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Abstract

The problem of model selection is addressed from a general perspective and solutions

are considered within the domain of item response theory (IRT). Selection is concep-

tualized as including both the evaluation of individual models and the simultaneous

comparison of multiple candidates. Traditional tests of goodness of fit can often be

regarded as dealing with the former situation, while information criteria can only be

applied to the latter. The significance of this last point is pursued in some detail. In

terms of optimization, it is shown that information criteria do not provide a means

of determining how well their various objective functions are satisfied. This implies

that some further criterion is required in order to establish whether the candidates

recommended by any information criterion are indeed satisfactory. The need for such

a criterion motivates the present work. This approach begins by conceptualizing para-

metric stochastic models as sets of probability distributions. In any given application

the purpose of such a model is to predict the relative frequencies with which an out-

come variable takes on its values. This notion of prediction is described in terms of

the inclusion of the distribution of the outcome variable in the set of distributions

implied by the model: If this is not the case, the model is said to be inaccurate. The

concept of accuracy then serves as a basis for selection in IRT. In particular, any
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IRT model can be represented as a manifold embedded in Euclidean space, and the

proximity of any observed distribution to a point on this manifold can be interpreted

in terms of the norm of their difference. Describing the geometric properties of sets

of candidates provides a means of selection that is not tied to any particular set of

observations; this is an important area of further investigation.
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Chapter 1

Introduction

The problem of evaluation is basic to the application of statistical models and has

been addressed from a large variety of perspectives. From the perspective taken in this

dissertation, the character of the problem may be stated as follows: How do we decide

when a model is adequate to its intended purpose? There are many purposes to which

a model may be directed, for example representation, prediction, or explanation, and

it is important not to premise the statement of the problem on only one or another

of these. Regardless of the purpose to which a given model is applied, the question of

how well it meets this purpose can always be asked – that is, we can always raise the

problem of evaluation. The main presupposition of this questioning is the necessity

of justifying the interpretation of statistical models, and this is especially relevant to

their applications in scientific research.

Although the problem of evaluation may be phrased in very general terms, its

solutions are necessarily more particular. In principle the evaluation of a model must

admit its stated purposes, and in practice consideration must be limited to some

formalization of the models of interest; we can neither consider all purposes nor all
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models simultaneously. For this reason, there can be no single solution to the eval-

uation problem. Nonetheless, it is desirable to articulate purposes and models that

are sufficiently broad to find relevance to a wide range of applications. Having estab-

lished this initial context the goal is to describe methods of evaluation that can be

advantageously employed therein.

This dissertation is concerned with methods of model selection, which is under-

stood to mean the simultaneous evaluation of one or more models. This approach

is premised on a set of models that are considered to be potentially adequate for a

stated purpose, and these are referred to as candidates. The possibility of multiple

candidates reflects an important characteristic of contemporary stochastic modeling,

namely a plethora of choice. This is the context that the approach taken in this

dissertation finds its relevance. This approach is essentially a method of elimination,

and it strives for a more stringent evaluation of models than is afforded by current

methods based on so-called information criteria (IC)1. For reference, the guts of the

argument against IC as a sufficient means of model evaluation are given in the fol-

lowing two paragraphs. This motivates the approach taken in this dissertation, and

it assumes that the reader is familiar with IC. The argument is elaborated in the

following section of this introductory chapter.

In contrast to IC-based approaches, it is argued that a model has been properly

evaluated only if the means of evaluation have allowed for the possibility that the

model is judged to be inadequate. Without such a criterion of (in)adequacy, selection

can only proceed in an ad hoc manner and this occurs, for example, when the optimal

value of an IC is defined as its minimum over a set of candidates. In particular, this

1The notation ‘IC’ is used to denote the singular and the plural of information criterion
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optimal value cannot be defined independently of a set of candidate models. The

intuitive strategy behind IC-based selection is to choose the best model in a set of

candidates, where ‘best’ is defined by the objective function of the particular IC in

question. However, this strategy offers no assurance that the best best is also a good

one, that it attains a value of the objective function that should regarded as adequate.

IC cannot be used for this latter purpose because they are related to their objective

functions by unknown quantities, and hence their objective functions do not provide

grounds for direct interpretation of their numerical values.

To see that the method of evaluation offered by IC is not sufficient for the selection

of adequate models, consider the following argument. As is well known, the use of IC

is not appropriate when the set of candidates consists of a single model. In comparison

with conventional methods of testing the goodness of fit of a single model, this would

be similar to declaring the level of significance to be the observed probability of the

test statistic. But when the set of candidates consists of multiple models, the optimal

value of an IC is no less arbitrary. In both cases, the preferred candidate cannot

be inadequate since adequacy qua optimality is defined with respect to that model.2

Thus IC do not properly evaluate the models they recommend, even though they

may be regarded as evaluating the other candidates with respect to the recommended

model. In terms of practical applications the basic point can be stated as follows:

IC can lead us to chose an unsatisfactory model by comparing it to models that are

even less satisfactory. Therefore IC do not provide a sufficient solution to the problem

of model evaluation. Rather, the appropriate use of IC is seen to be contingent on

choosing a suitable set of candidate models. Obviously, to assume that any set of

2The same rationale holds when “ties” occur.
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candidates must include an adequate model is just to beg the question. Perhaps less

obviously, to assert that an “inadequate” model is better than no model is just to

assume that the chosen model meets a standard of adequacy (i.e., that it is better

than no model). If this assertion is not taken as an empirical one, it reflects only a

dogmatic application of statistical methods. Clearly this is not what we should hope

to find at the root of a theory of model evaluation.

The present work addresses these difficulties by pursuing a criterion of model ad-

equacy along the following lines. In chapter two the purpose of statistical models

is reduced to that of prediction. If a model predicts observations well (i.e., if it is

accurate), then it is to be regarded as adequate (§2.1 and §2.2). There are various

notions of prediction found in the selection literature and that employed here is based

on, though not identical to, that found in the work of Bamber and van Santen (1985,

2000). Arguments are adduced for why this conception of prediction is a good criterion

for model evaluation. For instance it is quite minimal and therefore has broad appli-

cation. It can also be used to formulate selection procedures that are fast in the sense

of allowing one to make conclusions about a set of candidates by means of a number

of computations that is potentially less than the number of candidates. In particu-

lar, a selection algorithm is proposed for the case of disjoint models (i.e., non-nested

and non-overlapping families of probability distributions). While this algorithm will

not often find application, it demonstrates a principle of model elimination (§2.3).

This principle can be interpreted as instantiation of Popperian falsification or Platt’s

(1964) strong inference. In its current form, the basic idea is that we can always get

rid of large numbers of inaccurate models faster than we can find a single “optimal”

model.
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Although accuracy is here taken as the first or basic purpose of stochastic models,

it has often been argued that this is not a sufficient grounds for model preference.

For instance, this is seen in the over-fitting or overparameterization of a model, in

which case perfect accuracy can be achieved at the expense of triviality. Thus it is

important to distinguish two related aspects of the problem of model evaluation. The

first of these is termed data-based selection, and this refers to the task of finding a

model that fits the data. This is the problem to which the concept of accuracy is

applied in this manuscript. The second aspect is referred to as model-based selection,

and this is the problem of defining properties that are desirable for a model to pos-

sess. Some usual ideas here include parsimony, non-triviality, and non-equivalence

among sets of models. Note that in principle, model-based selection does not require

a particular set of observations, nor even a set of more than one candidate. Rather,

it can be thought of as an aesthetic consideration of the model itself. Yet, no matter

how compelling a set of equations is to one person, it can always be wrong, or more

particularly, wrongly applied. For this reason it is important to separate considera-

tions about model accuracy from considerations about how “nice” a model is. These

higher purposes are only addressed tangentially in the course of this dissertation.

For clarity, it should be noted that this argument against the sufficiency of accuracy

as a criterion of model selection is not like the argument raised above against the

sufficiency of IC as methods of model evaluation. In the present case the argument is

metaphysical, it pertains to the purpose of models and whether the purpose adopted

here is a good one. In the former case the purpose of a model is not in question,

no inquiry is made into the validity of the objective functions of IC. Rather it is

claimed that, if we accept these purposes, the quantities in question are not sufficient
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to the problem of evaluation. This argument is epistemological, it pertains to the

justification of the interpretation of stochastic models. The position taken in the

present work is that accuracy is sufficient to a particular interpretation of stochastic

models, namely that they fit the data. That this purpose is not also sufficient to

other purposes of stochastic models is recognized by distinguishing data-based and

model-based selection.

The third chapter applies the general approach outlined in chapter two. The family

of models that serve as the focus are those found in item response theory (IRT). In

particular, consideration is restricted to the traditional dichotomous-response models

for tests of fixed order and fixed length (§3.1). A measure of predictive accuracy is

proposed for these models, although it applies also to other models of finite-valued

variables. The proposed quantity is a Euclidean distance between two multinomial

distributions (§3.2). This shares some properties with the Kullback-Leibler divergence

of information theory when a model is correctly specified. Although this distance is

readily estimated in principle, when “empty cells” become problematic the use of

marginal distributions or subtests is considered (§3.3). Data-based selection with this

measure of accuracy is illustrated by means of an empirical example based on the Self

Monitoring Scale (Snyder, 1974; §3.4).

An interesting feature of IRT models is that the model itself, as well as the data,

can be viewed as normative. This is importantly dissimilar from, say, applying a

statistical model to the description of a specific experimental phenomena predicted

by a scientific theory. In this latter case, we would be hard-pressed to justify the

omission of data that are not predicted by a model, and the usual course of action

is to replace an unsatisfactory candidate with one that is more accurate. On the
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other hand, the data to which IRT models traditionally have been applied are pen-

and-paper tests of educational achievement. In this situation the data generating

instrument (i.e., the test) is under just as much scrutiny as the models themselves, if

not more so. As such, if certain test items are found to be inconsistent with respect

to a given model, this can be taken as grounds for omitting those items rather than

changing the model. In the present approach, this is referred to as test construction

and it is interpreted as data-based selection when the models rather than the data

are viewed as normative. The application of the proposed measure of model accuracy

to problems of test construction is one of its main strengths (§3.3). Note that the

question of whether the “changing of roles” between data and models is appropriate

in any given case is not a statistical matter. Of course, this does not suggest that it is

not an important matter, only that it will not be considered in the present discussion.

The final chapter briefly summarizes the current work with an eye to its limitations

and future directions. At the outset it is worthwhile to contextualize these efforts more

generally, and this is the purpose of the remainder of this introductory chapter.

1.1 A Review of Model Selection Methods

Many different approaches to the general problem of model selection have been taken,

for instance in statistics (e.g., Linhart & Zucchini, 1986; Rao & Wu, 2001), economics

(e.g., Dyrmes et al., 1972; Grasa, 1989; Vuong, 1989), information theory (e.g., Akaike,

1973; Rissanen, 2007; Schwarz, 1978) and elsewhere (e.g., Bozdogan, 1987; Forster,

2000; Myung, Balasubramanian & Pitt, 2000). Although many of these approaches

have been developed quite recently, it would require many tomes of technical details

to provide a comprehensive review. The intention of the present section is only to
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provide some contextualization of the contributions of the subsequent chapters. For a

more thorough review, the reader is referred to Claeskens and Hjort (2008) or Rao and

Wu (2001). For the most part, historical details have yet to surface from the primary

sources, although Burnham and Anderson (2002) give a short historical motivation

of the modern context and de Leeuw (1992) discusses the influential 1973 paper of

Akaike.

The main task of this review is to summarize the characteristics of two information

criteria, AIC and BIC, to describe their application to model selection, and to point

out some aspects of this application that would be desirable to improve. Although

there is a remarkably large number of IC currently in circulation, there are also various

reasons for focusing only on these two. For instance they have historical precedence

(Akaike, 1973; Schwarz, 1978), and their asymptotic properties are characteristic of

many other IC as well as some related selection procedures (Claeskens & Hjort, 2008,

chap. 4; Grünwald, 2007, §17.3; Sin & White, 1996, Yang, 2005). The present

rationale for focusing on AIC and BIC is as follows. Information criteria are typically

interpretable either in terms of Kullback-Leibler divergence / “true models” or in

term of posterior probabilities. AIC and BIC are, respectively, the prototypical IC

corresponding to these two interpretations. It is these interpretations that are the

main concern here, and in particular it is argued that AIC and BIC provide incomplete

information about the concepts that are the basis of their interpretation.

This argument can be clearly stated in term of optimization: the quantities esti-

mated by AIC and BIC are not equivalent to the objective functions that motivate

those quantities. Rather, the quantities estimated by AIC and BIC can be interpreted
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as affine transformations of their objective functions, and in both cases those transfor-

mations contain unknown constants.3 As a consequence, the numerical values of the

objective functions have an unknown relationship to the numerical values of the IC.

Thus AIC and BIC cannot be used to determine if any given model is acceptable in

the sense defined by their objective functions. They can however be used for purposes

such as ranking models, ranking differences among models, and for interpreting other

properties that are preserved by affine transformation (see Suppes & Zinnes, 1963).

This point is well known in the technical literature and the present review merely

serves to spell-out its significance. The extension of this argument to IC other than

AIC and BIC is not made explicitly, because, to the best of my knowledge, all other

selection statistics that go under the title of ‘information criteria’ have been explicitly

introduced as different ways of estimating the quantities proposed by Akaike (1973)

and Schwarz (1978). However, it should be recognized that the arguments made here

are limited to such such statistics.

Before addressing the IC-based approaches, traditional methods based on testing

goodness of fit are mentioned . These are summarized only to make the following two

points. Firstly, they are properly viewed as applications of the theory of estimation to

the problem of model selection, rather than a treatment of the latter as an independent

topic. This point is not contentious – tests of goodness of fit are just hypothesis

tests and hypothesis tests are at root methods of point estimation. This is a main

reason that such tests have not been received as a general solution to the problem of

evaluation, and in particular their application is largely limited to correctly specified,

3In the case of BIC this is a rather simplified interpretation; its validity depends on the prior
probabilities being constant across models. Also, this transformation is linear rather than affine, but
this distinction is of no relevance to the arguments made here.
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nested models. Since IC-based approaches are not limited to such cases, this first

point serves to indicate the advantages offered by the newer methods.

The second point shows that there are also disadvantages. In some circumstances,

goodness of fit tests can be interpreted to make decisions about a single model, and so

they are not intrinsically limited to ranking multiple candidates. Importantly, this has

to do with the quantity that is the basis of such decisions, namely probability. Unlike

the values of IC, probabilities have interpretable properties beyond those afforded

by the class of affine transformations. In particular, it makes sense to talk about

“significance levels” (i.e., values close to zero). Although the stipulation of significance

levels can be more or less arbitrary, this arbitrariness is regarding which value to select,

not the meaning of the selected value. On the other hand, the numerical values of

IC have an unknown relationship to the numerical values of their objective functions.

Therefore, we cannot use IC to determine whether any given model meets a pre-

established criterion of adequacy – although such a criterion may be defined in terms

of the objective functions themselves, the values of the objective functions have an

unknown correspondence with those of the IC. In short, there can be no significance

levels for IC.

There appears to be little appreciation of this last point in discussions of the newer

approaches. Indeed, the general consensus seems to be that tests of goodness of fit

are now a bygone approach and that selection should proceed exclusively by means

of IC or related methods. Here the interpretability of tests of goodness of fit has

too quickly been forsaken for the broader applicability of IC. In particular, it is clear

that lore is accumulating about how to interpret the values of the newer statistics.

For example, one of the most pervasive of these “heuristics” is the notion that IC
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measure a trade between model fit and complexity. While these interpretations may

have limited pedagogical value, they occlude the fact that IC are estimates of well-

defined quantities and that they can be imbued with no more meaning than afforded

by those quantities. An auxiliary purpose of this introduction is to dispel some of the

mystification surrounding IC-based model selection.

Before proceeding, it should be mentioned that the notation employed in this initial

discussion is defined in more detail in the following chapter. For now it is assumed

that conventional interpretations of statistical quantities are familiar to the reader.

Also note that derivations of the relevant quantities are sketched only in enough detail

to explain their basic interpretation, and applications are not considered. For a more

pedagogical discussion see Claeskens and Hjort (2008).

1.1.1 Tests of Goodness of Fit

Traditional approaches to model selection are largely based on tests of goodness of fit

of two nested models.4 The model-implied probability distribution of a model M may

be written as pM , and let the parameter of this model be denoted by θ ∈ ΘM ⊆ RK

where K is an integer greater than zero. When one model, M∗, is nested within

another, M∗, this means that pM∗ = pM∗ but ΘM∗ ⊂ ΘM∗ . This is denoted by

M∗ ⊂ M∗, where the orientation of the asterices serves to indicate which model

is nested.

Note that selection between two nested models requires only the comparison of

4A variety of graphical methods for evaluating model fit could also be classed under the title of
traditional. These are not considered here.
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the possible parameter configurations of a single model M∗. When a certain param-

eter configuration has a special substantive interpretation, it is termed a ‘submodel’.

In this context, selecting among parameter arrangements of M∗ is interpreted as se-

lecting among models. Tests of such models are usually based on the (asymptotic)

distribution of a function of their likelihood ratio. The reference distribution is de-

rived on the premise that both likelihoods are sampled from the same population and

rejection of this assumption is interpreted to imply or otherwise motivate the rejec-

tion of M∗. Here it may be noted that the preferable model may correspond to either

M∗ or M∗, depending on the research scenario. The following two examples serve to

illustrate this general approach to selection.

At each comparison in a stepwise linear regression, M∗ implies that q ≥ 1 of the

regression coefficients inM∗ are fixed to zero (e.g., Rao & Wu, 2001). If the parameters

of the models are estimated by maximum likelihood then a testing distribution is

F(q, s), where s is the degrees of freedom of the residual sums of squares of M∗ (see

Searle, 1971, §3.6 & §3.7). If the two models are statistically different, M∗ is rejected

and M∗, the model with more free parameters, is viewed as making gains over the

simpler model. As another example, consider the likelihood ratio tests applied in

structural equation modeling (SEM; e.g., Bollen, 1989). In this case M∗ implies an

overidentified covariance matrix. M∗ can imply another overidentified covariance

matrix or, more usually, it is an “unrestricted model” obtained by assuming that

the population covariance matrix is any positive definite matrix (i.e., setting the

estimated “model-implied” covariance matrix to that of the sample). Let us focus on

the latter scenario, in which case the null distribution of negative two multiplied by

the likelihood ratio is asymptotically distributed as χ2
(r−K), where r is the number of
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unique elements in the sample covariance matrix (Browne, 1984, Corollary 4.1). If the

tail probability of the test statistic is small, this is again taken as grounds to reject

M∗, but this time we reject the model of interest as placing invalid restrictions on the

population covariance matrix.

Especially in sequential procedures, the interpretation of these tests can become

rather convoluted but, as outlined here, their general premise is just that of parametric

hypothesis testing. As such, they are subject to a large number of criticisms, for

instance regarding the truth of the null hypothesis and issues pertaining to having

either too little or too much power. An important and long standing complaint

about these tests is that they do not generalize nicely to non-nested models (e.g.

Leamer, 1978). Applications of conventional likelihood ratio tests to two non-nested

models have been proposed, but these are often computationally intractable, do not

have a clear interpretation, and in general are not satisfactory (see Dyrmes et al.,

1972). Vuong (1989) has made important advances by describing the asymptotic

distributions of likelihood ratio statistics for non-nested and / or misspecified models.

These results are of interest in their own right but, as discussed by Vuong (1989), his

tests are premised on the approach described by Akaike (1973). In short, Vuong’s

test are of the difference between two AIC-like quantities. These tests are therefore

are properly viewed as a modification of the approach described below in connection

with AIC. They are also dissimilar with respect to the following characteristic.

One important aspect of goodness of fit tests is that they can be interpreted, in

some cases, as evaluating a single model. For example, in the SEM case described

above, although an unrestricted model is used to construct the likelihood ratio, it is

not possibly false. Of course, certain assumptions are required in order to derive the
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reference distribution (see Browne, 1984), but these are arguably general enough to be

classed under the ever-mysterious rubric of “regularity conditions” rather than taken

as constitutive of a model per se. And, regardless of how the technical interpretation

of the unrestricted model is settled, it is nonetheless clear how it is used in model

selection. Its role is to assess the validity of a single M∗. In particular, if a test of

M∗ versus the unrestricted model yields a significant p-value , one rejects M∗. This is

not taken to mean that we should stick with M∗, and this is just because M∗ is not

interpreted as a model. Rather it is usually taken to imply that we need to modify

or otherwise improve M∗.

The essential point about this example is that it is possible to reject M∗. This

is done on the basis of some level of significance, and although the significance value

itself may be more or less arbitrary, the scale on which it is interpreted is not arbitrary.

In measure theoretic terms, a probability measure always assigns unity to the entire

sample space and zero to the empty set. Therefore the numerical magnitudes of

probabilities can be interpreted relative to their possible range. In particular, it makes

sense to talk about how small or large a given value is without explicitly referencing

another value, and it is for just this reason that significance levels make sense. As we

shall see directly, there can be no significance levels for information criteria, and in

general they cannot be used to make conclusions about a single model. Arguably, this

is the most significant difference between conventional tests and the newer information

theoretic approaches.
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1.1.2 Akaike’s Information Criterion

The first information criterion was due to Akaike (1973; see de Leeuw, 1992, for

historical commentary) and is named after him (AIC). In his paper Akaike motivates

KL (Kullback, 1983) as an appropriate loss function for model selection. This can

be viewed as the most basic and far-reaching insight of his approach. It provides

a general premise for model selection by defining a purpose of models, namely the

minimization of KL. Moreover, this purpose is also seen to provide a motivation for

maximum likelihood (ML) estimation, a motivation that is arguably less arbitrary

than simply declaring it to be a principle. The relevant version of Akaike’s loss

function may be written as

KL(pO , pM ) =

∫ (
ln(pO(x))pO(x)− ln(pM (x; θ))pO(x)

)
dx (1.1)

where pO is the probability distribution of the data. This distribution is often referred

to as the “true model” and it is discussed in more detail in the following chapter.

KL has various interpretations in statistics, information theory, and computing.

In statistical applications the title ‘KL divergence’ is used most commonly and in

this context it describes a pseudo-distance between the distributions pO and pM (see

Claeskens & Hjort, 2008). On this perspective, Akaike’s goal in treating KL as a

loss function is typically interpreted as trying to find the “least false” parameter

values of M, or as searching for the model-implied distribution that is closest to pO .

KL’s information theoretic interpretation as relative entropy is based on its relation

to Shannon information (Kullback, 1983). In computing it can be interpreted as

the number of extra bits required to encode information from pO when using a code
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that is optimal for pM (x; θ) (see Grünwald, 2007, for discussion of these concepts).

Generally speaking, KL has been viewed by some, including Akaike (1973), as a truly

foundational quantity (e.g., Burnham & Anderson, 2000), whereas others seem to

regard it as just another loss function (e.g., Linhart & Zucchini, 1986).

Another important aspect of Akaike’s treatment of the model selection problem

is the meaning of his often overlooked “outer expectation” (de Leeuw, 1992). In

the usual practice, the expectation of a loss function with respect to pO yields the

corresponding risk (i.e., average loss) function. It seems that Akaike’s intended use of

KL divergence presents a problem here, since there is already such an expectation in

equation 1.1. Hence he makes a rather interesting modification to the notion of risk.

In particular, he obtains his risk function by taking the expectation with regard to a

transformation of the data, namely an estimator θ̄ of θ ∈ Θ. Furthermore, he requires

the observations on which θ̄ are calculated to be independent from those on which

other expectations with regard to pO are calculated (e.g., to be from different i.i.d.

samples). Intuitively, Akaike wants to average his loss over the values of an estimator

of θ rather than the data itself. Technically, this explains the peculiar behavior of

his outer expectation. Following de Leeuw (1992) this behavior will be emphasized

by letting X and Z be distributed according to pO , requiring that X⊥Z, and, where

relevant, writing θ̄(·) for an estimator of θ ∈ Θ. Konishi (1999) otherwise explains

this situation as one where we have observations on X and want to generalize them

to some future observations on Z. Using this notation, Akaike sought to minimize

RKL = 2

∫ ∫ (
ln(pO(x))pO(x)− ln

(
pM (x; θ̄(z))

)
pO(x)

)
pO(z)dxdz. (1.2)

Equations 1.1 and 1.2 are the basic quantities considered by Akaike (1973). Let us
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now briefly address how these motivate the ML estimator for θ and his famed informa-

tion criterion. By inspection of equation 1.1, it is clear that the term EX

(
ln(pO)

)
does

not depend on M. Therefore, for fixed pO , minimization of KL(pO , pM ) depends only

on maximizing EX

(
ln(pM )

)
. Akaike’s argument requires the existence of a unique

argument that maximizes this expectation, which may be denoted by θo. Next

note that, for i = 1, . . . , n i.i.d. observations from pO , the average log-likelihood,

n−1l(θ) = n−1
∑

ln(pM (xi; θ)) converges almost surely to EX

(
ln(pM )

)
(see van der

Vaart, 1998, §5.5). Therefore the ML estimator θ̂ asymptotically approaches θo, and

the principle of maximum likelihood is seen to be motivated by a principle of minimum

KL divergence.

As per the foregoing discussion of equation 1.1, θ̄ in equation 1.2 is replaced by

θ̂. The next task is to minimize RKL in θ̂(Z), and, similarly to the above approach,

Akaike’s move is to maximize

Q = EZ

(
EX

(
ln(pM (X; θ̂(Z))

))
= EZ

(
W (Z)

)
. (1.3)

The difficulty here is to obtain an estimate of Q when we only have observations on

X. Other than Q̂ = n−1l(θ̂(xi)) there is little to work with, but in this case the

expectations over X and over Z are estimated from dependent data (e.g., from the

same sample). In particular, Q̂ can be shown to be positively biased by means of

second-order Taylor expansions of Q̂ and W (Z) about θo. Writing the bias term as

B = Q̂−W (Z) it follows that Q̂−Q = B +W (Z)−Q and so EZ(Q̂−Q) = EZ(B).

Derivations of an asymptotic approximation to EZ(B) can be found, for example, in

Claeskens and Hjort (2008, pp. 30-31), and Konishi (1999, pp. 390-392). Akaike’s

(1973) derivation is not particularly easy to follow for a variety of reasons discussed by
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de Leeuw (1992). Describing these details and the long lists of regularity conditions

that accompany them would take us too far astray here. The basic result is stated

for reference:

EZ(B) = n−1EZ

(√
nu′J−1u

√
n). (1.4)

In equation 1.4, the vector u is the score of pM (z; θ) evaluated at θo and the asymptotic

distribution of
√
nu is NK(0, Σ). The matrix J is the expectation with respect to pO

of the negative of the Hessian of the log likelihood evaluated at θo.

There are a variety of ways of obtaining Akaike’s estimate of equation 1.4. Impor-

tantly all of these require that pO ∈ pM (Θ), where, as discussed in the following chap-

ter, pM (Θ) denotes the family of distributions implied by M . In this case J = Σ (under

certain regularity conditions) and equation 1.4 can then be read as asking for the ex-

pectation of an asymptotically n−1χ2
(K) distributed quantity, leading to EZ(B) = K/n.

Since B is a quadratic form, we could also take EZ(B) = tr(J−1Σ) = K. Both of

these lead to Akaike’s (1973) criterion. Here this is presented in its “smaller-is-better”

version:5

AIC(M) = −2l(θ̂) + 2K. (1.5)

The ‘smaller-is-better’ title indicates that minimizing−2Q is equivalent to maximizing

2Q. It also quite clearly states the use of this statistic in model selection: For a given

set of observations, the candidate that implies the smallest value of AIC is declared

to be the best model. Otherwise stated, that model is estimated to minimize RKL

over the set of candidates. Note also that the sample size, which is constant in this

5Some writers leave AIC in its “larger-is-better” form, although Akaike presented his statistic as
it is shown here, presumably to emphasize its relation to −2l(θ̂). The present form is also that seems
to be more commonly employed in current statistical software.
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model selection context, is omitted from AIC. Because Akaike’s purpose was only to

minimize RKL, it makes no difference to estimate nQ instead of Q.

As outlined here, AIC is a bias-corrected, asymptotic estimate of the maximum

of nQ when pO ∈ pM (Θ). While there can be no disagreement that this is an original

and interesting approach to model selection, it does have certain shortcomings. For

example, many writers have addressed how to better estimate equation 1.4, and this

has led to a variety of other bias-corrected information crtieria (e.g., Bozdogan, 1987;

Konishi, 1999). However, there has been little discussion of the shortcomings of the

quantity to be estimated, Q. Indeed the principle of minimizing RKL via maximizing

Q seems to have been widely accepted as something of a panacea for the problems

of model evaluation. Yet, while KL may be accepted as a suitable description of the

purpose of a model, this does not imply that we should also accept Q as the best

quantity by which to realize this purpose. Indeed, it is a remarkable historical phe-

nomenon that “half of a divergence” could have so quickly brought about a veritable

revolution in the theory of model selection.

One important component of this phenomenon is that the form of AIC, rather

than the quantity Q, often serves as the basis of its interpretation. Moreover, the

same interpretations are also applied to other IC, even when these estimate different

quantities (e.g., Claeskens & Hjort, 2008, §1.1). While such “heuristics” arguably

have some pedagogical value when making comparisons among IC, they can also lead

to confusion about what these quantities actually are, or more particularly, what

they estimate. One familiar heuristic is in terms of penalized likelihoods or penalized

goodness of fit. It is worth pondering the meaning of this penalization, since it is

both ubiquitous and polymorphous. By inspection of equation 1.5, it is clear that
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the more likely a set of observations are under M, the smaller (better) the value of

the statistic. However, AIC increases in the number of parameters of M, and hence

the more parameters M has the worse off it is. This penalty for increasing parame-

ters is quite naturally interpreted in terms of William of Occam’s old concern about

the unnecessary multiplying of entities (Forster, 2000), and so it is often taken as

an instantiation of the principle of parsimony. This also relates to issues of overpa-

rameterization, and another frequently employed concept is that of model complexity

(e.g., Grünwald, 2007; Myung, 2000). These recasting of AIC also seem to assume

that l(θ̂) necessarily doesn’t decrease with K, although I do not know of a general

proof of this claim for non-nested models. In any case, it seems that IC are also quite

universally interpreted in terms of an implied “trade off” between fit and complexity.

It is striking that none of these interpretations ostensibly has much to do with the

manner in which AIC is derived – they do not relate to the minimization of RKL let

alone the quantity Q. Otherwise stated, these interpretations seem to propose various

ideas of what a good model should do, but these ideas do not seem to square with

minimizing KL divergence. It is therefore worthwhile to spell-out the interpretation

of AIC with respect to its derivation, and indicate how this is dissimilar from the

types of interpretations outlined here.

The numbers yielded by AIC are estimates of the maximum of nQ and they are

thereby interpretable as minimizing RKL. This can serve to order candidate models

with respect to their pseudo-distance from pO , and this is the application that AIC has

found in model selection. However, AIC doesn’t tell us anything about the magnitudes

of these distances, and this would require the other term in RKL, namely EX ln(pO).

For example, it could be the case that all the models are much farther from pO than
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they are from each other, in which case the differences among their AICs is much less

substantial than their divergence from pO . This would be a case of choosing the best

of the worst, and it illustrates that the magnitudes of numerical values of AIC cannot

be interpreted in terms of RKL. Alternatively, all the candidates could be very close

to pO , in which case the differences among their AICs may be indicative of substantial

differences in relative proximity to pO . This would be a case of choosing the best of

the best, and it illustrates that the magnitude of differences between values of AIC

cannot be interpreted with respect to RKL either. Otherwise stated, both the raw

values and differences among values of AIC can only be interpreted relative to other

such values. For this reason AIC can only be interpreted as ordering a set of > 1

candidate models, and in particular it cannot tell us if any of those models minimizes

RKL to an extent that might be regarded as satisfactory. As discussed below, similar

shortcomings are found with other information criteria. To facilitate the summary of

these shortcomings at the end of this chapter, any fit statistic that is only interpretable

as ordering models (or their differences) will be referred to as a relative fit index.

It may be noted that the interpretation of AIC as a relative fit statistic is not

suggested by the heuristics discussed above. It would be natural to expect that a

quantity purporting to measure trade-offs between fit and complexity would tell us

whether we are getting a good deal in any particular case or at least whether the

difference between two deals is important. On the other hand, the fact that AIC

cannot provide this information is obvious when considering what it estimates.
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1.1.3 Schwarz’s Information Criterion

As mentioned, other information criteria have been developed along lines similar to

AIC, their differences mainly being how the bias of the normalized log-likelihood is

adjusted for, how outliers are dealt with, special forms for particular models, and so

on (see Claeskens & Hjort, 2008, chap. 2). A different type of information criterion is

due to Schwarz (1978) and its interpretation is premised on Bayes’ factors. As such

it usually goes under the title of the Bayesian information criterion (BIC), although

unlike many Bayesian methods it avoids the use of prior probabilities. This and its

computational affinity to AIC are perhaps the two main reasons that this criterion

has been a main runner-up to that of Akaike.

The Bayes’ factor is obtained by considering the ratio of two posterior probabil-

ities, otherwise called the ‘posterior odds’ (Kass & Raftery, 1995). In this ratio the

denominators of the two posterior probabilities cancel, and the prior probabilities also

cancel when they are assumed to be equal. What is left is the ratio of two likelihoods,

which is called the Bayes’ factor of the numerator in favor of the denominator. In

the context of model selection the Bayesian approach is to average likelihoods over θ

rather than maximizing them in θ. This requires a prior distribution for θ, and these

distributions are naturally viewed as conditional on the M to which θ belongs. Let-

ting x∗ denote a fixed realization of X, the notation pM (x∗θ) = LM(x|θ) is introduced

to distinguish the joint probability distributions implied by M from its likelihood

function. Using this notation and letting θr denote the parameter of Mr, the Bayes’

factor for Mi over Mj is:

Bij =
LMi

(x)

LMj
(x)

=

∫
LMi

(x|θi)fθi|Mi
(θi)dθi∫

LMj
(x|θj)fθj |Mj

(θj)dθj
(1.6)
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Schwarz (1978) was concerned to approximate the logarithms of the integrals in equa-

tion 1.6 under the assumption that pM is an exponential family distribution. Raftery

(1995) and Claeskens and Hjort (2008, chap. 3) provide approaches that do not spec-

ify the form of pM , although these derivations incur so much asymptotic error that it

is surprising to find anything left at the end. By all accounts, the main trick with

the derivation of BIC is to introduce the sample size into equation 1.6. Of the var-

ious approaches I have encountered, none of them accomplish this in a particularly

convincing manner.

Begin by writing the average likelihood of a model as:

LM(x) =

∫
LM(x|θ)fθ|M(θ)dθ =

∫
exp{ gM(θ) }dθ. (1.7)

Then consider the second order Taylor expansion of gM(θ) about its unique maxi-

mizing value, the posterior mode. As with the above discussion of AIC, the optimal

argument of the objective function in question will be denoted by θo. And, as with

AIC, the existence of this value is a basic requirement of the argument discussed here

(Tierney & Kadane, 1986). In particular it serves to ensure that the Taylor expansion

yields ġM(θo) = 0.6 As seen below this approach additionally depends on the large

sample approximation θ̂ ≈ θo, which has an error of O(n−1) (Kass & Raftery, 1995,

§4.1.2).

The Taylor expansion yields

gM(θ) ≈ gM(θo)− 1/2[θ − θo]′ g̈M(θo) [θ − θo] (1.8)

6The dot-notation is used for the derivatives of functions when context makes clear what variables
these are with respect to. This is to avoid confusion with the use of primes for matrix transposition.
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where g̈(θ) is the negative of the Hessian of g(θ). Substituting this approximation into

equation 1.7, exp{ gM(θo) } can be brought outside the integral. Kass, Tierny, and

Kadane (1990) explain the conditions under which Laplace’s method of integrals can

be employed to approximate that of the exponentiated quadratic form that remains.

The basic idea is to use Aitken’s integral (Searle, 1979, chap. 2). After taking

logarithms, the resultant quantity is

ln(LM(x)) ≈ ln(LM(x|θo)) + ln(fθ|M(θo)) +K/2ln(2π)− 1/2ln(|g̈(θo)|). (1.9)

The error in equation 1.9 is O(n−1) (Kass & Raftery, 1995). Various methods for

obtaining a final approximation of ln(LM(x)) are available from equation 1.9. Raftery

(1995) treats g̈(θo) as the expected Fisher information matrix and then uses the large

sample approximation g̈(θo) ≈ nI(θo) where I(θ) denotes the expected information

matrix of a single observation. BIC is then obtained by dropping all terms of O(1) or

less.7 In our case this leaves

ln(LM(x)) ≈ ln(LM(x|θo))−K/2ln(n). (1.10)

Substituting θ̂ for θo and multiplying by −2 yields the usual form of BIC:8

BIC(M) = −2l(θ̂) +K ln(n). (1.11)

7Comparing Claeskens and Hjort (2008, p. 80) and Raftery (1995, pp. 131-132) proves interesting
here. They both take the approach of omitting terms that are asymptotically of order 1 or less, but
then drop different terms from their equations corresponding to equation 1.9

8Schwarz (1978) did not multiply his statistic by −2. This addition is apparently due to it’s
similarity with AIC.
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Kass and Raftery (1995) discuss various restrictions on fθ|M that reduce the order

of the asymptotic errors along various steps of the derivation, especially for those of

O(1). Whether or not these restrictions are palatable is not of interest here.

Equation 1.11 is a biased, asymptotic estimate of the logarithm of a function of

the average likelihood of a model. It is arguably much less exciting than AIC, since

Bayes’ factors were first popularized forty years earlier by Jeffreys (1939) and, as

an estimate of Bayes’ factors, BIC leaves much to be desired. Indeed, as noted by

Schwarz (1978), BIC is mostly interesting in comparison to AIC, and its application

as a method of model selection is identical: The best candidate is the one that implies

the smallest value of equation 1.11. It is important to note, however, that ‘best’ is

now interpreted in terms of a different objective function. In particular, Bayes’s factor

is usually interpreted as being proportional to the ratio of the posterior modes of two

candidates. Thus AIC and BIC represent different purposes for models, one framed in

terms of minimizing relative entropy and one phrased in terms of maximizing posterior

probabilities. It is for this reason that AIC and BIC should be thought of as different

types of approaches to the problem of model selection.

Despite their different interpretations, it is readily seen that BIC is also a relative

fit index. In particular Jeffreys (1939) suggested ranges of magnitude for the inter-

pretation of Bayes’ factors, and these are by definition premised on the comparison

of differences of the quantity estimated by BIC. By Jeffreys’ interpretation it may be

argued that, when the ratio of two model’s BIC’s is 10 : 1, this gives stronger support

than ratio of 2 : 1. In general, a candidate with the smallest BIC can be viewed as

the model with the most evidence in its favor. However, the modal posterior prob-

ability of that model may be small or large, and so BIC does not actually tell us
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whether a model is satisfactory in the sense defined by its objective function. Thus,

similarly to the quantity Q, Bayes’ factors can only serve purposes of ordering models

or differences between them, and as with AIC, BIC must be regarded as a relative fit

index.

Before summarizing these considerations, a final remark can be made concerning

literature that focuses on the evaluation of AIC and BIC. On the basis of heuristics

such as those discussed in connection with AIC, there seems to be a general consensus

that it makes sense to evaluate the performance of different IC by means of the some

further criterion. For instance, consider the work of Sin and White (1989). They

show that, asymptotically, both AIC and BIC select models that minimize KL. How-

ever, when two models have equal KL, only BIC selects that with fewer parameters.

Therefore BIC is regarded as ‘consistent’ but AIC is not. While being mathematically

quite impressive, what is most remarkable about this result is that it evaluates the

asymptotic properties of two statistics without any concern for what they estimate.

Recall that AIC is supposed to find the model that minimizes RKL by estimating

the maximum value of nQ for each candidate. Accordingly, if two models reach this

maximum, then this is just what AIC should tell us. It should not be expected to

“favor” a model with fewer parameters and if it did we should properly conclude that

it is not a robust estimate of nQ. On the other hand, if a statistic that minimizes KL

and favors models with fewer parameters is desired, then presumably one wants to

estimate a quantity like that described by Sin and White, not a quantity like Q. In

a similar vein, the idea of evaluating BIC by how well it minimizes KL is ostensibly

premised on the idea that a model should minimize KL. But as discussed above, BIC

is based on the idea that a candidate should maximize posterior probabilities. It is
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then an interesting coincidence that BIC has the consistency properties described by

Sin and White, but this should not be mistaken for the purpose of BIC.

That the objective functions of different IC are mixed and matched in the selection

literature has arguably resulted from mystifying these statistics in terms of a variety

of heuristic but non-existent quantities. An auxiliary purpose of this section has been

to show that these statistics were not designed as multi-purpose, trade-off optimizing,

instantiations of the principle of parsimony. As such, it would be rather surprising to

find that they achieve this purpose “by accident.” On the other hand, development

of a set of concepts by which to describe the performance of selection statistics is

indeed desirable. Yet, if these concepts are to lead to progress in the theory of model

selection, they should be premised on a coherent theory of the purpose of models,

not representative of differing purposes. Such an approach is taken in the following

chapters.

1.2 Summary

At this point some aspects of traditional goodness of fit approaches have been briefly

mentioned and the two prototypical information criteria discussed in sufficient de-

tail to understand their basic differences and similarities. The present section makes

some brief conclusions about these quantities. Here it may be noted that, although

many IC have been omitted from this review, the reader familiar with these statistics

will have little difficulty extending the remarks made in the foregoing sections. In

short, such statistics are typically interpretable in terms of “true models” or poste-

rior probabilities, and to the best of my knowledge, all IC fall into the category of

relative fit indices. However there also exist other relatively recent approaches to
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model selection, approaches not based on IC. In particular, the minimum description

length (MDL) principle (Grünwald, 2007; Rissanen, 2007) is based on computational

theories of complexity and, in its modern applications, is founded on the notion of

a so-called “universal code.” This approach is both interesting and convoluted. A

characterization of this principle within the context of this literature review is not

feasible for a variety of reasons including the following.

1. A statement of the MDL principle requires foundational concepts from coding

theory that cannot be directly translated into statistical terminology. In terms

of model selection, its basic assertion is that a model that allows for a set

of observations to be “optimally” encoded should be preferred, so long as the

model itself can be “optimally” encoded with regard to the class of universal

codes. These two notions of optimality are not identical. The overall result is

a principle of shortest code length, which is itself premised on notions of data

compression, regularity, and stochastic complexity.

2. The MDL principle yields multiple quantities for model selection based on the

type of universal code employed. It can also be the case that multiple criteria

satisfy the MDL principle for the same set of candidate models. While some of

these criteria are asymptotically equivalent to BIC, this is not always the case.

3. MDL can also be applied to problems of estimation and to pre-quential predic-

tion; the principle itself cannot be treated only in terms of model selection.

These points indicate that a proper summary of MDL is a major undertaking.

Rather than falsely characterize this principle within the relatively narrow interests

of this literature review, it is more appropriate to note that, although MDL is in some
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cases subject to the arguments made in this summary, this may not always be the

case. The reader is referred to the work of Rissanen (e.g., 2007) and Grünwald (e.g.,

2007).

The central limitation of tests of goodness of fit is that they are, like all statis-

tical tests, methods of estimation. As such they have only been successfully applied

to a relatively narrow range of selection problems, namely selection among correctly

specified, nested models. For this reason such tests have been largely superseded by

information criteria. These newer methods are readily applied to selection among

relatively large numbers of competing models, regardless of the relations among their

families of model-implied distributions; neither the number of candidates or the rela-

tions among them have entered into the derivation or discussion of IC. In comparison

with these methods, the older tests do seem to clunk about with their heavy assump-

tions and narrow conclusions. But, in a certain sense, these are better conclusions.

If their assumptions are accurate, tests of goodness of fit indicate how likely a set of

observations are under a given model. This can be used to make a decision about that

model, and this decision is only contingent on how likely we require the observations

to be.

On the other hand, relative fit indices do not provide any standard by which to

judge whether a model is “good enough.” This can lead to a variety of undesirable

situations. In particular, it is not hard to imagine a list of very poor candidates, where

‘poor’ is defined in terms of the objective function of some relative fit index. In such a

case, selection based on that index will nonetheless recommend one of these candidates

rather than identifying them all as inadequate. Such a forced-choice recommendation

may be required in some circumstances and so it is not the recommendation per se
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that is objectionable, but the fact that we can never know if we are in this kind

of situation when using relative fit indices. In effect, relative fit simply pushes the

problem of model selection back onto the choice of a good set of candidates. That

is, if we are to employ relative fit with any confidence, we must have some way of

selecting candidates that are known to be “not that bad.” In such a case, it makes

good sense to select among these model on the basis of their ranking. However, if it

were the case that a set of reasonable models could be established beforehand, then

presumably whatever criterion by which that selection was made could be also used

to determine the best model. And so it seems that the advocate of relative fit must

walk a crooked line – such an index can always determine a best model yet it can

never be used to assure us that this same model is not also bad one.

The use of relative fit indices as criteria by which to evaluate the adequacy of

models requires a disagreeable compromise. As such, better solutions to the problem

of model evaluation are desirable. One problematic aspect of the IC discussed here

is that they cannot be used to evaluate a single, individual model. Therefore, it is

desirable to consider approaches to selection that can be used for this purpose. In a

sense, it would be nice to combine the interpretability of significance levels with the

versatility of IC, yielding methods of selection that can be applied to any number of

non-nested or misspecified models, but that also allow for the evaluation of each model

in isolation. Thus we could rank models by how well they obtain some quantifiable

purpose, not dissimilar in principle from KL or posterior probability, and also make

absolute decisions about whether or not that purpose is met to some satisfactory

degree. This is a basic idea behind the approach taken in the remainder of this

dissertation.
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Chapter 2

Models, Predictions, and

Elimination

The definition and purpose of models in general and stochastic models in particular

have long been topics of the philosophy of science (e.g., Suppes, 1960). These issues

must play a foundational role in a theory of model selection and so some conceptual

groundwork should be done in this area. The central question to be addressed is the

purpose, or intended use, of stochastic models (§.2.2). The answer to this question

provides a general criterion by which to evaluate models, and hence it allows for the

formulation of a general method of selection (§2.3). In order to clearly articulate their

purpose, it is helpful to have a definition of models in place, and this is the first task

of this chapter (§2.1).

The overall result of this discussion is to reduce the purpose of stochastic models

to that of prediction, and the precise meaning of the term ‘prediction’ is given in

in definition 2.2. In particular it is claimed that a model should accurately predict
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those phenomena that one seeks to interpret by means of its application. It is hardly

contentious to assert that a model must be accurate, however, it readily argued that

this can only be a necessary condition on a model’s worth. One oft-cited problem here

is overparameterization or model complexity. The typical example is fitting a (k−1)-

degree polynomial to k bivariate data points (e.g. Myung, 2000; Grünwald, 2007).

Another example occurs in the case of saturated log-linear models (e.g., Christensen

1997). The prima facie difficulties of treating prediction as a basic criterion of model

selection are also addressed in this chapter (§2.2). In short, these difficulties are

treated as entirely secondary in importance. The fact that some models are trivially

accurate does not imply that judging the accuracy of every model is a trivial matter.

Yet this seems to be just the rhetorical strategy to which such examples are employed:

By establishing that accuracy is only a necessary condition of a model’s worth, we then

move on to topics such as parsimony and complexity as though we had somehow gotten

prediction in the bag. As discussed in the previous chapter, this mistake is evidenced

by “trade-offs” that purport to select the best model from a set of candidates without

being able to settle whether any of those models are particularly good. Intuitively,

the strategy in anointing prediction as the primary or basic purpose of a model is

to find effective methods for getting rid of models that have no empirical mettle

before beginning the relatively less important and otherwise quite meaningless task

of determining which to prefer.

Naturally, this strategy is always with respect to a given set of observations and

a model’s intended interpretation. This approach should not be mistaken as foisting

unreasonable evaluation criteria on statistical models, because the question of “how

accurate” a model must be is always settled in context. Yet, regardless of how this

32



standard (or any other) is decided, it is a direct consequence that some models might

not achieve it. Thus we find that by establishing accuracy as a criterion for model

evaluation, we have thereby invoked a principle of elimination (§2.3). This principle

summarizes the approach to selection developed in this dissertation.

2.1 A Definition of Parametric Stochastic Models

This section discusses and then provides a definition of parametric stochastic models.

An interesting starting point for this discussion can be found in the work of Bamber

and van Santen (1985, 2000). They develop a measure theoretic approach to model

testability and identification, and their definition of models is very much in line with

the approach taken in this dissertation. In addition to formalizing the notion of a

model, their approach also emphasizes the fact that models make predictions. How-

ever, their definition is not directly applicable to the cases of interest here. Firstly it

does not explicitly deal with stochastic models. This is addressed here by reformu-

lating their notion of an outcome space in terms of random variables. Secondly, it is

desirable to formulate models that make multiple predictions, whereas their approach

treats predictions “one at a time.” Despite these modifications, many of the ideas

presented in this and the next section are properly viewed as a variation on their

approach. This is acknowledged by adapting their terminology wherever this can be

done felicitously. A comparison of the two approaches is provided at the end of the

following section.

Following Bamber and van Santen (2000), a model can be defined in terms of

its components. This “component-wise” definition is familiar from measure theory,
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where, for example, a probability space is defined in terms of the set of possible out-

comes of an observation procedure, a σ-algebra defined on that set, and a probability

measure defined on the σ-algebra. This type of definition is typically used to intro-

duce technical mathematical concepts, although in this case a concept with already

established meanings, ‘model’, is given a precise technical interpretation. That is, a

particular interpretation of the concept is stipulated. The components of this defi-

nition are as follows, and the discussion and elaboration of these components is the

purpose of this section.

1. The outcome or response variable of interest. This variable is conceptualized as

random and as having an unknown probability distribution. This conceptual-

ization serves to explicitly restrict the domain of interest to stochastic models,

that is, to the statistical treatment of research variables.

2. A family of model-implied parametric probability distributions. This “family”

is any probability distribution that is not contradicted by the specification of

a model. Restricting consideration to parametric models is necessary for the

approach taken in chapter 3.

3. The possible parameter configurations of a model’s probability distributions. Pa-

rameters are not treated as random, but they are treated as variables whose

domain is a model’s parameter space. Thus a model-implied family of probabil-

ity distributions can be described as the image of a function whose arguments

are the model parameters.

These components allow for the problem of evaluation qua prediction to be stated

explicitly. In this context, the problem is to assess whether or not the distribution of
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a set of observations is included in the family of distributions implied by a model.

The first component corresponds to Bamber and van Santen’s conception of an

outcome space of a research scenario. Intuitively, this space represents all of the con-

ceivable realizations of the outcome variable(s) of interest in a particular research

context. Otherwise stated we are here concerned with the values of the variables to

be modeled. As a simple example, percent correct is an outcome variable that has

found wide application in experimental psychology. Its possible values are the interval

[0, 100]. Accordingly, in a research scenario where the outcome of interest is the per-

centage of correctly recognized stimulus words re-presented after some experimental

manipulation, the outcome space would be the real numbers between zero and one

hundred inclusive. Similar examples can be constructed for other research scenarios.

In Bamber and van Santen’s treatment, the outcome space defines the co-domain of

a model’s prediction function. On the present approach, the outcome space serves to

describe the type of outcome variable of interest (e.g., discrete or continuous, bounded

or unbounded).

Let a J-dimensional, real-valued outcome variable be denoted byO = (O1, . . . , OJ).

Its realizations O = o represent the possible values observable in a given research con-

text. Because we are concerned with stochastic models, the basic move is to concep-

tualize O as random. This is accomplished by treating O as a function or map from

some probability space to RJ , with a probability distribution (e.g., a discrete mass

function or a density function) defined through its probability measure. A probability

measure can more naturally be used to define the cumulative distribution function

(c.d.f.) of a random variable, and because there is a one-to-one correspondence be-

tween c.d.f.s and probability measures, there is little need to consider probability
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spaces themselves so long as one is content with a foundation in cumulative probabil-

ity. However, the use of probability density functions and discrete mass functions of

outcome variables is more convenient for the present analysis. Following the measure

theoretic terminology these will be collectively referred to as probability distributions,

and are denoted by pO. For continuous random variables this approach requires that

the densities of interest are the Radon-Nikodym derivative of some c.d.f., although

for the discrete case the cumulative distributions are defined through counting the

mass points (Billingsley, 1986 provides more discussion of these topics; Cohn, 1980

provides a good introduction to measure theory).

The notion of an outcome variable serves to make explicit that a model is a model

of something, for example, of percentages of correctly recognized words under a given

research context. Treating these outcomes as random introduces a basic framework

for their analysis, however, this is not taken to imply that an adequate description of

their stochastic behavior is available in any given case. This point is central to the

non-analytic or contingent character of models. For this reason it is important to keep

in mind that the term ‘outcome variable’ is shorthand for ‘the possible outcomes of

a research scenario’ and its purpose is just to represent research outcomes and their

associated probabilities. Although O is one of the components by which a model is

to be defined, it would be misleading to interpret it as ‘the possible outcomes of a

model,’ since there is no assumption that any of the probability distributions specified

by a given model correspond to that of O.

It is worth emphasizing a related distinction here, that between stochastic and

non-stochastic interpretations of research variables. Traditional approaches to statis-

tical modeling “tack on” the stochastic properties of models in a manner that is prone
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to misinterpretation. This misinterpretation can also be found in many current treat-

ments of model selection, for example when curve fitting is treated as being of a kind

with linear regression (e.g., Bamber & van Santen, 2000; Forster, 2000; Grünwald,

2007; Linhart & Zucchini, 1986; Myung, 2000). The point to be made in the following

paragraphs is that the outcomes of stochastic models are not the values of research

variables but the probabilities of those values, which is why those variables have here

been conceptualized as random.

By way of comparison with the approaches mentioned above, let us consider the

example of simple linear regression. There are two mathematically equivalent ways

specifying this model: 1) Writing the outcome variable as a linear function of its

predictors and residual, with the distributional properties of the terms of this function

stated separately; 2) stating the distribution of the outcome variables as a function of

the predictors. The first approach, which is the more traditional (e.g., Searle, 1971),

has the advantage that it makes clear the motivation of the model in terms of the

data. However, on this approach the stochastic properties of the model are treated

as assumptions or riders, when in fact they constitute its non-trivial character. For

instance, it is a tautology to claim that an outcome variable is one part prediction and

one part prediction error. Although the “distributional assumptions” of the regression

model may be of little intrinsic interest to the applied researcher, they are nonetheless

required for the model to be interesting.

By specifying the model in terms of the distribution of the outcomes, one obtains

a more integrated representation. On this approach, the model is specified by an

expectation function together with assertions about other parameters and the shape

of the conditional distributions. This defines a family of probability distributions, and
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thus the model is better interpreted as making assertions about the probabilities of the

variables of interest rather than the variables themselves. From this perspective the

outcomes of a regression model are properly conceptualized in terms of probability

distributions, or equivalently, in terms of random variables. The same point holds

for those models of interest in this manuscript: In IRT the probabilities of response

patterns are modeled rather than response patterns themselves. These probabilities

define a multinomial distribution, not a particular set of observations.

The foregoing has sought to clarify that the possible outcomes of research variables

are not equivalent to the possible outcomes of stochastic models. In the latter case

we are more directly interested in probability distributions. Following Amari (1985),

a family of parametric probability distributions can be viewed as a set S = { p(x; θ) },

where x is a realization of a real, possibly vector-valued random variable X, p is the

probability (density or discrete mass) function of X, and θ is a K-dimensional real-

valued parameter of p. For example S might represent all of the univariate normal

distributions, or all bivariate normal distributions with covariances matrices equal to

σ2I, or all 2-parameter logistic IRT models. The family of probability distributions

that are defined in the specification of a model will be referred to as its model function

and will be denoted either by S or in terms of its elements p = p(x; θ). Additional

notations for p are introduced below.

Returning to the example of simple linear regression, the model function for a

random sample of i = 1, . . . , n observations can be written in its conventional vector

notation as follows: y | x ∼ N(µ(x), σ2I) where µ(x) = Xβ, X = [1 x], and β =

[β0, β1]
′
. In IRT, a general form of the model function is given by equation 3.2.

It is important to distinguish the single probability distribution of the outcome
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variable, pO , from the family of probability distributions given by a model of O. As

noted above, it is not assumed that pO ∈ S. In the sequel it is useful consider X as a

dummy variable. its values hold a place in p(x; θ) to which a given realization O = o

may be assigned during the process of evaluating the adequacy of a model. Thus we

may, for example, talk about the likelihood of a set of realizations of O under various

models without assuming that any of these is the “true model,” a notion which is

scrutinized at the end of this chapter.

Thirdly, define the parameter space of a model. Letting θ = (θ1, . . . , θK) denote

the real-valued, K -dimensional parameter of a model M, the subset of RK for which

θ is defined is called its parameter space. Letting u denote an arbitrary point in RK ,

this may be written as

Θ = {u | u is a parameter of M }.

Again considering the example of a simple linear regression model, the parameter

space is

ΘL = { (β0, β1, σ
2) | −∞ < βj <∞, 0 < σ2; j = 0, 1 }.

Similarly, the Rasch model from IRT has a real-valued “item parameter”, say βj, for

each of j = 1, . . . , J items, and also a set of parameters defining the distribution of

the latent variate. In the case that the distribution of the latent variate is normal

with mean µ and variance σ2, the parameter space of the J -item Rasch model may

be written as

ΘR = { (β1, . . . βJ , µ, σ
2) | −∞ < βj, µ <∞, 0 < σ2; j = 1, . . . , J }.
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For each θ ∈ Θ the model function assigns a value p ∈ S. This is made explicit by

writing p(θ), and when it is important to distinguish the probability distributions of

M from some other distributions the notation pM(θ) is employed. The values of p(θ)

are the various parameterizations of a model’s probability distributions and p(Θ) = S.

That is, a model’s family of probability distributions is equivalently represented as

the image of its model function in θ.

The foregoing discussion is summarized in Definition 2.1.

Definition 2.1 A model M is an ordered triple (O, p,Θ) consisting of an outcome

variable, O, the model function, p, belonging to M, and the parameter space of p,

Θ ⊆ RK

This definition can be related to other interpretations of models. As presented

above, a model is defined over a range of possible parameter arrangements. In some

literatures this is referred to as a family of models, with the term ‘model’ being

reserved for its particular parameterizations (e.g., Linhart & Zucchini, 1986). When

this distinction proves relevant to the current work, it is made by referring to definition

2.1 as a general model and a subset of its parameterizations as a specific model. The

present work is concerned almost exclusively with general models, the strategy being

to consider, insofar as possible, all of the implications of a model with reference

to the potential observations on a research variable. It should be noted that this

distinction is not the same as that made by Bamber and van Santen (2000) under

similar terminology. Two further interpretations of definition 2.1 depend on whether

we are concerned with O or one of its realizations. In the case that O = o is fixed

and θ is variable, this definition yields the likelihood function of a model. In cases

where both o and θ are fixed, this will be called a model realization. A realization
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Table 2.1: Four Interpretations of Definition 2.1

Fixed θ Variable θ

Fixed o model realization likelihood function

Variable o specific model general model

of a model can be represented, for example, in terms of the numerical values of the

parameters corresponding to a given set of observations or in terms of the likelihood

function evaluated for a given value of θ. These considerations are summarized in

Table 2.1.

2.2 Prediction as the Purpose of Models

As noted at the outset of this chapter, it is not intended that we discover the purpose

of models by an examination of definition 2.1, but that this definition be of service

in clearly articulating their purpose. In this section this purpose is conceptualized

in terms of a formal definition of prediction. This definition is interpreted and some

remarks are made concerning its role in this approach to model selection.

A model has been conceptualized in terms of its model function, the possible

parameter arrangements of that function, and a random variable representing the

outcomes of a research scenario. In this section the first concern is to conceptualize

when a model can be said to accurately predict an outcome variable O. The basic

challenge is to obtain a mechanism equivalent to Bamber and van Santen’s (1985,

2000) prediction function, a function that relates the outcomes of a research variable

to the parameter space of a model. Although it is tempting to regard p(θ) as fulfilling

this role, p : Θ → S is function from the parameter space of M into the space of its
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possible probability distributions. By contrast, O is a function from its probability

space to its possible realizations in RJ . It is only this latter space that grounds a

model to empirical observation. Otherwise stated, a model function defines a class

of random variables, and the present concern is to evaluate a model in terms of the

possible realizations of a random variable that may or may not belong to that class.

To this purpose it is useful to consider functions of pM that can be written in terms

of θ but which are not explicitly given by the components of θ. Obvious candidates

here are the moments of pM or of probability distributions that can be derived from

pM . A trivial example is given by the case of simple linear regression discussed in

previous section. For any fixed value x = x∗, E(y | x∗) is implied by the regression

parameters, but the conditional expectation itself is not contained in θ. Treating

E(y | x∗) as a function of θ, say µ(θ), it can be seen that µ(Θ) ⊆ R. We may then

ask whether E(O | x∗) ∈ µ(Θ). If this is the case, it will be said that the regression

model accurately predicts the outcome E(O | x∗) or that the outcome is consistent

with the model. This is the basic idea to be pursued in this section.

As stated, the linear regression example given above is trivial since in this case

µ(Θ) = R. This is gotten around easily enough, for example by considering con-

ditional expectations for multiple fixed values of x as a vector-valued function of θ.

Nonetheless, the example raises the problem of assessing the quality of predictions, a

topic that is discussed in the following section. Another concern here is the feasibility

of implementing such predictions with sample-based methods. Of course any selection

procedure can be judged by how convenient it is to apply, and problems of application

are considered in chapter three. The present focus is merely to conceptualize what a

prediction is and consider its role as the basic purpose of stochastic models.
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The idea behind the above example is to evaluate the “same” function in two

different ways, once through the parameters of the model (i.e., to derive it), and once

through the random variable O (i.e., to compute it on pO or, in practice, to estimate

it from realizations on O). The moments of a random variable are good examples of

such functions, but there is no reason to restrict consideration to moments in the con-

ventional sense. In particular, a model can have a lot of implications, many of which

may not be anticipated in a given application, but which may nonetheless be useful

for determining the adequacy of the model. These implications can be conceptualized

in terms of functions that depend on a probability distribution. In particular, two

classes of functions are currently of interest, those with either random variables or

parameters as their arguments. As described in the following two paragraphs, “same-

ness” is conditional functional equality, where the condition or proviso is functional

equality of distribution.

Any two functions f and g computed on the random variables X and Y respec-

tively are called the same if and only if f = g when X = Y . The expression X = Y

means the random variables are identical maps from their shared probability space to

Euclidean space. Any two functions f and g satisfying this requirement are called a

data function of a random variable. They are not called ‘data functions ’ because they

are the same function. For example, the data functions that are of primary interest in

the present approach are operator functions on random variables, such as the expecta-

tion or covariance of X or of random variables computed on X. Clearly these operator

functions satisfy the requirement of sameness. Also, any random variable computed

on X trivially satisfies the condition of sameness since the functional equivalence of

random variables is not dependent on their probability distribution. For example if
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f = g = (·)2, this does not depend on the argument (·). For the present level of anal-

ysis there is little to be lost in slurring over the distinction between the expectation

of a random variable X and expectations of random variables computed on X, and

this is one of the conveniences of the notion of a data function. As explained below

in definition 2.2, the type of data functions of interest in the present approach are

“population level” functions.1 Also note that two data functions f(X) and g(Y ) can

have equal values for all or any X = x and Y = y without implying that X = Y .

For instance two random variables can have the same mean without being the same

variable – but this is the same function computed on those variables.

Next recall that a model function has been defined as family of probability distri-

butions with a parameter θ defined over Θ ⊆ RK . Consider the parameters θ and θ′

of two families of probability distributions p(Θ) and p′(Θ′) respectively, and also the

functions f and g taking arguments θ ∈ Θ and θ′ ∈ Θ′ respectively. These functions

are called the same just in case f = g when p(Θ) = p′(Θ′) and in such cases these

will be refered to as a prediction function. Note that if p(Θ) = p′(Θ′) and f ad g

are the same, then f(θ) = g(θ′) when θ = θ′. For example we may write the mo-

ments of two families of probability distributions in terms of their parameters using

the moment generating function (m.g.f.) of each family. Then if we are considering

the same moments, f and g, those moments are functionally equal (i.e., f = g) when

we consider identical families of distributions, and these functions numerically equal

(i.e., f(θ) = g(θ)) when we consider the same member of that family. The principal

difference between data functions and predictions functions is just the arguments they

take – the former take random variables, and the latter take parameters.

1Arguably this is reason to use the name ‘data constants’ instead of ‘data functions,’ however,
these constants vary depending on the transformations applied to X.
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Definition 2.2 formalizes the concept of prediction in terms of data functions and

prediction functions and introduces some associated terminology. This definition is

based on a third application of the notion of sameness.

Definition 2.2 A prediction P of a model (O, pM ,Θ) is an ordered triple (g,X, f)

such that g : RJ → X, f : Θ→ X, and, for each θ ∈ Θ, g(O) = f(θ) when pO = pM (θ).

The set X is called a prediction space and f(Θ) ⊆ X is called a prediction range, or

later, a prediction manifold. If g(O) = f(θ) for some θ ∈ Θ, then O is said to be

consistent with the prediction, or, equivalently, the prediction is said to be accurate

with respect to O. M is accurate with respect to O if all of its predictions are.

The requirement that g(O) = f(θ) when pO = pM (θ) ensures that the “same”

function is considered on RJ and Θ. For example, if the prediction function is the

first moment of pM the data function must be the first moment of pO . Aside from this

obvious restriction, a prediction is just any function of a model’s parameters that can

be related to a corresponding function of the data. More specifically, the terminology

of definition 2.2 suggests the comparison of g(O) and f(Θ) and hence it may be

equally well thought of as describing a test of a prediction. In particular, if one of the

possible values of a prediction function is equal to the value of the corresponding data

function, the outcome variable is consistent with the prediction and the prediction

is accurate with respect to the outcome variable. If an outcome is not consistent

with a prediction, it is contradicted by that prediction. That is, if g(O) 6= f(θ) for

all θ ∈ Θ then a consequence of O, namely g(O), is contradicted by an implication

of M, namely f(Θ). Thus we say that the prediction, and hence M, is inaccurate

with respect to that outcome. If a model is inaccurate this means, for all θ ∈ Θ,
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pO 6= pM (θ). Otherwise stated pO /∈ S, and as described below, M is to be regarded

as inadequate to its purpose on these grounds.

It is also important to note that this definition implies that a model can make

an uncountable number of predictions, many of which will be trivial or otherwise

uninteresting. For example let f = c for some constant c. Then F = { c+r | r ∈ R } is

an uncountable set prediction functions yielding an uncountable number of predictions

for any model M , all of which are meaningless. In the following section predictions

that are useful for model selection are defined. For now it may simply be observed

that an outcome variable is only said to be consistent with M if all of M ’s predictions

are accurate.

Although it is “too broad,” this definition of prediction does adequately describe

intuitive cases. For example, when one estimates the higher-order moments of a set of

observations in order to assess the assumption of i.i.d. normality, this can be phrased

exactly in terms of definition 2.2. The skewness of a normal distribution is known to

be zero from its m.g.f., and its m.g.f. can be treated as a function of its parameters.

On the basis of this knowledge of all normal distributions, we can make the prediction

that any set of observations that is normally distributed will have zero skewness “in

the population”. If we then estimate the skewness of the data, for example using a

confidence interval, and it is inferred that the population skewness is not different

from zero, it is natural to say that the observations are consistent with the prediction

of zero skewness. If not, the model should not be regarded as accurate. The example

serves to illustrate that definition 2.2 is in fact very intuitive, and the generality

of the definition allows us to apply these intuitions to situations that are otherwise

unintuitive. In particular, how can we tell if an IRT model accurately predicts the

46



stochastic properties of a set of response patterns? Regarding his work on differential

item functioning, Dr. P. W. Holland humorously described this situation along the

following lines:2 We have a good idea of what normally distributed data are “supposed

to look like,” but what about “IRT distributed” data — do we have any idea what

to look for here? Definition 2.2 tells us what to look for in the general sense of what

a prediction is “supposed to look like.”

The intention of conceptualizing prediction has been to describe the purpose of

models, thereby establishing a general criterion for model selection. Whence it is

claimed that the basic purpose of a model is to make accurate predictions, and if a

model fails to make accurate predictions it is inadequate to its purpose. Stipulating

the purpose of models in this manner has the advantage of clarity and motivates the

course to be taken in sequel. At the same time it is recognized that many objections

have been raised against the use of prediction as a criterion by which to judge the worth

of models (e.g., Myung, 2000), scientific theories (e.g., Grasa, 1989), and knowledge

in general (e.g., Goodman, 1954). This stipulation therefore requires some initial

justification, although its ultimate defense is to be found in the theory of selection

of which it is the foundation. The remainder of this section also serves to further

elaborate various aspects of definition 2.2.

It may be noted at the outset that there has not been, to the best of my knowledge,

any serious objection to the idea that accuracy is a necessary condition for model

adequacy. As it has been conceptualized here, prediction is just a certain type of

mathematical consequence of a model, and if a consequence is wrong then, by pain

of contradiction, so is whatever implied it. However, at least since the heyday of

2Personal communication, July 2008
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Popperian falsification, the idea that prediction is a sufficient criterion for scientific

worth has been deemed woefully inadequate. Goodman’s paradox is perhaps the most

famous example of this, where one is forced to defend the induction that all emeralds

are green against the apparently ridiculous but equally accurate claim that they are

all “grue.” The general consensus is well put by Grasa:

Conformity with facts is a necessary but not sufficient condition when

preferring one theory over others. (Grasa 1989, p. 13).

What then is the justification for treating prediction as the basic purpose of

stochastic models? Are we not flying in the face of 50 years of rigorous thinking

on this matter? To clarify this situation it is important to note that it has not been

argued that accuracy is the only purpose of a model, but that it is the basic or first

purpose. We may otherwise state Grasa’s meaning by saying that a model is not

adequate if it is not accurate, and this is just what is meant by ‘basic’ or ‘first’. Thus

one advantage of a theory of selection based on prediction is that it is widely appli-

cable – it is reasonably applied to all models that claim to be “in keeping with the

data.” With this breadth comes the limitation that this criterion is not sufficient to

evaluate every purpose to which a model may be applied. For example, the accuracy

of a model does not imply that its parameters have a meaningful interpretation with

respect to the research scenario in which the observations were generated, or that it

is useful to explain or represent those outcomes in terms of the model, or even that

“repeat applications” of the model (i.e., models with different outcome variables) will

yield accurate predictions. Moreover, this doesn’t even imply that its predictions are

of any importance. The point stands, however, that there is little reason to discuss

any of these matters if a model is not accurate. The basic idea here is to identify an
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appropriate domain for these more refined purposes, namely accurate models.

Taking another perspective, it may seem that this requirement of accurate predic-

tions is far too stringent. Here we refer to that old dogma, touted whenever somebody

seems to get too serious about the worth of a stochastic model: “All models are false

but some are useful.” Shall we concede that a model can be useful even though it is

inaccurate? Is such a position compatible with that discussed in the previous para-

graphs? The answer to both of these questions is in the affirmative. The concession

is made in two ways, firstly by recalling that a model makes lots of predictions. In

order for it to be accurate, all of these must be accurate. But if the intended use of

a model only involves a few of its predictions, there is no reason to require that all

the other ones are accurate also. This would be like firing a meteorologist for bad

business advice. We should only properly be asking him for advice about the weather,

and so long as he is doing alright with those predictions, we should regard him as an

adequate meteorologist. So with our “useful” models.

To clarify this point, it has been stated that a model’s purpose is to make accurate

predictions. However, a model makes a lot of predictions, and only a subset of these

may be of direct relevance to a given application of the model. In such cases, the pur-

pose of a model is to be accurate over a user-defined subset of predictions. Otherwise

stated, a model is not useful if it does not accurately predict those functions of the

data which are of relevance to a given application. This is a utilitarian, rather than

epistemological, interpretation of the criterion of accuracy.

Secondly, although accuracy has been described as a qualitative aspect of predic-

tions, a quantitative reformulation is given in chapter three. Thus we may speak of

models being more or less accurate, and consider how much accuracy we require in a
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given situation, for example, on the basis of loss functions describing that particular

situation. Perhaps the most intuitive way to do this is just by counting accurate

predictions. So long as some proportion of a model’s predictions are accurate, then,

as with our weatherman, this may be viewed as good enough. The method that is

pursued in chapter three is to consider the distance of g(O) to f(Θ). In the case that

g(O) is vector-valued this is the norm of its projection onto f(Θ), and the meaningful

standardization of this metric presents an interesting problem in each case. The gen-

eral point is that accuracy can be thought of in degrees and then some degree which

is sufficient to one’s purposes can be stipulated. With regard to the method of model

selection described in the next section, how this stipulation is made is irrelevant.

From these considerations it seems that even the most pragmatic of modelers

should admit the criterion of accuracy as reasonable. At the same time, a judicious

interpretation of this criterion should not lead to mistaken conclusions about the

worth of a model for purposes “higher” than prediction. To my mind, it would

be fruitless to pursue the interpretation of prediction much further than this. This

discussion has been intended to facilitate a coherent and therefore limited theory of

model selection. As argued in this section, these limitations are not so much the

breadth but the depth of its application: It covers the shallow waters of pragmatic

modeling and keeps “sinkers” out of the deep end.

The main difference between this approach and that of Bamber and van Santen

(1985, 2000) is that the models presented here make lots (i.e., an infinity) of predic-

tions. On their approach a model is always specific to an experimental design, and it

is therefore constituted by a single prediction. Also, their approach is not explicitly

stochastic. At root, however, the prediction functions defined here are similar to the
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prediction functions described in their work. For this reason much of the terminology

employed so far has been adapted from their approach, and this is only proper. In the

sequel, the divergence between these approaches becomes much sharper. As noted,

they deal with topics of model identification and a measure theoretic interpretation of

the testability of a single model. The present work turns to consider how the notion

of prediction can be utilized for selection among a set of ≥ 1 candidate models, thus

bringing us closer to the main currents of contemporary model selection.

2.3 The Principle of Elimination

Having defined models and their predictions the task now is to consider how these

elements can be combined into a method of model selection. It is useful to begin by

adapting the notation of the previous sections to explicitly incorporate multiple mod-

els and multiple predictions. This allows for a statement of a “second-order” selection

problem, the solution of which is described in terms of efficiency in the computational

sense of time-to-completion. This solution leads to a general algorithm for model se-

lection in the case of ≥ 2 candidates. Consideration of this algorithm provides two

related rationales for the framework developed in this chapter. 1) It demonstrates

a particularly effective method of prediction-based selection. This motivates finding

the kinds of predictions described below in definition 2.3, namely those that cannot

be accurate for all candidates. This is an ad hoc kind of motivation since it depends

on getting the results. 2) More fundamentally, this section demonstrates that think-

ing about selection in terms of prediction can lead to good solutions to the problem

of model evaluation. Rather than concerning any particular type of prediction, this

motivates the framework itself. Otherwise stated, this motivation does not depend
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on “getting good solutions” but on defining problems that would be fruitful to solve.

The distinction between these rationales is important for the interpretation of the

selection criteria defined in this section, because, as explained below, their existence

requires assumptions that will not hold in many circumstances. The selection al-

gorithm on which they are premised is therefore better interpreted as an idealized

selection procedure. It serves as a standard for evaluating selection procedures in

general. That is, if the assumptions of the selection algorithm hold, we can ask how

well alternative selection methods approximate its performance. This role is not un-

like that of a “true model” when this model is assumed to be contained in a set of

candidates and selection statistics are evaluated by whether or not they identify that

model (e.g., Claeskens & Hjort, 2008, chap. 4; Gr üwald, 2007, §17.1). However,

the algorithm presented in this section does not depend on the assumption of a true

model and therefore it can be thought of as embodying a “new” principle of selec-

tion. This is here termed the principle of elimination, and it can be interpreted as

an instantiation of Platt’s (1964) notion of strong inference or as otherwise reworking

Popper’s theory of falsification. The chapter ends by describing how this principle

can guide prediction-based selection in cases where the assumptions of the selection

algorithm do not hold. In particular, it is discussed how the principle applies to the

case of a single model.

2.3.1 A Rudimentary Selection Algorithm

A method of model selection is premised on a set of candidate models M = {Mγ |

γ ∈ Γ } where Γ is a set of model indices (e.g., integers). Each Mγ = (O, pγ,Θγ) has

the same outcome variable O, and pMγ is abbreviated to pγ. The predictions of a
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model are denoted by Pγ = {Pα
γ | α ∈ Aγ } where Aγ is a set of indices (e.g., reals)

over the predictions of each Mγ and Pα
γ = (gα, Xα, fαγ ). The data functions gα are

not subscripted because O is the same for each Mγ and gα is a function on O that

only depends on pO . Since gα : RJ → Xα this implies that Xα is also constant over

models. Thus Pα
γ only varies over γ through its prediction function fαγ .

Next let us introduce the following naming convention for the prediction indices

α ∈ Aγ over a set of candidate models. This convention is analogous to the restriction

placed on prediction functions and data functions. It states that if two predictions

have the same superscript then they are the “same,” which means that the predictions

are equal whenever the models are. This allows us to refer to predictions over models

and requires the axiom of choice. For a set of candidate models M = {Mγ | γ ∈ Γ }

such that γ, γ′ ∈ Γ, α ∈ Aγ, and α′ ∈ Aγ′ , write α = α′ if and only if Pα
γ = Pα′

γ′

when Mγ = Mγ′ . Thus, by convention, Pα
γ = Pα

γ′ when Mγ = Mγ′ and if Pα
γ = Pα′

γ

then α = α′. Similarly to the above applications of “sameness”, the basic idea is

that the predictions of two different models have identical superscripts when those

predictions are about the same quantity (e.g., a regression function, a covariance

matrix, marginal probabilities, and so on). Using this naming convention, consider

the set Pα = {Pα
γ | γ ∈ Γ }. It contains |Γ| predictions that are all equal whenever

their models are equal. Because each prediction in Pα has the same superscript, this

can be dropped for parsimony of notation when referring to the predictions or their

components, so long as the reference to Pα is clear. As an extension of the terminology

used in previous section, Pα will be called a ‘prediction’ ofM, and when |Γ| = 1 this

is just how the term was used above.

As another extension of the terminology of the previous chapter, a candidate Mγ
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is said to be ‘accurate’ with respect to the outcome variable O if for all Pα
γ ∈ Pγ and

for some θγ ∈ Θγ, gα(O) = fαγ (θγ). In many circumstances we will be content with

Mγ that contain a distribution sufficiently similar to pO , which amounts to choosing a

subset of predictions A′γ ⊂ Aγ. In both cases we are faced with the following selection

problem: For a given O with unknown probability distribution and a given M, how

to best go about determining whether the predictions Pγ are accurate with respect to

O for at least one γ ∈ Γ. In the general case this task is non-trivial because |Γ| may

be large, and for each γ ∈ Γ, Aγ is uncountable. Otherwise stated, we might have

a lot of candidates and they each make a lot of predictions. Consequently it is not

obvious which predictions should be of interest for the purposes of model selection.

It is useful to conceptualize this question of “which predictions” in terms of a

second-order selection problem. If the first-order problem is selection among the Mγ,

the second-order problem is selection among the Pα. In the remainder of this section a

solution to this second-order selection problem is posed, which in turn yields a method

of model selection. As with our first-order problem, this solution is premised on an

appropriate purpose. The basic purpose in this case is rather more straightforward

than for the models themselves: A selection procedure must end. Using a finite

number of predictions, either some or none of the Mγ ∈ M are to be identified as

sufficiently accurate with respect to O. A natural extension of this rationale leads

to a preference for predictions that end the selection procedure most quickly. This

preference applies equally well to cases where interest is restricted to a subset A′γ ⊂ Aγ.

For example, if we could decide among the candidates on the basis of computing one

or two gα(O), this would be nice.

As with the definition of a model’s predictions, this second-order purpose is not
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novel – it is simply that of efficiency, in the computational sense of time-to-completion.

In this case we are concerned with the time-to-completion of the selection problem

stated above. In the following I formulate a selection algorithm (in very humanistic

pseudo-code) for 2 ≤ |Γ| <∞ that is O(log2(|Γ|)) efficient. This allows for a consid-

eration of how predictions can be useful for model selection. In particular, the basis

for solving the second-order selection problem is to find predictions that are accurate

for some models and inaccurate for others. A type of prediction that always has this

property is described in the following definition.

Definition 2.3 For a set of candidate models M = {Mγ | γ ∈ Γ }, a prediction

Pα = {Pα
γ | γ ∈ Γ } is called a selection criterion if there exists a subset Cα ⊂ Xα

and γ, γ′ ∈ Γ such that fαγ (Θγ) ⊆ Cα and fαγ′(Θγ′) ⊆ Xα − Cα. In the usual sense of

the term, Cα is called a ‘partition’ of Xα. Denote the set of all selection criteria of

M as C. If C 6= Ø then the Mγ ∈M are said to be distinct.

Roughly speaking, a selection criterion is a prediction that cannot be accurate for

all candidates. For such Pα, either g(O) ∈ C or g(O) ∈ X −C. If g(O) ∈ C then any

Mγ such that fγ(Θγ) ⊆ X − C is inaccurate with respect to O and by construction

of C there is at least one such γ. A similar circumstance holds for the case where

g(O) ∈ X − C. Intuitively, C can be thought of as a “bubble” that encompasses the

image of some prediction functions and excludes that of some others. Those within

C may be nested, overlapping, or disjoint, and similarly for those without. Thus the

only restriction placed on the fγ(Θγ) is that some must be in C and some not. If such

a C cannot be found then it is trivial to show that none of the fγ(Θγ) are disjoint.3

3Assume that two fγ(Θγ) are disjoint and let C equal either one of them. This is the simplest
example of a selection criterion.
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In such a case it would be possible that g(O) ∈ fαγ (Θγ) for all γ. Such a prediction is

not a selection criterion.

As an illustration consider again the sense in which skewness is a prediction of

a distribution. Let O be a real-valued (i.e., univariate) random variable and let M

denote a set of candidate models of O. By a didactic abuse of notation let Pskew

denote the skewness predicted by the set of candidates. In this case X = R and let

C = {0 }. For any γ such that the family of probability distributions of Mγ ∈M has

the property of symmetry, fγ(Θγ) = C. For example, this is the case if pγ is a family of

normal distributions. Similarly, for any γ whose family of probability distributions is

asymmetrical, for example a family of Poisson distributions, fγ(Θγ) ⊆ X−C. For any

candidate whose family of distributions includes both symmetrical and asymmetrical

cases, for example the non-central t-distributions, which are necessarily symmetrical

when the non-centrality parameter is equal to zero but not otherwise, these models

have prediction ranges that are subsets of neither C nor its complement. If there are

not two candidates Mγ ∈M such that one of their prediction ranges is a subset of C

and one of them a subset of X − C, then C = {0 } does not satisfy the requirement

of definition 2.3. If there is no subset of R that is disjoint with some but not all of

the fγ(Θγ) then Pskew is not a selection criterion of M.

Another interesting example of selection criteria can be found in Halpin and Ma-

raun (under review). Here the notion of conditional association (Holland & Rosen-

baum, 1986) is applied to the problem of selecting between linear factor models (LF)

and latent profile models (LP; Bartholomew & Knott, 1999, pp. 153 - 156;). In par-

ticular, when a subset of outcome variables, say Y , are conditioned (i.e., regressed) on

a positive function of the remaining variables, say X, LF implies that the covariance
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matrix of Y is constant over X, whereas LP implies that this function is nonlinear.

This result can be used to formulate a variety of selection criteria between LK and LP,

for instance tests of equality of covariances of Y across ranges of X. Note that this is

just the application of differential item functioning (DIF) to continuous rather than

discrete outcome variables. As such, the Mantel-Haenszel test originally suggested

by Holland and Rosenbaum (1986) can also be re-cast as a selection criterion. This

may be unobvious for two reasons: 1) DIF is used to select data rather then models,

and 2) no alternative candidates are specified in DIF analysis. Regarding the former,

the difference between model selection and data selection is contingent on whether

the model or the data is viewed as normative. This was discussed in the introductory

chapter and in both cases we are essentially concerned with comparing model implica-

tions to properties of the data. Regarding the latter, the work of Halpin and Maraun

(under review) can be extended to the case of discrete outcome variables to show that

finite mixtures of IRT models are not conditionally associated (see Maraun, Slaney,

& Goodyn, 2003, for the case of a two class mixture with dichotomous outcome vari-

ables). Thus, although DIF is used as a technique for selecting test items with a

single class rather than multiple classes of respondents, it can also be interpreted as

a selection criterion between “homogeneous” IRT models and finite mixtures of IRT

models. Some of Mokken’s (1971) results on non-parametric IRT can be similarly re-

cast when a set of candidates is made explicit and the relevant quantities are derived

under the alternative models. Many of the classic derivations in factor analysis, for

example Spearman’s results on triads and tetrads of correlations, can also be inter-

preted as selection criteria that have not been explicitly phrased with regard to a set

of candidates. Thus, as with the definition of prediction in the previous section, the
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definition of selection criteria should not be regarded as a “new” idea so much as a

novel formulation of a familiar idea.

The following points about C, the set of selection criteria of a set of candidate

models, are important to note before proceeding. Firstly, if C contains all of the

selection criteria ofM it also contains all of the selection criteria of any subsetM′ ⊆

M. More obviously, if Pα is a selection criterion for any two Mγ,Mγ′ ∈ M, then

Pα ∈ C.

Secondly there are familiar cases where no selection can exist, for example when

the Mγ ∈ M are nested. More generally, the existence of selection criteria for any

two candidates requires that pγ(Θγ) ∩ pγ′(Θγ′) = Ø. Otherwise there exist θ ∈ Θγ

and θ′ ∈ Θγ′ such that pγ(θ) = pγ′(θ
′). This implies that, for all α, fαγ (θ) = fαγ′(θ

′),

since these are just the same functions computed on identical distributions. Otherwise

stated, selection criteria can only exist for families of probability distributions that

are disjoint. This is a severe restriction on the domain of application of definition 2.3,

but, as we shall see, this restriction allows for a nice solution to the selection problem.

Lastly, the Cα are not unique for a given selection criterion Pα ∈ C, but they are

finite when |Γ| is. This can be seend as follows. Denote by Cα
i , i ∈ I ⊆ N, the possible

partitions of Xα that satisfy definition 2.3. Then in the trivial case Cα
2 = Xα−Cα

1 . It

is readily seen that the maximum value of |I| occurs when all the fαγ (Θγ) are disjoint,

in which case |I| = 2|Γ| − 1. The question of how to best choose Cα
i , and hence Pα is

discussed directly.

Selection criteria can be used to formulate a variety of selection procedures. The

following is a simple example of such a procedure, phrased as an algorithm (i.e., a

determinate set of instructions). The purpose of considering this first algorithm is to
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address how it can be improved, thereby giving a clearer idea of how to use selection

criteria in model selection. The focus of the algorithm is its first step; in its present

phrasing it is unhappily vague.

The input is an outcome variable O, a set of candidate models M, and the set of

selection criteria of those candidates. The stopping rule for this algorithm assumes

that for each subsetM′ ⊆M the Mγ ∈M′ are distinct and that for some γ∗ ∈ Γ and

some θ ∈ Θγ∗ , pO = pγ∗(θ). That is, the algorithm is formulated to require that selec-

tion criteria exist for each subset of candidates, and that one of candidates contains

the “true model.” After consideration of the algorithm, the consequences of dropping

these two assumptions are compared. The result of dropping the assumption of a

true model yields the principle of elimination, and this principle provides a mainstay

for present approach to selection. The consequence of dropping the assumption of

disjoint models includes as a special case any set of candidates with only a single

model. This allows for discussion of model selection in situations where the principle

of elimination does not lead to determinate solutions.

First Rudimentary Selection Algorithm

Step 1: Choose a selection criterion Pα ∈ C and a partition Ci

Step 2: Compute g(O).

Step 3: If g(O) ∈ Ci assign all Mγ such that fγ(Θγ) ⊆ Ci to M′ Otherwise assign

all Mγ such that fγ(Θγ) ⊆ X − Ci to M′

Step 4: Set M to M′

Step 5: If |M| > 1 repeat from Step 1. Otherwise halt.
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As noted, this procedure is not determinate unless its first step can be written

unambiguously. Additionally, its can be seen that the efficiency of this algorithm is

not very optimal. In the best case scenario, the algorithm first happens upon a Pα ∈ C

such that fγ∗(Θγ∗) is disjoint from all other fγ(Θγ) and it selects Ci = fγ∗(Θγ∗). In

this case the algorithm halts after the first iteration. In the worst case scenario,

however, this selection algorithm eliminates one Mγ at each iteration, requiring a

total of |Γ| − 1 repetitions before it halts. The worst case efficiency of the selection

algorithm is therefore O(|Γ|).

This procedure can be made determinate and its worst case efficiency improved

by finding a good way to select the Pα and Cα
i . To this purpose define the sets

Aαi = { γ | fαγ (Θγ) ⊆ Cα
i }; Bα

i = { γ | fαγ (Θγ) ⊆ Xα − Cα
i }; Rα

i = Γ− Aαi ∪Bα
i .

For any selection criterion Pα ∈ C, these sets are disjoint and their cardinalities sum

to |Γ|. For fixed α define an “optimized” partition C ᾱ as any Cα
i whose index satisfies

ī = arg min
i
||Aαi | − |Bα

i ||+ |Rα
i |. (2.1)

The minimum of this sum, call it an efficiency loss function, is b0c. This occurs when

|Aαi | = |Bα
i | and the remainder term is equal to zero. Then, assuming such an i exists,

an “optimized” partition is one for which d|Γ| /2e of the candidate’s prediction ranges

are in Cα
i and the rest are in Xα − Cα

i . Clearly, the use of such a partition assures

us of selecting about 1/2 of the candidates. Whether or not the true minimum of

the quantity in equation 2.1 is obtainable for a given α, the argument that minimizes

it is not unique. Therefore, arbitrarily denote by C ᾱ that partition whose index has
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the smallest value. With regard to definition 2.3, henceforth it will be assumed that

a selection criterion is always used with its optimized partition. That is, for each

Pα ∈ C we now consider only the single partition, C ᾱ.

Using optimized partitions it is then possible to defined an “optimized” selection

criterion P ᾱ ∈ C as any Pα whose superscript satisfies

ᾱ = arg min
α

||Aα| − |Bα||+ |Rα|. (2.2)

Here Aα, Bα, and Rα are defined using C ᾱ in place of Cα
i . Equation 2.2 states that an

optimized selection criterion is one whose optimized partition is most optimal. Again

assuming that such an argument exists, the minimum of the loss function is b0c. If

this minimum is realized, the selection criterion is chosen such that about 1/2 of

candidates are selected. The argument that satisfies equation 2.2 may not be unique,

in which case we arbitrarily select that prediction whose index has the smallest value.

Any other choice would be fine also, and this can depend on the properties of the

indices.

The first selection algorithm may now be re-written using optimized selection

criteria.

Second Rudimentary Selection Algorithm

Step 1: Find P ᾱ.

Step 2: Compute g(O).

Step 3: If g(O) ∈ C ᾱ assign all Mγ such that fγ(Θγ) ⊆ C ᾱ toM′. Otherwise assign

all Mγ such that fγ(Θγ) ⊆ X − C ᾱ to M′.
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Step 4: Set M to M′

Step 5: If |M| > 1 repeat from Step 1. Otherwise halt.

Although this second algorithm is still rudimentary in many ways, it is a clear im-

provement over the first. As per the above discussion of optimized selection criteria,

this is a properly determined instruction. Further, if it is assumed that optimized

criteria can always be found such that the loss function in equation 2.2 reaches its

true minimum, then at each iteration about 1/2 of the remaining models are selected.

In this case the total number of iterations is always dlog2(|Γ|)e. This is a non-trivial

improvement in worst-case efficiency from the first algorithm. A natural comparison

here is between linear (sequential) and binary search. Although selection criteria do

not order the input, they serve to partition the candidates into halves, and then we

“follow the true model” in a manner similar to a binary search. As noted, this effi-

ciency depends on how optimal the optimized criteria are, and, of course, on actually

obtaining and cataloguing such criteria for the relevant models. Nonetheless, this

improvement in efficiency demonstrates that prediction-based selection is potentially

better than a linear search of the model space could possibly be. In comparison the

IC-based approaches discussed in the first chapter, this means that we should want to

do more than slowly order candidates with respect to various incommensurate metrics.

Rather, we should want to quickly find accurate models.

There are many questions that can be asked about selection algorithms and se-

lection criteria, and most of these have to do with pulling off this approach or some

semblance thereof. This is the purpose of chapter three. The present chapter closes by

summarizing this prediction-based approach to selection under a principle of model

elimination and by providing an outlook on selection “in the trenches.”
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2.3.2 Selection Without True Models: The Principle of Elim-

ination

The foregoing discussion of selection algorithms has assumed that one of the candidate

models contained the “true model,” meaning that pO ∈ pγ(Θγ) for some γ ∈ Γ. This

allowed it to be shown that prediction-based selection finds this model in a manner

analogous to binary search when suitable selection criteria are available. As with

search algorithms, it is easy to modify the instructions to deal with cases where the

target is not necessarily included in the input. In fact, the selection algorithm does

not need to be modified at all, only its interpretation. In its present formulation, the

result of the selection procedure is either to eliminate all models or stop when only

one remains. For succinctness, let us consider these as the representative outcomes

of a selection procedure and ignore cases where more than one model is retained; the

latter requires only a straightforward generalization of the following remarks.

In the case that one model remains, all that is incumbent upon dropping the as-

sumption of a true model is that this last be viewed as preferable in a Popperian

sense rather than true in a naive sense. There is no uncertainty in the manner in

which such a model is chosen – the instructions are no less determined without a

true model, and the selection procedure would not have turned out otherwise unless

the instructions were otherwise. Naturally, such revisions could be undertaken. For

instance, the choice of selection criteria could take into account the ease with which

they can be implemented, their substantive interpretations, or aesthetic considera-

tions, and any of these may fairly trump cold efficiency. Yet, as long as selection is

based on predictions satisfying definition 2.3, none of these revisions will change the

nature of the procedure or its inevitable outcome. The last model, if there is one,
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will be preferable in the sense that it is accurate with respect the predictions used to

select it. Thus, rather than “following a true model” we are exacting a standard of

“truth” and in doing so we are led to the best candidate.

In summary, the selection algorithm described above does not require that a

model’s adequacy be judged relative to a true model or to indeed to any other model,

but only to the means by which it is selected. In other words, when a candidate is

preferable in the sense described here we can point to list of predictions that “came

off.” As described in this previous chapter, this is not similar to reporting the value

of a relative fit index, in which case we can only point to the other candidates.

Let us turn now to the case in which none of the candidates are retained. This can

hardly be reason for surprise, because it is precisely this result that has been made

possible by dropping the assumption of a true model. Returning to the analogy of

search algorithms, if the target is not in the input, this is just what the algorithm

is supposed to tell us. There may be cases in which it is desirable to replace the

assumption of a true model with a clause that one or more models must always be re-

tained. To my mind, however, such a clause is incompatible with the interpretation of

models as scientific theories or consequences thereof, because accuracy is not optional

in such contexts. Although it is perhaps unavoidable, this should not be interpreted as

absolute or dogmatic accuracy. As mentioned in the previous section and outlined in

more detail in the following chapter, one can always state a level of accuracy that is

sufficient to one’s purposes. The types of problems suggested by such a task have the

following flavor: For a given set of candidates and a user-defined set of predictions,

find the “accuracy score” that minimizes some stated loss function. Clearly this is

just another version of what has been done in this section, a version particular to a
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given context rather than designed to demonstrate general principle of selection.

By whatever means an acceptable level of accuracy is determined, it must be

acknowledged that this is different from saying that the best candidate is the most

accurate one, and thereby stating one’s criterion level of accuracy in an ad hoc manner.

From the perspective taken here, if a set of models fall short of their intended use,

then so be it. This is a direct consequence of having a purpose in one’s mind when

using those models, a purpose defined independently of “modeling.” As such, the

general approach to model selection in this dissertation may be referred to under a

principle of elimination. The possibility of eliminating models gives value to any that

are retained.

2.3.3 Selection Without Selection Criteria

As noted above, selection criteria will not exist for all sets of candidates, let alone

“optimized” selection criteria, and there is also no reason to imagine that these will

be easy to come by. If a forced-choice between models cannot be arranged, there

is little recourse than to employ the “garden variety” predictions of definition 2.2.

For any prediction such that fγ(Θγ) ⊂ X for at least one γ ∈ Γ, it is possible that

g(O) /∈ fγ(Θγ). That is to say, so long as a prediction is not trivial, it may prove

useful for selection. Note that unlike definition 2.3, this formulation of non-trivial

predictions does not require multiple candidates. Therefore selection via non-trivial

predictions can be applied to the case of a single candidate. However, it is important

to note that whether or not a non-trivial prediction is useful for selection is entirely

contingent on O. As a result, the efficiency of selection algorithms based on only

non-trivial predictions rather than selection criteria can be very poor. For example,
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if selection is with respect to the full (i.e., uncountable) set of predictions, it may be

the case the selection algorithm never ends. Thus the worst case efficiency is infinite,

even if we only require to distinguish between two candidates. On the other hand if

the number of predictions has been limited to a user-defined or otherwise finite set,

the worst case efficiency is then equal to the number of predictions, but the algorithm

may not select among any of the candidates. Clearly these situations are far from

“optimized.” Indeed, a natural question to ask is whether this kind of selection is

better than selection with trivial predictions, in which case these same results are not

contingent on the data.4

In short, selection without selection criteria brings us into the messy domain of

deciding among indistinct models, where, of course, a single model is indistinct from

itself. Although this is a much more realistic selection scenario, not much can be

said about it from a strategic vantage point. Rather, the advances must be made

on the ground, and this is what the following chapter of this thesis accomplishes. In

particular, a measure of accuracy is provided for IRT models, and this can be used to

judge how close a model-implied family of probability distributions is to an observed

distribution. Unlike AIC and its derivatives, this measure has a minimum value of

zero corresponding to the zero point of KL, and unlike KL, its maximum is unity. It is

therefore meaningful to stipulate a “cut-off” value of accuracy that can be employed

for the purpose of elimination. This approach therefore addresses the concerns of the

previous chapter. However, it does not share the computational efficiency discussed in

4Such questions could be considered along following lines. Treating the prediction space as a
probability space, the compliment of the probability of a model’s prediction range could be inter-
preted as the chance of selecting against that model. Extending this idea to multiple candidates and
multiple predictions, this could be interpreted in terms of the probability that a selection procedure
ends.
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connection with selection criteria, because many IRT models are nested. Furthermore,

in application the proposed quantity must be computed for each model, rather than

derived in advance for the models of interest and computed only once for the given

outcome variable. In this sense its application is more similar to IC than to selection

criteria. In short, although the method of selection proposed in the following chapter

embodies the principle of elimination, there is still much that can be done to improve

this approach.

In summary, it is the case that selection criteria will not usually be available,

but the principle of elimination can nonetheless guide selection in these less tractable

cases. Many difficult problems are to be faced in this domain, and the purpose of this

chapter has been to offer a general strategy for finding such problems.
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Chapter 3

Item Response Theory: Data-based

Selection

The topic to be addressed in this chapter is data-based selection of IRT models. As

described above, this connotes selection with respect to an outcome variable and

this is to be distinguished from selection based solely on the properties of models.

In particular, this chapter suggests a measure of Euclidean distance between two

multinomial distributions. When one of these is the distribution of the data and the

other is a model-implied distribution that minimizes this distance, it is interpreted

as a measure of accuracy. Although this approach has much in common with least

squares estimation, it is not proposed as a method of estimation, but as a method of

selection. In practice, this amounts to changing the focus from θ to pM (θ). This result

is a method of evaluating whether pO ∈ pM (Θ), and moreover it allows the minimal

distance between pO and pM (Θ) to be quantified in terms of the interval [0, 1].

The chapter begins by specifying a general class of IRT models and considering
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their predictions (§3.1). Because the outcome variable is finite valued, lower case

notation for random variables will be adopted in this chapter, with the realizations of

these variables indicated by subscripts. This is consistent with the IRT literature on

which this work is based. As a consequence of the finiteness of the outcome variable

o, pO and pM (θ) are always representable as points on the (2J − 1)-dimensional unit

simplex in R2J (Holland 1990). This serves as a “fundamental” prediction space, since

any other predictions are constituted by functions contingent on pO and pM (θ).

The question of a model’s accuracy with respect to an outcome variable is con-

sidered (§3.2). Since the unit simplex is in R2J , it is “natural” to apply Euclidean

distance to this task. In §3.3 this distance is shown to have an obvious maximum,

which allows for the high-dimensional norm to be represented in the interval [0, 1].

The relation of this measure to KL divergence and AIC is considered, and it is readily

seen that minimizing KL is equivalent to maximizing accuracy when a model is cor-

rectly specified (§3.2). However, unlike AIC, the proposed measure is bounded and

its unit is readily interpreted, thus allowing for “cut off” values to be employed for

model elimination. It is also considered how to choose a value of pM (θ) ∈ pM (Θ) on

which to compute this distance when the model is not correctly specified. The ML es-

timator is suggested, although the results are not definitive. Thus the “model-implied

component” of accuracy is reduced to evaluating pM (θ̂).

Another issue relevant to the application of this procedure is the estimation of pO

with sparse data (§3.3). It is unrealistic to anticipate that all 2J response patterns will

have sufficient observations for estimation of these probabilities when J is large. Ways

of making J smaller are therefore considered, the standard solution of “collapsing

across cells” being sufficient to this task. That is, rather than considering all J
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items, subtests of length J ′ < J are considered instead. J ′ can be chosen such that

estimation of the marginal probabilities of the response patterns is feasible. This

amounts to computing the accuracy of various marginal distributions of pO and pM (θ)

and it is obvious that each of these will have perfect accuracy when pM (θ) does. When

accuracy is not perfect, subtests can be used to identify problematic items as those

which reduce model accuracy. Importantly, once pM (θ) has been estimated, these

considerations are computationally inexpensive. In short, although in many cases it

may be infeasible to estimate the accuracy of a model with respect to an entire test,

the present approach can be applied to subtests. For this reason it is also useful test

construction purposes.

The chapter ends with consideration of a numerical example for two models of

the general class considered. This example demonstrates the usefulness of the current

approach, but also that there is still much work to be done.

3.1 The Prediction Manifold of IRT Models

Item response theory concerns a wide variety of research scenarios. A conventional

example is a pen-and-paper achievement test, containing fixed items administered

in fixed order under standardized testing conditions. Let the set T = {1, . . . , J }

represent such a test, each of its integer components corresponding to one test item.

For each of the j = 1, . . . , J items define the indicator variable

oj =


1, if item j is answered correctly

0, if item j is answered incorrectly.
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In this context the outcome variable o = (o1, . . . , oJ) represents the possible response

patterns to the test. There are i = 1, . . . , 2J possible realizations oi = (oi1, . . . , oiJ)

and to each of these a probability p(o = oi) = pi is associated. Using the indicator

δi(o) =


1, if o = oi

0, if o 6= oi

the discrete mass function of o is then

pO(o) =
∏
i

p
δi(o)
i . (3.1)

This outcome variable is the starting point for the considerations of this chapter.

The research scenario that has motivated it is very modest. The domain of IRT

has been extended to other research contexts in educational testing, for example

to tests with polytomously scored variables (Bock, 1972; Samejima, 1972), and to

tests with items that are not fixed but conditional on responses to previous items

within the same test (i.e., adaptive testing, see Van der Linden & Glas, 2000). Many

applications outside of the domain of educational testing have also been formulated

(e.g., De Boeck & Wilson 2004). Moreover, this research scenario has given no concern

to the population of respondents over which o is to be defined. For instance, it may

be asked whether this population is properly viewed as homogeneous with respect to

the items (Holland & Wainer, 1993). These are only a few of the important advances

made since the early work of Birnbaum and also of Rasch. Although we shall have

plenty to talk about within the basic IRT framework, it will be clear to the reader that

general approach taken in this chapter can be extended to any model of a finite-valued
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outcome variable whenever the parameters of that model can be estimated.

A general form of IRT model functions for o is given in equation 3.2. As described

in Table 3.1, the notation of this equation is not entirely consistent with that usually

found in IRT literature.

pM (xi, θ) =

∫ ∏
j

Pj(y)xij
(
1− Pj(y)

)1−xijdF (y) (3.2)

Note that equation 3.2 has the general form p(xi) =
∫
p(xi | y)dF (y) where, for

each y, p(xi | y) is a joint distribution of J independent Bernoulli variates. This

provides a probability distribution of x under the restriction that
∑

i pM (xi, θ) = 1.

The probability distribution implied by equation 3.2 is obtained by replacing pi with

pM (xi, θ) in equation 3.1 and letting o = x. This distribution is denoted by pM (x) and

the notation for its parameters is abbreviated by pM (xi, θ) = pi(θ) when the reference

to M is clear.

Also note that θ is not explicitly represented in the right hand side of equation

3.2. Rather, by choosing the form of the Pj and F one obtains the different model

function falling under this class of models. Usual examples for the Pj include logistic

or normal c.d.f.s, with the same form being assumed over all j. Recent work has

considered more general options (e.g., Miyazaki & Hoshino, 2009). Various means

of dealing with the distribution of the latent variate are employed depending on the

context, although when estimating IRT models F is typically normal (e.g., Baker &

Kim, 2004). So, in the usual practice, θ is just a vector of location and dispersion

parameters, perhaps also including additional quantities (e.g., guessing parameters).

Letting a denote the number of parameters of each Pj and b the number of parameters
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Table 3.1: Summary of IRT Notation

Notation Title Comments

xij ∈ {0, 1 },
j = 1, . . . , J

Item response A variable representing a response to the
jth item of a test of fixed order and fixed
length. The subscript i denotes the re-
sponse pattern to which xij belongs.

xi = (xi1, . . . xiJ),
i = 1, . . . 2J

Response pattern J-dimensional vector of item responses;
the random variate considered in equa-
tion 3.2

p(xi, θ) Model function Model-implied probability of the ith re-
sponse pattern.

y Latent variate In the present treatment, y ∈ R.

Pj Item response
function

A non-decreasing, [0, 1] function of y
representing the probability of a correct
response to the jth item.

F The c.d.f. of y Typically assumed to be normal.

of F , the length of θ is K = aJ + b and Θ ⊆ RK .

Other approaches to equation 3.2 have also been taken. For example, in deriving

results about the general class of models it is often desirable to treat the Pj, F ,

or both non-parametrically, with the non-parametric restrictions applying to all of

the usual parametric forms. For instance Cressie and Holland (1983) considered a

variation of equation 3.2 in terms of expectations over y and their analysis therefore

only required the existence of these expectations rather than a particular form of

F . Holland and Rosenbaum (1986) required only that Pj the are non-decreasing

in y (see also Rosenbaum, 1983). In the following analysis, the form of the model-

implied marginal probabilities only becomes essential when considering the numerical

examples in §3.4.
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As outlined above, the models of interest are of the form by M = (o, pIRT , Θ).

A very convenient property of these models is that equation 3.1 can be represented

as a 2J -vector of probabilities (Holland, 1990). This can be accomplished by letting

o = (o1, . . . , o2J ) represent the possible response patterns for a set of J fixed items

and evaluating pO(oi) at each of these. Then pO = (pO(o1), . . . , pO(o2J )) is vector

representation of each of the probabilities given by equation 3.1. Note that pO is also

a data function since for any two finite-valued outcome variables o and o ′, pO = pO ′

whenever pO = pO ′ . Clearly the converse implication is also true. For this reason

any other data function computed on o is functionally dependent on pO (because by

definition it is functionally dependent on pO ; see §2.2). Therefore pO is viewed as the

data function of pO . Indeed, the one-to-one correspondence between equation 3.1 and

pO has led other writers to identify the two (e.g., Amari, 1985; Chafai & Concordet,

2009). In the present treatment these two representations are distinguished because,

in general, a probability distribution cannot be represented as a finite-dimensional

vector of probabilities.

In a similar manner, pM (θ) = (pM (x1, θ), . . . , pM (x2J , θ)) is interpreted as the pre-

diction function of M . As with pO , its co-domain is readily seen to be

XJ = {(t1, . . . , t2J ) | tj ≥ 0, Σtj = 1 }.

XJ is just the (2J − 1)-dimensional unit simplex in R2J (e.g., Munkres, 1984, §1.1),

although in the present context it can also be thought of as the space of all 2J -

valued multinomial distributions, or what Holland (1990) referred to as a ‘probability

simplex.’ The prediction P = (pO , XJ ,pM ) is then an alternative representation of

the model M .
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This approach is convenient because pM (Θ) is amenable to standard real analysis

as a parametric representation of a manifold embedded R2J . Arguably this is not

obvious from looking at equation 3.1. Such an analysis requires the following regularity

conditions (cf. Kreyszig, 1968, §16; Munkres, 1991, §23).

(R1) pM : Θ→ pM (Θ) is continuous and injective.

(R2) pM has continuous derivatives in θ up to the necessary order.

(R3) ∂pM/∂θk, θk = 1, . . . , K are linearly independent functions in θk.

The interpretation of these conditions is as follows. The first is that of model

identification – each θ ∈ Θ can yield only one pM (θ) ∈ pM (Θ). This implies the

existence of the coordinate function pM
−1 : pM (Θ) → Θ, which allows the pM (θ) to

be indexed by their parameter vector θ ∈ Θ. In usual treatments it is required that

pM
−1 is also continuous in which case pM (θ) is a homeomorphism and pM (Θ) can be

defined as K-dimensional by means its correspondence with Θ. These considerations

are important for defining pM (Θ) as a manifold, but in the present case pM
−1 is

not available, so this is of less relevance in practice. Rather, we will simply “work

on” pM (Θ), and avoid use of topological properties that explicitly require pM
−1 (e.g.,

change of coordinates).

(R2) ensures that relevant derivatives exist. The present analysis is restricted to

second-order derivatives. (R3) requires that the partial derivatives span the tangent

plane at any point on pM (Θ). An important consideration here involves taking deriva-

tives with respect to θ under the integral sign in equation 3.2. Nothing in following

section requires doing this explicitly. Yet this is required in obtaining (marginal) ML

estimates of θ on which the data analyses of the present work are ultimately based
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(Baker & Kim, 2004, chap. 6). It is also the case that these derivatives need to be

evaluated in order to ensure that the second and third regularity conditions hold.

While the second requirement is easily checked for a given model, I know of no gen-

eral analytic strategy by which to determine the linear independence of a set of K

nonlinear, vector-valued equations. However, based on the computations involved in

E-M estimation of θ (Baker & Kim, 2004, chap. 6), the matrix of partial derivatives

could be evaluated at the ML estimates and its rank inspected numerically. This

would ensure that the third condition holds in practice.

The following sections apply this representation of IRT models to their data-based

selection. As described in the present section, the basic idea is to treat the set pM (Θ)

as a geometrical object or manifold embedded in Euclidean space. This “likelihood

manifold” represents all of the probability distributions implied by a model. The

parameters of a model are a set of coordinates on the manifold, they serve to “name”

each of its probability distributions. In this context, estimation procedures such as

ML can be interpreted as algorithms for finding coordinates that satisfy a specified

optimization criterion with respect to a given value of pO . The general goal of data-

based selection can then be interpreted as determining whether one of the coordinates

of the likelihood surface identifies the probability distribution of an outcome variable.

3.2 Accuracy: The Problem of Choosing θ

The basic problem in data-based selection is to decide if a given outcome variable is

consistent with a given model. In the present context this problem can be formulated

by letting pO be any fixed point in XJ and considering its relationship to pM (Θ).

In particular we require some means of deciding when pO ∈ pM (Θ). Moreover, as
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discussed at the end of the first chapter, if pO /∈ pM (Θ) it is desirable to have a

measure of the discrepancy between the two, so that this information can be used to

judge whether or not a model is “close enough” to be useful. Because XJ ⊂ R2J ,

an obvious measure of discrepancy between an observed distribution pO and a point

pM (θ) ∈ pM (Θ) is the Euclidean distance ||pO − pM (θ)||. In using the norm as a

measure of model accuracy, consideration must be given to how to choose pM (θ) ∈

pM (Θ), or equivalently (by R1), how to choose θ ∈ Θ. This consideration is the focus

of the present section.

In the first place it may be noted that the distance between a given pO and any

specific model pM (θ) can be always computed. However, the problem set out in the

previous paragraph does not concern the distance of pO to a specific model but to a

general model. For this reason a rationale is required in choosing a point or points in

pM (Θ) for which to evaluate the norm. The natural choice is the orthogonal projection

of pO onto pM (Θ), which amounts to treating ||pO − pM (θ)|| as a loss function in θ.

This distance is minimized if pO = pM (θ), in which case it can be concluded that

pO ∈ pM (Θ). If pO /∈ pM (Θ) then there may exist multiple values of θ that minimize

the Euclidean distance, but there is a unique solution if pM (Θ) is convex in the

neighbourhood of pO .1 In either case, the discrepancy between pO and pM (Θ) can be

quantified in terms of the norm of the orthogonal projection(s) of the former onto the

latter.

As described above, the matter of choosing θ is clearly related to estimation of

1This is easy to see by assuming for the purpose of contradiction that pM (Θ) is convex and that
there are two unique orthogonal projections of pO onto pM (Θ). These three points form an isosceles
triangle, and the points of the face opposite pO are in pM (Θ) by the definition of a convexity (see
e.g., Munkres, 1984, §1.1). Then the orthogonal projection of pO onto its opposing face must be in
pM (Θ).
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model parameters. The foregoing rationale for choosing pM (θ) ∈ pM (Θ) motivates a

nonlinear least squares (NLS) approach to parameter estimation in IRT. This is rather

inconvenient, since estimation in IRT traditionally does not employ NLS but ML. This

tradition is firmly grounded in the classic asymptotic results for the ML estimators of

correctly specified models. It has also been discussed how KL divergence motivates

the ML estimator in more general contexts (§1.1.2). While the present approach has

led to a different objective function, it too is concerned with the distance between two

distributions, and so it might be expected, if only on intuitive grounds, that it should

lead to results that are consistent with KL. Moreover, covariance-based generalized

least squares (GLS) estimation for IRT has been worked out (Christofferson, 1975;

Muthen, 1978) and this has been shown to be asymptotically equivalent to ML for

correctly specified models (Browne, 1984). These results are again suggestive. In

short, it would be nice to show that the ML estimator also minimizes the Euclidean

distance between pO and pM (Θ), thereby aligning the proposed approach to model

selection with the established practice in IRT. This is the goal of the present section.

The following proposition shows that, under certain conditions, the maximum of

the log-likelihood coincides with a stationary point of the norm function. Further con-

siderations about whether the maximum likelihood is the minimum of the Euclidean

distance are suggestive but inconclusive. Therefore the arguments for regarding the

ML estimate as a good choice of θ ∈ Θ for which to evaluate ||pO − pM (θ)|| must be

regarded as incomplete.

Proposition 3.1 Assume that for some IRT model M the likelihood function of

pM (x) has a unique maximum θo. Assume further that the likelihood is computed

over a set of i.i.d. outcome variables whose realizations include all response patterns
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xi, i = 1, . . . 2J , and that pM (xi, θo) > 0 for all i. Then

∂

∂θ
||pO − pM(θ)||

∣∣∣∣
θ=θo

= 0. (3.3)

Proof : The strategy is to compare the first-order derivatives of ||pO − pM (θ)||2 and

of the logarithm of pM (x) =
∏

i pM (xi, θ)
δi(x). This latter is the model-implied log-

likelihood of a single response pattern when it is treated as a function of θ for fixed

xi. Generalization to the joint distribution of multiple i.i.d. xi is straightforward and

the details are omitted for succinctness.

Begin by writing pM (xi, θ) = pi(θ) and letting

ui(θ) =
∂

∂θ
pi(θ) =

[
∂

∂θ1
pi(θ) · · ·

∂

∂θK
pi(θ)

]

denote the gradient (row) vector of the ith component of pM (θ). Then the derivatives

of interest are

∂

∂θ
||pO − pM(θ)||2 = 2

∑
i

(pi − pi(θ))ui(θ) (3.4)

and

∂

∂θ
ln(pM(x)) =

∂

∂θ

∑
i

δi(x)ln(pi(θ)) =
∑
i

δi(x)

pi(θ)
ui(θ). (3.5)

Inspection of equations 3.4 and 3.5 shows these to be linear combinations of the

gradient vectors ui(θ). The ui(θ) exist by condition (R2) and the assumption that

pi(θo) > 0 ensures that equation 3.5 is defined at θo for all i. By definition θo is an
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extremum of pM (x), and hence ui(θo) = 0 for each i. This can also be seen by setting

equation 3.5 to the null vector and noting that δi(x)/pi(θo) > 0 whenever x = xi.

Computing the log-likelihood over a set of all possible response patterns, equation 3.5

implies that ui(θo) = 0 for all i. Inspection of equation 3.4 shows this to coincide

with a stationary point of ||pO − pM (θ)||2, and the proposition follows.

Proposition 3.1 should be interpreted with due caution. Multiple values of θ can

be stationary points of the log-likelihood function and by the argument given here,

if equation 3.5 exists at these points they must also correspond to stationary points

of ||pO − pM (θ)||. This is perhaps unsurprising since both quantities are functions of

pM (θ). What is stated by the proposition is that, when the log-likelihood is computed

on a set of observations containing all possible response patterns, its maximum is a

stationary point of ||pO − pM (θ)||. In the following paragraphs, some further consid-

erations are brought to bear on the question of whether θo, the maximum argument

of the likelihood function, is the minimizing argument of ||pO − pM (θ)||.

Some insight is provided by consideration the properties related to the second-

order derivatives of the functions in proposition 3.1. Letting Hi = Hi(θ) denote the

Hessian of pi(θ) and writing ui = ui(θ) these are:

∂2

∂θ′∂θ
||pO − pM (θ)||2 = 2

∑
i

(
(pi − pi(θ))Hi − u′iui

)
(3.6)

and

∂2

∂θ′∂θ
ln(pM (x)) =

∑
i

(
δi(x)

pi(θ)
Hi −

δi(x)

pi(θ)2
u′iui

)
. (3.7)

Note that for both equation 3.6 and equation 3.7, the outer product of the gradient row

vectors disappears at θo, and so we are primarily concerned with linear combinations
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of the Hi corresponding to those in equations 3.4 and 3.5. Let us first consider

equation 3.6. Much can be said about this quantity if pM (Θ) is a convex set. For

instance, this implies that the norm is also convex and hence that equation 3.6 is

positive semi-definite for all pM (θ) (Boyd & Vandenberghe, 2004, §3.1.5). In such cases

||pO −pM (θ)|| has a single stationary point and this is a global minimum (Borwein &

Lewis, 2000, proposition 2.1.2). Under the conditions stated in proposition 3.1, this

stationary point must be θo.
2 Thus it is necessary that the maximum likelihood is also

the minimum distance is when pM (Θ) is convex. Now, the unit simplex XJ is itself

convex (Munkres, 1984, §1.1) and it is also the case that Θ is convex for the usual IRT

models discussed in §3.1. Also, since pM is continuous in θ (by R1), pM (Θ) must be a

connected subspace of XJ , and this is a necessary condition for convexity. However, to

claim that ||pO−pM (θ)|| is convex would seem to requires a model-by-model analysis;

I know of no general strategy by which to accomplish this. It may also be noted that

with or without the assumption of convexity, inspection of equation 3.6 reveals that

it is equal to the null matrix when pO = pM (θ).

On the other hand, equation 3.7 must be locally negative semi-definite (i.e., the

log-likelihood must be concave) in the neighborhood of θo. Since the product of

a negative semi-definite matrix and a positive scalar is also negative semi-definite

(Harville, 1997, lemma 14.2.3), Hi(θo) is negative semi-definite for all i. However,

since the values of (pi − pi(θo)) are not known when pO 6= pM (θo), this does not

imply anything about equation 3.6. Thus considerations related to the second-order

derivatives are not conclusive about whether pM (θo) is, in general, the minimizing

argument of ||pO − pM (θ)||.

2This also implies that the ML estimator described in proposition 3.1 must have a single ex-
tremum.
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A different approach to this problem can be taken by noting that ||pO − pM (θ)||

reaches its global minimum if pO = pM (θ). It well known that the KL divergence from

equation 1.1 has its minimum when this same condition is satisfied (e.g., Kullback,

1983). Then, assuming that the minimum of KL is obtained for some value of θ = θ∗

(i.e., assuming that pO = pM (θ∗)):3

θ∗ = arg min
θ

KL(pO , pM (θ)) = arg min
θ
||pO − pM (θ)||. (3.8)

Since the ML estimate θ̂ asymptotically converges to θ∗ (van der Vaart, 1998, §5.5;

also §1.1.1 above), it follows that θ̂ asymptotically minimizes ||pO−pM (θ)|| when pO ∈

pM (Θ). Otherwise stated, when M is correctly specified, minimizing KL divergence

is equivalent to minimizing the Euclidean distance. This point is addressed again in

§3.3.

At this juncture several arguments have been brought to bear on the issue of

whether maximum likelihood minimizes the Euclidean distance between a fixed but

arbitrary pO and a given model-implied prediction manifold pM (Θ). The following

conclusions can be made: 1) Under the conditions of proposition 3.1, the maximum

value of the log-likelihood function corresponds to a stationary point, possibly a min-

imum, of ||pO − pM (θ)||; 2) If the conditions of proposition 3.1 hold and additionally

pM (Θ) is convex, then ||pO − pM (θo)|| is the unique global minimum of the norm; 3)

The ML estimator asymptotically minimizes KL(pO , pM (θ)), and when pO ∈ pM (Θ),

it is trivial to observe that the minimum of KL(pO , pM (θ)) coincides with that of

3Note that θo is not the same quantity as θ∗. The former is the maximum of the likelihood
function; the latter is the maximum of the expectation with respect to o of the log-likelihood; see
§1.1.1.
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||pO − pM (θ)||. Although these arguments are suggestive, it is unclear whether the

ML estimate is a suitable choice of θ ∈ Θ for evaluating model accuracy in general.

Further lines of argument are not pursued in this dissertation, and the topic is left

as an open problem. Therefore, while the accuracy of any specific model obtained

by ML estimation can be evaluated, whether this is equivalent to the accuracy of the

general model that has been estimated is not yet settled.

The purpose of this section has been to align the proposal of evaluating model

accuracy by means of Euclidean distance with the current estimation procedures in

IRT. However, it has been noted that treating ||pO − pM (θ)|| as a loss function mo-

tivates a NLS solution to choosing θ, and so it may be asked why NLS should not

be pursued instead of ML. While this could present an interesting line of research

for robust estimation in IRT, it would presumably also require motivation in terms

of being an improvement over ML. That such an improvement is available is not yet

clear. At this point it seems that the only motivation for NLS is in terms of favoring

the distance loss function proposed in this section over the KL loss function. Here it

is important to recall that the distance function has been proposed as a method of

evaluating model accuracy, not as a “new” approach to estimation in IRT. Nonethe-

less, this section shows that the problems of estimation and data-based selection are

foundationally intertwined.
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3.3 Accuracy: A Summary Measure and Potential

Applications

The foregoing section has proposed the Euclidean distance ||pO − pM (θ)|| as a means

of evaluating model accuracy and has considered the problem of choosing a parameter

θ ∈ Θ for which to compute it. Yet there remains the matter of whether this quantity

is particularly worthwhile for model selection purposes. In applied settings it is com-

mon for response pattern residuals to be provided with the standard output of IRT

software, and it is perhaps not clear that their sum of squares is an especially useful

quantity. More generally, the magnitude of a high-dimensional Euclidean distance is

not straightforward to interpret when this is different from zero. The present section

addresses such concerns. Firstly it is shown that two points in XJ have a distance of

most
√

2. As such it is easy, although unnecessary, to “standardize” this distance. It

is discussed how the use of this quantity overcomes many difficulties associated with

the interpretation of information criteria (cf. §1.2). In the remainder of this section

it is shown how the Euclidean distance can be used as a measure of the accuracy of

model not only with respect to a full test, but also with respect to subtests and, in

particular, single items. The problem of estimating this quantity in sample-based ap-

plications with sparse data is also discussed. The arguments in favor of the usefulness

of this relatively simple approach to model evaluation are summarized at the end of

this section.

In the following proposition it is observed that the distance between any two points

in XJ has a finite upper bound. As a preliminary step it is also shown that the norm

of any vector in XJ is at most equal to one.
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Proposition 3.2 Let a,b ∈ XJ . Then

1. MAX ||a|| = 1

2. MAX ||a− b|| =
√

2

Proof (Part 1): Let ai, i = 1, . . . , 2J denote the ith component of a. Assume

ai = 1 for some value of i. Then since
∑
ai = 1, ak = 0 for all i 6= k and ||a|| = 1. To

see that this is the maximum value of ||a|| assume that ai < 1 for all i. Then a2
i ≤ ai,

with equality holding iff ai = 0. Therefore
∑
a2
i < 1 and ||a|| <

√
1 < 1.

Proof (Part 2): Let bi, i = 1, . . . , 2J denote the ith component of b. Since ai ≥ 0

and bi ≥ 0 for all i, (ai − bi)2 ≤ a2
i + b2

i . Therefore

||a− b||2 ≤
∑
i

(a2
i + b2

i )

= ||a||2 + ||b||2.

It is easy to check that equality holds for ai = 1 and bk = 1 with i 6= k, in which case

the equation is just an instance of Pythagoras’ theorem.

Proposition 3.2 suggests using the quantity z(θ) = ||pO − pM (θ)||/
√

2 as a sum-

mary measure of model accuracy. This quantity has several nice properties that are

made explicit in the following:

1. z(θ) ∈ [0, 1];

2. z(θ) = 1 implies pO⊥pM (θ);

3. z(θ) = 0 iff pO = pM (θ);
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4. z(θ) = 0 iff KL(pO , pM (θ)) = 0.

These properties serve to address the shortcomings associated with the use of

information criteria discussed at the end of chapter one. The first three state that z

has a unit range with interpretable end points. Thus, unlike the case for relative fit

indices, it is meaningful to posit criterion values for model acceptability. How these

values are to be chosen in any particular case is not necessarily a simple task and could

be thought of as an area of further research. Yet one obvious and non-arbitrary choice

is to require that z(θ) = 0. The most significant and perhaps also the most obvious

property of z is that it allows for a direct and unambiguous answer to the question of

when a model is accurate with respect to a given outcome. In the terminology of the

first chapter of this dissertation, it answers the question of whether or not a model

achieves its intended purpose.

As noted by the fourth point above, the proposed quantity agrees with a well-

established measure of model divergence when these are equal to zero (see §3.2). Thus,

if we are happy to minimize KL, then in the more limited context of IRT modeling, we

should also be happy to to minimize z(θ). An important difference between relative

fit indices that minimize KL and z(θ) is that the latter indicates when the objective

function in question reaches its true minimum. Moreover, if z(θ) 6= 0 it is possible

to say, quite literally, how far away the model is from pO . Thus we can also use z(θ)

for purposes such as determining whether one model is farther away than another,

whether more than one model achieves some criterion value, and so on. In short,

z(θ) can be used to determine the accuracy of any given model and therefore to rank

models accordingly. Considering these points, it would seem that the relatively simple

approach developed here has much to commend it.
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There are also shortcomings. One issue is that the maximum of z(θ) occurs only

in circumstances that are, to say the least, implausible in practice. Not only must the

vector representations of two points in XJ be orthogonal, they each must give zero

probability to all but one of the oi (i.,e., the must be Cartesian coordinate vectors in

R2J ). So z(θ) could benefit from a more restrictive upper bound. For instance, only

non-orthogonal vectors or vectors with length less than one might be considered. A

stricter range may be more readily obtainable by considering a different quantity, for

instance the angle between pO and pM (θ). For any a,b ∈ XJ , it is straightforward

to show that the angle between their vector representations in R2J is in the interval

[0, π/2] and that it equals zero iff a = b. In general, however, this angle does not have

a simple relation to the distance between a and b, because the length of the vectors

in XJ is variable. Finding more restrictive upper bounds for z or related quantities

is a topic of further study.

Another objection that can be raised here is that z(θ) doesn’t take into account

model complexity, and therefore that it unwittingly favors overparameterized models.

Although this objection has already been acknowledged by the distinction between

data-based and model-based selection, it is one that can be fruitfully addressed again

here. In the first place it is worthwhile to note that pO is not a random sample of

observations from a population but the parameters of that population. So long as

we have a reliable estimate of pO , we should want to select a model-implied set of

probabilities pM (θ) that is as close to that estimate as possible. If the specific model

is completely accurate, then further samples taken from the population pO will be

predicted just as well by using pM (θ), because these are the same distribution. On the

other hand, if it turns out that an estimated value of pO is not reliable, this has nothing
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to do with z(θ) or indeed with M . Thus it seems that the overparameterization

objection conflates two related issues, both of which are quite important. Firstly, if

pM (Θ) is “very large” then we can always find a pM (θ) ∈ pM (Θ) that is close to any

a ∈ XJ , when in fact we are only interested in pM (θ) that are close to pO . This type

of issue is a topic in model-based selection. The second issue has to do with small

sample sizes, which is a problem that leads to the topics addressed in the remainder

of this section.

In practice, evaluating z(θ) requires estimating pO from a set of observations and

computing pM (θ) for given θ. As discussed in the previous section, the choice of θ

determines whether z(θ) is properly regarded as a measure of the accuracy of the gen-

eral model to which pM (θ) belongs, and this raises issues relating to the estimation of

model parameters. On the other hand, requiring that pO be estimated independently

of its model-implied probabilities places large demands on the number of observations

per response pattern. Even in relatively modest applications, 2J is a big number. The

least probable response pattern(s) under pO cannot have a probability larger than 2−J ,

and this only occurs when pi = p for all i. If any one response pattern is more likely,

then the rest of them must be less likely on average and in particular at least one must

have probability less than 2−J . These considerations indicate that reliably estimating

z(θ) requires very large sample sizes, say on the order of thirty thousand for a test of

10 items. Therefore, a practical concern immediately arises about the use of z(θ) in

smaller applications, and this concern is here discussed in terms of sparse data.

The problem of sparse data can be addressed in a variety of ways. The approach

taken here is to reduce J by considering subtests consisting of 2 ≤ J ′ ≤ J items. The

general idea is to choose J ′ such that, for a fixed sample size, estimation of the response
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pattern probabilities for subtests of length J ′ is based on sufficient observations. An

important feature of the present approach is that subtests are not obtained by means

of “dropping items” and then separately estimating various lower dimensional models

from the same sample data. In this case it seems more appropriate to speak of

statistically dependent estimates of multiple models. Rather, the idea here is to

derive consequences for subtests from a model of the full test.

Importantly, subtests need not be used only for dealing with sparse data. In many

cases the accuracy of subtests may be of intrinsic interest, and in particular the J

unique subtests consisting of J − 1 items are discussed in some detail below. It is

described how these may be compared amongst each other or to the overall test in

order to evaluate the changes in accuracy that are due to the omission of a single

item. Items that lead to substantially better accuracy can be beneficially left out.

These considerations provide an example of how accuracy can be used not only to

select models but also for test construction. Because subtests pertain to the problem

of sparse data as well as to issues of test construction, both of these will be discussed

in connection with the results of the following subsection.

3.3.1 Subtests and Subtest Accuracy

In order to address subtest applications of z(θ), some further notation must be in-

troduced. In §3.1 the set T = {1, . . . , J } was used to represent a test consisting of

J items, each of which is denoted by an element of T . A subtest is a “user-defined”

subset T ′ ⊆ T . For instance, the subtest consisting of all but the first item of T is

T ′ = {j | j ∈ T and j 6= 1 }. Let J ′ = |T ′| denote the number of items in T ′.

In the first place we require a means of indexing the response patterns for T ′. To
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this purpose define the set

R = {i | oij = 1 for all j ∈ T − T ′ and i = 1, . . . , 2J }.

R contains the indices of all response patterns with a “perfect score” on the items

not included in T ′. For example, R contains two indices if the subtest contains one

item, and those indices correspond to the response patterns whose components are all

equal to one, with the exception of that component which represents the response to

the item on the subtest. In general there are 2J
′

possible responses to the J ′ items in

T ′, and to each of these corresponds exactly one response pattern oi that has oij = 1

for all j /∈ T ′. As noted, the purpose of constructing R is to obtain a set of indices

r ∈ R that correspond to the possible response patterns of the items in T ′; any other

configuration of responses to the items in T −T ′ could have been used in place of the

“perfect score” and this would serve the same purpose.

For each r ∈ R, consider the set

Ir = {i | oij = orj for all j ∈ T ′ and i = 1, . . . , 2J }.

Ir contains the indices of the response patterns oi that have the same responses to

each item in T ′ as or. Note that in particular r ∈ Ir. Intuitively, each index in Ir

corresponds to an identical response pattern on T ′. There are 2J−J
′

indices that have

the same responses to each item on the subtest as or, since this is how may different

response patterns there are for the items in T −T ′. Hence the Ir serve to partition the

2J values of i into 2J
′

sets that each contain 2J−J
′

indices corresponding to identical

subtest response patterns. It is easy to check that ∩Ir = Ø and ∪Ir = {1, . . . , 2J }
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for any given T ′.

Lastly consider the sets Or = {oi | i ∈ Ir }. These play the role of response

patterns for a subtest of items T ′ ⊆ T . The variable o ′ ∈ {Or | r ∈ R } will be used

to denote the 2J
′

possible outcomes of a subtest T ′. With reference to equation 3.1,

the probabilities of each realization o ′ = or
′ are given by

pr =
∑
i∈Ir

pO(o) =
∑
i∈Ir

∏
k

p
δk(o)
k . (3.9)

The notation pO
′ = (p1, . . . , p2J′ ) will be used to denote the 2J

′
vector of subtest prob-

abilities, as this is clearer to read than pO ′ . As with o, the model-implied probabilities

of o ′ are obtained from equation 3.2 by letting pi = pi(θ) and x = o. Their vector

representation is denoted pM
′(θ).

Equation 3.9 shows that the subtest probabilities are implied by those of the full

test, and so they do not need to be re-estimated for each subtest. While it is clear that

estimating the pr either directly or through the pi is equivalent for a fixed sample, it is

perhaps less obvious that θ does not need to be re-estimated for subtests. Specifying

separate models for lower dimensional tests is just to consider different models of the

same data. Equation 3.9 lets us consider subtests in terms of the implications of a

single model.

Having established a notation for dealing with subtests, the task now is to consider

how this facilitates the application of z(θ). Let the accuracy of a subtest be denoted

by z ′(θ). The computation of z ′(θ) is straightforward, the only difference being to

consider the 2J
′

probabilities pr given by equation 3.9 in place of the 2J probabilities

pi given by equation 3.1. While the computation of subtest accuracy is obvious, its
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interpretation requires rather more work. It is natural to begin with the question of

how the accuracy of a model with respect to a subtest relates to that of the full test.

The answer to this question is the content of the following proposition, which is the

main result of this section. Before dealing with this result it is worthwhile to develop

some initial insight into the question through consideration of the components of the

vector pO − pM (θ).

If z(θ) = 0, then pi = pi(θ) for all i and it is easy to see that z ′(θ) = 0 also.

That is, if a test is perfectly accurate then so are each of its subtests. However, if

z(θ) > 0 then pi 6= pi(θ) for some of the i = 1, . . . , 2J . Without loss of generality,

assume that pi > pi(θ) for a particular value of i. Then
∑

k 6=i pi <
∑

k 6=i pi(θ) and

so pk < pk(θ) for at least one k 6= i. In general, all of the positive and negative

components of pO − pM (θ) must “balance out” since
∑

(pi − pi(θ)) = 0. Roughly,

this means that z ′(θ) can be less than z(θ) when subtest items involve summing over

response pattern deviations with opposite signs. On the other hand, if subtest items

sum over deviations with the same sign, accuracy can be worsened. These issues are

addressed more formally by the following proposition.

Proposition 3.3 For a given model M , let z(θ) be computed for a test T with J

items and let z ′(θ) be computed on a subtest T ′ ⊆ T with J ′ ≤ J items. Then

zd =
(
z ′(θ)

)2 −
(
z(θ)

)2
=
∑
r∈R

∑
i,k∈Ir
i<k

(pi − pi(θ))(pk − pk(θ)) (3.10)
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Proof : The derivation is basic.

2
(
z ′(θ)

)2
=
∑
r∈R

(pr − pr(θ))2

=
∑
r∈R

(∑
i∈Ir

pi −
∑
i∈Ir

pi(θ)

)2

=
∑
r∈R

(∑
i∈Ir

pi

)2

+

(∑
i∈Ir

pi(θ)

)2

− 2

(∑
i∈Ir

pi
∑
i∈Ir

pi(θ)

)
=
∑
r∈R

(∑
i∈Ir

p2
i +

∑
i∈Ir

pi(θ)
2 − 2

∑
i∈Ir

pipi(θ)

+2
∑
i,k∈Ir
i<k

pipk + 2
∑
i,k∈Ir
i<k

pi(θ)pk(θ)− 4
∑
i,k∈Ir
i<k

pipk(θ)


=
∑
r∈R

∑
i∈Ir

(pi − pi(θ))2 + 2
∑
i,k∈Ir
i<k

(pi − pi(θ))(pk − pk(θ))


= 2
(
z(θ)

)2
+ 2

∑
r∈R

∑
i,k∈Ir
i<k

(pi − pi(θ))(pk − pk(θ)). �

Inspection of equation 3.10 shows that the difference between z(θ) and z ′(θ) de-

pends on the arrangements among the (pi − pi(θ)) given by the Ir. But it is not yet

obvious how zd changes with T ′. The next few paragraphs explain how the number

of items per subtest relates to the value of zd for a single subtest of length J ′. These

remarks are then related to the problem of sparse data and issues of test construction.

From equation 3.10 it can be seen that the sets of indices R and Ir govern the

total number of terms appearing in zd. Here it is necessary to recall that for each of

the 2J
′

elements r ∈ R, |Ir| = 2J−J
′
. To each Ir there corresponds a 2J−J

′
-vector,
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Dr, with components (pi − pi(θ)), i ∈ Ir. The components below the diagonal of the

outer product matrix DrD
′
r are the “crossproducts” (pi−pi(θ))(pk−pk(θ)) appearing

in equation 3.10. There are (2 2(J−J ′)− 2J−J
′
)/2 of these crossproducts corresponding

to each of the Ir. Summing over the 2J
′

values of r, this yields a total of

2J
′
(2 2(J−J ′) − 2J−J

′
)/2 = 2J−1(2J−J

′ − 1) (3.11)

terms appearing in equation 3.10. For instance, if J ′ = J there are zero crossproducts.

If J ′ = J − 1 there are 2J−1 crossproducts, one per subtest response pattern. If

J ′ = J − 2 there are 2J−1 · 3 crossproducts and six per subtest response pattern. And

if J ′ = 1 there are (2 2J−1−2J)/2 total terms in zd, with half of these corresponding to

the two response patterns of T ′. In general, equation 3.11 shows that the number of

terms in zd decreases in J ′, and that any subtest of length J ′ corresponds to a proper

subset of the (2 2J − 2J)/2 unique crossproducts given by the J items on the full test.

Also note that for each different subtest of length J ′, the Ir are different partitions

of the indices i = 1, . . . , 2J . Thus different crossproduct terms appear in different

subtests of length J ′, and so each different subtest of length J ′ will in general yield a

different value of zd.

Further considerations about the value of zd are less straightforward. If z(θ) 6= 0,

some of the (22J − 2J)/2 crossproducts of the full test must be negative and some

must be positive. Moreover, it can be seen that the sum of these crossproducts must

be negative. In particular

2J∑
i

2J∑
k

(pi − pi(θ))(pk − pk(θ)) =
2J∑
i

(pi − pi(θ))
2J∑
k

(pk − pk(θ))

 = 0
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implies that

2J∑ 2J∑
i 6=k

(pi − pi(θ))(pk − pk(θ)) = −
2J∑
i

(pi − pi(θ))2 = −2
(
z(θ)

)2
. (3.12)

Equation 3.12 shows that the sum of the (22J − 2J)/2 crossproducts is necessarily

negative when z(θ) 6= 0. As noted above, however, when J ′ ≥ 1 only a subset of the

terms in equation 3.12 appear in zd. The strongest statement that can be made here is

that as J ′ decreases, it is expected though not certain that zd will be negative. Because

equation 3.12 tells us nothing about the values of the individual crossproducts, it is

not possible to say anything definite about a sum of a subset of these values on the

basis of that equation. For instance it is possible that only 2J of them are negative,

or that many of them are null. One point of interest here is that when J ′ = 1, its

is a well known phenomena that z ′(θ) = 0 for the usual IRT models (e.g., Holland,

1990). Equation 3.10 implies that zd = −
(
z(θ)

)2
in this case also, although it is not

clear why this occurs. For the case of J ′ > 1, it may only be concluded that zd can be

either positive or negative, depending on the subset of crossproducts that are appear

in its calculation.

One possibility here is to try to “build up” the complete set of crossproducts in

equation 3.12 from multiple subtests of length J ′. In this way, the term zd would be

known and the accuracy of the full test would obtainable from that of the subtests.

However, this approach quickly becomes quite complicated. In particular, summing zd

over all possible subtests of length J ′ will not always include all possible crossproducts

and it will often include the same product multiple times. For example in the case

where J ′ = J − 1 it is not possible that the sum of zd over all subtests includes all of
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the terms in equation 3.12. More generally, using equation 3.11 it can be seen that

(2 2J − 2J)/2 ≤
(
J

J ′

)
2J−1(2J−J

′ − 1)

implies

2J ≤
(
J

J ′

)
(2J−J

′ − 1) + 1. (3.13)

Equation 3.13 gives a general condition for when the sum of zd over all possible

subtests of length J ′ will include at least as many crossproduct terms as equation

3.12 – whenever the inequality holds it is the case that at least as many terms appear

in the sum of the zd as in equation 3.12. If the condition does not hold, then it is

not possible that summing zd over all possible subtests of length J ′ will yield a “full

set” of crossproducts, since there are not enough of them. In particular, equation 3.13

requires that J ′ > J − 1. However, for a fixed value of J ′ > J − 1, it is not generally

the case that the different subtests yield unique crossproducts. This can be seen by

counter example (e.g., J = 3 and J ′ = 2).

In general, there does not appear to be a straightforward solution for the value of

zd. This leaves open the question of the relationship between subtest accuracy and

full test accuracy when the latter is not known. To address this issue, the following

proposition provides a weak lower bound for z(θ) in terms of z ′(θ).

Proposition 3.4 Let z(θ) and z ′(θ) be computed as in proposition 3.3. Then

z(θ) ≥ z ′(θ)√
2J−J ′

. (3.14)
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Proof : Similar to proposition 3.3, we have

2z ′(θ)2 =
∑
r∈R

(∑
i∈Ir

(pi − pi(θ))

)2

Consider the sum over Ir. Let Ai = pi − pi(θ) and Bi = B = 1. Then applying the

Cauchy-Schwarz inequality to (
∑
AiBi)

2 = (
∑

(pi − pi(θ)))2 yields

2z ′(θ)2 ≤
∑
r∈R

(∑
i∈Ir

(pi − pi(θ))2(2J−J
′
)

)

= (2J−J
′
) 2z(θ)2. (3.15)

The result follows by rearranging terms.

Proposition 3.4 states that the accuracy of the full test can be no better than

that of a subtest divided by the square root of the number of response patterns per

subtest item. The latter term can be thought of as an average squared deviation. For

example, in the case of a subtest with J −1 items, z(θ) can be no less than z ′(θ)/
√

2.

Clearly the lower bound is quite weak, since rearranging equation 3.14 to provide an

upper bound for z ′(θ) shows that this quickly exceed the theoretical maximum of

2. However, it may be of limited use in application. It may also be noted here that

upper bounds on accuracy, either of subtests or the full test, would not be particularly

meaningful, since, as discussed under proposition 3.2, the upper range of z(θ) exceeds

that which is plausible in practice.

At this point several results concerning subtest accuracy have been presented,

and their interpretations with respect to applications of z′(θ) are now discussed. In
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general, if zd < 0 then the observed and model-implied response pattern probabilities

of T ′ are more proximate than those of T . Thinking of the subtest probabilities as

a lower dimensional representation of those of the full test, then this representation

serves to “conceal” discrepancies between pO and pM (θ). On the other hand, if zd > 0

the corresponding result is to simultaneously decrease the dimension of, and increase

the distance between, the response pattern probabilities. Perhaps most interestingly,

if zd = 0 the lower dimensional test contains all of the prediction error of the full

test. While this is already a complicated phenomenon, its present interpretation in

terms of subtests must concern items rather than response patterns themselves. The

relationship between items and response patterns is not particularly straightforward

at the best of times, and this is the case here also. The central complication is that

each item appears in each response pattern, so that dimension reduction via item

omission simultaneously affects all response patterns. However, the following three

points can be observed.

Firstly, it is possible for omission of test items to improve model accuracy (i.e.,

it is possible that zd < 0). A well known instance of this phenomenon occurs when

considering the marginal probabilities of individual items, in which case the residuals

are always zero. A less trivial case occurs when a single item is omitted from a

test. If this results in z ′(θ) < z(θ), then “collapsing across” that variable has the

effect of reducing the overall error in response pattern predictions. In terms of test

construction this is clearly a desirable outcome – it means that leaving out such items

yields a test for which we have a more accurate model. As such, when both z ′(θ)

and z(θ) can be computed, their comparison (e.g., their ratio) can be used to screen

particular items or subtests. In general, however, omission of any single item need not
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improve accuracy. As noted above, there are many more possible crossproducts than

there are ways to select subtests of length J ′ = J−1. Thus it would not be impossible

for omission of each item to increase z(θ), and hence it may be the case that there is

no single item that can be omitted to improve unsatisfactory model accuracy.

This leads to the second point: It is possible for omission of items to worsen

model accuracy. When using subtests to compute model accuracy for sparse data, it

is important to know how much better accuracy of the model for the full test can be.

This has been addressed above by proposition 3.4. Note that the lower bound is a

decreasing function of J ′. On the other hand, the number of pr to be estimated is

increasing in J ′, meaning that subtests with fewer items require less response patterns

to be estimated. Thus the use of subtests to address the problem of sparse data

must balance the need for larger sample sizes per response pattern with the need for

meaningful approximations to z(θ). In particular, the largest subtests possible should

always be employed – the maximum number of response patterns that can be reliably

estimated should be included when computing z ′(θ).

Let J∗ denote the largest number of items whose response pattern proportions can

be reasonably estimated for fixed sample size. Then there also exists the problem of

deciding which of the
(
J
J∗

)
possible subtests to use to compute z ′(θ). Each of these

subtests will, in general, imply a different value of z ′(θ), and by proposition 3.3 these

values are related by the equation z ′(θ) =
√

(z(θ)
)2

+ zd. Since zd is unknown when

J ′ > 1 there is little here that can be motivated by the above results. Nonetheless,

the following suggestion is made.

It would not be unreasonable to consider the median of z ′(θ) over all possible

subtests of length J∗. This is because z ′(θ) only varies through zd, and some of
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values of zd will imply that z ′(θ) is closer to z(θ) than other values of zd. The median

of the z ′(θ) serves to get rid of this variability by picking out a value of z ′(θ) that will

be closer to z(θ) than at least half of those computed. In the best case scenario, some

values of zd will be positive and some negative, and so z(θ) will fall somewhere in

between the minimum and maximum values of z ′(θ). However, there is no assurance

that this will be the case, and all of the values of zd could be positive or negative.

In this scenario the mean of the z ′(θ) could be very mislead, yet the median of z ′(θ)

is still closer to z(θ) than half the of the computed values. Therefore it is suggested

that the problem of sparse data can be dealt with by taking the median of z ′(θ) over

all possible subtests of length J∗. Clearly this situation is less than ideal; a better

solution would be to have a large enough sample to reliably estimate z(θ).

The third point to be made is that response patterns that are perfectly predicted

do not affect a model’s subtest accuracy. That is, z ′(θ) = z(θ) when pi−pi(θ) = 0 for

each i ∈ Ir and each r ∈ R. It is not exactly clear how to interpret this at the item

level, although in terms of test construction there would be no reason to omit such

items. In terms of lower dimensional representations of the relation between pO and

pM (θ) in XJ , subtests that have the same accuracy as the full test could be thought of

as error free projections of the full dimensional space. At this point is not clear how

this can be employed for data-based selection, although it is an interesting avenue of

further research.

Summary

The overall purpose of this section has been to show that a quantity useful for evaluat-

ing the accuracy of IRT models is readily obtainable. This quantity is a standardizable
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Euclidean distance between an observed multinomial distribution and a model-implied

multinomial distribution. While this is a rather simple approach to model evaluation,

it nonetheless has several advantages over the use of relative fit indices. In particular

it allows for an individual model to be evaluated without reference to other mod-

els. This is because the distance function has a clearly interpretable optimal value,

namely zero. Other values can, in principle, be chosen as being “optimal enough”

for a given application. Regardless of how a criterion value is chosen, any individual

model can be eliminated when it fails to meet this criterion. Thus a central problem

associated with relative fit, the unwitting selection of a poor model, is avoided. This

serves to place model selection on firmer grounds than relative fit, while at the same

time allowing for selection among candidates on the basis of how well they minimize

a specified loss function. In the case that at least one candidate must be retained,

the present approach nonetheless has the advantage of indicating whether that model

should be regarded as satisfactory.

While it is reasonably straightforward to see how z(θ) can be used for model selec-

tion with multiple models, it also leads to some less obvious considerations regarding

model evaluation by means of subtests. Subtests have been addressed in order to deal

with the practical problem of sparse data. To this purpose, proposition 3.4 provides

a lower bound on the accuracy of a full model when z(θ) must be estimated from a

subset of test items. As noted, it would be desirable to tighten this bound. Consider-

ation of subtests has also led to consideration of issues of test construction. Although

the relation of individual items to the full set of response patterns is inherently com-

plicated, some reasonably clear results have been presented. In particular, if one or

more items are omitted, it is possible that the accuracy of the model can be improved.
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If this is the case, grounds are provided for constructing tests for which the model

is more accurate. In the following section the results presented in the foregoing are

illustrated by means of a numerical examples.

3.4 A Numerical Example

In this section data from the Self Monitoring Scale (SMS; Snyder, 1974) are used to

illustrate how model accuracy can be used to address model selection, the problem

of sparse data, and for test construction purposes. The sample consists of N = 903

observations to 25 dichotomously (true / false) scored items concerning the respon-

dents’ social behavior. The first six items of the scale were employed in the following

analysis. IRT models were estimated using MULTILOG 7. The MML estimation rou-

tine was employed with response pattern frequencies as input. Post processing was

conducted using SPSS 15, as only basic data manipulation procedures are required

for subtest partitioning of response patterns and to estimate z from the MULTILOG

output.

The questions of interest are as follows.

1. For the first six items of the SMS, is either the 1-parameter logistic model (1PL)

or the 2-parameter logistic model (2PL) accurate with respect to the observed

response patterns? The criterion value to be employed for judging accuracy is

z(θ) = 0, since this is value is readily interpretable and there is no a priori

reason to consider any other value. Naturally it is not expected that ẑ(θ) = 0,

and some discussion of inferential error is given.
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2. Is 2PL more accurate than 1PL? Because the models are nested, any observa-

tion that is well predicted by 1PL must also be well predicted by 2PL. Using

subscripts 1 and 2 for 1PL and 2PL respectively, this means that, if pO is close

to p1(Θ1), it must also be close to p2(Θ2). As such, finding that 1PL is accurate

will bring us face to face with the problem of deciding between equally accurate

models. This is a clear case of when accuracy is not a sufficient condition for

model preference. Also note that comparing the two models does not imply that

either will be ultimately accepted.

3. Can model accuracy be improved through omission of any single item? As a

related question, it is also considered whether model accuracy can be worsened

through the omission of an item. This makes it clear that it is the particular

items removed that lead to improvements in model accuracy, rather than simply

the removal of items.

These three questions are addressed by Table 3.2. For each model, the estimates of

z
√

2 for the full test and a number of subtests are reported. The lower bound from

equation 3.14 is computed on the reported median value for each set of subtests.

Unsurprisingly, neither of the models are estimated to be perfectly accurate on

the full test or any of the subtests. The problem of inference can be addressed in

a variety of ways, for example by computing confidence intervals on the ẑ, either

analytically or by bootstrap methods. The present approach to inferring the accuracy

of a model with respect to the full test is as follows: Compute a single binomial

confidence interval on the pi such that i satisfies MAXi {(pi − pi(θ))2 } and consider

whether the corresponding value pi(θ) falls in the interval. In order to consider the

logic of this approach, assume for the moment that the intervals on the pi have equal
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Table 3.2: Accuracy of 1PL and 2PL for the First Six Items of the SMS

Items 1PL 2PL

Omitted
√

2ẑ(θ)
√

2ẑ(θ)

None 0.06210 −2ln(L) = 175.6 0.06027 −2ln(L) = 161.7

1 0.05822 0.05875
2 0.07562 0.07426
3 0.07927 Med.= 0.06330 0.07594 Med.= 0.06385

4 0.06835
√

2z∗ = 0.04475 0.06896
√

2z∗ = 0.04515
5 0.05825 0.05258
6 0.05137 0.04700

1,2 0.07007 0.07207
1,3 0.07357 0.07303
1,4 0.06083 0.06151
1,5 0.04535 0.04423
1,6 0.04765 0.04783
2,3 0.09504 0.09211
2,4 0.08604 0.08770
2,5 0.07403 Med. = 0.06919 0.06743 Med. = 0.06169

2,6 0.06584
√

2z∗ = 0.03459 0.06145
√

2z∗ = 0.03084
3,4 0.08422 0.08467
3,5 0.06981 0.06169
3,6 0.06508 0.05856
4,5 0.06919 0.06662
4,6 0.04496 0.04345
5,6 0.03686 0.01532

Note: z∗denotes the lower bound from equation 3.14 computed
on the median value. L denotes the likelihood statistic.
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width for all i = 1, . . . 2J . Then if the computed interval includes pi(θ), this must

also be the case for all smaller deviations. On the other hand, if the interval does

not include pi(θ), then we can infer that pO 6= pM (θ), and hence that pO /∈ pM (θ).

This treatment of the inferential problem can be interpreted as recasting the selection

problem in terms of the sup norm (Munkres, 1991, chap. 1) instead of the Euclidean

norm. This approach is chosen for its simplicity.

One complication here is that the width of a confidence interval on a binomial

proportion varies not only through the sample size, but also through the magnitude of

the proportion. In the present application, this can be addressed by usingMAXi {σ̂pi }

to compute the interval described above. This implies that interval may be wider than

that corresponding to the nominal coverage, and hence that we may be too liberal

with the evaluation of a model. In practice, however, it can be reasonably expected

that all of the pi will be very small and hence that the σ̂pi will be dominated by the

sample size. In such cases there will be negligible variation among the σpi

Using this approach, the 95% confidence intervals on the accuracy of 1PL and 2PL

with respect to the first six items of the SMS were computed using the Agresti-Coull

interval (Brown, Cai & DasGutpa, 2001). In this case MAXi {(pi − pi(θ))
2 } was

satisifed by the i for both models, and so the intervals are identical for both models.

These are reported below along with the model implied values.

1PL 95% CI: [0.05974, 0.09947] ; pi(θ) = 0.04341

2PL 95% CI: [0.05974, 0.09947] ; pi(θ) = 0.04529

From the above intervals it may be concluded that neither 1PL nor 2PL is accurate

with respect to the first 6 items of the SMS. Inference on subtest accuracy may be

computed in a similar manner.
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Because it is also possible to consider sampling error via θ̂, it is worthwhile to

explain why this approach was not taken here. In short, this is quite antithetical

to the current approach. Recall that each pM (Θ) is an object in XJ and each of its

pM (θ) are points on that object given by the coordinate vector θ. There is nothing

about this scenario that varies over samples, and rather, given analytically tractable

equations, the entire situation could be surveyed in advance of any data collection.

On the other hand, pO is a quantity that represents the data and is unknown in

applications. On the basis of pO a point on pM (Θ) can be computed via θ ∈ Θ, but

it is only through a sample from pO that this point is random. Therefore, pO rather

than θ is unknown, and so estimation error is properly applied to former quantity.

However, if an estimated value of pi is not closer to pM (θ̂) than some other point on

pM (Θ), this could be interpreted with regard to the choice of θ in computing z (cf.

§3.2).

In order to better judge the reported values of ẑ, the likelihoods of the models

are also reported. These are quite poor, as readers familiar with the SMS will have

anticipated. By way of comparison, 2PL is known to fit Thissen’s LSAT example

quite well; in this case
√

2ẑ < 0.014 and the 95% confidence interval leads to the

conclusion that the model is accurate at the criterion value of z(θ) = 0.

It should also be noted that sparse data is a concern in the interpretation of the

full model in Table 3.2. Of the 64 response patterns, 21 (34.4%) had a sample size of

ni ≤ 5 and only 8 (11.1%) had ni ≥ 30. The subtest values of ẑ can be more reliably

interpreted. For the 5-item subtests, the worst case was 4 (12.5%) response patterns

with ni ≤ 5, and about 30%-40% of response patterns had for ni ≥ 30 on each test.

For the 4-item subtests, one reponse pattern had a sample size less than 5, most had
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ni ≥ 30, and many had sample sizes in the hundreds. When interpreting the subtest

values it should be kept in mind that they deviate from the fulltest accuracy by the

term zd in eqation 3.10, and that this quantity is unknown. Thus, although serving

to address sparse data, subtest accuracy cannot be taken as directly reflecting the

models’ accuracy with respect to the full test. As discussed at the end of the previous

section, the median of these values can be taken as a better approximation of fulltest

accuracy than that of any of the individual subtests. The lower bounds on ẑ are also

of some use here, although visibly less so for the 4-item subtests. As noted, these

lower bounds have been computed on the median values. From Table 3.2, the general

consensus is that 2PL is more accurate than 1PL for this sample of SMS data.

Although subtest accuracy does not directly reflect that of the full test, it does

reflect that of the subtest itself. In particular, inspection of Table 3.2 for the 5-item

subtests shows that omission of the sixth item leads to a lower estimate of z. This

can be interpreted to mean that the specific models estimated for this data provide a

better description of the 5-item test obtained by omitting the sixth item than for the

full test. That is to say, we currently have a better model of this subtest than of the

full test. It is natural to wonder whether re-estimating the 1PL and 2PL models for

this subtest also leads to better accuracy. This is considered in Table 3.3. For both

models it is shown that re-estimating the first five items of the SMS leads to a lower

value of
√

2ẑ relative to the 6-item test. Indeed, the estimated values of z correspond

quite closely to those from Table 3.2, which are again presented in Table 3.3 for the

purpose of comparison. Table 3.3 also shows that omitting the third item leads to

worse accuracy than for the full six items, and again the values of
√

2ẑ are noticeably

similar to those found in Table 3.2. This indicates that it is not just fewer items that
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Table 3.3: Re-estimation of Two 5-item Subtests

Item 1PL 2PL

Omitted
√

2ẑ(θ) −2ln(L)
√

2ẑ(θ) −2ln(L)

6 Original Model 0.05137 175.6 0.04700 161.7
Re-estimated 0.05152 68.1 0.04652 53.4

3 Original Model 0.07927 175.6 0.07594 161.7
Re-estimated 0.07875 134.6 0.07552 126.8

leads to better accuracy, but omission of particular items. The values of −2ln(L) are

also reported to aid in interpreting the values of ẑ. In general, Table 3.3 shows that

the answer to the third question above is clearly in the affirmative – omission of items

can lead to improved accuracy, and such items can be detected by means of subtest

accuracy.

This example has many limitations, although it serves the intended purpose of

illustrating some aspects of the interpretation of model accuracy in an applied con-

text. These illustrations could be pursued much further, for example by considering

alternative methods of taking into account the inferential error; by considering simu-

lation studies in order to get an idea of the “empirical” distribution of ẑ as a function

the model considered, their parameterizations, and sample size; by considering al-

ternative approaches to establishing criterion values of z. With regard to the latter

consideration, a particularly interesting line of further study would be to establish the

criterion values relative to the independence model (Holland, 1990). In this manner,

we may consider whether a given IRT is more accurate than a model that does not

involve a latent variate, and in this sense make a conclusion about whether the IRT

model is better than “no model.” There is still much work to be done to elaborate

the application of accuracy to model selection, and also to test construction, and the
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present section has merely served to illustrate that such efforts can be fruitful. The

summary chapter discusses these issues from a more general perspective.
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Chapter 4

Summary and Outlook

This research has considered the general problem of model selection. This has been

motivated by the observation that current methods, both traditional tests of good-

ness of fit and newer information theoretic approaches, have left room improvement.

While this has long been recognized in the case of testing goodness of fit, the general

argument made in the first chapter of this dissertation is that information criteria

also have their shortcomings. In particular, relative fit indices cannot address the

question of whether any single model is optimal in the sense defined by the objective

functions of those indices. The main objective of the current work has been to develop

a means of addressing this shortcoming, while retaining the more realistic perspective

that models can be, and generally are, misspecified.

The second chapter was quite ambitious in its formulation of the problem of data-

based model evaluation of parametric stochastic models. Many further objections to

current methods can be read from this chapter, although it has not been my intention

to dwell on these any longer than required to motivate a general consideration of

the problem of evaluation. Therefore the significance of the ideas presented in this
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second chapter will be best appreciated by readers who have considered the problem

in the course of their own research. In particular, by defining a model as the explicit

juxtaposition of model-implied and data-implied quantities, the distinction between

the two becomes unavoidable. This separation is fundamental to the idea that a

model can be wrongly applied. This notion can be easily overlooked when models are

separated from the process of scientific theorizing and treated as an ends in themselves.

The idea that “modeling” is a scientific endeavor requires that the application of

models be subject to appropriate epistemological standards. The goal of the second

chapter was to instantiate such standards. For readers with limited interest in the

topic, it may seem that this was a rather long excursion into a domain without much

ostensible “pay off.” Here it can only be argued that a clear statement of the problem

is worth a thousand misguided solutions, and that the contribution of the second

chapter can be properly understood from this perspective.

The solution presented in the third chapter was incomplete with respect to estab-

lishing a value of θ on which to evaluate the proposed measure of model accuracy.

Nonetheless, the proposal of quantifying accuracy by means of the Euclidean distance

between an “data-implied” multinomial distribution and the closest model-implied

distribution is in principle a sound answer to the question of when a general model

can be said to imply a given outcome. This considerations of this chapter are suf-

ficient, however, for the data-based selection of specific IRT models. For any given

parametrization of an IRT model, the proposed quantity can be computed on sample

data, (asymptotic) inferential error can taken into account, and its use in the identi-

fication of “problematic” items presents a novel approach to test construction. While

much work remains to be done in the application of this quantity, an initial indication
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of the value of this work has been given.

There are many further topics in model evaluation that have not been addressed

in this manuscript. In particular, it is my intention to extend the approach developed

in the foregoing pages to issues of model-based selection. However, as argued in the

present work, data-based selection must be primary in the application of stochastic

models. That the focus of this dissertation has been restricted to this problem is a

fair indication of its severity.
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