south and relatively inexpensive, and get

progressively expensive the further north they are located, have a higher chance of being

burglarized. L2 expresses a relationship between neighbouring duplexes, about how the median

distance to a duplex is less than 380m, implying that the commercial property is in a residential

neighbourhood. L3 simply states that the neighbouring entertainment properties are to the east of

475,072 (UTM coordinates - the exact projection is NAD 1983 UTM Zone 10 North), while L4

detected some neighbouring malls about 13° east from north. Lastly, there were some industrial

properties with an average building value of less than $1,414,000.

Overall, Rules R19 and R20 are relatively weak because of their dependence mainly on the

existential operator and the distance feature. R21 is able to express a much stronger concept, a

spatial trend between south-north location and building-values. This allowed the rule to be more

accurate with respect to the other rules: R21 covered 18 true positives and 9 false positives, while

R19 and R20 covered 14 true positives and 10 false positives.

Although applying all of the aggregations yielded the best result in most cases, the difference

Rule Literals in Rule

Existential Aggregation
Entity class labels covered by rule: (14+ 10-)

R19: burglarized(C, ‘yes’) ← commercial(C), land_value(C,L), L>7,965,000
neighbour(C,H), hospital(H), distance(O,H,D1), D1 > 7,784.64
neighbour(C,P), park(P), distance(C, P, D2), D2 >7153
neighbour(P,O), other_type(O), distance(P,O,D3), D3 > 238.4
neighbour(C,M), motel(M), distance(C,M, D4), D4 > 170

L1
L2
L3
L4
L5

Existential and Single-Feature Aggregation
Entity class labels covered by rule: (14+ 10-)

R20: burglarized(C, ‘yes’) ← commercial(C), land_value(C,L), L>7,965,000
neighbour(C,H), hospital(H), distance(O,H,D1), D1 > 7,784.64
neighbour(C,P), park(P), distance(C, P, D2), D2 >7153
AVG(D3, {distance(P,L,D3), neighbour(P,L), duplex(L)}, A), A>165.74
MAX(B, {neighbour(C,O), vacant(O), building_value(O,B)}, M), M<46100

L1
L2
L3
L4
L5

Existential, Single-Feature, Multi-Feature and Spatial Aggregation
Entity class labels covered by rule: (18+ 9-)

R21: burglarized(C, ‘yes’) ← commercial(C), SP_TREND({B1, Y1}, {building_value(C,B1),
SP_Y (C,Y1)}, T), T>66364303

MEDIAN(D1, {neighbour(C,D), duplex(L), distance(C,D,D1)}, M), M<380
neighbour(C,E), entertainment(E), SP_Y(E,Y2), Y2<475072
neighbour(C,M), mall(M), direction(C,M, R), R>3°, R<23° (° from north)
AVG(B2, {neighbour(C, I), industrial(I), building_value(I, B2)}, A),

A<1414000

L1

L2
L3
L4
L5

Figure 63 – Comparison of rules found by different aggregation operators (Burglary for
Commercial properties in Burnaby - Rule #2)
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between the “E”, “E-SFA” and “E-SFA-MFA-SA” scenarios were not as significant as expected.

It is possible that during rule-building a local optima was encountered and the rule-building

process got stuck in such an optima. Although there are techniques, such as randomized restart of

searches [104], which are designed to get rule-builders out of local minima, these techniques were

not explored for the purposes of this thesis.

7.1.5 Evaluating the Effectiveness of Parallelization

In order to evaluate the effectiveness of the parallel approach, three sets of experiments were

carried out for each city and aggregation combination:

 UnMASC using only a Serial evaluation, where all candidate literals are evaluated

sequentially.

 UnMASC using a Naïve Parallel technique, where the evaluation of the candidate

literals is evaluated first-in-first-out (FIFO), with six worker threads evaluating the work

simultaneously.

 UnMASC using an Optimized Parallel technique with six worker threads, where the

optimization to the queue was carried out as described in Chapter 6.2.4.

In the three datasets, the serial evaluation quickly became prohibitively expensive, with it pushing

160h (~7days) for one of the runs. When selecting a new literal, there are a large number of

candidates, evaluating the candidates in parallel is always faster than the serial evaluation. This is

supported by the results: on average, the parallel method was 3.46x faster than the serial method.

If the number of candidates is greater than the number of CPUs, something that was always the

case since there were 29 entity-types in the datasets but only six CPUs available, all candidates

which cannot be evaluated initially were placed into a queue. It is possible that lengthy candidate

evaluations are placed into the end of the queue, evaluated last and holding up the entire process.

Thus, it is more efficient if those are moved to the front of the queue so they are evaluated first

(see Chapter 6.2.4). This type of optimized parallelization was also evaluated, and improved the

efficiency even further. Whereas the naïve parallelization was, on average, a factor of 3.46 faster

than the serial evaluation, the optimized parallelization was faster by a factor of 3.88. In the

experiments which had the longest runtime, the optimized parallelized method was far superior to

the serial (a factor of 1.00) and the naïve parallel method (a factor of 4.68), with an average

improvement of a factor of 5.29.
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In certain cases, the speed-up provided by the parallelization was below a factor of 3. In these

cases, there was a very large number of candidates which had to be evaluated, but each evaluation

independently was relatively small. In these cases the benefit of the parallelization was dampened

by the small overhead required by RuleLearner, the portion of UnMASC which managed the

rules and the worker threads. In the most complex cases, ones involving all the aggregations, this

overhead was relatively trivial, and the parallelization was closer to optimal.

The experimentation was carried out with six CPUs dedicated to evaluating literals. Results

indicated that the speedup due to the use of using multiple CPUs varied between 42% and 92% of

the theoretical optimal, with an average speedup of 65%. This finding was consistent with other

small tests conducted with different numbers of CPUs.

Note that the rules are not guaranteed to be identical between the serial and two parallel methods.

This is due to the reordering of candidate literal evaluations. It is possible that two candidate

literals have the same FOIL-Gain, but are evaluated in a different order (due to the parallelization

optimization). In this case whichever candidate literal was evaluated first will be added to the

rule. Since in these cases, a different literal is added to the rule, further extensions of the rule can

also be different, and so can subsequent rules. This situation was rare. The results in accuracy,

precision and recall were very similar in these cases, and hence only the results with the

optimized parallelized method were reported in Figure 60 - Figure 62.

7.2 Analysis of Classification Rules by Experts in Criminology

Rule Literals in Rule
R22: burglarized(H, ‘yes’) ← highdensity(H),

neighbour(H,C), commercial(C), building_value(C, B), B<129,000
neighbour(C, S), school(S), direction(C, S, D1), D1 = ‘NorthEast’
MAX(D2, {neighbour(S, I), industrial(I), distance(S, I, D2)}, M), M<735

L1
L2
L3
L4

R23: burglarized(C, ‘yes’) ← commercial(C),
MEDIAN(B1, {industrial(I), neighbour(C,I), building_value(I,B1)}, M), M<445,000
industrial(I), neighbour(C,I), TREND({B2, X}, {duplex(D), neighbour(I,D),

building_value(D, B2), x_coord(D,X)}, S), S>0.798
MAX(A, {park(P), neighbour(C,P), area(P,A)}, N), N<14,400

L1
L2
L3

L4

R24: burglarized(H, ‘yes’) ← highrise(H), building_value(H,V), V>2,160,000
AVG(D1, {commercial(C), neighbour(H,C), distance(H,C,D1)}, A), A<302
commercial(C), neighbour(H,C)
MEDIAN(W, {park(P), neighbour(C,P), width(P, W)}, M1), M1<122
MEDIAN(X, {duplex(D), neighbour(C,D), land_value(D, X)}, M2), M2>351,500

L1
L2
L3
L4
L5

Figure 64 – Rules discovered by UnMASC



104

Criminology is the scientific study of criminal behaviour. It is an interdisciplinary field, dealing

with sociology, psychology and also law. There is a discipline within the school of Criminology

called ‘Environmental Criminology’ [4]. It is not concerned with crimes against trees or other

components of the environment, but is concerned about how the spatial neighbourhood

(environment) shapes criminological activity. Two key people responsible for the development of

Environmental Criminology are Drs. Paul and Patricia Brantingham [15]. This theory identifies

time, law, offender, target/victim and space as the five components upon which a crime can

occur. Without any of these components, no crime event can happen, because, for example, if

something is not covered by law then it cannot be illegal and no crime has occurred.

Environmental Criminology examines the space and time dimensions of a crime event, in order to

determine what it is within the environment that was conducive to crime. A practical application

of this subfield is ‘crime prevention through environmental design’ which attempts to shape the

(urban) environment such that crime is prevented. For example, in order to decrease offenses

neighbourhoods can be designed such that they form a community and the residents can observe

the activities (and security) of the community.

Three classification rules, found by UnMASC, are shown in Figure 64. The below analysis is

based on discussions carried out with experts in the field of Criminology: Dr. Patricia

Brantingham and Dr. Bryan Kinney, both from SFU’s School of Criminology.

Rule R22 was the first rule discovered using all aggregation operators for burglarized high-

density properties within the city of Burnaby using the Voronoi diagram as the neighbourhood

definition. The rule says that high-density buildings are burglarized if they are a neighbour to a

commercial building with a building-value less than $129,000 (L1), that there is a school north-

east to the commercial building (L2), and the schools are at most 735m's away from an industrial

property (L3). This rule is consistent with two theories from the Criminology domain. According

to Crime Pattern Theory [15], each person (including offenders) will have an awareness and

activity space, which is made up of the nodes, and paths between the nodes, that the person

frequents due to everyday activities such as work or shopping. According to the theory, crime is

most likely to occur where the activity space of both offenders and the victims/targets overlaps.

The region described by the rule has at least four different land uses: high-density homes (the

target entity), commercial, school and industrial. This indicates that this region probably sees

heavy traffic from many different types of individuals, for example, industrial workers,

shopkeepers, students and parents ferrying students to and from school. Although none of the

types of people in this region imply a highly motivated criminological population, just the fact
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that there is movement of a high volume of disparate people will increase the chances of a

motivated offender entering the area. Hence, the activity spaces of many victims/targets will

overlap with the activity space of a motivated offender, thus Crime Pattern Theory suggests that

this area will see higher incidences of crime. Furthermore, the implications of this rule can also be

described by another fundamental criminological theory, Routine Activities Theory [23]. This

theory states that “direct-contact predatory violations”, intentionally damaging or taking a person

or their property (for example burglary), have three properties:

1) motivated offenders,

2) suitable targets, and

3) absence of capable guardians.

High-density homes will contain many suitable targets (residences) which are unguarded (since

the residents will be at work/school). Due to the many different types of individuals in the area,

the chances of a motivated offender entering the region is higher than in areas where there is very

little flow of people. Thus, this theory will also predict a higher incidence of crime. This rule was

surprisingly accurate, described 133 (20%) of the burglarized high-rises and only 1 false positive.

R23 illustrates a rule that was found in the BCB dataset. It denotes that a commercial property

(L1) is likely to be burglarized if the median building-value of neighbouring industrial properties

is worth less than $445,000 (L2) and has neighbouring parks with areas less than 14,400m2 (L4).

The commercial property also has neighbouring industrial properties with a spatial trend where

duplexes are cheaper the further East they are, and more expensive the further West they are. This

could indicate that the commercial property is in an inexpensive industrial neighbourhood, acting

as an attractor to crime, while also a neighbour to parks which could be a source of criminals.

This rule is interesting as it also matches up with awareness and activity spaces. Since awareness

spaces of individuals (not just offenders) is most concentrated close to home, and offenders

frequently live in lower socio-economic areas, the activities of offenders will likely concentrate

on lower socio-economic areas. This trend was also found in criminological literature [83].

Another interesting rule involving high-rises, R24, was discovered. It states that a high-rise is

likely to be burglarized if it is worth more than $2.2 million (L1), the average distance to a

commercial property is less than 302 m (L2) and, for neighbouring commercial properties (L3),

neighbouring parks tend to be small (L4), and neighbouring duplexes tend to be worth at least

$351,500. This rule seems to indicate that expensive high-rises near high-traffic areas are going to

see more burglaries as opposed to ones in areas without traffic.
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CHAPTER EIGHT:
CONCLUSIONS

In this thesis a multi-relational Inductive Logic Programming-based approach to spatial

classification was presented that posed novel challenges to which solutions were identified. A

massive Crime Data-Warehouse, including 29 entity-types and their corresponding 435 types of

relationships were assembled based on real-world city data with class labels built from real-world

crime data provided by the RCMP.

The first challenge, due to the nature of spatial data, was that the neighbourhood relations are

only implied through the location of the entities and not explicitly stated as in multi-relational

data. In order to deal with this challenge, a Voronoi-diagram based neighbourhood definition was

introduced to make explicit the spatial relationships. Both conceptually and experimentally it was

demonstrated that this method of identifying neighbours and neighbourhoods is superior to the

common distance-based buffer-zone approach.

The second challenge was that each of the resulting neighbourhood relationships have features,

such as distance, direction and topological relationships, which are not explicitly stated in the

database by default. These need to be calculated in order to allow the classifier to take advantage

of them. Care has to be taken to select a subset of features to extract as not to overwhelm the

classifier with redundant features. This thesis used a set of concise features which are

independent. Also, in general, an entity in spatial data is related to many other entities. The

importance of any single relationship, when in the presence of a large number of other such

relationships, becomes insignificant. In order to overcome this challenge, this thesis introduces

extensions into the Inductive Logic Programming framework to be able to capture not just

individual spatial and non-spatial features, but aggregate properties of neighbourhood

relationships and related entities. These additions clearly improved the classification precision,

recall and accuracy, as demonstrated by the experiments presented in this thesis.

To perform the classification more efficiently, a scalable implementation was introduced, capable

of evaluating multiple literal candidates simultaneously. This significantly decreased the runtime

required for rule-learning. The strategy improved the classification performance by a factor of 5.5

on the most complex classification tasks, which was very close to the maximum given that there
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were six CPUs dedicated to the rule-learning. The increase in performance was only limited by

the number of CPUs available in the computer, had more computing power been available, the

increase would have been higher.

Experiments on several real-world spatial datasets showed substantial gains in precision, recall

and accuracy compared to existing approaches for neighbourhood definitions and aggregations.

Anecdotal evidence was also provided by experts in the fields of Criminology to illustrate the

meaningfulness of the rules discovered and the expressiveness of the language.

There are a few interesting directions this thesis can be extended in. First, it would be interesting

to incorporate the temporal aspects into rule-learning to detect, for example, temporal trends and

how changes over time in neighbourhood composition can lead to better predictions. This is

doable with the current Crime Data-Warehouse, as the time each event happened is available. The

ILP framework would however have to be extended in order to support temporal literals.

UnMASC would also need to be extended since it can currently only compare dates against each

other, but does not have the logic to temporally analyze them in the detail. As another direction,

the focus of this thesis was not to contribute to the field of task-scheduling, hence the order each

client was assigned work was rather naïve (i.e., largest work first), and optimizations could be

introduced to make the ordering more efficient. To deal with the potential of encountering local

minima, it would be interesting to evaluate the effectiveness of a randomized restart of the rule-

builder in a parallel environment. Finally, the parallelization itself could be improved by looking

for ways to break each unit of work into smaller pieces, perhaps where each unit of work consists

of searching for the best candidate literal given an entity-type and a feature, not just an given an

entity-type.
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APPENDICES

Appendix A: Details of Literals

This chapter details the set of literals used in this thesis, their mathematical formula, when/if they are extracted from the database and the

type of entity they apply to.

A.1 Spatial Features

Spatial features are used to describe implicit features of entities (Chapter 4.3.2):

Types of Spatial Entity Pre-processing Cost

Spatial Features Equation for entity q of type i
Point Line Poly

DB2 Function
Cost for

One Entity
Number

of Entities
Total
Cost

length(input) NS

length of the polygon representing
entity input

 ,
,1

P
i q
p y

p
MAX e



-  ,
,1

P
i q
p y

p
MIN e


  ST_MaxY()-ST_MinY() O(p) eβ O(peβ)

width(input) WE

width of the polygon representing
entity input

 ,
,1

P
i q
p x

p
MAX e



-  ,
,1

P
i q
p x

p
MIN e


 ST_MaxX()-ST_MinX() O(p) eβ O(peβ)

perimeter(input)

perimeter of the spatial polygon
representing entity input

 , , 2 , , 2
1, , 1, ,

1
( ) ( )

P
i q i q i q i q
p x p x p y p y

p

e e e e 


    ST_Perimeter() O(p) eβ O(peβ)
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area(input)

area of the spatial polygon
representing entity input

 , , , ,1
, 1, 1, ,2

1

P
i q i q i q i q
p x p y p x p y

p

e e e e 


    ST_Area() O(p) eβ O(peβ)

x_coord(input)

X-coordinate of the point entity

,
1,
i q

xe  ST_X() O(p) eβ O(peβ)

y_coord(input)

Y-coordinate of the point entity

,
1,
i q

ye  ST_Y() O(p) eβ O(peβ)

start_x(input)

starting X-coordinate of the input
entity

,
1,
i q

xe  ST_StartPoint()..ST_X() O(p) eβ O(peβ)

start_y(input)

starting Y-coordinate of the input
entity

,
1,
i q

ye  ST_StartPoint()..ST_Y() O(p) eβ O(peβ)

end_x(input)

ending X-coordinate of the input
entity

,
,

i q
P ye  ST_EndPoint()..ST_X() O(p) eβ O(peβ)

end_y(input)

ending Y-coordinate of the input
entity

,
,

i q
P ye  ST_EndPoint()..ST_Y() O(p) eβ O(peβ)

catchment_area(input)

area enclosed by the Voronoi cell of
input, represents the size of region
‘attracted’ by the entity

Voronoi Algorithm [see 8, 47, 65]    Voronoi Algorithm [see 8, 47, 65] O ( log )e e

centroid_x(input)

X-coordinate of the centroid

,
,

1

i qP
p x

p

e

P


 
 
 

   ST_Centroid()..ST_X() O(p) eβ O(peβ)

centroid_y(input)

Y-coordinate of the centroid

,
,

1

i qP
p y

p

e

P


 
 
 

   ST_Centroid()..ST_Y() O(p) eβ O(peβ)

max_x(input)

maximum X-coordinate of all the
vertices

 ,
,1

P
i q
p x

p
MAX e


 ST_MaxX() O(p) eβ O(peβ)
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min_x(input)

minimum X-coordinate of all the
vertices

 ,
,1

P
i q
p x

p
MIN e


 ST_MinX() O(p) eβ O(peβ)

max_y(input)

maximum Y-coordinate of all the
vertices

 ,
,1

P
i q
p y

p
MAX e


 ST_MaxY() O(p) eβ O(peβ)

min_y(input)

minimum Y-coordinate of all the
vertices

 ,
,1

P
i q
p y

p
MIN e


 ST_MinY() O(p) eβ O(peβ)

A.2 Single-Feature Aggregation Literals

A single-feature aggregation function aggregates the values of a feature of multiple entities related to an entity (Chapter 4.2.2).

Run-time Cost Applicable Feature Types

Single-feature Aggregation Literals Equation for entity q, feature g, of type i Cost for
One

Feature

Number of
Features

Total Cost Cat Date Num Spat

sum(input, {conditions}, result)

total of all input values 1

Q

q
q

g

 O(eβ) fns O(fnseβ)  

min(input, {conditions}, result)

smallest of all input values 1

Q

q
q

MIN g


O(eβ) fdns O(fdnseβ)   

max(input, {conditions}, result)

largest of all input values 1

Q

q
q

MAX g


O(eβ) fdns O(fdnseβ)   

avg(input, {conditions}, result)

average of all input values 1

Q
q

q

g
g

Q

 O(eβ) fns O(fnseβ)   

count(input, {conditions}, result)

number of input values
v O(eβ) fcdns O(fcdnseβ)    

range(input, {conditions}, result)

difference between max and min 1 1

Q Q

q q
q q

MAX g MIN g
 

 O(eβ) fdns O(fdnseβ)   
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standard deviation
(input, {conditions}, result)

dispersion or variation in a distribution
of the given input values

 
2

1

Q

q
q

g g


 O(2eβ) fdns O(2fdnseβ)   

least_frequent
(input, {conditions}, result)

value which is repeated the fewest
number of times

 
1

arg min ( )
Q

q
q

freq g


O(eβ) fc O(fceβ)  

most_frequent
(input, {conditions}, result)

value which is repeated the most number
of times

 
1

arg max ( )
Q

q
q

freq g


O(eβ) fc O(fceβ)  

Cat = Categorical feature type Num = Numerical feature type Spat = Spatial feature type

A.3 Multi-Feature Aggregation Literals

A multi-feature aggregation function aggregates the values of multiple feature of multiple entities related to an entity (Chapter 4.3.1).

Run-time Cost Applicable Feature Types

Multi-Feature Aggregation Literals
Equation for entity q,

features f and g, of type i Cost for One
Feature

Number of
Permutations
of Features

Total Cost Cat Date Num Spat

linear_regression_coefficient
({input1, input2} {conditions},result)

slope of the line-of-best-fit, indicates
relationship between two inputs

    
2

1 1

Q Q

q q q
q q

g g f f g g
 

    O(2eβ) fdns (fdns-1) O(fdns
22eβ)    

correlation
({input1, input2} {conditions},result)

degree to which the values are
positively/negatively associated to each
other

   
2 22 2

g f g f

g g f f

  

 
O(eβ) fdns (fdns-1) O(fdns

2eβ)   
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covariance
({input1, input2} {conditions},result)

measure which indicates how two values
vary together

g f g f   O(eβ) fdns (fdns-1) O(fdns
2eβ)   

most_frequent_combination
({input1,
input2,…inputi},{conditions},result)

value which is repeated the fewest
number of times

 
1

arg max [ , ]
Q

q q
q

freq f g


O(eβ) fdnsc (fdnsc-1) O(fdnsc
2eβ)    

least_frequent_combination
({input1,
input2,…inputi},{conditions},result)

value which is repeated the most number
of times

 
1

arg min [ , ]
Q

q q
q

freq f g


O(eβ) fdnsc (fdnsc-1) O(fdnsc
2eβ)    

chi-square
({input1, input2,…inputi}
{conditions},result)

indicates whether there is a dependency
between two sets of categorical values

 
2

1

Q
q q

q

g f gf

gf


 O(2eβ) fc (fc-1) O(fc

22eβ) 

Cat = Categorical feature type Num = Numerical feature type Spat = Spatial feature type

A.4 Spatial Literals

Spatial literals are used to describe implicit relationships between multiple entities (Chapter 4.3.3):

Pre-processing Costs
Spatial Literals

(neighbourhood relationships)
Depiction DB2 Function

Cost of One
Operation

Number of
Operations

Total Cost

disjoint(input1, input2)

true if input1 is completely separate from
input2

ST_Disjoint(ei,k,ei,j) O(s) * eβ O(eβs)



113

meet(input1, input2)

if input1 is strictly immediately adjacent to
input2

ST_Touches(ei,k,ei,j) O(s) * eβ O(eβs)

overlap(input1, input2)

if input1 extends over, or partially covers,
input2

ST_Crosses(ei,k,ei,j) O(s) * eβ O(eβs)

covered_by(input1, input2)

input1 completely envelops input2

ST_Contains(ei,k,ei,j) O(s) * eβ O(eβs)

inside(input1, input2)

if input1 is within input2 (a building in a city
or park)

ST_Within(ei,j,ei,k) O(s) * eβ O(eβs)

equal(input1, input2)

if input1 is identical and in the same location
as input2

ST_Equals(ei,k,ei,j) O(s) * eβ O(eβs)

covers(input1, input2)

if input2 completely envelops input1

ST_Contains(ei,j,ei,k) O(s) * eβ O(eβs)

contains(input1, input2)

if input2 is within input1

ST_Within(ei,k,ei,j) O(s) * eβ O(eβs)

direction(input1, input2)

specifies the angular position of input2

relative to input1 as a number or value such as
‘East’

180

mod[int{450
atan2( , ) },360]x y 



 
RF_Direction(ei,k,ei,j) O(s) * eβ O(eβs)

distance(input1, input2)

distance between input1 and input2 when
travelling in a straight line

1, ' , 2 1, ' , 2
1, 1, 1, 1,( ) ( )t q t q t q t q

x x y ye e e e    ST_Distance(ei,k,ei,j) O(s) * eβ O(eβs)

voronoi_neighbour(input1, input2)

if input1 shares a relationship, according to the
Delaunay triangulation with input2

O(s) * loge e O( logs e e )

road_distance(input1, input2)

distance between input1 and input2 when
O(1) ^ eβ O(eβ)
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travelling along the road-network of a map
travel_time(input1, input2)

time required in order to cover the distance
from input1 to input2 along the road network

O(1) ^ eβ O(eβ)

* Feature extracted via composite spatial SQL functions performed inside DB2 Spatial Extender, runtime is assumed to be s
^ The distances between each pair of intersections (of roads) are calculated within ArcGIS and then saved into a DB2 table.
To calculate distances between two entities, a custom-written DB2 function RoadDistance(A,B) is used [see Chapter C.1 for pseudo-code].

A.5 Spatial Aggregation Literals

Spatial aggregation literals are used to describe spatial properties of the neighbourhood of an entity (Chapter 4.3.4):

Run-Time Cost

Spatial Aggregation Literal Evaluating feature g
Cost for one

Feature

Number of
Permutations

of Features
Total Cost

spatial_trend({input1, input2} {conditions},result)

indicates a tendency for a feature-value of input2 to change with respect
to distance from input1 equivalent to correlation between feature-value
and distance
- formula requires 2 passes of data, has to be done for each feature

22 2 2

gd g d

g g d d

 

 
O(eβ) fdns O(fdnseβ)

spatial_autocorrelation({input1, input2} {conditions},result)

analyze the degree of dependency among observations of input1 and
input2 with respect to their location
- to calculate average requires the first pass. to calculate the double-
sigmas requires n2.

  

 

,
1 1

2

,
1 1 1

Q Q

j k j k
j k

Q Q Q

j k j
j k j

Q d g g g g

d g g

 

  

   

 



 
O(2eβ2) fdns O(fdns2eβ2)

area_adjusted_mean({input1, input2},{conditions},result)

mean value of all input2 entities, weighted by their Voronoi area, that are
neighbours to input1

,_ ( )i q
g

voronoi area e
( log )O e e  fdns ( log )dnsO f e e 
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Appendix B: Summary of Datasets in the Crime Data-Warehouse

Entity Description Source
# of Entities in

Surrey, BC
# of Entities In
Burnaby, BC

Type of Data

Airports The set of airports A subset of the BCAA dataset 0 2 Point

Ambulance The set of locations from where ambulances leave A subset of the BCAA dataset 4 1 Point

Bank The set of banks A subset of the BCAA dataset 15 18 Point

Civic The set of government buildings A subset of the BCAA dataset 192 30 Point

Commercial The set of commercial properties, such as stores, does not
include grocery stores, nor collection of stores such as
malls.

A subset of the BCAA dataset 4902 2812 Point

Condominium The set of condominiums. Each individual condo has a
separate entry. Average values, for example, can be
calculated by averaging each condo contained in a complex.

A subset of the BCAA dataset 11393 15653 Point

Correctional The set of correctional institutions. A subset of the BCAA dataset 1 6 Point

Duplex The set of duplex houses. A subset of the BCAA dataset 1334 2654 Point

Entertainment The set of movie theatres, night clubs, etc. A subset of the BCAA dataset 82 58 Point

Farm The set of farms. A subset of the BCAA dataset 1149 71 Point

Fire The set of fire-fighter stations. A subset of the BCAA dataset 17 6 \Point

Gas station The set of gas-stations. A subset of the BCAA dataset 80 43 Point

Grocery The set of grocery-stores. Does not include other types of
commercial properties.

A subset of the BCAA dataset 11 3 Point

High-Density
Housing

The set of high-rise buildings. These are different from, and
hence do not contain, condominiums.

A subset of the BCAA dataset 1073 1036 Point

Hospital The set of hospitals. A subset of the BCAA dataset 2 10 Point

Industrial The set of industial locations, such as factories. A subset of the BCAA dataset 789 453 Point

Lines The set of rail-roads, transmission lines, etc. GIS Innovations – 2007 279 85 Line
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Low-Density
Housing

The set of low-density (simplex) housing. A subset of the BCAA dataset 88995 34284 Point

Mall The set of malls. A subset of the BCAA dataset 53 40 Point

Motel The set of motels/hotels within the province. A subset of the BCAA dataset 61 20 Point

Parks The set of parks within BC. GIS Innovations – 2007 206 157 Polygon

Police The set of police-stations. A subset of the BCAA dataset 7 2 Point

Post-Secondary
Schools

The set of schools classified as post-secondary schools.
Does not contain schools not classified as post-secondary.

A subset of the BCAA dataset 5 4 Point

Recreation The set of recreational facilities, public swimming-pools for
example.

A subset of the BCAA dataset 15 3 Point

Road The set of roads for BC. Each tuple represents a road-
segment, and can be joined up with other road-segments via
a spatial join.

GIS Innovations – 2007 12951 5253 Line

School The set of schools classified as elementary- or high-
schools. Does not contain post-secondary schools.

A subset of the BCAA dataset 157 65 Point

Transit The set of sky-train stops. A subset of the BCAA dataset 11 12 Point

Utility The set of public utility (hydro-stations, dams, etc). A subset of the BCAA dataset 2894 2721 Point

Vacant The set of vacant plots of land. A subset of the BCAA dataset 3610 442 Point

Figure 65 – Description of datasets used for experimentation. Dataset is restricted to Burnaby and Surrey, BC.
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Appendix C: Pseudo-code

C.1 Road-Distance Function

Function RoadDistance(point A, point B)

RoadSegmentA Road segment point A is on
RoadSegmentAS Starting point of road segment A

RoadSegmentAE Ending point of road segment A

// Distance from point A to the starting-point of road-segment A
RoadSegmentASDistance Distance(A, RoadSegmentAS)
// Distance from point A to the ending-point of road-segment A
RoadSegmentAEDistance Distance(A, RoadSegmentAE)

RoadSegmentB Road segment point B is on
RoadSegmentBS Starting point of road segment B
RoadSegmentBE Ending point of road segment B

// Distance from point B to the starting-point of road-segment B
RoadSegmentBSDistance Distance(B, RoadSegmentBS)
// Distance from point B to the ending-point of road-segment B
RoadSegmentBEDistance Distance(B, RoadSegmentBE)

// calculate the 4 possible distanced between two pairs of intersections:
// {AS-BS, AE-BS, AS-BE, AE-BE}, as precomputed by ArcGIS

Distance_AS_BS Distance(RoadSegmentAS, RoadSegmentBS)
Distance_AE_BS Distance(RoadSegmentAE, RoadSegmentBS)
Distance_AS_BE Distance(RoadSegmentAS, RoadSegmentBE)
Distance_AE_BE Distance(RoadSegmentAE, RoadSegmentBE)

RoadDistanceMIN(
Distance_AS_BS + RoadSegmentASDistance + RoadSegmentBSDistance,

Distance_AE_BS + RoadSegmentAEDistance + RoadSegmentBSDistance,
Distance_AS_BE + RoadSegmentASDistance + RoadSegmentBEDistance,
Distance_AE_BE + RoadSegmentAEDistance + RoadSegmentBEDistance
)

End Function

C.2 Angle Function

The below function calculates the direction two entities are with relation to each other. The code

was used in DB2, as a user-defined function.

CREATE FUNCTION RFRANK.RF_DIRECTION(X DOUBLE, Y DOUBLE)
RETURNS DECIMAL(20,10)
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LANGUAGE SQL
DETERMINISTIC
READS SQL DATA

BEGIN ATOMIC
DECLARE ANGLE DECIMAL(20,10);
DECLARE X1 DECIMAL(20,10);
DECLARE Y1 DECIMAL(20,10);

SET X1 = CAST(X as DECIMAL(20,10));
SET Y1 = CAST(Y as DECIMAL(20,10));

IF X1 = Y1 THEN
SET ANGLE = NULL;

ELSE
SET ANGLE = MOD(INT(450-ATAN2(CAST(X as DECIMAL(20,10)),

CAST(Y as DECIMAL(20,10)))*180/3.1415926535, 360);
END IF;

RETURN ANGLE;
END
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