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Abstract

We present powerful heuristics for the bottleneck traveling salesman problem (BTSP) and

closely related problems such as the maximum scatter traveling salesman problem (MSTSP)

and the balanced traveling salesman problem, the later being a new problem which we in-

troduce. Extensive computational results are presented. In particular, our BTSP heuristic

produces provably optimal solutions for nearly every problem considered in a very rea-

sonable running-time, both on problems with symmetric cost matrices and problems with

asymmetric cost matrices.

We also provide some theoretical analysis of lower bounds for the BTSP and introduce

two new lower bound schemes for the BTSP on asymmetric cost matrices. We compliment

this with new approximation algorithm with a guaranteed performance ratio for the BTSP

on problems satisfying the triangle-inequality.
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For two Jeanettes
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“Traveling salesmen... lived like artists, like actors whose product is first of all themselves,

forever imagining triumphs in a world that either ignores them or denies their presence

altogether. But just as often enough to keep the game going one of them makes it and

swings to the moon on a thread of dreams unwinding out of himself.”

— Arthur Miller, Timebends: A Life, 1987
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Chapter 1

Introduction

The traveling salesman is, perhaps, one of the few professions celebrated in both popular

culture as well as in math and computer science journals. Timothy Spears writes the trav-

eling salesman is an “intriguing, almost mythic figure” that ”established the foundations of

‘scientific salesmanship’ and helped develop modern consumer culture” [102]. One could de-

scribe the impact of the formal math problem we call the traveling salesman problem (TSP)

with similar, glowing words. The question that has intrigued mathematicians for over sixty

years: given a collection of cities, what is the shortest possible tour that visits each city

exactly once? The TSP is quite difficult in a complexity sense, and is the motivation be-

hind thousands of articles on topics such as integer programming, complexity theory, graph

theory, heuristics, and approximation algorithms. In short, it has helped shape modern

operations research, perhaps more than any other problem. But for all the attention these

wayfaring peddlers get, few consider the plight of a salesman who is prone to car sickness.

To be more precise, we mean a salesman who is more concerned about minimizing the

longest distance he travels between any pair of cities in a tour rather than minimizing the

total distance. This ‘minimax’ problem is called the bottleneck traveling salesman problem,

and is the problem of focus in this thesis. We also concern ourselves with the plight of a

(hopefully innocent) fugitive, as well as one headache of aircraft maintenance persons.

But first we offer a short tour of the traveling salesman problem. Following this, we

formally define the problems facing our queazy merchant, our hoodlum on the run, and our

beleaguered plane mechanic.

1



CHAPTER 1. INTRODUCTION 2

1.1 The Traveling Salesman Problem

Given a number of cities to visit, a traveling salesman plans a route that takes him to

each city exactly once and returns him home. It is obvious that some orders of touring the

cities are shorter than others, and our salesman desires an order that minimizes the total

distance he must travel. Although this problem is simple to describe, the traveling sales-

man problem (TSP) is a ‘hard’ combinatorial optimization problem. Its simple description,

beguiling difficulty, and endless utility has made it one of the most well known problems in

mathematics.

A Hamiltonian cycle is a cycle which visits each vertex in a graph exactly once. Formally

defined, the TSP considers a directed or undirected graph G = (V,E) with a cost (weight)

cij perscribed for each edge (i, j) ∈ E. If Π(G) is the set of all Hamiltonian cycles (tours)

in G, then the TSP is to find a tour in Π(G) whose sum edge cost is as small as possible,

i.e.

minimize
∑

(i,j)∈H

cij

subject to H ∈ Π(G).

(1.1)

A solution to the TSP is of interest to more than just salesman and their kin that provide

delivery and repair services. The TSP also finds applications in genome sequencing [10],

printed circuit board manufacturing [72, 40, 71], aiming space telescopes [8], turbine engine

maintenance [81], and sequencing pleasing iPod playlists [82]. Interested readers may consult

the books of Applegate et al. [5] or Gutin and Punnen [41] for further details on these

applications, among others.

1.1.1 Dantzig, Fulkerson, and Johnson’s 42-City Problem

In their ground breaking 1954 paper, Solution of a large-scale traveling-salesman prob-

lem [26], Dantzig, Fulkerson and Johnson introduce many important ideas on solving the

TSP that are still used today. To demonstrate their methods, they constructed a 49-city

instance consisting of Washington D.C. and one city from each of the 48 mainland states

(Alaska and Hawaii did not become states until 1959). Using an atlas, they constructed

the cost between pairs of cities as the road distance between them, rounding to the nearest

integer (1 unit ≈ 17 miles). As all the calculations were being done by hand, they decided to
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remove 7 cities along the Washington D.C. and Boston corridor and solve a 42-city problem.

Figure 1.1 gives a list of the 42 included cities and shows their locations on a map.

This problem is part of Reinelt’s TSPLIB collection [95] under the name dantzig42.

We will use this instance throughout this chapter to demonstrate the sorts of tours we will

be finding. Figure 1.2 shows the optimal TSP tour on dantzig42 that Dantzig et al. found.

Note that the edge between Washington DC and Boston, MA run through the seven cities

that were removed, making this 42-city solution optimal for the original 49-city problem.

However, this may not be true for the problems of interest to us, so we confine ourselves to

just the listed 42-cities.

1.1.2 Complexity of the TSP

It is convenient to separate TSP instances into symmetric and asymmetric instances. Sym-

metric instances correspond to undirected graphs where cij = cji for all i, j ∈ V . Asymmetric

instances correspond to directed graphs (digraphs) where cij 6= cji for some i, j ∈ V .

The TSP is well known to be NP-Hard [57] which means, unless the famous ‘P=NP?’

question is true, a ‘good’ algorithm for solving the TSP is unlikely to exist. By a ‘good’

algorithm, we mean one whose running-time is bounded by some polynomial factor with

respect to the input size of the problem, such as the number of cities in a TSP instance. A

full treatment of complexity theory is beyond the scope of this thesis, but it is interesting

to note that, due to its popularity, the TSP is often used in proof attempts to show that

P=NP [110]. Despite this negative result, there are some special cases where the TSP can

be solved in polynomial time [53].

Instead of asking if a polynomial-time algorithm exists for the TSP, one could instead

ask if a polynomial-time algorithm exists with a bounded performance guarantee.

Definition 1. Let α be a polynomial-time algorithm that returns a (possibly non-optimal)

guess at the solution to an NP-Hard minimization problem, such as the TSP, and let ǫ ≥ 1

be a constant. Further, let z∗ be the optimal objective value to some NP-Hard problem

instance, and let z be the objective value returned by algorithm α. If

z

z∗
≤ ǫ

for any given problem instance, then we refer to α as an ǫ-approximation algorithm.
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1. Manchester, NH 15. Portland, OR 29. Dallas, TX
2. Montpelier, VT 16. Boise City, ID 30. Little Rock, AR
3. Detroit, MI 17. Salt Lake City, UT 31. Memphis, TN
4. Cleveland, OH 18. Carson City, NV 32. Jackson, MS
5. Charleston, WV 19. Los Angeles, CA 33. New Orleans, LA
6. Louisville, KY 20. Phoenix, AZ 34. Birmingham, AL
7. Indianapolis, IN 21. Santa Fe, NM 35. Atlanta, GA
8. Chicago, IL 22. Denver, CO 36. Jacksonville, FL
9. Milwaukee, WI 23. Cheyenne, WY 37. Columbia, SC

10. Minneapolis, MN 24. Omaha, NE 38. Raleigh, NC
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12. Bismarck, ND 26. Kansas City, MO 40. Washington DC
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Figure 1.1: 42-city instance dantzig42
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Figure 1.2: dantzig42 TSP tour (tour length: 699; min cost: 3; max cost: 45)

For example, suppose we have an algorithm that returns TSP tours that are guaranteed

to be at most twice as long as the optimal TSP tour. Such an algorithm would be a

2-approximation for the TSP.

Unfortunately, Sahni and Gonzalez [96] show the existence of any ǫ-approximation algo-

rithm for the TSP implies that P=NP for any ǫ ≥ 1. This result suggests a polynomial-time

approximation algorithm is unlikely to exist for all TSP instances, unless P=NP. Further,

if P=NP, then optimal TSP tours could be found in polynomial time for any TSP instance,

negating the need to study heuristics for the TSP.

Progress on the question of the approximability of the TSP can be made if we impose

some conditions on the structure of the problem and its cost matrix. Assume our graph

G = (V,E) is complete (i.e. (i, j) ∈ E for all i, j ∈ V ) and that the cost matrix C = (cij)n×n

is nonnegative and satisfies the triangle inequality, i.e.

cij ≤ cik + ckj for all i, j, k ∈ V. (1.2)

Table 1.1 details the progress made into ǫ-approximation algorithms for the TSP as well as

the Max-TSP (where the sum of costs in a Hamiltonian cycle is maximized). Of particu-

lar note, Christofides [20] gives a 3
2 -approximation for symmetric TSP instances satisfying

the triangle inequality, while Frieze et al. [33] give a log n-approximation for asymmetric
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instances. Despite these results being decades old, no one has asymptotically improved

these performance guarantees (Kaplan et al. improve on Frieze et al.’s asymmetric TSP

approximation to 0.841 log n [56]). It is also not known if these are the best approximations

possible.

A detailed treatment of solution methods for the TSP is unnecessary for understanding

the algorithms we develop later, so we skip such a discussion. For the curious, effective

strategies for solving the symmetric TSP is the subject of Applegate et al.’s book [5], and

further theory can be found in the books of Lawler et al. [68] and Gutin and Punnen [41].

1.2 Problem Definitions

We now define four problems that are of focus in this thesis. Each problem instance consists

of a directed or undirected graph G = (V,E) with a cost cij prescribed for each edge

(i, j) ∈ E. Finally, let Π(G) denote the collection of (directed) Hamiltonian cycles in G.

1.2.1 The Bottleneck Traveling Salesman Problem

We recall the problem of our salesman who is unfortunately prone to car sickness. He would

like to tour a set of cities in such a way that he spends as little time traveling between any

pair of cities, therefore minimizing the amount of time driving for any one stretch of his

journey. Formally defined, the BTSP is to find a Hamlitonian cycle in G whose largest edge

cost is as small as possible, i.e.

minimize max{cij : (i, j) ∈ H}
subject to H ∈ Π(G).

(1.3)

Figure 1.3 gives an example of a BTSP tour on the dantzig42 problem.

To the best of our knowledge, Gilmore and Gormory first formally defined the problem

in 1964 [39]. Like its more famous other brother, the TSP, the BTSP is NP-Hard, so is in a

complexity sense quite difficult to solve in general. This thesis focuses on practical solutions

to the BTSP, involving study into lower bounds, approximation algorithms, heuristics, and

a comprehensive computational study.

The constrained bottleneck traveling salesman problem (Constrained BSTP) places an

additional restriction on the total weight of the tour. For each edge (i, j) ∈ E prescribe a
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Table 1.1: Progress on ǫ-appoximation algorithms for TSP and Max-TSP

Symmetric TSP with Triangle Inequality
1976 Christofides [20] 3/2 = 1.500

Asymmetric TSP with Triangle Inequality
1982 Frieze, Galbiati, Maffioli [33] log n
2003 Bläser [12] 0.999 log n
2005 Kaplan, Lewenstein, Shafrir, Sviridenko [56] 0.841 log n

Symmetric Max-TSP
1984 Serdyukov [100] 3/4 = 0.750
1994 Kosaraju, Park, Stein [61] 19/27 ≈ 0.704
2000 Hassin, Rubinstein [43] ǫ < 25/33 ≈ 0.758
2005 Chen, Okamoto, Wang [19] 61/81 ≈ 0.753
2008 Paluch, Mucha, Madry [77] 7/9 ≈ 0.778

Symmetric Max-TSP with Triangle Inequality
1985 Kostochka, Serdyukov [62] 5/6 ≈ 0.833

2002 Hassin, Rubinstein [44] 7/8−O(n−1/2)

2005 Chen, Nagoya [18] 7/8−O(n−1/3)
2008 Kowalik, Mucha [64] 7/8 = 0.875

Asymmetric Max-TSP
1979 Fisher, Nemhauser, Wolsey [31] 1/2 = 0.500
1994 Kosaraju, Park, Stein [61] 38/63 ≈ 0.603
2003 Lewenstein, Sviridenko [70] 5/8 = 0.625
2004 Bläser [11] 8/13 ≈ 0.615
2005 Kaplan, Lewenstein, Shafrir, Sviridenko [56] 2/3 ≈ 0.667

Asymmetric Max-TSP with Triangle Inequality
1985 Kostochka, Serdyukov [62] 3/4 ≈ 0.750
2005 Kaplan, Lewenstein, Shafrir, Sviridenko [56] 10/13 ≈ 0.769
2005 Chen, Nagoya [18] 27/35 ≈ 0.771
2007 Kowalik, Mucha [63] 35/44 ≈ 0.795
2009 Bläser, Ram, Sviridenko [13] 31/40 = 0.775
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Figure 1.3: dantzig42 BTSP tour (tour length: 964; min cost: 5; max cost: 35)

weight wij . The Constrained BTSP is to find a Hamiltonian cycle in G whose largest edge

cost is as small as possible, and whose total weight is no more than a given value w̄, i.e.

minimize max{cij : (i, j) ∈ H}
subject to H ∈ Π(G),

∑

(i,j)∈H

wij ≤ w̄.

(1.4)

Optimal BTSP tours may be significantly expensive in terms of total cost, as the BTSP tour

in Figure 1.3 demonstrates, so this additional constraint where cij = wij for all (i, j) ∈ E

is useful in practical applications. Clearly, the problem is infeasible if w̄ is of smaller value

than the length of the optimal TSP tour using wij as the edge costs. Figure 1.4 gives a

Constrained BTSP tour on dantzig42 where the length is at most 716.

1.2.2 The Maximum Scatter Traveling Salesman Problem

Falsely accused of a crime you did not commit and facing the death penalty, you escape

from the arms of the police and set out on an epic journey across the country to avoid

capture. With your name splashed across TV, you know if you stay in the same general

area for too long you will rouse the suspicions of the locals who will in turn report you to
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Figure 1.4: dantzig42 constrained BTSP tour (tour length: 716; min cost: 3; max cost:
35)

the police. With the help of a circle of friends scattered across the country who believe in

your innocence, you wish rotate from safe house to safe house in such a way that you are

as far away from the previous safe house as possible.

In more precise terms, you are looking for the tour through your network of safe houses

such that the smallest distance between consecutive locations is as large as possible. This

model is known as the maximum scatter traveling salesman problem (MSTSP), and may be

formally defined as follows:

maximize min{cij : (i, j) ∈ H}
subject to H ∈ Π(G).

(1.5)

The problem’s namesake is due to Arkin et al. [6], and comes from an application of the

problem in rivetting sheets of metal together for aircraft bodies. We discuss this application

in the next section. Figure 1.5 presents the MSTSP tour on dantzig42.

This problem, in an optimization sense, is equivalent to the BTSP. Let

d̄ ≥ max{cij : (i, j) ∈ E} (1.6)
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Figure 1.5: dantzig42 MSTSP tour (tour length: 3913; min cost: 73; max cost: 142)

and let

dij = d̄− cij for all (i, j) ∈ E. (1.7)

Solving the BTSP with costs dij is equivalent to solving the MSTSP with costs cij , and vice-

versa. While this transformation preserves the optimality of solutions, it does not preserve

performance guarantees of approximation-algorithms (i.e. an ǫ-approximation algorithm for

the BTSP does not imply an ǫ-approximation algorithm for the MSTSP merely by applying

this transformation).

1.2.3 The Balanced Traveling Salesman Problem

So far we have discussed problems that involve finding a Hamiltonian cycle whose largest

edge cost is minimized (the BTSP) and whose smallest edge cost is maximized (the MSTSP).

Some models might instead demand that the difference between the largest edge cost and

the smallest edge cost is minimized. For such models, we introduce the balanced traveling

salesman problem (Balanced TSP), which is formally defined as

minimize max{cij : (i, j) ∈ H} −min{cij : (i, j) ∈ H}
subject to H ∈ Π(G).

(1.8)
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Figure 1.6: dantzig42 Balanced TSP tour (tour length: 2131; min cost: 45; max cost: 58)

We explore an application of the Balanced TSP in the next section. It is clear the problem

is at least as difficult as solving the BTSP and MSTSP, and so is NP-Hard. Figure 1.6

shows a Balanced TSP tour on the dantzig42 problem, where the smallest cost and largest

cost in the tour have a difference of 13 units.

1.3 Applications

To provide some motivation for studying these problems, we first discuss some applications

of the BTSP found in literature. Afterwards, we present a new application applicable to

the Balanced TSP model.

1.3.1 Applications Discussed in Literature

Assembly line sequencing (Garfinkel and Gilbert, 1978 [37])

Consider a circular assembly line with n jobs to be sequenced in any order. Let tj be the

time to complete a job j, and let tij be the setup time from job i to job j. If one wishes

to sequence the jobs so as to minimize the cycle time (i.e. the amount of time necessary to

move onto the next job in the line), one can solve the BTSP on cost matrix C = (cij)n×n

where cij = tj + tij.
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Sequencing a one-state variable machine (Gilmore and Gomory, 1964 [39])

This is an application of the Gilmore-Gomory class of problems, for which the TSP is

solvable in polynomial time (see Kabadi’s book chapter [53] for a full discussion). Given

a single machine, such as a furnace, one wishes to sequence n jobs. To start a job i, the

machine must be in state Ai, and at completion the machine will be in state Bi. Let f be

an integrable function that describes changing the state of the machine from u to v where

v ≥ u. Similarly, let g be an integrable function that describes changing the state of the

machine from u to v where u < v. Further, let f(x) + g(x) ≥ 0 for all x. The cost cij of

performing a job j immediately after job i is given by

cij =































∫ Aj

Bi

f(x) dx if Aj ≤ Bi,

∫ Bi

Aj

g(x) dx if Aj < Bi.

(1.9)

In the example of a furnace, f may represent the cost of raising the temperature of the

furnace from Ai to Bj , while g is the cost of lowering the temperature. Minimizing the

largest change of state is an application for the BTSP model.

Reconstructing Sequential Orderings from Inaccurate Adjacency Information

(Kao and Sanghi, 2006 [55])

Suppose n people stand in a circle in a clockwise orientation. Each person i reports their

height Ai as well as estimates the height of the person clockwise adjacent to them Bi. Solely

from this information one wishes to determine an ordering of the n people that minimizes

the maximum difference between the reported heights Ai and the estimated heights Bi.

Kao and Sanghi discuss how this problem is used in biology for determining a protein’s

structure with spectroscopy data from a nuclear magnetic resonance (NMR) image. Proteins

are made up of chains of amino acids (known as polypeptide chains). Knowing the sequence

of amino acids is very useful to biologists. A NMR experiment records ‘spectral peaks’ which

correspond to pairs of chemical shifts of atoms in adjacent amino acids. These chemical shifts

serve to identify atoms in the protein, which in turn identify the amino acids. Relating to the

‘people ordering’ problem introduced above, the spectral peaks (which identify the amino
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acids) are the people, and the chemical shifts associated with each spectral peak are the

height estimates. While amino chains are linear and not circular, Kao and Sanghi show how

to construct a linear ordering in polynomial time from a circular ordering.

Sequencing Rivet Operations (Arkin et al., 1999 [6])

On an aircraft body, two sheets of metal are joined together by rivets. The insertion of a rivet

generates heat, and the sheet metal may deform if multiple rivets are placed consecutively in

the same area. It is useful to find a sequence of rivet operations that maximize the distance

between any consecutive pair of rivets so as to allow recently riveted areas to cool. This is

an application for the MSTSP model.

Arkin et al. also discuss a similar application in medical imaging. A dynamic spa-

tial reconstructor (DSR) is used in imaging physiological functions using pairs of radiation

sources and sensors. Radiation sources are placed along the top half of a circular ring and

corresponding sensors are placed directly opposite along the bottom half of the ring. How-

ever, an activated source scatters some amount of radiation to other nearby sources, so it

is desirable to find a firing sequence of the radiation sources that maximizes the distance

between consecutive sensors.

1.3.2 Nozzel Guide Vane Assembly in Gas Turbine Engines

The gas turbine engines that power military and commercial aircraft require extensive main-

tenance to ensure efficiency and reliability. One such stage of maintenance, the nozzle guide

vane assembly, is formulated by Plante, Lowe and Chandrasekaran [81] as a product matrix

TSP. We show how this problem may be formulated as both an asymmetric BTSP as well

as an asymmetric Balanced TSP.

One of the main sections of the engine is the turbine, which consists of a series of stages

configured with a nozzle and rotor pairing. The nozzle assembly consists of a sequence of

nozzle guide vanes (hereafter referred to as vanes) affixed along the inner circumference of

the nozzle diaphragm. Typically, there are 46 to 100 vanes in a given nozzle assembly. The

nozzle assembly accelerates, deflects, and distributes the gases that drives the engine. An

engine is more efficient if the distribution of gas flow throughout the nozzle assembly is

‘uniform’.

The vanes experience wear and tear due to the high temperatures and velocities of the
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gases pushed through the nozzle assembly. After disassembling the engine, a mechanic may

choose to refurbish or discard some vanes, adding new or refurbished vanes to the collection

as necessary. The mechanic then sequences the collection of vanes so as to obtain uniformity

of flow areas between adjacent vanes. For a more detailed description of the problem, we

refer to [49] and [81].

Let n be the number of vanes required for the nozzle assembly. Each vane has a convex

and concave side which is measured against a master vane to derive two contribution values,

Ai and Bi, for each vane i. Figure 1.7 illustrates this measurement. A positive value Ai or

Bi indicates the vane contributes a larger area for gas flow than the master vane; a negative

value indicates a small area contribution compared to the master vane. The measurement

(Ai + Bj) indicates the area between vanes i and j, with vane j placed clockwise-adjacent

to vane i. In general (Ai + Bj) 6= (Aj + Bi).

j

Aj Bj

i

Ai Bi

Figure 1.7: Area between vanes i and j

For a set of vanes V , n = |V |, we can construct a complete graph G = (V, V × V )

where Hamiltonian cycles in G correspond to vane sequences in the nozzle assembly. For a

Hamiltonian cycle H, let

xij =







1 if (i, j) ∈ H

0 otherwise

which corresponds to placing vane j clockwise-adjacent to vane i in the nozzle assembly.

Let the total nozzle flow area be denoted by

T =

n
∑

i=1

n
∑

j=1

(Ai + Bj)xij =

n
∑

i=1

(Ai + Bi) (1.10)



CHAPTER 1. INTRODUCTION 15

(each vane is included exactly once, so its value is constant). Consider its mean value

d̄ =

∑n
i=1(Ai + Bi)

n
.

An assembly is perfectly uniform if (Ai + Bj) = d̄ whenever xij = 1. However, it is unlikely

such an assembly is possible due to imprecise manufacturing tolerances. Instead, one can

determine vane placement by attempting to maximize ‘uniformity’ by subjective criteria.

Construct cost matrix C = (cij)n×n where

cij = (d̄− (Ai + Bj))
2. (1.11)

The entries of cost matrix C represent the square deviations of (Ai + Bj) from the mean

nozzle flow area d̄. We note that in general (Ai + Bj) 6= (Aj + Bi), so C is an asymmetric

matrix.

What constitutes a ‘uniform’ assembly is somewhat subjective. Plante et al.’s approach

is to minimize the sum of square deviations of (Ai + Bj) from d̄, e.g.

minimize
∑

(i,j)∈H

(d̄− (Ai + Bj))
2

subject to H ∈ Π(G).

(1.12)

An alternative approach is to use the BTSP model, which minimizes the largest squared

deviation from the mean nozzle flow area, e.g.

minimize max{(d̄ − (Ai + Bj))
2 : (i, j) ∈ H}

subject to H ∈ Π(G).
(1.13)

The Balanced TSP on C also provides a suitable model, where the difference between the

largest and smallest squared deviation from the mean is minimized:

minimize U − L

subject to U ≥ max{(d̄− (Ai + Bj))
2 : (i, j) ∈ H},

L ≤ min{(d̄− (Ai + Bj))
2 : (i, j) ∈ H},

H ∈ Π(G).

(1.14)
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Note this Balanced TSP problem formulation is equivalent to that of Equation (1.8).

1.4 Problem Complexity

It is well known that the BTSP is NP-Hard [54], easily verified by a reduction from the

Hamiltonian Cycle problem (see Garey and Johnson’s classic book [36] on NP-Completeness

theory for more information). Unless P=NP, these results indicate a polynomial time algo-

rithm for solving the general BTSP is unlikely to exist. Clearly, the constrained version, the

Constrained BTSP, is NP-Hard as well. Arkin et al. [6] show the MSTSP is also NP-Hard.

Finally, it is trivial to show the Balanced TSP is NP-Hard via a reduction from the BTSP

or the MSTSP.

Certain problem and cost matrix structures may lend themselves to specialized polyno-

mial time solutions to the BTSP. The Gilmore-Gomory class of problems [39] introduced in

the previous section are one example. When a cost matrix is defined by Equation 1.9 and

f(x) ≥ 0 and g(x) = 0 (1.15)

(or vice versa) then Gilmore and Gomory show that the BTSP may be solved in polynomial

time. Various extensions to the Gilmore-Gomory class of problems also exist [54, 53, 60,

106, 108]. The BTSP on a Halin graph (a planar graph constructed by connecting the leaf

nodes of a finite tree with no vertices of degree 2 with a cycle) is another polynomially

solvable instance [80]. For a thorough discussion on solvable cases of the BTSP, we refer to

the book chapter of Kabadi and Punnen [54].

The approximability of the general BTSP or MSTSP is just as dire as that of the general

TSP. It can be shown that, unless P=NP, no polynomial time ǫ-approximation algorithm

exists for the BTSP or the MSTSP for any 1 ≤ ǫ ≤ ∞ [54].

Instead, as with the TSP, one may look at developing approximation algorithms for

problem instances that satisfy certain conditions. Kao and Sanghi show that if a cost

matrix satisfies Equation 1.9 (the Gilmore-Gomory cost matrix) for a general f(x), g(x) > 0

that an O(n log n) time (2 + γ)-approximation algorithm exists where γ ≥ f(x)
g(x) ≥ 1

γ [55].

When f(x) = g(x) = 1, as in the sequential orderings application in the previous section,

their algorithm yields a 3-approximation.

We discussed approximation algorithms for the TSP on problem instances that satisfy
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the triangle inequality (1.2). A generalization of the triangle inequality is the τ -triangle

inequality

cij ≤ τ(cik + ckj) for all i, j, k ∈ V (1.16)

for some τ ≥ 1
2 . When τ = 1

2 , it forces all cij to be the same cost, while when τ = 1 it

reduces to the standard triangle inequality. It is known when the edge costs are symmetric

and satisfy the τ -triangle inequality that a polynomial 2τ -approximation exists for both the

BTSP, due to Rardin and Parker [79] for the case of τ = 1 (also proved independently by

Doroshko and Sarvanov [27]), and the MSTSP, due to Arkin et al. [6] when τ = 1 (see

Kabadi and Punnen’s book chapter for a proof of the general case when τ is arbitrary [54]).

Further, unless P=NP, a 2τ -approximation is the best result possible for the symmetric case

of the BTSP or MSTSP [54]. In Chapter 3 we discuss an approximation algorithm for the

asymmetric version of the BTSP when the edge costs satisfy the τ -triangle inequality.

1.5 Contributions of this Thesis

In this thesis we develop heuristic algorithms for solving the BTSP, MSTSP, and Balanced

TSP. These algorithms can be easily adapted to solve their constrained versions where the

total tour length must be less than a given parameter. In Chapter 2, extensive computational

results are presented for the symmetric BTSP on problems of sizes up to 31,623 vertices for

all available TSP benchmark problems from Reinalt’s TSPLIB library [95], random instances

due to Johnson and McGeoch [50, 51], real-world National TSP instances [24], and instances

based upon real-world integrated circuit board problems (VLSI instances) [22]. Our heuristic

algorithm uses randomization in a controlled way to guide the heuristic search, often yielding

provably optimal solutions.

The asymmetric BTSP is the topic of Chapter 3. We define new lower bounds for this

problem and establish a comparison between several well-known lower bounds. A new the-

orem is also provided which can be used in a recursive way to improve most lower bounding

schemes. Extensive computational results are presented using our heuristic algorithm that

produced provably optimal solutions in many instances. We establish a new asymmetric

BTSP approximation algorithm with worst-case performance ratio of ⌈n2 ⌉ when the problem

costs satisfy the triangle inequality. Further, we show that any asymmetric BTSP instance

on n vertices can be represented as a symmetric BTSP on 3n vertices. We also consider the
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MSTSP and present extensive computational results for the asymmetric version.

In the final chapter, we consider the Balanced TSP. This problem has not been studied

in literature so far, but has useful applications such as in the nozzle guide vane problem

introduced earlier in this chapter. We develop four heuristic for solving the Balanced TSP,

two of which are shown to be effective. Extensive computational results are given using

these two promising heuristic. As with the BTSP, we produce provably optimal solutions

for many of these problems.



Chapter 2

The Symmetric Bottleneck TSP

Let G = (V,E) be a graph on n nodes. For each edge (i, j) ∈ E, a cost cij is prescribed. If

Π(G) is the set of all Hamiltonian cycles (tours) in G, then the bottleneck traveling salesman

problem (BTSP) is to find a Hamiltonian cycle in G whose largest edge cost is as small as

possible, i.e.

minimize max{cij : (i, j) ∈ H}
subject to H ∈ Π(G).

(2.1)

The BTSP is the correct model to use when one wants to minimize the largest distance

travelled between any pair of stops in a tour. In Chapter 1 we invoked the image of a

traveling salesman who gets car sick easily, and so would benefit from a tour that kept

his travel time between stops to an absolute minimum. Many TSP models have a natural

interpretation in the BTSP context, and we refer the reader to Chapter 1 for an overview

of some interesting applications.

Assumptions

We assume the graph is undirected and cij = cji for all (i, j) ∈ E. We refer to this problem

as the symmetric BTSP. When the graph is directed, that is to say cij 6= cji for some

(i, j) ∈ E, we refer to the problem as the asymmetric BTSP. The asymmetric BTSP is the

topic of Chapter 3.

Without loss of generality we assume G is a complete graph. If for any i, j ∈ V it is

true that (i, j) /∈ E we can let cij = ∞ (i.e. a sufficiently large cost) so as to effectively

19
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exclude it from the solution. We see the complete cost matrix C = (cij)n×n encodes all the

necessary information for formulating the BTSP problem.

We also assume without loss of generality that cij is nonnegative. It is easy to prove

that the numerical edge costs are unimportant and that only the ordering of the edge costs

matters [54]. If our original problem has negative edge costs we can simply create a cost

matrix D = (dij)n×n where dij = cij + M and M is a sufficiently large positive constant

such that cij + M ≥ 0 for all i, j. Solving the BTSP with cost matrix D is equivalent to

solving the BTSP with cost matrix C.

Finally, we assume all costs cij are integer, as is standard for many TSP solvers. As

noted above, only the ordering of the edge costs matter, so an equivalent (in terms of BTSP

optimality) integer matrix D can be produced for any real number matrix C. However, our

approach when dealing with real numbers is generally to round to the nearest integer as

defined by the TSPLIB file format specification [95]. It should be noted that this is not an

assumption of our heuristic algorithm, but rather of the problems in our test set.

Previous work

To the best of our knowledge, Gilmore and Gomory introduced the BTSP in 1964 [39]. Their

treatment of the problem was restricted to what is commonly referred to as the Gilmore-

Gomory class of problems (see Equation (1.9) in Chapter 1 for further details). The BTSP

with a general cost matrix was first studied by Gabovich, Ciz, and Jalas in 1971 [34].

The Gilmore-Gomory class of problems has been a popular starting point for extensions

to special cases of the BTSP, many of which can be solved in polynomial time [53, 54, 60,

73, 106, 108]. Phillips, Punnen, and Kabadi also showed the BTSP on Halin graphs can be

solved in polynomial time [80]. For a state-of-the-art discussion on polynomially solvable

cases of the BTSP we refer to the book chapter by Kabadi and Punnen [54].

Algorithms and computational study on a general cost matrix has been limited. In

1978, Garfinkel and Gilbert discussed a branch-and-bound based exact algorithm to solve

the BTSP, and reported computational results with a construction heuristic on randomly

generated problems of sizes up to 100 vertices [37]. Carpento et al. reported experimen-

tal results with a branch-and-bound algorithm on problems of sizes up to 200 vertices in

1984 [17]. Sergeev proposed a dynamic programming approach in 1996, but gave no com-

putational results [101]. Finally, Ramakrishnan et al. reported experimental results with

a threshold heuristic on 72 symmetric TSPLIB problems of size up to 783 vertices [91] in
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2000.

Problem complexity

The BTSP is well known to be NP-hard, but, like the TSP, several special cases of the

problem can be solved to optimality in polynomial time [54].

Unless P=NP, no polynomially-solvable ǫ-approximation algorithm exists for the BTSP

for any ǫ > 1 [27, 79, 97]. However, polynomial-time ǫ-approximation algorithms exist in

special cases [7, 27, 48, 54, 79]. One such special case is when a symmetric cost matrix

satisfies the triangle inequality, which is to say

cij ≤ cik + ckj for all i, j, k. (2.2)

In such a case a 2-approximation exists. This result was obtained independently by Parker

and Rardin [79] as well as by Doroshko and Sarvanov [27]. Further, it can be shown that

this is the best possible approximation for problems in this class. In Chapter 3 we de-

velop an ǫ-approximation algorithm for the asymmetric BTSP, including a generalization of

this 2-approximation, so we defer further discussion of this approximation algorithm until

then. Similar results on other bottleneck problems, including the BTSP, are discussed by

Hochbaum and Shmoys [48].

It is well known that the Euclidean TSP can be solved by a fully polynomial approxi-

mation scheme [7]. However, it is NP-hard to obtain an ǫ-approximation algorithm for the

BTSP for any ǫ < 2, even with a Euclidean cost matrix [97]. In this sense the Euclidean

version of the BTSP is harder than its TSP counterpart.

For a complete discussion on the complexity of the BTSP, we refer the reader to the

book chapter by Kabadi and Punnen [54].

Our contributions

We develop several heuristics for the BTSP, one of which could be viewed as a generaliza-

tion of Ramakrishnan et al.’s threshold heuristic [91]. Extensive computational results are

presented for problems of up to 31,623 vertices. Our main heuristic algorithm produced

optimal solutions, many with proof of optimality, for almost all problems considered within

a very reasonable computational time.
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Our set of benchmark test instances includes problems from Reinalt’s TSPLIB library [95],

random instances due to Johnson and McGeoch [50, 51], real-world National TSP in-

stances [24], and instances based upon real-world integrated circuit board problems (VLSI

instances) [22]. Further, we created specially structured problems that are designed to be

hard for our heuristic.

Please note that results on two BTSP lower bound algorithms (the 2-max bound and

the bottleneck biconnected spanning subgraph problem) originally appeared in the author’s

undergraduate thesis [65].

In Section 2.1 we discuss lower bounds for the BTSP, followed by a heuristic algorithm

in Section 2.2. Extensive computational results are given in Section 2.3.

2.1 Lower Bounds for the Symmetric BTSP

Suppose for some cost matrix C we know the optimal BTSP objective value can be no less

than some value z. If we can find a tour H where

max{cij : (i, j) ∈ H} = z

then H is an optimal BTSP tour for cost matrix C. In this section we discuss two polynomial

schemes to compute lower bounds on the optimal BTSP objective value. Both these bounds

are well known, but we supplement them with some theoretical analysis.

2.1.1 2-Max Bound (2MB)

Although almost näıvely simple, we will see the 2-max bound (2MB), described in [54, 91],

is a surprisingly strong lower bound for the BTSP through computational study. For each

node i find the smallest and second-smallest edge cost incident on i (both may be the same

cost). Let ζ(i) be the second-smallest edge cost incident on i, counting multiplicity (i.e. if

the smallest cost is not unique, the second smallest cost is the same as the smallest cost).

Clearly, any BTSP tour will in the best case use the edges of smallest and second-smallest

cost incident on i, so

max{ζ(i) : i ∈ V } (2.3)

is a lower bound on the BTSP objective value. The 2MB can clearly be computed in

O(m)-time.
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2.1.2 Bottleneck Biconnected Spanning Subgraph Problem (BBSSP)

Bound

A biconnected graph (also known as a 2-connected graph) is a connected graph where the

removal of any vertex does not disconnect the graph. Alternatively, one may consider it as

a graph with two vertex-disjoint paths between any pair of vertices. As any Hamiltonian

cycle is biconnected (the removal of any vertex of a Hamiltonian cycle results in a path

connecting the remaining vertices), one necessary condition for Hamiltonicity is for the

graph to be biconnected.

The bottleneck biconnected spanning subgraph problem (BBSSP) seeks to find a bicon-

nected spanning subgraph Ḡ of G whose largest edge cost is as small as possible, i.e.

minimize max{ci,j : (i, j) ∈ Ḡ}
subject to Ḡ is a spanning subgraph of G,

Ḡ is biconnected.

(2.4)

The objective value of the BBSSP is clearly a lower bound on the BTSP objective value.

Testing a graph for biconnectivity can be done in O(m)-time using Tarjan’s depth-

first search algorithm [103]. Solving Equation (2.4) for a graph G with cost matrix C can

therefore be done in O(m log m)-time by performing a binary search over distinct costs of

C as follows.

1. Let z1 < z2 < · · · < zk be the distinct entries of C sorted in non-increasing order.

2. Let l← 1, u← k.

3. Let δ ← (u− l)/2 + l.

4. Let Ḡ = (V, Ē) where Ē = {(i, j) ∈ E : cij ≤ zδ}.

5. If Ḡ is biconnected, set u = δ; otherwise, set l = δ + 1.

6. If l = u then return zl; otherwise, go to step 3.

This simple implementation, as discussed by Parker and Rardin [79], is the one we use in

our computational experiments. However, there exists an O(m + n log n)-time algorithm

due to Punnen and Nair [86] and an O(m)-time algorithm due to Manku [73] for solving

the BBSSP, albeit with more difficult implementations.
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Theorem 1. The BBSSP objective value will always be greater than or equal to the 2MB

objective value for any given instance G = (V,E) with cost matrix C.

Proof. By definition, any biconnected graph has at least two edges incident on each vertex.

In the worst-case, these two edges will have costs equal to the smallest and second-smallest

edge costs incident on each vertex (i.e. the two edges the 2MB identifies).

We say the BBSSP bound dominates the 2MB because no instance exists where the 2MB

produces a superior lower bound on the BTSP objective value compared to the BBSSP.

2.2 Heuristic Algorithms for the Symmetric BTSP

We now present our heuristic algorithms for solving the symmetric BTSP on a given graph

G with cost matrix C. We assume that we have calculated a lower bound L on the optimal

BTSP objective value using the BBSSP lower bound presented in Section 2.1.

2.2.1 Feasibility Oracle

The key part of our heuristic algorithm for the BTSP relies on answering the following

question: for an integer δ, does there exist a Hamiltonian cycle H in G such that max{cij :

(i, j) ∈ H} ≤ δ? Let us call this the δ-feasibility question.

If we could correctly answer this question for any δ, then we could solve the BTSP by

performing a binary search over the distinct costs of C, much like how we solved the BBSSP.

Simply arrange the distinct costs of C in ascending order z1 < z2 < . . . zk and choose the

smallest index i ∈ {1, 2, . . . , k} such that the zi-feasibility question has a ‘yes’ answer. This

is the well-known threshold approach for bottleneck problems specialized for the BTSP [29].

Determing if a graph is Hamiltonian or not is a NP-Hard problem, so instead we examine

how to answer the δ-feasibility question in a heuristic manner. We start by considering how

the TSP, an equivalently hard problem, can help answer our δ-feasibility question. Let

Cδ = (cδ
ij)n×n be an n× n cost matrix where

cδ
ij =







0 if cij ≤ δ,

cij otherwise.
(2.5)
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Suppose the optimal TSP tour on cost matrix Cδ is of zero-length. This means there exists

a tour in the original cost matrix C whose largest cost is at most δ, i.e. a ‘yes’ answer to

the δ-feasibility question. Likewise, it is clear if the optimal TSP tour on cost matrix Cδ is

of nonzero-length that we consequently have a ‘no’ answer to the δ-feasibility question.

As already mentioned, the TSP is NP-Hard like the Hamiltonian cycle problem, so in

theory it is no easier a question to solve. Although as of 2009 researchers have solved TSP

instances of 85,900 vertices to optimality [23], solving the BTSP with a threshold approach

would require in the worst case solving O(log m) TSPs. This is likely computationally

infeasible for large problems, so a better approach is required.

One approach is to use a TSP heuristic instead of an exact algorithm. Excellent heuristic

algorithms exist to find optimal or near optimal TSP solutions. These heuristics have played

an important part in tackling large TSP instances as they provide good quality initial feasible

solutions from which to start a search from. As TSP instances are generally proven optimal

through branch-and-cut procedures, starting with a near optimal solution can drastically

reduce the size of the search tree necessary to prove optimality. For a state-of-the-art

discussion of TSP heuristics, interested readers should consult the book chapter by Johnson

and McGeoch [51].

Suppose we use a TSP heuristic α instead of an exact TSP algorithm to solve the δ-

feasibility question. If a TSP heuristic α can find a zero-length tour in Cδ, Equation (2.5),

we can provably answer ‘yes’ to our question. The opposite is not true however. If our

TSP heuristic α finds a nonzero-length tour in Cδ, we cannot conclude a ‘no’ answer as it

is possible our heuristic was unable to find the optimal zero-length solution.

Let us assume our TSP heuristic is of a ‘local search’ type, such as a simulated annealing

search, a tabu search, or a genetic algorithm. As per their name, local search heuristics can

become trapped at non-optimal local minimum if there is no better solution to move towards

in the current ‘neighbourhood’. A popular way to deal with the problem of local minima is

to perform a random restart: randomly generate a new solution and restart the local search

from that point.

The solution space for the δ-feasibility problem is unique in that the non-zero costs

in Cδ can take on any positive, nonzero value without affecting where optimal solutions

exist (i.e. any zero-length tours). Changing these values might allow our TSP heuristic to

avoid getting consistently trapped at a local minima. One way to do this is to add random

values to the non-zero values of Cδ. We refer to introducing randomness to Cδ as a ‘shake’
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operation. ‘Shaking’ the cost matrix may help the TSP heuristic to discover a ‘yes’ answer

to the δ-feasibility question.

Below we describe three cost matrices that perform shake operations.

Uncontrolled Shake Operation

For each (i, j) ∈ E generate a random, positive integer rij uniformly on some interval [a, b].

Define an uncontrolled shake operation as the cost matrix Cδ
0 = (cδ,0

ij )n×n where

cδ,0
ij =







0 if cij ≤ δ,

rij otherwise.
(2.6)

Type I Controlled Shake Operation

Let z1 < z2 < . . . zk be the list of distinct costs in C arranged in ascending order. Generate

a random, positive integer ri for i = 1, . . . , k uniformly on some interval [a, b] where r1 <

r2 < · · · < rk. Define an ‘Type I’ shake operation as the cost matrix Cδ
1 = (cδ,1

ij )n×n where

cδ,1
ij =







0 if cij ≤ δ,

zk + rk otherwise, where zk = cij .
(2.7)

We can see the difference between consecutive non-zero values of entries of Cδ
1 is larger

compared to corresponding values of Cδ, thus encouraging a TSP heuristic to pick smaller

non-zero values to produce a better quality solution (in terms of BTSP objective value).

Type II Controlled Shake Operation

Let z1 < z2 < . . . zk be a list of distinct costs in C arranged in ascending order. Define a

random, positive integer ri in the interval [ri−1 + θ, ri−1 + τ ], where r0 = 0 and θ and τ are

prescribed parameters, θ < τ . Further, define U to be a prescribed integer where U > δ

and an integer M where M ≥ zk. Define an ‘Type II’ shake operation as the cost matrix
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Cδ
2 = (cδ,2

ij )n×n where

cδ,2
ij =



















0 if cij ≤ δ,

zk + rk if cij ≤ U , and where zk = cij ,

M otherwise.

(2.8)

Cost matrix Cδ
2 has similar properties as Cδ

1 but with more control over the random numbers.

Forcing costs greater than U to be a very large number might encourage a TSP heuristic to

focus on finding tours with edge costs closer to δ.

It is easy to see if a tour of zero length is found by a TSP heuristic with either Cδ
0 , Cδ

1 , or

Cδ
2 that it corresponds to a ‘yes’ answer to the δ-feasibility problem. Further, if a nonzero-

length tour is found by any of the shake cost matrices, one can make further attempts with

different random integers. If after a prescribed number of attempts with any combination

of these shake matrices and Cδ we cannot find a TSP tour of zero length, then we conclude

with high probability that the answer to the δ-feasibility question is ‘no’.

When answering the δ-feasibility question we can use any combination of cost matrices

Cδ, Cδ
0 , Cδ

1 , or Cδ
2 in our search for a tour using only edge costs less than or equal to δ.

Let p, q, r, and s be four nonnegative integers that correspond to the number of attempts

to answer the δ-feasibility question with cost matrices Cδ, Cδ
0 , Cδ

1 , and Cδ
2 , respectively.

Algorithm 2.1, IsFeasible, outlines our framework for solving the δ-feasibility question.

Let us now examine how we can use the IsFeasible method to extract a good quality

heuristic solution for the BTSP.

2.2.2 Threshold Heuristics for the Symmetric BTSP

Let L be any lower bound on the optimal objective value for the BTSP, such as by the two

schemes discussed in Section 2.1. In concert with the IsFeasible method, we present the

Simple Threshold Heuristic in Algorithm 2.2. The choice of values for p, q, r, and s will

be determined through computational experimentation. We use Concorde’s implementation

of the Lin-Kernighan algorithm as our TSP heuristic α [4]. The Lin-Kernighan algorithm

is a local-search heuristic that experimentally has an average computational complexity of

O(n2.2) [47, 51].

For clarity, we do not include parameters for the shake matrices (a, b, θ, τ , and M) in
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Algorithm 2.1: IsFeasible(n,C, δ, α, p, q, r, s)

Input: A problem on n nodes with cost matrix C, integer δ, TSP solver/heuristic α,
and integers p, q, r, and s which represent the number of iterations with cost
matrices Cδ, Cδ

0 , Cδ
1 , and Cδ

2 , respectively.
Output: The 3-tuple (feasible, tour,max cost) where feasible is a Boolean value

that indicates if a Hamiltonian cycle was found using only costs less than
or equal to δ, tour is the feasible/best tour found, and max cost is largest
cost in tour.

minmax cost←∞;
best tour ← ∅;
Let z1 < z2 < · · · < zk be the distinct costs in C arranged in ascending order;
for i = 1...p do

Let Cδ be constructed as per Equation (2.5);
(length, tour)← α(n,Cδ) ; /* solve TSP on Cδ with α */

max cost← max {cij : (i, j) ∈ tour};
if length = 0 then

return (TRUE, tour,max cost);
else

if max cost < minmax cost then
minmax cost← max cost;
best tour ← tour;

end

end

end
for i = 1...q do

Let r1, r2, ..., rk be a list of random integers where 1 ≤ r1 < r2 < ... < rk ≤ n2;
Let Cδ

0 be constructed as per Equation (2.6);
/* Repeat check for a tour of zero-length as above for Cδ

0, ending

the search if a zero length tour can be found; otherwise, save

found tour if it is better in terms of BTSP objective value */

end
for i = 1...r do

/* Repeat as above for Cδ
1 constructed as per Equation (2.7) */

end
for i = 1...s do

/* Repeat as above for Cδ
2 constructed as per Equation (2.9) */

end
return (FALSE, best tour,minmax cost);
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Algorithm 2.2: SimpleThreshold(n,C,L, α, p, q, r, s)

Input: A problem on n nodes with cost matrix C, a lower bound L, TSP
solver/heuristic α, and integers p, q, r, and s which represent the number of
iterations with cost matrices Cδ, Cδ

0 , Cδ
1 , and Cδ

2 , respectively, in the
IsFeasible method.

Output: The (optimal/heuristic conclusion) on the BTSP objective value and tour.

(feasible, best tour,max cost)← IsFeasible(n,C,L, α, p, q, r, s);
return (max cost, best tour);

the algorithm description. We will see a = 1, b = n2, θ = 5, τ = 50 are good choices. No

claim is made that these are the best parameter values. One might find for particularly

difficult problem instances that different values for these parameters may produce improved

solutions.

We can also use the IsFeasible method in a binary search over distinct costs of C. Let

z1 < z2 < · · · < zk be the distinct costs of C arranged in ascending order. Given a lower

bound L on the BTSP objective value, let zl = L. Perform one iteration of the IsFeasible

method to get a heuristically good (perhaps optimal) tour whose largest cost is zu. If zl = zu,

then the tour found is an optimal BTSP tour; otherwise, the optimal solution lies in the

interval [zl, zu].

Let m = (u − l)/2 + l be the median value in the range [zl, zu]. If the δ-feasibility

question is true for δ = zm, then we know the optimal solution lies in the interval [zl, zm];

otherwise, we make a heuristic conclusion that the optimal solution lies in the interval

(zm, zu]. We can repeat this procedure until we iterate to the point that zl = zu, heuristically

concluding the optimal BTSP objective value for our problem instance is zl. Algorithm 2.3,

the BinarySearchTreshold method, formally illustrates this procedure.

We will see the SimpleThreshold method will often be enough to find an optimal BTSP

tour for a given instance. For harder problems the BinarySearchThreshold method will be

used to find good quality tours. As we’ve already stated, if we can find a tour whose largest

cost equals a lower bound value, then we have a provably optimal solution. If we cannot

find a tour whose largest cost is equal to a lower bound, then we can instead replace our

TSP heuristic α with an exact TSP algorithm, such as Concorde’s TSP branch-and-cut

method [4], to create an exact BTSP algorithm.

It should be noted that Ramakrishnan et al. [91] explored solving the BTSP heuris-

tically in much the same manner as our BinarySearchThreshold method without making
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Algorithm 2.3: BinarySearchThreshold(n,C,L, α, p, q, r, s)

Input: A problem on n nodes with cost matrix C, a lower bound L, TSP
solver/heuristic α, and integers p, q, r, and s which represent the number of
iterations with cost matrices Cδ, Cδ

0 , Cδ
1 , and Cδ

2 , respectively, in the
IsFeasible method.

Output: The (optimal/heuristic conclusion) on the BTSP objective value and tour.

(feasible, best tour,max cost)← IsFeasible(n,C,L, α, p, q, r, s);
if feasible then return (L, best tour);

Let z1 < z2 < ... < zk be a list of the distinct costs from C in ascending order;
Let l be the integer such that zl = L;
Let u be the integer such that zu = max cost;
while l 6= u do

m← ((u− l)/2) + l;
(feasible, tour,max cost)← IsFeasible(n,C, zm, α, p, q, r, s);
if feasible then

Let u be the integer such that zu = max cost;
best tour← tour;

else
l← m + 1;

end

end
return (zl, best tour);
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any ‘controlled’ shake attempts. Their choice of TSP heuristic was Helsgaun’s implemen-

tation [47] of the Lin-Kernighan heuristic. Further, instead of calculating a BBSSP lower

bound, they used the 2-max bound. Finally, instead of finding an initial tour with a TSP

heuristic, they used a nearest neighbour heuristic to compute an initial upper bound for

a binary search. Their heuristic reported good experimental results on TSPLIB problems

of up to 783 cities [95]. Of the 72 problems they considered, they found provably optimal

solutions to 37 problems. Our computational results show their solutions to the remaining

35 problems were also optimal.

2.3 Computational Results

We coded the algorithms discussed in Sections 2.1 and 2.2 in ANSI C, compiled under the

GNU C Compiler (GCC) version 3.2. All experiments conducted in this chapter were carried

out on a 164-processor Sun V60 clustered computer at the University of New Brunswick in

Fredericton, New Brunswick. The clustered computer consisted of 60 slave nodes of dual

2.8GHz Intel Xeon processors with 2 to 3 GB of RAM.

To test the effectiveness of the lower bounding schemes of Section 2.1 and the heuristics

of Section 2.2, we tested these algorithms on the following sets of problems.

1. 108 TSPLIB instances of sizes up to 18,512 vertices [95]. TSPLIB is generally consid-

ered as the standard set of benchmark instances for the TSP.

2. 46 random instances due to Johnson and McGeoch of sizes up to 31,623 vertices [50].

These instances were created for the DIMACS TSP Challenge [52], the results of which

Johnson and McGeoch summarized in a 2001 book chapter [51]. These instances can

be classified into three different groups: uniform point, clustered points, and random

distance matrices.

3. 87 VLSI instances of sizes up to 29,514 vertices [22]. These instances are based upon

research into the design of integrated circuits, such as microprocessors.

4. 25 National TSP instances of sizes up to 24,978 vertices [24]. These problems offer

TSP instances of sets of cities from a number of different countries around the world.

5. 81 specially structured ‘hard’ random instances of 100, 500, and 2,500 vertices. These

instances were designed to challenge our heuristic by ensuring the BBSSP lower bound
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value would not be equal to the optimal BTSP objective value. We describe the

construction of these instances later in the section.

We did not test our heuristics on larger problems due to memory limitations.

Please note all reported running-times are in seconds.

Lower bound results

Our first set of experiments tested 101 TSPLIB problems of size up to 7,397 vertices to

assess the relative strength of the 2-max bound and the BBSSP bound. The BBSSP lower

bound was optimal for all problems except ts225; the 2-max bound was optimal for 52 of

the 101 problems. Of course, the O(m) 2-max bound is significantly cheaper to calculate

than the more complex O(m log m) BBSSP bound. We present results for select instances

in Table 2.1. By ‘Gap’ we mean the relative error between the lower bound’s objective value

z and the optimal BTSP objective value z∗, i.e.

Gap =
|z∗ − z|

z∗
.

Due to its superior quality and reasonable computational time we used the BBSSP

lower bound in our further experiments. Recall the BBSSP implementation used in our

computational experiments is the O(m log m) algorithm of Parker and Rardin [79]. Larger

problems would obviously benefit from more efficient implementations of the BBSSP lower

bound, such as Punnen and Nair’s O(m + n log n) implementation [86], or Manku’s linear

O(m) algorithm [73].

Results with the SimpleThreshold heuristic

We first consider the SimpleThreshold heuristic, Algorithm 2.2, on the same set of TSPLIB

problems used in our lower bound experiments. For our initial experiments, we consider

the effect using ‘uncontrolled’ shake operations, that is to say cost matrices defined by

Equation (2.6), has on solution quality when used in the IsFeasible method. To that end,

we set parameters p, r, and s as 1, 0, and 0, respectively, and vary the value of q. As

mentioned previously, the random numbers generated in Equation (2.6) are selected from

the interval [1, n2].

The results were surprisingly good as the SimpleThreshold heuristic found provably
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2-max bound BBSSP bound
Problem Obj. Val. Gap (%) Time Obj. Val. Gap (%) Time

ts225 500 50.00 0.00 500 50.00 0.01
att532 227 0.87 0.00 229 0.00 0.10
ali535 3,889 0.00 0.00 3,889 0.00 0.12
si535 186 18.06 0.00 227 0.00 0.06
pa561 16 0.00 0.00 16 0.00 0.08
u574 345 0.00 0.00 345 0.00 0.12
rat575 23 0.00 0.00 23 0.00 0.11
p654 934 23.63 0.00 1,223 0.00 0.17
d657 1,368 0.00 0.00 1,368 0.00 0.13
gr666 4,264 0.00 0.00 4,264 0.00 0.20
u724 152 10.59 0.00 170 0.00 0.14
rat783 26 0.00 0.01 26 0.00 0.14
dsj1000 92,501 68.74 0.01 295,939 0.00 0.84
pr1002 1,662 21.94 0.01 2,129 0.00 0.43
si1032 107 70.44 0.01 362 0.00 0.27
u1060 2,378 0.00 0.01 2,378 0.00 0.73
pcb1173 243 0.00 0.01 243 0.00 0.61
d1291 1,289 0.00 0.01 1,289 0.00 0.78
rl1304 789 48.60 0.01 1,535 0.00 0.62
rl1323 1,905 23.46 0.01 2,489 0.00 0.66
nrw1379 105 0.00 0.02 105 0.00 0.56
fl1400 530 0.00 0.01 530 0.00 0.52
u1432 300 0.00 0.02 300 0.00 1.06
fl1577 137 68.21 0.02 431 0.00 1.58
d1655 1,476 0.00 0.02 1,476 0.00 1.38
u1817 234 0.00 0.02 234 0.00 1.54
rl1889 752 16.07 0.02 896 0.00 1.11
d2103 1,133 0.00 0.03 1,133 0.00 1.52
u2152 105 0.00 0.03 105 0.00 2.66
u2319 224 0.00 0.04 224 0.00 2.26
pr2392 401 16.63 0.04 481 0.00 4.10
pcb3038 181 8.59 0.07 198 0.00 5.68
fl3795 528 0.00 0.10 528 0.00 3.57
fnl4461 132 0.00 0.15 132 0.00 7.68
rl5915 580 3.65 0.24 602 0.00 12.24
rl5934 533 40.51 0.24 896 0.00 10.47
pla7397 69,772 14.33 0.37 81,438 0.00 48.39

Table 2.1: Lower bound comparison on select TSPLIB instances
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q = 0 q = 1 q = 3 q = 5
Problem % Gap Time % Gap Time % Gap Time % Gap Time

ts225 253.60 0.12 253.60 0.50 253.60 1.30 253.60 2.20
u2152 2.10 23.11 0.00 21.27 0.00 55.23 0.00 18.73
pr2392 3.37 21.62 0.60 27.00 0.00 21.50 3.01 203.56
rl5915 12.51 46.24 0.50 95.15 0.50 194.51 3.80 433.90
rl5934 8.78 48.03 0.00 44.14 0.00 43.99 0.00 47.15
pla7397 40.21 64.72 35.51 101.50 67.02 277.02 53.61 347.75

Table 2.2: SimpleThreshold heuristic results on select TSPLIB instances for (p, r, s) =
(1, 0, 0) and varying values of q, corresponding to ‘uncontrolled’ shake operations with Equa-
tion (2.6). Results are averages from 10 trials.

optimal solutions of problems up to 2,103 vertices without performing any shake operations,

with the exception of the ts225 problem. Table 2.2 presents results for the remaining five

problems which did not produce optimal solutions with this setup, as well as results for

problem ts225.

Performing shake operations seem to help the SimpleThreshold heuristic produce optimal

solutions in some cases. However, it seems spending additional time performing uncontrolled

shake operations does not necessarily improve solution quality. There is a large amount of

randomness inherent in our algorithm, in both the shake operations as well as the Lin-

Kernighan TSP heuristic. This might explain why sometimes the heuristic will perform

poorly.

To try and minimize the variance in solution quality, we performed a similar experiment

using Equation (2.7) to perform ”Type I” controlled shake operations instead. In this set

of experiments with the SimpleThreshold heuristic, we set p, q, and s equal to 1, 0, and

0, respectively, while varying values for r. As before, the random numbers generated in

Equation (2.7) are selected from the interval [1, n2]. As in the previous experiment, optimal

solutions were found for most problems with no shake operations necessary. Table 2.3

presents results on the same five problems as Table 2.2. We see the solution quality is much

better across the board.

Finally, we tested the effect of ‘Type II’ controlled shaking, Equation (2.9) on solution

quality for varying values of s, with p, q, and s set to 1, 0, and 0, respectively. We also

tested different values of θ and τ to see if some combinations worked significantly better than

others. Table 2.4 presents results for s = 3 (i.e. 3 Type II controlled shakes) and varying

values for θ and τ . No significant difference in solution quality is observed for differing
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r = 1 r = 3 r = 5
Problem % Gap Time % Gap Time % Gap Time

ts225 182.80 0.30 164.41 0.64 190.32 0.95
u2152 0.00 23.68 0.00 30.08 0.00 28.08
pr2392 0.00 23.15 0.00 28.60 0.00 34.04
rl5915 9.70 113.51 3.21 153.45 0.00 162.96
rl5934 0.00 52.08 0.00 55.25 0.00 54.10
pla7397 26.81 211.62 20.10 254.21 33.51 451.67

Table 2.3: SimpleThreshold heuristic results on select TSPLIB instances for (p, q, s) =
(1, 0, 0) and varying values of r, corresponding to Type I ‘controlled’ shake operations with
Equation (2.7). Results are averages from 10 trials.

θ = 5, τ = 10 θ = 10, τ = 25 θ = 5, τ = 100 θ = 50, τ = 100
Problem % Gap Time % Gap Time % Gap Time % Gap Time

ts225 253.60 0.40 253.60 0.40 253.60 0.45 253.60 0.46
u2152 0.00 42.74 0.00 47.12 2.10 34.91 0.00 32.69
pr2392 0.00 33.23 0.00 39.01 0.00 34.32 0.00 49.34
rl5915 9.82 196.63 9.70 232.78 9.65 145.64 49.45 214.76
rl5934 0.00 58.11 0.00 51.22 0.00 56.33 8.78 75.81
pla7397 33.51 229.96 40.21 238.55 46.91 257.63 40.21 265.27

Table 2.4: SimpleThreshold heuristic results on select TSPLIB instances for (p, q, r, s) =
(1, 0, 0, 3) and varying values for θ and τ , to Type II ‘controlled’ shake operations with
Equation (2.9). Results are averages from 10 trials.

values of θ and τ , so we used θ = 10, τ = 25 in future experiments.

The results using ‘Type II’ controlled shakes appears to be not as good as those for ‘Type

I’ controlled shakes. We believe this is due to the usage of the large integer M for corre-

sponding elements in the original matrix that have cost cij > U . For future experiments,

we removed this feature and instead used

cδ,2
ij =







0 if cij ≤ δ,

zk + rk otherwise, and where zk = cij

(2.9)

for future constructions of Type II shake matrices (i.e. with the use of the large constant

M is removed).

Finally, we conducted experiments with Algorithm 2.3, the BinarySearchTreshold heuris-

tic. We conducted two experiments: one with Type I controlled shaking, and one with Type
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Parameter Type I Exp. Type II Exp.

p 1 1
q 0 0
r 3 0
s 0 3

a 1 -
b n2 -
θ - 10
τ - 25

Table 2.5: Parameters for the ‘Type I’ and ‘Type II’ BinarySearchThreshold heuristic ex-
periments.

Type I Exp. Type II Exp.
Problem Gap (%) Time Gap (%) Time

ts225 0.00 8.67 0.00 11.62
d2103 0.00 42.29 0.00 42.29
u2152 0.00 44.06 0.00 45.35
u2319 0.00 24.89 0.00 24.80
pr2392 0.00 30.10 0.00 51.18
pcb3038 0.00 32.91 0.00 32.83
fl3795 0.00 52.45 0.00 52.22
fnl4461 0.00 46.85 0.00 46.68
rl5915 0.08 197.15 0.00 163.96
rl5934 0.00 66.52 0.00 70.59
pla7397 0.55 737.69 0.00 418.32

Table 2.6: BinarySearchThreshold heuristic results on select TSPLIB instances. Results are
averages from 10 trials. Running times include calculation of the BBSSP lower bound.

II controlled shaking. The parameters for these experiments are given in Table 2.5. We ob-

tained optimal solutions for all but two problems with a minimal gap from the optimum

for the others. The results for select problems are given in Table 2.6, and a summary of

running-times for problems of up to 1,889 vertices is given in Table 2.7.

We also tested this algorithm on random instances due to Johnson and McGeoch [50].

These results are presented in Tables 2.15 and 2.16. All solutions obtained are optimal,

and the running-times almost uniform with the exception of problem C10K.1, which is an

outlier. The BinarySearchThreshold heuristic is clearly effective in obtaining good quality

solutions in a reasonable running-time.
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Num. of Type I Exp. Type II Exp.
Problem size Problems Avg. Time Avg. Time

14–99 22 0.25 0.25
100–198 25 1.39 1.41
200–318 11 3.27 3.33
400–493 6 9.92 10.06
532–575 6 11.06 10.97
654–783 5 16.33 16.03

1,000–1,291 6 29.79 30.14
1,304–1,432 5 25.45 25.41
1,577–1,889 4 31.65 30.62

Table 2.7: Average running times for the BinarySearchThreshold heuristic from 10 trials on
each TSPLIB problem of size up to 1,889 vertices. Running times include calculation of the
BBSSP lower bound.

Type I Exp. Type II Exp.
Problem Size Gap (%) Time Gap (%) Time

C1k.0 1,000 0.00 32.95 0.00 31.86
C1k.1 1,000 0.00 34.56 0.00 34.23
C1k.2 1,000 0.00 29.68 0.00 30.60
C1k.3 1,000 0.00 41.93 0.00 37.19
C1k.4 1,000 0.00 34.09 0.00 31.95
C1k.5 1,000 0.00 47.43 0.00 57.74
C1k.6 1,000 0.00 32.18 0.00 32.15
C1k.7 1,000 0.00 36.01 0.00 35.94
C1k.8 1,000 0.00 32.84 0.00 31.61
C1k.9 1,000 0.00 30.10 0.00 30.22
C3k.0 3,162 0.00 69.17 0.00 81.19
C3k.1 3,162 0.00 102.30 0.00 68.28
C3k.2 3,162 0.00 67.67 0.00 67.75
C3k.3 3,162 0.00 72.52 0.00 79.93
C3k.4 3,162 0.00 67.29 0.00 67.58
C10k.0 10,000 0.00 376.47 0.00 325.26
C10k.1 10,000 6.60 33,354.23 6.58 5,945.74
C10k.2 10,000 0.00 430.84 0.00 343.23

Table 2.8: BinarySearchThreshold heuristic results from 10 trials on Johnson-McGeoch
clustered-point random instances sizes up to 10,000 vertices. Running times include calcu-
lation of the BBSSP lower bound.
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Type I Exp. Type II Exp.
Problem Size Gap (%) Time Gap (%) Time

E1k.0 1,000 0.00 16.87 0.00 16.90
E1k.1 1,000 0.00 18.05 0.00 17.98
E1k.2 1,000 0.00 22.67 0.00 22.36
E1k.3 1,000 0.00 15.86 0.00 15.84
E1k.4 1,000 0.00 17.97 0.00 17.91
E1k.5 1,000 0.00 16.07 0.00 15.99
E1k.6 1,000 0.00 18.81 0.00 18.65
E1k.7 1,000 0.00 18.71 0.00 18.60
E1k.8 1,000 0.00 15.20 0.00 15.13
E1k.9 1,000 0.00 18.30 0.00 18.26
E3k.0 3,162 0.00 41.96 0.00 41.93
E3k.1 3,162 0.00 39.37 0.00 39.59
E3k.2 3,162 0.00 38.39 0.00 38.56
E3k.3 3,162 0.00 43.92 0.00 43.98
E3k.4 3,162 0.00 39.36 0.00 39.15
E10k.0 10,000 0.00 239.55 0.00 239.07
E10k.1 10,000 0.00 243.48 0.00 243.08
E10k.2 10,000 0.00 237.07 0.00 237.03
M1k.0 1,000 0.00 52.21 0.00 52.39
M1k.1 1,000 0.00 51.71 0.00 51.46
M1k.2 1,000 0.00 55.36 0.00 54.92
M1k.3 1,000 0.00 53.94 0.00 53.91
M3k.0 3,162 0.00 129.47 0.00 130.00
M3k.1 3,162 0.00 128.01 0.00 127.84
M10k.0 10,000 0.00 536.46 0.00 534.94

Table 2.9: BinarySearchThreshold heuristic results from 10 trials on Johnson-McGeoch
uniform-point and random distance instances sizes up to 10,000 vertices. Running times
include calculation of the BBSSP lower bound.
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Results on ‘hard’ problems

In the computational results we have seen so far, the optimal BBSSP objective value often

equals the optimal BTSP objective value. While it is desirable to have such a situation, as it

provides a proof of optimality, it does not challenge our heuristic. Thus, we have generated

the following special class of problems which do not have this property.

Let β and γ be two positive integers where β < γ. To construct ‘hard’ random instances

we first define three matrices: a r × r matrix A with entries in the range [β + 1, γ]; a r × s

matrix B with entries in the range [0, β]; and, a s × s matrix D with entries in the range

[β + 1, γ]. Using these three cost matrices, we construct an n × n cost matrix C where

n = r + s and

C =





A B

BT D



 . (2.10)

Claim 1. Cost matrix C of Equation (2.10) is guaranteed to have an optimal BTSP objective

value greater than or equal to β+1, but an optimal BBSSP objective value less than or equal

to β whenever r 6= s for r, s ≥ 2.

Proof. Consider the complete graph G induced by C constructed by Equation (2.10) for

some β and γ, β < γ, and cost matrices A, B, and D. By construction, we note the

following.

1. For nodes i = 1, 2, . . . , r and:

(a) for nodes j = 1, 2, . . . , r, i 6= j that cij ≥ β + 1; likewise,

(b) for nodes j = (r + 1), (r + 2), . . . , (r + s), i 6= j, that cij ≤ β.

2. For nodes i = (r + 1), (r + 2), . . . , (r + s) and:

(a) for nodes j = 1, 2, . . . , r, i 6= j, that cij ≤ β; likewise,

(b) for nodes j = (r + 1), (r + 2), . . . , (r + s), i 6= j, that cij ≥ β + 1.

Ideally a tour could be found that only uses cost less than or equal to β. This means every

node i = 1, 2, . . . , r would have to be paired with a node j = (r+1), (r+2), . . . , (r+s), i 6= j.

Likewise, every node i = (r + 1), (r + 2), . . . , (r + s) would have to be paried with a node

j = 1, 2, . . . , r, i 6= j. This is clearly not possible unless r = s, therefore any Hamiltonian

cycle in C must include at least one edge of cost greater than or equal to β + 1.
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However, because r, s ≥ 2, for any node i we can find at least two vertex-disjoint paths

between it and any other node j using only edge costs less than or equal to β. For example,

for any i = 1, 2, . . . , r, and j = 1, 2, . . . , r, i 6= j, the paths {i, (r + 1), j} and {i, (r + 2), j}
exist. This means the graph G is biconnected even if we only consider edge costs less than

or equal to β, and that the optimal BBSSP objective value cannot be greater than β.

To test the BinarySearchTreshold heuristic on these specially-structured hard instances,

we use the following parameters: p = 1, q = 0, r = 3, s = 3, a = 1, b = n2, θ = 10,

and τ = 25. When r = n/2 the optimal BBSSP objective value may coincide with the

optimal BTSP objective value; for all other values of r the optimal BBSSP objective value

is guaranteed to be strictly lower than the optimal BTSP objective value.

We attempted to verify the optimality of these instances using an exact TSP solver

as follows. Let z be the BTSP objective value of the solution our BinarySearchThreshold

algorithm computes. Solve the δ-feasibility question, Algorithm 2.1, for δ = z − 1 and an

exact TSP solver α, such as Concorde’s TSP solver [4]. If the δ-feasibility answer is ‘no’,

then z must clearly be the optimal BTSP objective value; if the answer is ‘yes’, then z is

clearly not the optimal BTSP objective value.

Table 2.10 presents results on these specially-structured hard instances with 500 vertices.

Likewise, Table 2.11 presents results on these specially-structured hard instances with 2,500

vertices. The parameters β, γ, and r used to generate the test instances are given, along

with the random number generator’s seed value. We obtain optimal solutions for all ‘hard’

problems with 500 vertices, and guarantee optimality for 20 of 27 problems with 2,500

vertices. We also tested ‘hard’ instances with 100 vertices and obtained optimal solutions

for all, but we do not present these results. The running-time of these instances is much

higher compared to the other classes of problems, as expected.



C
H

A
P

T
E

R
2
.

T
H

E
S
Y

M
M

E
T

R
IC

B
O

T
T

L
E

N
E

C
K

T
S
P

41

BTSP BBSSP BBSSP LK Avg. Total
β γ r Seed Obj. Optimal? Obj. Time Calls LK Time Time

500 5,000 125 6,125 525 Yes 29 0.07 57 108.05 6,190.58
500 5,000 250 6,250 17 Yes 17 0.08 1 5.86 5.94
500 5,000 375 6,375 524 Yes 35 0.08 50 109.19 5,491.03
500 7,500 125 8,625 538 Yes 31 0.08 58 97.84 5,709.70
500 7,500 250 8,750 22 Yes 22 0.08 1 5.68 5.77
500 7,500 375 8,875 537 Yes 36 0.08 58 90.37 5,272.00
500 10,000 125 11,125 547 Yes 53 0.09 52 90.77 4,749.93
500 10,000 250 11,250 20 Yes 20 0.08 1 5.88 5.98
500 10,000 375 11,375 551 Yes 30 0.10 60 90.71 5,471.06

1,000 5,000 125 6,625 1,022 Yes 56 0.08 65 100.55 6,573.59
1,000 5,000 250 6,750 26 Yes 26 0.08 1 5.50 5.60
1,000 5,000 375 6,875 1,019 Yes 73 0.08 56 107.78 6,061.48
1,000 7,500 125 9,125 1,031 Yes 59 0.08 65 102.46 6,697.39
1,000 7,500 250 9,250 40 Yes 40 0.08 1 5.91 5.99
1,000 7,500 375 9,375 1,034 Yes 55 0.08 65 97.96 6,396.32
1,000 10,000 125 11,625 1,052 Yes 70 0.08 64 88.71 5,721.51
1,000 10,000 250 11,750 34 Yes 34 0.09 1 5.88 5.98
1,000 10,000 375 11,875 1,047 Yes 99 0.08 64 82.80 5,336.26
2,500 5,000 125 8,125 2,514 Yes 175 0.08 72 95.30 6,897.77
2,500 5,000 250 8,250 88 Yes 88 0.07 1 6.10 6.18
2,500 5,000 375 8,375 2,513 Yes 156 0.06 78 90.44 7,088.92
2,500 7,500 125 10,625 2,530 Yes 174 0.08 63 101.75 6,446.26
2,500 7,500 250 10,750 106 Yes 106 0.08 1 5.69 5.79
2,500 7,500 375 10,875 2,528 Yes 170 0.08 71 91.07 6,493.24
2,500 10,000 125 13,125 2,534 Yes 171 0.08 79 86.61 6,874.99
2,500 10,000 250 13,250 83 Yes 83 0.08 1 6.02 6.11
2,500 10,000 375 13,375 2,536 Yes 161 0.08 64 101.73 6,539.55

Table 2.10: BinarySearchThreshold heuristic results from 10 trials on ‘Hard’ random instances of 500 vertices. Running
times include calculation of the BBSSP lower bound.
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BTSP BBSSP BBSSP LK Avg. Total
β γ r Seed Obj. Optimal? Obj. Time Calls LK Time Time

500 5,000 625 8,625 505 ??? 7 4.16 64 377.10 24,305.76
500 5,000 1,250 9,250 4 Yes 4 3.80 1 27.82 32.01
500 5,000 1,875 9,875 505 Yes 9 3.90 54 400.87 21,989.61
500 7,500 625 11,125 508 Yes 8 4.35 64 361.42 23,334.92
500 7,500 1,250 11,750 4 Yes 4 3.97 1 28.18 32.55
500 7,500 1,875 12,375 507 ??? 8 4.20 58 389.32 22,762.23
500 10,000 625 13,625 510 ??? 6 4.91 58 408.11 23,854.55
500 10,000 1,250 14,250 4 Yes 4 4.13 1 27.94 32.44
500 10,000 1,875 14,875 510 Yes 7 4.25 64 367.58 23,708.87

1,000 5,000 625 9,125 1,005 Yes 16 4.63 71 352.41 25,242.82
1,000 5,000 1,250 9,750 6 Yes 6 4.27 1 31.18 35.85
1,000 5,000 1,875 10,375 1,005 Yes 16 4.37 71 351.78 25,255.14
1,000 7,500 625 11,625 1,007 Yes 14 4.08 70 362.80 25,724.98
1,000 7,500 1,250 12,250 8 Yes 8 4.03 1 30.41 34.84
1,000 7,500 1,875 12,875 1,007 ??? 16 4.13 65 375.00 24,531.80
1,000 10,000 625 14,125 1,009 ??? 17 4.54 65 364.93 23,909.13
1,000 10,000 1,250 14,750 6 Yes 6 4.58 1 30.31 35.28
1,000 10,000 1,875 15,375 1,009 ??? 17 4.30 65 369.04 24,152.90
2,500 5,000 625 10,625 2,503 Yes 39 4.31 79 340.14 27,607.44
2,500 5,000 1,250 11,250 21 Yes 21 4.26 1 28.52 33.17
2,500 5,000 1,875 11,875 2,503 Yes 40 4.34 78 339.14 26,995.48
2,500 7,500 625 13,125 2,506 Yes 46 4.61 72 356.50 25,895.66
2,500 7,500 1,250 13,750 22 Yes 22 4.24 1 31.88 36.52
2,500 7,500 1,875 14,375 2,506 Yes 35 4.35 78 352.15 27,706.35
2,500 10,000 625 15,625 2,509 Yes 38 4.59 72 367.34 26,657.82
2,500 10,000 1,250 16,250 17 Yes 17 4.18 1 32.69 37.25
2,500 10,000 1,875 16,875 2,508 ??? 37 4.28 72 368.48 26,699.86

Table 2.11: BinarySearchThreshold heuristic results from 10 trials on ‘Hard’ random instances of 2,500 vertices. Running
times include calculation of the BBSSP lower bound.
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Concluding results

For our final experiment, we tested all available standard problems, subject to memory

limitations, with the BinarySearchThreshold heuristic given the following parameters: p = 1,

q = 0, r = 3, s = 3, a = 1, b = n2, θ = 10, and τ = 25. The outcome of these results are

summarized in the following tables:

Problem Set # Vertices Table Page

TSPLIB [95] 14–136 2.12 45

137–654 2.13 46

657–18,512 2.14 47

Random Instances: [50]

- Clustered-Point 1,000–31,623 2.15 48

- Uniform-Point 1,000–31,623 2.16 49

- Random Matrices 1,000–10,000 2.17 49

VLSI [22] 131–2,086 2.18 50

2,144–3,954 2.19 51

4,355–29,514 2.20 52

National [24] 29–24,978 2.21 53

Our algorithm found optimal solutions for all but the problem sw24978 with 24,978 vertices.

Using the large amount of data generated in the experiments we present a plot of

problem-size versus average running-time in Figure 2.1. We also fit a quadratic function to

the data points which approximates the running-time quite well. This is consistent with

experimental results on the Lin-Kernighan algorithm which estimates its average complexity

to be O(n2.2) [47, 51].
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Figure 2.1: Problem-size versus average running-time
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

burma14 14 418 418 0.00 1.00 0.00 0.01
ulysses16 16 1,504 1,504 0.00 1.00 0.01 0.01
gr17 17 282 282 0.00 1.00 0.01 0.01
gr21 21 355 355 0.00 1.00 0.02 0.02
ulysses22 22 1,504 1,504 0.00 1.00 0.02 0.03
gr24 24 108 108 0.00 1.00 0.02 0.02
fri26 26 93 93 0.00 1.00 0.03 0.03
bayg29 29 111 111 0.00 1.00 0.03 0.03
bays29 29 154 154 0.00 1.00 0.03 0.03
dantzig42 42 35 35 0.00 1.00 0.05 0.05
swiss42 42 67 67 0.00 1.00 0.06 0.06
att48 48 519 519 0.00 1.00 0.08 0.08
gr48 48 227 227 0.00 1.00 0.07 0.07
hk48 48 534 534 0.00 1.00 0.06 0.07
eil51 51 13 13 0.00 1.00 0.05 0.05
berlin52 52 475 475 0.00 1.00 0.12 0.13
brazil58 58 2,149 2,149 0.00 1.00 0.18 0.18
st70 70 24 24 0.00 1.00 0.15 0.15
eil76 76 16 16 0.00 1.00 0.22 0.22
pr76 76 3,946 3,946 0.00 1.00 0.20 0.20
gr96 96 2,807 2,807 0.07 1.00 0.35 0.43
rat99 99 20 20 0.00 1.00 0.09 0.10
kroA100 100 475 475 0.01 1.00 0.19 0.20
kroB100 100 530 530 0.00 1.00 0.24 0.25
kroC100 100 498 498 0.00 1.00 0.18 0.19
kroD100 100 491 491 0.01 1.00 0.18 0.19
kroE100 100 490 490 0.00 1.00 0.18 0.19
rd100 100 221 221 0.00 1.00 0.29 0.30
eil101 101 13 13 0.00 1.00 0.25 0.25
lin105 105 487 487 0.01 1.00 0.28 0.28
pr107 107 7,050 7,050 0.00 1.00 0.41 0.42
gr120 120 220 220 0.00 1.00 0.48 0.49
pr124 124 3,302 3,302 0.01 1.00 0.47 0.48
bier127 127 7,486 7,486 0.01 1.00 0.77 0.78
ch130 130 142 142 0.01 1.00 0.41 0.42
pr136 136 2,976 2,976 0.01 1.00 0.53 0.54

Table 2.12: TSPLIB instances (14–136 vertices)



CHAPTER 2. THE SYMMETRIC BOTTLENECK TSP 46

BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

gr137 137 2,132 2,132 0.16 1.00 0.51 0.69
pr144 144 2,570 2,570 0.01 1.00 0.50 0.51
ch150 150 93 93 0.01 1.00 0.37 0.38
kroA150 150 392 392 0.01 1.00 0.32 0.34
kroB150 150 436 436 0.01 1.00 0.39 0.40
pr152 152 5,553 5,553 0.01 1.00 0.66 0.67
u159 159 800 800 0.01 1.00 0.51 0.52
si175 175 177 177 0.00 1.00 0.67 0.68
brg180 180 30 30 0.00 1.00 0.99 1.00
rat195 195 21 21 0.01 1.00 0.50 0.51
d198 198 1,380 1,380 0.02 1.00 1.40 1.42
kroA200 200 408 408 0.02 1.00 0.65 0.68
kroB200 200 344 344 0.02 1.00 0.52 0.55
gr202 202 2,230 2,230 0.36 1.00 1.57 1.97
ts225 225 1,000 500 0.02 10.40 2.92 2.99
tsp225 225 36 36 0.02 1.00 0.72 0.75
pr226 226 3,250 3,250 0.02 1.00 0.91 0.94
gr229 229 4,027 4,027 0.47 1.00 1.31 1.85
gil262 262 23 23 0.02 1.00 0.93 0.96
pr264 264 4,701 4,701 0.03 1.00 1.79 1.83
a280 280 20 20 0.02 1.00 0.89 0.92
pr299 299 498 498 0.05 1.00 2.35 2.41
lin318 318 487 487 0.04 1.00 1.36 1.41
rd400 400 104 104 0.07 1.00 1.86 1.94
fl417 417 472 472 0.07 1.10 5.58 5.67
gr431 431 4,027 4,027 1.81 1.00 3.44 5.46
pr439 439 2,384 2,384 0.10 1.00 2.95 3.07
pcb442 442 500 500 0.10 1.00 2.83 2.94
d493 493 2,008 2,008 0.11 1.00 5.22 5.34
att532 532 229 229 0.27 1.00 3.53 3.85
ali535 535 3,889 3,889 2.84 1.00 4.37 7.55
si535 535 227 227 0.04 1.00 4.30 4.35
pa561 561 16 16 0.05 1.00 3.38 3.44
u574 574 345 345 0.16 1.00 3.54 3.73
rat575 575 23 23 0.12 1.00 2.67 2.82
p654 654 1,223 1,223 0.20 1.00 5.17 5.40

Table 2.13: TSPLIB instances (137–654 vertices)
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

d657 657 1,368 1,368 0.21 1.00 6.68 6.92
gr666 666 4,264 4,264 4.62 1.00 5.17 10.33
u724 724 170 170 0.24 1.00 3.72 4.00
rat783 783 26 26 0.25 1.00 5.16 5.46
dsj1000 1,000 295,939 295,939 1.01 1.00 10.85 11.96
pr1002 1,002 2,129 2,129 0.41 1.00 6.57 7.07
si1032 1,032 362 362 0.13 1.00 21.67 21.84
u1060 1,060 2,378 2,378 0.59 1.00 7.72 8.39
vm1084 1,084 998 998 0.73 1.00 6.08 6.91
pcb1173 1,173 243 243 0.67 1.00 7.52 8.30
d1291 1,291 1,289 1,289 0.70 1.00 11.68 12.49
rl1304 1,304 1,535 1,535 1.05 1.00 8.15 9.35
rl1323 1,323 2,489 2,489 1.03 1.00 9.70 10.87
nrw1379 1,379 105 105 0.94 1.00 7.34 8.44
fl1400 1,400 530 530 0.86 1.00 9.57 10.58
u1432 1,432 300 300 0.84 1.00 6.20 7.21
fl1577 1,577 431 431 1.08 1.00 9.66 10.94
d1655 1,655 1,476 1,476 0.84 1.00 12.42 13.44
vm1748 1,748 1,017 1,017 1.76 1.00 7.45 9.47
u1817 1,817 234 234 1.46 1.00 6.88 8.61
rl1889 1,889 896 896 1.91 1.00 7.52 9.72
d2103 2,103 1,133 1,133 2.02 1.00 12.30 14.65
u2152 2,152 105 105 2.05 1.00 23.22 25.66
u2319 2,319 224 224 2.20 1.00 7.38 10.03
pr2392 2,392 481 481 2.71 1.00 8.84 12.03
pcb3038 3,038 198 198 4.44 1.00 8.39 13.58
fl3795 3,795 528 528 6.99 1.00 13.91 22.01
fnl4461 4,461 132 132 9.84 1.00 12.09 23.59
rl5915 5,915 602 602 21.19 4.20 188.47 229.82
rl5934 5,934 896 896 20.09 1.00 37.30 60.29
pla7397 7,397 81,438 81,438 55.21 2.18 113.82 181.79
rl11849 11,849 842 842 81.20 1.00 56.66 149.59
usa13509 13,509 16,754 16,754 142.76 1.00 53.03 211.14
brd14051 14,051 1,306 1,306 113.44 1.00 57.98 187.73
d15112 15,112 1,370 1,370 133.18 1.00 75.59 227.86
d18512 18,512 476 476 184.11 1.00 91.34 304.16

Table 2.14: TSPLIB instances (657–18,512 vertices)
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

C1k.0 1,000 290,552 290,552 0.80 1.00 12.56 13.44
C1k.1 1,000 335,184 335,184 0.83 1.00 11.20 12.12
C1k.2 1,000 225,295 225,295 0.71 1.00 9.39 10.18
C1k.3 1,000 416,768 416,768 0.76 1.20 26.80 27.66
C1k.4 1,000 318,930 318,930 0.90 1.00 9.88 10.86
C1k.5 1,000 260,389 260,389 0.89 1.10 29.26 30.25
C1k.6 1,000 175,740 175,740 0.80 1.00 10.06 10.94
C1k.7 1,000 301,366 301,366 0.87 1.00 11.32 12.28
C1k.8 1,000 246,519 246,519 0.84 1.00 9.83 10.75
C1k.9 1,000 208,091 208,091 0.82 1.00 9.32 10.22
C3k.0 3,162 252,245 252,245 8.55 1.00 22.83 32.21
C3k.1 3,162 167,466 167,466 8.56 1.50 64.86 74.67
C3k.2 3,162 194,007 194,007 8.32 1.00 18.28 27.43
C3k.3 3,162 180,852 180,852 8.48 1.10 32.54 41.94
C3k.4 3,162 180,583 180,583 8.60 1.00 20.19 29.63
C10k.0 10,000 161,062 161,062 86.80 1.60 125.16 225.32
C10k.1 10,000 94,139 94,139 80.19 1.00 90.09 178.63
C10k.2 10,000 121,209 121,209 87.36 1.10 76.53 173.08
C31k.0 31,623 84,302 84,302 888.35 1.67 652.06 1,680.74

Table 2.15: Johnson-McGeoch clustered-point random instances
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

E1k.0 1,000 64,739 64,739 0.74 1.00 5.26 6.09
E1k.1 1,000 67,476 67,476 0.78 1.00 5.64 6.50
E1k.2 1,000 88,522 88,522 0.76 1.00 7.24 8.08
E1k.3 1,000 59,220 59,220 0.78 1.00 4.87 5.73
E1k.4 1,000 68,259 68,259 0.78 1.00 5.68 6.54
E1k.5 1,000 61,406 61,406 0.78 1.00 4.98 5.85
E1k.6 1,000 68,777 68,777 0.74 1.00 5.87 6.70
E1k.7 1,000 70,389 70,389 0.76 1.00 5.93 6.77
E1k.8 1,000 57,597 57,597 0.83 1.00 5.00 5.92
E1k.9 1,000 68,420 68,420 0.75 1.00 5.75 6.58
E3k.0 3,162 39,854 39,854 8.13 1.00 8.71 17.68
E3k.1 3,162 37,500 37,500 8.15 1.00 7.99 16.97
E3k.2 3,162 35,145 35,145 8.14 1.00 7.59 16.57
E3k.3 3,162 44,428 44,428 8.15 1.00 9.43 18.42
E3k.4 3,162 36,621 36,621 8.14 1.00 7.98 16.96
E10k.0 10,000 20,174 20,174 81.09 1.00 29.60 119.03
E10k.1 10,000 22,883 22,883 81.23 1.00 31.47 121.10
E10k.2 10,000 20,208 20,208 80.94 1.00 29.72 119.04
E31k.0 31,623 12,419 12,419 863.27 1.00 243.78 1,192.12
E31k.1 31,623 15,169 15,169 862.53 1.00 248.05 1,194.92

Table 2.16: Johnson-McGeoch uniform-point instances

BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

M1k.0 1,000 9,328 9,328 0.60 1.00 17.13 17.77
M1k.1 1,000 8,856 8,856 0.64 1.00 16.74 17.42
M1k.2 1,000 11,282 11,282 0.62 1.00 19.46 20.11
M1k.3 1,000 11,617 11,617 0.59 1.00 19.28 19.91
M3k.0 3,162 3,289 3,289 9.31 1.00 37.77 47.56
M3k.1 3,162 3,034 3,034 9.27 1.00 36.82 46.57
M10k.0 10,000 1,189 1,189 115.83 1.00 129.45 255.15

Table 2.17: Johnson-McGeoch random matrix instances
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

xqf131 131 23 23 0.00 1.00 0.57 0.57
xqg237 237 13 13 0.02 1.00 1.02 1.05
pma343 343 15 15 0.04 1.00 1.72 1.77
pka379 379 11 11 0.05 1.00 1.69 1.75
bcl380 380 16 16 0.05 1.00 2.09 2.15
pbl395 395 13 13 0.04 1.00 2.26 2.31
pbk411 411 14 14 0.05 1.00 2.48 2.54
pbn423 423 14 14 0.05 1.00 2.40 2.46
pbm436 436 15 15 0.06 1.00 2.63 2.70
xql662 662 26 26 0.15 1.00 4.40 4.59
rbx711 711 15 15 0.13 1.00 4.18 4.35
rbu737 737 13 13 0.18 1.00 4.39 4.62
dkg813 813 18 18 0.22 1.00 5.19 5.46
lim963 963 13 13 0.26 1.00 6.65 6.98
pbd984 984 13 13 0.32 1.00 6.77 7.17
xit1083 1,083 11 11 0.39 1.00 5.98 6.46
dka1376 1,376 15 15 0.63 1.00 7.38 8.16
dca1389 1,389 18 18 0.72 1.00 7.51 8.39
dja1436 1,436 15 15 0.51 1.00 7.03 7.72
icw1483 1,483 21 21 0.74 1.00 8.15 9.07
fra1488 1,488 13 13 0.81 1.00 7.23 8.23
rbv1583 1,583 18 18 0.72 1.00 7.75 8.68
rby1599 1,599 18 18 0.74 1.00 8.63 9.58
fnb1615 1,615 45 45 0.86 1.00 10.38 11.46
djc1785 1,785 24 24 1.06 1.00 8.31 9.63
dcc1911 1,911 16 16 1.34 1.00 7.80 9.45
dkd1973 1,973 14 14 1.42 1.00 7.86 9.61
djb2036 2,036 15 15 1.36 1.00 7.84 9.54
dcb2086 2,086 21 21 1.42 1.00 8.22 10.00

Table 2.18: VLSI instances (131–2,086 vertices)
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

bva2144 2,144 15 15 1.69 1.00 7.86 9.93
xqc2175 2,175 15 15 1.54 1.00 8.25 10.18
bck2217 2,217 16 16 1.61 1.00 8.25 10.27
xpr2308 2,308 14 14 1.77 1.00 7.88 10.09
ley2323 2,323 27 27 2.24 1.00 8.77 11.47
dea2382 2,382 25 25 2.35 1.00 8.93 11.75
rbw2481 2,481 27 27 2.27 1.00 9.18 11.96
pds2566 2,566 15 15 2.14 1.00 8.45 11.14
mlt2597 2,597 21 21 2.48 1.00 8.94 11.98
bch2762 2,762 15 15 2.50 1.00 8.69 11.83
irw2802 2,802 15 15 2.57 1.00 9.30 12.52
lsm2854 2,854 19 19 2.66 1.00 9.50 12.85
dbj2924 2,924 16 16 3.16 1.00 9.11 12.99
xva2993 2,993 12 12 3.29 1.00 8.67 12.71
pia3056 3,056 15 15 3.35 1.00 9.44 13.57
dke3097 3,097 19 19 3.52 1.00 9.44 13.75
lsn3119 3,119 16 16 3.58 1.00 9.50 13.89
lta3140 3,140 17 17 3.64 1.00 9.49 13.95
fdp3256 3,256 20 20 3.88 1.00 11.70 16.46
beg3293 3,293 24 24 4.01 1.00 10.08 15.00
dhb3386 3,386 17 17 4.23 1.00 9.69 14.87
fjs3649 3,649 21 21 5.48 1.00 10.42 17.01
fjr3672 3,672 21 21 6.09 1.00 10.45 17.65
dlb3694 3,694 19 19 5.02 1.60 48.48 55.45
ltb3729 3,729 13 13 5.06 1.00 11.75 17.97
xqe3891 3,891 20 20 5.54 1.00 10.34 17.15
xua3937 3,937 15 15 5.71 1.00 9.91 16.91
dkc3938 3,938 16 16 6.28 1.00 9.96 17.53
dkf3954 3,954 20 20 5.72 1.00 10.54 17.57

Table 2.19: VLSI instances (2,144–3,954 vertices)
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

bgb4355 4,355 13 13 6.90 1.00 14.52 23.01
bgd4396 4,396 28 28 7.17 1.00 12.49 21.27
frv4410 4,410 15 15 6.33 1.00 11.05 19.00
bgf4475 4,475 25 25 7.35 1.00 12.26 21.28
xqd4966 4,966 16 16 9.89 1.00 12.05 23.99
fqm5087 5,087 16 16 10.44 1.00 12.60 25.19
fea5557 5,557 15 15 11.18 1.00 22.56 36.32
xsc6880 6,880 18 18 17.24 1.00 17.31 38.49
bnd7168 7,168 15 15 18.86 1.00 18.72 41.90
lap7454 7,454 16 16 20.44 1.00 20.47 45.54
ida8197 8,197 14 14 26.95 1.00 22.03 55.20
dga9698 9,698 15 15 34.51 1.00 28.36 70.74
xmc10150 10,150 17 17 41.64 3.10 165.65 239.83
xvb13584 13,584 15 15 67.32 1.00 48.01 130.84
xrb14233 14,233 14 14 82.20 1.00 53.88 153.11
xia16928 16,928 15 15 115.89 1.70 153.71 310.45
pjh17845 17,845 14 14 128.50 1.00 76.89 231.96
frh19289 19,289 28 28 151.02 1.00 89.00 271.25
fnc19402 19,402 18 18 152.32 1.00 90.24 274.10
ido21215 21,215 16 16 182.31 1.10 121.90 345.75
fma21553 21,553 16 16 206.98 1.00 108.81 354.83
lsb22777 22,777 23 23 210.71 1.00 119.88 374.12
xrh24104 24,104 17 17 258.39 1.00 136.06 443.29
bbz25234 25,234 15 15 259.39 1.00 154.36 467.37
irx28268 28,268 15 15 323.91 1.00 183.93 575.07
fyg28534 28,534 15 15 330.94 1.00 187.94 587.37
icx28698 28,698 18 18 335.63 1.00 190.00 594.93
boa28924 28,924 18 18 377.03 1.00 193.97 641.48
ird29514 29,514 16 16 354.49 1.00 201.55 629.35

Table 2.20: VLSI instances (4,355–29,514 vertices)
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BTSP BBSSP BBSSP Avg. Avg. Total
Problem Size Obj. Obj. Avg. Time LK Calls LK Time Time

wi29 29 2,250 2,250 0.00 1.00 0.02 0.02
dj89 89 437 437 0.00 1.00 0.28 0.29
qa194 194 370 370 0.02 1.00 1.11 1.13
uy734 734 389 389 0.27 1.00 4.73 5.04
zi929 929 887 887 0.37 1.00 7.68 8.12
lu980 980 44 44 0.33 1.00 5.57 5.97
rw1621 1,621 150 150 1.23 1.00 10.01 11.46
mu1979 1,979 1,153 1,153 2.22 1.00 11.58 14.10
nu3496 3,496 650 650 6.68 1.00 17.14 24.84
ca4663 4,663 13,768 13,768 16.27 1.00 17.22 35.18
tz6117 6,117 486 486 21.28 1.00 15.89 40.26
eg7146 7,146 2,150 2,150 28.43 1.00 34.21 65.86
ym7663 7,663 3,113 3,113 37.08 1.00 25.83 66.67
pm8079 8,079 331 331 36.15 1.00 33.93 75.56
ei8246 8,246 124 124 36.16 1.00 23.86 65.69
ar9152 9,152 4,871 4,871 59.16 1.00 35.93 102.02
ja9847 9,847 6,413 6,413 61.65 1.00 32.95 101.17
gr9882 9,882 1,399 1,399 56.73 1.00 32.92 97.15
kz9976 9,976 1,602 1,602 61.80 1.00 33.84 103.94
fi10639 10,639 768 768 59.86 1.00 37.33 106.56
mo14185 14,185 939 939 108.14 1.00 55.67 180.20
ho14473 14,473 440 440 118.28 1.00 72.54 208.38
it16862 16,862 1,499 1,499 163.35 1.70 229.81 431.88
vm22775 22,775 388 388 293.00 1.00 141.35 477.76
sw24978 24,978 1,068 1,044 357.33 27.40 211.81 8,270.68

Table 2.21: National TSP instances



Chapter 3

The Asymmetric Bottleneck TSP

In this chapter we consider the bottleneck traveling salesman problem (BTSP) on n vertices

where the cost matrix C is asymmetric (i.e. cij 6= cji for some i, j ∈ V ). We refer the

reader to Chapters 1 and 2 for background on the BTSP. Section 3.1 describes how an

asymmetric BTSP instance may be solved as a symmetric BTSP instance. A discussion

of lower bounds on the optimal BTSP objective value for asymmetric instances is found

in Section 3.2, and includes extensive theoretical analysis. Sections 3.3 and 3.4 present an

approximation algorithm and a heuristic algorithm, respectively, for the asymmetric BTSP.

Computational results using our heuristic algorithm is presented in Section 3.5. Finally, the

maximum scatter TSP (MSTSP) and the constrained BTSP are considered in Sections 3.7

and 3.8, respectively.

3.1 The Asymmetric BTSP as a Symmetric BTSP

In Chapter 2 we discuss heuristic algorithms and lower bounds on the optimal objective

value for the symmetric BTSP (i.e. cij = cji for all i, j ∈ V ). In this section we will show

how to construct equivalent symmetric BTSP instances for any asymmetric BTSP instance.

Symmetric BTSP lower bound algorithms and heuristics may then be used on the symmetric

instance to solve the original asymmetric instance.

54
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Figure 3.1: Graph of 2n-vertex symmetric instance from n-vertex asymmetric instance as
given by Equation (3.1). All arcs (i, j) not pictured have cost c̄ij =∞.

3.1.1 A 2n-Vertex Transformation

This formulation is similar to the one Ramakrishnan et al. proposed [91]. Given an asym-

metric BTSP instance on n vertices and asymmetric cost matrix C, an equivalent symmetric

instance on 2n vertices can be constructed with cost matrix C̄ = (c̄ij)2n×2n where

c̄ij =



































−∞ (fixed) if i = j + n or j = i + n

ci,j−n if i ≤ n and j > n

ci−n,j if i > n and j ≤ n

∞ otherwise.

(3.1)

The edges of cost −∞ are fixed edges and must be included in any symmetric BTSP solution

to make the transformation valid. We discuss how we force these edges into the solution later,

but note that Ramakrishnan et al. use an additional constraint to enforce this [91]. Figures

3.1 and 3.2 depict the transformation graphically. Any tour π = (π1, π2, π3, ..., πn) in the

asymmetric instance C corresponds to the tour π̄ = (π1, π2 + n, π2, π3 + n, π3, ..., πn, π1 + n)

in the symmetric instance, and vice-versa. Since cij > −∞ for all i, j in C, the optimal

BTSP objective value on C̄ will be identical to the optimal BTSP objective value on C.

Claim 2. If π = (π1, π2, π3, ..., πn) is an optimal asymmetric BTSP tour in C, then

π̄ = (π1, π2 + n, π2, π3 + n, π3, ..., πn, π1 + n)
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c̄ij 1 2 · · · n n + 1 n + 2 · · · 2n

1 − ∞ · · · ∞ −∞ c12 · · · c1n

2 ∞ − · · · ∞ c21 −∞ · · · c2n
...

...
...

. . .
...

...
...

. . .
...

n ∞ ∞ · · · − cn1 cn2 · · · −∞
n + 1 −∞ c21 · · · cn1 − ∞ · · · ∞
n + 2 c12 −∞ · · · cn2 ∞ − · · · ∞

...
...

...
. . .

...
...

...
. . .

...
2n c1n c2n · · · −∞ ∞ ∞ · · · −

Figure 3.2: Cost matrix of 2n-vertex symmetric instance from n-vertex asymmetric instance
as given by Equation (3.1).

is an optimal symmetric BTSP tour in C̄, and vice-versa.

Proof. First we show if π is an optimal asymmetric BTSP tour in C that π̄ is an optimal

symmetric BTSP tour in C̄. Suppose not, and that another tour φ̄ = (φ1, φ2 + n, φ2, φ3 +

n, φ3, ..., φn, φ1 + n) exists in C̄ such that

−∞ < max
(i,j)∈φ̄

cij < max
(i,j)∈π̄

cij

(assume without loss of generality that (φ2+n, φ2), (φ3 +n, φ3), . . . , (φ1+n, φ1) are the fixed

edges in φ with a cost of −∞). Clearly, if φ exists in C̄, then a tour φ = (φ1, φ2, . . . , φn)

exists in C where

max
(i,j)∈φ

cij < max
(i,j)∈π

cij .

Therefore, the tour φ̄ cannot exist in C̄ if π is optimal for C, so π̄ is optimal for C̄.

The proof to show if π̄ is an optimal symmetric BTSP tour in C̄ that π is an optimal

asymmetric BTSP tour in C is similar, so we omit the details.

3.1.2 A 3n-vertex Transformation

The following transformation is nearly identical to the 2n transformation, except it does not

include any fixed edges. Given an asymmetric BTSP instance on n vertices and asymmetric

cost matrix C, an equivalent symmetric instance of 3n vertices can be constructed with cost
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Figure 3.3: Graph of 3n-vertex symmetric instance from n-vertex asymmetric instance as
given by Equation (3.2). All arcs (i, j) not pictured have cost c̃ij =∞.

matrix C̃ = (c̃ij)3n×3n where

c̃ij =



































0 if i = j + n or j = i + n

ci,j−2n if i ≤ n and j > 2n

ci−2n,j if i > 2n and j ≤ n

∞ otherwise.

(3.2)

Figures 3.3 and 3.4 depict the transformation graphically. Here, the pair of edges (i, i + n)

and (i + n, i + 2n) act like the fixed edge in the 2n-vertex transformation, but without

the additional constraint. Any tour π = (π1, π2, π3, ..., πn) in the asymmetric instance C

corresponds to the tour π̃ = (π1, π2+2n, π2+n, π2, π3+2n, π3+n+π3, ..., πn, π1+2n, π1+n)

in the symmetric instance, and vice-versa. As before, the optimal BTSP objective value on

C̃ will clearly be identical to the optimal BTSP objective value on C.

Claim 3. If π = (π1, π2, π3, ..., πn) is an optimal tour in C, then

π̃ = (π1, π2 + 2n, π2 + n, π2, π3 + 2n, π3 + n + π3, ..., πn, π1 + 2n, π1 + n)

is an optimal tour in C̃, and vice-versa.

Proof. This proof is nearly identical to Claim 2, so we omit the details.
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c̃ij 1 2 · · · n n + 1 n + 2 · · · 2n 2n + 1 2n + 2 · · · 3n

1 − ∞ · · · ∞ 0 ∞ · · · ∞ −∞ c12 · · · c1n

2 ∞ − · · · ∞ ∞ 0 · · · ∞ c21 −∞ · · · c2n
...

...
...

. . .
...

...
...

. . .
...

...
...

. . .
...

n ∞ ∞ · · · − ∞ ∞ · · · 0 cn1 cn2 · · · −∞
n + 1 0 ∞ · · · ∞ − ∞ · · · ∞ 0 ∞ · · · ∞
n + 2 ∞ 0 · · · ∞ ∞ − · · · ∞ ∞ 0 · · · ∞

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
2n ∞ ∞ · · · 0 ∞ ∞ · · · − ∞ ∞ · · · 0

2n + 1 −∞ c21 · · · cn1 0 ∞ · · · ∞ − ∞ · · · ∞
2n + 2 c12 −∞ · · · cn2 ∞ 0 · · · ∞ ∞ − · · · ∞

...
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
3n c1n c2n · · · −∞ ∞ ∞ · · · 0 ∞ ∞ · · · −

Figure 3.4: Cost matrix of 3n-vertex symmetric instance from n-vertex asymmetric instance
as given by Equation (3.2).

3.2 Lower Bounds for the Asymmetric BTSP

We now discuss some polynomial schemes to compute good quality lower bounds on the

optimal objective function value of the BTSP. Ideally a tight lower bound exists such that,

in concert with a good heuristic, optimality is established without the cost of an expensive

exact BTSP solver. Some of the lower bounds we discuss here are well known, but we

present them for the purpose of comparison. Two of these algorithms are also discussed in

Chapter 2, but slightly different results present themselves here.

3.2.1 2-Max Bound (2MB)

This simple bound is described in [54, 91]. Simply find the smallest in-edge and out-edge

cost incident on every node and select the largest of all these values over all vertices. It is

clearly a lower bound for the BTSP, and is computed in O(m) time.
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3.2.2 Bottleneck Assignment Problem (BAP) bound

The BAP finds a permutation φ of 1, . . . , n such that max{ciφ(i) : i = 1, . . . , n} is minimized.

i.e.

minimize max
i=1,...,n

{ciφ(i)}

subject to φ ∈ Φ(n)

where Φ(n) is the set of all permutations of the integers 1, . . . , n. The optimal objective

function value of the bottleneck assignment problem with cost matrix C is a lower bound

for the BTSP on C [17, 37].

One can solve the BAP in O(m
√

n log k)-time where k is the number of unique costs in

C using a unit-capacity max-flow algorithm [2]. The O(m
√

n log k)-time algorithm is the

one we used in our computational experiments. However, the best known algorithm for

solving the BAP is by Punnen and Nair with a running time of O(n2.5) [87].

3.2.3 Bottleneck Biconnected Spanning Subgraph Problem (BBSSP)

In Chapter 2 we observed that the bottleneck biconnected spanning subgraph problem

(BBSSP) is experimentally a strong lower bound for the symmetric BTSP. We refer the

reader to Chapter 2 for a full outline of the BBSSP algorithm. A simple implementation

of this algorithm, used in our computational experiments, runs in O(m log n)-time. An

O(m + n log n) algorithm by Punnen and Nair [86] and an O(m) algorithm by Manku [73]

have better worst case complexity.

The proof of correctness for the BBSSP for the symmetric BTSP relies on the fact that

any Hamiltonian cycle in an undirected graph is biconnected. However, a Hamiltonian cycle

in a directed graph is not biconnected (it is only strongly connected). However, there are

two ways one can use the BBSSP to generate a valid lower bound on the asymmetric BTSP.

The first way is to create either the 2n × 2n symmetric cost matrix C̄, as per Equa-

tion (3.1), or a 3n × 3n symmetric cost matrix C̃, as per Equation (3.2), from the n × n

asymmetric cost matrix C. It is easy to show that the BBSSP objective value on C̄ and C̃

are identical, and both give a lower bound on the optimal objective function value for the

BTSP on C. We denote this lower bound by BBSSP(C̄).
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The second way is to compute the BBSSP on the symmetric relaxation Ĉ of the asym-

metric cost matrix C where Ĉ = (ĉij)n×n is defined as

ĉij = min{cij , cji}. (3.3)

We denote this lower bound by BBSSP(Ĉ).

Theorem 2. The BBSSP(Ĉ) is a lower bound on the optimal BTSP objective value on C.

Proof. Let H be any directed Hamiltonian cycle in C, and let Ĥ be its undirected version

in Ĉ. Clearly,

max
(i.j)∈H

cij ≥ max
(i.j)∈H

min{cij , cji} = max
(i.j)∈Ĥ

ĉij ≥ BBSSP(Ĉ),

so the bound is correct.

3.2.4 Bottleneck Strongly Connected Spanning Subgraph Problem

(BSCSSP) Bound

Since a directed Hamiltonian tour in G = (V,E) is strongly connected, the bottleneck

strongly connected spanning subgraph problem (BSCSSP) provides a lower bound on the

optimal BTSP objective value on G with cost matrix C. For our experiments we use a

simple implementation, discussed in [84], which may be described informally as follows.

Given graph G = (V,E) with cost matrix C:

1. Arrange the unique costs of C in non-ascending order z1 < z2 < · · · < zk;

2. Let l← 1, u← k;

3. Let m← (u− l)/2 + l;

4. Let Gm = (V,Em) where Em = {(i, j) ∈ E : cij ≤ zm};

5. If Gm is strongly-connected, set u← m, otherwise set l← m + 1;

6. If l < u, go to step 3, otherwise terminate and return zm.

Checking a graph for strong-connectivity may be done in O(m)-time using a depth-first

search, so this simple algorithm runs in O(m log k), where k is the number of unique costs in
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C. Punnen also presents an O(min{m+n log n,m log∗ n}) implementation for the BSCSSP,

where log∗ n is the iterative logarithm of n [84].

3.2.5 Bidirectional Bottleneck Path (BBP) Bound

Readers will likely be familiar with shortest-path algorithms for finding the shortest path

between any pair of nodes, such as Dijkstra’s O(n2) algorithm [2]. A shortest-path algorithm

can be easily modified to solve the bottleneck-path problem, where we seek the path P

between any pair of vertices where the largest edge cost in P is as small as possible.

Dijkstra’s algorithm, in particular, produces a ‘shortest-path tree” that gives the shortest

path between any node v ∈ V and every other node in V . Modifying it to solve the

bottleneck-path problem produces an analogous ‘bottleneck-path tree”.

Using the bottleneck-path problem, Carpaneto, Martello and Toth [17] construct a lower

bound for the asymmetric BTSP using two bottleneck-path computations as follows:

1. Pick any node v ∈ V ;

2. Let T1 be the bottleneck path tree from v to all other nodes in V ;

3. Let T2 be the bottleneck path tree to v from all other nodes in V ;

4. Return max{cij : (i, j) ∈ T1 ∪ T2}.

This algorithm clearly runs in O(n2)-time. It is easy to show that this bound is equivalent

to the BSCSSP bound.

Lemma 1. The BBP bound and the BSCSSP bounds are equivalent.

Proof. Let za = BSCSSP(G,C) and zb = BBP(G,C) be the optimal BSCSSP and BBP

objective values, respectively, on a graph G = (V,E) with cost matrix C. We will show

za = zb, else the optimality of one or the other is contradicted.

Suppose za < zb. Let Ḡ = (V, Ē) be the strongly-connected subgraph found by the

BSCSSP. For any vertex u ∈ V let T1 (T2) be the bottleneck path tree from u (to u) to

(from) every v ∈ V \ {u} in Ḡ. Clearly,

max{cij : (i, j) ∈ T1 ∪ T2} ≤ max{cij : (i, j) ∈ Ē} = za

and so the BBP has returned a suboptimal solution.
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Similarly, if zb < za, then let T1 and T2 be the pair of trees found in the BBP algorithm.

Clearly, T1 ∪ T2 is a spanning, strongly-connected subgraph of G. As max{cij : (i, j) ∈
T1 ∪ T2} = zb, the BSCSSP has returned a suboptimal solution.

It follows that only when za = zb are these contradictions avoided.

3.2.6 Strengthening the Lower Bounds

We now show how any of the lower bounds discussed so far can be strengthened by a simple

polynomial scheme. For any vertex i ∈ V , pick any outedge (i, j) ∈ E and any inedge

(k, i) ∈ E. Now consider the graph Gi
jk obtained by deleting all arcs incident on i expect

(i, j) and (k, i). For any lower bound discussed so far let βi
jk be a lower bound for the BTSP

on Gi
jk. Define

βi = min{βi
jk : j, k ∈ V \ {i}, j 6= k}. (3.4)

Theorem 3. β = max
i∈V

βi is a lower bound for the BTSP.

Proof. Recall that Π(G) denotes the set of Hamiltonian cycles in a graph G. Similarly, we

let Π(Gi
jk) denote the set of Hamiltonian cycles in the subgraph Gi

jk. The set Π(Gi
jk) can

alternatively be thought of as the collection of Hamiltonian cycles in G that use the edges

(i, j) and (k, i).

It is clear for any i if we collect all the Hamiltonian cycles in Π(Gi
jk) for all j, k that we

end up with the entire collection of Hamiltonian cycles in G. That is to say for any i ∈ V ,

Π(G) =
⋃

j,k∈V,i6=j 6=k

Π(Gi
jk). (3.5)

By definition,

βi
jk ≤ max{cpq : (p, q) ∈ H} for all H ∈ Π(Gi

jk) (3.6)

In view of (3.5) and (3.6) we have

βi ≤ max{cpq : (p, q) ∈ H} for all H ∈ Π(G). (3.7)

Since (3.7) is true for all i ∈ V , we conclude β = maxi∈V βi is a valid lower bound on the

optimal BTSP objective value.

Theorem 3 may be used to strengthen any of the lower bounds discussed so far. A näıve

implementation of this theorem may be as described by Algorithm 3.1.
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Algorithm 3.1: Näıve application of Theorem 3

Input: A graph G = (V,E) with cost matrix C, and a lower bound algorithm α.
Output: A lower bound on the optimal BTSP objective value.
for i ∈ V do

for (i, j) ∈ E do
for (k, i) ∈ E do

/* Remove all arcs incident on i except (i, j) and (k, i) */

Ei
jk ← E \ {(i, p) ∈ E : p 6= j} \ {(q, i) ∈ E : q 6= k};

Gi
jk ← (V,Ei

jk);

βi
jk ← α(Gi

jk, C) ; /* Calculate lower bound α on Gi
jk and C */

end

end
βi ← min{βi

jk : j, k ∈ V \ {i}};
end
β ← max{βi : i ∈ V };
return β;

Algorithm 3.1 requires O(n3) calls to the lower bound algorithm α when G is a com-

plete graph. If α is the BAP lower bound, which has a running time of O(n2.5) for each

BAP call, then this implementation requires O(n5.5) operations. Similarly, it is easy to see

if α is the BSCSSP or BBSSP lower bound algorithm that, even with their best known

implementations, O(n5) calculations are necessary.

However, a careful implementation that exploits special properties of the lower bound

algorithm may allow one to reduce the complexity significantly. We illustrate this by showing

we can apply Theorem 3 with the BBP lower bound (or, equivalently, the BSCSSP lower

bound) and identify β with O(n3.792) calculations. We call the resulting, strengthened lower

bound the enhanced bidirectional bottleneck path (EBBP) bound.

The EBBP bound may be described informally as follows: For each node i ∈ V construct

the graph Gi = G \ {i} (i.e. the graph G with node i removed, along with any arcs incident

on i). Solve the all-pairs bottleneck path problem on Gi and let P i be the resulting matrix,

where P i
jk is the bottleneck path distance in Gi from vertex j to vertex k. Matrix P i may

be used to easily calculate βi
jk. The largest bottleneck path distance from i to every other

vertex is the larger of cij and the largest entry in row j of P i. Likewise, the largest bottleneck

path distance to i from every other vertex is the larger of cki and the largest entry of column

k in P i. Thus, βi can be identified by constructing matrix P i followed by O(n2) lookups in
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matrix P i. The value β is set as the largest value of βi obtained. A formal description of

the EBBP algorithm is given in Algorithm 3.2.

Algorithm 3.2: EBBP (G,C)

Input: A graph G = (V,E) with cost matrix C.
Output: A lower bound on the BTSP objective value.
for i ∈ V do

Gi ← (V \ {i}, E \ {(u, v) ∈ E : u = i or v = i}) ; /* remove i from G */

P i ← all-pairs-bottleneck-paths(Gi , C)
for (i, j) ∈ E do

αi
j ← max{P i

jl : l ∈ V \ {i, j}} ; /* max bottleneck edge from j */

for (k, i) ∈ E do
γi

k ← max{P i
lk : l ∈ V \ {i, k}} ; /* max bottleneck edge to k */

βi
jk ← max{αi

j , γ
i
k, cij , cki};

end

end
βi ← min{βi

jk : j, k ∈ V \ {i}};
end
β ← max{βi : i ∈ V };
return β;

Theorem 4. The EBBP algorithm correctly identifies the lower bound β in O(n3.792)-time

when βi
jk is the BBP lower bound in Gi

jk.

Proof. Let T1 be the tree of bottleneck paths from node i to all other nodes in Gi
jk. Similarly,

let T2 be the tree of bottleneck paths from all nodes in Gi
jk to node i. Clearly,

βi
jk = max{cpq : (p, q) ∈ T1 ∪ T2}. (3.8)

Note that P i is the all-pairs bottleneck path matrix on Gi = G \ {i}. The jth row of P i

gives the bottleneck distances from node j to all other nodes in Gi. Define αi
j as

αi
j = max{P i

jl : l ∈ V \ {i, j}}
= max{cpq : (p, q) ∈ T1 \ {(i, j)}}

Similarly, the kth column of P i gives the bottleneck distances from each node l of Gi to
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i

jk

cijcki

αi
jγi

k

Figure 3.5: Lower bound construction with EBBP bound

node k. Define γi
k as

γi
k = max{P i

lk : l ∈ V \ {i, k}}
= max{cpq : (p, q) ∈ T2 \ {(i, k)}}.

Hence, from Equation (3.8) we have

βi
jk = max{αi

j , γ
i
k, cij , cki}.

Refer to Figure 3.5 for a diagram of this construction. We conclude the algorithm correctly

computes βi
jk, β

i and hence β.

To analyze the complexity, note that P i can be identified in O(n2.792)-time for each i ∈ V

using Vassilevska et al.’s algorithm for solving the all-pairs bottleneck paths problem [109].

All other computations for fixed i takes O(n2) time. Since these computations are repeated

for each i ∈ V, the overall complexity of the algorithm is O(n3.792).

Vassilevska et al.’s O(n2.792)-time algorithm for solving the all-pairs bottleneck path

problem is complex to implement, so instead we use a modified Floyd-Warshal all-pairs

shortest path algorithm instead (see Ahuja et al. for a formal description [2]). The Floyd-

Warshal algorithm has a worst case complexity of O(n3) to compute the matrix P i. Using

this in Algorithm 3.2 results in a moderately higher complexity of O(n4), but with the

advantage of easy implementation.
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3.2.7 Analysis of the Lower Bounds

To analyze the relative strengths of the lower bounds discussed so far we introduce some

definitions. Let A and B be any two BTSP lower bound algorithms. If A always computes an

objective value greater than or equal to the one produced by B, then A dominates B, which

is to say algorithm B will never produce a superior lower bound value than algorithm A.

Likewise, if there exists instances where A produces a superior lower bound value compared

to B and vice versa, then A and B are non-dominated with respect to each other. Finally,

two lower bounds A and B are equivalent if they always return the same objective value for

any instance. We noted in Lemma 1 that the BSCSSP and BBP bounds are equivalent.

Theorem 5. The BSCSSP lower bound (equivalently, the BBP lower bound) dominates the

BBSSP(C̄) bound.

Proof. Let δ be the optimal objective value of the BSCSSP bound on a graph G = (V,E)

with cost matrix C. Construct a directed graph ~Gδ = (V,Eδ) with Eδ = {(i, j) ∈ E : cij ≤
δ}. By construction, ~Gδ is strongly-connected.

Now consider the undirected graph constructed from ~Gδ using the 2n-node symmetric

transformation of Equation (3.1). Discard all edges of infinite cost from this graph and call

the resulting graph Ḡ. Note that Ḡ is bipartite with vertex sets V1 = {1, 2, . . . , n} and

V2 = {n + 1, n + 2, . . . , 2n}, and has no edges of cost more than δ. It suffices to show that

Ḡ is biconnected.

Suppose Ḡ is not biconnected. If it is not biconnected, then it must contain a cut-vertex

r. Suppose r ∈ V1. Let G1 and G2 be two connected components of Ḡ \ {r}. Then there

exist vertices (u + n) ∈ G1 and (v + n) ∈ G2 such that edges (r, u + n) and (r, v + n) are

in Ḡ. By construction of Ḡ, ~Gδ must contain edges (r, u) and (r, v). Since ~Gδ is strongly

connected, it must contain a path from u to r and a path from v to r. Thus, there must

exist a path in Ḡ from u to (r+n) that does not contain r and a path from v to (r+n) that

does not contain r. Since r is a cut-vertex, both u and v must be in the same component.

Since u + n and v + n are in different components, u and v are in the same component, and

(u, u + n) and (v, v + n) are edges of Ḡ, this shows that a cut vertex cannot belong to the

set V1.

The same logic shows that a cut vertex cannot belong to the set V2, thus Ḡ must be

biconnected. Since the optimal objective value of the BBSSP(C̄) bound cannot be greater

than δ, this proves the BSCSSP dominates.
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Theorem 6. The BAP, BBSSP(C̄), BSCSSP, BBP, and EBBP bounds dominate the 2MB.

Proof. The 2MB selects the in-edge and out-edge of every vertex of minimum cost. If we

can show that at least one in-edge and one out-edge is selected by the other lower bound

algorithms for every vertex, then we prove the 2MB is dominated.

Recall that the BAP generates a cycle cover S of G. Since S contains all vertices of G,

and each vertex has an incoming edge and an outgoing edge, the 2MB is dominated.

For a strongly connected graph, each vertex have at least one incoming edge and at least

one outgoing edge. Since the solutions returned by the BSCSSP, BBP, and EBBP bounds

are strongly connected, they all dominate the 2MB.

Finally, consider the optimal solution Ḡ on 2n vertices to the BBSSP(C̄) bound. As Ḡ

is biconnected, each vertex in Ḡ will have a degree of at least 2. One of the edges incident

on every vertex will be the edge of cost −∞, but the other will represent either an out-edge

(for i = 1, 2, . . . , n) or an in-edge (for i = n + 1, n + 2, . . . , 2n) for each of the n vertices

in the original asymmetric instance. Therefore, the BBSSP(C̄) bound includes at least one

in-edge and one out-edge for every vertex, and thus dominates the 2MB.

Theorem 7. The EBBP lower bound dominates the 2MB, BSCSSP, BBP, BBSSP(C̄), and

BBSSP(Ĉ) lower bounds.

Proof. As the EBBP lower bound is strongly-connected and obtained by additional restric-

tions to the BBP bound, it will dominate the BBP bound, and thus the BSCSSP, BBSSP(C̄),

and 2MB bounds in light of Lemma 1 and Theorems 5 and 6.

We now show the BBSSP(Ĉ) bound is dominated by contradiction. Let G = (V,E)

with cost matrix C be an instance where the EBBP objective value is strictly less than the

BBSSP(Ĉ) bound.

Let β be the optimal EBBP objective value on a graph G with cost matrix C. Construct

the directed graph Gβ = (V,Eβ) where Eβ = {(i, j) ∈ E : cij ≤ β}. Gβ is clearly strongly

connected, but must have a cut-vertex i that would disconnect the graph (otherwise, the

EBBP objective value would be at least equal to the BBSSP(Ĉ) objective value, and i would

not exist).

For (i, j), (k, i) ∈ E, let Gi
jk be the subgraph of G with all edges incident on i removed

except for (i, j) and (k, i). Recall that the EBBP algorithm calculates the value βi
jk, which

is the BBP objective value on Gi
jk. Let βi = min{βi

jk : j, k ∈ V \ {i}} = βi
uv. By definition,

β = max{βi : i ∈ V } ≥ βi
uv, and thus Gi

uv is strongly connected. Let u and v be two
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Bound C1 C2 C3 C4

2MB 1 1 1 3
BAP 3 1 2 3

BBSSP(Ĉ) 1 2 2 1
BBSSP(C̄) 1 2 1 3
BSCSSP 1 2 1 3
EBBP 2 3 2 3

BTSP 3 3 3 3

Table 3.1: Lower bound values for cost matrices given in Theorem 8.

vertices in each of the connected components of Gi \ {i}. It must follow that there is no

path between u and v in Gi
uv, contradicting its strong connectivity.

Therefore, no cut vertex in Gβ exists, and β must be at least equal to the objective value

of the BBSSP(Ĉ) bound.

Theorem 8. The following pairs of bounds are non-dominated:

(a) The BAP bound and any of the bounds BBSSP(Ĉ), BBSSP(C̄), BSCSSP, BBP, or

EBBP;

(b) The BSCSSP or BBP bound and the BBSSP(Ĉ) bound;

(c) The BBSSP(Ĉ) bound and the BBSSP(C̄) bound; and

(d) The 2MB and the BBSSP(Ĉ) bounds.

Proof. Consider the follow cost matrices:

C1 =



















− 3 9 1 1

2 − 1 9 9

9 9 − 1 9

9 9 9 − 1

1 1 9 9 −



















, C2 =



















− 2 9 9 1

2 − 1 9 9

9 9 − 1 9

9 1 9 − 3

1 9 9 9 −



















, C3 =



















− 1 3 3 3

3 − 1 2 3

1 3 − 3 1

3 3 1 − 3

2 3 3 1 −



















, C4 =



















− 3 3 1 1

3 − 3 1 3

2 1 − 1 3

3 3 3 − 3

3 3 1 1 −



















.

Table 3.1 provides optimal objective values for each lower bound algorithm on each of these

four cost matrices. Statement (a) is true by cost matrices C1 and C2. The remaining

statements are true by cost matrices C3 and C4.
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2M
B

B
A

P

B
B

S
S
P

(C̄
)

B
B

S
S
P

(Ĉ
)

B
S
C

S
S
P

B
B

P

E
B

B
P

Complexity

2MB = N N X N N N O(n2)
BAP ◭ = X X X X X O(n2.5)
BBSSP(C̄) ◭ X = X N N N O(n2)

BBSSP(Ĉ) X X X = X X N O(n2)
BSCSSP ◭ X ◭ X = = N O(n2)
BBP ◭ X ◭ X = = N O(n2)
EBBP ◭ X ◭ ◭ ◭ ◭ = O(n3.792)

Table 3.2: Comparison of lower bounds

Table 3.2 summarizes our discussion. A ‘◭’ in the table indicates the bound representing

the row dominates the bound representing the column. A ‘N’ in the table indicates the bound

representing the column dominates the bound representing the row. An ‘=’ sign indicates

the two bounds are equivalent, and a ‘X’ indicates they are non-dominated.

3.3 Approximation Algorithm for the Asymmetric BTSP

Recall that an ǫ-approximation is a polynomial-time algorithm that is guaranteed to return

a solution with objective value z that is at most ǫ-times larger than the optimal objective

value z∗, which is to say

z ≤ ǫ · z∗. (3.9)

In Chapter 1, we discuss progress on approximation algorithms for the TSP, noting, unless

P=NP, no ǫ-approximation exists for any ǫ, 1 ≤ ǫ < ∞ [96]. Progress on approximation

algorithms for the TSP can only be made when we restrict our attention to cost matrices

satisfying specific conditions.

For example, let us restrict our attention to cost matrices that satisfy the triangle in-

equality, i.e.:

cij ≤ cik + ckj for all i, j, k. (3.10)

The best known ǫ-approximation algorithm for symmetric cost matrices satisfying (3.10) is

Christofides’ 3
2 -approximation [20]. Likewise, O(log n)-approximations exist for asymmetric
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cost matrices satisfying (3.10) [33, 12, 56]. While it is unknown if these are the best ǫ-

approximations possible for the symmetric and asymmetric TSP, respectively, the results

suggest the asymmetric TSP is much harder to approximate.

The existence of an ǫ-approximation algorithm for the BTSP on a general cost matrix

is as difficult as that for the TSP as Parker and Rardin proved in 1982 [79].

Theorem 9. [79] Unless P = NP, there is no polynomial time ǫ-approximation algorithm

for the BTSP for any constant ǫ, 1 ≤ ǫ <∞.

As with the TSP we can instead restrict our attention to cost matrices that satisfy the

triangle inequality.

A 2-approximation for the symmetric BTSP satisfying the triangle inequality

For symmetric cost matrices, a simple, well-known 2-approximation for the BTSP exists

when the cost matrix satisfies the triangle inequality, Equation (3.10). This 2-approximation

relies on the concept of powers of graphs.

Definition 2. The tth power of a (not necessarily complete) graph G is the graph Gt =

(V,Et), where (u, v) ∈ Et whenever a path from u to v exists in G with at most t edges.

The 2-approximation for the symmetric BTSP may be informally described as follows:

1. Let δ be the optimal BBSSP objective value on G = (V,E) with cost matrix C.

2. Construct Ḡ = (V, Ē) where Ē = {(i, j) ∈ E : cij ≤ δ}.

3. Output any Hamiltonian cycle in Ḡ2.

Fleischner showed the ‘square’ of any biconnected graph (i.e. t = 2) is Hamiltonian [32], and

Lau gave an O(n2)-algorithm for finding a Hamiltonian cycle in the square of a biconnected

graph [66, 67] (Rardin and Parker independently proved the same result in [93]). By the

triangle inequality (3.10) one can easily show the largest cost in Ḡ2 is at most twice the

optimal BTSP objective value, hence a 2-approximation for symmetric BTSP (we provide

a proof of this in a moment).

We can generalize the triangle inequality as follows: let τ be any constant where τ ≥ 1
2 ,

and define the τ -triangle inequality to be

cij ≤ τ(cik + ckj) for all i, j, k. (3.11)
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Clearly, when τ = 1, Equation (3.11) equivalent to Equation (3.10). When τ = 1
2 , Equa-

tion (3.11) forces all costs cij to assume the same value. One can view the τ -triangle

inequality as a relaxation of the triangle inequality when τ > 1, and as a restriction of the

triangle inequality when 1
2 < τ < 1.

Theorem 10. Let C be the cost matrix associated with a complete, directed graph G satisfy-

ing the τ -triangle inequality for some τ > 1
2 , and let H∗ be an optimal solution to the BTSP

on G such that z∗ = max{cij : (i, j) ∈ H∗}. Let S be a spanning subgraph of G such that

z = max{cij : (i, j) ∈ S}, and z ≤ z∗. If the graph St, t ∈ 1, . . . , n, contains a Hamiltonian

cycle H, then

z

z∗
=



















t if τ = 1,

τ
τ−1(2τ t−1 − τ t−2 − 1) if τ > 1,

τ
τ−1(τ t−1 + τ − 2) if τ < 1.

Kabadi and Punnen provide a proof of Theorem 10 when the graph is undirected [54]. The

proof is almost identical when the graph is directed, hence we skip a detailed proof.

Theorem 10 shows the 2-approximation for symmetric BTSP is correct when τ = 1.

Indeed, the algorithm generalizes to a 2τ -approximation for the symmetric BTSP for any

τ ≥ 1
2 . We finish with the following theorem.

Theorem 11. Unless P=NP, there is no polynomial 2τ − δ approximation algorithm for

the symmetric BTSP on a complete graph with edge costs satisfying the τ -triangle inequality

for any δ > 0 and τ > 1
2 .

Doroshko and Sarvanov [27], Parker and Rardin [79], and Hochbaum and Shmoys [48] all

provide a proof of Theorem 11 when τ = 1. Kabadi and Punnen prove the theorem for

a general τ > 1
2 [54]. Theorem 11 shows, unless P=NP, this 2τ -approximation for the

symmetric BTSP is the best possible.

Table 3.3 outlines the best-known ǫ-approximation algorithms for the TSP, the Max-

TSP, the BTSP, and the MSTSP for problems with complete cost matrices satisfying the

triangle inequality. In addition, the table shows the best known ǫ-approximation algorithms

for the Max-TSP on general complete cost matrices. There are currently no known ǫ-

approximation algorithms for the asymmetric BTSP and asymmetric MSTSP. For more

detail on the progress into approximation algorithms for the TSP and Max-TSP, please

refer to Table 1.1 in Chapter 1.
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Problem Symmetric Asymmetric

△-TSP 3/2 [20] 0.841 log n [56]
Max-TSP 7/9 [77] 2/3 [56]
△-Max-TSP 7/8 [64] 31/40 [13]
△-BTSP 2 [93] (Open)
△-MSTSP 2 [6] (Open)

Table 3.3: Best-known ǫ-approximation algorithms for the TSP, Max-TSP, BTSP, and
MSTSP, where “△” denotes the problem on complete cost matrices satisfying the trian-
gle inequality. Please note the 2-approximation for the symmetric BTSP was also proved
independently by [32, 66, 67].

Approximation for the asymmetric BTSP satisfying the triangle inequality

The approximation algorithm for the asymmetric BTSP we now present is inspired by the

2τ -approximation for the symmetric BTSP. As before, let us assume our cost matrix C

satisfies the τ -triangle inequality (3.11) for some τ > 1
2 . Instead of solving the BBSSP, we

solve the bottleneck strongly connected spanning subgraph problem (BSCSSP). We call the

algorithm Approx-BTSP, and describe it in Algorithm 3.3.

Algorithm 3.3: Approx-BTSP(G,C)

Input: A graph G = (V,E) with cost matrix C.
Output: a Hamiltonian Cycle in G.
S ← BSCSSP(G,C) ; /* See Section 3.2.4 */

Compute St for t = ⌈n2 ⌉;
Let H be any Hamiltonian cycle in St;
return H;

We establish the complexity and performance ratio of algorithm Approx-BTSP using

the following well known theorem of Ghouilà-Houri [38].

Theorem 12. [38] If G is a directed graph on n vertices and min{δ+(v), δ−(v)} ≥ n
2 for

every vertex v ∈ G, then G is Hamiltonian.

Theorem 13. Algorithm Approx-BTSP runs in polynomial time and guarantees an ǫ-

approximate solution for the asymmetric BTSP whenever the edge-costs satisfy the τ -triangle
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inequality, where t = ⌈n2 ⌉ and

ǫ =



















t if τ = 1,

τ
τ−1(2τ t−1 − τ t−2 − 1) if τ > 1,

τ
τ−1(τ t−1 + τ − 2) if τ < 1.

(3.12)

Proof. Let H∗ be an optimal solution to the BTSP on G where z∗ = max{cij : (i, j) ∈ H∗}.
Since S is a bottleneck strongly connected spanning subgraph of G, we have z = max{cij :

(i, j) ∈ S} ≤ z∗. Thus, by Theorem 10, the performance ratio holds.

We now show that the algorithm is polynomially bounded. The BBSSP can be computed

in O(n2)-time [84]. S⌈n
2
⌉ can be obtained in O(n3) time using an all-pairs shortest path

algorithm with unit edge costs. Schaar and Wojda [98] guarantee that S⌈n
2
⌉ satisfies the

conditions of Theorem 12, and Bondy and Thomassen [14] give an O(n4) algorithm for

finding a Hamiltonian cycle in graphs satisfying Theorem 12. Thus a Hamiltonian cycle in

S⌈n
2
⌉ is obtained in polynomial time.

3.4 Heuristic Algorithm for the Asymmetric BTSP

In Chapter 2 we discuss a heuristic algorithm for the symmetric BTSP. This algorithm can

appropriately modified to solve the asymmetric BTSP using the symmetric transformation

of Section 3.1 and the lowering bounding schemes of Section 3.2. The notable difference

between theoretical approximability of the symmetic and asymmetric versions of the BTSP

necessitates a systematic experimental analysis to understand the practical level of difficulty

in solving the asymmetric BTSP in comparison to the symmetric BTSP.

For clarity, let us reintroduce the BTSP heuristic algorithm of Chapter 2 in the context

of the asymmetric BTSP. The key ingredient of this algorithm is a feasibility test: ‘Given

an integer δ and a complete directed graph G, determine if G has a Hamiltonian tour whose

largest cost is no more than δ and, if yes, produce such a Hamiltonian tour in G.” As this

is an NP-hard problem, we explore ways to solve this heuristically.

Consider the cost matrix Cδ = (cδ
ij)n×n where

cδ
ij =







0 if cij ≤ δ,

cij otherwise.
(3.13)
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Suppose we solve the asymmetric TSP on G with cost matrix Cδ. The feasibility test has an

‘yes’ answer if and only if the optimal objective function value of the TSP is zero. Solving

the TSP using a heuristic lets us answer the feasibility test in an approximate way. There

are several ways to improve the accuracy of this approximation. One could employ different

TSP heuristics on cost matrix Cδ. A more reasonable way is to apply the best known TSP

heuristic on different, but equivalent, cost matrices.

One way we can generate equivalent cost matrices is to introduce some randomness as

follows. Let z1 < z2 < ... < zk be an ascending arrangement of distinct costs in C. Generate

positive, random integers r1 < r2 < ... < rk in an interval [a, b]. Now define the cost matrix

Cδ,r = (cδ,r
ij )n×n where

cδ,r
ij =







0 if cij ≤ δ,

zl + rl otherwise, where cij = zl.
(3.14)

The TSP with cost matrix Cδ has an optimal tour of zero cost if and only if the TSP with

cost matrix Cδ,r has an optimal tour of zero cost. If a non-zero cost tour is constructed by the

TSP heuristic, a new matrix Cδ,r can be generated with a new set of random numbers. The

TSP heuristic can then be applied on the new cost matrix (we call this a ‘shake’ operation).

The process can be repeated a prescribed number of times, or ‘shakes”. If no zero-length

tour can be found after a prescribed number of shake operations, we conclude with high

probability that the answer to the feasibility test is ‘no’.

The construction of Cδ,r is designed to discourage using edges of large cost in the solution

produced by the TSP heuristic. Each time we solve a TSP using a heuristic, the bottleneck

value of the resulting tour is also noted and, upon termination, the best such tour is returned.

A formal description of this ‘feasibility test’ procedure is summarized in Algorithm 3.4. For

our experiments we selected the interval [a, b] as [1, n2].

Let H∗ be any heuristic solution for an asymmetric BTSP instance where U = max{cij :

(i, j) ∈ H∗}. Further, let L be the objective value of any lower bound discussed in Sec-

tion 3.2. We can attempt to find a better BTSP tour by performing a binary search over

edge costs in the range [L,U ] using the feasibility test of Algorithm 3.4. The resulting

heuristic algorithm is formally described in Algorithm 3.5.

Any asymmetric TSP heuristic α may be used in algorithms 3.4 and 3.5. Further, any

symmetric TSP heuristic may also be used after applying one of the two transformations
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Algorithm 3.4: IsFeasible(n,C, δ, α, p, q)

Input: A problem on n nodes with cost matrix C, integer δ, TSP solver/heuristic α,
and integers p and q, which represent the number of iterations with cost
matrix Cδ and Cδ,r, respectfully.

Output: The 3-tuple (feasible, tour,max cost) where feasible is a Boolean value
that indicates if a Hamiltonian cycle was found using only costs less than
or equal to δ, tour is the feasible/best tour found, and max cost is largest
cost in tour.

minmax cost←∞;
best tour ← ∅;
for i = 1...p do

(length, tour)← α(n,Cδ);
max cost← max {cij : (i, j) ∈ tour};
if length = 0 then

return (TRUE, tour,max cost);
else

if max cost < minmax cost then
minmax cost← max cost;
best tour ← tour;

end

end

end
for i = 1...q do

Let r ← {r1, r2, ..., rk} be a list of random integers such that
1 ≤ r1 < r2 < ... < rk ≤ n2;
(length, tour)← α(n,Cδ);
max cost← max {cij : (i, j) ∈ tour};
if length = 0 then

return (TRUE, tour,max cost);
else

if max cost < minmax cost then
minmax cost← max cost;
best tour ← tour;

end

end

end
return (FALSE, best tour,minmax cost);
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Algorithm 3.5: BTSPThreshold(n,C, l, α, p, q)

Input: A problem on n nodes with cost matrix C, a lower bound l, TSP
solver/heuristic α, and integers p and q, which represent the number of
iterations with cost matrix Cδ and Cδ,r, respectfully.

Output: The (optimal/heuristic conclusion) on the BTSP objective value and tour.

(feasible, best tour,max cost)← IsFeasible(n,C, l, α, p, q);
if feasible then return (l, best tour);

Let z1 < z2 < ... < zk be a list of the unique ordered costs from C in non-increasing
order;
low ← l; high← k;
while low 6= high do

med← ((high − low)/2) + low;
(feasible, tour,max cost)← IsFeasible(n,C, zmed, α, p, q);
if feasible then

high← median;
best tour← tour;

else
low ← median + 1;

end

end
return (zlow, best tour);
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described in Section 3.1. For our computational study, we used Concorde’s implementation

of the Lin-Kernighan algorithm [4] after applying the 2n-vertex transformation of Equa-

tion (3.1). The Lin-Kernighan heuristic should naturally force the fixed edges of cost −∞
into the tour with no additional constraint necessary, but we make sure these edges are

present to ensure any tour found in the symmetric instance is valid for the asymmetric

instance.

3.5 Computational Results

We implemented the lower bounding schemes discussed in Section 3.2 and the heuristic

algorithm described in Section 3.4 in C, compiled with the GNU C compiler. We tested this

code on 86 benchmark asymmetric TSP instances commonly studied in literature. These

instances are as follows:

(a) 42 instances by Cirasella, Johnson, McGeoch, and Zhang that simulate real-world

applications in various fields, as described in [21]. There are seven groups of problems,

each including five instances of 100 nodes and a single instance of 316 nodes:

– coin: Pay phone coin collection instances

– crane: Random Euclidean stacker crane instances

– disk: Disk drive instances

– rtilt: Tilted drilling machine instances with additive norm

– shop: No-wait flow shop instances

– stilt: Tilted drilling machine instances with sup norm

– super: Approximate shortest common superstring instances

(b) 5 scheduling instances generated by Balas that simulate an application in a Dupont

chemical plant. There are five problems in total of sizes 84, 108, 120, 160, and 200

vertices [9];

(c) all 27 TSPLIB instances maintained by Reinelt [95]. We subdivide them into the

problems labelled ‘ftv” and those that are not, as well as subdivide them into problems

with 100 nodes or less and problems with more than 100 vertices.
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Problem Set (# of Problems) 2M
B

B
A

P

B
B

S
S
P

(C̄
)

B
B

S
S
P

(Ĉ
)

B
S
C

S
S
P

E
B

B
P

coin (6) 0 0 6 1 1 6
crane (6) 4 4 0 4 6 6
disk (6) 6 6 0 5 6 6
rtilt (6) 2 2 0 2 6 6
shop (6) 5 5 0 5 6 6
stilt (6) 2 3 0 2 5 6
super (6) 6 6 5 6 6 6
balas (5) 0 0 0 0 5 5
tsplib: no ftv, ≤ 100 nodes (6) 1 1 2 2 5 6
tsplib: no ftv, > 100 nodes (4) 0 4 0 0 0 0
tsplib: ftv, ≤ 100 nodes (9) 7 7 1 7 8 9
tsplib: ftv, > 100 nodes (8) 2 8 0 2 2 3
ftv180 (1) 0 1 0 0 0 0
uk66 (1) 0 0 1 0 0 1
ran500 (5) 5 5 0 5 5 5
ran1000 (5) 5 5 0 5 5 5

Total (86) 45 57 15 46 66 76

Table 3.4: Asymmetric BTSP lower bound summary on problem groups. The number listed
under each bound name is the number of problems that bound gave the tightest lower bound
in that problem group.

(d) 2 real-world instances (ftv180 and uk66) and 5 random instances with integer costs

uniformly generated in the range [1, 1000] of 500 nodes and 1000 vertices each. These

were created by Fischetti et al. citefischetti2002atsp.

All computational experiments in this section were carried out on PC with a 3.40GHz

Pentium 4 CPU and 2GB of RAM running Microsoft Windows XP SP2 operating system

and Cygwin NT 5.1. All reported running times are in CPU seconds rounded to two decimal

places and include input and output times.

Results on lower bounding schemes

Each of the 86 problems are grouped into 16 groups for a compact presentation of the results

in Table 3.4. The number given for each bound and problem group indicates the number of

problems in that group for which the lower bound achieved the tightest result.
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With the exception of the EBBP bound, all other bounds generally take less than one

second to run, even on problems of 1000 vertices. As expected, the EBBP bound, being an

O(n4) algorithm, is expensive to calculate, and did not provide a tighter lower bound than

any of the other lower bounds we tested on our problem set.

Results on heuristic

Algorithm 3.5 was tested on the same problem set in two experiments to observe the effects

of ‘shaking” (i.e. using cost matrix Cδ,r versus cost matrix Cδ). For one experiment, we set

p = 10 and q = 0, corresponding to 10 attempts with cost matrix Cδ and 0 attempts with

cost matrix Cδ,r, respectively; the second we set p = 5 and q = 5.

The goal is to determine if splitting the effort between both cost matrix formulations

produces superior results as opposed to simply using cost matrix Cδ. We make no claim that

these values are the optimal choices for p and q, but these choices appear to be reasonable

for the problems in our test set.

In both experiments we set l equal to the strongest lower bound computed (i.e. the

largest optimal objective value of any lower bound algorithm discussed in Section 3.2). We

also use Concorde’s implementation of the Lin-Kernighan algorithm [4] with the 2n-vertex

symmetric instance constructed using Equation (3.1) from Section 3.1 for our asymmetric

TSP heuristic α. We call Concorde’s Lin-Kernighan algorithm with the default parameters

and five random restarts.

We can easily verify optimality for a given instance if our heuristic returns a solution

equal to a valid lower bound for the instance. For problems where the best found solution is

not equal to an asymmetric BTSP lower bound value we instead replace the Lin-Kernighan

heuristic in Algorithm 3.5 with Concorde’s exact TSP solver. In one instance (stilt316.10)

we are unable to verify optimality due to an integer overflow error (this problem contains

particularly large costs), so we compare our heuristic results against the best lower bound

computed.

Our heuristic, Algorithm 3.5, appears to produce good quality solutions in a reasonable

running time. Out of the 86 instances attempted, our heuristic consistently found the

optimal solution to 60 of the instances. We focus on 18 select problems in Table 3.5. These

are problems where a consistent solution was not found for each of the 10 trials. We present

the best, average, and worst solution gaps found from the optimal solution value over 10

trials, i.e. if b is the (best/average/worst) bottleneck solution found by our algorithm and
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b∗ is the optimal solution value then

gap % = (b− b∗)/b∗ × 100.

The average time reported includes output times, which were negligible (generally much less

than 0.10 seconds).

We notice that performing shake operations (p = 5, q = 5) seem to produce solutions

with a lower average and lower worst-gaps from the optimal solution. This indicates that

shake operations are a promising idea for helping the Lin-Kernighan algorithm find good

BTSP tours. Although the results are generally excellent, the heuristic performs poorly on

the ‘rtilt’ and ‘stilt’ class of problems. These problems have many distinct, large, integer

costs, and seem structurally quite difficult for the Lin-Kernighan algorithm.

We present in detail the results for all 86 problems in Tables 3.6, 3.7, and 3.8 for p = 5

and q = 5. We also present the lower bounds that found a tight optimal solution, as well

as the best lower bound for each problem (ties are broken by shortest running time). The

columns ‘Avg. Bin. Steps” and ‘Avg. # of LK Calls” give the average number of binary

search steps and calls to Concorde’s Lin-Kernighan algorithm, respectively. The results are

generally quite good and computational times reasonable.

3.6 Nozzel Guide Vane Assembly in Gas Turbine Engines:

an Application

Many TSP applications have a natural and useful interpretation as a BTSP model. In this

section we adapt an interesting application in aircraft engine maintenance from using a TSP

model to a BTSP model, as well as present some computation results.

The gas turbine engines that power military and commercial aircrafts require extensive

maintenance to ensure efficiency and reliability. One such stage of maintenance, the nozzle

guide vane assembly, is formulated by Plante, Lowe and Chandrasekaran [81] as a TSP with

a product type cost matrix. Interested readers may consult [49] or [81] for additional details

on this application.

One of the main sections of the engine is the turbine, which consists of a series of nozzle

assemblies and rotor pairings. The nozzle assembly consists of a sequence of nozzle guide

vanes (hereafter referred to simply as ‘vanes’) affixed along the inner circumference of the
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Opt. Best Avg. Worst Avg.
Problem Size Sol. p q Gap % Gap % Gap %¸ Time (s)

coin100.2 100 207 10 0 0.00 0.97 2.42 15.58
5 5 0.00 0.48 1.45 16.95

rtilt100.2 100 227248 10 0 20.70 28.57 36.99 51.01
5 5 22.29 28.76 33.63 48.99

rtilt100.3 100 236920 10 0 16.30 30.93 44.80 52.03
5 5 22.79 29.48 44.78 54.63

rtilt316.10 100 152510 10 0 71.68 104.74 127.82 384.90
5 5 96.33 101.68 110.68 490.10

shop100.0 100 2232 10 0 0.00 0.16 1.16 8.06
5 5 0.00 0.06 0.58 5.57

shop316.10 316 2311 10 0 0.00 0.66 2.29 47.75
5 5 0.00 1.11 2.34 92.42

stilt100.0 100 382208 10 0 3.72 11.20 23.61 43.25
5 5 7.43 11.20 20.96 45.81

stilt100.2 100 377720 10 0 6.71 9.78 14.50 48.29
5 5 5.56 11.80 19.12 48.93

stilt100.3 100 401976 10 0 1.88 9.81 22.74 44.22
5 5 2.24 7.04 19.50 42.77

stilt100.4 100 347440 10 0 19.19 29.28 38.72 49.34
5 5 24.40 29.43 38.10 52.61

stilt316.10 316 226504* 10 0 77.64 92.67 110.02 333.25
5 5 83.18 91.39 99.89 352.84

ftv120 121 39 10 0 10.26 10.26 10.26 25.65
5 5 0.00 5.38 10.26 16.85

ftv130 131 39 10 0 0.00 77.69 141.03 34.21
5 5 0.00 27.18 135.90 21.42

ftv140 141 41 10 0 109.76 124.88 129.27 65.83
5 5 0.00 86.10 129.27 53.34

ftv150 151 37 10 0 2.70 59.73 151.35 48.11
5 5 0.00 57.30 140.54 51.01

rbg323 323 12 10 0 16.67 26.67 50.00 86.75
5 5 16.67 20.00 50.00 94.78

rbg358 358 14 10 0 0.00 5.71 7.14 71.85
5 5 0.00 4.29 7.14 75.06

rbg403 403 20 10 0 5.00 7.00 15.00 94.72
5 5 5.00 5.50 10.00 110.60

Table 3.5: Asymmetric BTSP initial experimental results on 18 select problems. *Note that
the ‘optimal solution” reported for problem stilt316.10 is the best known lower bound for
the problem.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

coin100.0 100 c f BBSSP(Ĉ) 0.00 253 253 0.00 0.00 0.00 0.00 2.50 0.97

coin100.1 100 c f BBSSP(Ĉ) 0.00 219 219 0.00 0.00 0.00 0.00 1.60 0.42

coin100.2 100 c f BBSSP(Ĉ) 0.00 203 207 0.00 0.48 1.45 10.80 46.20 16.95

coin100.3 100 c f BBSSP(Ĉ) 0.02 232 232 0.00 0.00 0.00 0.00 2.40 0.85

coin100.4 100 c d e f BBSSP(Ĉ) 0.00 214 214 0.00 0.00 0.00 0.00 1.00 0.11

coin316.10 316 c f BBSSP(Ĉ) 0.05 227 227 0.00 0.00 0.00 0.00 3.60 6.51
crane100.0 100 a b d e f 2MB 0.00 173390 173390 0.00 0.00 0.00 0.00 1.00 0.12
crane100.1 100 a b d e f 2MB 0.00 152923 152923 17.80 17.80 17.80 14.00 60.00 25.34
crane100.2 100 a b d e f 2MB 0.00 214843 214843 0.00 0.00 0.00 0.00 1.00 0.11
crane100.3 100 e f BSCSSP 0.00 145622 145622 0.00 0.00 0.00 0.00 1.90 0.65
crane100.4 100 e f BSCSSP 0.02 171484 171484 0.00 0.00 0.00 0.00 1.00 0.20
crane316.10 316 a b d e f 2MB 0.00 119345 120333 0.00 0.00 0.00 16.00 62.00 128.23
disk100.0 100 a b d e f 2MB 0.00 508034 508034 0.00 0.00 0.00 0.00 1.00 0.12
disk100.1 100 a b d e f 2MB 0.00 473495 473495 0.00 0.00 0.00 0.00 1.00 0.11
disk100.2 100 a b d e f 2MB 0.00 382677 382677 1.08 1.08 1.08 13.00 32.00 10.78
disk100.3 100 a b d e f 2MB 0.00 453657 453657 0.00 0.00 0.00 0.00 1.00 0.13
disk100.4 100 a b d e f 2MB 0.00 415696 415696 0.00 0.00 0.00 0.00 1.00 0.20
disk316.10 316 a b e f 2MB 0.01 309801 309801 0.00 0.00 0.00 0.00 1.00 0.85
rtilt100.0 100 e f BSCSSP 0.00 260342 260342 9.43 12.88 18.16 12.80 79.30 47.55
rtilt100.1 100 a b d e f 2MB 0.00 291040 291040 0.00 9.65 17.33 11.50 68.60 41.22
rtilt100.2 100 e f BSCSSP 0.00 227248 227248 22.29 28.76 33.63 13.00 79.30 48.99
rtilt100.3 100 e f BSCSSP 0.00 236920 236920 22.79 29.48 44.78 12.80 81.80 54.63
rtilt100.4 100 e f BSCSSP 0.00 294367 294367 7.99 9.19 11.96 13.00 83.40 58.21
rtilt316.10 316 a b d e f 2MB 0.01 152510 152510 96.33 101.68 110.68 16.00 131.50 490.10
shop100.0 100 a b d e f 2MB 0.00 2232 2232 0.00 0.06 0.58 1.10 9.00 5.57
shop100.1 100 e f BSCSSP 0.01 2608 2608 0.00 0.00 0.00 0.00 1.00 0.11
shop100.2 100 a b d e f 2MB 0.00 3620 3620 0.00 0.00 0.00 0.00 1.00 0.10
shop100.3 100 a b d e f 2MB 0.00 2526 2526 0.00 0.00 0.00 0.00 1.00 0.39
shop100.4 100 a b d e f 2MB 0.00 2792 2792 0.00 0.00 0.00 0.00 1.00 0.10
shop316.10 316 a b d e f 2MB 0.00 2311 2311 0.00 1.11 2.34 6.50 30.70 92.42

Table 3.6: Complete asymmetric BTSP results (Part 1/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c) BBSSP(Ĉ),
d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

stilt100.0 100 e f BSCSSP 0.00 382208 382208 7.43 11.20 20.96 12.80 75.20 45.81
stilt100.1 100 a b d e f 2MB 0.00 491416 491416 0.00 0.00 0.00 0.00 4.10 2.57
stilt100.2 100 e f BSCSSP 0.00 377720 377720 5.56 11.80 19.12 12.80 80.10 48.93
stilt100.3 100 a b d e f 2MB 0.00 401976 401976 2.24 7.04 19.50 12.90 69.80 42.77
stilt100.4 100 e f BSCSSP 0.00 347440 347440 24.40 29.43 38.10 12.80 85.00 52.61
stilt316.10 316 b f BAP 0.80 226504 ? 83.18 91.39 99.89 16.40 102.10 352.84
super100.0 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.1 100 a b d e f 2MB 0.00 11 11 0.00 0.00 0.00 0.00 1.00 0.09
super100.2 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.3 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super100.4 100 a b c d e f 2MB 0.00 10 10 0.00 0.00 0.00 0.00 1.00 0.09
super316.10 316 a b c d e f 2MB 0.00 9 9 0.00 0.00 0.00 0.00 1.00 0.48
ftv180 181 b BAP 0.03 35 37 0.00 0.00 0.00 8.00 27.50 25.08

uk66 66 c f BBSSP(Ĉ) 0.00 170 170 0.00 0.00 0.00 0.00 1.00 0.05
balas84 84 e f BSCSSP 0.00 18 18 0.00 0.00 0.00 0.00 1.00 0.07
balas108 108 e f BSCSSP 0.00 13 13 0.00 0.00 0.00 0.00 1.00 0.09
balas120 120 e f BSCSSP 0.00 22 22 0.00 0.00 0.00 0.00 1.00 0.11
balas160 160 e f BSCSSP 0.00 13 13 0.00 0.00 0.00 0.00 1.00 0.17
balas200 200 e f BSCSSP 0.02 13 13 0.00 0.00 0.00 0.00 1.00 0.39
ran500.0 500 a b d e f 2MB 0.02 24 24 0.00 0.00 0.00 0.00 1.00 1.23
ran500.1 500 a b d e f 2MB 0.02 22 22 0.00 0.00 0.00 0.00 1.10 3.73
ran500.2 500 a b d e f 2MB 0.02 23 23 0.00 0.00 0.00 0.00 1.00 2.73
ran500.3 500 a b d e f 2MB 0.02 23 23 0.00 0.00 0.00 0.00 1.00 2.43
ran500.4 500 a b d e f 2MB 0.01 28 28 0.00 0.00 0.00 0.00 1.00 1.89
ran1000.0 1000 a b d e f 2MB 0.03 18 18 0.00 0.00 0.00 0.00 1.00 4.61
ran1000.1 1000 a b d e f 2MB 0.03 17 17 0.00 0.00 0.00 0.00 1.40 7.52
ran1000.2 1000 a b d e f 2MB 0.03 17 17 0.00 0.00 0.00 0.00 1.30 9.46
ran1000.3 1000 a b d e f 2MB 0.03 19 19 0.00 0.00 0.00 0.00 1.30 8.25
ran1000.4 1000 a b d e f 2MB 0.03 19 19 0.00 0.00 0.00 0.00 1.10 7.61

Table 3.7: Complete asymmetric BTSP results (Part 2/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c) BBSSP(Ĉ),
d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

br17 17 c d e f BBSSP(Ĉ) 0.00 8 8 0.00 0.00 0.00 0.00 1.00 0.01
ft53 53 e f BSCSSP 0.02 977 977 0.00 0.00 0.00 0.00 1.00 0.04
ft70 70 e f BSCSSP 0.00 1398 1398 0.00 0.00 0.00 0.00 1.00 0.05
ftv33 34 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.02
ftv35 36 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.02
ftv38 39 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.03
ftv44 45 a b d e f 2MB 0.00 113 113 0.00 0.00 0.00 0.00 1.00 0.03
ftv47 48 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.03

ftv55 56 c f BBSSP(Ĉ) 0.02 64 64 0.00 0.63 3.13 2.40 11.20 2.35
ftv64 65 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.05
ftv70 71 a b d e f 2MB 0.00 104 104 0.00 0.00 0.00 0.00 1.00 0.06
ftv90 91 e f BSCSSP 0.00 48 48 0.00 0.00 0.00 0.00 2.70 1.21
ftv100 101 a b d e f 2MB 0.00 53 53 0.00 0.00 0.00 0.00 1.20 0.66
ftv110 111 b BAP 0.02 39 39 0.00 7.95 10.26 7.20 33.40 19.03
ftv120 121 b BAP 0.02 39 39 0.00 5.38 10.26 4.80 26.00 16.85
ftv130 131 b f BAP 0.03 39 39 0.00 27.18 135.90 3.20 24.40 21.42
ftv140 141 a b d e f 2MB 0.00 41 41 0.00 86.10 129.27 5.60 44.20 53.34
ftv150 151 b BAP 0.02 35 37 0.00 57.30 140.54 8.10 48.30 51.01
ftv160 161 b BAP 0.02 35 37 0.00 0.00 0.00 8.00 31.90 26.14
ftv170 171 b BAP 0.03 35 37 0.00 0.00 0.00 8.00 29.40 24.24
kro124p 100 a b d e f 2MB 0.00 607 607 0.00 0.00 0.00 0.00 1.20 0.24
p43 43 e f BSCSSP 0.00 5008 5008 0.00 0.00 0.00 0.00 1.00 0.02
rbg323 323 b BAP 0.25 12 12 16.67 20.00 50.00 4.10 26.00 94.78
rbg358 358 b BAP 0.13 14 14 0.00 4.29 7.14 4.00 20.10 75.06
rbg403 403 b BAP 0.73 20 20 5.00 5.50 10.00 4.00 27.80 110.60
rbg443 443 b BAP 0.94 20 20 15.00 15.00 15.00 4.00 32.00 138.43

ry48p 48 c f BBSSP(Ĉ) 0.00 550 577 0.00 0.00 0.00 10.00 38.00 5.17

Table 3.8: Complete asymmetric BTSP results (Part 3/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c) BBSSP(Ĉ),
d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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j

Aj Bj
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Figure 3.6: Area between vanes i and j

nozzle diaphragm. Typically, there are 46 to 100 vanes in a given nozzle assembly. The

nozzle assembly accelerates, deflects, and distributes the gases that drive the engine. An

engine is more efficient if the distribution of gas flow throughout the nozzle assembly is

‘uniform’. The vanes experience wear and tear due to the high temperatures and velocities

of the gases pushed through the nozzle assembly. During maintenance, a mechanic may

choose to refurbish or discard some vanes, adding new or refurbished vanes to the collection

as necessary. The mechanic then sequences the collection of vanes so as to obtain uniformity

of flow areas between adjacent vanes.

Let n be the number of vanes in the nozzle assembly. Each vane has a convex and

concave side which is measured against a master vane to derive two contribution values, Ai

and Bi, for each vane i. Figure 3.6 illustrates this measurement. A positive value Ai or

Bi indicates the vane contributes a larger area for gas flow than the master vane; likewise,

a negative value indicates a small area contribution compared to the master vane. The

measurement (Ai + Bj) indicates how the area between vanes i and j differ from the area

between two adjacent master vanes, with vane j placed clockwise-adjacent to vane i. In

general, (Ai + Bj) 6= (Aj + Bi).

For a set of vanes V , n = |V |, we can construct a complete graph G = (V,E) where

Hamiltonian cycles in G correspond to vane sequences in the nozzle assembly. For a Hamil-

tonian cycle H, let

xij =







1 if (i, j) ∈ H

0 otherwise
(3.15)

designate whether vane j is clockwise-adjacent to vane i in the nozzle assembly. One can
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easily show the total nozzle flow area of any vane sequence will be

n
∑

i=1

n
∑

j=1

(Ai + Bj)xij =
n

∑

i=1

(Ai + Bi) (3.16)

as its value is constant since each vane is included exactly once. Suppose we calculate the

mean nozzle flow area

d̄ =

∑n
i=1(Ai + Bi)

n
.

An assembly is perfectly uniform if (Ai + Bj) = d̄ whenever xij = 1. However, it is

unlikely such an assembly is possible due to imprecise manufacturing tolerances. Instead, one

can determine vane placement by attempting to maximize ‘uniformity” by some subjective

criteria.

Let us cost matrices C = (cij)n×n and D = (dij)n×n where

cij = (d̄− (Ai + Bj))
2, (3.17)

and

dij = AiBj. (3.18)

The entries of cost matrix C represent the square deviations of (Ai + Bj) from d̄, and the

entries of D represent a product matrix. As noted previously, in general C and D are

asymmetric matrices.

Plante et al.’s approach to maximize uniformity is to minimize the sum of square devi-

ations of (Ai + Bj) from d̄ whenever xij = 1. The TSP heuristic they develop relies on the

fact that an optimal TSP tour in C is also an optimal TSP tour in D. Our approach to

maximizing uniformity is to minimize the maximum square deviation of (Ai + Bj) from d̄,

that is to say modeling the problem as a BTSP instance with cost matrix C.

To test our asymmetric BTSP heuristic on nozzle guide vane problems we randomly

generated five problems for each size n = 50, 100, 250, 500 with Ai and Bi values generated

uniformly on the interval [−1.0, 1.0]. Because we prefer to work with a cost matrix C that

is integer and nonnegative, we construct cost matrix CZ = (cZ
ij)n×n where

cZ
ij = ⌊10M cij + 0.5⌋, (3.19)
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and M is a positive integer. Finding a BTSP tour with CZ is equivalent to finding a BTSP

tour with C if we rounded all cij to M decimal places. As measuring the values of Ai and

Bi on an actual vane is limited to the accuracy of the measuring tool, rounding the values

of cij in this manner is not unreasonable. We constructed our instances for M = 4 using a

Python script to create problems in the TSPLIB format [95].

Table 3.9 reports the experimental results using Algorithm 3.5 for p = 5 and q = 5 on

each problem over 10 trials. The table lists the ‘seed” value Python’s standard uniform

random number generator function is initialized with [92]. The BAP bound is the strongest

lower bound for each problem, and also tight to the optimal BTSP objective value for all

problems. As before, if our algorithm cannot find a tour whose largest cost is equal to the

best lower bound, we determine the optimal solution by running the exact version of our

heuristic.

The results appear excellent for problems where n = 50 and n = 100, which from a

practical point of view is excellent as typically there are 46 to 100 vanes in an actual nozzle

assembly. For n = 250 and n = 500, the results are less impressive. We suspect generating

instances with a larger value M , say M = 6 or M = 8, would produce integer cost matrices

CZ with more unique values, thus giving the Lin-Kernighan algorithm embedded in our

heuristic more choices for finding an improving swap, thereby improving overall solution

quality.

3.7 The Maximum Scatter TSP

The BTSP is a ‘minimax” version of the traveling salesman problem (TSP), where the

maximum cost in a Hamiltonian cycle (tour) is minimized. It is natural to ask the opposite:

can we find a Hamiltonian cycle whose minimum cost is maximized? The ‘maxmin” version

of the TSP is called the maximum scatter traveling salesman problem (MSTSP). Given a

(directed or undirected) graph G = (V,E) with a nonnegative, integer cost cij assigned to

each edge (i, j) ∈ E, the MSTSP is formally defined as

maximize min{cij : (i, j) ∈ H}
subject to H ∈ Π(G)

(3.20)

where Π(G) is the collection of Hamiltonian cycles in G.



C
H

A
P

T
E

R
3
.

T
H

E
A

S
Y

M
M

E
T

R
IC

B
O

T
T

L
E

N
E

C
K

T
S
P

88

Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size Seed LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

vane50.1 50 501 b BAP 0.00 359 359 0.00 0.00 0.00 0.00 1.00 0.05
vane50.2 50 502 b BAP 0.00 617 617 0.00 0.00 0.00 0.00 1.00 0.06
vane50.3 50 503 b f BAP 0.00 597 597 0.00 0.00 0.00 0.00 1.00 0.05
vane50.4 50 504 b BAP 0.00 258 258 0.00 0.00 0.00 0.00 1.00 0.04
vane50.5 50 505 b BAP 0.00 1056 1056 0.00 0.00 0.00 0.00 1.00 0.04
vane100.1 100 1001 b BAP 0.03 528 528 0.00 2.23 6.63 6.30 35.20 24.76
vane100.2 100 1002 b BAP 0.03 355 355 0.00 0.00 0.00 0.00 1.80 1.16
vane100.3 100 1003 b BAP 0.02 292 292 0.00 0.00 0.00 0.00 1.20 0.57
vane100.4 100 1004 b BAP 0.03 447 447 0.00 2.19 13.65 6.50 30.90 22.32
vane100.5 100 1005 b BAP 0.02 209 209 0.00 0.00 0.00 0.00 1.00 0.37
vane250.1 250 2501 b f BAP 0.50 377 377 0.00 0.00 0.00 0.00 1.00 2.91
vane250.2 250 2502 b BAP 0.13 86 86 0.00 13.49 22.09 12.90 50.80 153.04
vane250.3 250 2503 b BAP 0.19 134 134 41.79 50.00 58.21 14.30 71.80 223.24
vane250.4 250 2504 b BAP 0.16 108 108 28.70 33.70 40.74 14.40 64.40 198.94
vane250.5 250 2505 b BAP 0.16 106 106 35.85 46.60 51.89 14.10 68.30 207.06
vane500.1 500 5001 b BAP 0.81 19 19 78.95 94.74 110.53 15.00 53.80 497.54
vane500.2 500 5002 b BAP 0.97 49 49 20.41 31.22 46.94 15.00 48.50 387.04
vane500.3 500 5003 b BAP 1.16 22 22 54.55 100.45 140.91 15.00 53.70 492.42
vane500.4 500 5004 b BAP 0.89 65 65 184.62 210.46 229.23 15.00 69.70 614.13
vane500.5 500 5005 b BAP 1.41 79 79 94.94 101.39 106.33 15.00 65.00 558.13

Table 3.9: Results on random nozzle guide vane problems. Lower Bound (LB) algorithms: a) 2MB, b) BAP, c) BBSSP(Ĉ),
d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/Average/Worst results reported from 10 trials for each problem.
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The MSTSP was first introduced by Arkin, Chiang, Mitchell, Skiena, and Yang in

1999 [6]. The MSTSP model finds use whenever one wishes to have significant separation

between consecutive vertices in a tour. Arkin et al.’s motivation came from two applications:

finding an optimal riveting sequencing for fastening aircraft body pieces together, and finding

an optimal firing sequence for a dynamic spatial reconstructor. These two applications are

discussed in Section 1.3.

It is well known from an optimization perspective that the MSTSP and the BTSP are

equivalent. Given a (directed or undirected) graph G = (V,E) with cost matrix C, Let

d̄ ≥ max{cij : (i, j) ∈ E} (3.21)

and define an n× n cost matrix D = (dij)n×n where

dij = d̄− cij for all (i, j) ∈ E. (3.22)

Solving the BTSP on D is equivalent to solving the MSTSP on C [54], therefore our BTSP

heuristic can be used without modifications to solve the MSTSP. Further, any lower bound-

ing scheme for the BTSP can be applied on cost matrix D to provide an upper bound on

the optimal MSTSP objective value on C. We note that although this transformation pre-

serves optimality, it does not preserve theoretical approximations, i.e. an ǫ-approximation

for solving the MSTSP does not immediately provide an ǫ-approximation for the BTSP.

This transformation might prove to be difficult for our BTSP heuristic, so it warrants

some computational study to explore its impact on the quality of our heuristic. We limit

our computational study with the MSTSP to the same 86 asymmetric problem set used in

Section 3.5.

Recall the lower bounding schemes presented for the asymmetric BTSP:

• the 2-max bound (2MB) [54, 91];

• the bottleneck assignment problem (BAP) [2, 87];

• the bottleneck biconnected spanning subgraph problem (BBSSP) [86, 73] on cost ma-

trices C̄, Equation (3.1), and Ĉ, Equation (3.3);

• the bottleneck strongly connected spanning subgraph problem (BSCSSP) [84]; and

• the enhanced bidirectional bottleneck paths bound (EBBP).
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Problem Set (# of Problems) 2M
B

B
A

P

B
B

S
S
P

(C̄
)

B
B

S
S
P

(Ĉ
)

B
S
C

S
S
P

E
B

B
P

coin (6) 0 5 1 0 0 2
crane (6) 1 6 0 1 1 2
disk (6) 1 6 1 1 1 2
rtilt (6) 5 6 0 5 5 6
shop (6) 5 6 0 5 5 5
stilt (6) 4 6 0 4 4 6
super (6) 6 6 5 6 6 6
balas (5) 5 5 0 5 5 5
tsplib: no ftv, ≤ 100 nodes (6) 1 6 1 1 1 2
tsplib: no ftv, > 100 nodes (4) 0 4 0 0 0 0
tsplib: ftv, ≤ 100 nodes (9) 1 9 0 1 1 1
tsplib: ftv, > 100 nodes (8) 0 8 0 0 0 0
ftv180 (1) 0 1 0 0 0 0
uk66 (1) 0 1 0 0 0 0
ran500 (5) 5 5 0 5 5 5
ran1000 (5) 5 5 0 5 5 5

Total (86) 39 85 8 39 39 47

Table 3.10: Asymmetric MSTSP upper bound summary on problem groups. The number
listed under each bound name is the number of problems that bound gave the tightest upper
bound in that problem group.

As before, we categorize each of the 86 problems into 16 groups for a compact presentation

of the results in Table 3.10. The number given for each bound and problem group indicates

the number of problems in that group for which the lower bound achieved the tightest result.

These MSTSP upper bound results are very similar to the BTSP lower bound results we

observed in Section 3.5 in that the BAP, BBSSP(Ĉ), and BSCSSP bounds generally provide

cheap, tight upper bounds to the MSTSP objective value.

Tables 3.11, 3.12, and 3.13 report results of Algorithm 3.5 applied to cost matrix D,

Equation (3.22), for p = 5 and q = 5 on each of the 86 problems over 10 trials. For 63 of

the 86 problems, our algorithm had little trouble consistently finding an optimal tour. For

the remaining 23 problems, our algorithm found a tour generally within 3% of optimality.

As in previous cases, if our algorithm did not find a tour whose largest cost is equal to the

best upper bound obtained, we confirm optimality using the exact version of Algorithm 3.5
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where (heuristic) solver α is selected as Concorde’s exact TSP solver.

3.8 The Constrained BTSP

As Figure 1.3 illustrates, a given tour can have a long total length while still being an

optimal BTSP tour. For practical purposes, one may wish to minimize the total length as

a secondary criteria. For a given graph G = (V,E) with cost matrix C and optimal BTSP

objective value z∗, one can find the shortest BTSP tour for G and C by solving the TSP on

cost matrix D = (dij)n×n where

dij =







cij if cij ≤ z∗,

(z∗ + 1)n otherwise.
(3.23)

Alternatively, one may be satisfied with any BTSP tour whose length is less than a given

value l̄. Let us explore this idea in a more general way.

Given a graph G with cost matrix C, weight matrix W , and a given parameter w̄, the

constrained bottleneck TSP (constrained BTSP) is to

minimize max{cij : (i, j) ∈ H}
subject to H ∈ Π(G),

∑

(i,j)∈H

wij ≤ w̄

(3.24)

where Π(G) is the set of all Hamiltonian cycles in G. Let w∗ be the TSP tour length on

G with weight matrix W . It is obvious the constrained BTSP is only feasible for w̄ ≥ w∗.

One can let W = C and w̄ = l̄ to find the BTSP tour whose length is less than l̄.

The constrained BTSP can be solved with minor modifications to the IsFeasible method,

Algorithm 3.4. Start by modifying cost matrix Cδ, Equation (3.13), to be

cδ
ij =







wij if cij ≤ δ,

w̄ + 1 otherwise.
(3.25)

If we can find a tour of length less than or equal to w̄, then we have a ‘yes” answer to our

feasibility test. The BTSPThreshold method, Algorithm 3.5, can be used as is.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

coin100.0 100 b BAP 0.03 896 891 1.35 1.63 2.13 10.00 57.30 40.99
coin100.1 100 b BAP 0.03 858 858 0.00 0.59 1.05 5.60 24.80 14.51
coin100.2 100 b f BAP 0.02 974 974 1.85 2.46 2.77 10.00 56.30 34.58
coin100.3 100 b BAP 0.03 890 890 2.92 3.31 3.93 9.90 52.20 34.12

coin100.4 100 c f BBSSP(Ĉ) 0.00 903 903 0.00 0.12 0.78 6.00 19.40 10.90
coin316.10 316 b BAP 0.59 1684 1684 2.61 3.05 3.56 10.80 63.60 293.33
crane100.0 100 b BAP 0.03 647354 647354 0.00 0.00 0.00 0.00 1.10 0.30
crane100.1 100 a b d e f 2MB 0.00 627751 627751 0.00 0.00 0.00 0.00 1.00 0.11
crane100.2 100 b BAP 0.00 645372 645372 0.00 0.00 0.00 0.00 1.00 0.22
crane100.3 100 b BAP 0.02 629932 629932 0.07 0.32 0.48 12.90 55.50 36.57
crane100.4 100 b f BAP 0.02 619054 619054 0.00 0.00 0.00 0.00 1.10 0.23
crane316.10 316 b BAP 0.28 664713 664713 1.43 2.25 2.83 16.20 90.40 385.49
disk100.0 100 b BAP 0.03 4767083 4767083 10.11 14.76 16.51 12.60 94.30 78.04
disk100.1 100 b BAP 0.03 4882684 4882684 0.28 0.30 0.36 13.00 48.50 31.31

disk100.2 100 b c f BBSSP(Ĉ) 0.00 4959789 4959789 0.00 0.00 0.00 0.00 1.80 1.24
disk100.3 100 b BAP 0.03 4663663 4663663 0.95 2.03 2.52 12.90 74.70 57.06
disk100.4 100 a b d e f 2MB 0.00 4849971 4849971 1.61 4.32 17.20 12.70 72.70 57.94
disk316.10 316 b BAP 0.91 4947068 4947068 7.66 11.57 19.41 16.20 107.00 416.43
rtilt100.0 100 a b d e f 2MB 0.00 529202 529202 0.00 0.00 0.00 0.00 1.00 0.24
rtilt100.1 100 a b d e f 2MB 0.00 546234 546234 0.00 0.00 0.00 0.00 1.00 0.13
rtilt100.2 100 b f BAP 0.02 494714 494714 0.00 0.00 0.00 0.00 1.00 0.16
rtilt100.3 100 a b d e f 2MB 0.00 500897 500897 0.00 0.00 0.00 0.00 1.00 0.13
rtilt100.4 100 a b d e f 2MB 0.00 517383 517383 0.00 0.00 0.00 0.00 1.00 0.12
rtilt316.10 316 a b d e f 2MB 0.00 509367 509367 0.00 0.00 0.00 0.00 1.00 1.06
shop100.0 100 a b d e f 2MB 0.00 1939 1939 0.00 0.00 0.00 2.20 9.90 6.12
shop100.1 100 a b d e f 2MB 0.00 1786 1786 0.00 0.00 0.00 0.00 1.00 0.10
shop100.2 100 b BAP 0.03 2466 2466 5.15 6.25 8.72 10.70 71.40 57.33
shop100.3 100 a b d e f 2MB 0.00 2044 2044 0.00 0.00 0.00 0.00 1.00 0.37
shop100.4 100 a b d e f 2MB 0.00 2104 2104 0.00 0.00 0.00 1.10 6.80 4.07
shop316.10 316 a b d e f 2MB 0.01 1966 1966 0.00 0.00 0.00 0.00 1.10 1.06

Table 3.11: Complete asymmetric MSTSP results (Part 1/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c)
BBSSP(Ĉ), d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

stilt100.0 100 a b d e f 2MB 0.00 1011282 1011282 0.00 0.00 0.00 0.00 1.00 0.11
stilt100.1 100 a b d e f 2MB 0.00 1071396 1071396 0.00 0.00 0.00 0.00 1.00 0.14
stilt100.2 100 a b d e f 2MB 0.00 957076 957076 0.00 0.00 0.00 0.00 1.00 0.11
stilt100.3 100 b f BAP 0.03 997468 997468 0.00 0.00 0.00 0.00 1.00 0.12
stilt100.4 100 a b d e f 2MB 0.00 985154 985154 0.00 0.00 0.00 0.00 1.00 0.12
stilt316.10 316 b f BAP 0.52 990472 990472 0.00 0.00 0.00 0.00 1.00 0.85
super100.0 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.1 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.2 100 a b d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.3 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.09
super100.4 100 a b c d e f 2MB 0.00 16 16 0.00 0.00 0.00 0.00 1.00 0.10
super316.10 316 a b c d e f 2MB 0.00 17 17 0.00 0.00 0.00 0.00 1.00 0.49
ftv180 181 b BAP 0.03 180 180 0.00 0.00 0.00 0.00 1.00 0.34
uk66 66 b BAP 0.00 609 604 0.33 0.66 0.99 9.00 39.80 12.52
balas84 84 a b d e f 2MB 0.00 29 29 0.00 0.00 0.00 0.00 1.00 0.06
balas108 108 a b d e f 2MB 0.00 24 24 0.00 0.00 0.00 0.00 1.00 0.09
balas120 120 a b d e f 2MB 0.00 29 29 0.00 0.00 0.00 0.00 1.60 1.04
balas160 160 a b d e f 2MB 0.00 31 31 0.00 0.00 0.00 0.00 1.00 0.18
balas200 200 a b d e f 2MB 0.00 32 32 0.00 0.00 0.00 0.00 1.00 0.23
ran500.0 500 a b d e f 2MB 0.02 1000 1000 0.00 0.00 0.00 0.00 1.10 2.06
ran500.1 500 a b d e f 2MB 0.02 997 997 0.00 0.00 0.00 0.00 1.00 1.28
ran500.2 500 a b d e f 2MB 0.02 997 997 0.00 0.00 0.00 0.00 1.00 1.43
ran500.3 500 a b d e f 2MB 0.02 998 998 0.00 0.00 0.00 0.00 1.00 1.92
ran500.4 500 a b d e f 2MB 0.00 996 996 0.00 0.00 0.00 0.00 1.00 1.08
ran1000.0 1000 a b d e f 2MB 0.06 1000 1000 0.00 0.00 0.00 0.00 1.30 9.79
ran1000.1 1000 a b d e f 2MB 0.05 1005 1005 0.00 0.00 0.00 0.00 1.10 7.55
ran1000.2 1000 a b d e f 2MB 0.06 1004 1004 0.00 0.00 0.00 0.00 1.20 5.82
ran1000.3 1000 a b d e f 2MB 0.05 1004 1004 0.00 0.00 0.00 0.00 1.00 2.60
ran1000.4 1000 a b d e f 2MB 0.05 1006 1006 0.00 0.00 0.00 2.00 6.50 50.92

Table 3.12: Complete asymmetric MSTSP results (Part 2/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c)
BBSSP(Ĉ), d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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Tight Best Best Best Opt. Best Avg. Worst Avg. Bin. Avg. # Avg.
Problem Size LBs LB LB Time LB Sol. Sol. Gap % Gap % Gap % Steps LK Calls Time (s)

br17 17 b BAP 0.00 5 5 0.00 0.00 0.00 0.00 1.00 0.02
ft53 53 b f BAP 0.00 379 379 0.00 0.00 0.00 0.00 1.00 0.06
ft70 70 b BAP 0.00 976 976 0.20 0.30 0.31 9.00 30.20 9.81
ftv33 34 b BAP 0.00 143 143 0.00 0.00 0.00 0.00 1.00 0.02
ftv35 36 b BAP 0.00 154 154 0.00 0.00 0.00 0.00 1.00 0.02
ftv38 39 b BAP 0.02 154 154 0.00 0.00 0.00 0.00 1.00 0.03
ftv44 45 a b d e f 2MB 0.00 162 162 0.00 0.00 0.00 0.00 1.00 0.03
ftv47 48 b BAP 0.00 168 168 0.00 0.00 0.00 0.00 1.00 0.03
ftv55 56 b BAP 0.00 154 154 0.00 0.00 0.00 0.00 1.00 0.05
ftv64 65 b BAP 0.00 160 160 0.00 0.00 0.00 0.00 1.00 0.05
ftv70 71 b BAP 0.00 161 161 0.00 0.00 0.00 0.00 1.00 0.09
ftv90 91 b BAP 0.02 148 148 2.70 3.04 4.05 7.00 38.30 22.67
ftv100 101 b BAP 0.03 155 155 0.65 1.81 2.58 7.10 35.70 23.17
ftv110 111 b BAP 0.02 165 165 0.00 1.03 1.82 6.90 27.40 21.22
ftv120 121 b BAP 0.02 165 165 0.00 0.00 0.00 0.00 1.20 0.87
ftv130 131 b BAP 0.02 172 172 0.00 0.00 0.00 0.00 1.00 0.17
ftv140 141 b BAP 0.02 172 172 0.00 0.00 0.00 0.00 1.10 0.46
ftv150 151 b BAP 0.03 178 178 0.00 0.00 0.00 0.00 1.00 0.23
ftv160 161 b BAP 0.02 178 178 0.00 0.00 0.00 0.00 1.00 0.19
ftv170 171 b BAP 0.02 180 180 0.00 0.00 0.00 0.00 1.00 0.94
kro124p 100 a b c d e f 2MB 0.00 2347 2347 0.00 0.00 0.00 0.00 1.00 0.15
p43 43 b BAP 0.02 17 17 0.00 1.76 5.88 1.60 11.30 2.12
rbg323 323 b BAP 0.17 23 23 8.70 8.70 8.70 4.00 24.20 78.19
rbg358 358 b BAP 0.34 21 21 0.00 0.00 0.00 0.00 1.70 4.49
rbg403 403 b BAP 0.41 19 19 0.00 0.53 5.26 2.00 11.90 43.47
rbg443 443 b BAP 0.75 18 18 0.00 0.00 0.00 0.00 2.10 8.90
ry48p 48 b BAP 0.00 1232 1232 2.27 3.20 4.30 9.80 49.90 11.43

Table 3.13: Complete asymmetric MSTSP results (Part 3/3). Lower Bound (LB) algorithms: a) 2MB, b) BAP, c)
BBSSP(Ĉ), d) BBSSP(C̄), e) BSCSSP, f) EBBP. Best/average/worst results reported from 10 trials for each problem.
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Similarly, we can modify cost matrix Cδ,r, Equation (3.14), to create a ‘shake” cost

matrix. Recall that z1 < z2 < · · · < zm are the distinct costs of C in ascending order. Let

cδ
ij =







wij + rp if cij ≤ δ where cij = zp,

w̄ + rm + 1 otherwise.
(3.26)

To answer ‘yes” or ‘no” to the feasibility question with cost matrix Cδ,r we have to compute

the length of any tour using Equation (3.26) against the original weight matrix W , checking

if the tour length is no more than w̄ for a ‘yes” answer.

Clearly, any BTSP lower bound on C is a valid lower bound for the constrained BTSP on

C and W . Such lower bounds do not take into account the additional constraint, however,

so we now explore a method to formulate a valid lower bound for the constrained BTSP

that takes into account the additional constraint on total weight with weight matrix W .

Let γ be any TSP lower bound algorithm. Using γ and the constrained version of Cδ,

(3.24), a constrained BTSP lower bound can be constructed informally as follows.

1. Let z1 < z2 < · · · < zk be the distinct entries of C sorted in non-increasing order.

2. Let l← 1, u← k.

3. Let k ← (u− l)/2 + l.

4. Let w ← γ(Czk) (i.e. solve TSP lower bound γ on Cδ where δ = zk).

5. If w ≤ w̄, set u = δ; otherwise, set l = δ + 1.

6. If l = u then return zl; otherwise, go to step 3.

Let z be the result of this procedure. It is easy to se z is a valid lower bound for the

constrained BTSP on C and W with parameter w̄.

There are a variety of TSP lower bounds to choose as γ. For example, there is the

minimum spanning tree bound [2], the Held-Karp bound [45, 46, 94], the assignment prob-

lem [2], and the degree-constrained minimum spanning tree bound [69]. If the running-time

of a bound γ is O(Tγ), the constrained bottleneck lower bound extension runs in O(Tγ log k)-

time. It is possible to significantly improve on this running-time by exploiting the problem’s

structure, such as Punnen and Nair’s constrained bottleneck spanning tree bound [88].



Chapter 4

The Balanced TSP

A balanced optimization problem (BOP) finds a feasible solution that minimizes the range

of dispersion among competing activities. It can be used to model problems where a uniform

distribution of resources is important. The balanced traveling salesman problem (Balanced

TSP) is an example of a BOP. Given a complete graph G = (V,E), a nonnegative integer

cost cij prescribed for each (i, j) ∈ E, and a collection Π(G) of Hamiltonian cycles in G, the

Balanced TSP is to

minimize max{cij : (i, j) ∈ H} −min{cij : (i, j) ∈ H}
subject to H ∈ Π(G).

(4.1)

The nozzle guide vane assembly problem introduced in Chapter 1 is an example of an

application where the Balanced TSP model is suitable for solving this problem. Recall that

each vane i has values Ai and Bi that measure, respectively, the offset of the convex and

concave sides of the vane from a master vane. The nozzle flow area between two vanes i

and j placed clockwise-adjacent from one another is (Bi + Aj). Refer to Figure 4.1 for a

diagram of the vanes. The goal is to construct a vane ordering that is ‘uniform’.

There are various ways to construct a ‘uniform’ assembly. The approach of Plante et

al. [81] is to minimize the sum squared difference between the mean nozzle flow area d̄ and

the nozzle flow area Ai + Bj between any pair of adjacent vanes. The mean total nozzle

flow area d̄ is given by

d̄ =

∑n
i=1(Ai + Bi)

n
(4.2)

96
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j

Aj Bj

i

Ai Bi

Figure 4.1: Area between vanes i and j

where n is the number of vanes. Note that d̄ is constant, independent of sequencing. Con-

struct a complete n× n cost matrix C = (cij)n×n where

cij = (d̄− (Ai + Bj))
2.

Plante at al.’s approach is to solve the traveling salesman problem (TSP) on C.

In Chapter 3 we minimize the largest square difference between any pair of consecutive

vanes by solving the bottleneck traveling salesman problem (BTSP) on C. Solving the

Balanced TSP on C gives an assembly where the smallest and largest square difference

between any pair of consecutive vanes is as small as possible. We believe the Balanced TSP

model is very much suitable for this application.

Vairaktarakis’ cycle workforce scheduling problem is another problem with a balanced

objective [106]. BOP objective functions have also been studied by Katoh [58] and Martello

et al. [74] in the context of single machine scheduling, and by Zeitlin [111] in the context of

resource allocation. Further, many TSP and bottleneck TSP applications have an analogous

meaning in the context of range minimization, thus the Balanced TSP is an interesting

problem with practical implications.

Background on balanced optimization problems

The BOP class of problems was introduced by Martello, Pulleyblank, Toth, and de Werra in

1984 where they proposed a general purpose algorithm for solving BOPs of size n by invoking

a feasibility-oracle O(n) times [74]. Their motivation was an application in designing a tour

for a travel agency. They also presented an improved algorithm for solving the balanced

assignment problem.

Several authors have studied special cases, generalizations, and variations of BOPs since
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Martello et al.’s paper. Camerini et al. [15] and later Galil and Schieber [35] considered

BOP problems where the feasible solutions form a collection of all spanning-trees of a graph.

Nemoto provided an efficient algorithm for finding an ideal of size k of a partially ordered

set such that the range of the weights is at a minimum [76]. Improved algorithms for the

special case where the set of feasible solutions consist of all cuts in a graph has been studied

by Katoh and Iwano [59], Dai et al. [25], and Epstein [30].

Cappanera and Scutella studied an NP-hard BOP involving k-paths and presented poly-

nomially solvable cases of the problem [16]. The balanced linear programming problem was

introduced by Ahuja, where he proposed a parametric simplex algorithm for solving the

problem [1]. Scutella [99] and Altenhöfer et al. [3] proposed strongly polynomial algorithms

for special cases of network flow problems. Finally, Duin and Volgenant [28], Katoh [58],

Punnen and Nair [89], Punnen and Aneja [85], and Tigan et al. [104] studied generalizations

and variations on BOPs.

To the best of our knowledge no NP-hard BOP has been studied in literature, and no

computational study has been performed with heuristics for any instance of a BOP.

Our contributions

We present heuristic algorithms for solving the Balanced TSP. The Double-Threshold Algo-

rithm of Section 4.1 discusses an approach that has been used successfully in other balanced

combinatorial optimization problems [89]. Section 4.2 introduces the Double-Bottleneck

heuristic and the Iterative-Bottleneck algorithms, both which use the bottleneck TSP heuris-

tics developed in Chapters 2 and 3. In Section 4.3 we show how to calculate a lower bound

on the Balanced TSP objective value. Considerations for the Balanced TSP on an asym-

metric cost matrix is presented in Section 4.4. Finally, computational results are given in

Section 4.5.

Throughout this chapter we use the following notation. Let n be the number of vertices

in the complete graph G = (V,E), and let z1 < z2 < · · · < zm be the distinct entries in a

cost matrix C arranged in ascending order. We define G[l, u] to be the subgraph containing

only arcs with costs at least zl and at most zu, i.e. G[l, u] = (V,El,u) where

El,u = {(i, j) ∈ E : zl ≤ cij ≤ zu}. (4.3)

Recall that Π(G) denotes the set of Hamiltonian cycles in G. Finally, let BTSP(C) and
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MSTSP(C) be the optimal objective values for the BTSP and MSTSP on cost matrix

C, respectively. To develop algorithms for the Balanced TSP we initially assume C is a

symmetric matrix. The case when C is asymmetric is treated separately in Section 4.4.

4.1 Double-Threshold Algorithm

Using the G[l, u] notation we can restate the Balanced TSP problem for a graph G with

cost matrix C as

minimize zu − zl

subject to G[l, u] is Hamiltonian,

1 ≤ l ≤ u ≤ m.

(4.4)

Assuming we could determine if G[l, u] is Hamiltonian or not by a polynomial-time oracle,

we could solve the problem through a systematic search of values of l and u. We can

informally describe the Double-Threshold (DT) algorithm as follows:

1. Set l ← 1, u← 1, l∗ ← 1, u∗ ← m.

2. If G[l, u] is not Hamiltonian, set u← u + 1. Go to step 4.

3. If G[l, u] is Hamiltonian then:

(a) If zu − zl < zu∗ − zl∗ , let l∗ ← l, u∗ ← u.

(b) Set l ← l + 1.

4. If l > u or u > m, return any tour in G[l∗, u∗]. Otherwise, go to step 2.

Note that the DT-algorithm is a specialization of Martello et al.’s algorithm [74]. Of

course, detecting if a general graph is Hamiltonian or not is an NP-Hard problem. The

above algorithm asks if a graph is Hamiltonian O(m)-times, so the approach is not practical

when the problem size is very large. We instead look at how to convert this approach into

an efficient heuristic. In previous chapters we formulate the Hamiltonian question as a TSP

problem. Although solving the TSP is no easier, we can utilize powerful TSP heuristics to

help answer if G[l, u] is Hamiltonian or not (in an approximate way). Section 4.1.2 explores

this idea for the Balanced TSP.

But first, in Section 4.1.1 we test the graph G[l, u] to determine if it possess necessary

conditions to support Hamiltonian cycles. Section 4.1.3 introduces some heuristic decisions
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on values of l and u to help speed up the search considerably, and also presents the final

algorithm.

4.1.1 Necessary Conditions for Hamiltonicity

Before attempting to find a Hamiltonian cycle in G[l, u], we can examine the graph to see if

passes some necessary conditions to support Hamiltonian cycles. In this section, we discuss

how BTSP lower bounds and MSTSP upper bounds can be used to eliminate large portions

of the solution space. We also present two simple checks one can perform in polynomial-time

to conclude G[l, u] is non-Hamiltonian, both derived from lower bounds for the Bottleneck

TSP.

Information from BTSP and MSTSP solutions

Let H ′ and H ′′ be optimal BTSP and MSTSP tours in a graph G with cost matrix C.

Find the integers L, U , and M such that zL = min{cij ∈ H ′}, zU = max{cij ∈ H ′}, and

zM = min{cij ∈ H ′′}. From these values we know Hamiltonian cycles do not exist in G[l, u]

when u < U and l > M . Further, as H ′ is a Hamiltonian cycle in G[L,U ], we can start our

search in the DT-algorithm with l = L + 1, u = U , and stop whenever l > M .

The preceding chapters show how to heuristically find BTSP and MSTSP tours in a

heuristic manner, but a provably optimal solution is often found. As such, we can use these

heuristics for our Balanced TSP heuristics so long as the BTSP and MSTSP heuristics find

provably optimal solutions. Alternatively, one can instead find a lower bound and upper

bound on the BTSP and MSTSP objective values, respectively, and use those values to

inform a starting value for u and a stopping criteria for l. We refer to Chapters 2 and 3 for

more information on bounds for these problems.

Biconnectivity of Hamiltonian Cycles

A biconnected (2-connected) graph can be defined as a graph where either:

(a) two vertex-disjoint paths exists between any pair of vertices; or,

(b) the removal of any vertex will not disconnect the graph (i.e. the graph contains no

articulation points).
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As any Hamiltonian cycle in an undirected graph is biconnected, G[l, u] must also be bi-

connected in order to support a Hamiltonian cycle. Tarjan presents a depth-first search

algorithm for checking biconnectivity in O(m)-time [103].

Cycle-covers and Hamiltonian Cycles

A k-cycle-cover is a spanning set of node-disjoint cycles where each cycle contains at least k

vertices. A Hamiltonian cycle is therefore a n-cycle-cover. However, as finding Hamiltonian

cycles is NP-Hard, we can instead attempt to determine if a k-cycle-cover exists for some

k < n. If no k-cycle-cover exists for k < n in G[l, u] then it is clearly true that G[l, u] is not

Hamiltonian.

For undirected graphs Hartvigsen proved 4-cycle-covers can be found in O(n3)-time [42].

This improves the result of Tutte, who reduced the 3-cycle-cover problem to the classic

perfect matching problem in undirected graphs [105]. Papadimitriou and Yannakakis showed

the k-cycle-cover problem is NP-Complete for k ≥ 6 [78]. The complexity of the 5-cycle-

cover problem is still open.

For directed graphs we will show how to solve the 2-cycle-cover problem in polynomial-

time. This result obviously presents a polynomial-time 2-cycle-cover algorithm for undi-

rected graphs as well. Valiant showed the k-cycle-cover problem is NP-Complete for k ≥ 3

in directed graphs [107] (see also Garey and Johnson [36]).

Given a graph G = (V,E) we can construct a directed graph D = (N1 ∪ N2, A) where

N1 = {1, 2, . . . , n}, N2 = {1′, 2′, . . . , n′} and A = {(i, j′) ∈ N1 ×N2 if (i, j) ∈ E} (note: we

assume E is a set of undirected edges, but the same construction works if E is a set of directed

edges). Clearly, D is bipartite. Suppose we solve the bipartite matching problem (BMP)

on D, which is to find a matching M in D of maximal cardinality. If G is Hamiltonian,

then a matching M of cardinality n = |V | must exist. Simply take any Hamiltonian cycle

in G, orient its edges either clockwise or counter-clockwise, and let that set of edges be

the matching M . Figure 4.2 gives an example of the construction of D, and shows how a

Hamiltonian cycle in G corresponds to a matching of cardinality n in D. The BMP can be

solved in O(
√

nm)-time [2].

Suppose then if we construct the directed graph D[l, u] from G[l, u] and solve the BMP

on D[l, u]. For G[l, u] to contain a Hamiltonian cycle, the maximal cardinality matching in

D[l, u] must be n. If a matching M of cardinality n exists, then M defines a 2-cycle cover S =

{S1, S2, . . . , Sk} of G[l, u]. This check for the support of a 2-cycle-cover is the one we use in
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(b) Bipartite, directed graph D

Figure 4.2: Example of constructing D from a given G. Note that G has a Hamil-
tonian cycle H = {(1, 4), (4, 3), (3, 2), (2, 5), (5, 1)}, which corresponds to the matching
M = {(1, 4′), (4, 3′), (3, 2′), (2, 5′), (5, 1′)} in D.

our computational experiments for simplicity, but this check could obviously be strengthened

by using Hartvigsen’s 4-cycle-cover algorithm when the cost matrix is symmetric [42].

Further Comments

The idea for checking G[l, u] for biconnectivity comes from the Bottleneck Biconnected

Spanning Subgraph Problem (BBSSP) bound, and the idea of finding a cycle cover in

G[l, u] comes from the Bottleneck Assignment Problem (BAP) bound. Both these bounds

are discussed in Chapter 2, where it is argued that the BAP and BBSSP are non-dominated

lower bounds. This means instances exist where the BAP is the superior bound, just as

instances exist where the BBSSP is the superior bound. On the other hand, the BBSSP

bound dominates the 2-Max Bound (2MB), as no instance exists where the 2MB gives a

superior bound to the BBSSP. A similar argument can be made for performing these two

checks. Figure 4.3(a) is biconnected, but does not contain a cycle cover, while Figure 4.3(b)

contains a cycle cover, but is not biconnected.

Other polynomial-time checks could be made to find structures in G[l, u] that do not

support Hamiltonian cycles, but one must be careful that the time spent checking for non-

Hamiltonian structures does not outweigh the time spent searching for a Hamiltonian tour.

Further, many of the various sufficient conditions of Hamiltonicity are satisfied either for

dense graphs, or graphs that are specially structured [90]. The graph G[l, u] is likely to be

sparse when l and u are close, so we decided to not incorporate such sufficient conditions.
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Figure 4.3: The graph depicted in (a) is biconnected, but does not contain a cycle cover,
while the graph depicted in (b) contains a cycle cover, but is not biconnected.

4.1.2 Detecting Hamiltonian Cycles

As explored in previous chapters, we can use a TSP heuristic with a graph G[l, u] to con-

clude with certainty that G[l, u] is Hamiltonian, or heuristically conclude that it is non-

Hamiltonian. There are many ways to formulate a cost matrix to help us answer this

question as a TSP problem. Let us consider some desirable properties of such a cost matrix

for the DT-algorithm.

The basic DT-algorithm only increases l by one whenever a Hamiltonian cycle is found

in G[l, u]. If we can make costs closer to zu more desirable for a TSP heuristic, then it is

possible we can find a tour in G[l, u] whose smallest cost is greater than zl. This would let

us increase l rapidly to achieve faster convergence without any additional effort.

Further, in previous chapters we have found good value in introducing randomness into

the cost matrix (what we call ‘shake” operations). As our TSP heuristic of choice, the

Lin-Kernighan heuristic, is a local-search algorithm, this randomness permutes the local

neighbourhoods without changing where global minima are located at. This process can

help the Lin-Kernighan heuristic avoid getting consistently stuck in a local minimum. If the

Lin-Kernighan heuristic fails to find a Hamiltonian cycle in G[l, u], we can simply generate

a new set of random numbers and ask the question again.

Finally, we obviously want to weight edges outside of the range [zl, zu] heavily to exclude

them from any solution. To this end, let δ1 > δ2 > · · · > δm be a set of ordered random

numbers on some interval [a, b] and let rij be a random integer also on the interval [a, b].

Further, choose an integer M ≥ δ1 + zu − zl. Let Ĉ = (ĉij)n×n be a n × n cost matrix for
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the graph G[l, u] where

ĉij =







zu − zk + δk if zl ≤ cij ≤ zu and cij = zk

nM + rij otherwise.
(4.5)

If a TSP heuristic with cost matrix Ĉ can find a tour with length less than or equal to

nM , then we can provably conclude that G[l, u] is Hamiltonian. However, a tour with

length greater than nM allows us to only heuristically conclude G[l, u] is non-Hamiltonian.

We can see Ĉ satisfies the properties mentioned above: costs outside of [zl, zu] are heavily

weighted, costs closer to zu are small, and random numbers allow us to shake this cost

matrix to help a TSP heuristic find the global minimum.

Algorithm 4.1, IsHamiltonian, outlines our procedure for detecting if G[l, u] is Hamil-

tonian or not, where α is a TSP heuristic, and µ is the number of attempts with cost

matrix Ĉ. This method also includes the necessary conditions for Hamiltonicity discussed

in Section 4.1.1.

With Algorithm 4.1 defined, we formally describe the double threshold (DT) method in

Algorithm 4.2. Algorithm 4.2 uses a Balanced TSP lower bound value LB which we show

how to calculate in Section 4.3. Whenever l is increased we can also use the lower bound

value LB to increase u to the point such that zu − zl ≥ LB.

Theorem 14. The DT-Algorithm computes an optimal solution to the Balanced TSP if α

is an exact TSP solver. If α is a TSP heuristic, it terminates with a heuristic solution to

the Balanced TSP.

Proof. The proof of this correctness is not difficult when α is an exact TSP solver, so

we omit it. If α is a TSP heuristic, it might falsely conclude G[l, u] is non-Hamiltonian.

Algorithm 4.2 therefore becomes a Balanced TSP heuristic when α is a TSP heuristic.

Experimentally, the Lin-Kernighan TSP heuristic has a running time of approximately

O(n2.2) [47, 51]. When it used as the TSP heuristic α, the DT-Algorithm has a running

time of approximately O(n2.2m).

4.1.3 Heuristic Decisions on Values of l and u

Incrementing either l or u by one at each iteration of the DT-algorithm is a slow crawl

through the solution space of possible zi values, particularly if m is large. As m could be
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Algorithm 4.1: IsHamiltonian(G,C, l, u, α, µ)

Input: A complete graph G on n vertices with cost matrix C, indices l and u
(1 ≤ l ≤ u ≤ m), TSP solver/heuristic α, and integer µ which represents the
number of iterations with cost matrix Ĉ.

Output: The 4-tuple (feasible, tour,min cost,max cost) where feasible is a
Boolean value that indicates if a Hamiltonian cycle was found in G[l, u],
tour is the feasible tour found, and min cost and max cost is smallest and
largest cost in tour, respectively.

if G is not biconnected then
return (FALSE, ∅,−∞,∞)

end
if G does not contain a cycle cover then

return (FALSE, ∅,−∞,∞)
end
Let z1 < z2 < ... < zm be a list of the unique costs from C in ascending order;
for i = 1, . . . , µ do

Let δ1 > δ2 > ... > δm be a list of random integers arranged in ascending order
where δ1 ≤ n2 and δm ≥ 1;
M ← δ1 + zu − zl;
Construct Ĉ given l, u, z1, . . . , zm, δ1, . . . , δm, M , and a random number
generator;
(length, tour)← α(n, Ĉ);
min cost← min {cij : (i, j) ∈ tour};
max cost← max {cij : (i, j) ∈ tour};
if length ≤ nM then

return (TRUE, tour,min cost,max cost);
end

end
return (FALSE, ∅,−∞,∞);
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Algorithm 4.2: DT(G,C,H ′,H ′′, LB,α, µ)

Input: A graph G with cost matrix C, BTSP tour H ′, MSTSP tour H ′′, Balanced
TSP lower bound LB, TSP solver/heuristic α, and integer µ which
represents the number of iterations with cost matrix Ĉ.

Output: The (optimal/heuristic conclusion) on the Balanced TSP objective value
and tour.

Let z1 < z2 < ... < zm be a list of the unique costs from C in non-increasing order;
Choose l such that zl = min{cij : (i, j) ∈ H ′};
Choose u such that zu = max{cij : (i, j) ∈ H ′};
Choose L such that zL = min{cij : (i, j) ∈ H ′′};
OBJ ← zu − zl; best tour ← H ′;
if OBJ = LB then

return (OBJ, best tour);
end

l← l + 1;
while (l ≤ u), (l ≤ L), and (u ≤ m) do

(hamiltonian, tour)← IsHamiltonian(G,C, l, u, α, µ);
if hamiltonian then

Choose p such that zp = min{cij : (i, j) ∈ tour};
Choose q such that zq = max{cij : (i, j) ∈ tour};
if zq − zp < OBJ then

OBJ ← zq − zp; best tour ← H0;
if OBJ = LB then

return (OBJ, best tour);
end

end

l← p + 1;
if zu − zl < LB then

Choose smallest t such that zt − zl ≥ LB;
u← t;

end

else
u← u + 1;

end

end
return (OBJ, best tour);
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O(n2) when G is a complete graph, for very large n the DT-Algorithm might be impractical.

Here we present two theorems which could reduce the number of iterations of the outer

‘while’ loop in the DT-algorithm. The first provides a new termination condition, while the

second provides a means to rapdily increase the lower threshold l.

Let S = {H1,H2, . . . ,Hp} be the Hamiltonian cycles found in order of discovery by

a Balanced TSP algorithm where Ht indicates the Hamiltonian cycle found at iteration

t ∈ {1, . . . , p}. Further, let rt = max{cij : (i, j) ∈ Ht} and st = min{cij : (i, j) ∈ Ht} be the

smallest and largest cost in Ht, respectively. We will assume the Balanced TSP algorithm

finds solutions in such an order that

r1 ≤ r2 ≤ · · · ≤ rp and s1 < s2 < · · · < sp. (4.6)

For k = 1, . . . , p choose an index t(k) such that

rt(k) − st(k) = min{ri − si : i ∈ 1, . . . , k}. (4.7)

The index t(k) represents which of the known k solutions is the best in terms of Balanced

TSP objective value. We can define the set of optimal Balanced TSP tours as the set

S0 = {Hi : ri − si = rt(p) − st(p)}. (4.8)

Finally, let γ be a parameter such that γ ≥ max{si : Hi ∈ S0}.

Theorem 15. For any k ∈ 1, . . . , p, if rt(k) − st(k) + γ ≤ rk, then Ht(k) ∈ S0.

Proof. Suppose Ht(k) /∈ S0. There must then exist an index i > k such that Hi ∈ S0 and

ri − si < rt(k) − st(k). We see ri < si + rt(k) − st(k) ≤ γ + rt(k) − st(k) ≤ rk as st(k) ≤ γ and

rk ≥ rt(k). Thus a contradiction presents itself, so i ≤ k.

Theorem 15 provides a new termination condition for the DT-algorithm. To be effective

parameter γ should be as tight as possible to max{si : Hi ∈ S0}. We use the smallest cost

in the MSTSP tour H ′′ for γ, although any upper bound on the MSTSP objective value

could also be used.

Theorem 16. If Ht(k) /∈ S0, then there exists Hi ∈ S0, q > k such that sq > rk−rt(k)+st(k).
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Proof. Suppose it is possible for sq ≤ rk − rt(k) + st(k). Since rk ≤ rq, it must be true that

sq ≤ rq − rt(k) + st(k). This implies rq − sq ≥ rt(k) − st(k), but since Hq ∈ S0, it must also

be true that Ht(k) ∈ S0. Thus, a contradiction.

Practically, Theorem 16 can be used to rapidily increase the index of the lower threshold l.

Ahuja [1], Punnen [83], Punnen and Nair [89], and Martins [75] all used results similar to

Theorems 15 and 16 for exact BOP algorithms. The theorems presented above are slightly

more general than those considered in [1, 75, 83, 89]. Both theorems are only true if we can

solve the BOP exactly.

As we use a TSP heuristic to determine if G[l, u] is Hamiltonian or not, it is possible the

conditions of Equation (4.6) may not hold. We choose to apply these theorems in a heuris-

tic way and assume that the conditions of Equation (4.6) are true. If our TSP heuristic is

powerful, these conditions should rarely be violated. If the conditions of Equation (4.6) are

violated, solution quality may deteriorate but at the benefit of shorter running-times. The

resulting trade-off between solution quality and running time must be analyzed experimen-

tally. It should be noted that the conditions of Equation (4.6) will always hold if we used

an exact TSP algorithm.

Incorporating both these modifications into the DT-Algorithm, we present the Modified

Double-Threshold (MDT) Algorithm in Algorithm 4.3 for the Balanced TSP.

4.2 Double Bottleneck and Iterative Bottleneck Algorithms

The DT and MDT-algorithms gradually update two indices l and u using a TSP heuristic

to determine if G[l, u] is Hamiltonian or not. The double bottleneck (DB) and iterative

bottleneck (IB) algorithms start from a similar place, but instead use a BTSP heuristic.

For any integer l, 1 ≤ l ≤ m, and integer M > zm, define the n × n cost matrix

C l = (cl
ij)n×n where

cl
ij =







cij if cij ≥ zl

M otherwise.
(4.9)

Let T be a BTSP tour on C l, and let zu = max{cij : (i, j) ∈ T}. It is clear cij ∈ [zl, zu] for

all (i, j) ∈ T so long as G[l,m] is Hamiltonian. Further, this indicates the Balanced TSP

objective value is at most zu− zl. We can therefore define the Balanced TSP problem using

the BTSP as follows:
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Algorithm 4.3: MDT(G,C,H ′,H ′′, LB,α, µ)

Input: A graph G with cost matrix C, BTSP tour H0, MSTSP tour H∞, TSP
solver/heuristic α, Balanced TSP lower bound LB, and integer µ which
represents the number of iterations with cost matrix Ĉ.

Output: The (optimal/heuristic conclusion) on the Balanced TSP objective value
and tour.

Let z1 < z2 < ... < zm be a list of the unique costs from C in non-increasing order;
Choose l such that zl = min{cij : (i, j) ∈ H ′};
Choose u such that zu = max{cij : (i, j) ∈ H ′};
Choose L such that zL = min{cij : (i, j) ∈ H ′′};
OBJ ← zu − zl; best tour ← H ′;
if OBJ = LB then

return (OBJ, best tour);
end

l← l + 1;
while (l ≤ u), (l ≤ L), and (u ≤ m) do

(hamiltonian, tour)← IsHamiltonian(G,C, l, u, α, µ);
if hamiltonian then

Choose p such that zp = min{cij : (i, j) ∈ tour};
Choose q such that zq = max{cij : (i, j) ∈ tour};
if zq − zp < OBJ then

OBJ ← zq − zp; best tour ← H0;
if OBJ = LB then

return (OBJ, best tour);
end

end

if OBJ + L ≤ zp then /* Theorem 15 */
return (OBJ, best tour);

end
l← p + 1;
Choose smallest k ≥ l such that zk ≥ zu −OBJ ; /* Theorem 16 */

l← k;
if zu − zl < LB then

Choose smallest t such that zt − zl ≥ LB;
u← t;

end

else
u← u + 1;

end

end
return (OBJ, best tour);
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minimize BTSP (C l)− zl

subject to BTSP (C l) < M,

l = 1, . . . ,m.

(4.10)

We see the Balanced TSP may be solved by evaluating O(m) BTSP instances. As with

the DT-Algorithm, we know the BTSP is infeasible if zl > zL = MSTSP(C) as G[l,m] is

non-Hamiltonian for l > L. An informal description of how to solve the Balanced TSP using

an exact BTSP solver is as follows.

1. Set l ← 1, l∗ ← 1, u∗ ← m.

2. Let zu be the optimal BTSP objective value on C l.

3. If zu − zl < zu∗ − zl∗ , let l∗ ← l, u∗ ← u

4. If l > L, return any tour in G[l∗, u∗]. Otherwise, set l← l + 1 and go to step 2.

While this method is correct, solving O(m) BTSP instances is likely computationally

infeasible as the BTSP is NP-Hard, especially when m is large. Chapters 2 and 3 present

a BTSP heuristic that could be used in place of an exact BTSP solver, much as how we

replaced the exact TSP solver of the DT and MDT-algorithms with the Lin-Kernighan TSP

heuristic. Even with a good heuristic, this procedure only increases the lower threshold l by

one at each iteration. The double bottleneck (DB) and iterative bottleneck (IB) algorithms

improve the basic framework outlined above to make solving the Balanced TSP with a

BTSP heuristic computationally efficient.

4.2.1 Avoiding Non-Improving Searches with the BTSP Heuristic

In Chapter 2 we discuss the bottleneck biconnected spanning subgraph problem (BBSSP)

lower bound for the symmetric BTSP. Similarly, in Chapter 3 we discuss the bottleneck

assignment problem (BAP) bound. The optimal objective values for the BBSSP and the

BAP are lower bounds on the optimal BTSP objective value on a cost matrix C.

Observation 1. Let H∗ be the best known Balanced TSP tour (not necessarily optimal) with

objective value OPT . For any l, let zB be a lower bound on the optimal BTSP objective
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value on C l. If OPT < zB − zl, then the BTSP tour on C l will not be a better Balanced

TSP tour than H∗.

Proof. OPT < zB − zl ≤ BTSP (C l)− zl.

Let zB be the BBSSP bounds on cost matrix C l. Following this observation, we can

compare zB − zl to the objective value of our current best known tour to decide if solving

the BTSP on C l is worth the effort. Our implementation of the BBSSP algorithm is an

O(m log m)-time implementation and our BAP algorithm is an O(n2.5) implementation.

Better implementations exist for both these bounds. Readers should consult Chapters 2

and 3 for a more indepth discussion of these bounds.

4.2.2 The Double-Bottleneck (DB) Algorithm

The basic framework presented above solves the BTSP on cost matrix C l, Equation (4.9),

for some l ∈ 1, . . . ,m. Let H l be the resulting BTSP tour in C l. Choose indices p1 and u

such that zp1
= min{cij : (i, j) ∈ H l} and zu = max{cij : (i, j) ∈ H l}. As we are solving

these problems in the order l = 1, . . . ,m, if zu > zm, then the BTSP problem is infeasible

and we can terminate the search. Otherwise, zu may be used to apply Theorems 15 and 16.

While at this stage our intention is only to update the upper threshold (and thus best known

solution), if zp1
> zl we can set l = p1 + 1 (instead of incrementing it by a single value).

Once the upper threshold zu is fixed we attempt to find the largest lower index p2 with

value zp2
such that Π(G[p2, u]) 6= ∅. To do this, we can solve the MSTSP on the cost matrix

Cu = (cu
ij)n×n where

cu
ij =







cij if cij ≤ zu

zl − 1 otherwise.
(4.11)

Let Hu be the resulting MSTSP tour in Cu. Choose indicies p2 and q such that zp2
=

min{cij : (i, j) ∈ Hu} and zq = max{cij : (i, j) ∈ Hu}. According to the BTSP tour H l a

MSTSP tour exists in Cu with objective value at least zl, but if we use a heuristic it may

not be able to find this tour again. If it cannot (i.e. zp2
= zl − 1) we abandon the attempt

to increase l further. Otherwise, if p2 > p1 we increase l = p2 + 1. We may also update the

best known solution to Hu if necessary. It may be true that q < u, but we do not lower the

upper threshold u to q (this, of course, will not happen if we use an exact BTSP and exact

MSTSP solver).
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We discuss how to calculate a Balanced TSP lower bound in Section 4.3. Let the lower

bound value be LB. If at any time we find a tour whose Balanced TSP objective value equals

LB we may terminate the algorithm with a provably optimal solution. If after updating

indices l and u we find zu−zl < LB we may increase u until zu−zl = LB. The DB algorithm

continues until a tour with objective value LB is discovered, or lower index l is increased

beyond L where zL = MSTSP (C). It may be noted that the conditions of Theorems 15

and 16 are valid for the DB-algorithm, so may be used to expedite the search. We synthesize

all these ideas formally into Algorithm 4.4. As the BTSP and MSTSP heuristics each have

an excepted running-time of O(n2.2 log m), the DB-algorithm will have an expected running-

time of O(n2.2m log m).

4.2.3 The Iterative Bottleneck (IB) Algorithm

The DB-algorithm solves a BTSP and MSTSP problem in each iteration to update the

lower and upper threshold values. While this has the potential to reduce the number of

iterations when compared to the DT-algorithm, the BTSP or MSTSP heuristics developed

in the previous chapters are O(log m) more expensive than the TSP heuristic used in the

DT-algorithm. The iterative bottleneck (IB) algorithm offers a compromise between these

two algorithms. Like the DB-algorithm, it uses a BTSP heuristic to update the the upper

threshold u; like the DT-algorithm, it uses a TSP heuristic to update the lower threshold l.

To do the later operation, it again uses cost matrix Ĉ, Equation 4.10. A formal description

of this procedure is given in Algorithm 4.5. As with the DB-algorithm, the running-time of

the IB-algorithm is O(n2.2m log m).

4.3 Lower Bounds for the Balanced TSP

Either the DT-algorithm, or the DB/IB-algorithm can be easily modified to calculate a

lower bound on the optimal Balanced TSP objective value by simply removing the tour

finding piece. As both are asymptotically similar in running-time, either is a good choice.

We present such a modification of the DB/IB algorithm to illustrate this procedure in

Algorithm 4.6.
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Algorithm 4.4: DB-Algorithm(G,C,H ′ ,H ′′, LB, β, γ)

Input: A graph G with cost matrix C, BTSP tour H0, MSTSP tour H1, Balanced
TSP lower bound LB, BTSP heuristic β, and MSTSP heuristic γ.

Output: A Balanced TSP objective value and tour.

Let z1 < z2 < ... < zm be a list of the unique costs from C in non-increasing order;
Choose l such that zl = min{cij : (i, j) ∈ H ′};
Choose u such that zu = max{cij : (i, j) ∈ H ′};
Choose L such that zL = min{cij : (i, j) ∈ H ′′};
OBJ ← zu − zl; best tour ← H0;
if OBJ = LB then return (OBJ, best tour);

l← l + 1;
while (l ≤ L) do

Let zB be the larger of the BBSSP and BAP bounds on C l;
if zB − zl < OPT then

(btsp feasible, btsp tour)← β(G,C l) ; /* BTSP on C l */

if btsp feasible then
Choose p1 such that zp1

= min{cij : (i, j) ∈ btsp tour};
Choose q1 such that zq1

= max{cij : (i, j) ∈ btsp tour};
if zq1

− zp1
< OBJ then

OBJ ← zq1
− zp1

; best tour← btsp tour;
if OBJ = LB then return (OBJ, best tour);

end
if OBJ + L ≤ zp1

then return (OBJ, best tour) ; /* Theorem 15 */

(mstsp feasible,mstsp tour)← γ(G,Cu) ; /* MSTSP on Cu */

Choose p2 such that zp2
= min{cij : (i, j) ∈ mstsp tour};

Choose q2 such that zq2
= max{cij : (i, j) ∈ mstsp tour};

if zq2
− zp2

< OBJ then
OBJ ← zq2

− zp2
; best tour← mstsp tour;

if OBJ = LB then return (OBJ, best tour);
if OBJ + L ≤ zp2

then return (OBJ, best tour) ; /* Theorem 15 */

end
l← 1 + max{p1, p2};
Choose smallest k ≥ l such that zk ≥ zq1

−OBJ ; Let l← k ; /* Thm 16

*/

if zq1
− zl < LB then

Choose smallest t such that zt − zl ≥ LB and let u← t;
end

end

else
l← l + 1;

end

end
return (OBJ, best tour);
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Algorithm 4.5: IB-Algorithm(G,C,H ′ ,H ′′, LB, β, α)

Input: A graph G with cost matrix C, BTSP tour H0, MSTSP tour H1, Balanced
TSP lower bound LB, BTSP heuristic β, and TSP heuristic α.

Output: A Balanced TSP objective value and tour.

Let z1 < z2 < ... < zm be a list of the unique costs from C in non-increasing order;
Choose l such that zl = min{cij : (i, j) ∈ H ′};
Choose u such that zu = max{cij : (i, j) ∈ H ′};
Choose L such that zL = min{cij : (i, j) ∈ H ′′};
OBJ ← zu − zl; best tour ← H0;
if OBJ = LB then return (OBJ, best tour);

l← l + 1;
while (l ≤ L) do

Let zB be the larger of the BBSSP and BAP bounds on C l;
if zB − zl < OPT then

(btsp feasible, btsp tour)← β(G,C l) ; /* BTSP on C l */

if btsp feasible then
Choose p1 such that zp1

= min{cij : (i, j) ∈ btsp tour};
Choose q1 such that zq1

= max{cij : (i, j) ∈ btsp tour};
if zq1

− zp1
< OBJ then

OBJ ← zq1
− zp1

; best tour← btsp tour;
if OBJ = LB then return (OBJ, best tour);

end
if OBJ + L ≤ zp1

then return (OBJ, best tour);
; /* Theorem 15 */

(tsp feasible, tsp tour)← α(G, Ĉ) ; /* TSP on Ĉ */

Choose p2 such that zp2
= min{cij : (i, j) ∈ tsp tour};

Choose q2 such that zq2
= max{cij : (i, j) ∈ tsp tour};

if zq2
− zp2

< OBJ then
OBJ ← zq2

− zp2
; best tour← tsp tour;

if OBJ = LB then return (OBJ, best tour);
if OBJ + L ≤ zp2

then return (OBJ, best tour) ; /* Theorem 15 */

end
l← 1 + max{p1, p2};
Choose smallest k ≥ l such that zk ≥ zq1

−OBJ ; Let l← k ; /* Thm 16

*/

if zq1
− zl < LB then

Choose smallest t such that zt − zl ≥ LB and let u← t;
end

end

else
l← l + 1;

end

end
return (OBJ, best tour);
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Algorithm 4.6: IB-LowerBound(G,C, zM )

Input: A problem on n nodes with cost matrix C, a MSTSP upper bound zM .
Output: A lower bound on the Balanced TSP objective value.

Let z1 < z2 < ... < zm be a list of the unique costs from C in non-increasing order;
l∗ ← 1; u∗ ← m;
for l = 1, . . . ,M do

Let zB be the larger of the BBSSP and BAP bounds on C l;
if zB − zl < zu∗ − zl∗ then

l∗ ← l; u∗ ← B;
end

end
return zu∗ − zl∗ ;

4.4 The Asymmetric Balanced TSP

We now outline the changes required for the DT and DB/IB-Algorithms if C is an asym-

metric cost matrix, or, equivalently, G is a directed graph.

DT-Algorithm

Ensuring a directed graph G[l, u] is biconnected is too strong of a condition as Hamiltonian

cycles in directed graphs are not biconnected. Instead, one may construct a symmetric

relaxation Ḡ[l, u] = (V, Ēl,u) where (i, j) ∈ Ē if (i, j) ∈ El,u or (j, i) ∈ El,u. The edge set

Ēl,u is clearly a set of undirected edges.

Theorem 17. If Ḡ[l, u] is not biconnected, then G[l, u] does not contain a Hamiltonian

cycle.

Proof. If Ḡ[l, u] is not biconnected, then it will not be Hamiltonian. As any directed Hamil-

tonian cycle in G[l, u] corresponds to an undirected Hamiltonian cycle in Ḡ[l, u], if Ḡ[l, u] is

non-Hamiltonian, then G[l, u] must also be non-Hamiltonian.

An additional check one can make is to determine if G[l, u] is strongly connected. As

any Hamiltonian cycle in G[l, u] is strongly connected, G[l, u] will be non-Hamiltonian if it

is not strongly connected. Strong connectivity can be determined in O(m) time [84].
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DB and IB-Algorithms

As in the DT-Algorithm, solving the BBSSP directly on an asymmetric cost matrix C is not

a valid lower bound for the BTSP on C. Instead, the BBSSP can be solved on a symmetric

relaxation of the cost matrix C. We refer the reader to Chapter 3 for more details.

Further, one may additionally solve the Bottleneck Strongly Connected Spanning Sub-

graph Problem (BSCSSP) on C l to obtain a tight BTSP lower bound. Solving the BSCSSP

on C l requires O(m log m) operations, as described in Chapter 3 and [84].

Tour Finding with a Symmetric TSP Heuristic

The 2n and 3n-vertex symmetric transformations presented in Chapter 3 are not valid as

throughout this chapter we restrict costs cij < zl for some l. Such a formulation can either

exclude the fixed edges of Equation (3.1), or disconnect the nodes labelled n + 1 to 2n from

Equation (3.2).

To compensate, in any tour finding pieces one must make explicit exceptions for the

fixed edges of Equation (3.1), or the zero-cost edges incident on nodes n + 1 to 2n from

Equation (3.2). For example, cost matrix Ĉ, Equation (4.10), must be constructed as

ĉij =



















−∞ if (i, j) is a fixed edge

zu − zk + δk if zl ≤ cij ≤ zu and cij = zk

nM + rij otherwise.

(4.12)

following the 2n-vertex symmetric matrix of Equation (3.1) on the asymmetric cost matrix

C. Similar modifications must be done to C l and Cu, but we omit these details.

4.5 Computational Results

Recognizing our Balanced TSP heuristics could prove to be very expensive, even on small

problems, our initial test set consisted only of problems of sizes from 42 vertices to 225

vertices. We picked problems dantzig42, kroA100, pr124, ch150, si175, and ts225 from

Reinelt’s TSPLIB [95]. Further, using Johnson and McGeoch’s random instance genera-

tors [50], we created two problems of 100 vertices and 150 vertices of uniformly distributed

points (E100.0, E150.0), clustered points (C100.0, C150.0), and random-distance matrices
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(M100.0, M150.0). We performed 3 trials with all four algorithms (DT, MDT, DB, and IB)

on these 12 problems to compare the solution quality versus the running-time.

For every experiment in this section, the DT, MDT, DB, and IB algorithms are called

with the following parameters: µ = 1; α is Concorde’s implementation of the Lin-Kernighan

algorithm [4]; β is the BTSP binary search threshold heuristic developed in Chapter 2 with

(p, q, r) = (1, 0, 0); γ was the MSTSP heuristic developed in Chapter 3 by solving the BTSP

with β on cost matrix D from Equation (3.22). All computational experiments in this

section were carried out on PC with a 3.40GHz Pentium 4 CPU and 2GB of RAM running

Microsoft Windows XP SP2 operating system and Cygwin NT 5.1. Reported running times

are in CPU seconds rounded to two decimal places and include input and output times.

Table 4.1 presents the average gap percentage (%) over 3 trials for each of the 12 problems

on the four algorithms (‘Gap %” is the objective value’s difference from the lower bound

value as a percentage of the lower bound). Table 4.2 is similar, but presents the average

running-time of the algorithms. The running-times do include input and output times, but

do not include the time spent calculating a BTSP and MSTSP tour, nor the bottleneck

TSP lower bound. We can see some deterioration in the MDT algorithm’s solution quality

as compared to the DT-algorithm, albeit with improved running-times. The DB-algorithm

and IB-algorithm produced more accurate results, but generally took much longer to run

compared to the MDT algorithm outside of two exceptions (pr124 and C150.0).

The better solution quality of the DB and IB-algorithms is likely due to the fact the

initial cost matrix formulation C l used in both algorithms, Equation (4.9), is less constrained

(i.e. has less edge costs of significantly large weight so as to effectively exclude them from

consideration) than the cost matrix Ĉ used in the DT and MDT-algorithms. The Lin-

Kernighan algorithm attempts to replace k edges in a known Hamiltonian cycle with k new

edges such that a new Hamiltonian cycle is produced with a better TSP objective value

(known as a ‘k-swap”). It does not fix k to a certain size, rather in its neighbourhood search

it attempts to find long chains of improving swaps. The Lin-Kernighan algorithm is willing

to make a non-improving swap in the hopes it may lead to a new series of improving swaps,

but it is unlikely to make such a move if the non-improving swap increases the TSP objective

value by a significantly large amount. This may explain why the DB and IB algorithms are

producing higher quality solutions.

Suppose we generate problems with random distances where the numbers generated

are on the range (0, κ]. Clearly, such a problem will have at most κ unique costs. We



CHAPTER 4. THE BALANCED TSP 118

Avg. Gap from LB (%)
Problem Size LB DT MDT DB IB

dantzig42 42 13 0.00 0.00 0.00 0.00
C100.0 100 17,391 0.00 0.00 0.00 0.00
E100.0 100 36,364 0.00 0.00 0.00 0.00
kroA100 100 137 2.68 4.38 0.00 0.00
M100.0 100 43,166 5.81 5.81 5.81 5.81
pr124 124 364 27.56 27.66 13.92 13.00
C150.0 150 9,212 0.50 0.50 0.50 0.50
ch150 150 17 0.00 0.00 0.00 0.00
E150.0 150 27,006 0.50 0.76 0.00 0.00
M150.0 150 31,161 2.78 2.45 0.00 0.00
si175 175 7 0.00 0.00 0.00 0.00
ts225* 225 0 - - - -

Table 4.1: Balanced TSP objective value results on initial 12 problems. Results are averages
from 3 trials on each problem for each heuristic. *Note that as the lower bound value LB
for ts225 is 0, a gap from the lower bound cannot be calculated due to division by zero.
Each heuristic achieved a balanced objective value of 21 on ts225.

Problem Size DT MDT DB IB

dantzig42 42 0.26 0.24 10.47 2.55
C100.0 100 7.60 7.42 721.60 23.09
E100.0 100 33.71 22.39 458.27 68.99
kroA100 100 251.45 243.59 292.62 93.19
M100.0 100 25.97 7.02 113.27 27.10
pr124 124 5,029.66 4,828.83 1,850.17 500.44
C150.0 150 10,410.84 9,877.43 2,689.05 114.44
ch150 150 35.50 18.62 325.67 36.85
E150.0 150 209.90 104.16 1,269.75 173.92
M150.0 150 74.97 21.33 389.70 23.08
si175 175 113.07 84.44 462.43 132.49
ts225* 225 122.52 50.87 189.48 106.11

Table 4.2: Balanced TSP running-time results on initial 12 problems. Results are averages
from 3 trials on each problem for each heuristic.
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call a problem ‘dense” if a large proportion of its edges share the same cost, therefore a

problem with numbers on the range (0, κ] can be thought of as dense when κ is small. All

the Balanced TSP algorithms we have discussed so far iterate through the list of unique

costs in a problem, so very dense problems should have short running-times. On the other

hand, extremely ‘sparse” problems (i.e. problems where a high proportion of its edge costs

are distinct) should allow improvements like Theorems 15 and 16 to be heavily utilized to

decrease the running-time.

To test this theory, we created a number of random distance problems with 200 vertices

with unique costs on the range (0, κ] where κ = 300, 600, . . . , 3000 and solved the Balanced

TSP on each using the MDT and IB-algorithms. Figure 4.4 plots the average running-time

from three trials for each problem from each algorithm versus the number of maximum

unique costs in the problem. We can see some evidence that the running-time peaks when

κ = 2100. Of course, this is not to say the density of similar valued edge costs is the only

factor explaining running-time, but this is a step towards recognizing the sorts of problems

our Balanced TSP heuristics may have some difficulty solving efficiently.

With these initial experiments completed, we decided to test the MDT and IB algorithms

on the remaining 59 problems of 500 vertices or less from TSPLIB. We used the BTSP tours

found through experiments in Chapter 2 as a starting point in our search, but we did not

have any MSTSP tours calculated for symmetric problems. Rather than generate such

tours, we instead calculated an upper bound on the MSTSP objective value, as described

in Chapter 3, and used the MSTSP upper bound value for the purposes of our termination

criteria.

Tables 4.3 and 4.4 present the results from a single attempt on each problem. In addition

to the gap % and running-time, the column ”Iters” gives the number of iterations of the

outer ‘While” loop for each problem and each algorithm. It is expected the IB-algorithm

will generally have much fewer iterations. Columns ”Obj Value” and ”Optimal?” give the

best found objective value for each problem, as well as if the solution is provably optimal.

Columns ”Best Obj” and ”Best Time” indicate which algorithm returned the tour with

smaller Balanced TSP objective value for that problem and which algorithm terminated

more quickly, respectively. These tables also report the Balanced TSP lower bound (‘LB”)

and the running-time (‘LB Time”) necessary to calculate the bound. Note that the reported

running-time could be improved by using Theorems 15 and 16 to speed up the search.

For 29 of the problems the MDT algorithm had a shorter running-time compared to



CHAPTER 4. THE BALANCED TSP 120

0 300 600 900 1,200 1,500 1,800 2,100 2,400 2,700 3,000 3,300
0

10

20

30

40

50

60

70

Num. Unique Costs

R
un

ni
ng

 T
im

e 
(s

)

 

 
IB−Algorithm
MDT−Algorithm
MDT−Algorithm (Linear Fit)
IB−Algorithm (Linear Fit)

Figure 4.4: Number of unique costs in a 200-vertex problem versus average running-time



CHAPTER 4. THE BALANCED TSP 121

the IB algorithm; likewise, for 29 of the problems the IB algorithm has a shorter running-

time compared to the MDT algorithm. For 36 of the 59 problems, both algorithms found

a solution with an equal objective value. However, for the remaining 23 problems the IB

algorithm found a better solution for 20 of those problems. All together, either the MDT or

IB algorithm was able to find a provably optimal solution for 23 of the problems. Further,

40 of the 59 problems are provably within 10% of optimality.

To summarize, the theory and results suggest the IB algorithm tends to find better

solutions than the MDT algorithm. In terms of running-time, examples exist where either

the MDT or IB algorithm runs more quickly than the other in about half the tested cases.

Practically speaking, this suggests it might be advantageous to run both algorithms on the

same problem simultaneously on a computer with multiple processing cores. Suppose the IB

algorithm completed first with a solution of objective value z. Either z can be used as the

answer (with the MDT algorithm terminated at this point), or the solution z can be given to

the MDT-algorithm to use as the best-known solution. This may allow the MDT-algorithm

to terminate more quickly.



C
H

A
P

T
E

R
4
.

T
H

E
B

A
L
A

N
C

E
D

T
S
P

122

LB MDT Algorithm IB Algorithm Obj Best Best
Problem Size LB Time Gap (%) Iters Time Gap (%) Iters Time Value Opt? Obj Time

burma14 14 120 0.14 11.67 50 0.08 11.67 21 0.08 134 Tie Tie
ulysses16 16 837 0.28 3.70 11 0.11 3.70 5 0.13 868 Tie MDT
gr17 17 94 0.02 26.60 47 0.08 26.60 15 0.16 119 Tie MDT
gr21 21 110 0.03 4.55 34 0.05 4.55 22 0.16 115 Tie MDT
ulysses22 22 837 1.13 3.70 29 1.05 3.70 10 0.61 868 Tie IB
gr24 24 33 0.08 0.00 59 0.06 0.00 48 0.30 33 Yes Tie MDT
fri26 26 21 0.06 0.00 16 0.03 0.00 16 0.11 21 Yes Tie MDT
bayg29 29 23 0.14 26.09 115 0.16 26.09 85 0.99 29 Tie MDT
bays29 29 36 0.16 5.56 119 0.14 5.56 90 1.17 38 Tie MDT
swiss42 42 14 0.27 0.00 43 0.08 0.00 36 0.45 14 Yes Tie MDT
gr48 48 46 1.47 0.00 210 0.83 0.00 167 6.13 46 Yes Tie MDT
hk48 48 138 1.94 15.22 687 61.95 13.04 234 7.81 156 IB IB
att48 48 156 3.64 23.08 513 19.05 23.08 341 10.49 192 Tie IB
eil51 51 3 0.11 0.00 23 0.16 0.00 16 1.24 3 Yes Tie MDT
berlin52 52 139 2.53 31.65 499 122.22 8.63 103 8.99 151 IB IB
brazil58 58 912 4.81 25.55 506 136.52 23.36 229 15.00 1,125 IB IB
st70 70 5 0.39 0.00 47 1.47 0.00 34 5.72 5 Yes Tie MDT
eil76 76 2 0.25 0.00 31 0.81 0.00 18 1.84 2 Yes Tie MDT
pr76 76 498 9.94 6.02 1,345 426.74 4.82 571 15.56 522 IB IB
gr96 96 281 595.95 12.10 2,291 1,046.99 11.74 1,168 345.13 314 IB IB
rat99 99 5 1.58 0.00 67 1.55 0.00 47 9.81 5 Yes Tie MDT
rd100 100 43 12.89 0.00 399 10.97 0.00 352 25.19 43 Yes Tie MDT
kroC100 100 120 49.50 11.67 2,415 1,915.17 10.83 1,434 86.49 133 IB IB
kroB100 100 129 38.64 12.40 1,564 224.97 12.40 1,149 72.41 145 Tie IB
kroE100 100 137 41.55 1.46 1,583 486.28 1.46 1,358 131.97 139 Tie IB
kroD100 100 140 39.63 0.00 525 27.53 0.00 310 101.64 140 Yes Tie MDT
eil101 101 2 0.55 0.00 29 1.86 0.00 17 6.94 2 Yes Tie MDT
lin105 105 95 36.36 5.26 1,074 445.59 5.26 939 180.99 100 Tie IB
pr107 107 877 8.53 0.00 133 75.83 2.62 73 87.27 877 Yes MDT MDT
gr120 120 27 13.33 14.81 420 124.09 14.81 350 37.09 31 Tie IB

Table 4.3: Balanced TSP results on TSPLIB problems from 14 to 120 vertices.
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LB MDT Algorithm IB Algorithm Obj Best Best
Problem Size LB Time Gap (%) Iters Time Gap (%) Iters Time Value Opt? Obj Time

bier127 127 2,915 22.14 55.57 1,037 3,124.72 5.80 163 471.63 3,084 IB IB
ch130 130 18 13.84 22.22 410 22.69 22.22 303 71.58 22 Tie MDT
pr136 136 103 21.31 24.27 635 37.50 22.33 491 52.53 126 IB MDT
gr137 137 403 1,852.28 12.66 4,832 7,155.47 6.20 2,281 1,387.45 428 IB IB
pr144 144 259 105.83 0.00 635 494.61 0.00 165 242.00 259 Yes Tie IB
kroA150 150 89 117.50 7.87 2,020 773.56 2.25 1,641 212.88 91 IB IB
kroB150 150 103 136.50 5.83 1,934 2,028.67 5.83 1,472 219.53 109 Tie IB
pr152 152 59 87.75 0.00 795 142.72 0.00 502 244.16 59 Yes Tie MDT
u159 159 142 22.48 12.68 546 610.28 0.00 152 88.56 142 Yes IB IB

brg180† 180 0 0.02 - 1 0.70 - 1 1.45 0 Yes Tie MDT
rat195 195 4 9.03 0.00 75 7.64 0.00 46 17.88 4 Yes Tie MDT
d198 198 1,105 83.59 3.17 673 907.88 4.52 425 308.24 1,140 MDT IB
kroA200 200 71 257.94 7.04 2,087 2,268.16 7.04 1,895 402.36 76 Tie IB
kroB200 200 81 223.97 4.94 2,123 1,317.14 1.23 1,790 396.95 82 IB IB
gr202 202 778 1,772.41 63.75 1,372 9,653.92 19.15 312 3,040.72 927 IB IB
tsp225 225 6 18.16 0.00 210 70.50 0.00 134 122.47 6 Yes Tie MDT
pr226 226 450 608.73 304.22 4,417 18,034.09* 12.00 2,644 966.55 504 IB IB
gr229 229 675 9,751.61 94.67 4,857 18,481.59* 9.93 2,844 5,185.17 742 IB IB
gil262 262 3 12.61 0.00 149 56.86 0.00 95 153.49 3 Yes Tie MDT
pr264 264 238 435.84 308.82 1,862 9,744.22 74.37 602 2,697.05 415 IB IB
a280 280 3 17.70 0.00 100 31.78 0.00 64 55.17 3 Yes Tie MDT
pr299 299 89 1,047.44 0.00 598 126.17 0.00 388 349.36 89 Yes Tie MDT
lin318 318 31 521.20 41.94 3,313 18,052.78* 0.00 816 920.81 31 Yes IB IB
rd400 400 11 209.72 0.00 629 281.97 0.00 500 541.52 11 Yes Tie MDT
fl417 417 199 1,064.74 59.30 1,020 18,024.38* 95.48 522 1,253.56 317 MDT IB
gr431 431 1,943 24,696.77 45.50 659 18,269.52* 14.77 1,030 21,579.03* 2,230 IB MDT
pr439 439 810 3,108.25 107.28 1,213 18,048.47* 100.00 50 2,865.61 1,620 IB IB
pcb442 442 26 851.42 3.85 1,847 451.20 3.85 1,719 936.44 27 Tie MDT
d493 493 1,191 436.41 37.20 524 18,037.52* 22.50 172 8,979.55 1,459 IB IB

Table 4.4: Balanced TSP results on TSPLIB problems from 127 to 493 vertices. Note that problem brg180† has a lower
bound value of 0, so the objective value gap from the lower bound cannot be calculated due to division by zero. Further,
problems with running-times marked by an asterix (*) exceeded the maximum tour search time of 5 hours (18,000s), and
so the reported value is the best found up until that point.



Chapter 5

Conclusions

In Chapter 2, we developed a powerful heuristic for the symmetric bottleneck traveling

salesman problem (BTSP) which we presented extensive computational results for. The

largest problem we solved to optimality involved 31,623 vertices, and larger problems are

likely within our reach. Using randomization in a controlled way to guide the heuristic

search allowed us to achieve provably optimal solutions in a very reasonable running time.

As shown in Chapter 3, this heuristic can be easily modified to solve the maximum scatter

traveling salesman problem (MSTSP), as well as the Constrained BTSP where an additional

constraint on the total weight (length) of a tour is given.

We defined two new lower bounds for the asymmetric BTSP in Chapter 3 and estab-

lished a comparison between several well-known lower bounds. Using Theorem 3 we show

a recursive way to improve most lower bounding schemes. As with the symmetric BTSP,

we presented extensive computational results using our heuristic algorithm on problems of

sizes up to 1,000 vertices that produced provably optimal solutions in the majority of in-

stances. Computational results show our heuristic is also effective for solving the asymmetric

MSTSP. Finally, we established a ⌈n2 ⌉-approximation for the asymmetric BTSP satisfying

the triangle inequality, as well as show how to represent any asymmetric BTSP instance on

n vertices as a symmetric BTSP instance on 3n vertices.

The balanced traveling salesman problem is explored in Chapter 4 and, to the best of

our knowledge, this is the first time this problem has been studied in literature, as well as

the first NP-Hard balanced optimization problem to be treated with a heuristic. Of the four

heuristics we developed, the Modified Double Threshold (MDT) and Iterative Bottleneck

(IB) algorithms both proved to be effective. We also show how to adapt these heuristics

124
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to generate a lower bound on the optimal Balanced TSP objective value. Computational

results are given for problems up to 500 vertices.

Several interesting theoretical questions emerged from this research. Our approximation

bound for the asymmetric BTSP is straightforward, but it would be interesting to explore

how this bound could be improved, especially given that a constant bound is available for the

symmetric BTSP. Note that a similar difference exists in the case of the approximation ratio

for the symmetric and asymmetric TSP, and reducing this gap is an outstanding problem.

It would also be interesting to explore a performance ratio of a polynomial approximation

algorithm for the Balanced TSP satisfying the triangle inequality.
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