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Abstract

A multivariate Ornstein-Uhlenbeck process is used to model the returns on different in-

vestment instruments. Model parameters are estimated under the principle of covariance

equivalence. Fitted models can be used to price insurance products and analyze the risk

associated with different asset allocation strategies. To illustrate the results obtained, an

annuity is studied when assets are allocated between equity and two types of bonds. To

show the importance of using a multivariate model, annuity prices are compared to those

obtained from independent univariate processes.

Keywords: Annuity Pricing; Multivariate; Univariate; Ornstein-Uhlenbeck (OU) Process;

AR(1) Process; Asset Allocation Strategy

iii



Acknowledgments

I would like to thank all people who helped me for the past two years in Simon Fraser

University.

First and foremost, I owe my deepest gratitude to my supervisor, Dr. Gary Parker, who

provided me this great opportunity and guided me through my studies. It is my honor to

be his student. Without his dedication and encouragement, this thesis would not have been

possible. I simply could not wish for a better supervisor.

I would also like to thank all of the faculties and staffs in the department. And I am

really grateful to Dr. Richard Lockhart and Dr. Cary Chi-Liang Tsai as my examination

committee, who offered insightful comments and valuable help to improve my thesis. Also

thanks to Dr. Yi Lu, Dr. Joan Hu and Barbara Sanders for their courses which equipped

me with necessary knowledge to complete this thesis and my future career.

Many thanks go in particular to Mr. Rene Norena, my director in Pacific Blue Cross,

who gave me the flexibility to finish my thesis while working as a co-op.

I could never thank my friends enough for those memorable moments we shared, for

those help and support they provided.

Last but not the least, I want to thank my mother for her love and support.

iv



Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

2 Models 5

2.1 Univariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 AR(1) process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Ornstein-Uhlenbeck Process . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Equivalent AR(1) and OU processes . . . . . . . . . . . . . . . . . . . 9

2.2 Multivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Vector AR(1) Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 Ornstein-Uhlenbeck Process . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Position Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.4 Equivalent Vector AR(1) and Multivariate OU Processes . . . . . . . 14

v



2.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Investment Models 23

3.1 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Equivalent AR(1) and OU processes . . . . . . . . . . . . . . . . . . . . . . . 30

3.4 The Ornstein-Uhlenbeck Position Process . . . . . . . . . . . . . . . . . . . . 32

4 Applications 34

4.1 Integrated Wiener Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Simulated Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Simulated Rates of Return . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Annuity Pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Discount Factor and Actuarial Present Value . . . . . . . . . . . . . . 47

4.3.2 Asset Allocation Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Conclusions 64

A Other Simulated Results 66

B Equivalent Processes: Alternative Approach 76

Bibliography 79

vi



List of Tables

3.1 Univariate OU process: α and σX for three assets . . . . . . . . . . . . . . . . 31

3.2 Univariate model: matrix B and σY for three assets . . . . . . . . . . . . . . 33

4.1 Var(Xt) with multivariate and univariate models for three assets . . . . . . . 44

vii



List of Figures

3.1 Plots of autocorrelation function and partial autocorrelation function for rates

of return of three assets at daily frequency . . . . . . . . . . . . . . . . . . . . 26

3.2 Historical rate of return for three assets at daily frequency . . . . . . . . . . . 28

4.1 Mean of the simulated annual rate of return with starting value lower than

long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Variance of the simulated annual rate of return with starting value lower than

long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Mean of the simulated annual rate of return starting with the long term mean 45

4.4 Mean of the simulated annual rate of return with starting value higher than

long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Mean of the annuity prices with the simulated rate of return from multivariate

model starting with rate of return on 6/30/2009 . . . . . . . . . . . . . . . . 51

4.6 Mean of the annuity prices with the simulated rate of return from univariate

model starting with rate of return on 6/30/2009 . . . . . . . . . . . . . . . . 52

4.7 Variance of the annuity prices with the simulated rate of return from multi-

variate model starting with rate of return on 6/30/2009 . . . . . . . . . . . . 53

4.8 Variance of the annuity prices with the simulated rate of return from univari-

ate model starting with rate of return on 6/30/2009 . . . . . . . . . . . . . . 54

4.9 Mean of the annuity prices with the simulated rate of return from multivariate

model starting with the long term mean . . . . . . . . . . . . . . . . . . . . . 56

viii



4.10 Mean of the annuity prices with the simulated rate of return from univariate

model starting with the long term mean . . . . . . . . . . . . . . . . . . . . . 57

4.11 Variance of the annuity prices with the simulated rate of return from multi-

variate model starting with the long term mean . . . . . . . . . . . . . . . . . 58

4.12 Variance of the annuity prices with the simulated rate of return from univari-

ate model starting with the long term mean . . . . . . . . . . . . . . . . . . . 59

4.13 Mean of the annuity prices with the simulated rate of return from multivariate

model with high starting value . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.14 Mean of the annuity prices with the simulated rate of return from univariate

model with high starting value . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.15 Variance of the annuity prices with the simulated rate of return from multi-

variate model with high starting value . . . . . . . . . . . . . . . . . . . . . . 62

4.16 Variance of the annuity price with the simulated rate of return from univariate

model with high starting value . . . . . . . . . . . . . . . . . . . . . . . . . . 63

A.1 Variance of the first 10 years simulated annual rate of return with starting

value lower than long term mean . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 Variance of the simulated annual rate of return starting with the long term

mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

A.3 Variance of the simulated annual rate of return with starting value higher

than long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

A.4 Mean of the simulated daily rate of return at the end of each year with

starting value lower than long term mean . . . . . . . . . . . . . . . . . . . . 70

A.5 Mean of the simulated daily rate of return at the end of each year starting

with long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

A.6 Mean of the simulated daily rate of return at the end of each year with

starting value higher than long term mean . . . . . . . . . . . . . . . . . . . . 72

A.7 Variance of the simulated daily rate of return at the end of each year with

starting value lower than long term mean . . . . . . . . . . . . . . . . . . . . 73

ix



A.8 Variance of the simulated daily rate of return at the end of each year starting

with long term mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

A.9 Variance of the simulated daily rate of return at the end of each year with

starting value higher than long term mean . . . . . . . . . . . . . . . . . . . . 75

x



Chapter 1

Introduction

Modeling rates of return is a topic that has been studied for many years. Forecasting rates

of return is important for insurance products, especially long term products, such as life

insurance and annuities. Deterministic models are much easier to use, but stochastic models

have become more and more popular. In Markowitz (1952), the rate of return on a security

or a portfolio is considered as a random variable. In Boyle (1976), a White Noise is used to

model the rate of return for each year. However, annual rates of return are independent from

each other, which is not a very realistic assumption for most assets. In the stock market,

one might consider the rates of return to be somewhat independent, but it is certainly not

the case for the rates of return on assets such as long term bonds.

Panjer and Bellhouse (1980) and Bellhouse and Panjer (1981) talked about modeling

interest rates and applications to life contingencies. The univariate stochastic models for in-

terest rates they studied include White Noise, autoregressive process and OU process. They

derived the moment generating functions and functions of mean, variance and covariance

of the rate of return over time t in a general form for both continuous and discrete time

frameworks. The stochastic models for interest rates were also applied in calculating net

single premiums for a whole life insurance policy and a life annuity. They generalized the

results found in Boyle (1976) by using models with dependent the interest rate fluctuations.

Furthermore, in Bellhouse and Panjer (1981), they derived the results under a conditional

1



CHAPTER 1. INTRODUCTION 2

autoregressive model for rate of return.

Unlike the previous authors, who modeled the rate of return, some people chose to model

the rate of return accumulation function as a stochastic process. For example, Dhaene (1989)

developed a method to calculate moments of rate of return and insurance functions when

interest rates are assumed to follow an autoregressive integrated moving average process,

ARIMA(p,d,q). In Parker(1994), different approaches are studied to model the rate of return

and the rate of return accumulation function. Based on theoretical results and numerical

values, modeling the rate of return directly seems like a more reasonable way than modeling

the accumulation function.

In Parker (1995) a second order stochastic differential equation (SDE) is used to model

the rates of return. The second order SDE is a continuous process whose discrete-time

analogue is an ARMA(2,1) process. In his paper, Parker derived the expected values and

autocovariance functions of the rates of return and of the rates of return accumulation

function. Though this is still a univariate model, it is one step closer to a multivariate model,

because in a bivariate vector AR(1) model, each variable has a univariate ARMA(2,1) model

representation. An example of finding the univariate representation for a bivariate vector

AR(1) model can be found in the book by Reinsel (1997, pp 30-34).

One common thing about those papers is that the rate of return is always modeled as a

Gaussian process so the accumulation factor or the discounting factor follows a lognormal

distribution. Also, all the models mentioned above are one dimensional. So, when we

consider the rate of return of a portfolio made up of several assets, each asset is modeled

separately and by doing so it is assumed that the assets are independent at all times. Such

an assumption is not always realistic. Therefore, we would like to study a multivariate

stochastic process to model rates of return for some assets together and compare the results

with modeling each asset with a univariate model separately.

Let us consider two static asset allocation strategies. One is to determine an initial

proportion to be invested in each asset and keeping the initial amount of money in that

asset thereafter, which means that there is no rebalancing happening in the future. The
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other one is rebalancing the portfolio at a certain frequency according to a predetermined

asset allocation. When the model for the rates of return is in a continuous time frame, we

assume the investment is being rebalanced frequently. So a given percentage of the total

asset invested in each asset is maintained over time. For example, consider n assets with a

percentage wi invested in asset i and a rate of return on asset i of δi. Therefore, for each

dollar invested now, the accumulated value at time t is
∑n

i=1wie
R t
0 δidt without rebalancing

and e
Pn
i=1 wi

R t
0 δidt if rebalancing frequently. In this project, we chose to rebalance the

investment. Rebalancing can make sure that the investment stays well diversified overtime

and therefore should be better for risk control.

Given the asset allocation strategy we chose, there are a few different approaches to

model the rate of return of a portfolio with multivariate or univariate models. One way is

to model the rate of return for each one of the assets by a univariate process, then assign

a weight on each asset and calculate the total rate of return of the portfolio each year.

This method is fast and easy. However, the correlation between the assets is ignored. Such

correlation can make a significant impact on forecasting the rates of return. Another way

is to calculate the total return of the portfolio each year with preassigned weight on each

asset, then using a one dimensional stochastic process to model the portfolio’s rate of return.

This approach can somewhat take the correlation between the assets into consideration, but

the characteristics of the portfolio are hard to capture fully with such a simple model. The

third approach uses a multivariate stochastic process to model the rates of return for all

the assets in a portfolio at once. Then we can consider not only the serial dependence for

those assets, but also the correlations between assets. Introducing more parameters into

the model allows more flexibility for the process as a better model of the portfolio’s rates of

return.

The Ornstein-Uhlenbeck (OU) process, also known as the Vasicek model, which is a

mean reverting Gaussian process, has been used to model rates of return for many years. In

this project, we use a multivariate Ornstein-Uhlenbeck process to model the rates of return

for three assets. As a comparison, we model the rates of return of the three assets with
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three separate univariate Ornstein-Uhlenbeck processes. The rates of return are forecasted

conditional on the starting value. Whole life annuities for males age 65 are priced using

simulated rates of return with both univariate and multivariate models. Besides the models

we considered for the rates of return, the asset allocation strategy is another important

factor that affects the total rates of return of the portfolio. With different models for the

rates of return, the asset allocation that results in the lowest annuity price is also different.

In Chapter 2, we present both the Ornstein-Uhlenbeck process and the AR(1) process.

Also we derive formulas to convert an AR(1) model to its covariance equivalent OU process.

Then, in Chapter 3 we estimate the parameters of the two models with the data we collected

from three assets. Conditional on the starting value of the rates of return, we do some

simulation and annuity pricing with the two different models and different asset allocation

strategies in Chapter 4. At last, the conclusions are presented in Chapter 5.



Chapter 2

Models

A first order autoregressive model not only expresses a series’ current value against its

previous values, but it is also able to capture the series’ characteristic of mean reversion,

which is an important feature of interest rates. It is generally accepted that interest rates

tend to move back towards a long term value, which could be the historical average or other

reasonable values the user would like to choose. The Ornstein-Uhlenbeck process, also known

as the Vasicek model, is the continuous-time analogue of the discrete-time AR(1) process.

The parametric relations between these two models can be determined by the principle of

covariance equivalence, which states that a discrete representation of a continuous system

can be found by requiring that the covariance of the discrete model coincide with that of the

continuous model at the sampling points. In other words, the two processes need to match

their first two moments at all time. For a given OU process, a discrete representation by an

AR(1) process can always be found, but the other way is not always possible. When modeling

interest rates or rates of return, both processes, discrete or continuous, can be used. In this

project, we consider interest rates and stock indices as continuous processes. However, such

data can only be collected at a certain frequency in discrete-time frame. Therefore, when we

estimate the parameters, we will use the collected data to fit an AR(1) model. Then based

on our need, we can convert the AR(1) process to an equivalent continuous OU process, or

just study the discrete process.

5
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Using univariate AR(1) processes to model rates of return has been well studied. For

example, we know the explicit expression for its covariance between the values at any two

time points, t and s; we also know how to determine its covariance equivalent OU process

and the criteria to make sure an AR(1) process has a covariance equivalent OU process and

so on. However, there is not much done about modeling rates of return with multivariate

AR(1) and OU process. In the next section, we will review univariate AR(1) and OU

processes. Then we will extend some key results to multivariate AR(1) and OU processes,

especially the covariance matrix over time and show how to apply the principle of covariance

equivalence to convert a multivariate AR(1) process to an OU process.

2.1 Univariate Model

There are many textbooks and papers in the literature talking about univariate AR(1)

and OU processes. The reference we used for this section is Pandit and Wu (1983). A

brief review is given in this section, including the key properties of the processes and the

parametric relations determined by the principle of covariance equivalence.

2.1.1 AR(1) process

Suppose that variable Xt is a time series with a mean of 0. If not, we would study the

variable X ′t = Xt − E(Xt), which is centered around its mean.

If Xt is an AR(1) , then

Xt = ΦXt−1 + at, (2.1)

where at’s are independent and identically distributed following the normal distribution

with mean 0 and variance σ2
a, i.e. N(0, σ2

a).

If the starting value is given as X0, then for t = 1, 2, . . .

Xt = ΦtX0 +
t−1∑
j=0

Φja(t−j). (2.2)
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Therefore,

E(Xt|X0) = ΦtX0, (2.3)

Var(Xt|X0) =
1− Φ2t

1− Φ2
σ2
a (2.4)

and

Cov(Xt, Xt−k|X0) = Φk 1− Φ2(t−k)

1− Φ2
σ2
a, (2.5)

where k ≤ t and k is an integer. When |Φ| < 1, the AR(1) process is stationary, which

means its first and second moments exist as time t tends to infinity. And it is important to

make sure the process we will study is stationary. Non stationary processes are not in the

scope of the project.

2.1.2 Ornstein-Uhlenbeck Process

Velocity Process

Now let us take a look at the continuous Ornstein-Uhlenbeck process. The OU velocity

process is also known as a Vasicek model. For Xt with mean 0, consider the following

stochastic differential equation (SDE) with starting value X0

dXt = −αXt + σdWt, (2.6)

where Wt is a standard Brownian Motion and α describes “the speed of the reversion”, i.e.

how fast the process goes towards its long term mean from the given starting value. The

larger the α is, the faster the reversion is. The parameter σ measures instant by instant

the amplitude of randomness entering the system. The larger the value of σ, the higher the

volatility of the system. The solution of this SDE is

Xt = e−αtX0 + σ

∫ t

0
e−α(t−s)dWs. (2.7)

The first two moments are calculated as

E(Xt) = e−αtX0, (2.8)

Var(Xt) = e−2αt(σ2 e
2αt − 1

2α
) (2.9)
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and

Cov(Xt, Xs) = e−α(t+s)(σ2 e
2αmin(s,t) − 1

2α
). (2.10)

In the above expressions, we assume Xt’s long term mean is 0. If not, suppose Xt’s long

term mean is C, then Equation (2.6) is changed to

dXt = −α(Xt − C) + σdWt. (2.11)

And we should study the new variable X ′t = Xt − C instead, whose long term mean is 0.

Position Process

The Ornstein-Uhlenbeck position process Yt is obtained by integrating the velocity process

Xt. So, we have

Yt = Y0 +
∫ t

0
Xsds. (2.12)

We calculate the first two moments of Yt as

E(Yt) = E(Y0 +
∫ t

0
Xsds)

= E(Y0) + E(X0)
1− e−αt

α
(2.13)

and

Cov(Yt, Ys) = Cov(Y0 +
∫ t

0
Xrdr, Y0 +

∫ s

0
Xudu)

= Var(Y0) + Var(X0)
1− eαs − e−αt + e−α(t+s)

α2
+
σ2min(s, t)

α2

+
σ2(−2 + 2e−αt + 2e−αs − e−α|t−s| − e−α(t+s))

2α3
. (2.14)

To obtain the expression for Yt, we consider the system of SDE

d

Xt

Yt

 =

−α 0

1 0

Xt

Yt

 dt+

σ 0

0 0

 d

W1,t

W2,t

 . (2.15)

The solution isXt

Yt

 =

 e−αt 0
1−e−αt

α 0

X0

Y0

+
∫ t

0

 e−α(t−s) 0
1−e−α(t−s)

α 0

σ 0

0 0

 d

W1,s

W2,s

 . (2.16)



CHAPTER 2. MODELS 9

Therefore, we have

Yt =
1− e−αt

α
X0 + σ

∫ t

0

1− e−α(t−s)

α
dW1,s. (2.17)

2.1.3 Equivalent AR(1) and OU processes

Normally, interest rates and stock indices are observed at uniform sampling intervals. When

the intervals are small enough, we can approximately consider them as continuous processes,

which is what we did in this project. Therefore, the continuous process is obtained through

its covariance equivalent discrete model. In this section, we will look at their parametric

relations.

With explicit expressions for the covariance between the observations at any two time

points for both AR(1) and OU processes, we can determine the parametric relations for

those two processes by matching their covariance at all time. The covariance of the OU

process is calculated as in Equation (2.10). Assume the system is sampled at a frequency

of ∆. Then the covariance between the observations at time t∆ and time t∆− k∆ is

Cov(Xt∆, Xt∆−k∆) =
σ2

2α
e−αk∆(1− e−2α(t∆−k∆)). (2.18)

For an AR(1) process, the covariance between observations t and t− k is

Cov(Xt, Xt−k) = Φk σ2
a

1− Φ2
(1− Φ2(t−k)). (2.19)

By matching the coefficients, we have

Φ = e−α∆ (2.20)

and
σ2
a

1− Φ2
=

σ2

2α
. (2.21)

Alternatively, we can find the relation between Φ and α by matching the first moments of

the two processes. As showed in Equations (2.3) and (2.8), we have Φ = e−α∆. As we

explained before, not every AR(1) process has a continuous representation. By looking at

their parametric relations, we can see that to satisfy Equation (2.20), we must have Φ > 0.
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Since we limit our study to stationary processes, then we also need Φ < 1 and α > 0 to

satisfy Equation (2.21).

The parametric relations and those conditions are easy to find for a univariate model. For

a multivariate model, the principle and the general idea are the same, but the calculations

are much more complicated.

2.2 Multivariate Model

When considering several series, instead of modeling each series with a univariate process,

a multivariate model is used to model all series simultaneously. As an improvement of the

combination of several univariate processes, this multivariate model can not only express the

serial dependence, but also express the dependence among different series. In this section,

both discrete and continuous multivariate models are studied, as well as their parametric

relations to satisfy the principle of covariance equivalence.

2.2.1 Vector AR(1) Process

First, for the discrete model, consider the following vector AR(1) process

Xt =


X1,t

X2,t

...

Xn,t

 =


φ11 φ12 . . . φ1n

φ21 φ22 . . . φ2n

...
... . . .

...

φn1 φn2 . . . φnn




X1,(t−1)

X2,(t−1)

...

Xn,(t−1)

+


a1,t

a2,t

...

an,t

 , (2.22)

where


a1,t

a2,t

...

an,t

follows a multivariate normal distribution with mean µ = 0 and covariance

matrix Σa. If given a starting value of X0, the vector AR(1) process can be also written as

Xt = ΦtX0 +
t−1∑
j=0

Φjat−j . (2.23)



CHAPTER 2. MODELS 11

When conditioning on an initial value X0, the mean of Xt is

E(Xt|X0) = ΦtX0. (2.24)

The covariance between Xt and Xt−k, where k is a non negative integer, also conditional

on X0, can be calculated as

Cov
(
Xt, Xt−k|X0

)
= Cov

ΦtX0 +
t−1∑
j=0

Φjat−j ,Φ
t−kX0 +

t−k−1∑
i=0

Φiat−k−i

∣∣∣∣∣∣X0


= Cov

 t−1∑
j=0

Φjat−j ,

t−k−1∑
i=0

Φiat−k−i


=

t−1∑
j=0

t−k−1∑
i=0

Cov
(
Φjat−j ,Φ

iat−k−i
)

=
t−1∑
j=0

t−k−1∑
i=0

E
((

Φjat−j
) (

Φiat−k−i
)T)

=
t−k−1∑
i=0

Φk+iΣa

(
Φi
)T
.

So we have

Cov
(
Xt, Xt−k|X0

)
=

t−k−1∑
i=0

Φk+iΣa

(
Φi
)T
. (2.25)

2.2.2 Ornstein-Uhlenbeck Process

In this section, a multivariate Ornstein-Uhlenbeck process is studied in continuous time.

Velocity Process

Consider the following general multivariate OU process,

d


X1,t

X2,t

...

Xn,t

 =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
... . . .

...

αn1 αn2 . . . αnn




X1,t

X2,t

...

Xn,t

 dt+


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
... . . .

...

σn1 σn2 . . . σnn

 d


W1,t

W2,t

...

Wn,t

 ,

(2.26)
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where σ =


σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
... . . .

...

σn1 σn2 . . . σnn

 is the diffusion matrix, and


W1,t

W2,t

...

Wn,t

 is a vector of n

independent standard Brownian Motions. For each standard Brownian Motion, Wi,t, in a

small time step dt, dWi,t follows a normal distribution with mean 0 and variance dt. With

this result, it is possible to use a lower triangular matrix σ′, instead of the σ in Equation

(2.26), so that σ′ · dW t has the same distribution as σ · dW t.

We have 
σ11 σ12 . . . σ1n

σ21 σ22 . . . σ2n

...
... . . .

...

σn1 σn2 . . . σnn




dW1,t

dW2,t

...

dWn,t

 =



∑n
k=1 σ1k · dWk,t∑n
k=1 σ2k · dWk,t

...∑n
k=1 σnk · dWk,t

 , (2.27)

where dWk,t, for all integers k (k = 1, 2, . . ., n), are i.i.d. normal distributions with mean

0 and variance dt. Each element in σ · dW t is a linear combination of normal distributions

dWk,t that still follows a normal distribution. For the ith element in σ · dW t, it follows a

normal distribution with mean 0 and variance
∑n

k=1 σ
2
ik ·dt. The result for σ′ ·dW t with the

lower triangular matrix σ′ is almost the same. Each element in σ′ · dW t follows a normal

distribution with mean 0 and variance
∑n

k=1 σ
′
ik

2 · dt, except σ′ik = 0 when i < k. Let∑n
k=1 σ

′
ik

2 =
∑n

k=1 σik
2, then σ′ · dW t has the same distribution as σ · dW t. The purpose of

doing this is not to do the conversion between σ′ and σ, but to state the fact that we can

use a lower triangular matrix with fewer parameters to obtain the same distribution. Using

a lower triangular matrix is more convenient when we determine the parametric relations

between Φ, Σa in the AR(1) process and A, σ.

Let

A =


α11 α12 . . . α1n

α21 α22 . . . α2n

...
... . . .

...

αn1 αn2 . . . αnn

 .
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The solution of the system of SDE in Equation (2.26) is

Xt = eAtX0 +
∫ t

0
eA(t−s)σdW s. (2.28)

A is related to the time that the process will take to go back towards its long term mean

from the given starting value, except that in the multivariate model, the speed is a combined

effect of all series included in the system. And σ measures the instant randomness from all

series.

The mean of Xt, conditional on the initial value X0, is

E(Xt|X0) = eAtX0. (2.29)

The covariance of Xs and Xt can be calculated as

Cov (Xs, Xt) = eAs
{

E
[(

(X0 − E (X0)) (X0 − E (X0))T
)]

+
∫ min(s,t)

0

(
eAu
)−1

σ · σT
((
eAu
)−1
)T

du

}
(eAt)T . (2.30)

When X0 is constant, then E
[(

(X0 − E (X0)) (X0 − E (X0))T
)]

= 0. Then define ΣOU by

ΣOU = σ · σT . So the covariance matrix simplifies to

Cov (Xs, Xt) = eAs

{∫ min(s,t)

0

(
eAu
)−1

ΣOU

((
eAu
)−1
)T

du

}
(eAt)T . (2.31)

2.2.3 Position Process

The multivariate Ornstein-Uhlenbeck position process is the integral of the velocity process

Xt, so

Y t = Y 0 +
∫ t

0
Xsds. (2.32)

Consider the system of stochastic differential equation

d

Xt

Y t

 =

A 0

E 0

Xt

Y t

 dt+

σ 0

0 0

 dW t, (2.33)

where E is the n dimensional identity matrix. Let

B =

A 0

E 0

 ;
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then the solution of the above system of stochastic differential equation isXt

Y t

 = eBt

X0

Y 0

+
∫ t

0
eB(t−s)

σ 0

0 0

 dW s. (2.34)

2.2.4 Equivalent Vector AR(1) and Multivariate OU Processes

One may notice that the multivariate model has mathematical expressions similar to those

for the univariate model, except that the expressions are expanded from one dimensional to

n dimensional. However, determining the parametric relations between vector AR(1) and

multivariate OU processes is a challenge. With univariate model, the solution is pretty intu-

itive, but with multivariate model, we have encountered significant computational problem

when increasing the number of series in vector Xt .

To find the covariance equivalent OU process of a vector AR(1) process is to determine

the relationship that must exist between the matrices A, σ and Φ, Σa to satisfy the principle

of covariance equivalence. Explicit parametric relations between a vector AR(1) process

and multivariate OU process haven’t been given before. This section mainly shows how

the parameter relations are determined in the multivariate case. Assuming a vector AR(1)

process is given, there are two matrices in the corresponding OU process that need to be

determined, A and σ.

Determine A

We start with eAt, since it is very straight forward to determine. Then we can solve for

A by using the eigenvalues and eigenvectors of eAt. To satisfy the principle of covariance

equivalence, the OU process and the AR(1) process need to match their first two moments

at all time. To match their first moments, Equation (2.29) should equal to Equation (2.24).

Therefore, for all t, we have

E(Xt|X0) = eAtX0 = ΦtX0

which implies that

eAt = Φt.
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So the solution is

eA = Φ. (2.35)

If one is only interested in the velocity process then having eA is sufficient. A is required

when the position process needs to be studied. The explicit expression for eAt can be

obtained by using the eigenvalues and eigenvectors of A. Assume the eigenvalues of A are

µ1, µ2, . . . , µn with corresponding eigenvectors


v11

v21

...

1

,


v12

v22

...

1

, . . .,


v1n

v2n

...

1

. Then,

E(Xt|X0) = eAtX0 =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...

1 1 1 1




c1 · eµ1t

c2 · eµ2t

...

cn · eµnt

 , (2.36)

where c1, c2, . . . , cn are constants. Since Xt is a continuous process, when t = 0, we must

have E(Xt|t=0) = X0, where X0 is the initial value that is already given. From Equation

(2.36) with t = 0, we have

X0 =


v11 v12 . . . v1n

v21 v22 . . . v2n

...
... . . .

...

1 1 1 1




c1

c2

...

cn

 . (2.37)

The constants, c1, c2, . . ., cn, are obtained by solving the system of linear equations in

(2.37). So we have c = V −1X0. Then plug the solutions in Equation (2.36) to calculate

the expressions for E(Xt). After that, we can determine eAt by matching the coefficients in

E(Xt). Let Ξ = eAt and the element in row i and column j in the matrix eAt be denoted

by Ξ[i, j]. The element in row i of vector E(Xt) is
∑n

s=1 Ξ[i, s]Xs,0. On the right hand

side of Equation (2.36), the eigenvalues and eigenvectors are known and c1, c2, . . ., cn are

also expressed with X0[s, 1] and some constants. Therefore, the elements in eAt can be

determined by matching the coefficients of Xs,0.
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To further determine A, we need the eigenvalues and eigenvectors of the matrix Φ.

Assume the n × n symmetric matrix Φ has n eigenvalues λ1, λ2, . . . , λn. Since we have

eA = Φ, the eigenvalues of A are µ1 = log(λ1), µ2 = log(λ2), . . . , µn = log(λn) and the

corresponding eigenvectors are the same as those of A. For example, if V 1 is the eigenvector

corresponding to the eigenvalue λ1 of matrix Φ, then V 1 is the eigenvector corresponding

to the eigenvalue µ1 = log(λ1) of matrix A. By the definition of eigenvalue and eigenvector,

assuming λ is one eigenvalue and its corresponding eigenvector, V , they should satisfy the

system of linear equations

(λE − Φ)V = 0. (2.38)

We decompose Φ by using its eigenvalues and eigenvectors, Φ = V ΛV −1, where Λ is a diag-

onal matrix made up with eigenvalues and each column in V is corresponding eigenvector.

To determine A, the eigenvalues of Φ on the diagonal of matrix Λ, λ, need to be replaced

with the eigenvalues of A, µ = log(λ), which are described before. The columns of V are

still the eigenvectors of A, which are the same as the ones of Φ.

Determine matrix σ

Assume the vector AR(1) process is already fitted, so we can first determine eA. Then we

can solve for the matrix σ using the principle of covariance equivalence, mathematically,

by matching Cov(Xt, Xs) for the OU and AR(1) processes at any given time points, t and

s. Instead of solving σ directly, we solve for ΣOU first, which is σ · σT . Then we can

find σ by using the Cholesky decomposition. The goal is to find all the elements in the

n × n matrix, ΣOU , which means that we need as many as n(n+1)
2 equations to solve the

n(n+1)
2 unknowns. For simplicity, instead of using Cov(Xt, Xs), we first focus on Var(Xt).

By setting the variances of Xt equal at time t for the OU and AR(1) processes, we got

ourselves a system of linear equations, which has n(n+1)
2 equations and n(n+1)

2 unknown

variables in ΣOU matrix. Since we solve the system of equations that match the variances

of Xt for both the OU process and the AR(1) process at time t, we need to verify that the σ

we just found is the right solution. One way is to arbitrarily randomly choose some integers
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as t and s and test if the covariances between Xt and Xs of the OU process match the one

of the AR(1) processes.

Finding explicit solutions, even with a symbolic software, can be really complicated in

this case. When we work with numerical values, the question becomes to use this system

of linear equations to solve for each element in matrix ΣOU . To make the system of linear

equations simple, we started with t = s = 1, which means k = 0. According to Equation

(2.25), when t = 1 and k = 0, the variance of X1 for vector AR(1) process is Σa. And let

the element in row k column l in matrix Σa be Σakl .

Then let us look at the OU process. According to Equation (2.31), when t = s = 1,

Var (X1) = eA
{∫ 1

0

(
eAu
)−1

ΣOU

((
eAu
)−1
)T

du

}
(eA)T . (2.39)

Assume the element in row i column j of ΣOU is ΣOUij and plug in the numerical value

of eA that we already solved, then each element in the covariance matrix of Var (X1) is a

linear combination of ΣOUij . For the OU process, assume the element in row k column l of

Var (X1) is Varkl, which can be calculated as:

Varkl =
n∑
i=1

n∑
j=1

(ckl)ijΣOUij , (2.40)

where all (ckl)ij are coefficients determined from Equation (2.39). The upper script kl in

(ckl)ij indicates that different elements have different constants. To satisfy the principle

of covariance equivalence Σakl must be equal to
∑n

i=1

∑n
j=1(ckl)ijΣOUij . There are n × n

elements in the matrix of Var(X1) for both OU process and vector AR(1) process. Since

ΣOU = σ · σT , by doing a Cholesky decomposition, we can determine the σ matrix.

If the system has a unique solution, we can be sure that the vector AR(1) process has

a continuous representation. Since we need to calculate the eigenvectors of A as log(λ),

all eigenvalues of Φ need to be greater than 0. Further, if we want to limit our study to

stationary processes, we need to make sure all the eigenvalues of Φ are less than 1 in absolute

value. Therefore, all eigenvalues of Φ, λ, should be greater than 0 and less than 1.

The method described above is not the only way to solve for ΣOU . An alternative

approach is provided in Appendix B.
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2.3 Example

The following is an example of how to convert a vector AR(1) process into an equivalent

OU process. Given the following vector AR(1) process of two variables with starting value

X0 like in Equation (2.23)X1t

X2t

 =

φ11 φ12

φ21 φ22

tX1,0

X2,0

+
t−1∑
j=0

φ11 φ12

φ21 φ22

ja1(t−j)

a2(t−j)

 ,

where

a1t

a2t

follows a multivariate normal distribution with mean µ = 0 and covariance

matrix Σa. From Equation (2.35), we have eA = Φ. Assume the eigenvalues of eA are λ1 and

λ2 and their corresponding eigenvectors are

a
1

 and

b
1

. As we mentioned in Equation

(2.29), the mean of an OU process is

E(Xt) = eAtE(X0) = eAtX0 =

a b

1 1

c1e
λ1t

c2e
λ2t

 , (2.41)

and when t = 0, c1 and c2 can be solved in terms of X0 =

X1,0

X2,0

. That is

c1 =
X1,0 − aX2,0

b− a
(2.42)

and

c2 =
−X1,0 + bX2,0

b− a
. (2.43)

By matching the coefficients of X1,0 and X2,0, we can have the following explicit expression

for eAt

eAt =

bλ
t
2 − aλt1
b− a

ab(λt1 − λt2)
b− a

λt2 − λt1
b− a

bλt1 − aλt2
b− a

 . (2.44)
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Then, using Equation (2.31) and symbolic computation, we can calculateOUcov = Cov (Xs, Xt).

Let Σ′OU =


ΣOU11

ΣOU12

ΣOU21

ΣOU22

. After simplifications, the resulting elements of the covariance matrix

are:

OUcov[1, 1] =
τ · π11 · Σ′OU

2 log(λ1) log(λ2)(log(λ1) + log(λ2))(a− b)2 ,

OUcov[1, 2] =
τ · π12 · Σ′OU

2 log(λ1) log(λ2)(log(λ1) + log(λ2))(a− b)2 ,

OUcov[2, 1] =
τ · π21 · Σ′OU

2 log(λ1) log(λ2)(log(λ1) + log(λ2))(a− b)2 ,

OUcov[2, 2] =
τ · π22 · Σ′OU

2 log(λ1) log(λ2)(log(λ1) + log(λ2))(a− b)2 ,

where

τT =



λs1λ
t
2 log(λ1) log(λ2)

λt1λ
s
2 log(λ1) log(λ2)

λt−s1 log(λ1) log(λ2)

λt−s2 log(λ1) log(λ2)

λt+s1 log(λ1) log(λ2)

λt+s2 log(λ1) log(λ2)

λt−s1 (log(λ2))2

λt−s2 (log(λ1))2

λt+s1 (log(λ2))2

λt+s2 (log(λ1))2



,
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π11 =



−2ab 2a2b 2ab2 −2a2b2

−2ab 2ab2 2a2b −2a2b2

a(2b− a) ab(a− 2b) −a2b a2b2

b(2a− b) ab(b− 2a) −ab2 a2b2

a2 −a2b −a2b a2b2

b2 −ab2 −ab2 a2b2

−a2 a2b a2b −a2b2

−b2 ab2 ab2 −a2b2

a2 −a2b −a2b a2b2

b2 −ab2 −ab2 a2b2



,

π12 =



−2a 2a2 2ab −2a2b

−2b 2b2 2ab −2ab2

(2b− a) −b(2b− a) −ab ab2

(2a− b) −a(2a− b) −ab a2b

a −ab −ab ab2

b −ab −ab a2b

−a ab ab −ab2

−b ab ab −a2b

a −ab −ab ab2

b −ab −ab a2b



,
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π21 =



−2b 2ab 2b2 −2ab2

−2a 2ab 2a2 −2a2b

a −ab a(b− 2a) ab(2a− b)

b −ab b(a− 2b) ab(2b− a)

a −ab −ab ab2

b −ab −ab a2b

−a ab ab −ab2

−b ab ab −a2b

a −ab −ab ab2

b −ab −ab a2b



,

and

π22 =



−2 2a 2b −2ab

−2 2b 2a −2ab

1 −b (b− 2a) −b(b− 2a)

1 −a (a− 2b) −a(a− 2b)

1 −b −b b2

1 −a −a a2

−1 b b −b2

−1 a a −a2

1 −b −b b2

1 −a −a a2



.

We decided to solve for ΣOU numerically. Letting s = t = 1, we have matrix Var(X1) of

the OU process, which is set to be equal to matrix Σa of the vector AR(1) process element

by element. And we can get a system of four linear equations to find the four elements

in ΣOU . As long as this system of linear equations has a unique solution, ΣOU can be

determined and σ of OU process can be obtained by a Cholesky decomposition ΣOU . An

explicit expression for ΣOU can be obtained from symbolic calculations, but the expressions

for the solution are really long and complicated. For the 2 × 2 matrix in this example,
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the explicit solutions might still be available, but when the dimensions of the matrices are

increased, the complication of the solutions grows exponentially. Also for the purpose of

this project, having the numerical solution is sufficient.

Another thing we would like to mention is the calculation problem that we have encoun-

tered. The symbolic calculation for the theoretical covariance matrix of the multivariate

OU process gets extremely complicated as the dimension of the matrix is increased. Ac-

tually, for six variables, the expressions of the covariance matrix given by Equation (2.31)

cannot be calculated by R. One problem we had is that we must do symbolic calculation

and simplification for Equation (2.31) before doing numerical calculations. For example, we

tried calculating the integral in Equation (2.31) first with symbols, then plugging in numer-

ical values to get the final numerical result. This approach doesn’t work. When numerical

calculations are done manually, some terms can be canceled out before further calculation.

However, that is not the case with computers. Unless doing all the simplification before

hand, computers will do the calculation step by step, regardless of the fact that some terms

can be canceled or simplified. For example, consider the expression log(s) · 1
log(s) , which is,

of course, equal to 1. For s very small, say 0.1500, a computer would first calculate 0.1500,

then take its logarithm, which results in negative infinity in R, and the expression cannot be

evaluated. Given the nature of this project, it is very much possible we eventually encounter

such situations, especially when the time unit is one day and we are looking at a time period

of 50 to 100 years. In our case, the integral could result in some infinitely small values in

the denominator, which can be canceled out when multiplied by the two matrices outside

the integral, but because the simplification is not done before hand, the calculation ends up

giving unreasonable results. Therefore, symbolic calculation and simplification would have

to be done until reaching a final result for Cov(Xs, Xt). Plugging in numerical values too

early could result in unreasonable results or no result at all.



Chapter 3

Investment Models

In this chapter, we consider first order univariate and multivariate models for the rates of

return of three different assets. Using real data, models for the rates of return of the three

different assets are estimated. The processes studied in Chapter 2 are used to model Xt,

the rate of return at time t, and Y t, the cumulated rate of return until time t. These three

assets will constitute the universe of financial instruments. In the next chapter, we analyze

investment strategies that consist of investing different amounts in these assets.

3.1 Data Collection

In order to estimate the parameters of our model, we collected daily data for the past 35

years of the US market. We made an assumption that there are only three assets available

for investment. The three assets we chose are 10-year long term bond, 3-month treasury bill

and S&P 500 Index. For both univariate and multivariate models we estimated the AR(1)

model from the discrete data, then converted it to its covariance equivalent continuous

process. The continuous process is used to model future rates of return. The S&P 500

Index is used to calculate the return from equity, which represents the high volatility asset.

The 10-year long term bond represents the low volatility long term asset. The 3-month

treasury bill represents an asset with moderate volatility.

23
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The data for long term bond and short term bill is collected from the released statistics

of the Board of Governors of the Federal Reserve System of the United States. The data is

collected at a daily frequency from early 1974 to June 2009. The rate of return on equity is

calculated from the S&P 500 index. For example, if S&P 500 closed at It on day t and It−1

on the previous day, then the rate of return for equity on day t is log(It)− log(It−1). There

is something we need to point out. One would expect the average annual equity return

calculated from S&P 500 to be higher than the average annual return for a 10-year long

term bond. However, for this particular set of data, we found that the average return from

equity is slightly lower than long term bond. We later find that this specific result affects

the optimal asset allocation strategy in our simulated results.

The purpose of this project is to study one multivariate OU process and compare it with

a combination of several univariate OU processes. As a result, we chose its discrete-time

analogue AR(1) process to model the daily data. To determine whether an AR(1) model

is a good choice or not, we take a look at the plots of the autocorrelation function (ACF)

and partial autocorrelation function (PACF) for the rates of return of the three assets in

Figure 3.1. The autocorrelation function is defined as ρ = Cov(Xt,Xs)√
Var(Xt)V ar(Xs)

. The partial

autocorrelation at lag k may be regarded as the correlation between X1 and Xk+1, adjusted

for the intervening observations X2, . . ., Xk. A more detailed definition of the partial

autocorrelation function is given in Brockwell and Davis (1991, page 98). From Figure 3.1

we can see that, the autocorrelation is quite strong for long term bond and short term bill.

And even after a 40-day lag, the autocorrelation is still significant. In their PACF plots, we

see that the first partial autocorrelation coefficient, which equals to Φ in an AR(1) model,

is close to 1 and others are relatively small. Therefore, a first order autoregressive process

looks like a reasonable model for the rates of return for the long term bond and the short

term bill. Based on the partial autocorrelation coefficients we saw, we expect the process

to be close to a random walk. For the equity, other than the autocorrelation coefficient at

lag 0, which is always 1, we see very weak autocorrelations between the observations at two

different time points. This actually indicates that the process modeling equity’s rates of
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return is close to White Noise. Although, goodness-of-fit was not checked in this project,

we assumed both univariate and multivariate AR(1) processes are reasonable.

3.2 Estimation

In this section, we describe how the parameters of the univariate and multivariate models

are estimated. The estimated models are shown in this section as well.

3.2.1 Estimation Method

For the AR(1) process, there are two parameters that need to be determined, Φ and σa.

With the ordinary least square method in R, the estimation of the two parameters can be

done after subtracting the mean of the collected historical data. As the initial value X0, we

use the last observation of Xt. To study the characteristics of the model, we also considered

other initial values. Also, the mean of the historical data is used as the long term mean for

the OU process. Each asset’s historical mean is used in both univariate and multivariate

models, so that, for the same asset, the two models should result in two processes reverting

to the same mean level.

3.2.2 Estimation Results

First, we look at the historical data we collected from 1974 to 2009 for the three assets we

are analyzing. As we can see from Figure 3.2, the rate of return of the long term bond looks

positively correlated with the rate of return of the short term bill. However, from the graph

it is hard to see whether the rate of return of equity is correlated or not with either the

long term bond or the short term bill. Such correlations among different assets cannot be

captured when modeling each asset by a univariate model. That is the main reason to study

the multivariate model as an improvement of the univariate model. The graphs also indicate

that the rate of return on equity has the highest volatility, followed by the short term bill,

and the rate of return of long term bond has the lowest volatility. We first estimated the

parameters for both of the univariate and multivariate AR(1) models at a daily frequency
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Figure 3.1: Plots of autocorrelation function and partial autocorrelation function for rates
of return of three assets at daily frequency
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as that is the frequency of our data. Then we converted the discrete time AR(1) process to

its continuous time analogue, the Ornstein-Uhlenbeck process. And since our application is

mainly to price life annuities in this project, we will focus on the annual rates of return of

each asset.

Now let us look at the estimates we got from R for the three assets using both univariate

and multivariate models.

Estimated Parameters of Univariate Model

• Long Term Bond

XLt − 0.0002843438 = 0.9997242(XL(t−1) − 0.0002843438) + aLt, (3.1)

where 0.0002843438 is the long term mean of the daily rates of return for long term

bonds, and the standard deviation of aLt is 2.806297e-06.

• Short Term Bill

XSt − 0.0002212772 = 0.999575(XS(t−1) − 0.0002212772) + aSt, (3.2)

where 0.0002212772 is the long term mean of the daily rates of return for short term

bill, and the standard deviation of aSt is 3.989231e-06.

• Equity

XEt − 0.0002776229 = 0.0004515107(XE(t−1) − 0.0002776229) + aEt, (3.3)

where 0.0002776229 is the long term mean of the daily rates of return for equity, and

the standard deviation of aEt is 0.01110829.

From the estimated results, we can see that all of the three AR(1) processes are sta-

tionary. For both long term bond and short term bill, their Φ’s are quite close to 1, which

means that the rates of return of those two assets for one day are very much correlated

with the rates of return for the previous day. However, this is not the case for the equity’s
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rates of return. For the volatility, as shown in Figure 3.2, the long term bond has the lowest

volatility, followed by the short term bill. The equity’s volatility is much higher than the

other two assets.

Estimated Parameters of Multivariate Model

To be consistent with the expressions used in the univariate model, the subscrip “L” repre-

sents the long term bond and “S” for the short term bill then “E” for equity. So now let us

look at the estimated parameters for the vector AR(1) model when we combine the three

assets together.


XLt − 0.0002843438

XSt − 0.0002212772

XEt − 0.0002776229



=


0.998519 0.001143 6.640e− 06

0.001513 0.998382 7.454e− 06

1.103105 0.285538 2.880e− 04



XL(t−1) − 0.0002843438

XS(t−1) − 0.0002212772

XE(t−1) − 0.0002776229

+


aLt

aSt

aEt

 .(3.4)

The covariance matrix for


aLt

aSt

aEt

 is Σa =


7.866e− 12 5.411e− 12 1.941e− 10

5.411e− 12 1.590e− 11 1.788e− 10

1.941e− 10 1.788e− 10 1.234e− 04

.

From the result, we can see that the interest rates for long term bond and short term

bill will affect the equity’s rate of return. However, the other way isn’t true. Take the

long term bond for example, the centered interest rate of one day (XL(t) − 0.0002843438)

is 0.998519 of the interest rate of previous day’s long term bond (XL(t−1) − 0.0002843438)

plus 0.001143 of the previous day’s short term bill’s interest rate (XS(t−1) − 0.0002212772)

plus 6.640e-06 of the previous day’s equity rate of return (XE(t−1) − 0.0002776229) plus a

random term aLt. We can see for long term bond, from the coefficients, that its interest

rates are greatly dependent on the previous day’s interest rate and a small portion comes
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from the previous day’s short term bill’s interest rate. Compared to the impact of the other

two assets, the impact of the equity’s return is almost negligible, given the coefficient is

6.640e-06. The explanation of the expressions for short term bill is similar to the one for

long term bond. It is greatly affected by the previous day’s return of itself and a little af-

fected by long term bond, with almost no impact from equity. However, the case is slightly

different for equity. The rate of return for equity depends on both long term bond and short

term bill’s rates for the last time period; more on long term bonds (coefficient is 1.103105)

than short term bill (coefficient is 0.285538). However, the coefficient for equity itself is still

very small compared to the other two.

3.3 Equivalent AR(1) and OU processes

After we have our estimated AR(1) model for both univariate and multivariate processes,

we can convert the AR(1) model to its covariance equivalent OU process as we discussed

in Chapter 2. To determine the OU process, we need to find eA and σ. As we showed in

Section 2.3, eA is easier to determine and eA = Φ. So in our multivariate case,

eA =


0.998519 0.001143 6.640e− 06

0.001513 0.998382 7.454e− 06

1.103105 0.285538 2.880e− 04

 . (3.5)

Further, we can solve the matrix A by using the eigenvalues and eigenvectors of Φ, which

are given below.

• Eigenvalues:

0.9997768991 0.9971336583 0.0002785119

• Eigenvectors:


−0.4881086

−0.5331138

−0.6910425

 ,


0.5720872

−0.6961795

0.4336478

 ,


6.640515e− 06

7.461558e− 06

−1.000000e+ 00


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Here we have

A =


−0.001535351 0.001130987 5.435783e− 05

0.001456321 −0.001635677 6.107815e− 05

9.041391375 2.332559643 −8.185972

 . (3.6)

Using the method we described in Chapter 2, we can solve for the ΣOU matrix and using

the Choleski decomposition we find σ for the OU process. In our case,

σ =


2.803571e− 06 0.000000 0.00000000

1.923492e− 06 3.494203e− 06 0.00000000

−1.851517e− 03 −7.404694e− 04 0.04489877

 . (3.7)

We now have the covariance equivalent OU process for the vector AR(1) process.

The univariate case is much simpler than the multivariate case. The general expression

is

Xt −Xmean = e−αt(X0 −Xmean) +
∫ t

0
e−α(t−s)σdWs. (3.8)

Again we have e−α = Φ, which means α = − log(Φ). Also σ is much easier to determine,

σ =

√
−2ασ2

a

(1− Φ2)
, (3.9)

where σa and Φ come from the AR(1) process. Therefore, we have the following table of

parameters for the univariate OU processes.

Asset α σ

Long Term Bond 0.0002758579 2.806684e-06
Short Term Bill 0.0004251711 3.990080e-06

Equity 7.702911 0.04360034

Table 3.1: Univariate OU process: α and σX for three assets

In the OU process, we know that α is the parameter that determines how fast the

process will return to the long term mean. The larger the absolute value of α is, the faster
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the process will go towards the long term mean. From this table, we see that the rates of

return for equity go towards the long term mean very fast, but long term bond and short

term bill will not. It is much easier to explain such characteristics for a univariate OU

process than for a multivariate process. Those characteristics for the three assets will be

shown in both multivariate and univariate models in the simulations.

3.4 The Ornstein-Uhlenbeck Position Process

The AR(1) process can be obtained directly from the data collected. Then the discrete time

AR(1) process can be converted to its covariance equivalent continuous time OU process.

Those processes can be used to calculate the daily rate of return for the three assets. How-

ever, since our goal is to calculate annuity prices, the annual rate of return is more useful

and efficient. Therefore, we also want to look at the OU position process Y t, which is the

integration of the velocity process Xt, so as showed in Chapter 2,

Y t = Y 0 +
∫ t

0
Xsds, (3.10)

where Y0 is 0. Let the σ matrix for the OU velocity process be σX ; then for the corresponding

OU position process, the σ matrix is σY =

σX 0

0 0

. So the SDE is

Xt −Xmean

Y t − Y mean

 = eBt

X0 −Xmean

Y 0 − Y mean

+
∫ t

0
eB(t−s)σY dW s. (3.11)

For the multivariate model, we have the following B and σY

B =

A 0

E 0

 =



−0.001535351 0.001130987 5.435783e− 05 0 0 0

0.001456321 −0.001635677 6.107815e− 05 0 0 0

9.041391375 2.332559643 −8.185972 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0


,
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σY =

σX 0

0 0

 =



2.803571e− 06 0 0 0 0 0

1.923492e− 06 3.494203e− 06 0 0 0 0

−1.851517e− 03 −7.404694e− 04 0.04489877 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


.

For the univariate model, the idea is the same. The matrix B is

−α 0

1 0

 and the

matrix σY is

σX 0

0 0

. Table 3.2 shows the estimated B and σY matrices for the three

univariate OU processes.

Asset B σY

Long Term Bond
(
−0.0002758579 0

1 0

) (
2.806684e− 06 0

0 0

)
Short Term Bill

(
−0.0004251711 0

1 0

) (
3.990080e− 06 0

0 0

)
Equity

(
−7.702911 0

1 0

) (
0.04360034 0

0 0

)
Table 3.2: Univariate model: matrix B and σY for three assets
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Applications

4.1 Integrated Wiener Process

To simulate a continuous time OU process, such as the ones described in Equations (3.8)

and (3.11), we need to generate values from an integrated Wiener process of the type:∫ t
0 f(s)dWs, where f(s) is a function of time s. We arbitrarily choose to approximate such

stochastic integral by the following sum

t/dt−1∑
i=0

dtf

(
i+ (i+ 1)

2
dt

)√
dtηi, (4.1)

where i is an integer, dt is a very small time step, t
dt is an integer and ηi (i = 0, 1, . . ., tdt −1)

are i.i.d. random variables normally distributed with mean 0 and variance 1. To simulate

observations at any time t for an OU process, we need to take the exponential of the matrices

in the expressions for the OU processes.

For the multivariate case, let us look at the following SDE defined in Equation (3.11),Xt −Xmean

Y t − Y mean

 = eBt

X0 −Xmean

Y 0 − Y mean

+
∫ t

0
eB(t−s)σY dW s,

where B =

A 0

E 0

 and σY =

σX 0

0 0

. We can have the explicit expression for eBt in

34
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terms of the eigenvalues and eigenvectors of B . Let the eigenvalues of B be λ =



1

1

1

λ4

λ5

λ6


and

the corresponding eigenvectors be

0 0 0 a b c

0 0 0 d e f

0 0 0 g h i

1 0 0 j k l

0 1 0 m n o

0 0 1 1 1 1


.

Then with the method we described in Chapter 2, using Equations (2.36) and (2.37) and

matching the coefficients of elements in X0 we have the following explicit expression for eBt.

Define the following determinants:

|P1| =

∣∣∣∣∣∣ i h

f e

∣∣∣∣∣∣ , |P2| =

∣∣∣∣∣∣d f

g i

∣∣∣∣∣∣ , |P3| =

∣∣∣∣∣∣g h

d e

∣∣∣∣∣∣ ,
|P4| =

∣∣∣∣∣∣i h

c b

∣∣∣∣∣∣ , |P5| =

∣∣∣∣∣∣a c

g i

∣∣∣∣∣∣ , |P6| =

∣∣∣∣∣∣h g

b a

∣∣∣∣∣∣ ,
and

|P7| =

∣∣∣∣∣∣c b

f e

∣∣∣∣∣∣ , |P8| =

∣∣∣∣∣∣a c

d f

∣∣∣∣∣∣ , |P9| =

∣∣∣∣∣∣e d

b a

∣∣∣∣∣∣ .
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We solve eBt in terms of |P1|, |P2|, |P3|, |P4|, |P5|, |P6|, |P7|, |P8|, |P9| as

eBt[, 1] =
1
Γ



a|P1|eλ4t − b|P2|eλ5t − c|P3|eλ6t

d|P1|eλ4t − e|P2|eλ5t − f |P3|eλ6t

g|P1|eλ4t − h|P2|eλ5t − i|P3|eλ6t

j|P1|(eλ4t − 1)− k|P2|(eλ5t − 1)− l|P3|(eλ6t − 1)

m|P1|(eλ4t − 1)− n|P2|(eλ5t − 1)− o|P3|(eλ6t − 1)

|P1|(eλ4t − 1)− |P2|(eλ5t − 1)− |P3|(eλ6t − 1)


,

eBt[, 2] =
1
Γ



−a|P4|eλ4t + b|P5|eλ5t − c|P6|eλ6t

−d|P4|eλ4t + e|P5|eλ5t − f |P6|eλ6t

−g|P4|eλ4t + h|P5|eλ5t − i|P6|eλ6t

−j|P4|(eλ4t − 1) + k|P5|(eλ5t − 1)− l|P6|(eλ6t − 1)

−m|P4|(eλ4t − 1) + n|P5|(eλ5t − 1)− o|P6|(eλ6t − 1)

−|P4|(eλ4t − 1) + |P5|(eλ5t − 1)− |P6|(eλ6t − 1)


,

eBt[, (3 : 6)] =
1
Γ



−a|P7|eλ4t − b|P8|eλ5t + c|P9|eλ6t 0 0 0

−d|P7|eλ4t − e|P8|eλ5t + f |P9|eλ6t 0 0 0

−g|P7|eλ4t − h|P8|eλ5t + i|P9|eλ6t 0 0 0

−j|P7|(eλ4t − 1)− k|P8|(eλ5t − 1) + l|P9|(eλ6t − 1) 1 0 0

−m|P7|(eλ4t − 1)− n|P8|(eλ5t − 1) + o|P9|(eλ6t − 1) 0 1 0

−|P7|(eλ4t − 1)− |P8|(eλ5t − 1) + |P9|(eλ6t − 1) 0 0 1


,

where Γ = iae− idb− gce−haf +hdc+ gbf and eBt[, col] denotes column col of the matrix

eBt.

To evaluate the stochastic integral in Equation (3.11) more efficiently, we will pre-

calculate Ω = eB(t−s)σY . Letting σXij be element (i, j) of matrix σX , we find that the
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first three columns of Ω are:

Ω[1, 1] =
1
Γ
σX11

(
a|P1|eλ4(t−s) − b|P2|eλ5(t−s) − c|P3|eλ6(t−s)

)
+

1
Γ
σX21

(
−a|P4|eλ4(t−s) + b|P5|eλ5(t−s) − c|P6|eλ6(t−s)

)
+

1
Γ
σX31

(
−a|P7|eλ4(t−s) − b|P8|eλ5(t−s) + c|P9|eλ6(t−s)

)
,

Ω[1, 2] =
1
Γ
σX22

(
−a|P4|eλ4(t−s) + b|P5|eλ5(t−s) − c|P6|eλ6(t−s)

)
+

1
Γ
σX32

(
−a|P7|eλ4(t−s) − b|P8|eλ5(t−s) + c|P9|eλ6(t−s)

)
,

Ω[1, 3] =
1
Γ
σX33

(
−a|P7|eλ4(t−s) − b|P8|eλ5(t−s) + c|P9|eλ6(t−s)

)
,

Ω[2, 1] =
1
Γ
σX11

(
d|P1|eλ4(t−s) − e|P2|eλ5(t−s) − f |P3|eλ6(t−s)

)
+

1
Γ
σX21

(
−d|P4|eλ4(t−s) + e|P5|eλ5(t−s) − f |P6|eλ6(t−s)

)
+

1
Γ
σX31

(
−d|P7|eλ4(t−s) − e|P8|eλ5(t−s) + f |P9|eλ6(t−s)

)
,

Ω[2, 2] =
1
Γ
σX22

(
−d|P4|eλ4(t−s) + e|P5|eλ5(t−s) − f |P6|eλ6(t−s)

)
+

1
Γ
σX32

(
−d|P7|eλ4(t−s) − e|P8|eλ5(t−s) + f |P9|eλ6(t−s)

)
,

Ω[2, 3] =
1
Γ
σX33

(
−d|P7|eλ4(t−s) − e|P8|eλ5(t−s) + f |P9|eλ6(t−s)

)
,

Ω[3, 1] =
1
Γ
σX11

(
g|P1|eλ4(t−s) − h|P2|eλ5(t−s) − i|P3|eλ6(t−s)

)
+

1
Γ
σX21

(
−g|P4|eλ4(t−s) + h|P5|eλ5(t−s) − i|P6|eλ6(t−s)

)
+

1
Γ
σX31

(
−g|P7|eλ4(t−s) − h|P8|eλ5(t−s) + i|P9|eλ6(t−s)

)
,

Ω[3, 2] =
1
Γ
σX22

(
−g|P4|eλ4(t−s) + h|P5|eλ5(t−s) − i|P6|eλ6(t−s)

)
+

1
Γ
σX32

(
−g|P7|eλ4(t−s) − h|P8|eλ5(t−s) + i|P9|eλ6(t−s)

)
,

Ω[3, 3] =
1
Γ
σX33

(
−g|P7|eλ4(t−s) − h|P8|eλ5(t−s) + i|P9|eλ6(t−s)

)
,
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Ω[4, 1] =
1
Γ
σX11

(
j|P1|(eλ4(t−s) − 1)− k|P2|(eλ5(t−s) − 1)− l|P3|(eλ6(t−s) − 1)

)
+

1
Γ
σX21

(
−j|P4|(eλ4(t−s) − 1) + k|P5|(eλ5(t−s) − 1)− l|P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX31

(
−j|P7|(eλ4(t−s) − 1)− k|P8|(eλ5(t−s) − 1) + l|P9|(eλ6(t−s) − 1)

)
,

Ω[4, 2] =
1
Γ
σX22

(
−j|P4|(eλ4(t−s) − 1) + k|P5|(eλ5(t−s) − 1)− l|P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX32

(
−j|P7|(eλ4(t−s) − 1)− k|P8|(eλ5(t−s) − 1) + l|P9|(eλ6(t−s) − 1)

)
,

Ω[4, 3] =
1
Γ
σX32

(
−j|P7|(eλ4(t−s) − 1)− k|P8|(eλ5(t−s) − 1) + l|P9|(eλ6(t−s) − 1)

)
,

Ω[5, 1] =
1
Γ
σX11

(
m|P1|(eλ4(t−s) − 1)− n|P2|(eλ5(t−s) − 1)− o|P3|(eλ6(t−s) − 1)

)
+

1
Γ
σX21

(
−m|P4|(eλ4(t−s) − 1) + n|P5|(eλ5(t−s) − 1)− o|P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX31

(
−m|P7|(eλ4(t−s) − 1)− n|P8|(eλ5(t−s) − 1) + o|P9|(eλ6(t−s) − 1)

)
,

Ω[5, 2] = +
1
Γ
σX22

(
−m|P4|(eλ4(t−s) − 1) + n|P5|(eλ5(t−s) − 1)− o|P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX32

(
−m|P7|(eλ4(t−s) − 1)− n|P8|(eλ5(t−s) − 1) + o|P9|(eλ6(t−s) − 1)

)
,

Ω[5, 3] =
1
Γ
σX33

(
−m|P7|(eλ4(t−s) − 1)− n|P8|(eλ5(t−s) − 1) + o|P9|(eλ6(t−s) − 1)

)
,

Ω[6, 1] =
1
Γ
σX11

(
|P1|(eλ4(t−s) − 1)− |P2|(eλ5(t−s) − 1)− |P3|(eλ6(t−s) − 1)

)
+

1
Γ
σX21

(
−|P4|(eλ4(t−s) − 1) + |P5|(eλ5(t−s) − 1)− |P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX31

(
−|P7|(eλ4(t−s) − 1)− |P8|(eλ5(t−s) − 1) + |P9|(eλ6(t−s) − 1)

)
,

Ω[6, 2] = +
1
Γ
σX22

(
−|P4|(eλ4(t−s) − 1) + |P5|(eλ5(t−s) − 1)− |P6|(eλ6(t−s) − 1)

)
+

1
Γ
σX32

(
−|P7|(eλ4(t−s) − 1)− |P8|(eλ5(t−s) − 1) + |P9|(eλ6(t−s) − 1)

)
,

Ω[6, 3] =
1
Γ
σX33

(
−|P7|(eλ4(t−s) − 1)− |P8|(eλ5(t−s) − 1) + |P9|(eλ6(t−s) − 1)

)
,

The elements in the last three columns of Ω are all 0.



CHAPTER 4. APPLICATIONS 39

Finally, we have
∫ t

0 e
B(t−s)σxydW s =

∫ t
0 ΩdW s, which can be written as

∫ t

0
ΩdWs =



∫ t
0 Ω[1, 1]dW1,s +

∫ t
0 Ω[1, 2]dW2,s +

∫ t
0 Ω[1, 3]dW3,s∫ t

0 Ω[2, 1]dW1,s +
∫ t

0 Ω[2, 2]dW2,s +
∫ t

0 Ω[2, 3]dW3,s∫ t
0 Ω[3, 1]dW1,s +

∫ t
0 Ω[3, 2]dW2,s +

∫ t
0 Ω[3, 3]dW3,s∫ t

0 Ω[4, 1]dW1,s +
∫ t

0 Ω[4, 2]dW2,s +
∫ t

0 Ω[4, 3]dW3,s∫ t
0 Ω[5, 1]dW1,s +

∫ t
0 Ω[5, 2]dW2,s +

∫ t
0 Ω[5, 3]dW3,s∫ t

0 Ω[6, 1]dW1,s +
∫ t

0 Ω[6, 2]dW2,s +
∫ t

0 Ω[6, 3]dW3,s


. (4.2)

For the univariate case, the general expression for Yt is

Yt =
1− e−α

α
(X0 −Xmean) + σ

∫ t

0

1− e−α(t−s)

α
dWs. (4.3)

So with the Equations (3.11), (4.1), (4.2) and (4.3), we can do the simulation for both

univariate and multivariate OU processes. We used the same method, as described in

Equation (4.1), to evaluate the stochastic integrals in both the multivariate model and the

univariate model. However, for the univariate model, there is a much faster and more

accurate method to evaluate the stochastic integrals. By calculating the covariance between

Yt and Yt+k, we can obtain explicit results for the stochastic integral in Equation (4.3). For

the multivariate model, we encountered numerical problems when working with the matrices

of dimension 6.

4.2 Simulated Results

We simulated 5000 sets of realizations independently for our study. For each realization,

we first simulate the annual rates of return from now to 100 years later with the latest

observations from the historical data as the starting values for the three assets with both

univariate model and multivariate model. Then we change the starting value and analyze

the differences between the simulated results. With the simulated rates of return, we can

price annuities under different asset allocation strategies. One goal is to study annuity prices

and optimal asset allocation strategies for different models and different starting values.
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4.2.1 Simulated Rates of Return

First let us look at the simulated rates of return for the three assets considered with their

last values of the historical data we collected as the starting values. In this case, the starting

values are lower than their long term means.

The mean of the simulated results are shown in Figure 4.1. For each graph, the black

line is the result produced by the multivariate model and the colored line is the result

produced by the univariate model. The graphs show a typical mean reverting process. For

each asset, both univariate model and multivariate model show that the processes return to

the same long term mean, which we choose to be the mean of each asset’s historical data

we collected. Long term bond’s annualized historical mean is about 7.14%, short term bill’s

annualized historical mean is about 5.55% and equity’s annualized historical mean is about

6.97%. Those numerical values are the ones we applied in the model as the three assets

long term means for this project. As the graphs show, our simulated results are consistent

with the models we set. Also the three assets show one common characteristic that it takes

more time for the multivariate model to go back towards the long term mean. However, in

the “short term”, the processes produced by different models have different trajectories to

approach the long term mean. The “short term” is actually not that short. For example, in

the multivariate model, it takes the equity rates of return about 50 years to go back to the

long term mean, while in the univariate model, it takes less than a day to return to the long

term mean and stay at that level. Another thing one may notice is that for long term bond

and short term bill, both the univariate model and the multivariate model start from the

same value and end up with the same long term mean for each asset. The trajectory of these

two assets using a multivariate model is quite similar with the one using a univariate model.

This is consistent with the estimated drift term of the two models. In the multivariate case,

for example, the rate of return of long term bond at time t mainly depends on its rate of

return at time t−1, but is not affected by short term bill very much and even less influenced

by the equity’s rate of return at time t− 1.

Also from the graph, it looks like equity shows a very different pattern. This can be
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Figure 4.1: Mean of the simulated annual rate of return with starting value lower than long
term mean
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explained by the parameters we estimated for the model. As discussed in Chapter 3, α

determines how fast the process is expected to go back towards the long term mean. When

time t goes to infinity, the process should approach its long term mean. To get a general

idea of how long it will take a process to go back towards its long term mean, we use 1
α .

After 1
α units of time, we can expect the process to be about 63%, which is 1− e−1, closer

to its long term mean. For both the long term bond and the short term bill, their α is at

the level of 10−4 or 1
α is at the level of 104 days. This means it will take decades before

the process is expected to be even 63% closer to the long term mean. So at the end of the

first year, the rates of return simulated by the two models for both long term bond and

short term bill are not significantly different. However, when we look at the equity, for the

first 40 to 50 years, the simulated rate of return is very different for the two models. In the

univariate model, the equity α is about 7.7, which means it will take less than one day for

its rate of return to go back to the long term mean. However, if we look at the parameters

for the vector AR(1) process, the equity rate of return is greatly affected by rates of return

of the long term bond and the short term bill. The centered rate of return of equity at time

t is the sum of 1.103105 times of previous day’s long term bond return and 0.285538 times

previous day’s short term bill return and 2.88 × 10−4 times of the previous day’s equity

return and a random term. So we can expect that in the multivariate model, when the long

term bond and short term bill’s rates of return are below the long term mean, so will the

equity. So basically, if the rates of return of long term bond and short term bill are low, one

can expect the same pattern for equity.

We will now look at the variance of the simulated results. Figure 4.2 shows that both the

multivariate model and the univariate model are stationary processes with finite variance.

We show Var(
∫ t+1
t Xtdt), but one could also look at Var(

∫ t
0 Xtdt). As we can see, 100 years

is long enough for the process variance to become stable. Unfortunately, we were not able

to obtain the theoretical variance of Y t for a multivariate OU process in a form that can

be useful in numerical calculation. We can look at the variance of Xt for both multivariate

and univariate processes, these graphs are shown in Appendix A. The following table shows
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Figure 4.2: Variance of the simulated annual rate of return with starting value lower than
long term mean
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Var(Xt) after 100 years for the three assets with different models and the theoretical values

are consistent with our simulated values.

Var(Xt)
Asset Multivariate Model Univariate Model

Long Term Bond 1.683343e-08 1.427813e-08
Short Term Bill 2.208272e-08 1.872274e-08

Equity 0.0001234083 0.0001233942

Table 4.1: Var(Xt) with multivariate and univariate models for three assets

The trajectories are quite similar for the two models. However, there are two differences

one may notice. First, in the “short term”, the univariate model has a higher variance than

the multivariate model. This actually applies to all three assets, but here the graph for short

term bill is the most obvious one. If we zoom in on only the first 10 years, which is shown in

Appendix A, we can see the same pattern more clearly for the other two assets. The other

difference is in the long term, the multivariate model always has a higher variance than the

univariate model for all three assets. This can be explained by the characteristics of the

models themselves. The univariate model will consider each asset independently, while the

multivariate model will take into account the covariance between assets. This eventually

makes the variance of the multivariate model higher than the univariate model. Assuming a

series is truly independent from other series, then fitting in a univariate model is sufficient.

But if the series is really dependent on some other series, the existence of the correlations

between different assets cannot be fully captured by a univariate model. This might result

in a lower long term variance in the univariate case compared to the multivariate one,

since it is missing some covariances with other assets. Also when the series is dependent of

other series, its sample data has more volatilities, which has to be picked up by the model

somehow. So as a compensation, the univariate model has a higher variance for the short

term. As we can see from the previous chapters, the multivariate model introduced more

parameters than the univariate model, which allows more flexibility when fitting the model.
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Figure 4.3: Mean of the simulated annual rate of return starting with the long term mean
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Figure 4.4: Mean of the simulated annual rate of return with starting value higher than
long term mean
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Figure 4.3 and 4.4 show the mean of simulated annual rates of return with different

starting values. One set of the results is using the long term mean of each asset as the

starting value. The other set is using a starting value that is higher than the long term

mean. We arbitrarily chose twice the long term mean as the starting value for each asset.

As we can see, when starting with the long term mean, the annual rate of return tends to

stay there. In our case, both univariate model and multivariate model result in a flat line

at the long term mean for each asset. When the starting value is higher than the long term

mean, we notice that, similar to the case when the starting value is lower than the long term

mean, it takes more time for the multivariate model to go back to the long term mean. The

graphs for the variances of the simulated results are in the Appendix A, mainly because the

pattern of the variance is almost the same regardless of the starting value.

When using the simulated annual rates of return to price an annuity, we will see that

the differences created by the nature of two models can result in a different optimal asset

allocation strategy. Even when the starting value is the long term mean and the mean of

the simulated annual rates of return for both models are overlapping, the two models can

still produce different results for the annuity prices.

4.3 Annuity Pricing

We now look at annuity prices produced by our simulated rates of return. The annuity is

priced for a 65-year old male with the 1994 Uninsured Pensioner Mortality Table (UP94

Table). First, we review some functions useful for annuity pricing and then we look at some

asset allocation strategies. At last, we will show some results with the simulated rates of

return.

4.3.1 Discount Factor and Actuarial Present Value

Define the rate of return accumulation function as Y (t) =
∫ t

0 δsds. So the discount factor

is e−Y (t). Since Y (t) is a Gaussian process, the discount factor, e−Y (t), follows a lognormal
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distribution. Therefore, we have

E(e−Y (t)) = e−E(Y (t))+0.5Var(Y (t)), (4.4)

E(e−(Y (t)+Y (s))) = e−(E(Y (t))+E(Y (s)))+0.5(Var(Y (t))+Var(Y (s))+2Cov(Y (t),Y (s))), (4.5)

and

Var(e−Y (t)) = E(e−2Y (t))− E2(e−Y (t))

= e−2E(Y (t))+2Var(Y (t)) − e−2E(Y (t))+Var(Y (t))

= e−2E(Y (t))+Var(Y (t))(eVar(Y (t)) − 1). (4.6)

The actuarial present value of future payments is the function we will use to price an annuity.

Assume a $1 payment is made at the beginning of year t, t = 1, 2, . . ., if the annuitant is

alive. The probability that the annuitant now age x will be alive at the beginning of year

t is t−1px. So the actuarial present value of this contingent $1 payment at time t − 1 is

1 ·t−1 px · e−
R t−1
0 δsds. Let ω be the maximum age of the mortality table. Then the present

value of a whole life annuity sold to a person age x can be calculated as

äx =
ω−x−1∑
t=0

tpxe
−

R t
0 δsds =

ω−x−1∑
t=0

tpxe
−Y (t). (4.7)

The tpx is calculated from the UP94 mortality table and the discount factor e−Y (t) is simu-

lated by the univariate and multivariate OU processes.

4.3.2 Asset Allocation Strategy

As mentioned earlier, for simplicity, we are assuming that only three kinds of assets are

available in the market, namely, 10-year long term bond, 3-month short term bill and equity.

We are using a continuous process to model the interest rate and we also assume the total

asset is rebalanced frequently. The investment strategy consists of allocating the total asset

between bond, bill and equity. An example could be 60% invested into long term bond,

10% of the total asset into short term bill and 30% into equity. Since we are rebalancing

frequently, the portion that is allocated to each asset will remain the same all the time.



CHAPTER 4. APPLICATIONS 49

We know that different investment strategies will result in different prices and risks of

annuities. So we will study different asset allocation strategies with different proportion

invested in the three assets. The higher the rate of return is, the lower the annuity price

is. We are trying to find the asset allocation strategy that yields the lowest annuity price,

which in this project we consider as the optimal asset allocation strategy. Of course, one can

also consider other criteria, such as value at risk, to find their own optimal asset allocation

strategy, but those are not in the scope of this project. We will see from our results that

multivariate and univariate models will provide different results. Also different starting

values of the rate of return can make a difference on the optimal asset allocation as well.

The annuity prices and the variances for different asset allocation strategies are shown

in the following 3-D graphs. The graphs only show the percentage invested in long term

bond and short term bill since the rest is invested in equity. The total proportion invested

in the three assets is 100%. The blank part of the surfaces in those 3-D graphs are the

ones where the proportion invested in long term bond and short term bill together would be

greater than 100%. To make sure of a clear view of the plots, not all the graphs are viewed

from the same angle.

First, let us look at the scenario where the starting value of the rate of return is below

its long term mean. The multivariate model shows that the lowest annuity price is when

100% of the total asset is put in long term bond. However, the univariate models shows the

best way is to put 100% in equity. And this can be explained by the behavior of the two

models. From figure 4.1, we see that it takes a much longer time for equity to go back to its

long term mean with a multivariate model than a univariate model. And mainly due to this

characteristic, the two models lead to different optimal asset allocation strategies. With the

univariate model, the annual rates of return for equity are approximately at the level of its

long term mean, which is higher than the annual interest rates for long term bond during

the first 40 years. This characteristic makes it reasonable to invest 100% in equity to reach

the lowest annuity price. Also the sample variances from the simulated results are quite

different for the two models. When the multivariate model starts with a relatively low rate
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of return for equity, it will stay there for a long time. As a result, the rate of return can be

even negative. However, the univariate model for the equity’s rate of return can revert back

to its long term mean within a day. And that is why the simulated annuity values generated

by the multivariate model have variances that are much higher than the ones generated by

the univariate model.

From figure 4.8, we see that the annuity value has a higher variance when assets are

invested 100% in equity than when 100% are invested in short term bill, although short

term bill is a less risky asset than equity. One reason is that the mean of Yt for the short

term bill is much smaller than the equity mean of Yt. Therefore, e−E(Yt) is larger when E(Yt)

is smaller. Also, in the univariate model, the equity rate of return is almost a White Noise,

so daily rates of return are independent from each other. However, there is great serial

dependence between short term bill and long term bond. After a certain number of years,

both short term bill and long term bond can have a larger variance for Yt than equity. From

Equation (4.6), which shows the variance of each payment, we can tell that the variance of

the annuity value depends on the mean, variance and auto-covariance of Yt. So these are

the reasons that, although the short term bill is considered almost a risk free asset, investing

100% of the assets in short term bill can be a riskier asset allocation strategy than 100%

assets invested in equity. However, such distortion can be avoided by using a multivariate

model which takes the correlation among the three assets into consideration.

Then we changed the starting value for the multivariate and univariate model. The

mean of the rates of return generated by the two models are almost the same, as shown in

Figure 4.3. The only thing that is different for the two models are the variances. Still, for

our asset allocation strategies, we get totally different results from the two models. For the

multivariate model, the optimal strategy is still to invest 100% in long term bond, which

makes sense because long term bond has the highest long term mean among the three

assets. For the univariate model, the optimal strategy is to invest 80% in long term bond

and 20% in equity. This result is not quite consistent with that of Blake et al (2001). One of

their conclusion is “conservative bond-based asset-allocation strategies require substantially
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higher contribution rates than riskier equity-based strategies if the same retirement pension

is to be achieved.” Translating this into our case, it means that conservative bond-based

asset-allocation will result in a higher annuity price than equity-based strategies. However,

this can be explained by the nature of the data we collected. As we pointed out in Chapter

3, the average rate of return of long term bond is higher than equity, but in Blake et al

(2001) the rate of return of bond is much lower than the rate of return of equity. Blake et

al (2001) also mentioned that a static asset-allocation strategy with a high equity weighting

delivers better result. Because of the high rate of return of the long term bond in this

project, the conclusion that an asset allocation strategy with a high weight in higher return

asset is the best for a long term investment still stands, except in our case the highest return

asset seems to be the long term bond.

At last, we can take a look at the case where starting values are higher than the long

term means. The multivariate model shows that the optimal asset allocation strategy is to

invest 100% in equity, while the univariate model shows that investing 100% in long term

bond is the optimal strategy. Again, this is related to the fact that the equity rates of return

from the multivariate model takes more time to return to its long term mean. As Figure 4.4

shows, even if long term bond has a slightly higher long term mean than equity, in the first

few years equity still delivers higher rate of return than long term bond for the multivariate

model. That is why investing 100% in equity is the optimal strategy for the multivariate

model.

Another thing that the three different starting value scenarios have in common is their

variance graphs. The univariate model shows that a diversified portfolio can reduce the

variance, which means the risk. However, in the multivariate model, the lowest variance is

always reached when 100% asset is invested in long term bond, the least risky asset.
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Figure 4.10: Mean of the annuity prices with the simulated rate of return from univariate
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Figure 4.11: Variance of the annuity prices with the simulated rate of return from multi-
variate model starting with the long term mean
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Chapter 5

Conclusions

This project focused on the multivariate and univariate Ornstein-Uhlenbeck process to

model the rates of return of three assets. The advantage of the multivariate model is that by

introducing more parameters to the model, more characteristics of the rates of return can

be captured and expressed than can be with the univariate model. Most importantly the

correlation between different assets is taken into consideration in the multivariate model. In

the multivariate model, although the rates of return of long term bond and short term bill

don’t depend on the rates of return of equity, equity’s rates of return are greatly affected

by long term bond and short term bill. This is also showed in the graphs in Chapter 4.

When the long term bond and short term bill’s rates of return are above (below) the long

term mean of theirs, the equity’s return is also above (below) its long term mean. However,

the univariate model shows the mean of equity’s annual rates of return will almost stay at

the same level. Since the multivariate model also captures the covariance between one asset

and another, in the long term, the variance of the annual rates of return is slightly higher

than what the univariate model shows. However, in the short term, the univariate model

shows a higher variance than the multivariate model. As for the asset allocation strategy

to achieve the lowest annuity price for a 65 year old male, the two models show different

results even with the same starting value and same long term mean.

Of course, using a multivariate OU process to model the rates of return is much more

64
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complicated and time consuming than using a univariate model. We can calculate the

theoretical covariance matrix for a three dimensional process. However, when we combine

the velocity and position process together as one system of stochastic differential equations,

the matrix is raised to six dimensions, in which case we encountered significant calculation

problem and we couldn’t calculate the theoretical covariance matrix anymore. So we used

sample variance and covariance of our simulated result to do the studies.

Also, there could be some improvements for annuity pricing. In this project, we only

considered stochastic interest rates and took mortality rate as determined, but mortality

rate could also change over time. So we can also consider using stochastic mortality rates.

Besides, our calculation for annuity price is for pure premium, not including expenses or

taxes, etc. As for the multivariate OU process, the most important future work is solving the

computational problems, with which one could calculate the theoretical covariance matrix

and also make the simulation much faster. At last, there is still a lot to learn about the

properties of the multivariate OU process modeling the rates of return.



Appendix A

Other Simulated Results

In Appendix A, we show more graphs of simulated results related to Chapter 4. Figure A.1

zooms in on the first 10-year period of Figure 4.2 to show that the simulated results from

an univariate model have higher variances than the ones from the multivariate model in the

short term. Figure A.2 shows the variance of the simulated annual rate of return starting

with the long term mean. The mean of these simulated results was shown in Figure 4.3.

Figure A.3 shows the variance of the simulated annual rate of return with high starting

value. See Figure 4.4 for the mean of these simulated results.

In addition to simulating the annual rate of return, which is
∫ i+1
i Xsds, we also simulated

the rates of return on the last day of each year. Figures A.4 to A.9 show the means and

variances of those simulated rates of return on the last day of each year for 3 different

scenarios of starting values. Figures A.4 and A.5 show the case where the simulation is

using the rate of return on June 30th, 2009 as the starting value. Figures A.6 and A.7 are

for the case where the starting value is the same as the long term mean. Figures A.8 and

A.9 are for the case where the starting value is higher than the long term mean.
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Figure A.1: Variance of the first 10 years simulated annual rate of return with starting value
lower than long term mean
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Figure A.2: Variance of the simulated annual rate of return starting with the long term
mean
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Figure A.3: Variance of the simulated annual rate of return with starting value higher than
long term mean
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Figure A.4: Mean of the simulated daily rate of return at the end of each year with starting
value lower than long term mean
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Figure A.5: Mean of the simulated daily rate of return at the end of each year starting with
long term mean
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Figure A.6: Mean of the simulated daily rate of return at the end of each year with starting
value higher than long term mean
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Figure A.7: Variance of the simulated daily rate of return at the end of each year with
starting value lower than long term mean
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Figure A.8: Variance of the simulated daily rate of return at the end of each year starting
with long term mean
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Figure A.9: Variance of the simulated daily rate of return at the end of each year with
starting value higher than long term mean



Appendix B

Equivalent Processes: Alternative

Approach

In section 2.2.4 we found ΣOU for the covariance equivalent multivariate OU process by

matching the variances of the AR(1) and OU processes at time 1. In this appendix, we

show an alternative approach to solve for ΣOU by matching the variances of AR(1) and OU

processes when time t goes to infinity.

Assume that Var(Xt) = Cov(Xt, Xt) has a limit M as t→∞, which would be true for

a stationary process. For the vector AR(1) process, when t → ∞, according to Equation

(2.25), we have

lim
t→∞

Var(Xt) =
∞∑
i=0

ΦiΣa

(
Φi
)T
. (B.1)

Assume Φ = eA has eigenvalue decomposition Φ = V ΛV −1, where Λ is a diagonal matrix
λ1 0 . . . 0

0 λ2 . . . 0
...

... . . .
...

0 0 . . . λn

. Let µ = log(Λ) =


log (λ1) 0 . . . 0

0 log (λ2) . . . 0
...

... . . .
...

0 0 . . . log (λn)

. We have

A = V µV −1, (B.2)

Φi = V ΛiV −1 (B.3)
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and (
Φi
)T =

(
V −1

)T Λi (V )T . (B.4)

Therefore, Equation (B.1) can be written as

lim
t→∞

Var(Xt) = V

( ∞∑
i=0

ΛiV −1Σa

(
V −1

)T Λi
)
V T . (B.5)

Define F = V −1Σa

(
V −1

)T and let the element in row k column l of F be Fkl. Then

the element in row k column l of ΛiFΛi is λikFklλ
i
l. Let R =

∑∞
i=0 ΛiV −1Σa

(
V −1

)T Λi =∑∞
i=0 ΛiFΛi and the element in row k column l of R be Rkl =

∑∞
i=0 λ

i
kFklλ

i
l. Since, for a

stationary process, we have |λk| < 1 for all k, we can calculate Rkl as

Rkl =
Fkl

1− λkλl
. (B.6)

Therefore, we have

lim
t→∞

Var(Xt) = V RV T . (B.7)

Now for the OU process, with Equation (2.31), we can calculate limt→∞Var(Xt). Since

A = V µV −1, we have eAt = V eµtV −1. So limt→∞Var(Xt) can be calculated as

lim
t→∞

Var(Xt) = lim
t→∞

eAt
∫ t

0

(
eAn
)−1

ΣOU

((
eAn
)−1
)T

dn
(
eAt
)T

= lim
t→∞

V eµtV −1

∫ t

0

(
V eµnV −1

)−1 ΣOU

(
V e−µnV −1

)T
dn
(
V −1

)T
eµtV T

= lim
t→∞

V

∫ t

0
e(t−n)µV −1ΣOU

(
V −1

)T
e(t−n)µdnV T .

Let t− n = y, then

lim
t→∞

Var(Xt) = lim
t→∞

V

∫ t

0
eyµ
(
V −1ΣOU

(
V −1

)T)
eyµdyV T .

Define FOU = V −1ΣOU

(
V −1

)T , we have

lim
t→∞

Var(Xt) = lim
t→∞

V

∫ t

0
eyµFOUe

yµdyV T . (B.8)

From Equation (B.8) for the OU process and Equation (B.7) for the AR(1) process, for

them to be covariance equivalent we need that

R =
∫ t

0
eyµFOUe

yµdy. (B.9)
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If the element in row k column l of FOU is (FOU )kl, then the element in row k column l of

eyµFOUe
yµ is eyµk(FOU )kleyµl and∫ ∞

0
eyµk(FOU )kleyµldy = −(FOU )kl

µk + µl
. (B.10)

For a stationary process, |λk| < 1 and µk = log(λk) < 0 for all k. Therefore, from Equations

(B.9) and (B.10), we want

Rkl = −(FOU )kl
µk + µl

=
Fkl

1− λkλl
.

So, we get

(FOU )kl = − log(λk) + log(λl)
1− λkλl

Fkl. (B.11)

Since FOU = V −1ΣOU

(
V −1

)T , we obtain ΣOU as

ΣOU = V FOUV
T . (B.12)
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