
HIERARCHICAL DISTRIBUTED CLASSIFICATION IN

WIRELESS SENSOR NETWORKS

by

Ji Xu

BEng, Beijing University of Post and Telecommunications, 1998

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c⃝ Ji Xu 2009

SIMON FRASER UNIVERSITY

Spring 2010

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

APPROVAL

Name: Ji Xu

Degree: Master of Science

Title of Thesis: Hierarchical Distributed Classification in Wireless Sensor Net-

works

Examining Committee: Miss. Anne Lavergne

Chair

Dr. Jian Pei, Senior Supervisor

Dr. Alexandra Fedorova. Supervisor

Dr. Jie Liang, SFU Examiner

Date Approved:
-,,1'rl#

Z7{l' ' >t
"f

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Wireless sensor networks promise an unprecedented opportunity to monitor the physical

environment via inexpensive wireless device. Classification based on observations from dis-

tributed sensor nodes is an important application in wireless sensor networks. Developing

an efficient classification method encounters many challenges in wireless sensor net works,

such as accuracy and energy consumption.

In this thesis, we propose a novel hierarchical distributed classification approach, in

which the sensor nodes locally build the classifier and send to parent, who combines the

received classifiers by generating pseudo data training data distribution is studied. The

simulation results show that our approach obtains a high accuracy and saves much energy.

iii

Acknowledgments

This thesis is the result of the inspiring and thoughtful guidance and supervision of my senior

supervisor, Professor Jian Pei at School of Computing Science, Simon Fraser University. I

would like to thank him for his great help during my study at SFU. I would also like to thank

Professor Alexandra Fedorova and Professor Jie Liang for serving in my thesis committee,

and Miss Anne Lavergne for chairing it.

Thanks go to the members of Professor Pei’s research group for the series of inspiring

presentations and discussions. I am also grateful for the good time and friendship I enjoyed

while I worked in the research group.

I would also like to express my gratitude to my collaborator, Mr. Xu Cheng, for all his

encouragement and support during this time.

iv

2.3.1 Decision tree . 18

2.3.2 Bayesian Classifiers . 19

2.3.3 Artificial Neural Networks . 20

2.3.4 Support Vector Machine (SVM) . 22

2.3.5 Other Classification Methods . 23

2.4 Ensemble Method . 23

2.5 Summary . 28

3 Hierarchical Distributed Classification 29

3.1 System Overview . 29

3.2 Decision Tree Overview . 31

3.2.1 Splitting Function . 32

3.2.2 Pruning Techniques . 34

3.2.3 Decision Trees Algorithms . 37

3.2.4 Decision Trees for Large Datasets . 39

3.3 Building Decision Trees . 39

3.4 Generating Pseudo data . 40

3.5 Hierarchical Classification . 42

3.6 Further Discussion . 44

4 Performance Evaluation 46

4.1 Configuration and Datasets . 46

4.2 Baseline for Comparison . 48

4.3 Impact of Preservation Factor, Noise and Height for Heterogeneous Data . . . 49

4.4 Comparison of Enhanced and Basic ID3 Algorithm 51

4.5 Impact of Training Data Distribution . 56

4.6 Comparison of Energy Consumption . 58

5 Conclusion 60

5.1 Summary of work . 60

5.2 Future Work . 61

Bibliography 63

vi

List of Tables

3.1 List of notations . 30

vii

List of Figures

1.1 A example of sensor node (courtesy of [16]) 2

1.2 Wireless Sensor Networks . 3

2.1 Ensemble Classifiers (extracted from [46]) . 25

3.1 An example of a decision tree . 32

3.2 A hierarchical structure of the sensor network 43

4.1 An example of topology of 25 nodes and height being 2 47

4.2 Comparison of accuracy for different preservation factor, noise and height

with heterogeneous data . 50

4.3 Comparison of enhanced and basic ID3 algorithms for heterogeneous data

with ε = 1% . 52

4.4 Comparison of enhanced and basic ID3 algorithms for heterogeneous data

with ε = 10% . 53

4.5 Comparison of enhanced and basic ID3 algorithms for homogeneous data with

ε = 1% . 54

4.6 Comparison of enhanced and basic ID3 algorithms for homogeneous data with

ε = 10% . 55

4.7 Comparison of heterogeneous and homogeneous data distribution with ε = 1% 56

4.8 Comparison of heterogeneous and homogeneous data distribution with ε = 10% 57

4.9 Comparison of energy consumption . 58

viii

Chapter 1

Introduction

1.1 Wireless Sensor Networks

Wireless sensor networks (WSNs) have gained worldwide attention in recent years, particu-

larly with the proliferation in Micro-Electro-Mechanical Systems (MEMS) technology which

has facilitated the development of smart sensors [51]. A sensor network is composed of a

large number of sensor nodes that are densely deployed either inside the phenomenon or very

close to it. The position of sensor nodes need not be engineered or redetermined. The recent

advances in transceiver and embedded hardware designs have made massive production of

inexpensive wireless sensors possible [1]. These sensors are small, with limited processing

and computing resources, and inexpensive compared to traditional sensors. These sensor

nodes can sense, measure, and gather information from the environment and, based on some

local decision process, can form a network with each node storing, processing and relaying

the sensed data, often to a base station or user for further computation.

Smart sensor nodes are low power devices equipped with one or more sensors, a processor,

memory, a power supply, a radio, and an actuator. A variety of mechanical, thermal,

biological, chemical, optical, and magnetic sensors may be attached to the sensor node

to measure properties of the environment. Since sensor nodes have limited memory and

are typically deployed in difficult-to-access locations, a radio is implemented for wireless

communication to transfer the data to a base station (e.g., a laptop, a personal hand held

device, or an access point to a fixed infrastructure). Battery is the main power source in

a sensor node. Secondary power supply that harvests power from the environment such as

solar panels may be added to the node depending on the appropriateness of the environment

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: A example of sensor node (courtesy of [16])

where the sensor will be deployed. Depending on the application and the type of sensors

used, actuators may be incorporated in the sensors. Figure 1.1 shows an example of a sensor

node.

A WSN typically has little or no infrastructure. It consists of a number of sensor nodes

(few tens to thousands) working together to monitor a region to obtain data about the

environment. There are two types of WSNs: structured and unstructured. An unstructured

WSN is one that contains a dense collection of sensor nodes. Sensor nodes may be deployed

in an ad hoc manner into the field. Once deployed, the network is left unattended to perform

monitoring and reporting functions. In an unstructured WSN, network maintenance such as

managing connectivity and detecting failures is difficult since there are so many nodes. In a

structured WSN, all or some of the sensor nodes are deployed in a pre-planned manner. The

advantage of a structured network is that fewer nodes can be deployed with lower network

maintenance and management cost. Fewer nodes can be deployed now since nodes are placed

CHAPTER 1. INTRODUCTION 3

Figure 1.2: Wireless Sensor Networks

at specific locations to provide coverage while ad hoc deployment can have uncovered regions.

Figure 1.2 shows an example of wireless sensor networks.

Wireless sensor networks can be used in many applications, such as environment surveil-

lance, manufacturing management, business asset administration, automation in transporta-

tion and health-care industry, to provide us with real-time information about the environ-

ment and allow us to interact with the environment as needed. WSNs have great potential

for many applications in scenarios such as military target tracking and surveillance [24, 50],

natural disaster relief [11], biomedical health monitoring [22, 35], and hazardous environ-

ment exploration and seismic sensing [48]. In military target tracking and surveillance, a

WSN can assist in intrusion detection and identification. Specific examples include spatially-

correlated and coordinated troop and tank movements. Regarding natural disasters, sensor

nodes can sense and detect the environment to forecast disasters before they occur. In

CHAPTER 1. INTRODUCTION 4

biomedical applications, surgical implants of sensors can help monitor a patient’s health.

For seismic sensing, ad hoc deployment of sensors along the volcanic area can detect the

development of earthquakes and eruptions [51]. Given the huge amount of sensed data,

classifying them becomes a critical task in many of these applications.

As an example, for wildlife monitoring, the sensor nodes continuously sense the physical

phenomena such as temperature, humidity and sunlight, and meanwhile may also count

the number of animals. The number reflects the suitability of the current environment for

the animals, for example, if it is greater than a threshold, the environment is classified as

suitable, and otherwise not. After learning the relation between the physical phenomena and

the classes from such training data, we may later determine the suitability of the inquired

environment from the external source. These inquires are the unseen data which only

have the physical phenomena but do not have the class label. The sensor data collection

and object count have been extensively studied in the literature, e.g., the Great Duck

Island Project [37], yet efficient classification for wireless sensor networks has not been well

addressed.

Unlike traditional networks, a WSN has its own design and resource constraints. Re-

source constraints include a limited amount of energy, short communication range, low

bandwidth, and limited processing and storage in each node. Design constraints are appli-

cation dependent and are based on the monitored environment. The environment plays a

key role in determining the size of the network, the deployment scheme, and the network

topology. The size of the network varies with the monitored environment. For indoor envi-

ronments, fewer nodes are required to form a network in a limited space whereas outdoor

environments may require more nodes to cover a larger area. An ad hoc deployment is

preferred over pre-planned deployment when the environment is inaccessible by humans or

when the network is composed of hundreds to thousands of nodes. Obstructions in the en-

vironment can also limit communication between nodes, which in turn affects the network

connectivity (or topology).

Energy conservation in a WSN maximizes network lifetime and is addressed through

efficient reliable wireless communication, intelligent sensor placement to achieve adequate

coverage, security and efficient storage management, and through data aggregation and

data compression. The above approaches aim to satisfy both the energy constraint and

provide quality of service for the application. For reliable communication, services such as

congestion control, active buffer monitoring, acknowledgements, and packet-loss recovery are

CHAPTER 1. INTRODUCTION 5

necessary to guarantee reliable packet delivery. Communication strength is dependent on the

placement of sensor nodes. Sparse sensor placement may result in long-range transmission

and higher energy usage while dense sensor placement may result in short-range transmission

and less energy consumption. Coverage is interrelated to sensor placement. The total

number of sensors in the network and their placement determine the degree of network

coverage. Depending on the application, a higher degree of coverage may be required to

increase the accuracy of the sensed data.

WSN applications can be classified into two categories: monitoring and tracking [51].

Monitoring applications include indoor/outdoor environmental monitoring, health and well-

ness monitoring, power monitoring, inventory location monitoring, factory and process au-

tomation, and seismic and structural monitoring. Tracking applications include tracking ob-

jects, animals, humans, and vehicles. Research in WSNs aims to meet the above constraints

by introducing new design concepts, creating or improving existing protocols, building new

applications, and developing new algorithms.

1.2 Data Mining on WSNs

Data Mining based on Wireless Sensor Network data has been an issue over the last years.

While WSN deliver data that might not have been accessible before, mining WSN data

has to face the limitations of WSNs and the special characteristics of WSN data [31]. A

first task is deciding about the data processing which is distributed in the system. It might

be completely done at the sink1 (here all measured data is delivered to the sink) or it

might be done completely within the network. Both extremes define the range of possible

distributions. Generally, data processing within the network might reduce communication

costs because not all captured sensor data but the result of data processing has to be

delivered to the sink. However, in settings where the result of data processing is intended

to be used within the network (e.g, adaption of network behavior to the environment), even

the costs for node-to-sink delivery might be avoided.

Classification is an important problem in the field of data mining. The starting point

of classification is a training set of example records, where each record consists of several

attributes (x, y). These attributes may be either continuous, of an ordered domain, or

1In the WSN literature, the sink is the network component that gathers all sensor measurements, and is
usually considered to benefit from higher computational resources than the sensor nodes

CHAPTER 1. INTRODUCTION 6

categorical. One of the attributes, called the classifying attribute Y , determines the class

which a record belongs to. The classification problem is to construct a model that defines

a function h : {x} ⇒ {y} which is called a classifier. The goal is to classify of future yet

unclassified records based on h. In WSNs the construction of a classifier might be necessary

if a WSN is intended to classify phenomena in its sensing environment. The classification

task could be an innovative application where no or little information about the classifier

is available or an existing classifier may not be parameterizable for its application in a new

environment.

Several models for classification exist, for example neural networks, statistical models,

decision trees and genetic models [46]. Among these, decision trees can be constructed

relatively fast and are simple. Since the operations that are needed to implement a decision

tree are relatively simple, it is well fitted to the limited computing power of sensor nodes.

Furthermore, decision trees obtain similar and sometimes better accuracy compared to other

classification models.

1.3 Motivation and Contribution

Classification is typically done in two steps: first, a classifier is constructed to summarize

a set of predetermined classes, by learning from a set of training data; then, the classifier

is used to determine the classes of newly-arrived data. Within this framework, there have

been significant efforts in improving its speed and accuracy, most of which assume central-

ized storage and computation. The wireless sensor networks however pose a series of new

challenges, particularly for the first step. First, the number of sensor nodes is huge, but each

of them has only limited storage that can hardly accommodate all the training data of the

whole network. Second, the sensor nodes are generally powered by non-replenishable batter-

ies, and energy efficiency is thus of paramount importance, which makes the straightforward

solution of sending all training data to powerful base station quite inefficient [19, 27]. In

short, conventional centralized solution is not directly applicable in this new type of network

environment.

To address the above challenges, in this thesis, we present a novel distributed solution for

classification in energy-constrained sensor networks. Our approach hierarchically organizes

the sensor nodes and performs classification in a localized and iterative manner, utilizing a

decision tree method. Starting from each leaf node, a classifier is built based on its local

CHAPTER 1. INTRODUCTION 7

training data. An upstream node, upon receiving the classifiers from its children, will use

them and its own data to build a new classifier. These local classifiers will be iteratively

enhanced from bottom to top and finally reach the base station, making a global classifier for

all the data distributed across the sensor nodes. Since only the classifiers will be forwarded

upstream, the energy consumption for transmission can be significantly reduced.

The key difficulty here however lies in training a new classifier from a mix of downstream

classifiers and the local training dataset, which cannot be directly accomplished by existing

learning algorithms that work on dataset only. We address this problem by generating a

pseudo training dataset from each downstream classifier. We develop a smart generation

algorithm, which ensures that the pseudo data closely reflects the characteristics of the

original local data. We also introduce a control parameter that adaptively balances the

recovery quality and data size. Through extensive simulations, we demonstrate that our

approach maintains high classification accuracy, with very low storage and communication

overhead.

We also notice that, in practice, the data distribution across different sensor nodes is not

necessarily homogeneous. For example, depending on the location, the data sensed by one

node may always have low temperature and low humidity, and the data sensed by another

node at a different location may always have high temperature and high humidity. We show

strong evidence that such heterogeneity can easily lead to mis-classification, and we propose

an enhanced ID3 algorithm to mitigate its impact. To the best of our knowledge, our study

is the first solution addressing this issue.

1.4 Organization of the Thesis

The remainder of the thesis is structured as follows: In Chapter 2, we present an overview

of related work. In Chapter 3, we describe our approach. The experimental results are

shown in Chapter 4. Finally, Chapter 5 concludes the thesis and discusses some directions

for future research.

Chapter 2

Related Work

In this section, we will give an overview of the work previously done on the topics related to

our study. In more specific, we will discuss the following: (1) wireless sensor networks tech-

niques,(2) data gathering in WSNs,(3) the classification problem and general approach,(4)

ensemble methods.

2.1 Wireless Sensor Networks Techniques: An Overview

To enable wireless sensor applications using sensor technologies, each sensor node is an

individual system. In order to support different application software on a sensor system,

development of new platforms, operating systems, and storage schemes are needed. The

communication protocols, which enable communication between the application and sensors,

also enable communication between the sensor nodes. Services are developed to enhance the

application and to improve system performance and network efficiency. From application

requirements and network management perspectives, it is important that sensor nodes are

capable of self-organizing themselves. That is, the sensor nodes can organize themselves into

a network and subsequently are able to control and manage themselves efficiently. As sensor

nodes are limited in power, processing capacity, storage, new communication protocols and

management services are needed to fulfil these requirements. In this section, some techniques

of wireless sensor networks will be reviewed briefly.

8

CHAPTER 2. RELATED WORK 9

2.1.1 Embedded Network Technology

WSNs merge a wide range of information technologies that span hardware, systems software,

networking, and programming methodologies [16].

Microprocessors, power, and storage

The hardware of a sensor network node consists of a microprocessor, data storage, sensors,

analog-to-digital converters (ADCs), a data transceiver, controllers that tie the pieces to-

gether, and an energy source. Recently, a new operating point has emerged that suits all

these components. As semiconductor circuits become smaller, they consume less power for

a given clock frequency and fit in a smaller area. In simple microcontrollers, miniaturiza-

tion increases efficiency rather than adding functionality, allowing them to operate near one

milliwatt while running at about 10 MHz. Most of the circuits can be powered off, so the

standby power can be about one microwatt. If such a device is active 1 percent of the time,

its average power consumption is just a few microwatts. This scale of power can be obtained

in many ways. Solar cells generate about 10 milliwatts per square centimeter outdoors and

10 to 100 microwatts per square centimeter indoors. Mechanical sources of energy, such as

the vibration of windows and air conditioning ducts, can generate about 100 microwatts [24].

A typical cubic-centimeter battery stores about 1,000 milliamp-hours, so centimeter-scale

devices can run almost indefinitely in many environments. However, low-power micropro-

cessors have limited storage, typically less than 10 Kbytes of RAM for data and less than

100 Kbytes of ROM for program storage-or about 10,000 times less storage capacity than a

PC has. This limited amount of memory consumes most of the chip area and much of the

power budget. Designers typically incorporate larger amounts of flash storage, perhaps a

megabyte, on a separate chip.

Microsensors

Sensors give these nodes their eyes and ears. Many materials change their electrical charac-

teristics when subjected to varying environmental conditions. Sensors are manufactured so

these changes are predictable over a certain range. For example, a thermistor is a variable

resistor that changes smoothly with temperature. An ADC converts the voltage drop into

a binary number that a microcontroller can store or process. Photocells and fog detectors

work similarly, but they consist of finely interleaved combs separated by a material that

CHAPTER 2. RELATED WORK 10

uses incident photons or moisture to change resistance. Many more sophisticated structures

have been developed to detect other phenomena [30]. These structures consume a few milli-

watts and only need to be turned on a fraction of the time. Extremely efficient ADCs have

been developed so that the sensor subsystem has an energy profile similar to the processor.

Microelectromechanical systems (MEMS) can sense a wide variety of physical phenomena

cheaply and efficiently. Researchers can use the processes for etching transistors on silicon

to carve out tiny mechanical structures, such as a microscopic springboard within an open

cavity. Gravitational forces or acceleration can deflect this cantilevered mass, causing pow-

erful internal forces that cause changes in material properties or delicate alignments, which

can be amplified and digitized. Manufacturers used the first major commercial MEMS

sensors, the accelerometer, to trigger automotive airbag release. Whereas high-precision

piezoelectric accelerometers cost hundreds of dollars, MEMS provided sufficient precision

for a few dollars. Once the devices entered mass production, they could ride the CMOS

technology growth of modern chips to become increasingly accurate while remaining inex-

pensive. A wide variety of MEMS devices can sense various forces, chemical concentrations,

and environmental factors.

Microradios

For some time now, manufacturers have added sensors to many appliances, vehicles, and

gadgets. The breakthrough comes from communicating sensor readings to other devices,

translating the physical world into information-bits-that the devices can transport, store,

and process. Radio components can now be manufactured using conventional CMOS tech-

nology, enabling wireless entry devices, pagers, walkie-talkies, cell phones, and wireless local

area networks for mobile laptops. However, the amount of energy required to communicate

wirelessly increases rapidly with distance. Obstructions such as people or walls and inter-

ference further attenuate the signal. Wireless LANs and cell phones consume hundreds of

milliwatts and rely on a powerful infrastructure. WSN radios consume about 20 milliwatts,

and their range typically is measured in tens of meters. For small devices to cover long

distances, the network must route the information hop by hop through nodes. Even so,

communication remains one of the most energy-consuming operations, with each bit costing

as much energy as about 1,000 instructions. Thus, WSNs process data within the network

wherever possible [27, 49].

CHAPTER 2. RELATED WORK 11

2.1.2 Systems Challenge

Bridging the gap between the hardware technology’s raw potential and the broad range of

applications presents a system challenge. The network must allocate limited hardware to

multiple concurrent activities, such as sampling sensors, processing, and streaming data.

The potential interconnections between devices must be discovered and information routed

effectively from where it is produced to where it is used. There must also be a means of

programming the ensemble.

TinyOS

Conventional operating systems such as Unix run well on a 32-bit microprocessor at 50 to

100 MHz, with several megabytes of RAM and a gigabyte or more of secondary storage.

Today, this can be achieved in a handheld device that runs for several hours on a single

charge [4]. A more typical operating point for WSNs is one year on a pair of AA batteries

with a small fraction of these resources. Further, this application focuses on structured

interaction with the physical world, rather than on complex human interactivity. The de-

velopers of the open source TinyOS tailored it for this application. The TinyOS provides

a framework for assembling application-specific systems that can handle substantial con-

currency within limited physical resources. The software components and the underlying

operating system support specific eventdriven functionality. The lowest-level components

abstract the physical hardware and deliver physical interrupts as sanitized, asynchronous

events. Each component handles certain events and signals actions in other components,

but they never consume processor cycles while waiting for future events. Each application

includes only the components it requires. For example, a small stack of components process

sensor readings. The lowest components handle the ADC to obtain raw readings, whereas

the higher ones filter and distill data streams for the application. The network involves a

more complex stack in which the lower levels deal with acquiring the radio channel, fram-

ing data streams into packets that receiving nodes can recognize. These components also

perform error coding and channel scheduling, as well as detecting the arrival of incoming

packets and processing them into input buffers. Higher levels deal with buffer management,

authentication, and multiplexing the network across application components. A typical top-

level application might receive and process a stream of filtered sensor readings, then deliver

important notifications to the network. A second component would receive such notification

CHAPTER 2. RELATED WORK 12

messages, maintain a routing structure, and retransmit them along the next hop in a route

to a data collection gateway.

Network sensor platforms

Berkeley motes and TinyOS are widely used for exploring system issues and deploying pilot

applications. The microcontroller provides a modest amount of RAM and program storage,

and contains an internal ADC. A simple frequency-agile radio with roughly the bandwidth

of a modem provides the connectivity that developers can use to construct a network. Off-

chip flash memory provides storage to hold both the program while it transfers through the

network and the data buffering beyond the on-chip RAM. Several sensor boards have been

designed for this platform. The Intel iMote is a recent integrated design that uses a commer-

cial chip with a powerful ARM microprocessor, storage, and radio integrated into a single

package. The radio implements the Bluetooth standard, which is becoming widely used in

laptops and cell phones. The radio operates at higher bandwidth and has a sophisticated

frequency-hopping protocol. Normally, the ARM processor would be devoted to manag-

ing the Bluetooth radio and transferring packets to and from a serial port. In the iMote,

however, TinyOS runs directly on the ARM processor, providing a stand-alone system that

services various sensors and routes, processes high-level information streams, and manages

power consumption. Most of the lower-level TinyOS components are implemented directly

in hardware. These include an extremely low-power ADC and a very efficient radio devel-

oped in the Smart Dust project (http:// robotics.eecs.berkeley.edu/ pister/SmartDust/).

The entire design occupies only 5 square millimeters. It is estimated that at 1 percent

active, the chip could run a hundred years on the energy stored in a pair of AA batteries.

On the other end of the spectrum of in situ nodes lie 32-bit processor-based devices such

as Stargate, which run traditional operating systems such as Linux that are equipped with

longer-range radios such as IEEE 802.11 or with cell phone modems. This node class will

play a critical role in most deployed systems. At a minimum, these nodes will act as gateway

points both to retrieve data off the sensor network and to monitor, configure, and task the

system. In more sophisticated heterogeneous systems, these nodes will be distributed more

widely and used as points of aggregation, data storage, data fusion, and hosts for higher-end

sensors. Because they are so much more energy intensive, these nodes operate along with

a large battery and some form of recharge such as a solar panel. Alternatively, when wall

outlets are available, the nodes can draw power from them.

CHAPTER 2. RELATED WORK 13

2.1.3 Self-organized Networks

Wireless communication and instrumentation have long been associated with remote sensing

from satellites and missile telemetryprime examples of wireless links. A network consists

of many nodes, each with multiple links connecting to other nodes. Information moves

hop by hop along a route from the point of production to the point of use. In a wired

network like the Internet, each router connects to a specific set of other routers, forming

a routing graph. In WSNs, each node has a radio that provides a set of communication

links to nearby nodes. By exchanging information, nodes can discover their neighbors and

perform a distributed algorithm to determine how to route data according to the applications

needs. Although physical placement primarily determines connectivity, variables such as

obstructions, interference, environmental factors, antenna orientation, and mobility make

determining connectivity a priori difficult. Instead, the network discovers and adapts to

whatever connectivity is present [25].

Connectivity

The networking capability of WSNs is built up in layers [2]. The lowest layer controls the

physical radio device. Radios are by nature a broadcast medium: When one node transmits,

a collection of others can receive the signal unless it is garbled by other transmissions at

the same time. To avoid contending for the radio channel, the link layer listens on the

channel and transmits only when the channel is clear. It transmits a structured series of

bits that form a packet encoded in the radio signal. When not transmitting, nodes sample

the channel and scan for a special symbol at the start of a packet that also lets the receiver

align itself with the senders time. The packet layer manages buffers, schedules packets onto

the radio, detects or even corrects errors, handles packet losses, and dispatches packets to

system or application components.

Dissemination and data collection

Developers use this basic communication capacity to implement protocols that let the col-

lection of nodes transport and process information and coordinate their activities. A basic

capability in such networks involves disseminating information over many nodes. This can

be achieved by a flooding protocol in which a root node broadcasts a packet with some iden-

tifying information. Receiving nodes retransmit the packet so that more distant nodes can

CHAPTER 2. RELATED WORK 14

receive it. However, a node can receive different versions of the same message from several

neighboring nodes, so the network uses the identifying information to detect and suppress

duplicates. Flooding protocols use various techniques to avoid contention and minimize re-

dundant transmissions. The network uses dissemination to issue commands, convey alarms,

and configure and task the network. But it also uses dissemination to establish routes.

Each packet identifies the transmitter and its distance from the root. To form a distributed

tree, nodes record the identity of a node closer to the root. The network can use this re-

verse communication tree for data collection by routing data back to the root or for data

aggregation by processing data at each level of the tree. The root can be a gateway to a

more powerful network or an aggregation point within the sensor network, as determined

by some higher-level task. Often, tree formation and data collection are interwoven. Data

can begin following up the tree as soon as a parent node is discovered. Nodes may learn of

potential parents by overhearing data messages. The network continually collects statistics

to reinforce the best routes. These communication patterns differ significantly from those

found on the Internet, where many client computers open connections to named servers and

transfer large streams of data back and forth. In sensor networks, communication is usually

performed in the aggregate, and participants are identified by attributes such as physical

location or sensor value range. This style of routing has been formulated as directed diffu-

sion, a process in which nodes express interest in data by attribute. The nodes flood interest

outward to form a routing gradient, and they collect data up the gradient by reinforcing

the associated subtree [34]. Reliability also follows a different pattern. Increasingly, sensor

networks will deploy disruptiontolerant networking approaches in which they transfer bun-

dles of data reliably, hop by hop, in contrast to the Internet, which sets up an end-toend

connection using byte or packet matching between the original source and destination to

determine reliability. The DTN model better suits the variable connectivity that results

from dynamic environments and the need to duty-cycle.

2.1.4 Conserving Power and Bandwidth

Communication, usually the most energyintensive operation a node performs, must contend

for a share of limited bandwidth. The network stack attempts to minimize energy usage,

either by eliminating communication or by turning off the radio when no communication

needs to occur. Several approaches are possible. For example, nodes could process data lo-

cally and only communicate when they detect an interesting event. This approach would be

CHAPTER 2. RELATED WORK 15

employed in an intelligent alarm system or an environmental monitoring system that focuses

data collection on time or areas of interest. In many cases, crude low-power sensors trigger

higher-powered sensor devices, such as cameras. Performing aggregation within the network

can reduce communication. For example, an application might need to determine the av-

erage temperature at shaded nodes in a certain geographic region. Selecting the subset of

readings of interest could be performed at the trees leaves, routing their aggregation as data

upward, so that each node transmits at most a single packet to provide a statistical summary

of its subtree. More sophisticated aggregation could involve detecting distributed regions of

interest. Compression and scheduling also can conserve energy at lower layers. Some proto-

col overhead is associated with data communication to maintain routing structures, manage

contention, and enhance reliability. Sensor networks can avoid explicit protocol messages

by piggybacking control information on data messages and by overhearing packets destined

for other nodes [1]. They can use prescheduled time to reduce contention and the time the

radio remains live. This can be coordinated with the high-level application behavior by,

for example, periodic low-rate data sampling. Alternatively, the network could implement

energy conservation generically within lower layers by, for example, time division multiple

access. In the spatial dimension, the network can assign specific responsibilities to certain

nodes, such as retransmission or aggregation. Finally, the network can reject uninteresting

packets by turning off the radio after receiving only a portion. However, because these many

optimizations can be mutually conflicting, a rich and growing body of literature employs

different combinations of techniques under different application and platform assumptions.

2.1.5 Privacy

Dense instrumentation, real-time access, and in-network processing make a qualitative dif-

ference in our ability to perceive what is happening throughout large physical structures.

In environmental monitoring and condition- based maintenance, the purpose of data collec-

tion, the parties responsible for using the data, and the scope of dissemination are clear.

The situation becomes much less clear in more casual settings in which more general human

activity occurs, such as the home, the workplace, a transportation terminal, or a shopping

venue. In these cases, many potentially interested parties can have varying uses for the

data. More detailed sensingsuch as occupancy, motion, and even physiological statefurther

amplifies concerns over proper use and dissemination. Indeed, image data, such as that

obtained by the surveillance cameras in pervasive use today, can be viewed as an extremely

CHAPTER 2. RELATED WORK 16

powerful sensor, but network access and automated analysis are limited [51]. These social

factors are an inherent concern with sensor network technology. Fortunately, this area has

become an active focus of research while the technology is still in its early stages.

2.2 Data Gathering in WSNs

As a type of newly emerged network, WSN has many special features comparing with

traditional networks such as Internet, wireless mesh network and wireless mobile ad hoc

network. First of all, a sensor node after deployed is expected to work for days, weeks or

even years without further interventions. Since it is powered by the attached battery, high

efficient energy utilization is necessary, which is different from Internet as well as wireless

mesh and mobile ad hoc network, where either constant power sources are available or the

expected lifetime is several order of magnitude lower than it is for WSNs.

Although a sensor node is expected to work through a long time, it is often not required

to work all the time, i.e., it senses ambient environment, processes and transmits the col-

lected data, and then waits for a while until the next sensing-processing-transmitting cycle.

To support fault tolerance, a location is often covered by several sensor nodes. To avoid

duplicate sensing, while one node is performing the sensing-processing-transmitting cycle,

other nodes are also in the waiting state. In these cases, energy consumption can be further

reduced by letting the waiting nodes turn to dormant state, where most of the components

(wireless radio, sensing component, processing unit) in a sensor node are turned off, and

when the next cycle comes, turned back to the normal (active) state again. Define duty-cycle

as the ratio between active period and the full active/dormant period. A low duty-cycle

WSN clearly enjoys a much longer lifetime for operation [34].

Another special feature related to energy consumption is to control the transmission

range of a sensor node. Previous researches have shown that one of the major energy costs

in a sensor node comes from the wireless communication, where the main factor increases

with the 2 to 6 power of the transmission distance [4]. As a result, the transmission range

of a sensor node is often considered adjustable and may be dynamically adjusted to achieve

better performance and lower energy consumption.

In a data gathering application, sensors are often deployed at locations specified by the

application requirement to collect sensing data. The collected data is then forwarded to

a central base station for further processing. Traditionally, these sensors are connected by

CHAPTER 2. RELATED WORK 17

wires which are used for data transmission and power supply. However, the wired approach

is found demanding great efforts for deployment and maintenance. To avoid disturbing

the ambient environment, the deployment of the wires has to be carefully designed. And

a breakdown in any wire may cause the whole network out of service and enormous time

and efforts may be taken to find out and replace the broken line. In addition, the sensing

environment itself may make the wired deployment and its maintenance very difficult, if

not impossible. For example, the environment near a volcano or a wildfire scene, where the

hot gases and steams can damage a wire easily. Indeed, even in a less harsh environment

like wild habitat or a building, the threats from rodents are still critical and make the

protection of wires much more difficult than that of sensors. All these issues make wireless

sensor network a pleasant choice as it emerges with technology advances.

On the other hand, although many research efforts have been done on WSNs, and quite a

few prototype or preliminary systems have been deployed, data collection in WSNs is still in

its early stage and its special features call for novel approaches and solutions different from

other applications. For example, a common work pattern in most of other applications, such

as target tracking, is that sensing data or information is locally processed and stored at some

nodes and may be queried later by some other nodes. Data collection, nevertheless, requires

all sensing data be correctly and accurately collected and forwarded to the base station,

since the processing of the data needs global knowledge and is much more complex than

that in other applications like target tracking. Thus the major traffic in data collection is

the reported data from each sensor to the base station. Such “many-to-one” traffic patterns,

if not carefully handled, will cause high unbalance and inefficiency of energy consumption

in the whole network.

There have been numerous works on data gathering in wireless sensor networks. For

example, LEACH [27] and PEGASIS [34] attempt to make the data collection task energy

efficient. There are also a few related works about classification in this context [10, 2, 25],

but they have focused on detecting or tracking objects, while not giving detailed design of

classifiers. To the best of our knowledge, our work is the first addressing energy-efficient

distributed classification for wireless sensor networks, particularly with heterogeneous data

distribution across the sensor nodes.

CHAPTER 2. RELATED WORK 18

2.3 The Classification Problem and General Approach

Classification, which is the task of assigning objects to one of several predefined categories,

is a pervasive problem that encompasses many diverse applications [46]. Data classification

is a two-step process [26]. In the first step, a model is built describing a predetermined set of

data classes or concepts. The model is constructed by analyzing database tuples described

by attributes. Each tuple is assumed to belong to a predefined class, as determined by one

of the attributes, called the class label attribute. In the context of classification, data tuples

are also referred to as samples, or objects. The data tuples analyzed to build the model

collectively form the training data set. The individual tuples making up the training set

are referred to as training samples and are randomly selected from the sample population.

Since the class label of each training sample is provided, this step is also known as supervised

learning. Typically, the learned model is represented in the form of classification rules,

decision trees, or mathematical formulae.

In the second step, the model is used for classification. First, the predictive accuracy of

the model (or classifier) is estimated. The holdout method is a simple technique that uses a

test set of class-labeled samples. These samples are randomly selected and are independent

of the training samples. The accuracy of a model on a given test set is the percentage of

test set samples that are correctly classified by the model. For each test sample, the known

class label is compared with the learned model’s class prediction for that sample. Note that

if the accuracy of the model is estimated based on the training data set, this estimate can be

optimistic since the learned model tends to overfit the data. Therefore, a test set is used. If

the accuracy of the model is considered acceptable, the model can be used to classify future

data tuples of objects for which the class label is not known.

The input data for a classification model is a collection of records. Each sample is

characterized by a tuple (x, y), where x is the attribute set and y is a special attribute,

designated as the class label.

In the following, we will generally review some solutions of the classification problem.

2.3.1 Decision tree

A decision tree has three types of nodes: (1) A root node that has no incoming edges and

zero or more outgoing edges; (2) Internal nodes, each of which has exactly one incoming edge

and two or more outgoing edges; (3) Leaf or terminal nodes, each of which has exactly one

CHAPTER 2. RELATED WORK 19

incoming edge and no outgoing edges. In a decision tree, each leaf node is assigned a class

label. The non-terminal nodes, which include the root and other internal nodes, contain

attribute test conditions to separate records that have different characteristics. Classifying

a test record is straightforward once a decision tree has been constructed. Starting from

the root node, the test condition is applied to the record and follow the appropriate branch

based on the outcome of the test. This will lead to either another internal node, for which

a new test condition is applied, or a leaf node. The class label associated with the leaf node

is then assigned to the record.

In principle, there are exponentially many decision trees that can be constructed from

a given set of attributes. While some of the trees are more accurate than others, finding

the optimal tree is inefficient and costly because of the exponential size of the search space.

Nevertheless, efficient algorithms have been developed to induce a reasonably accurate,

albeit suboptimal,decision tree in a reasonable amount of time. These algorithms usually

employ a greedy strategy that grows a decision tree by making a series of locally optimal

decisions about which attribute to use for partitioning the data.

A learning algorithm for inducing decision tree must address two issues: (1) How should

the training records be split? Each recursive step of the tree-growing process must select an

attribute test condition to divide the records into smaller subsets. To implement this step,

the algorithm must provide a method for specifying the test condition for different attribute

types as well as an objective measure for evaluating the goodness of each test condition. (2)

How should the splitting procedure stop? A stopping condition is needed to terminate the

tree-growing process. A possible strategy is to continue expanding a node until either all the

records in a node belong to the same class or all the records have identical attribute values.

Although both conditions are sufficient to stop any decision tree induction algorithm, other

criteria can be imposed to allow the tree-growing procedure to terminate earlier.

In Section 3.2, we will discuss more details of decision tree.

2.3.2 Bayesian Classifiers

In many applications the relationship between the attribute set and the class variable is

non-deterministic. In other words, the class label of a test record cannot be predicted

certainly even though its attribute set is identical to some of the training examples. This

situation may arise because of noisy data or the presence of certain confounding factors

affecting classification but are not included in the analysis. The bayesian classifier model,

CHAPTER 2. RELATED WORK 20

which is based on the Bayes theorem, is an approach for modeling probabilistic relationships

between the attribute set and the class variable. Let X be a data sample whose class label

is unknown, and H be a hypothesis, such as that the data sample X belongs to a specified

class C. For classification problems, we want to determine P (H|X), the probability that the

hypothesis H holds given the observed data sample X. Since P (H) is the prior probability

of H and P (H|X) is the posterior probability of H conditioned on X, the Bayes theorem

provides a way of calculating the posterior probability. Bayes theorem can be written as

P (H|X) = P (X|H)P (H)
P (X) . A näıve Bayes classifier estimates the class-conditional probability

by assuming that the attributes are conditionally independent, given the class label y. We

only have to estimate the conditional probability of each Xi, given the class variable Y . To

classify a test record, the näıve Bayes classifier computes the posterior probability for each

class Y by:

P (Y |X) =
P (Y)

∏d
i=1 P (Xi|Y)

P (X)
. (2.1)

The näıve Bayesian classifier makes the independence assumption which simplifies compu-

tation. However, in practice, dependencies can exist between variables. Bayesian belief

networks specify joint conditional probability distributions. They allow class conditional

independencies to be defined between subsets of variables, and provide a graphical model

of causal relationships, in which learning can be performed. These networks are also known

as belief networks.

2.3.3 Artificial Neural Networks

The study of artificial neural networks (ANN) was inspired by attempts to simulate biological

neural systems [46]. The human brain consists primarily of nerve cells called neurons, linked

together with other neurons via strands of fiber called axons. Axons are used to transmit

nerve impulses from one neuron to another whenever the neurons are stimulated. A neuron

is connected to the axons of other neurons via dendrites, which are extensions from the

cell body of the neuron. The contact point between a dendrite and an axon is called a

synapse. Neurologists have discovered that a human brain learns by changing the strength

of the synaptic connection between neurons upon repeated stimulation by the same impulse.

Roughly speaking, a neural network is a set of connected input/output units where each

connection has a weight associated with it.

CHAPTER 2. RELATED WORK 21

Analogous to human brain structure, an ANN is composed of an inter-connected assem-

bly of nodes and directed links. Perceptron, a simple neural network architecture, consists

of two types of nodes: input nodes, which are used to represent the input attributes, and

an output node, which is used to represent the model output. The nodes in a neural net-

work architecture are commonly known as neurons or units. In a perceptron, each input

node is connected via a weighted link to the output node. The weighted link is used emu-

late the strength of synaptic connection between neurons. As in biological neural systems,

training a perceptron model amounts to adapting the weights of the links until they fit the

input-output relationships of the underlying data.

An artificial neural network has a more complex structure than that of a perceptron

model. The network may contain several intermediary layers between its input and output

layers. Such intermediary layers are called hidden layers and the nodes emgbedded in these

layers are called hidden nodes. In a feed-forward neural network, the nodes in one layer are

connected only to the nodes in the next layer. The perceptron is a single-layer, feed-forward

neural network because it has only one layer of nodes, the output layer, that performs

complex mathematical operations. In a recurrent neural network, the links may connect

nodes within the same layer or nodes from one layer to the previous layers. The network

also may use types of activation functions other than the sign function. these activation

functions allow the hidden and output nodes to produce output values that are nonlinear

in their input parameters. These additional complexities allow multilayer neural networks

to model more complex relationships between the input and output variables.

The backpropagation algorithm performs learning on a multilayer feed-forward neural

network, and learns by iteratively processing a set of training samples, comparing the net-

work’s prediction for each sample with the actual known class label. For each training

sample, the weights are modified so as to minimize the mean squared error between the net-

work’s prediction and the actual class. These modifications are made in the “backwards”

direction, that is, from the output layer, through each hidden layer down to the first hid-

den layer (hence the name backpropagation). Although it is not guaranteed, in general the

weights will eventually converge, and the learning process stops.

CHAPTER 2. RELATED WORK 22

2.3.4 Support Vector Machine (SVM)

A classification technique that has received considerable attention is support vector machine

(SVM) [46]. This technique has its roots in statistical learning theory and has shown promis-

ing empirical results in many practical applications, from handwritten digit recognition to

text categorization. SVM also works very well with high-dimensional data and avoids the

curse of dimensionality problem. Another unique aspect of this approach is that it represents

the decision boundary using a subset of the training examples, know as the support vectors.

Decision boundaries with large margins tend to have better generalization errors than those

with small margins. Intuitively, if the margin is small, then any slight perturbations to the

decision boundary can have quite a signification impact on its classification. Classifiers that

produce decision boundaries with small margins are therefore more susceptible to model

overfitting and tend to generalize poorly on previously unseen examples. The capacity of a

linear model is inversely related to its margin. The models with small margins have higher

capacities because they are more flexible and can fit many training sets, unlike models

with large margins. Therefore, it is desirable to design linear classifiers that maximize the

margins of their decision boundaries in order to ensure that their worst-case generalization

errors are minimized. A linear SVM is a classifier that searches for a hyperplane with the

largest margin, that is, finds a hyperplane separating the positive and negative samples.

The decision boundary of a linear classifier can be written in the following form:

w · x+ b = 0, (2.2)

where w and b are parameters of the model. We can rescale the parameters w and b of

the decision boundary so that the two parallel hyperhplanes bi1 and bi2 can be expressed as

follows:

bi1 : w · x+ b = 1, (2.3)

bi2 : w · x+ b = −1. (2.4)

The margin of the decision boundary is given by the distance between these two hyperplanes.

For the data sets that have nonlinear decision boundaries, we transform the data from its

original coordinate space x into a new space Φ(x) so that a linear decision boundary can

be used to separate the instances in the transformed space.

CHAPTER 2. RELATED WORK 23

2.3.5 Other Classification Methods

• k-Nearest Neighbor Classifier

Nearest neighbor classifiers are based on learning by analogy. The training samples

are described by n-dimensional numeric attributes. Each sample represents a point

in an n-dimensional space. In this way, all of the training samples are stored in an

n-dimensional pattern space. When given an unknown sample, a k-nearest neighbor

classifier searches the pattern space for the k training samples that are closest to

the unknown sample. These k training samples are the k “nearest neighbors” of the

unknown sample. “Closeness” is defined in terms of Euclidean distance, where the

Euclidean distance between two points, X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , yn)

is d(X,Y) =
√∑n

i=1(xi − yi)2. The unknown sample is assigned the most common

class among its k nearest neighbors. When k = 1, the unknown sample is assigned

the class of the training sample that is closest to it in the pattern space.

• Case-Based Reasoning

Case-based reasoning(CBR) classifiers are instanced-based. The samples or “cases”

stored by CBR are complex symbolic descriptions. Business applications of CBR

include problem resolution for customer service help desks, for example, where cases

describe product-related diagnostic problems. CBR has also been applied to areas

such as engineering and law, where cases are either technical designs or legal rulings,

respectively. When given a new case to classify, a case-based reasoner will first check

if an identical training case exists. If one is found, then the accompanying solution to

that case is returned. if no identical case is found, then the case-based reasoner will

search for training cases having components that are similar to those of the new case.

Conceptually, these training cases may be considered as neighbors of the new case.

The case-based reasoner tries to combine the solutions of the neighboring training

cases in order to propose a solution for the new case.

2.4 Ensemble Method

Learning algorithms try to find a hypothesis in a given space H of hypotheses and in many

cases if we have sufficient data they can find the optimal one for a given problem. But in

real cases we have only limited data sets and sometimes only few examples are available

CHAPTER 2. RELATED WORK 24

[29]. In these cases the learning algorithm can find different hypotheses that appear equally

accurate with respect to the available training data, and although we can sometimes select

among them the simplest or the one with the lowest capacity, we can avoid the problem

combining them to get a good approximation of the unknown true hypothesis. Thus, there

is a growing realization that combinations of classifiers can be more effective than single

classifiers. Why rely on the best single classifier, when a more reliable and accurate result

can be obtained from a combination of several? This essentially is the rationale behind the

idea of multiple classifier systems.

Ensemble methods are to construct a set of base classifiers and take a majority voting

on predictions in classification. The main idea is to learn an ensemble of classifiers from

subsets of data, and combine predictions from all these classifiers in order to achieve high

classification accuracies. The method can significantly improve the accuracy of prediction,

because if base classifiers are independent, then ensemble makes a wrong prediction only if

more than half of the base classifiers are wrong. For example, suppose there are two classes

and each base classifier has an error rate of 35%, and we use 25 base classifiers, and then

the error rate will be
25∑
i=3

(25i)× 0.35i × 0.6525−i = 0.06.

A logic view of the ensemble method is presented in Figure 2.1.

Ensemble classifiers have been used for classification in both centralized and distributed

data as follows. For centralized massive data, base-level classifiers are generated by applying

different learning algorithms with heterogeneous models [39], or a single learning algorithm

to different versions of the given data. For manipulating the data set, three methods can be

used: random sampling with replacement in bagging [8], re-weighting of the mis-classified

training examples in boosting [21], and generating small bites of the data by importance

sampling based on the quality of classifiers built so far [6]. There are many classic methods

for centralized classification, such as bagging [8], boosting [20] and AdaBoost [21]. Ran-

dom forest [7] is another advanced tool, which combines tree predictors, such that each

tree depends on the values of a random vector sampled independently and with the same

distribution for all trees in the forest. Random inputs and random features produce good

results in the classification. The detail will be described as follow:

• Bagging

Probably the most well-known sampling approach is that exemplified by bagging [8].

CHAPTER 2. RELATED WORK 25

Figure 2.1: Ensemble Classifiers (extracted from [46])

CHAPTER 2. RELATED WORK 26

Given a training set, bagging generates multiple bootstrapped training sets and calls

the base model learning algorithm with each of them to yield a set of base models.

Given a training set of size t, bootstrapping generates a new training set by repeatedly

(t times) selecting one of the t examples at random, where all of them have equal

probability of being selected. Some training examples may not be selected at all and

others may be selected multiple times. A bagged ensemble classifies a new example

by having each of its base models classify the example and returning the class that

receives the maximum number of votes. The hope is that the base models generated

from the different bootstrapped training sets disagree often enough that the ensemble

performs better than the base models. Breiman [8] made the important observation

that instability (responsiveness to changes in the training data) is a prerequisite for

bagging to be effective. A committee of classifiers that all agree in all circumstances

will give identical performance to any of its members in isolation. If there is too little

data, the gains achieved via a bagged ensemble cannot compensate for the decrease

in accuracy of individual models, each of which now sees an even smaller training set.

On the other end, if the data set is extremely large and computation time is not an

issue, even a single flexible classifier can be quite adequate.

• Boosting

Another method that uses different subsets of training data with a single learning

method is the boosting approach [20]. It assigns weights to the training instances,

and these weight values are changed depending upon how well the associated train-

ing instance is learned by the classifier; the weights for misclassified instances are

increased. Thus, re-sampling occurs based on how well the training samples are clas-

sified by the previous model. Since the training set for one model depends on the

previous model, boosting requires sequential runs and thus is not readily adapted to

a parallel environment. After several cycles, the prediction is performed by taking a

weighted vote of the predictions of each classifier, with the weights being proportional

to each classifiers accuracy on its training set.

• AdaBoost

AdaBoost is a practical version of the boosting approach [21]. There are two ways

that Adaboost can use these weights to construct a new training set to give to the

CHAPTER 2. RELATED WORK 27

base learning algorithm. In boosting by sampling, examples are drawn with replace-

ment with probability proportional to their weights. The second method, boosting

by weighting, can be used with base learning algorithms that can accept a weighted

training set directly. With such algorithms, the entire training set (with associated

weights) is given to the base-learning algorithm.

• Random Forests

Random forest is a class of ensemble methods specifically designed for decision tree

classifiers [46]. It combines the predictions made by multiple decision trees, where each

tree is generated based on the values of an independent set of random vectors. Each

decision tree uses a random vector that is generated from some fixed probability dis-

tribution. A random vector can be incorporated into the tree-growing process in many

ways. The random vectors are generated from a fixed probability distribution. Bagging

using decision trees is a special case of random forests, where randomness is injected

into the model-building process by randomly choosing N samples, with replacement,

from the original training set. Bagging also uses the same uniform probability dis-

tribution to generate its bootstrapped samples throughout the entire model-building

process. The “strength” of a set of classifiers refers to the average performance of

the classifiers. As the trees become more correlated or the strength of the ensemble

decreases, the generalization error bound tends to increase. Randomization helps to

reduce the correlation among decision trees so that the generalization error of the

ensemble can be improved.

For distributed data classification using the ensemble method, several techniques have

been proposed [33, 14].

For naturally distributed data, several techniques have been proposed as follows. Lazare-

vic et al. [32] give a distributed version of boosting algorithm, which efficiently integrates

local classifiers learned over distributed homogeneous databases. In the proposed method,

the classifiers are first learned from disjoint datasets at each boosting round and then ex-

changed amongst the sites. The exchanged classifiers are then combined, and finally, their

weighted voting ensemble is constructed on each disjoint data set. The ensemble that is

applied to an unseen test set represents an ensemble of ensembles built locally on all dis-

tributed sites. The performance of ensembles is used to update the probabilities of drawing

the data samples in succeeding boosting iterations.

CHAPTER 2. RELATED WORK 28

Tsoumakas et al. [47] present a framework for constructing a global predictive model

from local classifiers that do not require moving raw data around, achieves high predictive

accuracy and scales up efficiently with respect to large numbers of distributed data sets. It

can be broken down into the following phases: Local Learning and Classifier Combination.

In local learning step, an available classification learning algorithm is used to train a local

predictive model from all instances of that node. All models apart from the local one will

be combined to form a global classifier.

Chawla et al. [15] present a distributed approach to pasting small bites, which uniformly

votes hundreds or thousands of classifiers built on all distributed data sites. In this approach,

the authors divide a data set into T disjoint subsets, and assign each disjoint subset to a

different processor. On each of the disjoint partitions, they follow the Breiman’s approach

of pasting small votes. They randomly sample with replacement, as they can load the entire

disjoint subset of data in a processor’s memory. Thus, the number of disjoint partitions

can be dictated by the amount of memory available on each processor. They combine the

predictions of all the classifiers by majority vote. Again, using the above framework of

memory requirement, if they break up the data set into T disjoint subsets, the memory

requirement will decrease by a factor of 1
T , which is substantial. One can essentially divide

a data set into subsets easily managed by the computer’s main memory.

Distributed classification in peer-to-peer networks is also studied [36]. The authors

propose an ensemble approach, in which each peer builds its local classifier on the local

data and then combines all the classifiers by plurality voting. These distributed solutions

however are not customized for sensor networks. In particular, they do not consider the

limit of memory size, nor the energy consumption, which are two critical concerns with

respect to battery-powered sensor nodes. Directly applying these distributed classifications

into our application scenario will thus result in poor performance, as demonstrated through

our simulations.

2.5 Summary

In this chapter, we first presented some techniques of wireless sensor networks. We reviewed

some classification algorithms and introduced a few ensemble methods. And also described

some of the key issues for data gathering in wireless sensor networks.

Chapter 3

Hierarchical Distributed

Classification

In this chapter, we first present the system overview, and then introduce our classification

approach in detail, showing how to build the decision tree, how to generate the pseudo

data, and how to build the classifier hierarchically. We discuss the accuracy and energy

consumption afterwards.

3.1 System Overview

We consider N sensor nodes n1, n2, . . . , nN distributed in a field. Each node covers an area

of the field and is responsible for collecting data within the area. The data reporting follows

a spanning tree rooted at the base station n0. The routing protocol design for forming the

spanning tree is out of the scope of this thesis, and there are indeed numerous solutions in

the literature [19, 49].

Each sensor node ni first collects its local training data Di. If node ni is a leaf node,

it builds a classifier Ci by a learning algorithm ℵ, which we will illustrate in Section 3.3.

The node then sends Ci to its parent node, say nj . We use a decision tree T to represent

the classifier1, which, compared to the original data, is of a much smaller size. From this

perspective, it can be viewed as a data compression scheme. Compared to conventional

1We will use “classifier” and “decision tree” interchangeably throughout this thesis provided the context
is clear.

29

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 30

compression schemes for sensor data collection, however, the decision tree preserves finer

details of the distribution information of the data, thus facilitating distributed classification,

as will be elaborated later.

An upstream node nj , upon receiving the classifiers from its children, combines the

children’s classifiers with its local training data Dj to build an enhanced classifier Cj . These

local classifiers will be iteratively enhanced from bottom up and finally reach the base

station, making a global classifier for all the data distributed across the sensors. Since only

the classifiers will be forwarded upstream, the energy consumption for transmission can be

significantly reduced. The sensor nodes may continuously sense new data and forward to

upstream.

The challenges here lie in training the enhanced classifier from a mix of downstream

classifiers and the local dataset, which cannot be directly accomplished by existing training

algorithms that work on datasets only. To address this problem, a pseudo training dataset

will be generated from each downstream classifier. That is, for each child node ni, node nj

will generate a set of pseudo training data D′
i from the classifier Ci, and then combine all

these data with its own training data to build the enhanced classifier. Obviously, the pseudo

data, recovered from classifiers, should closely reflect the characteristics of the original local

data, in particular, the distribution of different classes and the attribute values. The size

of the pseudo data is also an important concern given that a sensor node generally has a

limited memory. We will address these detailed issues in Section 3.4.

For ease exposition, we list the major notations in Table 3.1. Also note that, in this

paper, we do not consider issues like node failure or packet loss, which have been extensively

addressed in the literature [19, 27, 4].

Notation Explanation

N the number of sensor nodes, excluding the base station
ni sensor node (i = 1, 2, ..., N)
n0 the base station
Di the training data collected by node ni

D′
i the pseudo data generated from classifier Ci

Ci the local classifier built by node ni, i = 1, 2, ..., N
C0 the global classifier built at the base station

Table 3.1: List of notations

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 31

3.2 Decision Tree Overview

Decision tree [26] is one of the most important models for classification, and also serves as

the foundation for our hierarchical distributed classification. A decision tree is a flow-chart-

like tree structure, where each internal node denotes a test on an attribute, each branch

represents an outcome of the test, and leaf nodes represent classes or class distributions.

The topmost node in a tree is the root node. The decision tree consists of nodes that form

a rooted tree, meaning it is a directed tree with a node called the root that has no incoming

edges. All other nodes have exactly one incoming edge. A node with outgoing edges is

called an internal or test node. All other nodes are called leaves (also known as terminal

nodes or decision nodes). A decision tree is a mapping from observations about an item

to conclusions about its class label. A node in the tree is a test of some attribute, and a

branch is a possible value of the attribute. To perform classification, we can start from the

root, test the attribute, and move down to a tree branch. Figure 3.1 shows a decision tree

example. For instance, it indicates that if the temperature is medium and the sunlight is

weak, the environment is classified as suitable (Yes) for animals.

In a decision tree, each internal node splits the instance space into two or more subspaces

according to a certain discrete function of the input attributes values. In the simplest and

most frequent case each test considers a single attribute, such that the instance space is

partitioned according to the attribute’s value. In the case of numeric attributes the condition

refers to a range. Each leaf is assigned to one class representing the most appropriate class

label. Alternatively, the leaf may hold a probability vector indicating the probability of the

certain class label. Instances are classified by navigating the tree from the root of the tree

down to a leaf, according to the outcome of the tests along the path.

Naturally, decision-makers prefer less complex decision trees, since they may be consid-

ered more comprehensive. Furthermore, according to Breiman et al. [9] the tree complexity

has a crucial effect on its accuracy performance. The tree complexity is explicitly con-

trolled by the stopping criteria used and the pruning method employed. Usually, the tree

complexity is measured by one of the following metrics:

• the total number of nodes;

• total number of leaves;

• tree depth;

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 32

Temperature

HumiditySunlight

Yes

No

NoYes No

Low Medium High

Weak Strong HighLow

Figure 3.1: An example of a decision tree

• number of attributes used.

Decision tree induction is closely related to rule induction. Each path from the root of a

decision tree to one of its leaves can be transformed into a rule simply by conjoining the

tests along the path to form the antecedent part, and taking the leaf’s class prediction as

the class value [44].

3.2.1 Splitting Function

In most of the cases the discrete splitting functions are univariate. Univariate means that an

internal node is split according to the value of a single attribute. Consequently, the algorithm

searches for the best attribute upon which to split. There are various univariate criteria.

These criteria can be characterized in different ways, such as according to the origin of the

measure: information theory, dependence, and distance. The following sections describe the

most common criteria in the literature.

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 33

• Information Gain

Information gain uses the entropy measure as the split function [26]. To choose the

best attribute at the current node, the measure calculates the information gain using

entropy. The entropy can be shown as follows

Entropy(S) =
c∑

i=1

−pi log2 pi, (3.1)

where S is the dataset, c is the number of classes and pi is the proportion of each

class. The information gain is then calculated as

Gain(S,A) = Entropy(S)−
∑

v∈V (A)

|Sv|
|S|

Entropy(Sv), (3.2)

where V (A) is the set of all possible values for attribute A, and Sv is the subset of S

for which attribute A has value v.

• Gini Index

The Gini index has been used in various works that measures the divergence between

the probability distributions of the target attribute’s values [46]. The Gini index is

defined as

Gini(S) = 1−
c∑

i=1

p2i , (3.3)

where S is the dataset, c is the number of classes and pi is the proportion of each

class. Consequently, the evaluation criteria for selecting the attribute A is defined as

GiniGain(S,A) = Gini(S)−
∑

v∈V (A)

|Sv|
|S|

Gini(Sv), (3.4)

where V (A) is the set of all possible values for attribute A, and Sv is the subset of S

for which attribute A has value v.

• Twoing

Breiman et al. [9] point out that the Gini index may encounter problems when the

domain of the target attribute is relatively wide. In this case they suggest using binary

criterion called twoing criterion. Twoing groups classes into two superclasses so that

the classification problem considered as a two-class problem, the greatest decrease in

node impurity is realized. This criterion is defined as

twoing(S) =
1

4

|SL|
|S|
|SR|
|S|

∑
v∈V (A)

| |SLv |
|SL|

− |SRv |
|SR|

|2, (3.5)

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 34

where S is the dataset, SL is the dataset in the left subtree and SR is the dataset in

the right subtree. V (A) is the set of all possible values for attribute A, SLv is the

subset of SL for which attribute A has value v, and SRv is the subset of SR for which

attribute A has value v. When the target attribute is binary the Gini and twoing

criteria are equivalent. For multiclass problems, the twoing criteria prefers attributes

with evenly divided splits.

• Gain Ratio

Quinlan [43] proposeed the gain ratio measure that normalizes the information gain

as follows:

GainRatio(S,A) =
InformationGain(S,A)

Entropy(S)
. (3.6)

Note that this ratio is not defined when the denominator is zero. Also the ratio may

tend to favor attributes for which the denominator is very small. Consequently, there

are two stages to deal with this situation. First, the information gain is calculated for

all attributes. Then, taking into consideration only attributes that have performed at

least as good as the average information gain, the attribute that has obtained the best

ratio gain is selected. Quinlan [42] showed that the gain ratio tends to outperform

simple information gain criteria both from the accuracy aspect as well as from the

classifier complexity aspect.

• Likelihood Ratio Chi-Squared Statistics

The likelihood ratio is defined as [3]:

G2(S,A) = 2 ln 2|S|InformationGain(S,A). (3.7)

This ratio is useful for measuring the statistical significance of the information gain

criterion.

3.2.2 Pruning Techniques

Employing tight stopping criteria tends to create small and under-fitted decision trees. On

the other hand, using loose stopping criteria tends to generate large decision trees that are

over-fitted to the training set. The pruning methods originally suggested by Breiman et al.

[9] were developed for solving this dilemma. According to this methodology a loosely stop-

ping criterion is used, letting the decision tree to overfit the training set. Then the overfitted

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 35

tree is cut back into a smaller tree by removing sub branches that are not contributing to

the generalization accuracy. It has been shown in various studies that employing pruning

methods can improve the general performance of a decision tree especially in noisy domains.

Another key motivation of pruning is “trading accuracy for simplicity” as presented

by Bratko and Bohanec [5]. When the goal is to produce a sufficiently accurate compact

concept description, pruning is highly useful. Within this process the initial decision tree is

seen as a completely accurate one. Thus, the accuracy of a pruned decision tree indicates

how close it is to the initial tree. There are various techniques for pruning decision trees.

Most of them perform top down or bottom up traversal of the nodes. A node is pruned if

this operation improves a certain criterion.

• Cost-Complexity Pruning

Breiman et al.s pruning method [9], cost complexity pruning (also known as weakest

link pruning or error complexity pruning) proceeds in two stages. In the first stage,

a sequence of increasingly smaller trees T0, T1, . . . , Tk are built on the training data

where T0 is the original tree before pruning and Tk has only the root node of tree

T0. In the second stage, one of these trees is chosen as the pruned tree, based on its

classification accuracy on a pruning set. A pruning set is a portion of the training

data that is set aside exclusively for pruning alone, based on its generalization error

estimation. Let α be the cost complexity per leaf, the cost complexity risk of a tree

T with root t is defined as:

Rα({t}) = R(t) + α (3.8)

and

Rα(Tt) = R(Tt) + α|leaf(Tt)|, (3.9)

where R(T) is the resubstitution risk estimate of T , Tt is the subtree of T which rooted

at node t and |leaf(T)| is the number of leaf nodes of tree T . The critical value of

each node is

g(t) =
R(t)−R(Tt)

(|leaf(Tt| − 1)
. (3.10)

Each node has a critical value and the subtree rooted at t to {t} will be pruned when

α ≥ g(t).

In the second phase, the generalization error of each pruned tree T0, T1, . . . , Tk is

estimated. The best pruned tree is then selected. If the given dataset is large enough,

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 36

the authors suggested to break it into training set and pruning set. The trees are

constructed using the training set and evaluated on the pruning set. On the other

hand, if the given dataset is not large enough, they proposed to use the cross-validation

methodology, despite the computational complexity implications.

• Pessimistic Error Pruning (PEP)

Quinlan’s pessimistic pruning [43] avoids the need of pruning set or cross validation,

and uses the pessimistic statistical correlation test instead. The basic idea is that the

error ratio estimated using the training set is not reliable enough. Instead, a more

realistic measure known as continuity correction for binomial distribution should be

used

ε′(T, S) = ε(T, S) +
|leaves(T)|

2|S|
, (3.11)

where ε(T, S) indicates the error rate of the tree T over the sample S and |leaves(T)|
denotes the number of leaves in T . However, this correction still produces an optimistic-

error rate. Consequently, Quinlan suggested pruning an internal node if its error rate

is within one standard error from a reference tree, namely

ε′(pruned(T, t), S) ≤ ε′(T, S) +

√
ε′(T, S)(1− ε′(T, S))

|S|
(3.12)

The last condition is based on statistical confidence interval for proportions. Usually,

the last condition is used such that T refers to a sub-tree whose root is the internal

node t and S denote the portion of the training set that refer to the node t. The

pessimistic pruning procedure performs top-down traversing over the internal nodes.

If an internal node is pruned then all its descendants are removed from the pruning

process, resulting in a relatively fast pruning.

• Error-based Pruning

Error-based pruning is an improvement of the pessimistic pruning. It is implemented

in the well-known C4.5 algorithm. As in pessimistic pruning the error rate is estimated

using the upper bound of the statistical confidence interval for proportions

εEBP (pruned(T, t), S) = ε(T, S) + Zα

√
ε(T, S)(1− ε(T, S))

|S|
, (3.13)

where ε(T, S) denotes the misclassification rate of the tree T on the training set S.

Z is the inverse of the standard normal cumulative distribution and is the desired

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 37

significance level. Let subtree(T, t) denote the subtree rooted by the node t. Let

maxchild(T, t) denote the most frequent child node of t (that is, most of the instances

in S reach this particular child) and let St denote all instances in S that reach the

node t. The procedure performs bottom-up traversal over all nodes and compares the

following values:

εEBP (subtree(T, t), St) (3.14)

εEBP (pruned(subtree(T, t), t), St) (3.15)

εEBP (subtree(T,maxchild(T, t)), Smaxchild(T,t)). (3.16)

According to the lowest value the procedure either leaves the tree as is, prunes the

node t, or replaces the node t with the subtree rooted by maxchild(T, t).

3.2.3 Decision Trees Algorithms

• ID3

Quinlan [40] proposed the ID3 algorithm. It is considered as a very simple decision tree

algorithm. ID3 uses information gain as the splitting criteria. The growth stops when

all instances belong to a single value of the target feature or when the best information

gain is not greater than zero. ID3 does not apply any pruning procedures. Nor does it

handle numeric attributes neither missing values. The algorithm then creates a node

for each possible attribute value, and partitions the training data into descendant

nodes. There are three conditions to stop the recursion: (1) all samples at a given

node belong to the same class, (2) no attribute remains for further partitioning, and

(3) there is no sample at the node.

• C4.5

C4.5 is an evolution of ID3, presented by the same author [43]. It uses gain ratio as the

splitting criteria. The splitting ceases when the number of instances to be splitted is

below a certain threshold. Error-based pruning is performed after the growing phase.

C4.5 is capable of handle numeric attributes. It can induce from a training set that

incorporates missing values by using corrected gain ratio criteria.

• CART

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 38

CART stands for classification and regression trees. It was developed by Breiman et

al. [9] and is characterized by the fact that it constructs binary trees, that is each

internal node has exactly two outgoing edges. The spits are selected using the twoing

criteria and the obtained tree is pruned by cost-complexity pruning. When provided

CART can consider misclassification costs in the tree induction. It also enables users

to provide prior probability distribution.

An important feature of CART is its ability to generate regression trees. Regression

trees are trees where their leaves predict a real number and not a class. In the case of

regression CART looks for splits that minimize the prediction squared error (the least-

squared deviation). The prediction in each leaf is determined based on the weighted

mean for the node.

• CHAID

The acronym CHAID stands for Chi-squared Automatic Interaction Detector. It is A

tree classification methods originally proposed by Kass [28]. For each input attribute

ai, CHAID finds the pair of values that is least significantly different with respect to

the target attribute. The significant difference is measured by the p value obtained

from a statistical test. The statistical test used depends on the type of target attribute.

If the target attribute is continuous, an F test is used, if it is nominal, then a Pearson

chi-squared test is used, if it is ordinal, then a likelihood-ratio test is used.

For each selected pair CHAID checks if the p value obtained is greater than a certain

merge threshold. If the answer is positive it merges the values and searches for an

additional potential pair to be merged. The process is repeated until no significant

pairs are found.

It then selects the best input attribute to be used for splitting the current node, such

that each child node is made of a group of homogeneous values of the selected attribute.

Note that no splitis performed if the adjusted p value of the best input attribute is not

less than certain split threshold. This procedure stops also when one of the following

conditions is fulfilled. Maximum tree depth is reached. Minimum number of cases in

node for being a parent is reached, so it can not be split any further. Minimum number

of cases in node for being a child node is reached. CHAID handles missing values by

treating them all as a single valid category. CHAID does not perform pruning [44].

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 39

3.2.4 Decision Trees for Large Datasets

With the recent growth in the amount of data collected by information systems there is a

need for decision trees that can handle large datasets [44].

Catlett [12] examined two methods for efficiently growing decision trees from a large

database by reducing the computation complexity required for induction. However, the

Catlett method requires that all data will be loaded into the main memory before induction.

Namely, the largest dataset that can be induced is bounded by the memory size.

Chan and Stolfo [13] suggested partitioning the datasets into several disjoin datasets,

such that each dataset is loaded separately into the memory and used to induce a decision

tree. The decision trees are then combined to create a single classifier. However, the exper-

imental results indicate that partition may reduce the classification performance, meaning

that the classification accuracy of the combined decision trees is not as good as the accuracy

of a single decision tree induced from the entire dataset.

Mehta et al. [38] have proposed SLIQ an algorithm that does not require loading the

entire dataset into the main memory. Instead it uses secondary memory (disk) A certain

instance is not necessarily resident in main memory all the time. SLIQ creates a single

decision tree from the entire dataset. However, this method also has upper limit for the

largest dataset that can be processed because it uses a data structure that scales with the

dataset size and this data structure is required to be resident in main memory all the time.

Shafer et al. [45] presented a similar solution called SPRINT. This algorithm induces

decision trees relatively quickly and removes all of the memory restrictions from decision

tree induction. SPRINT scales any impurity based split criteria for large datasets.

Gehrke et al. [23] introduced RainForest; a unifying framework for decision tree classi-

fiers that are capable of scaling any specific algorithms from the literature (including C4.5,

CART, and CHAID). In addition to its generality, RainForest improves SPRINT on a factor

of three. In contrast to SPRINT, however, RainForest requires a certain minimum amount

of main memory, proportional to the set of distinct values in a column of the input relation.

However, this requirement is considered modest and reasonable.

3.3 Building Decision Trees

In our system, the decision trees are built by the widely-used ID3 algorithm [41]. The basic

ID3 algorithm, however, does not keep the information about the attribute distribution and

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 40

the amount of the original training data, which makes generating pseudo data quite difficult

from a classifier.

To solve this problem, we let each leaf node also record the counts of the classes (i.e.,

the number of positive and negative labels in this application). Therefore, we can have the

knowledge about the amount of the samples for building each branch of the decision tree,

which further enable the distribution of the generated pseudo data close to the original.

Moreover, in the basic ID3 algorithm, if all the samples belong to the same class, the

recursion stops (e.g., when temperature is low in Figure 3.1). Hence, the information of other

attributes will be missing, which can cause problems with heterogeneous data distribution

across different sensor nodes.

For example, if all the training data sensed by a sensor node are below 10 degree in

temperature and below 20% in humidity, and the class labels are all negative. Using the

basic ID3 algorithm, only one attribute, say temperature, will appear in the decision tree,

and the information of humidity will be completely missing. This will likely lead to a pseudo

data generated with humidity uniformly distributed from 0% to 99%, which is clearly not

the case for the original data.

Therefore, for the stop condition of the recursion, we eliminate the first one (referred to

Section 3.2.3) in our enhanced ID3 algorithm. The new condition thus becomes when no

attribute remains for further partitioning or when there is no sample.

In Algorithm 1 and Algorithm 2 below, we describe the enhanced ID3 algorithm for

building the decision tree. Note that a brief illustration of the key steps of the basic ID3 is

in Section 3.2, and more details can be found in Quinlan’s work [41].

Algorithm 1 LearningAlgorithm (D)

Require: training dataset D
call EnhancedID3 (root, D, 0)
Return root

3.4 Generating Pseudo data

The pseudo data generation is one of the most important steps in our framework. A critical

challenge here is to generate data that is as close to the original data as possible. In

particular, the distribution of each attribute should closely resemble that of the original

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 41

Algorithm 2 EnhancedID3 (p, D, d)

Require: pointer to the decision tree p, training dataset D, depth of the decision tree node
d
if number of data tuples in D = 0 then
Return

end if
if d = number of attributes of training data then
get the most common class label in D → attribute of p
record the counts of the class labels for p
Return

end if
get the best attribute → target attribute
for all target attribute value branches do
add a child p′

set the value range of the branch
partition D → D′ satisfying the value range
call EnhancedID3 (p′, D′, d+ 1)

end for

data.

Another issue is how many pseudo data tuples should be generated. Intuitively, the less

data we generate from the child nodes, the less weight they have. Since no data from one

node is considered less important than those from another, we should generate the same

amount of pseudo data as the original data. Therefore, a sensor node close to the base

station has to generate a huge amount of pseudo data, i.e., the same amount of the original

data at all its descendants (not only the immediate children). This is often impossible given

the limited memory of embedded sensor nodes. To this end, we introduce a preservation

factor, ranging from 0 to 1 (the base station always has a factor of 1), to control the amount

of the generated pseudo data.

Algorithm 3 summarizes our method to generate the pseudo data. For illustration,

suppose the decision tree’s leaf node represents a rule of when temperature is between 10

and 20, humidity is between 20 and 40, sunlight is normal, and there are 5 positive class

labels and 45 negative ones. As such, the class label is negative. Assuming the preservation

factor is set to 0.8, we then randomly generate (5 + 45)× 0.8 = 40 data tuples that satisfy

the attribute requirement. It follows that each data tuples has a probability 5/50 = 10% to

be assigned a class label as positive and 90% to be negative.

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 42

Algorithm 3 GeneratePseudoData (C, a)

Require: decision tree received from one child C, preservation factor, a
for all leaf nodes node of decision tree C do
get rule R of node
get class label counts → c1, c2, . . . , cL
randomly generate a ·

∑L
i=1 ci data satisfying R

assign class label lk(k = 1, . . . , L) to the data with probability as the proportion of the
class label lk/

∑L
i=1 ci

add these data to pseudo data set D′

end for
RETURN pseudo data set D′

The original data is partitioned to each decision tree leaf node, and each set of generated

data resembles part of the original data. Therefore, the combined pseudo data will largely

reflect the characteristics the original training data. We will closely examine the effectiveness

of our method and also the impact of the preservation factor in Section 4.

3.5 Hierarchical Classification

As mentioned above, we let the sensor nodes in the network be organized by a spanning

tree, as illustrated in Figure 3.2. A leaf node builds the decision tree with the local sensed

training data and sends the decision tree to the parent. The intermediate node periodically

checks if there is any new classifier from children. If yes, it will generate a set of pseudo data

for each new classifier, and combines them with its local data. There are two situations here.

(1) If the node has never built any classifier, which indicates that it has never received any

classifier from its children, it will combine the generated pseudo data (from the classifier it

just received) with its local sensed data and performs the learning algorithm. (2) If the node

has once built a classifier, the previous received classifiers may have already been discarded

(due to the memory constraint). The node will then generate a set of pseudo data for its

local classifier with the preservation factor being 1, and combines it with the other pseudo

datasets to build the new decision tree.

The base station will build the global classifier. Initially, it waits until receiving all the

classifiers from its children, and then generates pseudo data for each and combines them

to build the decision tree. Since the base station in general is a more powerful node, it

can store all the classifiers from its immediate children. Therefore, whenever one of them

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 43

n9

n8

n5

n3

n6

n7

n4

n1

n2

Base Station

C7

C8

C9

C1

C2

C3

C0

C5

C4 C6

sensor node

local classifier

combined classifier

Figure 3.2: A hierarchical structure of the sensor network

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 44

updates the classifier, it can discard the old one, and re-performs the operations as above.

In Algorithm 4, we summarize the detailed procedure of the hierarchical classification.

Algorithm 4 HierarchicalClassification ()

if sensor node is leaf then
periodically collect data D
C ← LearningAlgorithm (D)
send C to its parent

else if sensor node is not base station then
periodically collect data D
for all new classifiers Ck from child k do

D′
k ← GeneratePseudoData (Ck, a)

end for
C ← LearningAlgorithm (D ∪ (

∪
D′

k))
send C to its parent

else {//base station}
if no classifier has been built then

for all classifiers Cj from child j do
D′

k ← GeneratePseudoData (Ck, 1)
end for
C ← LearningAlgorithm (

∪
D′

k)
else if receive new classifier Ck from child k then

replace old classifier of child k with Ck

for all classifiers Ck from child k do
D′

k ← GeneratePseudoData (Ck, 1)
end for
T ← LearningAlgorithm (

∪
D′

k)
end if

end if

3.6 Further Discussion

Our approach utilizes the ID3 as the basis for classification, so it inherits the effectiveness

and efficiency of ID3 when building local classifiers [41]. To make it fit our application

scenario better, we suggest that all leaf nodes in the decision tree have the same depth as

the number of attributes, so that we can keep all the attribute information when abstracting

the rule from each branch. Thanks to the modification, we can generate the pseudo data

that is very similar to the original data. Our decision tree can also be presented as a kind of

compression method. But compared to the normal compression method, our approach keep

CHAPTER 3. HIERARCHICAL DISTRIBUTED CLASSIFICATION 45

all the information of multi-dimension and the detail for classification. Apparently, this

modification will increase the size of the decision tree, however, such increase is acceptable

(roughly 1% in our system) and it noticeably increases the classification accuracy, as will

be validated in our performance evaluation.

In order to keep the high accuracy and achieve our goals of saving energy and storage

space, we have introduced two parameters in our solution. One is the class count. It not

only records the count but also indicates the distribution of all the class labels in the original

dataset when we build the decision tree. In other words, we keep the “noise” information

because the “noise” may be important in some cases, in particular, the heterogeneous data

distribution. For example, suppose one decision tree branch has the negative label because

the numbers of positive and negative training data satisfying the constraint are 1 and 9,

while another decision tree branch has the positive label on the same attribute constraint

because the counts are 99 and 1. Respectively without recording the class label counts, we

have no idea about which one is more accurate, and we will likely treat them equally. In

fact, combining the two training datasets, we will obtain the positive label with the class

counts 100 versus 10. The problem is particularly severe when the training dataset has the

heterogeneous distributions, which critically demand the recording of the class count.

The other parameter is the preservation factor, which determines the amount of pseudo

data to generate. We introduce this parameter due to the limited memory of the sensor node.

The smaller the preservation factor is, the more dominant the local training data is. For

example, suppose a node has three children, each having 200 training data tuples, and the

node itself also has 200 training data tuples. If the preservation factor is set to 1.0, the node

will learn from 800 data tuples, in which 25% is its local data. If the preservation factor is

set to 0.1, the node will learn from 260 data, in which 77% is its local data. Intuitively, if the

pseudo data can represent the original data very well, the greater the preservation factor is,

the more accurate the classifier is, because every area should be treated equally. Otherwise,

the greater the preservation factor is, the more noise it will make, hence decreasing the

accuracy. Therefore, the representativeness of the pseudo data of the original data is crucial

in our solution. In the next section, we will closely examine its impact to the classification

accuracy.

Chapter 4

Performance Evaluation

4.1 Configuration and Datasets

We consider a square field consisting of m ×m randomly deployed sensor nodes, with the

base station being located in the center. We set m from 5 to 20, and for each m value, we

build different topologies so that the spanning tree has height of 2, 3 and 4, respectively.

Figure 4.1 shows an example of 25 nodes (m = 5) with height 2. Our results however show

that the performance of our algorithm is mainly affected by the height of the spanning tree,

while not the node population. This is intuitive because the algorithm is distributed and

localized. Hence, in this section, we will focus on the average results (and the associated

standard deviations) over the tested m values.

The dataset has three attributes and a class label. The three attributes are temperature,

humidity and sunlight. The first two are numerical attributes, ranging from 0 to 49 and

from 0 to 99 respectively, and the last one is a categorical attribute, having values weak,

normal and strong. For simplicity, we consider the two numerical attributes as categorical

attributes, as the temperature has values [0, 10), [10, 20), [20, 30), [30, 40) and [40, 50), and

the humidity values [0, 20), [20, 40), [40, 60), [60, 80) and [80, 100). The class label is either

positive or negative, say, indicating whether the environment is suitable for the animal. We

randomly generate data tuples having the temperature between 0 and 49, humidity between

0 and 99, sunlight being 0, 1 or 2. We manually define some rules to assign each data tuples

a class label. We also consider noise and thus add a factor ε, which means a data tuples

has the probability of ε to be the other class label determined by the rules.

We generate 10 training datasets, each having 200 · (m2 − 1) data tuples. Among the

46

CHAPTER 4. PERFORMANCE EVALUATION 47

Figure 4.1: An example of topology of 25 nodes and height being 2

CHAPTER 4. PERFORMANCE EVALUATION 48

10 datasets, half of them have ε = 1% noise, and half of them have ε = 10% noise. For

each dataset, we make it into two versions, one is called heterogeneous data and the other is

called homogeneous data. In the heterogeneous data set, the data distribution depends on

the location of the sensor nodes, while the homogeneous data is independent on the location,

and is randomly and uniformly distributed across sensor nodes.

For homogeneous data, we just randomly divide and assign all the training data to the

(m2 − 1) sensor nodes as the local training data, thus each sensor node has 200 training

tuples. For heterogeneous data tuples, we assume that the temperature increases from left

to right, and the humidity increases from bottom to top in the sensor field; the attribute of

sunlight is uniformly distributed. For example, a node in the bottom right corner is supposed

to have the data with temperature between 40 and 49, humidity between 0 and 19, and a

node in the top left has the data with temperature between 0 and 9, humidity between 80

and 99. For each tuples in one dataset, we first calculate its coordinates according to the

above, and then assign the tuples to the sensor node of that location if the training set of the

node is not full (200 tuples). If that node is full, we then assign this tuple to another random

node. For each training dataset, we perform different simulations that have different data

distributions. For example, one is described as above, and another one is that temperature

increases from bottom to top, humidity increases from right to left, and so forth.

In our experiments, we generate 10 test datasets, each having 1000 tuples. Among the

10 datasets, half of them have ε = 1% noise, and half of them have ε = 10% noise. If we

use training tuples with ε = 1% noise to learn, we use test tuples with ε = 1% noise to test

(same as tuples with ε = 10% noise).

4.2 Baseline for Comparison

We also implement an ensemble method [17] for the baseline comparison. The ensemble

method is to construct a set of base classifiers and take a majority voting on predictions

in classification. The method can significantly improve the accuracy of prediction, because

if the base classifiers are independent, then the ensemble makes a wrong prediction only if

more than half of the base classifiers are wrong. For example, suppose there are two classes

and each base classifier has an error rate of 35%. With 25 base classifiers, the error rate will

be
∑25

i=3

(25
i

)
× 0.35i × 0.6525−i = 0.06 only.

The ensemble method has been widely adopted in distributed classification [36]. In our

CHAPTER 4. PERFORMANCE EVALUATION 49

evaluation, we customize the ensemble method to our application scenario. Specifically,

all the nodes learn from their local training data to build the classifiers, and send the

classifiers to the base station through multi-hop routing. The base station then conducts

the second step of the classification, in particular, the base station tests the unseen data

with all the classifiers and takes a majority voting to get the final decision. Obviously,

sending all the local classifiers to the base station consumes more energy than only sending

the local classifier to the parents. Moreover, the ensemble method does not accommodate

to heterogeneous data, thus the accuracy of classification can be low, as will be shown later.

4.3 Impact of Preservation Factor, Noise and Height for Het-

erogeneous Data

We first examine our algorithm with different preservation factors, noises and heights for the

heterogeneous data. We plot the results in Figure 4.2. The x axis is the preservation factor

ranging from 0.1 to 1.0, and we also evaluate the best-possible accuracy of learning from

the entire dataset (assuming one sensor node collects all the data and builds the classifier),

referred to as “A”, and the accuracy of the ensemble method, referred to as “E”.

From the figure, we find that the preservation factor does affect the accuracy, especially

when it is small, the height is big, and the noise is large. When the noise is very small

(1%), the preservation factor does not affect the accuracy when the factor is larger than 0.4,

regardless of the height. When the noise becomes greater (10%), the preservation factor

should be at least 0.8, so as not to decrease the accuracy. When the preservation factor is

very small, the larger the height is, the less accuracy it achieves. We also find that when

the preservation factor is large enough, the accuracy is almost the same as that of learning

from the entire training data, i.e., the practically optimal accuracy.

The figure indicates that our mechanism to generate pseudo data works quite well, in

particular, when the factor is large enough, the pseudo data can well represent the original

data. When the preservation factor is small, the accuracy becomes relatively lower. The

reason is that, from the whole system’s view, the areas that are close to the base station

generally become dominative, but as mentioned before, we should consider different areas

equally. Moreover, when the height is high, the noise will be accumulated, and hence the

accuracy will be reduced.

Comparing with the ensemble method, when the preservation factor is large enough, our

CHAPTER 4. PERFORMANCE EVALUATION 50

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.7

0.75

0.8

0.85

0.9

0.95

1

Preservation Factor

A
cc

ur
ac

y

height=2, ε=1%
height=3, ε=1%
height=4, ε=1%
height=2, ε=10%
height=3, ε=10%
height=4, ε=10%

Figure 4.2: Comparison of accuracy for different preservation factor, noise and height with
heterogeneous data

CHAPTER 4. PERFORMANCE EVALUATION 51

approach achieves a much higher accuracy, and when the noise is greater, the difference is

even larger. This is because in the ensemble method, for heterogeneous data, each sensor

node only learns a part of the data (e.g., low temperature and low humidity). In other

words, in the ensemble method, only a few classifiers are responsible for a certain test data.

If a given unlabeled data has the attribute value that is much different from its training

data, it probably needs to randomly guess a class label, which will greatly decrease the

accuracy.

4.4 Comparison of Enhanced and Basic ID3 Algorithm

We next compare our enhanced ID3 algorithm with the basic ID3 algorithm. We clarify

that we modify the basic ID3 because it does not suitable for generating pseudo data in

our approach for the heterogeneous data distribution. We again use the heterogeneous data

with different noises, and plot the results in Figure 4.3 and Figure 4.4, respectively.

We find that the enhanced ID3 algorithm is not noticeably affected by the preservation

factor (when the factor is large enough), nor the height. On the other hand, the accuracy of

basic ID3 algorithm is much lower than ours, and is particularly lower when the preservation

factor is smaller and the height is larger.

The difference is because when all the samples belong to the same class label, the basic

algorithm stops the recursion, while our enhanced version continues. As mentioned before,

in heterogeneous data distribution, it is probably that all the data from one node is below

10 in temperature and below 20 in humidity, and all the labels are negative. If we utilize

the basic ID3, the decision tree is likely to contain only one attribute, say temperature,

with the information of humidity being completely missing. As such, when generating the

pseudo data, the humidity has to be uniformly distributed from 0 to 99, adding remarkable

noises.

To validate this, we also examine their performance with the homogeneous data, and

the results show that the two algorithms perform almost the same as shown in Figure 4.5

and Figure 4.6.

CHAPTER 4. PERFORMANCE EVALUATION 52

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.75

0.8

0.85

0.9

0.95

1

Preservation Factor

A
cc

ur
ac

y

height=2, enhanced
height=3, enhanced
height=4, enhanced
height=2, basic
height=3, basic
height=4, basic

Figure 4.3: Comparison of enhanced and basic ID3 algorithms for heterogeneous data with
ε = 1%

CHAPTER 4. PERFORMANCE EVALUATION 53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.7

0.75

0.8

0.85

0.9

0.95

Preservation Factor

A
cc

ur
ac

y

height=2, enhanced
height=3, enhanced
height=4, enhanced
height=2, basic
height=3, basic
height=4, basic

Figure 4.4: Comparison of enhanced and basic ID3 algorithms for heterogeneous data with
ε = 10%

CHAPTER 4. PERFORMANCE EVALUATION 54

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.75

0.8

0.85

0.9

0.95

1

Preservation Factor

A
cc

ur
ac

y

height=2, enhanced
height=3, enhanced
height=4, enhanced
height=2, basic
height=3, basic
height=4, basic

Figure 4.5: Comparison of enhanced and basic ID3 algorithms for homogeneous data with
ε = 1%

CHAPTER 4. PERFORMANCE EVALUATION 55

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.7

0.75

0.8

0.85

0.9

0.95

Preservation Factor

A
cc

ur
ac

y

height=2, enhanced
height=3, enhanced
height=4, enhanced
height=2, basic
height=3, basic
height=4, basic

Figure 4.6: Comparison of enhanced and basic ID3 algorithms for homogeneous data with
ε = 10%

CHAPTER 4. PERFORMANCE EVALUATION 56

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E
0.8

0.85

0.9

0.95

1

Preservation Factor

A
cc

ur
ac

y

height=2, hetero
height=3, hetero
height=4, hetero
height=2, homo
height=3, homo
height=4, homo

Figure 4.7: Comparison of heterogeneous and homogeneous data distribution with ε = 1%

4.5 Impact of Training Data Distribution

To further understand the impact of the distribution of the data sets, we perform compar-

ative experiments with both the heterogeneous data and the homogeneous data. Figure 4.7

and Figure 4.8 plot their respective accuracy results with different noises.

We find that for the heterogeneous data, when the preservation factor is small, the

accuracy is low. On the other hand, for the homogeneous data, the factor does not affect

the accuracy. For data with small noise, when the preservation factor is greater than 0.4,

the two achieve the same accuracy. If the noise is larger, the preservation factor has to go

beyond 0.8 to achieve the same accuracy. This is because in homogeneous data distribution,

all the nodes have similar training data, thus the classifiers built by the nodes are almost

CHAPTER 4. PERFORMANCE EVALUATION 57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 A E

0.75

0.8

0.85

0.9

Preservation Factor

A
cc

ur
ac

y

height=2, hetero
height=3, hetero
height=4, hetero
height=2, homo
height=3, homo
height=4, homo

Figure 4.8: Comparison of heterogeneous and homogeneous data distribution with ε = 10%

CHAPTER 4. PERFORMANCE EVALUATION 58

1 2 3 4
0

0.2

0.4

0.6

0.8

1

Height

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

hetero, ε=1%
hetero, ε=1%, ensemble
homo, ε=1%
homo, ε=1%, ensemble
hetero, ε=10%
hetero, ε=10%, ensemble
homo, ε=10%
homo, ε=10%, ensemble

Figure 4.9: Comparison of energy consumption

the same, which leads to the high similarity between the generated pseudo data and the

local training data. Therefore, the accuracy is independent on the preservation factor for

homogeneous data.

In the ensemble method, the accuracy for heterogeneous data is much lower than that

of homogeneous data and our hierarchical approach. This has been explained in the first

experiment. For the homogeneous data, the ensemble method has the same accuracy as our

approach.

4.6 Comparison of Energy Consumption

Finally, we investigate the energy consumption, which is one of the most important concerns

in wireless sensor networks. We compare our hierarchical classification with the ensemble

method that transmits all the classifiers to the base station. The energy consumption

depends on the size of transmitted data and the distance between the two nodes. Generally,

the energy consumption is proportional to the data size and the square of the distance [27].

We normalize the result and plot in Figure 4.9.

From the figure, we find that the energy consumption of our approach is much lower than

the ensemble method in all the situations when the height is greater than 1. On average, our

method saves nearly half of the energy spent in the ensemble method in all situations. The

greater the height is, the more energy we save, simply because a classifier is only forwarded

CHAPTER 4. PERFORMANCE EVALUATION 59

to the parent in our solution, while it is forwarded all the way to the base station in the

ensemble method.

We also find that the energy consumption for the heterogeneous data is lower than that

for homogeneous data. This is because in the enhanced ID3 algorithm, the recursion stops

when there is no sample at the node, and thus for the heterogeneous data, it is likely that

the data from a node all exists in one branch. Therefore the size of the decision tree is

smaller than that in the homogeneous data scenario.

According to the figures, the noise does not affect the energy consumption. We believe

that it is because the noise does not change the transmission distance, and it also does not

noticeably change the size of the decision trees.

As we modify the basic ID3 algorithm, the constructed decision tree is thus larger in

our enhanced ID3 algorithm. We also examine the size of the decision tree built in the two

algorithms, and find that the size in enhanced ID3 is 45% larger than that in the basic

ID3 algorithm. Considering that the basic ID3 algorithm cannot even work due to its low

accuracy in our application, this increased size is reasonably acceptable.

Chapter 5

Conclusion

In this thesis, we proposed a novel hierarchical distributed classification approach in wireless

sensor networks. In particular, we consider a practical scenario that the data distribution

is heterogeneous, which is seldom studied before. In our solution, local classifiers are built

by individual sensor nodes and merged along the routing path. The classifiers are iterative

enhanced by combining strategically generated pseudo data and new local data, eventually

converging to a global classifier for the whole network. We demonstrate that our approach

maintains a high classification accuracy with very low storage and communication overhead.

5.1 Summary of work

In this thesis, we presented the hierarchical distributed classification in wireless sensor net-

works. Since sending a large amount of data consumes the energy of the sensor node rapidly,

our approach is more feasible in sensor networks. In our approach, the decision tree is used

as the classifier. The sensor network is organized as a spanning tree, and the base station is

located at the tree root. Each leaf node applies a learning algorithm to build a classifier to

its parent. Upon receiving a classifier from one child, the intermediate sensor node generates

a pesudo raining dataset for the received classifier. It combines the generated pseudo data

with its local training data or the pseudo training dataset generated from its local classifier

that has been built already, applies learning algorithm to build the new classifier, and sends

to its parent. At the end, the base station builds a combined classifier from all the collected

training data.

To generate pseudo data that is similar to the original data as much as possible, a

60

CHAPTER 5. CONCLUSION 61

modified ID3 algorithm is adopted, so that the decision contains more information about

the original data. There was a control factor that controls the amount of the generated

pseudo data due to the limited memory of the sensor node. Another factor is the class

count which keeps the enough “noise” information.

The evaluation of simulation showed that our approach is well performed. We generated

two kinds of data sets: location data, in which the data distribution depends on the location

of sensor node and random data, which is independent on the location. We compared our

approach with the ensemble method and the basic ID3 algorithm under both location data

and random data. For the location data, our method obtained a much more better accuracy

and much less energy consumption than ensemble method.

5.2 Future Work

So far we have presented the design and evaluation of the hierarchical distributed classifica-

tion for wireless sensor networks. Within this framework, there are many possible avenues

to further explore; we now list three of them in which we are particularly interested:

First, the module of pseudo data generation is of critical importance in the accuracy and

efficiency of our proposal. We plan to further enhance its effectiveness, making the generated

data as close to the original as possible with limited side information. The novel idea of

generating pseudo data for multi-level classification may also be applied in applications

other than sensor networks, particularly for those with large distributed and dynamic data

sets.

Second, we have assumed the popular decision tree as the classifier building algorithm in

our current work. Our framework however is flexible in accommodating diverse other clas-

sification approaches. We are interested in investigating the possibility of customizing other

advanced classifier building algorithms, seamlessly incorporating them into our framework,

and evaluating and comparing their performance.

Finally, we have addressed certain implementation issues in our design. Yet there remain

a series of practical concerns and an efficient implementation may involve cross-layer opti-

mizations. For example, we have assumed that the spanning tree for routing the collected

data is fixed and the packet losses are negligible. In real sensor networks, however, the

network-layer routing tree may change over time, and our algorithm thus needs to update

the relations among the nodes periodically to reflect the change; Forward Error Correction

CHAPTER 5. CONCLUSION 62

(FEC) may have to be added to mask the packet losses, and we may need to re-transmission

mechanisms to recover from severe losses. We plan to address these issues and possibly im-

plement a working prototype, which will be evaluated over a real sensor network testbed,

e.g., a collection of Mica-2 motes.

Bibliography

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on sensor
networks. IEEE Communications Magazine, 40(8):102–114, 2002.

[2] A. Arora, P. Dutta, S. Bapat, V. Kulathumani, H. Zhang, V. Naik, V. Mittal,
H. Cao, M. Demirbas, M. Gouda, Y. Choi, T. Herman, S. Kulkarni, U. Arumugam,
M. Nesterenko, A. Vora, and M. Miyashita. A Line in the Sand: A Wireless Sen-
sor Network for Target Detection, Classification, and Tracking. Computer Network,
46(5):605–634, 2004.

[3] F. Attneave. Applications of Information Theory to Psychology:A Summary of Basic
Concepts, Methods, and Results. Holt, New York, 1959.

[4] F. Bouhafs, M. Merabti, and H. Mokhtar. A Node Recovery Scheme for Data Dissem-
ination in Wireless Sensor Networks. In Proceedings of IEEE International Conference
on Communications (ICC), 2007.

[5] I. Bratko and M. Bohanec. Trading accuracy for simplicity in decision trees. Mach.
Learn., 15(3):223–250, 1994.

[6] L. Breiman. Pasting bites together for prediction in large data sets. Machine Learning,
36(2):85–103, 1999.

[7] L. Breiman. Random Forests. Machine Learning, 45(1):5–32, 2001.

[8] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123–140, 2002.

[9] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regres-
sion Trees. Statistics/Probability Series. Wadsworth Publishing Company, Belmont,
California, U.S.A., 1984.

[10] R. R. Brooks, P. Ramanathan, and A. M. Sayeed. Distributed Target Classification
and Tracking in Sensor Networks. Proceedings of the IEEE, 91(8):1163–1171, 2003.

[11] M. Castillo-Effen, D.H. Quintela, R. Jordan, W. Westhoff, and W. Moreno. Wireless
sensor networks for flash-flood alerting. In Proceedings of the Fifth IEEE International
Caracas Conference on Devices, Circuits,and Systems, Dominican Republic, 2004.

63

BIBLIOGRAPHY 64

[12] J. Catlett. Mega Induction: Machine Learning on Vary Large Databases. PhD thesis,
Univ. Sydney.

[13] P. Chan and S. Stolfo. On the accuracy of meta-learning for scalable data mining.
Journal of Intelligent Information Systems, 8:5–28, 1996.

[14] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learning Ensembles
from Bites: A Scalable and Accurate Approach. Machine Learning Research, 5:421–451,
2004.

[15] N. V. Chawla, L. O. Hall, K. W. Bowyer, and W. P. Kegelmeyer. Learning ensembles
from bites: A scalable and accurate approach. Journal of Machine Learning Research,
5:421–451, 2004.

[16] D. Cruller, D. Estrin, and M. Srivastava. Overview of sensor networks. Computer ISSN
0018-9162, 37(8):41–49, 2004.

[17] T. G. Dietterich. Ensemble Methods in Machine Learning. In Proceedings of the First
International Workshop on Multiple Classifier Systems (MCS), 2000.

[18] D. Estrin, L. Girod, G. Pottie, and M. Srivastava. Instrumenting the World with Wire-
less Sensor Networks. In Proceedings of IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2001.

[19] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next Century Challenges:
Scalable Coordination in Sensor Networks. In Proceedings of ACM/IEEE International
Conference on Mobile Computing and Networking (MobiCom), 1999.

[20] Y. Freund. Boosting a Weak Learning Algorithm by Majority. In Proceedings of
Workshop on Computational Learning Theory, 1990.

[21] Y. Freund and R. E. Schapire. A Decision-theoretic Generalization of On-line Learning
and An Application to Boosting. In Proceedings of European Conference on Computa-
tional Learning Theory (EuroCOLT), 1995.

[22] T. Gao, D. Greenspan, M. Welsh, R.R. Juang, and A. Alm. Vital signs monitoring
and patient tracking over a wireless network. In Proceedings of the 27th IEEE EMBS
Annual International Conference, 2005.

[23] J. Gehrke, R. Ramakrishnan, and V. Ganti. Rainforest - a framework for fast decision
tree construction of large datasets. In In VLDB, pages 416–427. Morgan Kaufmann,
1998.

[24] G.Simon, M.Maroti, A. Ledeczi, G. Balogh, B. Kusy, A. Nadas, G. Pap, J.Sallai, and
K. Frampton. Sensor network-based countersniper system. In Proceedings of the Second
International Conference on Embedded Networked Sensor Systems (Sensys), Baltimore,
MD, 2004.

BIBLIOGRAPHY 65

[25] L. Gu, D. Jia, P. Vicaire, T. Yan, L. Luo, A. Tirumala, Q. Cao, T. He, J. A. Stankovic,
T. Abdelzaher, and B. H. Krogh. Lightweight Detection and Classification for Wireless
Sensor Networks in Realistic Environments. In Proceedings of the ACM International
Conference on Embedded Networked Sensor Systems (SenSys), 2005.

[26] J. Han and M. Kamber. Data Mining: Concepts and Techniques (The Morgan Kauf-
mann Series in Data Management Systems). Morgan Kaufmann, September 2000.

[27] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. An Application-Specific
Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wire-
less Communications, 1(4):660–670, 2002.

[28] G. V. Kass. An exploratory technique for investigating large quantities of categorical
data. Appl. Statist., 29(2):119–127, 1980.

[29] S. B. Kotsiantis and P. E. Pintelas. Combining bagging and boosting. International
Journal of Computational Intelligence, 1:324–333, 2004.

[30] S. Kumar, F. Zhao, and D. Shepherd. Collaborative Signal and Information Processing
in Microsensor Networks. IEEE Signal Processing Magazine, March 2002.

[31] B. Lantow. Impact of wireless sensor network data on business data processing. In
Proceediing of the Forum Poster Session in Conjunction with Business Informatics
Research (BIR) 2005, 2005.

[32] A. Lazarevic and Z. Obradovic. The distributed boosting algorithm. In KDD, pages
311–316.

[33] A. Lazarevic and Z. Obradovic. The Distributed Boosting Algorithm. In Proceedings of
ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD),
2001.

[34] S. Lindsey, C. Raghavendra, and K. M. Sivalingam. Data Gathering Algorithms in Sen-
sor Networks Using Energy Metrics. Transactions on Parallel and Distributed Systems,
13(9):924–935, 2002.

[35] K. Lorincz, D. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel, V.Shnayder, G. Main-
land, M. Welsh, and S. Moulton. Sensor networks for emergency response: challenges
and opportunities. Pervasive Computing, IEEE, 3(4):16–23, October–December 2004.

[36] P. Luo, H. Xiong, K. Lu, and Z. Shi. Distributed Classification in Peer-to-Peer Net-
works. In Proceedings of ACM International Conference on Knowledge Discovery and
Data Mining (SIGKDD), 2007.

[37] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Anderson. Wireless Sensor
Networks for Habitat Monitoring. In Proceedings of ACM International Workshop on
Wireless Sensor Networks and Applications (WSNA), 2002.

BIBLIOGRAPHY 66

[38] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for data mining.
pages 18–32, 1996.

[39] C. J. Merz. Using correspondence analysis to combine classifiers. Machine Learning,
36:33–58, 1999.

[40] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, March 1986.

[41] J. R. Quinlan. Induction of Decision Trees. In Machine Learning, chapter 1, pages
81–106. Kluwer Academic Publishers, 1986.

[42] J. R. Quinlan. Decision trees and multi-valued attributes. 11:305–318, 1988.

[43] J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San Fran-
cisco, California, U.S.A., 1993.

[44] L. Rokach and O. Maimon. Top-down induction of decision trees classifiers – a survey,
2005.

[45] J. C. Shafer, R. Agrawal, and M. Mehta. Sprint: A scalable parallel classifier for data
mining. In Proc. of the 22nd International Conference on Very Large Databases, pages
544–555. Morgan Kaufmann, 1996.

[46] P. Tan, M. Steinbach, and V. Kumar. Introduction to Data Mining. Addison Wesley,
May 2005.

[47] G. Tsoumakas and I. Vlahavas. Effective stacking of distributed classifiers. In the 15th
European Conference on Artificial Intelligence, pages 340–344.

[48] G. Wener-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees, and M. Walsh.
Deploying a wireless sensor network on an active volcano. IEEE Internet Computing,
(2):18–25, March–April 2006.

[49] J. Wieselthier, G. D. Nguyen, and A. Ephremides. On the Construction of Energy-
Efficient Broadcast and Multicast-trees in Wireless Networks. In Proceedings of IEEE
INFOCOM, 2000.

[50] J. Yick, B. Mukherjee, and D. Ghosal. Analysis of a Prediction-based Mobility Adaptive
Tracking Algorithm. In Proceedings of the IEEE Second International Conference on
Broadband Networks (BROADNETS), Baltimore, MD, 2005.

[51] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer
Networks, 52(12):2292–2330, August 2008.

