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ABSTRACT 

The fast development of genome sequencing technologies has provided 

scientists with enormous amount of DNA sequences that keep increasing 

exponentially. The task of analyzing these DNA sequences and deducing useful 

knowledge from them remains challenging. One of the most important steps 

towards the understanding of genomes is gene prediction, which is determining 

the positions of genes and their components (including exons and introns) on the 

DNA sequence. There have been many attempts on computational gene 

prediction. The two main categories of gene prediction methods are ab initio 

methods and homology-based methods. The ab initio methods are usually 

sensitive in finding genes in novel genomes but often produce many false 

positives. The homology-based methods, on the other hand, usually have higher 

specificity, but are limited to finding genes that have homologous partners. With 

the accumulation of genome sequences of related species, there has been a 

growing demand for better and faster homology-based gene prediction programs. 

In this thesis, I present a homology-based gene prediction framework that 

utilizes protein homology in determining positions of protein-coding genes. A 

protein sequence (the product of gene) is used as a query to help in finding 

genes that are homologous to the query protein. The framework consists of two 

major components. First, local alignments between the query protein and the 

genome are assembled into gene regions where potential homologous genes are 
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located. Next, each potential gene region is examined for gene signals and gene 

models are resolved by utilizing the alignment information provided by the local 

alignments. The experiments on genomes of two closely related species 

Caenorhabditis elegans and Caenorhabditis briggsae demonstrated that this 

method is both accurate and efficient. In particular, it runs hundreds of times 

faster than GeneWise, a popular homology-based gene prediction program, 

while being competitive in accuracy. Experiments have also been done on the 

human genome with a much larger size than C. elegans and C. briggsae, which 

showed similar performance behaviours of genBlast. 

 
Keywords:  gene prediction; protein homology; sequence alignment 
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1: INTRODUCTION 

1.1 Background and Motivations 

The past decades have witnessed fundamental advances in genomics. In 

particular, genome sequencing projects have provided scientists with complete or 

essentially complete genome sequences of many organisms [5, 11, 22, 31, 37, 

79, 91, 95, 113]. Since the publication of the first whole genome sequence of a 

free-living organism --- the bacterium Haemophilus influenzae [53] and the first 

animal --- the nematode Caenorhabditis elegans [31], genomes of more than a 

thousand species have been sequenced and thousands of more species are 

currently being sequenced, according to the Genome Online Database 

(http://genomesonline.org/). 

Meanwhile, the cost and time for genome sequencing have been largely 

cut down by the fast development of new sequencing technologies since 2005 

[16, 84, 86, 118]. The Human Genome Project [70, 79, 134] initiated in 1990 took 

13 years to determine the human DNA sequences. Today, the “next generation” 

sequencing instruments are orders of magnitude faster and cheaper, which are 

capable of sequencing an entire human genome in a matter of weeks [17, 136, 

140]. With instrumental advances in sequencing technologies, the volume of 

genomic data has skyrocketed. The amount of DNA sequences deposited into 

the sequence database GenBank has doubled every 18 months and continues to 

grow at an exponential rate [14, 15]. 
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The accumulation of sequenced genomes is the first step towards 

deciphering genomes. The vast and ever-increasing amount of genome 

sequences available calls for development of sequence analysis tools that can 

quickly process these sequences and deduce meaningful knowledge [85, 114, 

126]. One of the first and most fundamental tasks in understanding the 

sequenced genome of a species is gene prediction, which is the task of 

determining positions of genes and their components across the genome. 

1.1.1 Chromosome, DNA and Genes 

The genome sequence of an organism is the collection of all DNA 

sequences for each of the chromosomes in that organism. A chromosome is an 

organized structure that consists of a DNA sequence as well as DNA-bound 

protein (which serves to package the DNA and control its functions). For bacteria, 

which usually have just one chromosome, its genome is the DNA sequence of 

that chromosome [53]. On the other hand, humans, with 22 autosome pairs and 

2 sex chromosomes [70, 79, 134], require 24 separate DNA sequences in order 

to represent the completed genome. 

A DNA sequence is usually a double helix structure that consists of two 

strands in opposite directions to each other [138], as illustrated in Figure 1. Each 

DNA strand is made up of a sequence of nucleotides (or bases). There are four 

types of nucleotides that make up DNA sequences: adenine (A), thymine (T), 

guanine (G) and cytosine (C). Two nucleotides on opposite strands that are 

connected via hydrogen bonds are called a base pair. In particular, A usually 

pairs with T, and G usually pairs with C. Therefore, the two strands are 
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complementary to each other in that the sequence of one strand can be deduced 

from the sequence of its opposite strand, by the rule of base pairing. Thus each 

DNA sequence is represented by a single sequence from the four-letter alphabet 

(A,T,G,C). The size of a DNA sequence is commonly measured in base pairs 

(bp). The total number of base pairs is equal to the number of nucleotides in one 

of the strands. For example, the human genome consists of 3 billion base pairs in 

22 autosomes and 2 sex chromosomes, with lengths ranging from 47 million to 

247 million bp. 

Figure 1. Eukaryotic genes on the DNA sequence
1
 

 

The DNA sequence contains the genetic instructions used in the 

development and functioning of all known living organisms. The instructions 

                                            
1
 modified from: http://en.wikipedia.org/wiki/File:Gene.png (in the public domain) 
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contained in DNA are needed to construct other components of cells, such as 

proteins and RNA molecules. The DNA segments that carry this genetic 

information are called genes. Genes are the basic units of heredity in living 

organisms and carry crucial information to build and maintain the biological 

function of cells and pass genetic traits to offspring. A DNA sequence can be 

millions of base pairs long, however, usually only a very small portion of the 

sequence contains genes in genomes of complex multi-cellular organisms, 

including humans [79]. 

Figure 1 illustrates the general concepts of chromosome, DNA and genes. 

A chromosome pair is shown. It contains two DNA sequences, and one of the 

DNA sequences is shown in more detail with a gene revealed as a DNA segment. 

A eukaryotic gene consists of both exons and introns, as opposed to the simpler 

structure of prokaryotic genes that do not contain introns. Thus predicting the 

gene structures of eukaryotic genes is more difficult and has been the focus of 

most gene prediction programs [29, 49, 82, 83, 87, 137, 144]. In this thesis, I will 

discuss the prediction of protein-coding genes in eukaryotes. 

1.1.2 Eukaryotic Protein-Coding Genes 

Protein-coding genes are the DNA segments that carry instructions to 

directly control the synthesis of proteins, which are critical parts of any organism 

and participate in virtually every biochemical process within cells. They make up 

the majority and most important class of genes, and thus have received the most 

attention in gene prediction studies. In the rest of this thesis, I will refer to the 

eukaryotic protein-coding genes simply as “genes”. 
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Figure 2. Functional structure of an eukaryotic protein-coding gene and its expression 

 

1.1.2.1 Gene expression 

Figure 2 shows the structure of a gene on a DNA sequence and the 

process of gene expression. The gene structure contains various components 

that play different roles during gene expression. The expression of the gene 

begins with its transcription into pre-mRNA, which then undergoes a process 

called splicing, in which introns (stretches of non-functional DNA within the gene) 

are removed and mature messenger RNA (mRNA) is produced. The mRNA is 

then used as a template for synthesizing protein in a process called translation, 

during which three nucleotides from the mRNA are read at a time and direct the 
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addition of a corresponding amino acid to the protein being synthesized 

according to the genetic code [42]. Thus the set of three adjacent nucleotides (or 

bases) is a unit of translation and is called a codon. The protein, the end product, 

is a sequence of amino acids, usually folded into a three-dimensional structure. 

1.1.2.2 Gene structure 

With the gene expression mechanism in mind, a gene can be defined as 

being composed of the transcribed region (between transcription start and 

transcript stop in Figure 2) and regulating regions (for example, the promoter, 

which provides a position that is recognized by the transcription machinery when 

a gene is transcribed and expressed). Within the transcribed region, the 

translated regions are called CDS (coding sequence) and the un-translated 

terminal regions at both sides of CDS are called UTRs. CDS consists of one or 

more exons. These are the regions that explicitly code for proteins. The regions 

between exons are called introns, which are removed during gene transcription. 

The junctions between exons and introns are called splice sites. There are two 

types of splice sites: the start site of an intron is called a donor site, and the end 

site of an intron is called an acceptor site. 

In this thesis, the DNA position that corresponds to the translation start is 

called gene start. Protein-coding DNA usually starts with the specific 3-base 

sequence of “ATG”, which is called the start codon. The DNA position that 

corresponds to where the translation stops is signalled by other specific codons 

called stop codons (“TGA”, “TAG”, or “TAA”). 
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1.2 Problem Definition and Challenges 

The gene prediction problem presented in this thesis is defined as the task 

of determining genomic positions of exons and introns in eukaryotic protein-

coding genes. In this context, the gene region of interest is between the start 

codon and stop codon, which will be referred to as the positions of gene start and 

gene stop, respectively. 

Identifying genes on the long DNA sequence with millions of base pairs is 

a challenging task, since genes occupy only a very small percentage of regions 

on the DNA sequence, especially in genomes of multi-cellular organisms. For 

example, protein-coding genes make up barely 2% of the human genome, which 

contains an absolute majority of DNA without an identified function [70, 79]. All 

gene prediction programs are limited by the current knowledge about genomes. 

Although scientists have made tremendous advances in the study of genes, 

much remains unknown about the exact machinery of genes and their expression. 

The problem is further complicated by irregularities in gene structure. 

Exons are interrupted by introns, which may be very long. Exons may be very 

short. Some exons are as small as only 3 base pairs [32], which are easily 

missed by gene prediction programs. Genes may be long. For example, the 

largest human gene is composed of 79 exons spanning over 2 million base pairs. 

Over 99% of the gene is composed of introns, with some introns more than 100k 

base pairs long [98]. Genes may be within an intron region of another gene [65]. 

Genes may overlap on the same or opposite DNA strands [105]. Alternative 

splicing may take place during the expression of the same gene, producing 



 

 8 

different gene products (isoforms) [21, 73, 88, 93]. Alternative splicing is a 

widespread form of regulation in eukaryotic cells, occurring in 80% of human 

genes [88]. These variations pose challenges to gene prediction. 

1.3 A Novel Gene Prediction Framework 

A protein is the gene product that is coded by the exon regions in the gene 

and has perfect correspondence with the CDS region, therefore, is sometimes 

loosely referred to as the “gene”. With the existence of many genomes, many 

protein sequences have been derived from manual annotations or from full-

length cDNAs that are experimentally obtained. These protein sequences can be 

used to aid the prediction of genes in other related genomes. Previous 

experimental studies have shown that gene prediction algorithms that make use 

of protein sequences generally perform better than other algorithms that do not 

take advantage of such data [38, 59]. In this thesis, I will present a novel gene 

prediction framework, genBlast, which makes use of homologous protein 

sequence in determining gene structures. 

Homology between genes is usually inferred on the basis of sequence 

similarity. Local alignments between the protein sequence and the DNA 

sequence provide clues to genomic locations of exons. However, due to possible 

existence of multiple homologous genes, for example, genes in multi-gene 

families or tandem clusters [34, 108], the alignments may be scattered over 

many places and heavily overlap with one another. In addition, the local 

alignment algorithms are prone to producing irrelevant or extended alignments as 

the result of very conserved introns or other non-coding regions. Some local 
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alignments may simply reflect random noise aligned by chance, especially short 

sequences. On the other hand, because homologous genes may contain 

different DNA segments, especially in species that are not closely related, some 

exons may be missed by sequence similarity searches. 

To tackle these challenges, genBlast consists of three main stages. First, 

with a protein sequence as the “query” and the genome where genes are to be 

predicted as the “target”, local similarities between the query and the target are 

found by using fast sequence similarity search tools [9, 10, 55, 75, 80, 104]. The 

output is a collection of local alignments called HSPs (High-scoring Segment 

Pair). Next, the large number of HSPs are then filtered and assembled into a 

ranked list of groups, with each group corresponding to one potential 

homologous gene on the target genome. The algorithm used in this stage has 

been published and named genBlastA [117]. Finally, for each HSP group, its 

gene structure, i.e. the exact positions of exons and introns, is resolved by 

utilizing the alignment information contained in the HSPs. The sequence 

similarity to the query protein is used to guide the search of the best possible 

splice sites that define the gene structure. The algorithm used in this stage is 

named genBlastG [111]. The details of the two core algorithms, genBlastA and 

genBlastG, will be discussed in the later chapters. 

To evaluate the effectiveness of genBlast, the experiments were carried 

out on two genomes of closely related species: Caenorhabditis elegans (C. 

elegans) [31] and Caenorhabditis briggsae (C. briggsae) [127]. Using the C. 

elegans proteins as the queries, genBlast predicts their homologous genes on 
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both C. elegans and C. briggsae genomes. The predictions made by genBlast 

are then compared with existing annotations as well as predictions made by 

another popular homology-based gene prediction program, GeneWise [19, 20]. 

genBlast is shown to be more accurate than all other annotations. On the other 

hand, genBlast is orders of magnitude faster than GeneWise. Further 

experiments on the human genome show similar performance of genBlastG on 

large-scale genomes. 

1.4 Thesis Organization 

The rest of this thesis is organized as follows. 

Chapter 2 lays out the foundation of gene prediction. It reviews previous 

attempts on computational gene prediction and outlines the current status. It 

categorizes the common gene prediction methods and discusses representative 

works in each category. It presents the common performance measures in gene 

finder evaluation. It also motivates and provides an overview of the genBlast 

framework. 

Chapter 3 presents the first two stages in genBlast framework. In 

particular, it describes the genBlastA algorithm that is used to determine the 

approximate gene regions where the candidate homologous genes are located. 

Algorithm optimizations that allow the program to run efficiently are discussed. 

The preliminary version of this chapter was published in [117]. 

Chapter 4 discusses the final stage in genBlast, i.e. genBlastG. Given the 

approximate gene regions provided by genBlastA, it predicts gene structures in 
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those regions by utilizing HSP alignments extensively. It aims to maximize the 

sequence similarity between the query protein and the “spliced sequence” that is 

obtained by joining exon regions. The experimental results are presented and 

compared with other existing annotations as well as GeneWise results. Overall, 

genBlast is shown to be more accurate while being much faster than GeneWise. 

Chapter 5 concludes the thesis and suggest some directions for future 

work. 
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2: GENE PREDICTION: AN OVERVIEW 

Computational gene prediction has been an active area of research for the 

past two decades [49, 82, 83, 87, 119, 137, 144]. Many algorithms have been 

proposed and implemented to predict possible gene structures on the DNA 

sequences, with various degrees of success. Essentially, they can be 

categorized into two classes according to the types of information they use: ab 

initio approaches that use intrinsic information generated exclusively from the 

DNA sequences (also called “intrinsic methods”), and homology-based methods 

that utilize evidences from other extrinsic sources such as protein sequences, 

cDNAs (complementary DNAs) [6], ESTs (expressed sequence tags) [97], or 

other genomic sequences (also called “extrinsic methods”). Both have their 

advantages and limitations. The following sections provide a brief review on the 

general ideas behind both of these approaches. 

2.1 Ab Initio Gene Prediction 

Ab initio methods find genes by systematically examining the DNA 

sequences for certain signals including start codon, stop codon and donor and 

acceptor signals, as well as distinct patterns that distinguish different gene 

regions. These methods are the very first attempts at the gene prediction 

problem, especially when there is insufficient homology information available. At 

the time of review by Mathe et al. [87], it was estimated that only approximately 

half of the genes can be found by homology to other known genes or proteins. 
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The only solution then is to use predictive methods that make use of intrinsic 

information from DNA sequences only. 

For any gene prediction program, some common syntactic constraints on 

the structure of a gene can be used as guidelines: (1) There are no overlapping 

exons in any single gene. (2) The length of all coding exons in a gene is a 

multiple of 3. (3) There is no in-frame stop codon in the CDS region, i.e., starting 

from the translation start site (start codon) and scanning only the coding exons in 

fixed 3bp step (one codon at a time, while skipping introns), one should not 

encounter any stop codon before hitting the translation stop site. However, these 

are only very general constraints and much more specific information is needed 

to locate the gene. 

Ab initio programs generally make use of two different types of information 

to systematically examine the DNA sequence and identify genes: content 

sensors and signal sensors. Content sensors are measures that use 

characteristics of variable-length gene regions (exons, introns) to try to 

distinguish the regions. Signal sensors are measures that try to detect the 

presence of the functional fixed-length signals (start codon, stop codon, splice 

sites) specific to a gene. 

2.1.1 Content Sensors 

There are generally two types of content sensors: one for coding regions 

(exons), one for non-coding regions (introns, UTRs, intergenic regions). Coding 

regions generally have different statistical properties that can distinguish them 
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from non-coding regions [27, 43]. For example, nucleotide composition patterns 

are different between exon regions and intron regions. Exon regions (coding 

regions) contain more G+C content and introns (non-coding regions) are more 

A+T rich [99, 125]. Codon composition is also different in coding regions and 

non-coding regions [41, 128]. Thus codon bias can be used to help identify 

coding regions [89]. The most successful and frequently used coding measure is 

called hexamer (words of length six) frequency, which was shown to be the most 

discriminative variable between coding and non-coding regions [52]. Other 

measures include base occurrence periodicity which refers to the preferential 

spacing of nucleotides by certain distance. For example, coding regions often 

exhibit 3-base periodicity [131, 141]. 

2.1.2 Signal Sensors 

The DNA sequence is made up of four types of base pairs: A, C, G, T. 

There are specific common subsequences that define the functional sites of a 

gene. Particularly, the initial exon in a gene starts with a three-base “ATG” codon 

(start codon). The last exon in a gene ends with one of the three stop codons: 

“TAG”, “TGA”, or “TAA”. The splice sites that define the exact boundaries of 

exons and introns also have particular signals. The donor site is usually signalled 

by “GT” and the acceptor site is usually signalled by “AG”. These signals are 

found to be common in most genes (with possible variations allowed) [30, 94]. 

However, these signals are weak and they spread out through the entire genome. 

Thus identifying the true signals is very challenging. 
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Various pattern recognition methods are used for identification of these 

signals, including consensus sequence (sequence motif) [110], position weight 

matrix (PWM) [26, 106, 122], weight array models (WAM) [143], maximal-

dependence decomposition (MDD) donor matrices [28], and dependency graphs 

[36]. All these are statistical models that try to capture the intrinsic 

interdependency between base positions in splice sites. 

2.1.3 Algorithms 

Using signal sensors, one can accumulate evidence on signal 

occurrences in a sequence. In theory, each consistent pair of detected signals 

defines a potential gene region (initial exon, introns, internal exons, last exon). 

The number of such combinations is exponential. Most ab initio gene prediction 

programs use dynamic programming to identify most likely gene structures 

according to the evidences given by both content and signal sensors. Recent 

developments have largely converged to the probabilistic models based on 

hidden Markov models (HMMs) [82], such as GENSCAN [28], HMMgene [77], 

Genie [78], GeneID [101], FGENESH [112], GlimmerHMM [81], AUGUSTUS 

[125], GeneZilla [7], Genemark-ES [130], etc. 

Briefly, HMM is a state-based generative model which emits symbols over 

a finite alphabet, with the generating states hidden and only the output from the 

model can be observed. The basic assumption is that the probability of 

appearance of a given base depends only on its k previous bases (k is the order 

of the Markov model). The model is defined by conditional probabilities P(X|k 
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previous bases), where X = A, T, C or G. The k-th order Markov model captures 

local dependencies in sequence, at the level of the k+1-mers. 

In order to build a Markov model, a training set of sequences is needed to 

estimate the state transition and base emission probabilities. Once the model is 

built, given a genomic sequence, HMM outputs the most probable hidden state 

path that generates the observed sequence using the Viterbi dynamic 

programming algorithm [135] as follows: given a DNA sequence S of length L 

and a parse Φ also of length L (a parse defines the exact exon-intron structures 

on the sequence), the conditional probability of Φ, given that the sequence 

generated is S, can be computed using Bayes’ Rule [13]: 

 

( )

( , )
( | )

( , )
L

P S
P S

P S
ϕ φ

φ
φ

ϕ
∈

=
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where Φ(L) is the set of all parses of length L. Thus, given a particular 

DNA sequence S, the parse that maximizes the likelihood of generating S is 

predicted to be the most likely gene structure of that sequence. 

The simplest Markov models are homogeneous zero-order Markov 

models which assume each base occurs independently with a given frequency. 

The larger the order of a Markov model, the finer it can characterize 

dependencies between adjacent base pairs. However, larger orders also require 

a much larger number of parameters and a much larger training set to reliably 

estimate the parameters, which may be problematic for newly sequenced 

genomes with small training sets. Most gene prediction methods now rely on a 
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5th-order Markov model, which exploits hexamer composition (words of length 6) 

in gene characteristics. 

More sophisticated models include interpolated Markov models (IMMs) 

that combine statistics from several Markov models of different orders, and 

generalized HMMs (GHMMs) that improve on HMMs by abstracting the entire 

gene regions (such as exons, introns, UTRs) into single states and encapsulating 

syntactic and statistical properties of individual regions into each state. GHMMs 

have become the most widely used framework for gene prediction [7, 28, 78, 81, 

125]. 

Alternative approaches have been investigated in ab initio gene finding. 

For example, algorithms that are based on discriminative machine learning 

methods, such as SVMs (support vector machines) [115], or conditional random 

fields [18]. 

2.1.4 Advantages and Problems 

Ab initio methods deal strictly with the DNA sequence that needs to be 

annotated. They extract information regarding gene locations using statistical 

patterns inside and outside of gene regions and around gene boundaries, based 

on general features of genes. Thus they allow for prediction of novel genes. Such 

methods are indispensible to gene finding when there is limited homology 

information available. 

However, these methods require known sequences as the training set in 

order to establish the statistical properties of various gene regions, which 



 

 18 

inherently limits their applicability to sequences that, globally, behave in the same 

way as the learning set. In addition, although the statistical models allow for a 

good discrimination between large coding and non-coding regions, the 

identification of exact boundaries of coding segments remains difficult. Predicted 

coding region boundaries are often incorrect. The predicted structure frequently 

splits a single gene into several, or merges several genes into one, because 

distinguishing intergenic and intronic regions are difficult as they don’t differ much 

and signals for predicting gene boundaries (gene regulating regions) are often 

too variable (can be degenerate and unspecific). Thus such methods often 

generate large number of false positives from overfitted models on small training 

sets. On the other hand, on large DNA sequences, gene prediction accuracy can 

drop significantly, due to decreased gene density and larger introns. 

2.2 Homology-Based Gene Prediction 

Homology-based methods (or extrinsic methods) look for genes by 

comparing segments of DNA sequence with those of known genes, proteins or 

other genomic sequences. The underlying principle inherent to the majority of 

homology-based gene finders is the combination of homology information with 

signal sensors. The additional sequences used for homology comparison are 

also called extrinsic content sensors. 

The availability of genome sequences of related species has created 

growing demand for better and faster homology-based gene prediction programs, 

which gives rise to many developments in this area. Many ab initio methods are 

extended to incorporate extrinsic evidences and have thus become their extrinsic 
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versions. For example, TWINSCAN [76] is directly based on GENSCAN [28] and 

extends it to exploit homology between two related genomes. AUGUSTUS+ [123, 

124] is the extrinsic version of AUGUSTUS [125]. SGP2 [102] is based on 

another ab initio gene finder GENEID [101]. Other representative homology-

based programs include GeneWise [19, 20], Projector [92], exonerate [120], 

SLAM [47], N-SCAN [57], CONTRAST [58], etc. 

Homology-based methods can be further categorized according to the 

type of evidence utilized: (1) expressed sequences of genes, including protein 

sequences, cDNA (complementary DNA, a DNA copy of a mRNA) or EST 

sequences (expressed sequence tags, one shot sequences from a whole cDNA 

library, essentially sub-sequences of cDNAs); or (2) DNA sequences of other 

related genomes. Some programs are able to deal with more than one type of 

extrinsic evidences [24, 48, 124]. Most homology-based approaches make heavy 

use of HMMs. A few notable examples are discussed below. 

2.2.1 Homology-Based Methods Using Expressed Sequences (Proteins, 
cDNAs, ESTs) 

Full length cDNAs are the most direct experimental evidence for gene 

structure. They are usually obtained by reverse transcription from mRNAs and 

are complete clones of targeted individual genes. cDNAs do not contain introns 

and are most relevant to establishing gene structures, especially if they come 

from the same or a closely-related genome. cDNAs can be aligned with its own 

gene perfectly (assuming there is no sequencing error), and can be used to align 

with DNA sequences from related species or from a different member of the 
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same gene family, which will give strong indication of a particular gene structure 

at such sequences. But experimentally obtained cDNA sequences often do not 

completely correspond to annotated genes, for example, because cDNAs also 

contain UTR regions and there may be alternative splice forms involved. 

On the other hand, ESTs are subsequences of cDNAs and provide 

information that enables the identification of potentially partial exons. However, 

ESTs have some special characteristics which require careful treatment. First, 

they are redundant and in large numbers. Secondly, ESTs are error prone since 

they are generated from single reads. Thirdly, ESTs provide only local and 

limited information as they represent only partial mRNA sequences and even 

clusters of ESTs may not lead to identification of complete gene. Furthermore, 

the correct contribution of ESTs to an individual member of a gene family is not a 

trivial task. When using ESTs as extrinsic evidences, genes that are expressed 

under very specific conditions or at very low level are generally not present in the 

EST database, leading to false negative predictions. 

Thus cDNAs or ESTs are usually used as additional evidences that can be 

combined with other intrinsic or genomic evidences, rather than being used alone, 

for example, in Exonhunter [24], AUGUSTUS_EST [123], TWINSCAN_EST and 

N-SCAN_EST [139], Genie_EST [107], etc. 

A few programs have attempted to use protein sequences to find the 

homologous genes in the genomes of same or related species. Protein 

sequences are the gene products obtained after gene expression. In many cases, 
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correct protein sequences have been derived from manual annotation of the 

genes of interest or from full-length cDNAs. 

GeneWise [20] is a popular homology-based gene predictor that uses 

protein sequences in addition to the intrinsic signal sensors to assist in gene 

finding. It combines a gene-prediction HMM with the protein-profile HMM into a 

single HMM to achieve simultaneous gene prediction and alignment. The 

process of predicting protein-coding gene structure and the process of the 

sequence alignment are represented by pair HMMs, which are HMMs that 

convert one sequence to another. The gene-predicting HMM converts a DNA 

sequence from the alphabet (A,C,G,T) to a protein sequence (gene product) from 

a different alphabet (20 amino acids). The second HMM, the protein-alignment 

HMM, maps the protein sequence to its homologous protein sequence, which is 

used to guide the gene prediction. The two HMMs are merged into one, with one 

state for each possible transition from the gene-predicting HMM to the protein-

alignment HMM, so that the DNA sequence can be compared directly with the 

homologous protein sequence, while considering all possible intermediates of the 

predicted protein. GeneWise serves a critical role in the Ensembl [54] automated 

genome annotation pipeline. However, it is computationally intensive and 

requires preprocessing of the DNA sequence to much small regions [45]. It also 

has problems in predicting terminal exons which often contain short coding 

regions [20]. 
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2.2.2 Homology-Based Methods Using Comparative Genomics 

Knowledge of the genome of one species can be used to understand the 

genome of other species [62], based on the assumption that coding regions are 

more conserved than non-coding regions. When two genomes are closely related, 

the order of many genes, gene numbers, gene positions and even gene 

structures (exon-intron organization, splice site usage etc.) remain highly 

conserved. Thus new genes can be identified from genome comparisons. 

TWINSCAN [76, 133], SGP2 [102], Projector [92], SLAM [47], CONTRAST [58] 

are some notable examples of programs that utilize comparative genomics, all of 

which are based on various models of HMMs that make use of alignments 

between the reference genome and the genome of interest. 

2.2.3 Advantages and Limitations 

The important strength of these homology-based approaches is that the 

predictions are guided by accumulated pre-existing biological data, so that such 

predictions often achieve higher accuracy than pure ab initio methods. A single 

hit of sequence similarity is enough to detect the presence of a gene, even with 

non-canonical signals. Homology-based programs generally have good 

specificity and produce fewer false positives (than pure ab initio methods), 

because they are based on biological evidence (homology) to existing genes. 

Such methods are not species specific. 

The biggest limitation of homology-based methods is that such 

approaches can only be used to find genes with homologs. This problem is 

alleviated with progress in genome sequencing, as more genes are found. 
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Sequence alignments by fast heuristic search tools may contain regions of 

low quality. Small exons are easily missed. Even when similarity is found, the 

regions are not always precise. This is especially true for comparative genomics 

approaches, which assume there is sufficient contrast in sequence similarity 

between coding regions and non-coding regions. However, similarity of the 

coding regions may not cover the entire gene. Closely-related species may 

exhibit similarity that extends to introns or other non-coding regions, in which 

case genomic comparisons will lead to false predictions. Therefore, homology-

based methods based on protein sequence generally have better overall 

performances than comparative genomics approaches [38, 59]. 

2.3 Integrated Gene Prediction: Combining Ab Initio and 
Homology-based Predictions 

While ab initio methods tend to overestimate gene numbers, homology-

based gene finders may underestimate since they are limited to recognizing only 

those genes similar to prior examples. Integrated approaches have been 

proposed to combine both ab initio and homology-based approaches in order to 

obtain a consensus. Integrated approaches are generally more accurate than 

their constituent gene prediction programs. The representative programs include 

JIGSAW [7, 8], GLEAN [50], EVM [61], YACOP [129], as well as other programs 

based on neural networks [145] and Bayesian networks [103]. The success of 

these programs is based on the best efforts made by their constituent gene 

prediction programs, which are diverse methods so that they can compensate 



 

 24 

one another and provide more accurate predictions when combined. Therefore, it 

is indispensable to develop gene finders using different models and algorithms. 

2.4 Current Performances of Gene Prediction Programs 

2.4.1 Evaluation Measures 

The performance of gene prediction programs are commonly measured by 

sensitivity (Sn) and specificity (Sp). Sensitivity measures the proportion of actual 

gene structures on the genomic sequence which are correctly predicted as such. 

Specificity measures the proportion of those predicted gene structures that are 

actually true. 

In standard classification problems, we have the following definitions:  

- true positives (TP): cases that belong to class C and are correctly predicted; 

- true negatives (TN): cases that do not belong to class C and are correctly 

predicted as not belonging to C; 

- false positives (FP): cases that do not belong to class C but are mistakenly 

predicted as belonging to C; 

- false negatives (FN): cases that belong to class C but are mistakenly 

predicted as not belonging to C. 

Then we have: 
FNTP

TP
Sn

+
=  and 

FPTP

TP
Sp

+
= . 

Furthermore, the accuracy of gene prediction programs is usually 

measured at three levels of granularity: base (nucleotide) level, exon level, and 
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gene level [29]. Each level may indicate some behaviour of the gene finder that 

other measures neglect. For example, at the base level, a true positive is a base 

that belongs to an exon (or intron) is correctly predicted to be in that region. At 

the level of exons, a true positive is an exon that was predicted exactly correct, 

with both of its boundaries (splice sites, or start codon, or stop codon) exactly 

identified. At the level of genes, a true positive is a gene that has all its 

component exons and introns being correctly identified. It is clear that the gene 

level accuracy is the most difficult to achieve because it requires all components 

in a gene to be perfectly predicted. 

2.4.2 Gene Prediction Evaluation 

Although there have been many reviews [29, 49, 56, 82, 83, 87, 87, 119, 

137, 137, 144] in the area of gene prediction, a truly fair comparison of all 

prediction programs is impossible, because performances of many programs 

depend heavily on the specific training data that are used to develop them. Tools 

are often specialized for species, often with distinct statistical models. Many 

programs were developed in-house and were not accessible for independent 

evaluation. Existing annotations that are used as the ground truth in evaluation 

do not necessarily cover the whole truth, due to the limitations of current 

knowledge. For new programs, there is no standard for benchmark comparison. 

The following attempts at comprehensive evaluations give a partial picture of 

current gene prediction performances [12, 38, 59]. 

EGASP (the human ENCODE Genome Annotation Assessment Project) 

[59] is an influential community experiment on comprehensive evaluation of 
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protein-coding gene prediction programs. It tried to assess the state-of-the-art in 

gene finding by testing on the ENCODE (ENCyclopedia Of DNA Elements) 

regions of human genome. The ENCODE project [51] was a collaborative effort 

by many computational and laboratory-based scientists with the aim of identifying 

all functional elements in the human genome sequence. Its pilot phase focused 

on a selected 30 Mb of sequence within 44 selected regions, which represents 

approximately 1% of the human genome. The ENCODE team has produced a 

high quality annotation of the gene content of the ENCODE regions (GENCODE 

annotation) [63]. In the EGASP experiment, gene prediction programs are 

evaluated by comparing their results with the GENCODE annotation on the 

ENCODE regions. In addition, 11 pre-existing gene annotation tracks published 

in the UCSC Browser [74] were included in the comparison. The programs use 

any publicly available data before the evaluation deadline and were categorized 

into different classes according to the data that they used: (1) single-genome ab 

initio methods that use DNA sequences only; (2) homology-based methods, 

which include protein-, mRNA- and EST-based methods, as well as comparative 

genomics methods that use other genomes; (3) integrated methods. 

For evaluation, the EGASP results are measured at four levels of 

granularities: base, exon, gene and isoform levels. Note that the gene level test 

in EGASP is slightly different from the standard gene-level measurement, which 

assumed only one gene model per gene, because many genes through 

alternative splicing produce different protein isoforms. The isoform level accuracy 

is the most stringent test. An isoform is considered correct only if all exons were 
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predicted accurately and no extra full or partial exons were predicted. The gene 

level accuracy was intermediate in stringency between the exon and isoform 

levels. A gene is correct if at least one of its isoforms is predicted correctly. Table 

1 shows some of the results reported by EGASP [59] (other programs with 

clearly worse performances are omitted here). Programs that gave the best 

overall performances are bolded. The pre-existing annotations from the UCSC 

Browser are marked with asterisks (*). 

In summary, programs that used expressed sequences (protein 

sequences and mRNA) and those that used integrated approaches were 

generally the most accurate for all measures. The ab initio programs and 

comparative genomics approaches are among the worst in general. At the base 

level, JIGSAW [8] and ENSEMBL(GeneWise) [45] both achieved greater than 

90% for both sensitivity and specificity. However, the accuracy decreases 

considerably with increased level of granularity, especially at the isoform-level, 

which leaves much room for further improvement. 

The similar performance behaviours of different types of programs were 

observed in later evaluation experiments. As the most recent effort in 

comprehensive evaluation, nGASP (nematode genome annotation assessment 

project) [38] evaluated gene finders on the well-annotated C. elegans genome 

[31]. About 10% of the C. elegans genome is used in the experiment, with the 

training set and testing set each comprising ten non-overlapping 1-Mb genomic 

sequence regions. Participants were given additional data that included multi-

genome alignments between C. elegans, C. briggsae and C. remanei, and  
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Table 1 Gene Prediction Accuracy in EGASP evaluations (human genome) [59] 

 Program Base Exon Gene Isoform 

  Sn Sp Sn Sp Sn Sp Sn Sp 

AUGUSTUS_ab_initio 78.65 75.29 52.39 62.93 24.32 17.22 11.09 17.22 

GENEMARK.hmm 76.09 62.94 48.15 47.25 16.89 7.91 7.70 7.91 

GENEZILLA 87.56 50.93 62.08 50.25 19.59 8.84 9.09 8.84 

GENEID (*) 76.77 76.48 53.84 61.08 10.47 8.78 4.78 8.78 
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GENSCAN (*) 84.17 60.60 58.65 46.37 15.54 10.13 7.40 10.13 

AUGUSTUS-
dual 

88.86 80.15 63.06 69.14 26.01 18.64 12.33 18.64 

NSCAN 85.38 89.02 67.66 82.05 35.47 36.71 16.95 36.71 

SGP2 (*) 82.81 82.20 60.56 65.16 17.57 12.59 8.17 12.59 
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TWINSCAN (*) 78.16 84.59 58.43 73.11 22.30 20.25 10.63 20.25 

ACEVIEW 90.94 79.14 85.75 56.98 63.51 48.65 44.68 19.31 

AUGUSTUS-
EST 

92.62 83.45 74.10 77.40 47.64 37.01 22.50 37.01 

ENSEMBL 
(Genewise) 

90.18 92.02 77.53 82.65 71.62 67.32 39.75 54.64 

EXOGEAN 84.18 94.33 79.34 83.45 63.18 80.82 42.53 52.44 

PAIRAGON+N
SCAN_EST 

87.56 92.77 76.63 88.95 69.59 61.71 39.29 60.64 

ECgene (*) 96.36 47.30 86.22 35.08 79.05 12.42 56.86 8.84 

ENSgene (*) 91.39 91.92 77.71 82.39 73.99 68.30 40.52 54.09 
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MGCgene (*) 44.06 97.56 42.95 93.61 49.32 82.56 23.73 78.24 

JIGSAW 94.56 92.19 80.61 89.33 72.64 65.95 34.05 65.95 

PAIRAGON-any 87.77 92.78 76.85 88.91 69.59 61.32 39.29 60.34 

CCDSgene (*) 56.87 99.52 51.95 97.75 55.41 89.39 28.97 85.58 

KNOWNgene (*) 89.10 93.61 78.11 82.28 77.03 72.79 43.45 46.93 
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REFgene (*) 85.34 98.50 73.23 94.67 77.03 82.76 41.91 75.21 
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alignments of ESTs, mRNAs and proteins to the C. elegans genome. The results 

were evaluated using reference gene sets drawn from WormBase (release 

WS160) [33, 109] and measured in the same way as in EGASP. Table 2 shows 

some of the best results reported by nGASP [38], with the programs that gave 

the best overall performances bolded. As in EGASP, the gene-level and isoform-

level performances are significantly worse than those at base- and exon- levels. 

Again, the integrated method, JIGSAW [8], is the overall best performer, with 

base level sensitivity at 99% and specificity of more than 93%. Gene finders that 

used alignments of proteins, ESTs and mRNAs came in second. Note that 

GeneWise was not included in the nGASP evaluation. 

The EGASP and nGASP results do not represent the whole picture of 

gene prediction research, because each tested only some selected regions in 

one particular organism. The datasets used in evaluation inevitably contain 

biases, for example, due to non-complete or unconfirmed annotations. 

Nevertheless, they provide a general idea on the state of the art in gene 

prediction and where improvements are to be made. 

2.4.3 Summary 

Current gene prediction methods have limitations. None of the programs is 

accurate enough to predict all gene structures adequately. In general, homology-

based gene prediction methods outperform ab initio methods in accuracy when 

homology evidence is available. The accumulation of genome sequences keeps 

boosting the positive cycle of such good performances. Homology-based  
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Table 2 Gene Prediction Accuracy in nGASP evaluations (C. elegans Genome) [38] 

 Program Base Exon Gene Isoform 

  Sn Sp Sn Sp Sn Sp Sn Sp 

AUGUSTUS_ab_initio 97.0 89.0 86.1 72.6 61.1 38.4 50.1 28.7 

CRAIG 95.6 90.9 80.2 78.2 43.8 37.8 35.7 36.3 

EUGENE_ab_initio 94.0 89.5 80.3 73.0 60.2 30.2 49.1 28.8 

Fgenesh 98.2 87.1 86.4 73.6 57.8 35.4 47.1 34.6 

GeneID 93.9 88.2 77.0 68.6 44.4 25.1 36.2 22.8 

GeneMark.hmm 98.3 83.1 83.2 65.6 46.3 24.5 37.7 24.0 

GlimmerHMM 97.6 87.6 84.4 71.4 58.0 30.6 47.3 29.3 

A
b
 i
n
it
io

 G
e
n
e
 P

re
d
ic

ti
o
n
 T

o
o
ls

 

MGENE_ab_initio 97.2 91.5 84.6 78.6 54.8 42.3 44.6 40.9 

EUGENE v1 96.2 87.5 82.8 72.8 61.7 31.4 50.3 30.2 

MGENE 97.7 90.9 85.8 78.4 63.3 42.5 51.6 41.2 

N-SCAN 97.4 88.1 83.5 70.8 48.1 28.4 39.2 27.7 
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SGP2 93.5 90.0 77.3 70.3 44.6 27.1 36.4 24.9 
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Evigan 99.3 89.6 91.1 82.3 80.7 52.7 64.2 52.4 

Fgenesh++C 98.7 89.7 91.1 82.7 80.3 57.1 66.1 56.3 

GeneID v1 99.3 91.5 93.0 83.8 78.3 57.7 63.9 53.3 
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methods based on protein sequences generally give better predictions than 

comparative genomics approaches. 

2.5 genBlast: A Novel Framework of Gene Prediction by Protein 
Homology 

2.5.1 Motivation 

Homologous genes usually have conserved gene structures. For example, 

the comparative analysis of the mouse and the human genome [95] estimated 

that 99% of the mouse genes have a homologous human gene and 86% of the 

orthologous gene pairs are estimated to have the same number of coding exons. 

Most cases where there is a different number of exons can be explained by 

single exon fusion or exon splitting events. Proteins are gene products that can 

be seen as concatenation of coding exons. Thus homologous gene models can 

be predicted based on sequence similarity between a protein sequence and the 

predicted gene product. Proteins have been used in predicting homologous 

genes with competitive performance. 

However, most current gene prediction programs that make use of protein 

sequences, such as GeneWise [20], AUGUSTUS [124], ExonHunter [24], are 

based on hidden Markov models (HMMs), which impose high computational cost. 

The running time of the Viterbi dynamic programming algorithm [135] used in 

HMM solutions increases rapidly with increased sequence length and number of 

states in the HMM. This makes them slow in annotating large scale of genome 

sequences. For example, in the ENSEMBL genome annotation system [45], 

genome sequences need to be pre-processed to refine the input sequence 
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before running GeneWise, the core gene prediction program in ENSEMBL. In our 

experiments, GeneWise needs more than one hour to predict a homologous 

gene model for a single gene that codes for proteins longer than 1,000 amino 

acids in size, even after the gene region has been identified. In addition, the 

accuracy of GeneWise still needs improvement, especially at the gene and 

isoform levels. GeneWise also tends to predict partial gene models and does not 

always return genes with stop codon at the end. Although with the possibility of 

parallelized computing and the use of massive computer farms, speed is a less 

important consideration for gene finders, an alternative algorithm with faster 

speed and better or even comparative accuracy is always useful. It is thus 

essential to explore new options that avoid complicated models, while achieving 

competitive accuracy. 

2.5.2 genBlast Overview 

In this thesis, I present a novel homology-based gene prediction 

framework, genBlast. Similar to GeneWise, genBlast takes the following 

biological sequences as input: a protein sequence (the query), and a genome 

where homologous genes are to be found (the target). The target genome may 

consist of one or more DNA sequences. In principle, the treatment for multiple 

DNA sequences is the same as for the single DNA, because each DNA 

sequence in the genome is independent and therefore processed independently. 

The ultimate goal is to predict the structures (positions of exons and introns) of 

the genes on the DNA sequences that are homologous to the query protein. 
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The general workflow of genBlast is shown in Figure 3. The input is a 

protein sequence and a DNA sequence on which to search for homologous 

genes. The sequence similarity between the query protein and the predicted 

protein product implies homology between the predicted gene and the query 

gene. genBlast can be seen as a gene prediction framework that consists of 

three stages as follows. 

First, as the basis for finding homologous genes, local sequence 

similarities between the query protein and the DNA sequence are found by using 

fast sequence alignment tools such as BLAST [9]. This produces a list of local 

alignments called HSPs (High-scoring Segment Pairs) with each HSP containing 

a pair of sequence segments, one from the query protein, and the other from the 

target DNA sequence. Such HSPs may scatter all over the DNA sequence and 

may overlap with one another. 

The next stage, genBlastA (A stands for assembly), is geared towards the 

finding of approximate gene regions on the DNA sequence where potential 

homologous genes are located. Irrelevant HSPs (noises) are filtered and the 

remaining HSPs are assembled into groups such that each group of HSPs forms 

a candidate homologous gene region. The algorithm of genBlastA has previously 

been published [117] and will be discussed in Chapter 3. 

Finally, genBlastG (G stands for gene) [111] is used to determine the 

exact gene structure for each candidate gene region reported by genBlastA. As 

such, the purpose of genBlastA shares some similarity with the pre-processing 

step for GeneWise, where the approximate gene regions are found before 
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running GeneWise on the much shorter sequences [45]. However, genBlastA 

also provides detailed alignment information for the candidate gene regions that 

is essential for the actual gene prediction by genBlastG. genBlastG will be 

discussed in Chapter 4. 

Figure 3 GenBlast Overview 

 

The pseudocodes of genBlast are given in Appendix 1. In the following 

chapters, I will present the details of genBlastA and genBlastG as well as their 

roles in the gene prediction framework. 
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3: GENBLASTA: FINDING HOMOLOGOUS GENE 
REGIONS 

This chapter discusses the first two stages of gene prediction, with the 

goal of locating the regions of possible genes that are homologous to the query 

protein. 

3.1 Finding Local Similarities 

In order to find possible regions of genes that are homologous to a given 

protein, it is essential to identify sequence similarities between the protein 

sequence and the genome. There are many sequence similarity search tools that 

can be used, such as BLAST [9], WU-BLAST [80], FASTA [104], sim4 [55], and 

BLAT [75], all of which are useful for homology studies. In general, these search 

tools work by identifying a list of sequence segments in a target genome 

sequence database that show similarity to a query sequence and report them as 

local alignments. For example, BLAST detects regions of similarity between the 

query sequence and target sequences in a database and reports local 

alignments between the two. It has been popular among biologists due to its 

speed and sensitivity. 

In our context, the problem is to compare a protein query sequence 

against a DNA sequence database. This is usually achieved by first translating 

the DNA sequence to its corresponding protein sequences according to the 

genetic code [42], where a triplet codon in a DNA sequence is translated into a 
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single amino acid, as described in Chapter 1. Note that the initial position where 

translation starts is critical in protein translation. For example, the sequence 

GGGAAACCC can be broken down to codons of “GGG,AAA,CCC” or 

“GGA,AAC”, depending on the first nucleotide to be read. Different starting 

positions lead to different reading frames that produce different amino acid 

sequences. Thus programs such as tBLASTn (a protein-DNA alignment tool in 

BLAST program suite) compare a protein sequence against a DNA sequence 

database translated in all possible reading frames. 

The sequence similarity search tools usually report the matches between 

the query sequence and the target database as HSPs (High-scoring Segment 

Pairs). An example HSP is given in Figure 4, which consists of a pair of 

sequence segments: a query segment from the query sequence, and a target 

segment from the target sequence. The center line shows the matching positions 

between query segment and target segment. 

Figure 4 An example HSP (high-scoring segment pair) 

 

Figure 5 further illustrates a collection of HSPs, where each HSP consists 

of a pair of sequences: [Q,T], where Q is the query segment (shown in yellow) 

and T is the matching target segment (shown in blue). The correspondence 

between the query segment and the target segment is given by lines that connect 

the segments. HSPs may overlap on either query segments or target segments. 
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Figure 5 Local Similarities Reported as HSPs 

 

When a similarity search returns numerous HSPs for a query gene (a 

protein sequence) in a genome, it suggests the existence of one or more 

homologous genes in that genome. For example, when the protein encoded by 

the C. elegans gene C07F11.1 is used as a query to BLAST against the C. 

elegans genome, many HSPs are reported, as shown in Figure 6(a). In this figure, 

the blue boxes at the bottom are HSPs at their corresponding genomic positions. 

They are scattered across many regions of the DNA sequence. Among these 

HSPs, some may represent candidate genes, while others are spurious hits. For 

example, the genomic region of the actual gene C07F11.1 (the region in yellow) 

is shown in the bottom left of Figure 6(a) and again in Figure 6(b), with the exons 

(purple boxes) and introns (lines connecting exons) shown above the HSPs in 

that region. Figure 6(b) is a magnified view of the same region. Only some of the 

HSPs are relevant and can provide biologists with a meaningful  
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Figure 6 HSPs reported for a C. elegans gene C07F11.1 on Chromosome I 
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starting point for further research, such as those HSPs that have 

correspondences with the exons in the gene model, as circled in Figure 6(b). The 

genomic region defined by those HSPs is a homologous gene region. For genes 

that are homologous to more than one other genes, multiple gene regions will be 

identified. 

Although BLAST and other similarity searching tools produce lists of HSPs, 

they do not reveal which HSPs represent candidate genes, let alone reveal how 

many homologous genes exist in the target genome. This brings on the demand 

for developing new tools that can filter and organize HSPs into homologous gene 

regions. 

3.2 Filtering and Grouping HSPs 

The BLAST-like tools simply report all local alignments that exceed a user-

specified threshold. For effective use of HSPs, a program is needed to organize 

them into groups so that further research can focus on regions that likely contain 

genes. 

3.2.1 Challenges 

The filtering and grouping of HSPs are not trivial tasks. Many genes 

contain “internal repeats”, which are fragments in a gene that show high similarity 

to each other. Thus a genomic region on the target sequence may align with 

multiple query regions and vice versa, i.e. HSPs may have overlapping target 

segments and/or query segments. As illustrated in Figure 7(a), the query gene 

contains internal repeats, with Q1 and Q2 highly similar to each other. This 
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results in multiple HSPs with same target segment that aligns with different query 

segments. For example, two HSPs are returned with the same target segment T1: 

[Q1,T1], [Q2,T1]; two other HSPs are returned with similar situation: [Q1,T2], 

[Q2,T2]. In addition, there may be random alignments (noise) that should be 

filtered, as shown in the intron region of the gene in Figure 7(a). All these factors 

must be taken into account when trying to identify the relevant HSPs that define 

a proper gene region, as shown by the circled HSPs in the figure. 

Furthermore, the task is particularly challenging when the query gene 

belongs to a multi-gene family with many homologous genes, or has a large 

number of paralogous genes in tandem in the target genome (see glossary for 

“multi-gene family” and “tandem genes”). It is well known that a large number of 

genes in almost all sequenced genomes are parts of tandem homologous gene 

clusters. For example, in the nematode C. elegans genome, more than 1,400 

chemosensory genes form many tandem gene clusters, each of which contains 

two or more homologous genes [108]. Figure 7(b) shows an example of a query 

gene with two homologous genes (gene 1 and gene 2) that are located in close 

genomic proximity. The boundary between the two homologous genes must be 

resolved so that HSPs corresponding to different genes are not erroneously 

grouped. 
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Figure 7 Challenges in Filtering and Grouping HSPs 

 

3.2.2 Previous Attempts 

Ad hoc approaches have been developed to filter and assemble HSPs into 

groups representing genes. These methods can resolve some genes, but fail in 

many cases. 
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The best-known program that provides the functionality of grouping HSPs 

is WU-BLAST [80], a BLAST-like program, which is also an extensively used 

local alignment tool for identifying sequence similarities. It provides a 

“topcomboE” option that categorizes HSPs into groups. The algorithm behind this 

option is not published. From our observation, within each group produced by 

WU-BLAST, HSPs are usually adjacent and collinear. Although WU-BLAST can 

group some HSPs into gene-like structures, for HSPs representing candidate 

genes within tandem clusters in the target genome, WU-BLAST fails badly. For 

these cases, WU-BLAST tends to group HSPs corresponding to different genes 

into the same group. 

Cui and colleagues developed a new filtering and grouping algorithm that 

processes BLAST results to help identifying homologous genes [44]. They 

applied a three-step procedure to filter and group HSPs that represent candidate 

genes: (1) Filter all HSPs by discarding HSPs with scores lower than a heuristic 

threshold. (2) Group HSPs based on their physical distance along the 

chromosomes. (3) Further filter HSPs by estimating the genomic span of target 

regions. All HSPs that fall outside of the target regions are excluded from further 

analysis. This program is able to produce some HSP groups that represent 

tandem homologous genes. However, this program has an important weakness, 

which is its dependence on the physical distances (in step 2) between gene 

structures (groups of HSPs) to separate groups. It assumes that the distance 

between different HSP groups are significantly larger than the distance between 

HSPs within a group, which is not true for paralogous genes in tandem clusters. 
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The usage of ad hoc distance thresholds to separate adjacent genes makes this 

program fail in resolving many tandem genes. If the distance threshold value for 

separating genes is too large, HSPs corresponding to multiple genes will be 

lumped together into a large group. On the other hand, if the threshold value is 

too small, HSPs corresponding to a same gene could be divided into different 

HSP groups. 

3.2.3 genBlastA 

In this thesis, I present a newly developed graph-based algorithm, 

genBlastA, for the task of filtering and assembling HSPs into homologous gene 

regions. A distinctive feature of genBlastA is that it does not rely on ad hoc 

thresholds for filtering noise HSPs or on physical distance between target genes. 

Instead, genBlastA models the relationships and constraints among HSPs in a 

directed graph, called the HSP graph, and solves the HSP filtering and 

assembling problem by searching for the shortest paths in this graph. The 

novelty of this graph-based algorithm is an innovative edge length metric that 

reflects a set of biologically motivated requirements so that each shortest path 

corresponds to an HSP group representing a homologous gene. Unlike existing 

ad hoc grouping methods, this method filters and groups HSPs on the basis of 

optimizing the path length that captures the quality of a group of HSPs. 

Consequently, genBlastA is more robust and the solution it finds is optimal with 

respect to the given length metric. The details of the genBlastA algorithm are 

described in the following section. 
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3.3 genBlastA: The Methods 

3.3.1 Problem Definition 

The problem we studied is this: Given a collection of HSPs, which are 

local alignments between a query protein sequence and some target DNA 

sequences, we want to identify all regions containing homologous genes on the 

target DNA sequences. With genBlastA, this is achieved by filtering and grouping 

the HSPs such that each group of HSPs forms a candidate gene region. 

Note that each DNA sequence has two strands in reverse directions of 

each other. HSPs can be on any reading frame of any strand. HSPs on opposite 

strands differ only in the alignment directions of their target segments. genBlastA 

considers each strand as an independent target sequence that has its own list of 

HSPs. Thus genBlastA processes each target sequence separately in order to 

obtain the candidate gene regions on that sequence. Finally, all candidates on all 

target sequences are ranked into a single ranked list of candidate gene regions. 

For brevity, the following discussions of genBlastA algorithm will be based on 

single DNA sequence on the forward strand. 

Each HSP contains the following information: (1) the target segment T and 

its location in the target sequence; (2) the corresponding query segment Q and 

its location in the query sequence; (3) a percentage of identity value (PID), which 

is the percentage of exact matches in the alignment, calculated as the number of 

exact matches over the length of the entire alignment. An example list of HSPs is 

shown in Figure 8. Note the HSPs shown in this figure are only for illustration 

purposes, although genBlastA is able to properly handle HSPs with various kinds 



 

 45 

of relationships. For example, [Q1,T1] and [Q1,T2] represent two different HSPs 

with overlapping query segments. [Q2,T3] and [Q3,T4] are two other HSPs that 

overlap on both query and target segments. This example will be used as a 

running example for the discussions in the following sections to explain the 

genBlastA algorithm. 

Figure 8 Example HSPs 

 

3.3.2 HSP Groups 

With each HSP target segment matching a query segment, a sequential 

group of HSP target segments can collectively match a larger piece of the query 

sequence. We are interested in those groups of HSPs, which correspond to 

genes in the sense that they are homologous to the query gene. Such groups are 

termed HSP groups. In general, there are different numbers of HSP groups in the 

target sequence for each query gene. If the query gene is not conserved in the 



 

 46 

target genome, then no HSP group can be found. If the query gene belongs to a 

multi-gene family (or the query gene has many paralogous genes), there will be 

multiple HSP groups in the target sequence, each representing a candidate 

region containing a paralogous gene. 

Before grouping HSPs, it is important to understand some essential 

requirements that must be satisfied for a group of HSPs to represent a target 

gene. These requirements are summarized below. 

Rationale I (Sequential Ordering): Because each gene is a sequence 

where the order of base pairs is critical, the sequential ordering must be 

preserved when grouping HSPs. 

This rationale is justified by gene structure conservation among 

homologous genes [95]. Although genes may be formed by reordering of exons 

during evolution, they are considered as new genes that code for novel proteins 

[23] and thus not included in our consideration. We are interested in finding 

genes that code for similar proteins. 

Rationale II (Co-linearity): For each HSP group, the target segments 

must be arranged in the same order as their corresponding query segments, i.e. 

the HSPs must be collinear. 

Consider the example in Figure 8. T3 and T4 are in the same order as 

their query segments. So [Q3,T4] can be in the same group as [Q2,T3]. In fact, 

by merging T3 and T4 into one continuous target region, and merging their query 

segments into one continuous query region, we may have a larger, thus better 
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alignment. Figure 9 shows a possible grouping of HSPs that satisfies the 

sequential ordering and co-linearity requirements. Note that Group 1 and Group 

3 have incomplete query coverage because a large portion of the query 

sequence is not covered by their query segments. In contrast, Group 2 covers 

the entire query sequence. A good HSP group should have large query coverage. 

Figure 9 Example Groups of HSPs 

 

Rationale III (Noise Skipping): Some HSPs may be random alignments 

(alignment by chance), called noise HSPs. Such HSPs should be dropped or 

skipped so that they are not in any HSP group. Although most noise HSPs are 

short and have low PID, some are relatively long or have high PID and may not 

be easily identified or removed. The determination of whether a HSP is noise or 

not depends also on other HSPs as a group for forming the gene region and 

cannot be easily determined by looking at each HSP individually. 
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Rationale IV (Proximity): Because genes occupy contiguous genomics 

regions, the HSPs within an HSP group, which corresponds to a target gene, 

should be close to each other on the target sequence as much as possible to 

avoid merging HSPs corresponding to adjacent tandem genes into one group. 

When deciding whether an HSP is a noise and should be skipped, both 

Rationale III and IV should be considered because such skipping may produce 

HSP groups that span multiple gene regions, which is contradictory to Rationale 

IV. For instance, the earlier example of tandem genes in Figure 7(b) shows two 

homologous genes next to each other. Two groups of relevant HSPs are circled, 

and correspond to the two genes. By skipping the second HSP in group1 and the 

first HSP in group2, it may be possible to form another HSP group that still 

satisfies co-linearity (with the first HSP in group1 and the second HSP in group2), 

which is in fact undesirable because it contradicts the rationale of Proximity. 

There must be a systematic way of determining whether to skip a HSP or not. 

Rationale V (Query Coverage): This is used to measure the quality of 

HSP groups. For a group of HSPs, the combined region of their query segments 

should cover the query sequence as much as possible. In Figure 9, Group 2 is 

better than either Group 1 or Group 3 because it covers a larger region of the 

query sequence. 

Rationale VI (Single Group Membership): Since HSPs generally 

correspond to coding exons and it is extremely rare that different genes share 

coding exons [35], in this work, we require that each HSP belongs to at most one 

candidate gene region, thus, at most one HSP group. 



 

 49 

Since there is some contention among Rationales III-V, it is not always 

clear how to best group HSPs such that each group satisfies the above 

requirements. This task becomes particularly challenging when a query has 

many homologous genes because there will be multiple HSP groups on the 

target sequences and the number of such groups is unknown a priori. genBlastA 

is designed to address all above requirements and challenges by modelling the 

HSPs with a directed graph. 

3.3.3 Graph Modelling 

An HSP graph is a graph representation that captures the above 

requirements on HSP groups. Each HSP is represented by a node, with edges 

that model the sequential ordering of the HSP target segments (Rationale I) and 

additional edges that model the skipping of HSPs (Rationale III). An HSP 

grouping is modelled by grouping the nodes on a path, such that each group 

covers as many query segments as possible while preserving co-linearity 

(Rationale II). In a later section, I will define a length metric of the edges that 

takes into account the quality of query coverage (Rationale III-V). By using this 

length metric, I will show that an optimal HSP group is a shortest path in the HSP 

graph. Rationale VI is enforced in a post-processing step that ranks all the HSP 

groups before output. 

Before formally defining the HSP graph, let us first define some 

terminologies that describe the physical relationships between HSP target 

segments. 
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Definition 4.1 (Physical relationship of HSP target segments). Given 

HSP target segments Tm and Tn: 

• After/Before: If Tn’s starting position is larger than Tm’s ending position, we 

say that Tn is after Tm, and Tm is before Tn; 

• Between: If there exists another target segment Tk that is after Tm and 

before Tn, we say Tk is between Tm and Tn; 

• Adjacent: If there is no other target segment between Tm and Tn, then we 

say Tm and Tn are adjacent. This includes the case where Tm and Tn overlap (i.e. 

Tm and Tn share some base pairs); 

• Later than/Ealier than: If Tn’s starting position is larger than Tm’s starting 

position, we say Tn is later than Tm and Tm is earlier than Tn. This relationship 

compares two starting positions, thus, differs from Tn being after Tm. ■ 

Similarly, these relationships can be defined for HSP query segments 

based on their locations on the query sequence. 

Definition 4.2 (HSP Graph). Given a collection of HSPs, each HSP is 

represented by a node in an HSP graph, with two types of physical edges 

constructed as follows. For two HSPs Hm:[Qm,Tm] and Hn:[Qn,Tn], where Tm and 

Tn are target segments and Qm and Qn are their corresponding query segments: 

1. Adjacent edges: If Tm and Tn are adjacent and Tn is later than Tm, there is 

an edge Hm→Hn; 

2. Skip edges: If there is a path, but no direct edge, from Tm to Tn, then we 

add an edge Hm→Hn (i.e. transitive closure).     ■ 
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The adjacent edges in case (1) model the sequential ordering (Rationale I) 

where Tn follows Tm closely. The skip edges in case (2) model the possibility of 

skipping over noise HSPs (Rationale III). An edge Hm→Hn represents the 

possibility that Hn extends the HSP group that contains Hm. By following a skip 

edge, the group is extended without including all skipped nodes. 

Figure 10 The HSP Graph 

 

Figure 10 shows the HSP graph for the example HSPs in Figure 8. The 

solid edges are adjacent edges and the dotted edges are skip edges. Each path 

in the graph represents a way of selecting HSPs along the path. Such an HSP 

graph provides a complete search space for all possible groupings of HSPs. The 

number of skip edges can be very large. However, after introducing a length 

metric on edges (in “Length Metrics” section below), I will show that many skip 

edges can be removed without affecting the optimal grouping. genBlastA will not 
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construct such skip edges, thereby dramatically increasing the algorithm 

efficiency. 

So far, an edge Hm→Hn indicates the sequential ordering of their target 

segments Tm and Tn, which is a necessary condition for extending the HSP group 

that contains Hm by Hn. Rationale II also requires that this order be consistent 

with the order of involved query segments (co-linearity). For example, in Figure 

10, edge H1→H2 is between two HSPs H1: [Q1,T1] and H2: [Q1,T2], whose 

relationship is shown in Figure 8. T2 is later than T1 but Q1 is not later than Q1, 

therefore H2 cannot belong to the same group as H1. On the other hand, for 

edge H2→H3, H3’s target segment T3 is later than H2’s target segment T2, and 

H3’s query segment Q2 is also later than H2’s query segment Q1, therefore, this 

edge represents a valid group extension according to Rationale II. 

The above discussion suggests that edges in an HSP graph can be 

labelled according to their logical functions: edges that represent group 

extensions and edges that end the current group and start a new group, due to 

violation of Rationale II. 

Definition 4.3 (Logical Edges in the HSP graph). For an existing edge 

Hm→Hn in an HSP graph, where Hm is [Qm,Tm] and Hn is [Qn,Tn],  

• Extension edge: Hm→Hn is labelled as an extension edge if either (1) Tm 

and Tn overlap, and Qm and Qn are adjacent with Qn being later than Qm; or (2) if 

Tm and Tn do not overlap, Qn is later than Qm. 
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• Separating edge: If Hm→Hn is not an extension edge, then it is labelled as 

a separating edge.         ■ 

Note that the definition of logical edges is independent of the physical 

edges and each type of physical edge can belong to either type of logical edges. 

Intuitively, an extension edge Hm→Hn means that the two HSPs Hm and Hn are 

collinear. In this case, the group that contains Hm may be extended by adding Hn 

after Hm. A separating edge Hm→Hn means that the HSPs are not collinear, 

therefore, Hn must belong to a different group from Hm. 

Figure 11 The HSP Graph with logical edges identified 

 

In Figure 11, to distinguish these two types of logical edges, we add a 

vertical bar to each separating edge. For example, H1→H2 is a separating edge, 

which means that its source node and destination node should belong to different 
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HSP groups. On the other hand, the skip edge H1→H3 is an extension edge, 

whereas another skip edge H1→H6 is a separating edge. 

With the introduction of logical edges, each path in the HSP graph 

represents a way of filtering and grouping HSPs: as we traverse a path, following 

an extension edge extends the current HSP group to include the destination 

node, and following a separating edge ends the current HSP group at its source 

node and starts a new HSP group at its destination node. If an extension edge is 

a skip edge, following the edge will skip over the nodes on the paths that are 

shortcut by the edge. In this sense, the HSP graph provides a complete search 

space for filtering and grouping HSPs. 

Note that in our implementation, an additional parameter of maximum 

intron length is used to impose an extra constraint on HSP groups, so that HSPs 

too far apart are not grouped together. This poses an upper limit on the distance 

between adjacent HSPs in the same group, which may affect the logical labelling 

of edges. It is different from the distance threshold used in other approaches [44], 

which tried to group HSPs based on distance. genBlastA works even without 

setting such limit. The use of a distance limit allows genBlastA to produce HSP 

groups with intron characteristics specific for the target species. 

3.3.4 Finding the Best HSP Groups 

To represent all groups in a uniform way, the HSP graph is augmented 

with two special nodes: node σ has an outgoing edge to all nodes with no 

incoming edges, and node τ has an incoming edge from all nodes with no 
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outgoing edges. All edges adjacent to σ and τ are regarded as separating edges. 

With this augmentation, every HSP group can be represented by an extension 

path of the form: 

Extension path: (H’→H1→H2→V→Hk→H”), 

where H’→H1 and Hk→H” are separating edges and all other edges Hi→Hi+1 are 

extension edges. This extension path represents the HSP group of k HSPs 

(H1,H2,V,Hk), where the target-query alignment of each Hi always satisfies the 

sequential ordering (Rationale I) and co-linearity (Rationale II). The addition of 

the two special nodes σ and τ makes sure that any regular HSP node has some 

other node before and after it in the HSP graph. Thus, in the case of the very first 

HSP node H1 in the HSP graph, the first separating edge of its extension path is 

σ→H1; similarly, for the very last HSP node Hk in the graph, the last separating 

edge of its extension path is Hk→τ. 

Suppose that we have a “length metric” on an extension path such that the 

shorter the extension path, the better HSP group it represents (as a candidate 

gene region). To find the best HSP groups, for every node H1 that is the 

destination node of a separating edge H’→H1, we search for the shortest 

extension path p=(H’→H1→H2→V→Hk→H”). This task is the single-source 

shortest path problem from node H1. Node H1 is called a group starting node. 

The shortest extension paths are well defined because the HSP graph is acyclic. 

Note that the choice of H’ and H” does not have effect on the represented HSP 

group (H1, H2,  V, Hk). 
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After all shortest extension paths for all group-starting nodes are found, 

they are then ranked by the length metric to obtain a ranked list of HSP groups 

for the current HSP graph. If there are multiple DNA sequences in the target 

genome, one HSP graph is constructed for each DNA sequence. The shortest 

extension paths are obtained from each HSP graph and the results are then 

ranked globally into a combined list. 

From Rationale VI, each HSP can belong to at most one candidate gene 

region. Thus for nodes (HSPs) that are on the route of more than one shortest 

extension paths, a post processing step is performed to delete any shared HSP 

from all except the highest ranked group that contains the HSP. In other words, 

the HSPs that are already in a higher-ranked group will be removed from any 

lower-ranked groups. 

The single-source shortest path algorithm for a directed acyclic graph can 

be done efficiently in O(E) time, where E is the number of edges [132]. Executing 

this algorithm once for each possible starting node H1, the total running time is 

O(E•V), where V is the number of group starting nodes, i.e. the destination nodes 

of separating edges. V is bounded by the number of HSPs. The number of 

adjacent edges constructed by Definition 4.2(1) is not large because such edges 

are constrained by the requirement of physical adjacency between HSP target 

segments. However, the number of skip edges constructed by Definition 4.2(2) 

can be large. Fortunately, many skip edges do not need to be constructed, which 

will be discussed in the “graph optimization” section below. In order to establish 

such optimizations, let us first define the length metric in the HSP graph. 
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3.3.5 Length Metrics 

The length metric is defined in line with the quality of a HSP group. 

Informally, an HSP group is good if it covers the query sequence as much as 

possible with a good match between target and query segments (Rationale V), 

does not contain noise HSPs (Rationale III), and does not skip non-noise HSPs 

(Rationale IV). Consider an HSP group represented by an extension path p=(H’

→H1→H2→V→Hk→H”). For any edge e on the path, there are possibly both 

rewards and penalties associated with the edge, based on the notion of quality of 

a HSP group. P(e) represents the penalty for possible missing coverage of the 

query sequence and possible skipping of non-noise HSPs when following the 

edge e. R(e) represents the reward for query regions that are covered by the 

source node of e. To minimize the penalty and maximize the reward, the length 

of edge e is defined to be: 

)()()( eRePeLength −=       (4.1) 

And the length of path p is the total length of all edges on p: 

∑ ∈
=

pe
eLengthpLength )()(      (4.2) 

The definition of P(e) and R(e) is based on the notion of weight for HSPs. 

Consider an HSP H: [Q,T] with the alignment length Len and percentage of 

identity PID. An HSP is considered of higher quality if it has a longer query 

segment and higher PID. So the weight of an HSP H is defined as: 

*HW Len PID=         (4.3) 
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A query segment Q may be involved in several HSPs. Let AVG_PID be 

the averaged PID over all HSPs that have Q as the query segment. The weight 

of a HSP query segment Q is defined as: 

* _QW Len AVG PID=        (4.4) 

Consider the HSPs in Figure 12(a) and the corresponding HSP graph in 

Figure 12(b). By following the edge H3→H5, we miss the part of query between 

Q2 and Q4, i.e. the part of Q3 that does not overlap with Q2, denoted as 

(Q3−Q2). Because the overlapped part of Q2 and Q3 has been covered by H3, 

when we compute the weight of this missed query coverage, Len in Equation (4.4) 

is the length of (Q3−Q2) and AVG_PID is the PID of H3 (since H3 is the only 

HSP that aligns with (Q3−Q2)). Similarly, for the overlapped part of Q2 and Q3, 

denoted as (Q2∩Q3), its Len is the length of (Q2∩Q3) and AVG_PID is the 

average of PIDs between H3 and H4 (since both HSPs align with (Q2∩Q3)). 
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Figure 12 Example HSPs and the corresponding HSP graph 

 

I now present the definition of reward and penalty for edges, i.e. R(e) and 

P(e). 

Definition 4.4 (Edge Reward and Edge Penalty). For any edge e, its 

edge reward R(e)=WH, where H is the HSP at the source node of edge e. Note 

that, for the first edge H’→H1 on an extension path, R(H’→H1)=0 because H’ is 
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not included in the HSP group. On the other hand, the edge penalty P(e) is equal 

to the weighted sum of three penalties: 

( ) *[ ( ) ( )] ( )ext sep skipP e P e P e P eα β= + + ∗     (4.5) 

Pext(e), which applies to an extension edge e, captures the penalty on 

missing query coverage when following an extension edge e. For an extension 

edge e: Hm→Hn, where Hm has the query segment Qm and Hn has the query 

segment Qn, Pext (e) is defined as the total weight of all missing parts of the query 

between Qm and Qn. In Figure 11, Pext (H2→H4) is equal to the weight of the part 

of Q2 that does not overlap with Q3 because this part is missed when following 

this edge. 

Psep(e), which applies to a separating edge e, captures the penalty on 

missing query coverage when following a separating edge e. Note that a 

separating edge is either the first or the last edge on an extension path. If e is the 

first edge H’→H1 of an extension path, the part of the query before H1’s query 

segment will be missed and Psep(e) is equal to the total weight of such missing 

query parts. If e is the last edge Hk→H” on an extension path, the part of the 

query after Hk’s query segment will be missed and Psep(e) is equal to the total 

weight of such missing query parts. For example, in Figure 11, for every 

extension path with the separating edge H4→H6 as the last edge, where H4’s 

query segment is Q3, the HSP group ends at H4, therefore all query parts 

following Q3 (i.e. the entire Q4) are missed by the group. 
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Pskip(e), which applies to a skip edge e, captures the penalty on skipping 

HSPs when following a skip edge e, which may result in HSP groups that span 

multiple gene regions (counter to Rationale IV). Note that if e is also a separating 

edge, e does not extend any HSP group and Pskip(e)=0. If e is an extension edge 

Hi→Hi+1, following e will skip the HSPs on any non-skip paths from Hi to Hi+1 and 

Pskip(e) is the minimum total weight of the HSPs on a single such path. In Figure 

11, for the skip edge H2→H5, there are 3 paths with non-skip edges from H2 to 

H5: (H2→H3→H5), (H2→H3→H4→H5) and (H2→H4→H5), which skip HSPs 

(H3), (H3, H4), and (H4), respectively. Pskip(H2→H5) is equal to the minimum of 

WH3 and WH4.          ■ 

With the above definitions of length metric, the length of each extension 

path in the HSP graph can be measured and ranked. The driving force for 

following a skip edge e is the increased R(e) (reward) if it extends a group with a 

better although not adjacent HSP. On the other hand, Pskip(e) (penalty) will be 

increased as well. A skip edge is followed only when the reward is bigger than 

the associated penalty. By incorporating such a trade-off between reward and 

penalty, the decision of whether to skip a HSP is made systematically during the 

search for shortest paths. This approach is more robust than trying to remove 

noise HSPs by ad hoc score thresholds or separating HSP groups by ad hoc 

physical distances. 

In formula (4.5), α and β are constants, where α+β=1, representing the 

relative importance of the penalties for missing query coverage and skipping 

HSPs. The purpose of using these parameters is to add flexibility to the program, 
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which allowed us to study the effect of penalties. They are not rigid thresholds 

and do not depend on specific genomes. In fact, several settings for α and β 

have been tested (with α = 0.25, 0.5, 0.75, 0.9), and the results for all were 

similar despite different values of α. This shows that such parameters are 

different from ad hoc thresholds that are crucial in other programs such as [44]. 

In fact, genBlastA is quite insensitive to the settings of these parameters, 

demonstrating the robustness of genBlastA. 

3.3.6 Graph Optimization 

As discussed earlier, finding all shortest extension paths has a running 

time of O(E•V), where E is the number of edges in the HSP graph, V is the 

number of nodes, i.e. the number of HSPs. I now show that many of the skip 

edges are redundant in that they are never used by any shortest path, and 

therefore can be pruned before the search starts. This optimization does not 

affect the HSP groupings, but will shorten the running time of genBlastA. 

Definition 4.5 (Redundant edges). An edge is redundant if its removal 

from the HSP graph does not affect the result of shortest extension paths. ■ 

I now present two theorems that are used to identify redundant edges. 

Unless otherwise specified, all nodes refer to the normal nodes representing 

actual HSPs, not the special nodes σ or τ. 

Theorem 1. A skip edge Hm→Hn that is a separating edge is redundant.■ 

Proof: With Hm→Hn being a separating edge, an extension path p using 

this edge has two cases: (1) the path ends with Hm→Hn, or (2) the path starts 
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with Hm→Hn. We consider case (1) where p is (H’→H1→V→Hm→Hn), as case (2) 

is symmetric. For a skip edge Hm→Hn, there must exist a path from Hm to Hn that 

contains only non-skip edges. Let x be the shortest prefix of this path that ends 

with a separating edge. Let path p’ be the path p with Hm→Hn being replaced 

with x. If x is a single separating edge, Length(p’)=Length(p). If x contains at least 

one extension edge, p’ extends p by more nodes without introducing new Pskip 

penalty, because all edges on x are non-skip edges. On the other hand, by 

including the additional nodes on x, p’ has less penalties of Pext and Psep, and 

more rewards than p because it has more HSPs to cover more query segments. 

Thus, Length(p’)<Length(p), and removing the edge Hm→Hn has no effect on 

shortest extension paths.        ■ 

The next theorem shows that skip edges that are transitive closure of 

extension edges are redundant. 

Theorem 2. A skip edge Hm→Hn that is an extension edge is redundant if 

there is another node Hk such that Hm→Hk and Hk→Hn are extension edges. ■ 

Proof: Any HSP group produced by following the skip edge Hm→Hn can 

be represented by an extension path p=(V→Hm→Hn→V). Let p’ be the modified 

path (V→Hm→Hk→Hn→V) where the prefix and suffix remain unchanged. p’ 

has more rewards than p since p’ has one additional node Hk. Both Pext and Pskip 

by following Hm→Hk→Hn are less than by following Hm→Hn, since Hk covers one 

additional query segment between Hm and Hn, and Hm→Hn skips more nodes 
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than Hm→Hk→Hn does. Thus, Length(p’) < Length(p) and removing Hm→Hn has 

no effect on shortest extension paths. Thus Hm→Hn is redundant.  ■ 

With these optimization strategies, the number of skip edges in the HSP 

graph is dramatically reduced, thereby increasing the efficiency of genBlastA. For 

example, on a moderate PC with Pentium IV 2.6GHz CPU, 1G memory and 

running Windows XP, it takes less than 60 seconds to process 300 C. elegans 

query genes with over 36,000 HSPs. On average, the total number of edges in 

the HSP graph in our experiments is less than 2 times of the number of HSPs, i.e. 

the number of nodes in the HSP graph. This shows the effectiveness of the 

graph optimization strategies. 

3.4 The Effectiveness of genBlastA 

genBlastA is designed to identify groups of HSPs that represent 

homologous genes. Its effectiveness has been tested by applying genBlastA to 

find HSP groups that represent orthologs (genes in different species but with 

same origin in evolution) and paralogs (genes duplicated within a species), using 

C. elegans [39] and C. briggsae [60] genomes. 

3.4.1 Test Genes and Experiment Setup 

The entire genomes of both C. elegans and C. briggsae have been 

sequenced. In particular, as the first multicellular organism whose genome was 

completely sequenced, C. elegans is a model organism that has been 

extensively annotated [66] and thus is often used to evaluate new algorithms. On 

the other hand, C. briggsae, a sister species of C. elegans, is not as well studied 
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and the existing annotations are usually generated by other gene prediction 

programs. It provides an excellent platform to study the effectiveness of gene 

detection in related species. 

The test genes were obtained from WormBase (http://www. 

WormBase.org/), an integrated genome database for C. elegans and other 

nematode species including C. briggsae [33]. The C. elegans genome size is 

about 100 Megabases, containing 6 chromosomes and about 20,000 protein-

coding genes in total. To test the effectiveness of genBlastA, 464 representative 

C. elegans genes are selected. The majority (300 genes) of these genes were 

taken from three representational contiguous regions of C. elegans chromosome 

I. These three regions are the left arm, the middle region, and the right arm of 

chromosomal regions, each containing 100 genes. To ensure that the test gene 

set contains representative genes of different complexities, additional 164 genes 

are added to the set, including genes with regions of internal repeats and genes 

that belong to large paralogous tandem clusters. The test gene set can be 

downloaded from http://genome.sfu.ca/projects/genBlastA/. 

The test genes are used as queries to search against two target genomes: 

C. elegans and C. briggsae. The C. elegans genome is used to test the capability 

of genBlastA in identifying paralogous genes (called EvsE test). The C. briggsae 

genome is used to test genBlastA in identifying orthologous genes (called EvsB 

test). In addition, two different BLAST settings are tested when producing HSPs, 

“ungapped” and “gapped”, in order to test the effect of this setting on the final 
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grouping. The gapped HSPs are generally longer with more gaps and 

mismatches, and ungapped HSPs are generally shorter with higher PIDs. 

The HSP groups produced by genBlastA were compared with those of two 

existing programs with similar functionalities --- WU-BLAST [80] and the program 

by Cui et al. [44]. WU-BLAST is available by an academic license. Since the HSP 

grouping functionality of the program by Cui et al. is not readily available, it is 

implemented based on their publication and denoted as ML in the following text. 

ML requires a distance threshold to resolve different HSP groups. This threshold 

is not described in detail in their publication; therefore, it was derived from 

several best attempts and a value that led to overall best performance of ML in 

our experiments was used, which was 1000bp. 

3.4.2 Resolving Paralogous Genes in Tandem Clusters 

This first experiment was designed to test the programs’ capacity to 

resolve HSP groups that correspond to paralogous genes in multi-gene families 

or tandem clusters. For this purpose, 30 genes from the test gene set that belong 

to large gene families in tandem clusters were used as queries to search against 

the C. elegans genome. After HSP groups are produced by genBlastA, WU-

BLAST, and ML, all candidate regions with query coverage ≥50% are retained. 

The HSP groups were then examined and compared against the annotations in 

the C. elegans genome database in WormBase. An HSP group is called 

“specific” if its corresponding genomic region contains only one annotated gene; 

otherwise it is called “nonspecific” if the region overlaps with multiple annotated 

genes. Intuitively, HSP groups with high query coverage and containing only 
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single genes are likely defining true paralogs. The programs’ capabilities in 

resolving multiple paralogous genes are measured by the ratio of specific groups, 

i.e. the number of groups that are specific versus the total number of HSP groups 

examined. 

Figure 13 illustrates an example, in which there are five paralogous genes 

in a tandem gene cluster. The annotated gene models are shown in the “Gene 

Models” track at the top. HSPs are shown as blue boxes in the “All HSPs” track, 

followed by the tracks of HSP groups reported by genBlastA, ML, and WU-

BLAST, respectively. It can be seen that WU-BLAST had a hard time deriving 

sensible groups from HSPs, because the HSPs heavily overlap as a result of 

multiple similarities in a close genomic region. It managed to identify only one 

HSP group that matches a target gene and failed to produce groups 

corresponding to the rest four genes. ML produced three groups, two of which 

erroneously contain HSPs corresponding to other adjacent genes. ML missed 

groups for two target genes (T27B7.4 and T27B7.6a), and mistakenly grouped 

HSPs corresponding to T27B7.6a to the HSP group corresponding to T27B7.5. 

In contrast, genBlastA successfully resolved all five genes, producing five groups 

of HSPs that properly define the approximate regions of all paralogous genes. 

Figure 14 shows the ratio of specific HSP groups among all predicted 

groups by the three programs. The error bars represent the standard error. The 

values show statistical significance by paired Student’s T Test (with p-value < 

0.001) [100]. In summary, when HSPs were produced by the ungapped setting in 

the EvsE test, the average ratio of specific HSP groups by genBlastA is around  
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Figure 13 Grouping HSPs into groups representing homologous genes in tandem clusters 
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Figure 14 Comparison of genBlastA, ML and WU-BLAST in Resolving Tandem Genes 

 

80%, which is significantly higher than that produced by WU-BLAST (about 20%) 

or ML (about 40%), as shown in Figure 14. With the gapped HSPs, genBlastA 

performs even better, with over 90% of HSP groups being specific. WU-BLAST 

often generates numerous HSP groups, but they usually span genomic regions 

of multiple genes (therefore nonspecific). Consequently, WU-BLAST frequently 

groups together tandem paralogous genes and cannot correctly identify regions 

of individual genes. ML also exhibited poor performance due to its use of a 

distance threshold, although being somehow better than WU-BLAST. In 

particular, as its distance threshold increases, the ability of ML to resolve closely 

spaced paralogous genes decreases. In all cases, genBlastA was able to resolve 

much more specific HSP groups in tandem clusters compared to either WU-

BLAST or ML. 
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3.4.3 Searching for Orthologous Genes 

This experiment was designed to test genBlastA identification of 

homologous gene regions that are most similar to the query. All 464 genes in the 

test gene set were used as queries. For each query, the top-ranked HSP group, 

i.e. the candidate ortholog of the query gene, is examined. Since the top-ranked 

group is expected to be the most similar to the query gene, in the EvsE test, it is 

expected to map to the query gene itself; in the EvsB test, it should map to its C. 

briggsae ortholog. The top-ranked HSP group is thus compared with the 

annotated gene in WormBase. 

For accurate comparisons, the quality of the HSP group is measured by 

the following two criteria: (1) query coverage, and (2) genomic span. Query 

coverage measures the similarity between the HSP group and the query gene. It 

is defined as the proportion of the query sequence covered by the HSPs in the 

HSP group. The higher coverage generally implies a better HSP group. Genomic 

span measures the extent of overlap between the genomic region given by the 

HSP group and the expected gene region as annotated in WormBase. This is 

computed using the Jaccard similarity: given the annotated target gene region RA 

and the gene region RH that is defined by a HSP group, their similarity is 

(|RA∩RH|/|RA∪RH|), i.e. their intersection size divided by their union size. This 

result is 0 when two regions do not overlap and 1 when the regions align 

perfectly. 
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3.4.3.1 Comparisons of Query Coverage 

Figure 15(a, c) shows the average query coverage of all three programs 

for 464 query genes in the test gene set. Figure 15(a) shows the results in EvsE 

test and Figure 15(c) shows the results in EvsB test. In EvsE test, with both 

ungapped and gapped HSPs, genBlastA identifies HSP groups with close to 

100% query coverage and significantly outperformed both WU-BLAST and ML. 

In the EvsB test, genBlastA has average gene coverage of about 90%, and 

continues to outperform the other programs. 

3.4.3.2 Comparisons of Genomic Span 

Figure 15(b, d) shows the average genomic span similarity of the three 

programs, with Figure 15(b) showing the results in EvsE test and Figure 15(d) 

showing the results in EvsB test. In EvsE test, genBlastA obtained close to 100% 

span similarity, outperforming both WU-BLAST and ML by large margins, 

suggesting that genomic regions predicted by WU-BLAST and ML are quite 

different from the real genomic regions. For EvsB test, genBlastA also 

outperformed both WU-BLAST and ML. When comparing WU-BLAST with ML, 

WU-BLAST shows better genomic span than ML in gapped setting and worse in 

ungapped setting. This may be due to the difficulty of WU-BLAST in assigning 

proper group memberships when there are many overlapping HSPs in ungapped 

setting. 
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3.4.4 Discussions 

As shown in the above experiments, genBlastA outperformed both WU-

BLAST and ML in identifying both paralogous and orthologous HSP groups. Its 

performance is quite stable across different settings of BLAST (either “gapped” or 

“ungapped”) that generated different set of HSPs. This demonstrates the 

robustness of the genBlastA algorithm. 

With genBlastA, users can quickly interpret the large list of HSPs and 

effectively identify homologous gene regions as defined by the HSP groups. 

Because each group represents a full-length candidate gene, rather than 

fragments of a gene (HSPs), genBlastA provides insights on gene structures and 

allows users to focus on the interesting targets, which can then be explored 

further. 
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Figure 15 Query Coverage and Genomic Span Comparisons for Orthologous Gene Detection 
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4: GENBLASTG: RESOLVING GENE STRUCTURES 

With a given query protein and the target genome, I have shown that 

genBlastA is able to effectively find the candidate regions where homologous 

genes are located. This is a good starting point. But these regions do not tell the 

exact structure of genes. One immediate task is to examine these candidate 

gene regions and resolve their gene structures, i.e. determining the exact 

position of the gene and its components (exons and introns). 

There are two ways to do this. One way is to apply existing gene 

prediction tools on the candidate regions to predict possible gene structures, 

such as the popular tool GeneWise [20]. However, as discussed earlier, these 

HMM-based programs are usually slow. The other way is to directly make use of 

the HSP groups produced by genBlastA and try to predict gene structures based 

on the HSPs. This is possible because HSPs frequently have certain 

correspondence to the exon regions of the gene, as illustrated in Figure 6. Thus 

they can be exploited further for the task of gene prediction. This basic 

observation motivates the approach in this thesis and leads to the new gene 

prediction program, genBlastG [111], which is the topic of this Chapter. Although 

genBlastG does not use complex computational models, our experiments 

showed that it is able to achieve higher accuracy than other gene prediction 

methods. 
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4.1 Problem Statement and Challenges 

genBlastA parses HSPs generated by sequence similarity search tools 

into HSP groups. Each HSP group defines a candidate homologous gene. The 

genomic positions of HSP target segments can be used to define exon positions 

of the gene contained in the corresponding HSP group. However, it is not 

straightforward to map the HSPs to exons due to the following reasons. 

� First, appropriate splicing signals need to be resolved. The restrictions on 

gene start and gene stop with proper codons must also be considered. 

� Second, HSPs often contain gaps and mismatches in their alignments and 

the boundaries of exons usually do not coincide with boundaries of HSPs. 

� Third, due to the threshold based alignments of most local alignment tools 

(including BLAST), HSPs are extended as long as its score is above some 

given minimum threshold. Consequently, one HSP may correspond to the 

region that contains multiple exons, especially when the intron between 

exons is small. 

� Due to mutations accumulated in evolution, target exons may not have 

precise correspondences with the query protein and it is possible for the 

region of one exon to be represented by multiple HSPs. 

� Finally, some exons may not have correspondence with any HSP, 

especially for small exons that are easily missed by sequence similarity 

search tools. 
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To tackle these challenges, genBlastG utilizes the sequence alignment 

information contained in HSPs and makes adjustments when necessary. Given 

the process of gene expression, the DNA sequence that is translated into protein 

is a concatenation of all exons in a gene, which is obtained by removing introns 

and joining exons. Such sequence will be referred to as the spliced sequence in 

the following text. The basic intuition of genBlastG is to find the exon-intron 

structure that results in maximized sequence similarity between its spliced 

sequence and the query protein. Existing HSPs provide alignment information 

that can be directly used in this process. 

4.2 genBlastG Overview 

genBlastA returns a ranked list of HSP groups, with each group 

corresponding to a potential gene homologous to the query. Each group is 

independent of one another. Thus genBlastG examines each HSP group in the 

ranked order and process them independently. Usually only the top few ranks are 

of interest, because lower ranked groups carry much less sequence similarity to 

the query and usually do not represent complete or relevant genes. genBlast 

allows the user to control the number of ranks to be examined. Without loss of 

generality, the following presentation of the genBlastG algorithm discusses the 

processing of one HSP group. 

Starting with the HSP group generated by genBlastA, genBlastG directly 

uses HSPs for gene prediction. The basic rationales behind the genBlastG 

algorithm are simple. First, the locations of exons are approximated by the 

genomic regions of HSPs, as defined by the genomic positions of HSP target 
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segments. However, this does not mean exon boundaries are easily defined, as 

the HSPs only provide approximate references. On the other hand, this does 

mean that exons must overlap at least partially with HSPs. Second, the 

sequence similarity between the spliced sequence and the query protein is used 

as the quality measure to guide the search for the best possible splice sites on 

the target genome. genBlastG identifies boundaries of introns and exons so that 

the spliced sequence show the maximized similarity to the query gene. 

The task of resolving a gene model involves the determination of gene 

start, gene stop, and all splice sites, each of which will be discussed below. 

Gene Start / Gene End. Given a group of HSPs, the approximate gene 

region is defined as the genomic region between the start of the first HSP and 

the end of the last HSP. In order to find genes that code proteins similar to the 

entire query sequence, the gene start should be searched close to the beginning 

of the gene region. Similarly, gene end should be searched close to the end of 

the entire gene region. There should be no in-frame stop codon between gene 

start and gene end that disrupts gene expression. 

Gene start is usually signalled by a start codon of “ATG” sequence (which 

codes for methionine (M) and serves as an initiation site), with possible 

alternatives. genBlastG searches for a start codon at the beginning or adjacent to 

the first HSP. This start codon also needs to be in frame with the first HSP, in 

order for the first HSP to correspond to the first exon or at least a partial exon. 

This means the distance between the beginning of the start codon and the 

beginning of the first HSP must be a multiple of 3. In addition, there must be no 
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stop codon (either “TGA”, “TAG”, “TAA”) between the gene start and the first 

HSP. Thus the gene start is detected by searching from the beginning of the first 

HSP and going upstream, until hitting either a start or stop codon. The first start 

codon defines the exact location of the gene start. If a stop codon is encountered 

first, the beginning of the first HSP will be used as the gene start. 

Gene end is always signalled by one of the three stop codons “TAG”, 

“TGA” or “TAA”. Similar to the search for gene start, genBlastG looks for the first 

in-frame stop codon from the end of the last HSP and going downstream. There 

is no need to monitor signals other than the stop codons. 

Note that the sites of gene start and gene end found in this initial process 

are not necessarily the final sites. In a post-processing step of genBlastG, it is 

possible for either gene start or gene end to be adjusted according to additional 

evidences of sequence similarity in the beginning or end region of the gene. The 

post-processing in genBlastG will be discussed in a later section. 

Splice Sites. Splice sites also have well-defined signals. A canonical 

intron start with the base pairs “GT” and end with the base pairs “AG”, which are 

referred to as the splice “donor” and splice “acceptor” signals, respectively. There 

are also non-canonical splicing signals [30]. However, the presence of these 

signals is not sufficient to identify the splice sites because there are many 

random pairs of donor/acceptor signals along the entire region of the gene. 

genBlastG tackles the splice site detection problem by dividing it into several 

smaller tasks: first, the approximate regions for each intron are determined; next, 

for each approximate intron region, some candidate donor sites and acceptor 
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sites in that region are selected; then, the best combination of donor and 

acceptor sites among these candidates is found for each intron region. Finally, 

once the initial gene structure is found, some post-processing is needed, during 

which the query coverage of the initial exons are examined and the gene 

structure is adjusted if necessary. These four steps are discussed in details in the 

next sections. 

4.3 Step 1: Determine Intron Regions 

In this step, we locate the approximate genomic regions for introns. With 

the entire gene region given by the HSP group, the simplest case is that HSPs 

correspond to coding exons and the genomic regions between adjacent HSPs 

represent introns. However, there is no simple one-to-one correspondence 

between HSPs and exons. As discussed earlier, there are many challenging 

exceptions, as illustrated in Figure 16, where HSPs are shown below the 

annotated gene models. This figure gives a concrete example of the 

correspondence between HSPs and exons. Although usually one HSP 

corresponds to one exon, there are many exceptions, such as: 

- one HSP corresponds to multiple exons (Challenge 1); or  

- multiple HSPs correspond to one exon (Challenge 2); or  

- some exon regions may not have corresponding HSPs (Challenge 3), which 

requires some additional adjustment that will be discussed later. 

To tackle these challenges, the following guidelines are identified. First, 

because the query is a protein product of the gene and is translated from exons 
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Figure 16 HSPs and Their Exon Correspondences 
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only, an intron should be the part of genomic sequence that has no query 

correspondence. Second, the genomic sequence formed by splicing the intron 

regions and joining the exons, i.e. the spliced sequence, should have high 

sequence similarity to the query protein sequence. These guidelines lead to the 

following heuristics of identifying intron regions. 

(1) Introns between adjacent HSPs. First, as a common case, the 

genomic region between two adjacent HSPs is an intron region if it is more than 

certain length (Figure 17). This length is a user-defined threshold, 

MIN_INTRON_REGION_LEN, which represents the minimum length of an intron 

region and can be adjusted for different species, since studies have shown that 

intron lengths may differ for different species [46]. In our later experiments on C. 

elegans and C. briggsae genomes, this length is set to 15. 

Figure 17 Intron Regions between Adjacent HSPs 

 

(2) Introns within a HSP. As shown by challenge 1 in Figure 16, there are 

possible intron regions inside a HSP. Thus we need to examine the alignment of 

each HSP. Since we expect the intron region to have no query correspondence, 

the intron region inside a HSP should be aligned with gaps on the query 

sequence. Therefore, if there is a region in the HSP alignment where the query 

segment consists of continuous gaps that are longer than 
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MIN_INTRON_REGION_LEN, that region is considered to be a candidate intron 

region. For example, in Figure 18, given a HSP: [Q4, T4], the gap in its query 

alignment leads to the intron region 3, which is the region on target segment that 

is not aligned with any amino acid in the query. 

Figure 18 Intron Region inside a HSP 

 

(3) Introns between adjacent HSPs with overlapping query segments. 

The borders of the intron region between two HSPs may need to be adjusted if 

the two HSPs contain overlapping query segments. Since HSPs roughly 

correspond to exons, before exons are identified, a preliminary spliced sequence 

can be formed by gluing together HSP target segments. Because the entire 

group of HSPs is expected to represent one complete gene that is homologous 

to the query, the spliced sequence should align well with the query sequence. 
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Figure 19 Intron Region between HSPs with Overlapping Query Segments 

 

Consider two adjacent HSPs with overlapping query segments shown in 

Figure 19. When aligning the spliced sequence against the query sequence, 

because there must be one-to-one correspondence in the sequence alignment, 

the overlapped part of the query segment can be aligned with only one of the 

HSP target segments. We chose to use the HSP target segment that has higher 

identity in the overlapping part. Thus the other HSP target segment will be 
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aligned with inserted gaps on the query (i.e. has no query correspondence), 

which in turn will be included in an intron region. 

4.4 Step 2: Select Candidate Splice Sites 

This step selects the candidate splice sites according to the intron regions 

given by the previous step. An intron region serves as an anchor that defines the 

approximate boundaries of a possible intron and a starting point to search for 

appropriate splicing signals. Once the intron regions are detected using the 

HSPs, the splice site detection problem is simplified to selecting splice sites that 

are close to the borders of intron regions. In particular, the upstream border of an 

intron region is the starting place to look for donors, and the downstream border 

is the place to start looking for acceptors. Because the intron regions are only 

approximate boundaries of introns, flexibility needs to be added by considering 

multiple choices of splice sites around the borders of intron regions. 

Only canonical signals (“GT/AG”) are used in our current implementation. 

Note that it is easy to incorporate other signals to address variability in the 

sequence motif, by searching for additional signals in the intron region. For each 

intron region, the donor signal (“GT”) and the acceptor signal (“AG”) are 

searched independently. A number of splice signals that are closest to the 

borders are selected as the candidate splice sites. This is done by using a user-

defined threshold (MAX_NUM_SPLICE_SITES) to control the number of 

candidates selected around each border, i.e. for the border of each intron region, 

the number of donors is at most MAX_NUM_SPLICE_SITES and so is the 

number of acceptors. Therefore, the selection of donors depends on the 
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existence of “GT” signals within the given region and their relative distances to 

the upstream border of the intron region. Similarly, the selection of acceptors 

depends on “AG” signals and their relative distances to the downstream border of 

the intron region. 

The purpose of this step is to provide candidate sites that will be evaluated 

later. Therefore we can select as many candidates as possible, limited only by 

the available computing resources. In our current experiments, 

MAX_NUM_SPLICE_SITES is set to 20, which achieved reasonable 

performance in both speed and accuracy. The candidate donor sites are 

identified by at most 20 “GT” signals that are closest to the upstream border (may 

be at either side of such border). Similarly, acceptors are identified by “AG” 

signals around the downstream border. Therefore, for each intron region, we 

select at most 20 candidate donors and 20 candidate acceptors. 

4.5 Step 3: Find Best Splice Sites 

An intron is defined by a pair of donor and acceptor sites. We now 

determine the best pair of donor and acceptor for each intron region. The best 

pair of donor and acceptor is selected based on sequence similarity between the 

spliced sequence (obtained by splicing introns and joining exons) and the query, 

which is measured by the percentage of identity (PID) in the alignment, called 

spliced alignment. The pair of donor and acceptor that maximizes such alignment 

PID should be chosen as the best pair. In addition, adjacent exons must be in 

frame with each other and there should be no in-frame stop codon in the spliced 

sequence. The detailed procedure is as follows. 
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Consider an intron region I. I is associated with its own set of donors 

{D1, V, Di} and acceptors {A1, V, Aj}, as given by the previous steps. For a pair 

of donor and acceptor to be considered a valid pairing, they must be in-frame 

with each other and there is no in-frame stop codon in the corresponding spliced 

sequence S, which is formed by connecting the target segment of the HSP at the 

upstream side of a donor site (called “donor-side target segment”) with the target 

segment of the HSP at the downstream side of an acceptor site (called 

“acceptor-side target segment”). It is possible that there exists no valid pair of 

donor and acceptor in an intron region, in which case no intron will be predicted 

for this region. 

Figure 20(a) shows an example of such spliced sequence S (for donor D1 

and acceptor A1), which is induced from two HSPs. S is the concatenation of two 

subsequences: one from the beginning of the first HSP (donor-side HSP) to the 

donor site, the other from the acceptor site to the end of the second HSP 

(acceptor-side HSP). For this spliced sequence, its corresponding query segment 

Q is the part of the query from the beginning of the donor-side HSP query 

segment to the end of the acceptor-side HSP query segment. The quality of the 

alignment between S and Q determines the selection of the best pair of donor 

and acceptor for the current intron region, i.e. the valid pair that results in the 

highest PID will be selected. 

To address the challenge 2 in Figure 16, where several HSPs correspond 

to the same exon, we need to consider the possibility that some intron regions 

produced in Step 1 are in fact unnecessary. Thus we also examine the case in  
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Figure 20 Finding the Best Pair of Donor and Acceptor 

 

which there is no intron in an intron region. In this case, there is no splicing and 

the spliced sequence is simply the DNA sequence from the beginning of donor-

side HSP target segment to the end of acceptor-side HSP target segment. The 

alignment between such spliced sequence and the corresponding query 
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segments is computed in the same way as the spliced alignments for all other 

donor-acceptor pairs, and its PID is compared with all other PIDs. Therefore, the 

choice of predicting an intron or not depends only on the quality of spliced 

alignment. Note that it is possible to have more than one alignment with the 

maximum PID, in which case the alignments will be further compared on 

alignment scores. These scores can be computed based on a score matrix that 

measures the alignment significance between amino acids, in this context, we 

use the BLOSUM62 substitution matrix [64]. 

We evaluate the candidate splice sites in each intron region and select the 

best pair of donor and acceptor for each region one by one. Figure 20(b) 

illustrates a case with several intron regions. In particular, the last intron region 

generated no intron at the end, because the spliced alignment in the “no-intron” 

case gives the highest PID. 

4.6 Step 4: Post Processing of Candidate Gene Structure 

Once the best splice sites are selected for all intron regions, the initial 

gene structure is determined. However, there may still be exons missing from the 

model, especially small ones. This is because sequence similarity search 

programs often fail to pick up weak alignment, as shown by the challenge 3 in 

Figure 16(b). To address this problem, we need to “repair” the preliminary gene 

model by uncovering the missing alignments to maximize the similarity between 

the predicted gene model and the query. This is done as a post-processing step 

as follows. 
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We examine the exons given in the initially predicted gene structure. The 

query correspondence of each exon is given by the alignment of the spliced 

sequence as computed in the previous steps. For each pair of adjacent exons, if 

there is a gap of more than certain length (again, a user-defined threshold) 

between their corresponding query segments, it signals the possibility that there 

may be missing exons in the DNA region between these two exons, in which 

case we will try to repair the initial prediction. Similarly, for the first and last exon, 

we also check their query correspondences and examine the possible missing 

query coverage before the first exon or after the last exon. Thus, any query 

segment that is not covered by initially-predicted exons calls for possible 

adjustments to such exons. 

Figure 21(a) shows an example where a missing piece of the query is 

identified between Exon2 and Exon3, which is not covered by any HSP in the 

HSP group. The post-processing step will try to determine whether the two initial 

exons in this region (Exon2 and Exon3) need to be adjusted. 

For each region that is subject to repair (either between two exons, before 

the first exon, or after the last exon), an optimal local alignment algorithm [121] is 

used to find the possible missing alignment in the genomic region between two 

adjacent exons; or in the case of the first or last exon, the genomic region of a 

certain length before the first exon or after the last exon, respectively. Figure 

21(b) shows a new local alignment found between Exon2 and Exon3 that is 

aligned with the missing query segment in Figure 21(a). Note that this illustrates 

an ideal case where the missing piece is perfectly covered by the new alignment. 
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Usually the newly-found local alignment may cover only part of the missing query 

segment or extend to the query segments that are already covered by initial 

exons. Nevertheless, the treatment is the same. The new local alignments are 

used to locate the possible new set of splice sites within this region as follows. 

Figure 21 Adjusting the Initial Gene Structure 

 

 

The adjustment is done locally for each region that needs repair, i.e. the 

adjustment for one region does not need to be concerned with other regions. 



 

 91 

Each region is treated as an independent gene region. Given the initially-

predicted exons, if a region between two adjacent exons needs repair (as shown 

in Figure 21), the start of this gene region is fixed at the start position of its first 

exon (also called “region-start”), and the end of the region is fixed at the end 

position of the second exon (also called “region-end”). In other words, the 

initially-predicted exons are used as references to define the gene region. All 

local alignments (including the original HSPs and the newly-found alignments) 

that fall within this region (between “region-start” and “region-end”) are used to 

find a possibly new set of exons in this region, by following the same three steps 

as described above (determine intron regions, select candidate splice sites, find 

the best splice sites). The resulting new set of exons in this region is then 

compared with the initially-predicted exons in the same region. The set of exons 

that leads to higher PID (or in case of the same PID, higher alignment score) in 

its spliced alignment is chosen as the final exons. 

4.7 Discussions 

The modelling of gene prediction problem in genBlastG is designed to 

closely follow the biological intuitions on gene expression and sequence similarity. 

HSPs are used as the basic unit that carry the sequence similarity information. 

genBlastG is built to find the proper correspondence between HSPs and exons 

and to establish the gene structure by looking for gene signals at appropriate 

places. The biological constraints are incorporated into the search for maximized 

sequence similarity between the prediction and the query. 
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genBlastG has a few user-adjustable internal parameters, including 

maximum intron length, minimum intron length and minimum internal exon length, 

which are all extra restrictions on gene models to ensure their conformity to gene 

characteristics of the target genome. They are enforced as constraints when 

determining intron regions and valid pairing of donors and acceptors. They can 

be easily adjusted for different species. In addition, a few thresholds were used 

to control the process of genBlastG. A maximum number of splice sites (currently 

set to 20) is used to control the number of candidate splice sites around the 

border of each intron region. During the post-processing step, the missing query 

coverage in the initial gene model is checked and compared with a maximum 

allowed length of missing query segment. The initial exons are subject to repair 

only when the missing query coverage is more than the allowed length, signalling 

the necessity of repair. This value is set to 1 amino acid for the head or trailing 

exon and 6 amino acids for internal exons in our current experiments. For the 

DNA regions before the first exon and after the last exon in the initial gene model, 

a DNA length limit (1000 bp) is used to restrict the length of DNA on which to 

search for additional local alignments during post-processing. These thresholds 

are used to fine tune genBlastG and their values are determined pragmatically. 

With the integrated design of genBlastA and genBlastG, the gene 

prediction framework of genBlast is both fast and accurate, which will be shown 

in the following experiments. 



 

 93 

4.8 Performance Evaluation 

4.8.1 Experiment Setup 

The performance of genBlastG was tested by applying it to predict genes 

in the genomes of the popular model organism C. elegans and its sister species 

C. briggsae (WormBase release WS200 [3, 109]). We also tested genBlastG on 

the human genome [1]. 

The whole C. elegans genome has 23,973 protein products (including 

isoforms, where the same gene is spliced in different ways to form different 

mRNAs and code for different protein products). Using the C. elegans protein 

sequences as queries, we evaluated genBlastG for its performance in finding 

paralogous genes on the C. elegans genome. C. briggsae genome is a closely-

related species to C. elegans, with unconfirmed gene annotations. Using the 

entire set of C. elegans protein sequences as queries and the C. briggsae 

genome as the target, genBlastG is evaluated for its capability in finding 

orthologous genes. In addition, the human genome is used to test the 

applicability of genBlastG on more complex organisms with large genomes. 

The predictions made by genBlastG are compared with GeneWise [20], 

since both programs are homology-based methods using protein sequences. 

GeneWise represents the current state-of-the-art in gene prediction. It was 

shown to be one of the best performers in the EGASP evaluations, however, it 

was not included in the subsequent nGASP evaluations. Because the running 

time of GeneWise depends heavily on the length of DNA sequence to be 
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examined, we first use genBlastA to narrow gene regions for analysis. Therefore, 

both genBlastG and GeneWise work only on gene regions reported by genBlastA. 

As the entire genome database is stored as one large file, in order to take 

advantage of the reduced genomic regions reported by genBlastA, GeneWise 

requires an extra step of extracting the genBlastA region and use this much 

smaller sequence as its input for each query. Note that the time of extracting the 

genomic regions for GeneWise is not included in GeneWise runtime. In 

genBlastG implementation, in order to obtain the genomic sequence of desired 

gene regions as reported by genBlastA, we build a small index upon the initial 

scan of the genome database. This index contains a record for each sequence in 

the genome database, in the form of <Seq, Pos>, where "Pos" is the start 

position in the database for sequence "Seq". Then, for each gene region reported 

by genBlastA, the index is looked up to find the start position of the desired 

sequence, so that the database scan is directly started from that position without 

scanning the entire database. The time spent on building the index is included in 

genBlastG runtime. 

For C. elegans and C. briggsae genomes, we also compared genBlastG 

results with the existing gene models as previously predicted by the nGASP 

project [38], which were produced by the overall best performer, JIGSAW. The 

nGASP results are obtained from the WormBase ftp site [4]. 

All experiments were run on a computer with Intel Xeon E5430 2.66GHz 

CPU and 16G memory. The genBlast code was written in C++. WU-BLAST [80] 
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(without the grouping option) is used as the sequence similarity search tool to 

produce HSPs. 

4.8.2 Results on C. elegans Genome 

The C. elegans genome has been actively curated by the C. elegans 

research community and the WormBase curators [31, 33, 66]. In the WormBase 

WS200 release, 85.2% of all C. elegans genes are either confirmed or partially 

confirmed. Thus the C. elegans genome annotation is well suited for evaluating 

the accuracy of a new gene prediction program. 

4.8.2.1 Speed Comparison 

We compared the running time of genBlastG with GeneWise. For both 

methods, WU-BLAST and genBlastA were utilized to determine the gene regions, 

from which the top ranked region is used as input to both genBlastG and 

GeneWise. Therefore, in this context, genBlastG and GeneWise can be both 

regarded as the last step in the gene prediction framework as shown in Figure 3. 

The running time reported here refers only to the last step. The running time of 

genBlastA is reported separately. 

We used all curated genes on Chromosome I of C. elegans as queries 

and run genBlastG and GeneWise to find genes in the entire C. elegans genome. 

For query genes with multiple isoforms, only the longest isoform is used. Thus 

the query set consists of totally 2,876 genes. In order to examine the effect of 

query length on the running time of different algorithms, we divided all 

Chromosome I genes into five categories depending on their lengths. The 
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number of genes that are tested in this experiment and their length distributions 

are shown in Table 3. 

Table 3 Length Distribution of C. elegans Chromosome I genes 

 Gene categories according to query length 

Query protein 
length 

[1, 500) [500, 
1000) 

[1000, 
2500) 

[2500, 
5000) 

Over 
5000 

# of genes 2047 644 164 19 2 

 

Figure 22 shows the average running time of genBlastG and GeneWise 

on C. elegans with all Chromosome I genes as queries. Note that it is on 

logarithmic scale. The running time for each category is the average running time 

for all genes in that category. Figure 22 shows that genBlastG is faster than 

GeneWise, sometimes hundreds of times faster, especially for longer genes. It 

took 5 hours and 25 minutes for GeneWise to predict gene models for all 

Chromosome I query genes. In contrast, the total running time for genBlastG on 

the same gene set is just over 4 minutes. genBlastG took about 18 minutes to 

predict gene models for the entire C. elegans genome. It is estimated that 

GeneWise would take more than 1 day to finish the same task. 

The total running time of genBlastA that is used as the pre-processing tool 

in this experiment (for Chromosome I genes) was just 5 minutes. To process all 

genes in the C. elegans genome, the total time spent on genBlastA alone was 1 

hour and 17 minutes, given the large number of HSPs (more than 17.5 million 

HSPs) obtained by WU-BLAST. 
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Figure 22 Running Time on C. elegans genome with Chromosome I genes as queries 
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4.8.2.2 Accuracy Comparison 

For accuracy comparison, we used the curated gene models in 

WormBase (release WS200) as the true models to evaluate all results. As 

discussed in Section 2.4, the accuracy of gene finders is commonly measured by 

specificity and sensitivity. Specificity (Sp) is the percentage of predictions that are 

correct; sensitivity (Sn) is the percentage of actual coding genes / exons / 

nucleotides that are predicted as such. 

Because each isoform is used as an independent query to search for 

genes, both genBlastG and GeneWise produce a gene model for each isoform. 

Therefore, we can compare them at isoform, exon and base levels. On the other 



 

 98 

hand, the pre-existing nGASP annotation has gene predictions for the entire 

genome, but with only one model per gene, thus it is compared with genBlastG at 

gene, exon and base levels on the entire C. elegans genome. As described in 

Section 2.4, a gene is considered correct so long as at least one of its isoforms is 

predicted correctly, i.e. the nGASP gene model is considered correct if it matches 

any of the WormBase isoforms. 

Table 4 shows the accuracy results of genBlastG and GeneWise on 

Chromosome I genes. genBlastG outperforms GeneWise, especially at the 

isoform level. Table 5 shows the comparison between genBlastG and nGASP 

predictions for the entire C. elegans genome, where genBlastG exhibited much 

better accuracy. For completeness, the isoform-level accuracy of genBlastG is 

also shown (nGASP does not predict isoforms). These tables show that the 

performance of genBlastG is consistent on both Chromosome I genes and the 

entire genome. The specificity and sensitivity of genBlastG are both well above 

90% at all levels. 

Note that the accuracy of nGASP predictions differs from what was 

reported by the original nGASP project, because the gene regions that are used 

for testing are different. Our evaluation is based on the entire C. elegans genome, 

while nGASP evaluation used 10% of the genome. The WormBase models used 

for evaluation are also from different WormBase releases. In addition, the protein 

sequences used in our evaluation are more accurate compared with the data 

supplied by nGASP. In general, our experiments show that previous nGASP 

models are much worse than genBlastG models, especially at the gene level. 



 

 99 

Table 4 Accuracy Comparison on C. elegans Chromosome I genes (genBlastG vs. 
GeneWise) 

 Isoform level Exon level Base level 

 Sp. (%) Sn. (%) Sp. (%) Sn. (%) Sp. (%) Sn. (%) 

genBlastG 95.00 95.00 99.07 98.62 99.69 99.69 

GeneWise 89.02 88.66 98.02 96.44 99.89 99.64 

Table 5 Accuracy Comparison on entire C. elegans genome (genBlastG vs. nGASP) 

 Isoform level Gene level Exon level Base level 

 Sp. 
(%) 

Sn. 
(%) 

Sp. 
(%) 

Sn. 
(%) 

Sp. 
(%) 

Sn. 
(%) 

Sp. 
(%) 

Sn. 
(%) 

genBlastG 94.26 94.24 95.96 95.96 98.64 98.17 99.62 99.62 

nGASP n/a n/a 72.68 58.97 92.17 71.43 97.03 94.02 

 

4.8.3 Results on C. briggsae Genome 

C. briggsae genome is a sister genome of C. elegans and has been widely 

used as a comparative platform for understanding the genome of C. elegans. 

These two species split approximately 80-120 million years ago [40, 127], around 

the same time as the human/mouse split [95]. Early comparative analysis 

between genes sets of C. elegans and C. briggsae revealed about 2,000 different 

genes [127]. 

Compared with the extensively annotated C. elegans genome, essentially 

all C. briggsae genes are still hypothetical and have not been validated since its 

publication. Recently, the C. briggsae genome has been re-annotated by the 

nGASP project as an attempt to improve its gene set [38]. Despite these efforts, 
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many gene models are obviously defective when compared with orthologous 

genes in C. elegans. In this thesis, genBlastG has been used to revise C. 

briggsae gene models based on their homology to C. elegans genes [72]. 

genBlastG was applied to predict C. briggsae genes using the same set of 

C. elegans proteins as queries (23,973 proteins in WS200 release [3], including 

isoforms) and the C. briggsae WS200 genomic sequences as the target genome. 

The predictions made by genBlastG are compared with GeneWise, WormBase 

and nGASP predictions. 

4.8.3.1 Speed Comparison 

Similar to the C. elegans experiments, for running time comparison 

between genBlastG and GeneWise, WU-BLAST and genBlastA were used as 

pre-processing tools and all C. elegans genes on Chromosome I were used as 

queries. Figure 23 shows the average running time of genBlastG and GeneWise 

for the five categories as in Table 3. It shows similar trends to Figure 22. 

GeneWise took 5 hours and 13 minutes to finish this experiment. In contrast, 

genBlastG took 5 minutes. For predicting all orthologous genes on the entire C. 

briggsae genome, genBlastG took 18 minutes. 
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Figure 23 Running Time on C. briggsae genome with C. elegans Chromosome I genes as 
queries 
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4.8.3.2 Comparison of Query Alignment PID 

For the C. briggsae genome, because its current WormBase annotations 

are mostly based on other gene prediction programs and not validated by 

experimental evidence, there is no ultimate truth against which to compare gene 

models. We evaluated all predictions (genBlastG, GeneWise, nGASP, 

WormBase) based on the alignment identity (PID, percentage of identity in the 

alignment) between the predicted gene product and the query protein, which will 

be referred to as the query alignment PID. The alignment was done after the 

gene models are predicted and by using the optimal local alignment algorithm 

[121]. 
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Note that it is not clear how the existing gene models annotated by 

WormBase and nGASP correspond to the new predictions made by genBlastG. 

Therefore, we compared the genBlastG model with these existing models only if 

they are in the same genomic region. If the WormBase/nGASP models overlap 

with more than one genBlastG model, then the comparison is made with the 

model that gives WormBase/nGASP the highest PID. 

Figure 24 shows the PID comparisons between genBlastG, WormBase 

and nGASP. The query alignment PID of genBlastG models are plotted against 

the PID of corresponding WormBase or nGASP models. Each point represents a 

gene with PID from genBlastG and WormBase/nGASP. The X-axis represents 

PID from genBlastG; Y-axis represents PID from WormBase (Figure 24a) or 

nGASP (Figure 24b). The area below the diagonal line in the figure shows the 

cases (points) where genBlastG provides better PID than WormBase or nGASP 

predictions. Most of the cases fall in this area. Compared with WormBase 

predictions, about 25% of genBlastG predictions show much higher PID (PID 

differs by more than 10%) and only 2% of genBlastG predictions show PID of 

more than 10% lower. The overall comparison between genBlastG and nGASP is 

almost the same as that between genBlastG and WormBase, as shown in Figure 

24. The gene models produced by genBlastG have the average query alignment 

PID of 72.7%, while the average PID of WormBase and nGASP models is 64.8% 

and 65.4%, respectively. genBlastG performs considerably better. 

Figure 25 shows the PID comparison between genBlastG and GeneWise, 

based on C. elegans Chromosome I query genes. Models produced by 
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genBlastG show slightly higher PID than models from GeneWise. The average 

PID of genBlastG models is 73.8%, whereas the average PID of GeneWise 

models is 72.4%. About 8% of genBlastG predictions produced much higher 

PIDs than those of GeneWise (with PIDs of more than 10% difference) and 1.5% 

of genBlastG predictions have PIDs of more than 10% worse. 

Note that GeneWise does not always produce a complete gene model, i.e. 

it sometimes gives a partial gene structure that does not have the proper stop 

codon where a gene should end. In contrast, genBlast always predicts a 

complete gene model that ends at a stop codon. In fact, in this experiment, 35% 

of GeneWise gene models do not end at a stop codon. These cases (points) are 

shown in red color in Figure 25. Such situation occurs much more frequently in 

cases where GeneWise showed higher PID than genBlastG. Among the 

GeneWise models whose PIDs are more than 10% higher than those of 

genBlastG, 68% of them do not have proper stop codons at the ends. 

genBlast outperforms all other gene prediction tools in terms of alignment 

PIDs of the predicted model against the query, indicating that genBlastG models 

are more similar to their corresponding query genes. Although expressing the 

overall accuracy in terms of query alignment PID may be biased since not all 

orthologous genes in C. briggsae genome are highly similar to their C. elegans 

counterparts, we believe it is an appropriate choice as it shows an overall picture 

and insights into the general quality of gene models. 
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Figure 24 Comparisons of Query Alignment PIDs between genBlastG, WormBase, nGASP 

(a) genBlastG vs WormBase

(b) genBlastG vs nGASP

genBlastG PID

genBlastG PID
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Figure 25 Comparisons of Query Alignment PID between genBlastG and GeneWise 

 

4.8.4 Re-annotating the C. briggsae Genome 

The performance evaluation based solely on query alignment PID is not 

conclusive with regards to the quality of the predicted gene models. Therefore, 

we also closely examined the new models predicted by genBlastG and compared 

them with current WormBase and nGASP models manually [72]. We focus on the 

genBlastG models that show above 60% of query alignment PID (11,480 models) 

and examined them in detail. Biological experiments were carried out in the lab in 

order to validate some of the predicted gene models. Particularly, PCR 

verification [96] was performed to confirm the predictions using full-length cDNAs. 

The comparison with the current WormBase and nGASP gene models 

revealed four types of revisions that are made by genBlastG (Figure 26) [72]: 
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(1) gene model split: A current WormBase gene model is split into two or 

more gene models by genBlastG; 

(2) gene model merge: Two or more current WormBase gene models are 

merged to form a single genBlastG gene model; 

(3) gene model trimming/extension: The ends of a gene are trimmed or 

extended by genBlastG; and  

(4) internal exon alteration: Internal exons are added/removed/revised by 

genBlastG. 

Figure 26 Gene Model Differences 
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Additionally, genBlastG also discovered many novel gene models that 

show high similarity to known C. elegans genes. These are the genes located at 

the genomic regions where there is no gene models in the current WormBase 

annotation. 

The summary of cases in each category is shown in Table 6. Each of 

these categories will be demonstrated in the following sections. 

Table 6 Summary of 5 categories of gene revisions made by genBlastG (C. briggsae 
genome) 

 Number 
of Cases 

Number of 
cases with PID 
improvement 

by at least 10% 

Avg. 
genBlastG 

PID (%) 

Avg. 
Worm-
Base 

PID (%) 

Avg. 
nGASP 
PID (%) 

Splits 398 340 77±10 52±14 60±18 

Merges 239 179 79±10 58±15 60±16 

Trims/Extends 3825 1032 78±10 70±15 69±16 

Internal exon 
differences 

4594 692 79±10 73±14 72±14 

Novel 85  72±9   

 

4.8.4.1 Gene Model Split 

Upon close examination, we found that many current WormBase models 

are in fact the false merge of separate adjacent gene models, and genBlastG is 

able to correctly identify them as individual models, as shown in Figure 27.  

According to the homology to their corresponding C. elegans gene models, 

these gene models should be split to two or more gene models. Altogether, we  
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Figure 27 Gene Model Split Cases 

 

have found 398 such cases. Some (158) of these cases have been fixed by the 

nGASP project (e.g. Figure 27a), while many (240) have not (e.g. Figure 27b). 

After the split, the new gene models predicted by genBlastG show significantly 

improved query alignment PIDs, as shown in Figure 27c and Figure 27d. The 

average PID of genBlastG models in these split cases is 77%, compared with 
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that of WormBase and nGASP models at 52% and 60%, respectively. The PCR 

verification for the two examples shows that individual gene models as predicted 

by genBlastG can be amplified, but the whole length gene model suggested by 

WormBase cannot be amplified (Figure 27e, f). These results suggest that the 

genBlastG predictions are true.  

4.8.4.2 Gene Model Merge 

A number of current WormBase gene models have been erroneously split 

into two or more unrelated gene models (Figure 28a, b). Based on the homology 

to their corresponding genes in C. elegans genome, these gene models should 

be merged to form a single gene model as predicted by genBlastG. We have 

found 239 merge cases in the current WormBase models. Again, some of these 

cases (40) have been fixed by the nGASP project, but many (199) have not. 

Nearly all merge cases show improved PID (Figure 28c, d). The PID of 

genBlastG models on average is 79%, whereas the average PIDs for WormBase 

and nGASP models are 58% and 60%, respectively. Verification by PCR 

indicates that many merges are real since the full length or the junction can be 

amplified from cDNA library (Figure 28e, f). 

Many merge cases we observed are due to isoform predictions, where the 

same gene is alternatively spliced to code for different proteins. For example, an 

alternative splicing of a gene can skip an exon or retain an intron during splicing. 

In fact, alternative isoform prediction remains a challenge in gene prediction and 

many gene finders do not handle isoform prediction. Because genBlastG uses 

protein isoforms directly as queries, it is able to pick up the corresponding 



 

 110 

isoform gene models and improve gene annotation quality. In the experiments on 

C. briggsae genome, predictions made by genBlast revealed that some gene 

models in the WormBase annotation may represent just one of the many 

isoforms and a nearby smaller (single exon) gene model is actually part of the 

same gene in another isoform. Figure 29 shows an example of how three small 

gene models (CBG26024, CBG20187, and CBG20185) are part of a larger 

model (CBG20190) in separate isoforms. This example shows that having 

isoform information will improve gene model prediction dramatically, especially 

for single exon genes. 
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Figure 28 Gene Model Merge Cases 
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Figure 29 New Gene Models due to Isoforms 
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4.8.4.3 Gene Model Trimming/Extension 

The first and last exons of many current WormBase gene models are 

defective, according to the homology to their corresponding C. elegans genes. In 

these cases, the gene models need to be trimmed or extended at either end. We 

found 3,825 cases, for which the average query alignment PID produced by 

genBlastG and WormBase is 78% and 70%, respectively. On the other hand, 

within these cases, 3,544 nGASP models show different start and end positions. 

The average PID for these nGASP models is 69%. 

An example of gene trimming in shown in Figure 30a, and another 

example of gene extension is shown in Figure 30b. In both cases, genBlastG 

predictions improve the current WormBase models significantly. Overall, 

genBlastG models are found to be more similar to their C. elegans counterparts, 

as opposed to the WormBase models and nGASP models (Figure 30c, d). In 

some cases, changing the start or the end positions leads to a change of reading 

frame, creating an entirely different protein sequence. For example, in Figure 30b, 

the exon frames for the genBlastG model of F43G9.13 are 2, 3, 3, 1, and 3, 

whereas the exon frames for the corresponding WormBase model CBG12505 

are 1, 1, 2, and 1. The change in reading frame produces an entirely different 

protein sequence that dramatically improved similarity to the C. elegans query 

protein. 
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Figure 30 Gene Model Trimming/Extension Cases 

 

4.8.4.4 Internal Exon Alteration 

These are the cases where the gene start and end are the same but the 

exons in between are either in different length, missing, or have extra exon(s). 

We found 4,594 cases where genBlastG has different internal exons from current 

WormBase C. briggsae models, for which the average query alignment PID of 

genBlastG and WormBase is 79% and 74%, respectively. Within these cases, 

4,489 nGASP models contain differences in internal exons with an average PID 

of 73%. 
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Figure 31a shows an example where an extra exon is predicted by 

genBlastG, which improved its alignment PID with the C. elegans query. Overall, 

most genBlastG models are more similar to their C. elegans queries, as shown in 

Figure 31b and Figure 31c. Figure 31d shows a band of about 400 base pairs 

long, which represents the expected size of the new gene model that is revised 

by genBlastG. Similar PCR verifications were done for two other cases 

(CBG16922 and CBG06025), and both were found to support the gene models 

predicted by genBlastG. 

4.8.4.5 Novel Genes 

The experiments revealed 85 genBlastG models that do not overlap with 

current WormBase gene models (Figure 32), 9 of which were found 

independently by nGASP (Figure 32a). All of these genBlastG models show 

more than 60% of query alignment PID. The shortest model is 105 base pairs 

long and the longest is 1407 base pairs long. On average, these genBlastG 

models show 72% PID with average length of 375 base pairs. Figure 32 shows 

four such examples (Figure 32a, b, c, d), each of which is validated using PCR 

amplification from a cDNA library (Figure 33). These results indicate that there 

are still many gene models missing from previous annotations and the models 

predicted by genBlastG are likely to be real. 

4.8.4.6 Summary 

genBlastG was applied to the entire C. briggsae genome. Compared with 

current WormBase annotations, 1,805 genBlastG models showed significant 
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improvement as indicated by similarity to their orthologous genes in the C. 

elegans genome. The query alignment PIDs of these gene models are at least 

10% higher than those of WormBase models. The comparison between 

genBlastG models and WormBase models revealed five categories of revisions: 

split, merged, trimmed/extended, different internal exons, and gene models that 

are missed entirely by WormBase. Experimental validation supports many gene 

models revised by genBlastG, demonstrating that many WormBase gene models 

are defective. These 1,805 genBlastG models can be used to replace the 

corresponding gene models in current WormBase annotations. Many additional 

gene models in the C. briggsae genome could be revised based on genBlastG 

predictions after more careful examination. 
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Figure 31 Internal Exon Alteration Cases 

 



 

 

1
1
8
 

Figure 32 Novel Genes 
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Figure 33 PCR Verification of Novel Genes 
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4.8.5 Results on the human genome 

Both C. elegans and C. briggsae are relatively simple organisms that have 

small genomes, with about 100M base pairs. In order to test genBlastG on more 

complex organisms that have larger genomes, we evaluated its performance on 

the human genome that has over 3G base pairs. Researches on the human 

genome are generally of higher interest because of their direct impact on health-

related studies, The performance of a gene prediction program on the human 

genome likely indicates the program’s applicability and impact among all gene 

prediction tools. 

We obtained all human peptide sequences from ENSEMBL database [2]. 

To compare genBlastG and GeneWise, we randomly selected 75 human peptide 

sequences as queries and run both genBlastG and GeneWise to find genes in 

the entire human genome. We also tested genBlastG on the human genome with 

all human peptide sequences as queries. 

4.8.5.1 Speed Comparison 

The 75 test genes were divided into four categories based on their lengths. 

Table 7 shows their length distributions. Figure 34 shows the average runtime of 

genBlastG and GeneWise in each category. It shows similar trends as in Figure 

22 and Figure 23. GeneWise becomes slow for long query sequences, for which 

genBlastG is hundreds or even thousands of times faster than GeneWise. In 

general, the runtime of GeneWise on human genome is significantly slower than 

on smaller genomes such as C. elegans and C. briggsae. But genBlastG remains 



 

 121 

to be fast on such large-scale genome. The total runtime of genBlastG is merely 

44 seconds, compared with 2 hours and 47 minutes spent by GeneWise on 75 

genes. 

Table 7 Length Distribution of 75 test genes on the human genome 

 Gene categories according to query length 

Query protein length [1, 500) [500, 1000) [1000, 
2500) 

[2500, 
5000) 

# of genes 43 27 3 2 

 

Figure 34 Running Time on the 75 human test genes 
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4.8.5.2 Comparison of Query Alignment PID 

Figure 35 Query Alignment PID on the 75 human test genes 
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Figure 35 shows the query alignment PIDs of genBlastG and GeneWise 

models on the 75 test genes. Both genBlastG and GeneWise produced models 

with PIDs of more than 40% for all 75 genes. In most cases, genBlastG models 

show comparable PIDs to GeneWise models. The majority of genBlastG models 

(68 genes) have PIDs of more than 90%, whereas 65 GeneWise models have 

PIDs of more than 90%. The average PID of genBlastG models is 95.78%, and 

the average PID of GeneWise models is 93.60%. Out of the 75 genes, 

genBlastG models show higher PID than the corresponding GeneWise models 

on 28 genes, among which 5 genBlastG models show much higher PID (with 

more than 10% PID difference). On the other hand, 8 genBlastG models show 
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lower PIDs, among which 2 genBlastG models have more than 10% lower PIDs 

than the corresponding GeneWise models. These cases are clearly identified in 

Figure 35. It indicates that genBlastG is comparable to GeneWise in terms of 

overall prediction quality and the two algorithms can be used as complement to 

each other. 

4.8.5.3 Running genBlastG on the entire human genome 

We have also tested genBlastG on the entire human genome, using the 

entire set of 77,748 human protein sequences as queries. genBlastG produced 

gene models for 77,264 of these proteins, with some genes having alternative 

models that lead to the same alignment PID. On average, genBlastG gene 

models achieved alignment PID of 92.36%, with query coverage of 99.07%. This 

shows that these gene models are very similar to their corresponding queries. 

The average running time of genBlastG is less than 1 second, with the total time 

of just 12 hours. 

Table 8 Length Distribution of Genes on the entire human genome 

 Gene categories according to query length 

Query protein length [1, 500) [500, 
1000) 

[1000, 
2500) 

[2500, 
5000) 

>=5000 

# of genes 54913 15912 5864 499 76 

 

Table 8 shows the length distribution of genes on the entire human 

genome. For each category, the average running time of genBlastG is shown in 
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Figure 36. It can be seen that the behaviour of genBlastG is persistant with its 

performance on the smaller genomes. 

Figure 36 Average Running Time of genBlastG on the entire human genome 
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4.8.5.4 Summary 

The experiments on the human genome show similar performances of 

genBlastG as in the C. elegans and C. briggsae experiments. In general, 

genBlastG is significantly faster than GeneWise while being competitive or 

slightly better in accuracy. Running genBlastG on the human genome confirmed 

the applicability of genBlastG on such large and complex genome, making 

genBlastG a highly valuable homology-based gene prediction tool. 
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5: CONCLUSIONS 

5.1 Discussions 

Gene prediction is a crucial aspect in the field of genomics. The scope of 

gene prediction discussed in this thesis is on predicting gene structures that 

consist of coding exons and introns. This thesis presents a novel homology-

based gene prediction program, genBlast, which is able to quickly and effectively 

locate gene models homologous to a query protein. The genBlast program will be 

made publicly available upon publication [111]. 

Like GeneWise, genBlast takes a query protein sequence and predicts 

genes encoding the same or similar protein sequences in the target DNA 

sequence. The detection of gene homology is based on protein sequence 

similarity, therefore, it is able to detect genes with silent mutations that result in 

changes in DNA sequence while coding the same protein. Such methods are 

able to predict both genes and pseudogenes, using the same treatment based on 

sequence similarity. Pseudogenes are non-functional relatives of known genes 

that do not have protein-coding ability, resulting from various genetic 

disablements (stop codons, frameshifts, or a lack of transcription) [71]. On the 

other hand, being protein based, such programs obviously cannot predict UTRs 

(untranslated regions) [25, 115]. When used in predicting protein-coding genes, 

such methods are usually more accurate than ab initio methods and homology-

based methods that do not use protein evidence, especially when the target gene 
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is relatively well conserved and carries sequence similarity of over 85% [20]. 

Therefore, the closer the species is, the better the prediction can be made by 

protein-homology-based methods. This is also demonstrated by our experiments 

on the C. elegans and C. briggsae genomes, where genBlast produced much 

higher accuracy than nGASP predictions on the C. elegans genome, while on the 

C. briggsae genome, the improvement in prediction quality is distinguishable but 

smaller. 

However, unlike GeneWise, genBlast avoids the use of high-cost 

mathematical models. It makes direct use of HSPs reported by local alignment 

tools such as BLAST. Previous attempts that make use of BLAST-like tools only 

use HSPs to identify possible gene regions [44]. Once gene regions are identified, 

HSPs are no longer used in subsequent gene prediction. In genBlast, the 

sequence similarity information represented in HSPs is extensively exploited, not 

only in identifying gene regions, but also for gene structure prediction. By 

integrating HSPs as direct evidences of sequence similarity, genBlast is able to 

efficiently predict gene models that code for similar protein sequence. 

The two major components of genBlast serve different purposes. 

genBlastA identifies regions of homologous genes, while genBlastG predicts 

gene structures given the output from genBlastA. genBlastA can also be used 

separately to help other gene finders such as GeneWise, providing flexibility in 

the gene prediction framework outline by genBlast. 

genBlast relies on HSPs (local alignments) to find sequence similarities, 

thus the initial step of finding HSPs is critical to the quality of genBlast models. 
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The problem of local alignment is well defined with optimal solutions. Sequence 

alignment tools for analyzing biological sequences usually make use of heuristics 

due to speed considerations. They are able to consistently produce reliable 

HSPs. In our experiments, HSPs produced by default BLAST parameters are 

adequate for genBlast predictions. 

The experiments on the C. briggsae genome using the C. elegans genes 

as queries have shown that the gene models detected by genBlast have 

considerable advantages over the current annotations in WormBase and nGASP, 

with some gene models experimentally validated by PCR amplification. Our re-

annotated C. briggsae gene models will be made available via WormBase upon 

publication [72], providing a solid improvement over current WormBase 

annotation. 

In addition, compared with the state-of-the-art homology-based gene 

finder, GeneWise, genBlast is orders of magnitude faster, due to its attractively 

simple modelling of the gene prediction problem. genBlast extensively utilizes 

alignment information embedded in HSPs, which can be obtained efficiently with 

the use of fast sequence similarity search tools. This speed advantage gives 

genBlast the capability to handle large genomes, as demonstrated in the human 

genome experiments. Meanwhile, genBlast is also highly competitive in accuracy 

and always predicts complete gene models, as indicated by our experiments on 

the two nematode and the human genomes. For many cases where GeneWise 

did not produce reliable gene models, genBlast is able to predict better models 

with much higher alignment PIDs, indicating the existence of homologous genes 
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that are not yet identified by previous approaches. Such performance 

improvements demonstrated the value of genBlast in annotating newly 

sequenced genomes, as a good alternative to GeneWise. 

genBlast also provides a substantial extension to BLAST or other 

sequence similarity search tools, which are widely used to perform analysis on 

the genome sequences. The results of these tools are fragmented and often 

over-whelming even to experienced users. genBlastA organizes HSPs into 

ranked HSP groups, and genBlastG further provides gene structure predictions. 

This makes BLAST results more accessible and meaningful to experimental 

biologists. Thus genBlast extends the functionality of sequence similarity search 

tools by directly pinpointing the gene regions and even precise gene structures. 

The possibility of integrating genBlast into BLAST or WU-BLAST to enable them 

for gene prediction will be explored (N. Chen, personal communications) and if 

successful, it will have great impact in gene prediction community due to 

popularity of BLAST. 

5.2 Future Work 

The quest of gene prediction is still an on-going journey. The use of 

protein sequence is beneficial in achieving high accuracy in gene prediction. The 

merit of genBlast has been demonstrated by the experiments on the two 

nematodes and the human genomes. The overall performance of genBlast 

should be further evaluated by testing it on other species. In particular, genBlast 

should be assessed by using it on genomes with more diverse evolutionary 
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distances between the query and target genomes, in order to study the effect of 

genome distance on the accuracy of gene prediction. 

A further extension to the current genBlast algorithm can be the 

incorporation of more evidences, both intrinsic and extrinsic. For example, one 

can incorporate advanced splice site finders that take into account the base 

dependency, length distributions and content biases between exons and introns. 

In addition, full-length cDNAs or ESTs could be used to refine gene prediction. 

The study of genome variation is currently an active research topic [90]. 

Studies have shown that genomes of individual humans have numerous 

variations [67-69, 116], such as SNPs (single nucleotide polymorphism), 

insertions, deletions, inversions, transpositions, translocations, etc. Large-scale 

study of these genome variations will provide insight into the effect of genome 

variations on human health and lead to personalized medicine [142]. It is 

interesting to note that the design principle behind genBlastA is suitable for 

general-purpose homologous sequence assembly and can be useful for 

detecting genome variations. In fact, genBlastA is not limited to finding 

homologous sequences to proteins. It can be used to find homologous 

sequences to other biological sequences, such as DNA. For example, using a 

DNA sequence as the query and another DNA sequence as the target, 

genBlastA can be applied to assemble regions of query DNA that share 

sequence similarity to another region on the target DNA. By examining alignment 

between the two regions, one can identify various types of variations between the 
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two DNA sequences. It will be an interesting project to extend genBlastA in this 

direction. 
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Appendix 1: genBlast Pseudocodes 

 

Stage 1: BLAST 
Input: a query protein sequence q, a target genome T 
Output: HSPs 
 
Run BLAST with query q and target T 
 
 
Stage 2: genBlastA 
Input: HSPs 
Output: a ranked list of HSP groups 
 
1. For each DNA sequence t in T 
2.  collect HSPs on t into set H 

3.  initialize starting node σ and ending node τ 
4.  construct all adjacency edges between HSP nodes in H 
5.  construct all skip edges between HSP nodes in H 

6.  construct separating edges from σ to HSP nodes  
  without incoming edges 
7.  construct separating edges from HSP nodes without  

  outgoing edges to τ 
8.  For each destination node of a separating edge 
9.   compute single-source shortest extension path 
10.  End for 
11. End for 
12. Rank all local shortest extension paths by length 
13. Output groups in ranked order 
 
 
Stage 3: genBlastG 
Input: ranked HSP groups, HSPs, q, T 
Output: gene models for all HSP groups 
 
1. For each HSP group in ranked order 
2.  Find gene start (first in-frame start codon at the  
  beginning or before first HSP) 
3.  Find gene end (first in-frame stop codon at the end  
  or after the last HSP) 
4.  initial-gene-model = Compute-Exons(HSPs, gene-start,  
  gene-end) 
5.  final-gene-model = Repair-Gene-Model(initial-gene- 
  model, HSPs, q, T) 
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6. End for 

 

Compute-Exons(HSPs, gene-start, gene-end) 
1. Find-intron-regions(HSPs) 
2. For each intron region R in sequential order 
3.  Find MAX_NUM_SPLICE_SITES of candidate donors around  
  upstream border of R 
4.  Find MAX_NUM_SPLICE_SITES of candidate acceptors  
  around downstream border of R 
5. End for 
6. For each intron region in sequential order 
7.  Find-best-donor-acceptor-pair(candidate-sites, HSPs,  
  q, T) 
8. End for 
9. Return gene-model 

 

Find-intron-regions(HSPs) 
1. For each HSP in sequential order 
2.  For each gap on HSP query segment with length >=  
  MIN_INTRON_REGION_LEN 
3.   Add the corresponding target (DNA) region to  
   intron region 
4.  End For 
5.  If current HSP and next HSP have overlapping query  
  segments 
6.   Examine the overlapped query portion O in two 
HSPs,  
   identify the target region R that aligns with O  
   with lower identity 
7.   Add region R to intron region 
8.  End if 
9.  If the distance between current HSP and next HSP >=  
  MIN_INTRON_REGION_LEN 
10.   Add the DNA region between current and next HSP 
to  
   intron region 
11.  End if 
12. End for 

 

Find-best-donor-acceptor-pair(candidate-sites, HSPs, q, T) 
1. For each valid pair of donor d and acceptor a in  
 candidate-sites (including no intron case) 
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2.  Get Sd, donor-side target segment for d 
3.  Get Sa, acceptor-side target segment for a 
4.  Get corresponding query segment 
5.  Compute PID/score of alignment between spliced  
  sequence Sd-Sa and the corresponding query segment,  
  using HSP alignments 
6. End for 
 
7. If a single donor-acceptor pair d1-a1 has the highest  
 PID 
8.  return d1-a1 
9. Else 
10.  If among the pairs with highest PID, a single pair  
  d2-a2 has highest alignment score 
11.   Return d2-a2 
12.  Else 
13.   For each pair of donor d and acceptor a among all  
   pairs with highest-PID/score 
14.    Compute optimal sequence alignment between  
    spliced sequence and corresponding query  
    segment 
15.   End for 
16.   Return the pair of d-a that has highest alignment  
   PID/score 
17.  End if 
18. End if 

 

Repair-Gene-Model(initial-gene-model, HSPs, q, T) 
1. If there is missing query coverge before first exon in  
 the initial gene model 
2.  find additional best local alignment in DNA region  
  before the first exon, and add it to list of HSPs 
3.  Find new gene start based on new alignment 
4.  new-exons = Compute-Exons(HSPs, new-gene-start,  
  first-exon-end) 
5.  If the spliced alignment PID of new-exons is higher  
  than that of initial first exon 
6.   replace the initial first exon by new-exons 
7.  End if 
8. End if 
9. For each exon in the current gene model 
10.  If there is significant missing query coverage in  
  current region (between exon-start of current exon E1  
  and exon-end of next exon E2) 
11.   Align corresponding DNA region and missing query  
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   region for best local alignment, add it to the  
   list of original HSPs 
12.   new-exons =Compute-Exons(HSPs, exon-E1-start, 
   Exon-E2-end) 
13.   If the spliced alignment PID of new-exons is  
   Higher 
14.    Replace E1 and E2 by new-exons 
15.   End if 
16.  End if 
17. End for 
 
18. If there is missing query coverage after the last exon  
 in current gene model 
19.  Find additional best local alignment in DNA region  
  after the last exon, add it to list of HSPs 
20.  Find new gene end based on new alignment 
21.  new-exons = Compute-Exons(HSPs, last-exon-start, new- 
  gene-end) 
22.  If spliced alignment PID of new-exons is higher 
23.   Replace the last exon by new-exons 
24.  End if 
25. End if 
26. Return final-gene-model 

 




