AN ANALYTICAL MODEL DESCRIBING THE
PERFORMANCE OF APPLICATION-SPECIFIC
NETWORKS-ON-CHIP ON FIELD-PROGRAMMABLE
GATE ARRAYS

by

Jason Shek-Yen Lee
B.A.Sc, Simon Fraser University, 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF APPLIED SCIENCE
in the School
of

Engineering Science

(© Jason Shek-Yen Lee 2010
SIMON FRASER UNIVERSITY
Spring 2010

All rights reserved. However, in accordance with the Copyright Act of Canada this
work may be reproduced, without authorization, under the conditions for
Fair Dealing. Therefore, limited reproduction of this work for the purposes of
private study, research, criticism, review and news reporting is likely to

be in accordance with the law, particularly if cited appropriately.



Name:

Degree:

Title of Thesis:

Examining Committee:

Chair:

APPROVAL

Jason Shek-Yen Lee
Master of Applied Science

An Analytical Model Describing the Performance of Application-
Specific Networks-on-Chip on Field-Programmable Gate Ar-

rays

Dr. John Bird

Profegsor, School of Engineering Science

Dr. Lesley Shannon
Senior Supervizor

Asgistant Professor, School of Engineering Science

Dr. Rick Hobson
Supervisor

Professor, School of Engineering Science

Dr. Rodney Vaughan
Internal Examiner

Professor, School of Engineering Science

Date Approved/Defended: January 14, 2010

ii



SF SIMON FRASER UNIVERSITY
LIBRARY

Declaration of
Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Last revision: Spring 09



Abstract

Modern Field-Programmable Gate Arrays (FPGAs) are now used to implement complex
Systems-on-Chip (SoCs) and more recently Networks-on-Chip (NoCs). NoCs consist of
computing nodes that are connected via switches or routers to a network of point-to-point
links, which define its topology. Appropriate topology choices for Application-Specific Inte-
grated Circuits (ASICs) have been investigated, but due to an FPGA’s fixed interconnect
fabric, these conclusions are not necessarily applicable. Our research investigates how a
commercial FPGA’s fixed interconnect and CAD flow constrain the performance of NoCs
based on a set of design parameters. We develop an analytical model that predicts the
performance for both homogeneous and heterogeneous NoCs with a geometric mean error
of 4.68% for Xilinx Virtex 2 Pro, Virtex 4, Virtex 5, and Virtex 6 FPGAs, and with a
geometric mean error of 5.12% for Altera Stratix III and Stratix IV FPGAs.

Keywords: Networks-on-Chip; NoCs; FPGAs; Analytical Model; Systems-on-Chip; SoCs;

Performance; Topologies; Routability; Application-Specific; Homogeneous; Heterogeneous

iii



Acknowledgments

While I was told to try to keep this section short, I cannot go without acknowledging the
many people that have helped me in the past few years. First, I would like to thank my
family for supporting me and dealing with my extended absences from home. I am especially
thankful for my mom who never took an eye off of me and is always watching over me night
and day. It is the best feeling in the world to always have a loving home to come back to
whenever your research hits a wall...

To my endearing girlfriend Sami, thank you for listening to my complaints, dealing with
my stress, and always having an opinion on what needs to be done. You were always there
to put a smile on my face and I don’t think I could have done it without your support. I
love youl!

To the friends I have made through university, I know that you will be my life long friends.
We will hopefully continue to have parties at Cho’s, bet on when Eric will graduate, and
wonder if Jeff is asleep or awake. Thanks to Jamie who had many Indian lunches with me.
I am determined to beat you in squash one day. To Danny H., who is always there for a
helping hand and an intermittent round of golf. I am forever grateful that I have friends
like you guys.

To my two awesome dogs, Bailey the Haveanese and Boomer the Chow cross Lab. You
are my best companions and your unquestionable love cannot be thanked enough. Although
you won’t be able to read this, I promise I'll reward you with a fist full of dog treats.

I would also like to thank all my lab-mates for their support and humorous conversations.

Jian, you helped me deal with so many problems when you already had a stack of them on

v



your own, and I am in your debt. Ed, you helped me with all the little things, and although
you might not realize it, I am very grateful for all the work you did. Dave, thanks for all
the help you provided and the numerous projects that we have done. I will always be able
to look to you when I want to get lost in a foreign country.

Last but not least, I would like to thank my supervisor, Dr. Lesley Shannon. I realize
that this section might be too colloquial to your taste, but your attention to detail has
allowed me to foster many skills that I lost in my early years of university. I have learned a
great deal in my graduate studies, and a lot of it is because of you.

I would also like to acknowledge the financial support, as well as the equipment and
software donations, that I have received from the following organizations that have made
the research possible: the Canadian Microelectronics Corporation, the Natural Sciences and

Engineering Research Council, Simon Fraser University, Xilinx, and Altera.



Contents

Approval
Abstract
Acknowledgments
Contents

List of Figures
List of Tables
Glossary

1 Introduction

1.1 Motivation . . . . . . . .

1.2 Objective . . . . . . .

1.3 Contributions . . . . . . . . Lo

1.4 Thesis Organization . . . . . . . . .. . ...
Glossary

2 Background
2.1 Terminology . . . . . . . . ..

vi

ii

iii

iv

vi

viii

xii



2.2 Related Work . . . . . . . e

2.2.1 Network Architecture . . . . . . . ... ... ... ..
2.2.2  Architectural Changes . . . . . . . . .. .. ... .. .. ... ...
2.23 CAD Tool Flows . . . . . . . . . . .
2.2.4  Previous Analytical Model Work . . . . . ... ... ... ... ....
2.2.5  Analytical Models for NoCs . . . . . ... . ... ... ... ......

3 Experiment Methodology

3.1 Network Nodes . . . . . . . . . . e
3.1.1 Computing Node . . . . . . . .. .
3.1.2 Network Interface . . . . . . .. ... Lo

3.2 Custom Tool Flow . . . . . . . . . .. .

3.3 Testing Methodology . . . . . . . . . . ..

4 Deriving an Analytical Framework for NoCs

4.1 Previous Research . . . . . . . . .. .
4.2 Chip Independence . . . . . . . . . ..
4.3 Resource Usage . . . . . . . . . . .
4.4 Number of Nodes and Node Sizes . . . . . . . . .. .. ... ... .....
4.5 Local Routing Demand . . . . . .. .. ... ... L.

4.5.1 The Star Topology . . . . . . . . . . . .

4.5.2 Link Width . . . . . . .. 0o

4.5.3 Bandwidth . ... .. ..
4.6 Global Routing Demand . . . . . . . ... ... ..o
4.7 Regularity . . . . . . L

5 Analytical Model

5.1 Xilinx Analytical Model . . . . . . . . ... ...
5.1.1 Local Routing Demand . . . .. ... ... ... ... .........
5.1.2  Global Routing Demand . . . . . . ... ... ... ... ... ... .

vii



5.2 Altera Analytical Model . . . . . . . .. .. oo 63

5.2.1 Local Routing Demand . . . . .. ... ... .. ... .. ... ... 63

5.2.2 Global Routing Demand . . . . . . ... ... ... ... ........ 64

5.3 SUMMATY . . . .« . . oo e e 66

6 Verification 69
6.1 Xilinx Verification . . . . . . . ... L L 69
6.2 Altera Verification . . . ... .. ... oo oL oL 74
6.3 PlanAhead - Manual Placement of NoC Topologies . . . . . . ... ... ... 7

7 Conclusion 84
7.1 Future Work . . . . . .. 85
Bibliography 87
A Topology Generator 92
A1 Main Function (main.c) . . . .. ... ... 92
A.2 Global Variables (globals.c) . . . . ... ... ... ... .. ... ... 111

B System Generator 113
B.l Main (main.c) . . . . . . ... 119
B.2 Global Variables (globals.c) . . . ... ... ... ... ... ... . ..., 132
B.3 Generate Multiplier PCORE (generate_mult.c) . ... ... ... .. ..... 134
B.4 Generate Switch PCORE (generate_switch.c) . . .. ... ... ... ..... 164
B.5 Generate Xilinx *.xmp file (generatexmp.c) . . . . . . ... ... L. 179
B.6 Generate Xilinx *.mbhs file (generate_mhs.c) . . . ... ... ... ... ... 181
B.7 Generate Xilinx *.mss file (generate_mss.c) . .. ... ... ... .. ... .. 190
B.8 Generate Xilinx *.opt file (generateopt.c) . . . . ... ... ... ... 194
B.9 Generate Xilinx *.ucf file (generate_ucf.c) . . .. ... ... ... L. 197
B.10 Generate FSL for Altera FPGAs (generatefsl.c) . . .. ... ... ... ... 199
B.11 Generate System Wrapper for Altera FPGAs (generate_system.c) . . . . . . . 202

viii



List of Figures

2.1 Network topologies . . . . . . . . . . L 6
3.1 Networkmnode . . . . . . . . . e 15
3.2 MicroBlaze computing node . . . . . .. ..o 16
3.3 Multiplier computing node . . . . . . .. .. oL Lo o 16
3.4 Multiplier architecture . . . . . . . . ... oo 17
3.5 Network interface resource utilization . . . . . . . . . ... ... ... ... 20
3.6 Network overhead on Xilinx Virtex 5 LX330 . . . . . . .. .. ... ... ... 21
3.7 Customtool flow . . . . . . . ... 23
3.8 Distribution of experiments for each topology . . . . . . . .. ... ... ... 25
4.1 Ring topology on Xilinx FPGAs . . . . . .. .. ... ... ... ... 32
4.2 Ring topology on Altera FPGAs . . . . . . . . ... .. ... ... ... ... 32
4.3 Logic utilization of NoC topologies on Xilinx Virtex 5 LX330 . . .. .. ... 34
4.4 Xilinx Virtex 5 LX330 performance for all topologies . . . . . . ... .. ... 35
4.5 Xilinx Virtex 5 LX330 performance for homogeneous topologies . . . . . . . . 37
4.6 Altera Stratix III 340 performance for homogeneous topologies . . . . . . .. 38
4.7 Xilinx Virtex 5 LX330 performance for heterogeneous topologies . . . . . . . 39
4.8 Altera Stratix III 340 performance for heterogeneous topologies . . . . . . . . 39
4.9 Performance loss due to change in number of nodes for a ring topology . . . . 41
4.10 Star topology performance on Xilinx Virtex 5 LX330 . . . . . ... ... ... 42
4.11 Star topology performance on Altera Stratix II1 340 . . ... ... ... ... 43

X



4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

4.22

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Network interface of 32-node star topology on Xilinx Virtex 5 LX330 . . . . . 44
Network interface of 64-node star topology on Xilinx Virtex 5 LX330 . . . . . 45
Varying link widths on Xilinx Virtex 5 LX330 . . . . . . . . .. ... ... .. 47
Varying link widths on Altera Stratix III 340 . . . . .. .. ... ... .... 47
Bandwidth analysis for ring and torus topologies . . . . . .. ... ... ... 50
Fully connected topologies on Xilinx Virtex 5 LX330 . . . .. .. .. .. ... 51
Fully connected topologies on Altera Stratix 111340 . . . .. ... ... ... 51
Heterogeneous random topologies on Xilinx Virtex 5 LX330 . . . . . .. ... 53
Heterogeneous random topologies on Altera Stratix II1 340 . . . .. ... .. o4
Performance of torus topology and random topologies on Xilinx Virtex 5

LX330 (AND =4) . . o oo 55
Performance of torus topology and random topologies on Altera Stratix III

340 (AND =4) . . . oo 56
Performance variation due to a change in link width for Xilinx FPGAs . . . . 59
Performance loss due to average node degree for Xilinx FPGAs . . . . . . .. 61
Performance variation due to a change in link width for Altera FPGAs . . . . 64
Performance loss due to average node degree for Altera FPGAs . . . . . . .. 65
Geometric mean error as a function of node degree for Xilinx FPGAs . . . . . 70
Geometric mean error as a function of resource usage for Xilinx FPGAs . . . 74
Geometric mean error as a function of node degree for Altera FPGAs . . .. 75
Geometric mean error as a function of resource usage for Altera FPGAs . . . 77
Example automatic placement of homogeneous 64-node mesh topology . . . . 79
Example manual placement of homogeneous 64-node mesh topology . . . . . 80
Example manual placement of heterogeneous 64-node mesh topology . . . . . 82



List of Tables

2.1

3.1
3.2
3.3

4.1
4.2
4.3
4.4

5.1

6.1
6.2
6.3
6.4
6.5

Network topology characteristics . . . . . . . ... ... .. ... ... 6
Homogeneous multiplier node types . . . . . . . . . .. . ... ... ... .. 18
Heterogeneous multiplier node types . . . . . . . . ... ... L. 19
FPGA family and devices . . . . . . . . . . ... .. 26
Performance variation for FPGA devices and families. . . . . ... ... ... 33
Percentage resource usage of largest NoC system for Xilinx FPGAs . . . . . . 35
Percentage resource usage of largest NoC system for Altera FPGAs . . . . . . 36
Percent resource usage for 128-node topologies . . . . . . .. ... ... ... 38
Base frequencies for training experiments . . . . . .. ... ... 67
Predicted operating frequencies for Xilinx Virtex 4 and Virtex 5 FPGAs . . . 71
Predicted operating frequencies for Xilinx Virtex 6 FPGA . . . ... ... .. 72
Predicted operating frequencies for Altera FPGAs . . . . . ... .. ... .. 76
Homogeneous MultBase topologies with manual placement . . . . . . . . . .. 81
Heterogeneous MultBase topologies with manual placement . . . . . .. . .. 81

xi



Glossary

AND - Average Node Degree

ASIC - Application-Specific Integrated Circuits
CAD - Computer-Aided Design

CLB - Configurable Logic Block

CU - Communication Unit

EDK - Embedded Development Kit
Fyase - Base Frequency

Fyreq - Predicted Frequency

FF - Flip Flop

FIFO - First-In-First-Out

FPGA - Field-Programmable Gate Array
FSL - Fast Simplex Link

GRD - Global Routing Demand

INT - intercept

IP - Intellectual Property

ISE - Integrated Software Environment
ISP - Internet Service Provider

karp - Global Routing Demand Factor
krrp - Local Routing Demand Factor
LRD - Local Routing Demand

LUT - Look-Up Table

xii



LW - Link Width

N - Number of Nodes

ND - Node Degree

NoC - Networks-on-Chip

P2P - Point-to-Point

RPM - Relatively Placed Module
RU - Resource Usage

SL - Slope

SoC - Systems-on-Chip

TDM - Time Division Multiplexing
WOT - Weighted Order Toggling

xiii



Chapter 1

Introduction

Computer networks allow various computing elements to communicate and share resources,
wherein the network provides the connectivity between the different elements. Networks
provide many levels of abstraction, ranging from local area networks (LANs) with a few
processing elements to the world wide web’s (WWW) millions of processing elements. The
same communication infrastructure can be applied to any system with multiple elements.
On a much smaller scale, networks are becoming increasingly attractive for use on Systems-
On-Chip (SoC) design, where multiple computing elements are implemented on the same
die.

As chip densities improve, Field-Programmable Gate Arrays (FPGAs) are being increas-
ingly used to implement complex SoCs [47]. Due to the lesser logic densities of previous
generations, the complexity of SoC implementations on FPGAs has been limited to a small
number of computing elements. Therefore, a shared bus such as AMBA [40], CoreCon-
nect [45], and WISHBONE [49] could be used as the communication infrastructure between
multiple master and slave nodes. While appropriate for smaller systems [1], shared busses
do not scale well for more complex systems. As system complexity increases, the number of
possible masters and slaves on a given bus leads to increased bus contention, slowing down

data transfer and limiting bandwidth. Thus, more complex communication structures, such



CHAPTER 1. INTRODUCTION 2

as networks, are becoming increasingly attractive for Network-On-Chip (NoC) implementa-
tions. NoCs attempt to provide a solution to the growing complexity of SoCs by providing

a highly customizable and scalable interconnect [6][35].

1.1 Motivation

When choosing an appropriate network topology for an application, multiple design factors
need to be considered. Since each application is unique, there exists a problem of picking
a desirable network from a large design space. For example, the NoC topology plays a role
in the throughput, bandwidth, and latency of the entire systems. For systems designed on
Application-Specific Integrated Circuits (ASICs), appropriate topology choices have been
investigated [2][48]. Popular choices for ASICs are the mesh and torus topologies [35][14].
These topologies map well to an ASIC’s two-dimensional implementation platform, provid-
ing control over the network’s electrical characteristics. More complex topologies, such as
the star and hypercube topologies, are generally not used on ASICs as they lead to increased
chip area and an increasingly difficult routing task as the number of nodes grows.

While these conclusions may be true for ASICs, they do not necessarily hold for FPGAs.
For ASICs, the structure and interconnect is completely defined by the designers and only
the wires pertaining to the NoC are used and routed. In contrast, modern FPGAs are
over-provisioned with routing; that is, FPGA architects provide significantly more routing
than is needed for the “common case” to ensure a high fitting rate by the Computer Aided
Design (CAD) tools for customer designs. Preliminary work by Shannon et al. showed
that due to this over-provisioning, more complex topologies such as the star and hypercube
are possible [51]. In fact, it suggested that in some cases these types of networks may be
preferable to a mesh, since they have better network latency and bandwidth characteristics,
yet can still be implemented easily on a modern FPGA. This result implies that designers
have the increased freedom to select more complex topologies when implementing NoCs
on FPGAs as opposed to ASICs. However, to leverage these findings, a more concrete

understanding of the performance of various network topologies implemented on the fixed



CHAPTER 1. INTRODUCTION 3

prefabricated routing of an FPGA is required.

1.2 Objective

While there has been research investigating the use of FPGAs for NoCs [9], little has been
done to characterize the routability and performance of NoC architectures on FPGAs. Given
a specific platform and network characteristics, the objective of this work is to quantify and
develop an analytical model describing the routability and performance characteristics for
both homogeneous and heterogeneous NoCs on a variety of FPGA devices. Various network
topologies, using both homogeneous and heterogeneous nodes are investigated to quantify
how specific NoC design parameters affect routability and performance in terms of maximum

operating frequency.

1.3 Contributions

Our research provides a thorough analysis of the performance of FPGA-based NoCs. The

contributions of this work is as follows:

1. An investigation into the effects of different NoC parameters (Resource Usage, Number

of Nodes, Average Node Degree, Link Width, Heterogeneity) on system performance.

2. Development of an analytical model describing the maximum operating frequency of
an NoC that encapsulates the effects of the CAD tools and network topology for both
Xilinx and Altera FPGAs.

3. A preliminary investigation into using relatively placed modules (RPMs) to demon-
strate if improvements in performance can be attained using this form of guided place-

ment as opposed to purely “automatic” placement.

These contributions are important for two reasons. Firstly, it quantifies the effects of
specific network parameters on performance, and thereby the suitability of network topolo-

gies for implementation on an FPGA. This is an important first step to understanding the



CHAPTER 1. INTRODUCTION 4

flexibility and limitations of mapping application-specific network topologies to an FPGA’s
prefabricated routing interconnect using its commercial tool flow. Secondly, it provides guid-
ance to a designer during early design space exploration, when a suitable network topology

is being chosen.

1.4 Thesis Organization

This thesis is divided into 7 chapters. Chapter 2 discusses associated terminology and pre-
vious work related to our investigation of the implementation of NoCs on FPGAs. Chapter
3 describes the experimental methodology used in the investigation. Chapter 4 introduces
the analytical framework and presents the general NoC performance trends. Chapter 5 de-
scribes the final derived analytical model for Altera and Xilinx FPGAs. Chapter 6 verifies
our analytical model using a new set of benchmark circuits. Finally, Chapter 7 summarizes

the conclusions of this work and possible areas for future work.



Chapter 2

Background

In order to fully characterize how varied NoC parameters affect system performance, diverse
topologies are used to encapsulate the different network parameters. This chapter introduces
the various network topologies used in our experiments and their properties, along with a

thorough discussion of previous work done to investigate NoCs implemented on FPGAs.

2.1 Terminology

A network topology describes the connectivity between network nodes in an NoC. As shown
in Figure 2.1, the topologies that are analyzed in our research include the (a)ring, (b)mesh,
(c)star, (d)fully-connected, (e)torus, and (f)hypercube topologies, which are commonly used
in many applications. In our experiments, the number of columns for the mesh topology is
fixed at four. The size of the mesh topology is varied by increasing or decreasing the number
of rows. Using these topologies, the experiments are further expanded by including both
homogeneous or heterogeneous NoCs. A homogeneous NoC' consists of identical network
nodes, whereas a heterogeneous NoC' consists of a set of different network nodes. A number
of parameters are used to characterize a topology as shown in Table 2.1. For a given topology,
the diameter of the topology is the maximum distance between any two nodes using existing

links. The link complexity is the total number of links a topology requires. The node degree



CHAPTER 2. BACKGROUND

Figure 2.1: Network topologies

Table 2.1: Network topology characteristics

Topology Diameter | Link Complexity | Node Degree | Regular
Ring n/2 n 2 yes
Mesh 2(nt/? - 1) 2(n — n'/?) 2,34 no
Star 2 n—1 1n—1 no

Fully-Connected 1 (n(n—1))/2 n—1 yes
Torus n/2 n 4 yes
Hypercube log, n (nlogyn)/2 logan yes




CHAPTER 2. BACKGROUND 7

is the number of links from a node to its connected neighbours. Furthermore, a reqular
topology is defined as a topology where all nodes share the same node degree. Finally, the
average node degree (not shown in Table 2.1) is the average number of links for all nodes.
Also not shown is the link width, which is the number of bits in each link between network
nodes.

In addition to these common topologies, the experiments also include random topologies,
which are used to model application-specific topologies. Random topologies are used to
model application-specific NoCs where connections between nodes are defined by application
needs rather than using a topology in Figure 2.1 that could lead to unused connections. How

random topologies are generated is discussed in Section 3.1.1.

2.2 Related Work

Research involving NoCs on FPGAs predominantly focuses on the design and implemen-
tation of NoCs. Network architectures investigate different switching elements to provide
the best throughput and bandwidth. Changes to the FPGA architecture have also been
suggested to better support NoCs as they become more popular. Furthermore, customized
CAD tool flows have been developed to simplify the design process of NoCs. Our research
focuses on characterizing NoC performance on existing FPGAs using our own customized
tool flow. Using our results we develop an analytical model that describes the system perfor-
mance as a function of various network parameters. This section describes previous research

done for NoCs on FPGAs, along with some examples of analytical models for FPGAs.

2.2.1 Network Architecture

When designing FPGA-based NoCs, there are a number of design characteristics that are
considered to optimize NoC performance. Numerous studies investigate different switch
and router architectures that are targeted for use on FPGAs. Kapre investigates a high-
performance, packet-switched, on-chip network [30]. Packet switching groups all transmitted

data into suitable blocks to be routed over a shared network. In contrast Kapre’s work, a



CHAPTER 2. BACKGROUND 8

parallel study by Mehta investigates highly-scalable, time-multiplexed, FPGA networks [44].
A time-multiplexed network relies on transmitting blocks of data from multiple nodes over
the same network, sharing the resources over blocks of time. Both studies analyze the
performance of their respective switch architecture for different network topologies and
provide a measure of performance for both types of network interface on the Xilinx XCV4000.
Kapre et al. then performs a direct comparison of the two switch architectures [31]. The
study found that packet-switched networks typically outperform time-multiplexed systems
for NoCs with under 100 nodes. Furthermore butterfly fat-trees are the best performing
topology for both architectures.

Sethuraman et al. proposes a lightweight parallel router, which can support five simul-
taneous routing requests, with minimal overhead, implemented on a Xilinx XC2VP30 [54].
The router utilizes optimizations in XY routing and decoding logic that maximize the per-
formance to area ratio. With minimal packet overhead, the router is implemented using
3x3 mesh networks and characterized for power and performance parameters. Bartic et al.
investigates a topology adaptable communication network design [5]. A versatile network
platform is introduced with the IP interfaces, ISP, and an operating system (OS) managing
all network resources. This architecture allows the possibility of dynamically changing the
packet routing for each IP, in every router, allowing a better balance in network traffic.
However, the proposed architecture experiences a quadratic increase in resource utilization
as the number of input signals increases. Zeferino et al. presents a router soft core for NoCs
called RASoC [59]. The router architecture is used in the building of NoCs for embedded
systems. The model relies on a parameterized VHDL module, which allows reuse of RASoC
in the synthesis of NoCs with different sizes. However, significant overhead in resource
utilization is reported. The overhead is attributed to the complicated switch design and
routing algorithm implementation.

Bertozzi et al. designs a complete NoC infrastructure called Xpipes [7]. The system
consists of a library of switches, network interfaces, and links, that are designed to be tuned

to specific heterogeneous architectures. Links can be pipelined to a flexible number of stages



CHAPTER 2. BACKGROUND 9

to separate a link’s latency from its throughput. Furthermore, a tool called XpipesCompiler
is developed that automatically instantiates a customized NoC using its library of network
components based on a given set of design parameters. Hilton et al. presents a flexible
circuit-switched NoC for FPGA-based systems called PNoC [24]. In contrast to packet-
switching, which uses a shared network resource, circuit-switching relies on establishing
a connection between nodes before transmission can occur. While PNoC demonstrates
a 23x speedup when compared with a shared bus implementation, a direct comparison
between PNoC and a packet-switched network is not performed as a suitable packet-switched
architecture was not developed yet.

These switch architectures, along with different bus architectures and proposed FPGA
architectural changes, are compared by Mak et al. [43]. The investigation acknowledges
that it is difficult to compare the different NoCs, as their respective implementations are
often time applied to specific applications. The paper identifies that due to the unique
requirements of different applications, there exists a problem of searching for optimal com-
munication architectures from a huge design space since choices are often performed ad-hoc.
Our work takes a step in this direction providing a method of predicting the performance
of NoCs to enable easier design space exploration.

From all these investigations, NoCs on FPGAs are advocated as a promising solution
to on-chip communication especially in Multi-Processor Systems-on-Chip (MPSoC) design.
These investigations focus on the philosophy of “routing packets, not wires” [14][53], thus
the network interface itself is the focus of much of the research. Selecting appropriate switch
architectures, when used in conjunction with our work, can improve the means of selecting

an optimized NoC model.

2.2.2 Architectural Changes

Since the routing and resources for FPGAs are fixed, possible architectural changes to
FPGAs have also been investigated to improve the performance of NoCs. In terms of

architectural changes, research has predominantly focused on changing the wiring types



CHAPTER 2. BACKGROUND 10

in FPGAs, and adding network switches or routers as embedded blocks. All studies aim
to minimize area overhead, while maximizing data throughput and bandwidth for systems
utilizing an NoC as its communication infrastructure.

Francis et al. shows that fine-grain, time-division-multiplexed wiring outperforms con-
ventional wiring for networks on FPGAs [16][15]. Time-division multiplexed (TDM) wiring
consists of FPGA wiring links that are shared amongst different IP blocks. This allows for
increased capacity on individual wiring links while decreasing the silicon area. TDM wiring
is scheduled serially within a discrete time slot, with the interconnect pipelined at a higher
rate than the design to increase data throughput. The investigation shows that using TDM
wiring can reduce the amount of FPGA configurable wiring by up to 83% and reduce the
complexity of switch boxes, thus leading to an overall reduction in silicon area.

Goossens et al. illustrates a dedicated NoC interconnect fabric hardwired in an FP-
GAs [19]. By proposing a hardwired NoC, some area of the FPGA is lost to a fixed function.
However, Goossens proposes that the loss of flexibility is outweighed by the reduced imple-
mentation costs and greater flexibility in dynamic partial reconfiguration. The investigation
uses hardwired NoCs as functional interconnect between IP blocks and configuration inter-
connect that are used to transport data. The proposed hardwired NoC has a 10% overhead
for IP sizes with approximately 1400 Look-Up Tables (LUTS).

Gindin et al. presents an NoC architecture based on a proposed routing scheme called
Weighted Ordered Toggle (WOT) [18]. WOT utilizes simple, small-area, on-chip routers
with low memory demands. The architecture consists of an island-style FPGA with con-
figurable network interfaces at each “island,” on the assumption that most applications
implemented on this architecture will use a network style interface. Each network interface
uses the WOT routing algorithm, which is a packet-switched network that toggles the flow
of packets in the horizontal and vertical directions. Ahmadinia et al. describes a dynamic
network-on-chip (DyNoC) consisting of a coarse-grain programmable fabric interlinked with
circuit-switched busses called Reconfigurable Multiplexed Bus (RMBoC) and connected to

each configurable region via on-chip switches [3]. A new routing algorithm is proposed such



CHAPTER 2. BACKGROUND 11

that the network-on-chip architecture can be realized with run-time configuration. Due to
the complexity of the system, the on-chip switches consume a large area of the design. For
a Xilinx Virtex-II 1000 device, 21% and 46% of logic resources are devoted to the on-chip
switches of word-length 32-bit and 64-bit respectively. Similarly, Jovanovic et al. presents
an island style architecture (CuNoC) with communication units (CU) placed at each con-
figurable region [29]. Each CU consisted of a simple packet forwarding switch based on
the priority-to-the-right rule. CulNoC is shown to have good performance and much less
overhead when compared to DyNoC.

For all investigations, architectural changes show improved performance for applications
that require NoCs. However, due to increased overhead, these changes may not necessar-
ily be beneficial in other types of systems. Whereas these investigations propose possible
changes to FPGA architecture to support NoCs, our objective is to understand how the
existing interconnect fabric constrains NoC performance on commercial FPGAs. Thus the

focus is on existing modern architectures and not on architectural changes.

2.2.3 CAD Tool Flows

In order to fully exploit FPGA resources, complex CAD algorithms are used to place and
route NoCs on FPGAs. Research has been done to create automated design flows that tar-
get NoCs on FPGAs. Bertozzi et al. presents a complete synthesis flow, called NetChip, for
customized NoC architectures [8]. The flow partitions the development work into topology
mapping, selection, and generation. The entire flow implements a reusable and scalable net-
work component’s library called timespipe that is design-time tunable and customizable to
achieve arbitrary topologies. Several case studies are presented showing the use of NetChip
in generating NoCs.

Kumar et al. develops an automated design flow to instantiate Multi-Processor Systems
on Chip (MPSoC), with an NoC communication scheme [34]. The NoC specifications are
done on a high level of abstraction, relieving the designer of low level design. The flow is

used to generate a set of sample designs verified on a Xilinx Virtex II 6000. In addition



CHAPTER 2. BACKGROUND 12

to the automatic generation, a run-time flow is presented that allows easy debugging and
reconfiguration of the system via a host. Sethuraman et al. presents an algorithm which
optimally maps custom routers called optiMap [55]. Each router consists of a multi-local
port router capable of handling multiple logic cores in parallel. For a given NoC, optiMap
finds the optimal number of routers, configuration of each router, optimal mesh topology
and the final mapping of the NoC. In comparison to a single-local port version of the same
router, the investigation observed an average of 36% area savings based on the Virtex 2 Pro
30.

A framework based on the Xilinx Embedded Development Kit (EDK) is also presented
by Lukovix et al. [41]. The described framework represents a fully integrated design flow
for fast generation of NoC-based MPSoCs on Xilinx FPGAs. In our research, we employ a
similar tool flow to automatically generate a wide variety of NoC systems required for this
investigation. However, our tool flow is capable of generating NoCs based on both Xilinx
EDK and Altera Quartus CAD flows. A similar tool flow is also developed by Saldana et
al [51]. The tool flow took an existing system generated for Xilinx EDK and changed the
system files to describe the desired NoC system. The newly generated tool flow is developed
in C and works independently of any existing systems. All file generation is hard coded into
the tool flow to avoid any extraneous inputs. The details on the tool flow design are given

in Section 3.2.

2.2.4 Previous Analytical Model Work

In the past, research has primarily evaluated FPGA architectures and applications using
empirical analysis to find the best parameters to optimize performance. More recently,
there has been a growing trend to express FPGA performance using analytical models to
enable better design exploration when designing for FPGAs. Ahman et al. presents an
analytical model that predicts interconnect requirements in FPGAs based on the number
of look-up-tables (LUTs) in the FPGA [50]. This analytical model for two-dimensional FP-

GAs is calibrated using fully routed benchmark circuits and extended to three-dimensional



CHAPTER 2. BACKGROUND 13

FPGAs. The investigation found that for FPGAs with more than 20,000 4-input LUTs,
three-dimensional FPGAs can potentially reduce channel width, interconnect delay and
power dissipation by up to 50%.

Lam et al. describes an analytical model that relates logic parameters to the area
efficiency of an FPGA based on Rent’s Rule [36]. The model relates the LUT and cluster
size, and the number of inputs per cluster to the amount of logic that can be packed into
each cluster. Due to the simplicity of the analytical model, the analysis can provide a
tool for FPGA designers to better understand and guide the development of future FPGA
architectures. An analytical model that relates FPGA architectural parameters with the
average prerouting wirelength is presented by Smith et al. [57]. This model encompasses
both homogeneous and heterogeneous FPGA architectures. For homogeneous FPGAs, the
wirelength is related to the LUT and cluster size, and the number of inputs per cluster.
For heterogeneous FPGAs, in addition to the parameters investigated for homogeneous
FPGAs, the position of embedded blocks as well as the number of pins to each block is
also considered. Much like the evaluations done in these works, our research focuses on
developing an analytical model that enables designers to perform design space exploration

for FPGA-based NoCs.

2.2.5 Analytical Models for NoCs

In this work, an analytical model describing the performance of an NoC is presented. Al-
though a general analytical model describing the performance of a wide range of NoCs
have not been investigated, several studies have investigated the performance of NoCs for
specific applications. Lee et al. [37] describes an analytical model to predict the area, per-
formance, and energy consumption of an MPEG-2 encoder application implemented on a
Virtex2 3000 FPGA. The study analyzes the difference between using a network, point-to-
point, or a shared bus for communication between nodes. It found that: 1) the performance
of the NoC design is very close to the point-to-point (P2P) implementation, 2) the NoC

implementation scales better in area than the P2P and bus-based implementations, and



CHAPTER 2. BACKGROUND 14

3) the NoC implementation has lower energy consumption than the P2P and bus-based
implementations.

Freitas et al. performs a study comparing the performance of a MPSoC system us-
ing bus-based communication to a mesh network [17]. The work utilizes MicroBlaze soft
processors on a Xilinx Virtex 2 Pro 20 with 4-node and 16-node systems. The work con-
cludes that MPSoCs benefits in performance when using NoCs versus bus-based systems.
Similarly, Saldana et al. investigates the routability of multiprocessor network topologies
on FPGAs [51]. Ring, star, mesh, hypercube, and fully connected topologies from 8 to 32
nodes are utilized to characterize the performance and area requirements on a Xilinx Virtex
41.X200. It is determined that all topologies except for fully connected performed well up
to 32-nodes

The work in this thesis expands on the work done by Shannon et al. [51]. Preliminary
results from this work is also presented in previous publications. Lee et al. presents the
effects of node size, heterogeneity, and network size on NoC performance [38]. It is shown
that the number of nodes has a greater affect on performance than node size and hetero-
geneity. Lee et al. further investigates NoC performance by developing an analytical model
to predict the performance of NoCs due to local and global routing demand on Xilinx FP-
GAs [39]. The work presented in this thesis expands on these results [38] [39], utilizing both
Xilinx and Altera FPGAs. Bandwidth, resource utilization, and the use of relatively placed

modules are also explored in this thesis.



Chapter 3

Experiment Methodology

The objective of this research is to investigate how an NoC topology and its associated
characteristics effects performance. Specifically, the focus is on the routing resources and
how the NoC maps to an FPGA’s fixed interconnect based on different NoC parameters. To
do this, we utilize a vast exploration space, which includes homogeneous and heterogeneous
topologies for a wide range of FPGA devices. The following chapter describes the NoC design
used in our experiments, and the custom tool flow developed to automatically generate these

NoCs.

Output FIFO
ves »| Network 'l—l'_'l_ :

: opology
Computing InNtEtrfal:i *Communication
Node (Network| e i
. see + Switch) |&—»
Input FIFO >

Figure 3.1: Network node

15



CHAPTER 3. EXPERIMENT METHODOLOGY 16

Local Output FIFO
«—» Memory [e—» > see —
Bus .
: : MicroBlaze
BRAM Local input FIFQ
H Memory H - (RN o
Bus

Figure 3.2: MicroBlaze computing node

Qutput FIFO
Result
> Y E—
Multiplier Multiplier (n)
Node Input FIFO
< " an e
Multiplicand

Figure 3.3: Multiplier computing node

3.1 Network Nodes

Section 2.1 illustrates the different network topologies, including common and application-
specific topologies that are used in our experiments. Each network node, as shown in
Figure 3.1, consists of a computing node, two FIFOs, and a network interface linked to
the network interconnect using topology communication links. Each computing node com-
municates with the network interface through two, synchronous, 16-word-deep FIFOs. For
Xilinx FPGAs, these FIFOs are implemented using Fast Simplex Links (FSLs) mapped to
LUT-RAMSs. For Altera FPGAs, these FIFOs are implemented using equivalent M-LABs,

which are only supported by the Stratix III and Stratix IV families.

3.1.1 Computing Node

Two types of computing nodes are used; a MicroBlaze soft processor and a custom computing

node. The MicroBlaze, as shown in Figure 3.2 is used to compare our newly updated tool



CHAPTER 3. EXPERIMENT METHODOLOGY

G000 9000

Register Register Register

Register
'K 'K
‘ Adder ‘ I N ) ‘ Adder ‘
‘ Register | : ‘ Register |

| . |
| |

‘ Adder ‘ | Adder |

‘ Register | ‘ Register |
— |
| Adder |
| Register ‘

Figure 3.4: Multiplier architecture



CHAPTER 3. EXPERIMENT METHODOLOGY 18

Table 3.1: Homogeneous multiplier node types
Link | uBlaze | MultHalf MultBase | MultDouble
Width | LUTs | Mult | LUTs | Mult | LUTs | Mult | LUTs
48 2 347 4 658 6 1312

40 2 396 4 703 6 1487
32 629 4 371 6 694 8 1429
24 6 328 8 652 12 1393
16 8 311 12 614 16 1374

flow with the previous work [51]. Since our investigation focuses on the topology and network
links (topology communication links), and not the computing nodes, the computing node has
to meet a set of requirements that ensures that it does not contaminate the data obtained to
characterize the links. Specifically, the computing node needs to: 1) not be the critical path
in the design, 2) use only CLBs and no embedded blocks to ensure portability between Altera
and Xilinx devices, and 3) ideally have all combinatorial operations registered in the same
CLB to improve timing. The multiplier node in Figure 3.3 meets all these requirements. The
multiplier consists of 2-bit partial-products pipelined at each stage as shown in Figure 3.4.
Although actual network implementations would contain more complex computing nodes,
such as a MicroBlaze soft processor, it is not helpful for this study. If a MicroBlaze is used
as the compute node, then in small NoC systems, the critical path would be in the node
itself, and not in the topology communication links. Furthermore, the link width cannot be
changed for a MicroBlaze node and it is not portable to non-Xilinx FPGAs. In contrast,
the multiplier node’s size as well as link width can be adjusted, allowing us to experiment
with different link widths, and topologies with different network node sizes. Therefore we
only use the MicroBlaze in our new analysis to compare current state of the art CAD tools
with previous work [51].

As shown in Figure 3.3, the multiplicand of the multiplier node is equal to the link-width,
and the multiplier is equal to the lower n bits of the result. We consider both homogeneous
and heterogeneous NoC types; in a homogenous network, all nodes are of the same size, while
in a heterogeneous network, different node sizes exist. As the multiplicand always remains

fixed to the link-width, the multiplier (n) is varied to scale the resource usage. For a given



CHAPTER 3. EXPERIMENT METHODOLOGY 19

Table 3.2: Heterogeneous multiplier node types

Link MultSmall MultFull MultLarge
Width | Range of Mults | Range of Mults | Range of Mults
48 2.4 2,468 16,8
40 2.4 2,4,6,8 4,6,8
32 2,4,6 2,4,6,8,10 6,8,10
24 4,6,8 4,6,8,10,12,14 10,12,14
16 6,8,10 6,8,10,12,14,16 12,14,16

heterogeneous or homogeneous system, the link width remains fixed for all network nodes.
Table 3.1 lists the multiplier sizes used in our homogeneous experiments. Mult is defined
as the width (n-bits) of the multiplier, and Link Width is equal to the multiplicand width.
We used five different link widths, with three different multiplier widths for each link-width.
The baseline multiplier MultBase is chosen to have approximately the same LUT usage
as a MicroBlaze on a Virtex 5. MultHalf is approximately half the size, and MultDouble
approximately twice the size. As the link width changes, the multiplier width also needs
to be adjusted to maintain approximately constant resource usage for the computing node.
The percent variation in LUT usage for each node type is 7.12% with a standard deviation
of 3.2%.

To generate heterogeneous NoCs, we kept the link width (multiplicand) fixed for the
design and varied the network node size by scaling the multiplier bit-width. We use three
types of heterogeneous NoCs (MultSmall, MultFull, MultLarge) generated using a range
of multiplier node sizes defined by a minimum and maximum multiplier bit-width. The
size of each multiplier node in a heterogeneous topology is chosen at random and uniformly
distributed across the range of multiplier widths defined by the heterogeneous NoC type and
fixed link width. Table 3.2 lists the range of sizes used in our heterogeneous experiments

for varied link widths.



CHAPTER 3. EXPERIMENT METHODOLOGY 20

400
350
300
250
200
150
100

Zof LUTs

24 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 3§ 35 40

#Z of Channels

Figure 3.5: Network interface resource utilization

3.1.2 Network Interface

Since we are interested in the performance achieved by the CAD flow’s ability to leverage
the over-provisioned routing resources to implement the links that define the NoC topol-
ogy, and not the NoC’s performance in terms of bandwidth and throughput, we use a
lightweight network switch. In order to isolate the performance of the network interface and
subsequently the network node from the interconnect, the output from the network interface
to the link is registered. The network switch is a lightweight packet switch that broadcasts
an address control packet to all its linked neighbours. A receiving switch only reads the
control packet and subsequent packets if the address matches its own and otherwise ignores
it. These switches are only capable of sending to and receiving from their directly connected
neighbours and are not capable of multi-hop communication. While extremely simple, this
switch is sufficient for the purpose of our studies, which focuses on the performance of vari-
ous topologies on an FPGA’s fixed interconnect and not on the switch architecture or packet
latency and throughput.

The size of each switch is defined by its number of ports. The NoC topology in turn



CHAPTER 3. EXPERIMENT METHODOLOGY 21

[x)
0% n:
Al m1é
_ 0% =32
z 1| m438
g o | 282
T mEN
5 40% 1l o
_:;' 3094 mllz
E 20%%
10%%
0% -
Ring Hypercuhe Totus Iesh Star Fully
Connected
Topology

Figure 3.6: Network overhead on Xilinx Virtex 5 LX330

defines the number of ports required by each network node’s switch. For example, a torus is a
regular topology with all network nodes having a node degree of four. This means that each
network interface has four ports or four channels. Each channel comprises two unidirectional
links to form a bidirectional channel. In contrast, a mesh topology has network switches
with node degrees of two, three and four. Therefore the system will require three different
network switches with two, three, and four ports. All network nodes on the perimeter
of the mesh require a network switch with three ports except the corner network nodes,
which require a network switch with two ports. Finally, the interior network nodes require
a network switch with four ports. Recall that in Figure 2.1 each topology is illustrated,
and the network switches required by each network node can be determined by the number
of links connected to a given node. As the number of links to the network switch grows,
the resource utilization also increases linearly. Figure 3.5 shows the resource utilization
(Number of LUTSs) of different network interface sizes. This ensures that the total resource
utilization of the network node (i.e. including the computing node, FIFOs, and network
interface) increases linearly.

The network switch overhead is defined as the resource usage utilized by all network



CHAPTER 3. EXPERIMENT METHODOLOGY 22

switches in the NoC topology as a percentage of total resources. In order to determine the
network switch overhead of each topology, we measure the percentage of total resources
occupied by the network connectivity. Figure 3.6 shows the network overhead for homo-
geneous ring, hypercube, torus, mesh, star, and fully connected topologies with MultBase
nodes and 32-bit link widths.

As seen in Figure 3.6, for all topologies other than the fully connected, mesh, and star
topologies, the network connectivity occupies a constant percentage of total resources as the
number of nodes increase. This trend is expected since the resource usage of each individual
network switch remains constant for the ring, hypercube, and torus topology. Thus when
the NoC increases in the number of nodes, the total resource usage of all network switches
should increase at the same rate as the total resources occupied by the entire NoC topology.

For small mesh topologies, the number of network switches with two or three ports is
greater than the network switches with four ports. However, as a mesh gets bigger there are
more four port network switches than two or three port network switches. This is shown
by the increase in network overhead from 8 to 48 nodes due to an increase in four port
nodes in relation to two and three port nodes. The network overhead eventually levels off
for larger mesh topologies as the majority of switches utilize four ports. Furthermore, the
slight increase in network overhead for the star topology is due to the increase in ports for
the central node’s network switch; and the large increase in network overhead for the fully

connected topology is due to the increase in ports for all network nodes in the system.

3.2 Custom Tool Flow

In our experiments, we use approximately 3600 benchmark circuits that are generated us-
ing an automated benchmark circuit generator. The generator supports six of the common
network topologies, previously shown in Figure 2.1, and application-specific topologies mod-
eled using random topologies, with several different node sizes. The use of such a generator
allows us to run many more experiments than would be possible using “real” benchmark

circuits; this, in turn, allows us to isolate the impact of each NoC parameter on the overall



CHAPTER 3. EXPERIMENT METHODOLOGY 23

Input
Parameters:

Mo Type
MNode Sizes
Link Width
FPGA Vendor
FPGA Family
FPGA Device
Max Operating Frequency

Input
Parameters:
Mumber of Nades

Topology Type
MNumber of Links
Average Node Degree

System
Generator

Figure 3.7: Custom tool flow

performance of the system.

Figure 3.7 shows the tool flow used to generate the benchmark circuits. The code for
the topology generator is presented in Appendix A, and the code for the system generator
is shown in Appendix B. The topology generator outputs a topology description file that
defines the connectivity between each network node based on a given set of input parameters.

These inputs define the NoC topology characteristics and are listed below:

e Number of Nodes - the number of nodes in a given system

e Topology Type - Torus, Hypercube, Ring, Mesh, Star, Fully Connected, Application-

Specific (modelled using random topologies)

e Average Node Degree (optional, if topology is random) - the average number of links

to all nodes

Common topologies have a predefined connectivity pattern, however application-specific
topologies are not predefined. Therefore for application-specific topologies, given a fixed
number of nodes, links are randomly generated between nodes until the average node degree
is met and all nodes have at least one link. The topology description file illustrates the
number of nodes, and the switch and node properties. The number of switches is determined

by the topology type. If the topology is regular, than there is only one switch type. If the



CHAPTER 3. EXPERIMENT METHODOLOGY 24

topology is not regular, than the number of switch types depend on the connectivity of all
nodes. For example, as previously described, a mesh topology requires three switch types.
Given the topology description file, the system generator produces the necessary files used
by either the Altera and Xilinx CAD tool suites depending on the input parameters shown

below:

NoC Type - Homogeneous/Heterogeneous

Node Sizes - Multiplier width or range

Link Width - Width of point-to-point links between nodes (FIFOs)

e FPGA Vendor - Xilinx/Altera

FPGA Family - Virtex 2 Pro, Virtex 4, Virtex 5, Virtex 6, Stratix III, Stratix IV

FPGA Device - Specific device for a given FPGA family

Maximum Operating Frequency - Target operating frequency used by the CAD tools

The output files include verilog files describing the NoC and run-time parameters needed
by the tool suite. Using the system and topology generator, a wide range of NoCs can be
generated. The topology generator can produce topologies of any size, and the system
generator can create all necessary files required by the CAD tool suites to implement a wide
variety of NoC designs. This provides the necessary framework to generate the infrastructure

required by the investigation.

3.3 Testing Methodology

Our experiments aim to quantify and characterize the routability and performance of NoCs
on a variety of FPGA architectures. Using our benchmark circuits, we generate approx-

imately 3600 circuits to encapsulate the effects of different network parameters. These



CHAPTER 3. EXPERIMENT METHODOLOGY 25

30%%
5%
w H0%
)
g 35%
& 10%
525%
E 20%%
S 15%
= 10%
=
0%%
Totus Iesh Hj.rpercube Star Fully Randnm
Topologies Connected
otal Topologie:
3630 Total Topologi

Figure 3.8: Distribution of experiments for each topology

circuits included ring, torus, mesh, hypercube, star, fully connected, and random topolo-
gies of varied link width and number of nodes. The distribution of experiments based on
topology type in shown in Figure 3.8.

Since random topologies include systems with varying average node degree, these topolo-
gies constitute a greater percentage of total experiments. For the ring, torus, and mesh
topologies, circuits are generated from 8 to 128 nodes at 8 node intervals. For the hyper-
cube topology, there can only be 2" nodes, thus there are fewer hypercube experiments.
The fully connected and star topology is investigated in greater detail to pinpoint where
systems fail to route. Thus circuits for these two topologies are generated from 8 to 128
nodes at 4 node intervals.

While having a wide range of NoCs is essential to characterizing NoC performance, we
also synthesize these experiments onto multiple Xilinx and Altera FPGA device families.
This allows us to demonstrate if the results are device or family specific. The devices that
we use in our experiments are listed in Table 3.3. Column 1 lists the processing technologies

of each device, and Columns 2 and 3 show the family and devices for Xilinx FPGAs and



CHAPTER 3. EXPERIMENT METHODOLOGY 26

Table 3.3: FPGA family and devices

Processing Xilinx Altera
Technology Family Devices Family Devices
130nm Virtex 2 Pro [25] | XC2VP100-6
XCV4LX200-11
90nm Virtex 4 [27] XCV4LX160-11 | Stratix IT [11]
XCV4LX100-11 (Not Used)
XCV5LX330-2 EP3SL340-4
60nm Virtex 5 [26] XCV5LX220-2 | Stratix IIT [12] | EP3SL200-4
XCV5LX155-2 EP3SL150-4
XCV6LXT760-2 EP4SE530-14
40nm Virtex 6 [28] XCV6LX365T-2 | Stratix IV [13] | EP4SE360-14
XCV6LX240T-2 EP4SE230-14

Columns 4 and 5 show the family and devices for Altera FPGAs. While Xilinx and Altera
FPGAs share the same processing technologies, their architectures are different, thus we
expect some differences in performance. Since previous work also uses all Virtex 2 Pro
FPGAs listed in Table 3.3, and the Virtex 4LV100 FPGA [51], we use the same FPGAs
when performing our comparison with previous work.

All our benchmark circuits are synthesized for all the FPGA devices listed in Table 3.3.
We found that while our model is the same for Xilinx and Altera FPGAs, the coefficients of
our framework are unique between Xilinx and Altera FPGAs. Therefore, for our analytical
model describing Xilinx FPGAs, our model coefficients are tuned by first running training
experiments using Xilinx EDK 10.1.02 with the Virtex 2 Pro, Virtex 4, and Virtex 5 FPGAs
as listed in Table 3.3. In order to evaluate the accuracy of our model, we use the Virtex 4,
Virtex 5, and Virtex 6 FPGAs listed in Table 3.3, with EDK 11.2. For our Altera model,
the training experiments use Altera Stratix III FPGAs, and the verification experiments
use Stratix III and Stratix IV FPGAs listed in Table 3.3. Both sets of experiments are
synthesized using Quartus 9.1. Only two Stratix devices are used since these devices are
the only ones that are capable of mapping the network node’s FIFOs to M-LABs.

In order to obtain accurate results, each design is synthesized multiple times. Initially

for our Xilinx model, we ran experiments using the Xilinx Xplorer utility, which synthesizes



CHAPTER 3. EXPERIMENT METHODOLOGY 27

designs using known place and route parameters to provide the best results. However, we
found that the utility resulted in extremely long run times (on the order of 5-7 days) for each
experiment, since the utility always runs to completion even when the maximum operating
frequency converges before that point. Therefore, we only use the utility to form a baseline
of comparison for the remaining experiments.

Rather than using the Xplorer utility, we are able to approximate Xplorer’s process
by synthesizing designs multiple times using different seeds, with the maximum operating
frequency averaged over each run. The number of iterations is determined by repeating
iterations until at least five iterations are run and the change in the average result over
all runs is less than 5%. When the results do not converge (which occurs in less than 8%
of our experiments), we set an upper bound on the experiments to ten iterations. This
method has an average variation of 2.1% to the Xilinx Xplorer utility. A design is deemed
unroutable if the design can not route for at least eight out of the ten iterations. This method
results in shorter run times, since using our method limits the number of experiments once

performance converges.



Chapter 4

Deriving an Analytical Framework

for NoCs

The objective of this work is to create an analytical model that describes the maximum
operating frequency of an NoC. Experimental results are used to derive the coefficients for
these equations for a selected device. Our analysis focuses on how specific NoC parameters
affect routability and performance of an NoC utilizing both homogeneous and heterogeneous
topologies. The key parameters that are investigated include heterogeneity, resource usage,
the number of nodes, average node degree, and link width of the topology.

Our overall approach is as follows. We arbitrarily chose an 8-node ring topology with
a 32-bit link-width as a baseline architecture, and denote the maximum frequency of this
baseline architecture implemented on a given FPGA as Fp,s. Therefore, the predicted
frequency Fj,..q is quantified as a percentage performance of the baseline performance. For
different NoC architectures, we then scale Fp,,. using two factors. The framework is shown

below:

Fpred = kgrp X kLRD X Fpase, (4.1)

where the terms kprp and kgrp are functions of the NoC topology, the link width, and

28



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 29

the number of nodes in the NoC. The first scaling factor in the above equation, krrp,
models the impact of local routing demand. Local routing demand is defined by the routing
requirements of a single network node. Network nodes that have a high number of links
will tend to have more congestion around their network interfaces. The CAD tools resolve
this congestion by either using non-direct routes, or by spreading out the logic related to
those nodes with high degree. The impact is a decrease in the maximum frequency of the
network; the magnitude of this decrease is encapsulated in krrp.

The second scaling factor in the above equation, kgrp, models the impact of global
routing demand. Global routing demand is characterized by the routing requirements of the
entire NoC. Topologies that have a large number of links will require more wires. As the
number of links increases, the difficulty in routing these connections increases, again leading
to a reduction in the maximum frequency of the network. The magnitude of this decrease
is encapsulated in kgrp.

Our investigation aims to derive closed-form expressions for krpgrp and kgrp using a
combination of analytical derivations and empirical curve-fitting from experiments. Before
experimentally deriving the specific constants to calibrate our model to Xilinx and Altera
device families, we present the characteristics of our generated benchmark circuits. Using
these characteristics, we illustrate that there are consistent performance trends, indicating
that we can create an analytical model capable of predicting performance. First, an inves-
tigation is performed to compare our current generation scripts with previous work [51] to
demonstrate how improvements in CAD tools might have improved routability in our new
benchmarks. Since Altera and Xilinx FPGAs share the same routing fabric for their FP-
GAs, we expect that the analytical model is the same for all FPGAs. Only the coefficients
are tuned for Altera FPGAs and Xilinx FPGAs, thus the Altera analytical model can be
applied to all Stratix FPGAs, and the Xilinx analytical model can be applied to all Virtex
FPGAs. Therefore, in order to verify this, we analyze the variation in performance for the
same benchmark circuits amongst different Xilinx and altera FPGAs.

After analyzing the characteristics of our benchmark circuits in comparison with previous



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 30

work and among different FPGAs, we present the general performance trends exhibited by
specific NoC topologies that strain local and global routing demand on FPGAs. Resource
usage is investigated first to demonstrate if NoC performance is dictated by resource usage
alone or by the characteristics of the NoC. After, an analysis is performed to determine the
effects of the network node alone by: 1) changing the number of nodes, 2) changing the node
size, and 3) investigating heterogeneous and homogeneous network nodes. These results are
then included in the investigation of local and global routing demand and its effects on NoC
performance. The analysis in this chapter is highlighted using the Xilinx Virtex 5 LX330
and the Altera Stratix III 340 for simplicity. All results are consistent for different devices
within the same vendor, which will be shown in Section 4.2. These two FPGAs are chosen
since they have approximately the same resource availability; however, each vendor has a
different FPGA architecture. The Altera Stratix III 340 has the equivalent of 338,000 4-
input LEs and the Virtex 5 has 207,360 6-input LUTSs, thus we will expect some performance
differences between the two FPGAs. The results found in this section are applicable to all

Xilinx and Altera FPGAs investigated.

4.1 Previous Research

Previous work developed a custom framework that only instantiated MPSoCs on Xilinx
FPGAs[51]. This framework is restrictive in scope, thus in this work, a new framework is
developed that can generate a wide range of NoCs including MPSoCs on both Xilinx and
Altera FPGAs. Since our experiments utilize newer releases of the Xilinx CAD tools, we
compare our generated benchmarks with previous benchmarks to determine how improve-
ments in CAD tools might affect performance and routability.

Previous research showed that homogeneous multiprocessor NoCs exhibited unique trends
on FPGAs compared to ASICs. The previous experiments used the MicroBlaze as the com-
puting node and were synthesized to the Xilinx Virtex 2 Pro and Virtex 4 families of FPGAs
using Xilinx EDK 7.1. We repeat these experiments with our tool flow using Xilinx EDK
10.1.02 for the ring, star, hypercube, and mesh topologies with 8, 16, and 32 nodes on a



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 31

Virtex 4 LX200. For the fully connected topologies, we performed experiments from 8-32
nodes at 4 node intervals. We used the MicroBlaze as the computing node and all IP core
versions are the same as previous experiments.

Our new experiments use an average of 8% fewer resources than the previous experiments
with a standard deviation of 1.1%. This can be attributed to CAD tool improvements in
the newer releases of Xilinx’s tool suites. Performance, in terms of max frequency, shows
little change with an average improvement of 4.1% and standard deviation of 2.1%. These
results exclude the fully connected topologies between 22 and 32 nodes that EDK 10.1.02
can now route, but were previously unroutable by EDK 7.1. Taking into consideration the
changes due to an updated tool flow, our new framework is capable of generating MPSoCs
that are consistent with previous results. We used the updated system generation scripts
are used to produce all the NoCs aimed at characterizing different network parameters and
their effects on performance. Before doing this, we first take a look at how the choice in

FPGA device can effect performance.

4.2 Chip Independence

Since Xilinx and Altera FPGAs utilize the same routing fabric among their device families
respectively, we expect that we should be able to apply the same analytical model. However,
as they are two different FPGA vendors, we expect their respective fabrics to be different.
Therefore, while the analytical model should be consistent, the coefficients defining the
model have to be tuned to each vendor. In order to determine if this is true, we first look at
the effects of changing device families when using the same network topologies. As explained
in Section 3.3, a wide range of FPGAs are used to fully characterize the performance of
NoCs on a number of platforms. Analyzing the performance results for different Xilinx and
Altera FPGASs, we find that different devices and families within the same FPGA vendors
exhibit similar trends in performance. When performance is normalized to an eight node
ring topology for the selected family, performance has minimal variation between families

and devices. Our training experiments involve the devices listed in Table 3.3. Figure 4.1



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 32

1.1
z 1
g 0
=]
T o0
m .
= =Be=ing V51X 220
S 0.6 - =w=Ring V5LX150
= w—=ing V5LH110
Z 0.5 | ess=Ring V413200
04 = Ring 2VEPL00
8 16 32 43 64 al 94 112 128
Number of Nodes
Figure 4.1: Ring topology on Xilinx FPGAs
1.2
-1
= 1 -
®
£
E 0.8
g
06
= sp=Fing SIII330
S 04 w@=Fing SIII200
E se=Fang SII1150 \
E 0.2 smmEing STV 360
s ling STV 230 \
I:I I I I I I I | ‘ |
8 16 a2 43 64 820 96 112 128
Number of Nodes

Figure 4.2: Ring topology on Altera FPGAs



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 33

Table 4.1: Performance variation for FPGA devices and families

Xilinx Altera
Variation | Standard Deviation | Variation | Standard Deviation
Family 3.5% 1.4% 4.1% 1.7%
Device 4.2% 1.6% 5.1% 1.2%

highlights this minimal variation by showing the ring topology for different Xilinx families
and devices and Figure 4.2 shows them for different Altera families and devices.

For our Xilinx and Altera experiments, we find that there is minimal variation in perfor-
mance when moving between different families and devices as shown in Table 4.1. Moving
between different families exhibit smaller variations since the chosen devices between fam-
ilies have an equivalent amount of available resources. When moving between different
devices, smaller devices have a higher percentage of global routing demand for larger de-
signs. This is shown in Figures 4.1 and 4.2 by the dramatic drops in performance for smaller
devices. Thus for very large systems on small devices, systems often fail to route or have
very low performance compared to the same design on a larger device. Since performance
has minimal variation between families and devices, the same conclusions drawn from our
analysis can be applied to all Xilinx Virtex 2 Pro, Virtex 4, Virtex 5, and Virtex 6 FPGAs
for our analysis of Xilinx FPGAs and all Altera Stratix III and Stratix IV FPGAs for Altera
FPGAs.

4.3 Resource Usage

As seen in the previous sections, although trends between FPGA devices remain consistent
up to a certain point, we see a drop of performance for smaller devices for a large number of
nodes. We expect that this drop is due to resource usage. As a design becomes larger, the
CAD tools distribute a design over the given FPGA fabric, and wires grow in length thus
decreasing the maximum operating frequency of the system. However, long wire lengths
are not always directly correlated with resource usage as the critical path could be a result

of high local congestion, or poor design. In this section, we attempt to demonstrate the



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 34

1Zooon

B Ring
B Hypercuhe

loooon

0000 ™ Tors

: m esh
a0000 +

B Star

B Fully

LUTs

40000

Zooan

8 14 3z 45 4 a0 96 112 128

MNunber of Nodes

Figure 4.3: Logic utilization of NoC topologies on Xilinx Virtex 5 L.X330

importance of resource usage on NoC performance.

In order to look at resource usage, we first look at how resource usage is impacted by dif-
ferent network topologies. Figure 4.3 shows the resource usage of the ring, hypercube, torus,
mesh, star, and fully connected topologies with MultBase nodes and 32-bit link widths on
Virtex 5 LX330 FPGAs. For all topologies other than the fully connected topologies, re-
source usage increases linearly as the number of nodes increase. However, for fully connected
topologies, network connectivity grows exponentially as the number of nodes increase thus
resource usage increases exponentially. Note that the 48 node fully connected topology is
not routable, but we map the design to determine the total resource usage that is required.
Fully connected topologies with greater than 48 nodes utilizes substantially more resources
than other topologies, thus they are not shown.

Figure 4.4 shows the performance for the ring, torus, mesh, hypercube, star and fully
connected topologies using the MultBase node on Virtex 5 LX330 FPGAs. Although the
ring, torus, mesh, hypercube, and mesh topologies exhibit the same increase in resource us-

age, each topology experience different rates of performance decrease as the number of nodes



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS

35

Max Operating Frequency (MHz)

200

150

140
140
120
100
&0
ad
40
20

N

—R_-lng

|=E=Hyperoube

a0 1115
T2 ch
o

I—I-Fulljl.r

8 14

3z

43 fid gl 96 112 128

Number of Nodes

Figure 4.4: Xilinx Virtex 5 LX330 performance for all topologies

Table 4.2: Percentage resource usage of largest NoC system for Xilinx FPGAs

Topology Max Percentage
Average | St. Deviation
Ring 84% 3.4%
Hypercube 7% 2.9%
Torus 79% 3.1%
Mesh 82% 3. 7%
Average 80% 3.23%

increase. This suggests that there are multiple factors that contribute to the performance

of an NoC, and not just resource usage alone.

Recall that in the previous section, topologies failed routing for larger designs on a

smaller FPGA device. This suggests that while resource usage may not play a direct role

in performance, it can effect the routability of an NoC topology. We analyze the limits of

routability for the ring, torus, hypercube and mesh topologies for Xilinx and Altera FPGAs

and show the results in Table 4.2 and 4.3. We did not analyze the star and fully connected

topologies as they exhibited unique trends, which will be explained in Sections 4.5 and 4.6.



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 36

Table 4.3: Percentage resource usage of largest NoC system for Altera FPGAs

Topology Max Percentage
Average | St. Deviation
Ring 1% 4.1%
Hypercube 72% 2.4%
Torus 70% 3.7%
Mesh 73% 2.8%
Average 71% 3.25%

In Table 4.2 and 4.3, the three homogeneous and three heterogeneous implementations
of the topologies listed in Column 1 are analyzed on all devices to determine the percent
resource usage for the largest designs that consistently route. The average maximum percent
resource usage and standard deviation of the largest topologies that could route are given in
Column 2 and 3. From these observations, we demonstrate that the largest NoC topologies
that route on Xilinx FPGAs use approximately 80% resource usage and Altera FPGAs use
approximately 71% resource usage. When resource usage is below these points, resource
utilization has little to no effect on performance. With this in mind, the following sections
analyze the effects of different network parameters on local and global routing demand on

NoC performance.

4.4 Number of Nodes and Node Sizes

From the previous section, resource usage does not have a direct impact on performance
until resource usage exceeds 80% for Xilinx FPGAs and 71% for Altera FPGAs. Above
this point, topologies fail to route. Therefore for the purpose of our analytical model, we
exclude resource usage and assume that the design is routable given a large routing fabric.
In this section we discuss how the network node effects NoC performance by changing the
number of nodes in the system and the node sizes.

As SoC complexity increases, larger and more complex computing nodes are used to
perform application-specific functionality. Given the fixed FPGA interconnect, we analyze

the effect of the number of nodes and node size by synthesizing the ring, torus, hypercube,



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 37

200

=

E;_, 1og +—%

£ 180 -

z

:-F 170

= 4 )

5 160 fmmRing

E 150 |=l=Hypercuhe

§. 140 +——|=e=Tors

# 130 | |esmmm]lech

=

= 120 : : : : : : : : .
3 la 32 45 a4 a0 a8 112 128

Number of Nodes

Figure 4.5: Xilinx Virtex 5 LX330 performance for homogeneous topologies

and mesh topologies from 8 to 128 nodes using both homogeneous and heterogeneous node
types. The star and fully connected topologies are not analyzed here as they exhibit dramatic
drops in performance in Figure 4.4 and represent a subset of topologies that have extreme
local and global routing congestion.

Using a homogeneous MultBase node system, we show the performance for select topolo-
gies in Figures 4.5 and 4.6. The performance in terms of maximum operating frequency of
the NoC degrades as the number of nodes increase. However, from this figure the reason for
degradation cannot be isolated to one variable. The drop in performance can be attributed
to either the number of nodes or how the number of nodes affect resource usage as NoCs
with a greater number of nodes require more routing resources.

Another interesting observation from Figures 4.5 and 4.6 is that while the performance
trends for each topology are the same, the absolute performance on the Altera Stratix III
340 is better than the Xilinx Virtex 5 LX330. In Table 4.4, the percent resource usage
of a 128-node ring, torus, mesh, and hypercube topologies with MultBase nodes is shown.
The same topology implemented on the Altera Stratix III 340 uses on average 15.2% less
resources with a standard deviation of 4.3% compared to the Xilinx Virtex 5 LX330. This



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS

38

220
210
200
190
10
17710
1410
150

Max Operating Frequency (hz)

130
120

7] —Rlﬂg
| === Hrp ercube
140

s Tors

o T T 22y

8 14

3z 45 fi4

a0 L] 112

Numnber of Nodes

Figure 4.6: Altera Stratix III 340 performance for homogeneous topologies

Table 4.4: Percent resource usage for 128-node topologies

Altera Stratix III 340

Xilinx Virtex 5 LX330

Ring
Torus
Mesh

Hypercube

55.9%
57.1%
56.8%
57.9%

69.7%
74.5%
73.1%
74.8%

can be attributed to the different FPGA architectures and the total available resources.

The Altera Stratix III 340 was released later than the Xilinx Virtex 5 LX330 and uses

a significantly different routing fabric, thus we expect the performances to be different.

Furthermore, for our training experiments, our Altera experiments used Quartus 9.1, which

was released later than Xilinx EDK 10.1. Therefore, the algorithms used in Quartus 9.1

may have improvements not seen in EDK 10.1. These performance differences are seen in

all of our experiments. In order to determine if performance loss is due to the number of

nodes in a system alone, we extended the experiments to include heterogeneous NoCs with

varying ranges of node sizes.

The effects of heterogeneous node sizes are investigated by varying the node sizes for



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 39

Max Operating Frequency (MHz)

150

100

50 4

s=p=Eing (mult small)

82%

=@=Fing (mult full)
=se=Eing (mult large)
s Torus (mult small)

s Torus (mult full)

==d=Torus (mult large)

8 16 32 43 fid a0
Nunber of Nodes

Figure 4.7: Xilinx Virtex 5 LX330 performance for heterogeneous topologies

Max Operating Frequency (MHz)

1410

|
45%

g Bing(tmult small)
== Fing (mult full)
s Ring (mult large)

141

s Tr11s (mult small)
s Toras (mult full)

120

100

=0=Torus (mult large)

8 16 32 43 fid &l
Number of Nodes

96 112 123

Figure 4.8: Altera Stratix III 340 performance for heterogeneous topologies



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 40

all topologies. Figures 4.7 and 4.8 show three different node size ranges for only the ring
and torus topologies. We chose the ring topology as it attained the best performance and
the torus had the worst (excluding the star and fully connected topologies). The hypercube
topology had almost identical performance to the torus topology and the mesh topology
had approximately 7.4% better performance than the torus topology on Xilinx FPGAs.
The resource usage is also shown for NOCs with 64 nodes by the dotted line. For the ring
topology, the percent resource usage for the smallest node range (MultSmall) is 25% and for
the largest node range (MultLarge) is 45% for Xilinx FPGAs. Despite the large difference
in resource usage, these two systems have the same maximum operating frequency. This
suggests that for a given number of nodes, heterogeneity and node size does not affect the
performance of an NoC.

From these observations, we conclude that node size matters only in as much as it
increases resource usage. When resource usage is under 80% for Xilinx FPGAs and 71%
for Altera FPGAs, node size has no effect; however, above this point the resource usage
results in a dramatic decrease in performance and routing failure. This is consistent with
our conclusions found in Section 4.3. The same conclusions are also verified for Altera
FPGAs. Therefore, as long as the network node is isolated from the network using latched
routers or switches, and is not the critical path in the design, heterogeneity and the choice
in network nodes should not affect NoC performance.

Since performance loss is determined to be due to the number of nodes alone, and not
resource usage, we quantify the performance loss due to increasing the number of nodes.
Our analytical model uses an 8 node ring topology as the baseline. Therefore, we quantify
the performance loss due to the number of nodes for a ring topology by normalizing to the
maximum operating frequency of an eight node ring topology, and averaging the performance
loss for our three heterogeneous and three homogeneous ring topologies. Other topologies
exhibit the same trend, but have different rates of performance change due to other network
parameters, which will be shown in later sections.

Figure 4.9 shows the percentage reduction in performance with errors bars from minimum



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 41

25.0%
=pe=Ring - Altera T
20.0%% ]
E b o - Xiling
|
& 15.0%
:
= 10.0%
i
T
-
5.0%
0.0% T r
16 32 43 fid a0 il 11z 128
Numnber of Nodes

Figure 4.9: Performance loss due to change in number of nodes for a ring topology

to maximum loss in performance versus the number of nodes in a system for the Xilinx Virtex
51.X330 and Stratix IIT 340. As the number of nodes increases, the drop in performance has
an approximately linear increase for the ring topology. From our observations, we conclude
that: 1) topology has a greater effect on performance than resource usage, 2) the number of
nodes is more important than the node size, and 3) resource usage only becomes significant
as it approaches 80% for Xilinx FPGAs and 71% for Altera FPGAs, when larger NoCs
consistently fail to route. While other NoC topologies show a similar linear decrease in
performance, the rate of decrease is effected by different NoC parameters such as the local
and global routing demand. The following sections will illustrate how the local and global

routing demand of different topologies affect performance.

4.5 Local Routing Demand

The previous section quantifies how the number of nodes (N) affects the performance of
the baseline ring topology. However, different topologies exhibit different rates of perfor-

mance degradation, thus suggesting that NoC parameters differentiating these topologies



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 42

g 230 st o mogeneons (mult_half)
= ==} omogeneous (mult_hase)
T 200 =e=homogeneous (mult double)
% st eterogeneous (mult_small)
% 150 sl eterngeneous (mult full)

o =g=heterngeneous (mult large)
! :

.'é 1an

=

3

& 50

i

=

= 0 :

8 16 32 4% fi4 a0 e il 112 128
Number of Nodes

Figure 4.10: Star topology performance on Xilinx Virtex 5 LX330

further effect performance. These parameters can be viewered in terms of the local and
global routing demand of the NoC. As described at the beginning of this chapter, the local
routing demand factor (krrp) characterizes the impact of the routing requirements of a
single network node. These routing requirements are related to the total number of wires
connecting the node’s network interface to the communication network. The total number
of wires is dependent on both the node degree (ND) and link width (LW) of the node. In
this section, we illustrate the effects of local routing demand on performance by isolating
the effects due to node degree and link width. We use the star topology with a fixed 32
bit link width to demonstrate the effect of node degree on a single node; a star topology’s

central node has ND = N — 1, while for all other nodes ND = 1.

4.5.1 The Star Topology

Figures 4.10 and 4.11 show the performance of the star topology using our three homoge-
neous and three heterogeneous NoCs on Xilinx and Altera FPGAs. As previously stated,

the node size for our heterogeneous star topologies is generated at random. Therefore, we



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 43

=) 250 I sl 00 geneois (mult half)
E ==} omogencous (mult base)
= 200 ! se=homogeneous (mult_double)
% | smmsl eterngeneous (mult small)
2 150 | sl eterngeneous (mult full)
T
T =P} eterngeneous (mult large)
L;. ' 26% 44%
_E' 100 2784
s ! 146% 70%
= 5q | 1 |
°© I l I
=
= I:I T T T I T T I T T T I

8 ld 32 45 64 all 96 112 124

Number of Nodes

Figure 4.11: Star topology performance on Altera Stratix I1T 340

do not look at specific heterogeneous cases such as only increasing the size of the central
node. As the graph shows, although the central node in a star has an extremely high node
degree, very large star topologies are routable as long as there are sufficient resources for the
overall system. As the number of nodes increases, more links are added to the central node.
This increases the network interface’s connectivity, causing the CAD tools to distribute the
network interface across the FPGA fabric to enable multiple links to be routed to the cen-
tral node. Using FPGA editor we analyzed the size of the central node’s network switch as
shown in Figures 4.12 and 4.13. Figure 4.12 shows the network interface of the central node
for a 32-node star topology, and Figure 4.13 shows the network interface of the central node
for a 64-node star topology. As the network interface spreads out, longer wires are used to
successfully route the design causing a severe degradation in performance.

The numeric labels in Figures 4.10 and 4.11 indicate the logic resource usage of the star
topology on a Xilinx Virtex 5 LX330 for 80, 96, and 112-node systems, and on a Altera
Stratix IIT 340 for 48, 80, and 128-node systems. The labels shown above the performance
line are for MultSmall NoCs and those below the line represent MultLarge NoCs. Although



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS

Figure 4.12: Network interface of 32-node star topology on Xilinx Virtex 5 LX330

44



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS

Figure 4.13: Network interface of 64-node star topology on Xilinx Virtex 5 LX330



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 46

there is a large difference in resource usage, the overall performance is roughly the same
for all heterogeneous systems considered. This suggests that the resource usage does not
have a significant impact on performance until routing fails at over &~ 80% resource usage
for Xilinx FPGAs and = 71% for Altera FPGAs, which is consistent with the results from
Section 4.4. Since resource usage does not impact performance, the loss in performance is
primarily a function of how well the tools manage the wiring demand of the central node.
The tools attempt to limit congestion by distributing the network interface of the central
node. As a result, the node degree of the central node a significant impact on the topology’s
performance. However, due to the availability of global routing resources, this degradation
eventually flattens out when the network interface is spread over almost the entire FPGA
(approximately 64 nodes on the Virtex 5 LX330 and 48 nodes on the Stratix IIT 340) and
larger star topologies will continue to be routable with constant performance, as long as
there are sufficient logic resources.

For Altera FPGAs, the star topology flattens out at a higher operating frequency and
at a lower number of nodes than for Xilinx FPGAs. This suggests that the Altera CAD
tools attempt to limit congestion by distributing the central node’s network interface earlier
when compared to the Xilinx CAD tools. Furthermore, the subsequent higher operating
frequency suggests that either the Altera CAD tools or routing fabric can better leverage

global resources to reduce local routing demand.

4.5.2 Link Width

Link width plays an important role in local routing demand as it effects the number of wires
each link needs to route. When changing the link width, the number of wires used to route
a single link to a network node is directly proportional to the link width. To demonstrate
the effect of varying link width on local routing demand for a fixed node degree over an
increasing number of nodes, we use the ring and torus topologies.

As seen in Figures 4.14 and 4.15, increasing the link width has a significant impact on

performance due to the increase in the number of wires required to connect two network



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 47
=
=
£
B
:
g
I
‘uan
=
E.. 1410 ] ] ] 4"._-#._
8 g 16 0 eslesppng 340 ssgesnng 37
w120
o mmodmm fonyg 1§ 0 =mdes fonyg 24 ss@es fomgg 52
= 100 . : : : ; . !
8 14 32 43 fi4 a0 96 112 128
Number of Nodes
Figure 4.14: Varying link widths on Xilinx Virtex 5 LX330
230
220

Max Operating Frequency (MHz)

]

—

[
|

200

150

180
170
160

spering 16 ol i 24

iy 32

=i fopnys 1§ s fomys 24 ssE@es goyz 32

150

2 16 32 48 fi4 a0
Number of Nodes

96

112

128

Figure 4.15: Varying link widths on Altera Stratix III 340



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 48

nodes to each other. Each line in Figures 4.14 and 4.15 illustrates the average performance
of our three heterogeneous and three homogeneous ring and torus topologies from 8 to 128-
nodes for a fixed link width of 16, 24, or 32-bits. We also ran experiments for 40 and 48-bit
link widths but have omitted them here for simplicity. The dotted lines represent the torus
topologies, and the solid lines are the ring topologies. As can be seen in Figures 4.14 and 4.15,
generally each line is monotonically decreasing except for a few cases. This can be attributed
to the CAD flow, as the CAD algorithms are random, and there still exists a certain amount
of unpredictability in performance. However, with our exhaustive experiments, these small
variations in performance can be effectively “averaged” out over a large exploration space.

As seen in Figures 4.14 and 4.15, as link width decreases, performance increases for both
the ring and torus topology. For the ring topology, decreasing the link width from 32 to 24
bits on a Xilinx Virtex 5 LX330, results in an 8.1% performance increase, while a change
from 32 to 16 bits results in a 14.2% increase. The torus topology exhibits slightly larger
increases; a change in link width from 32 to 24 bits increases performance by 9.3%, and a
change from 32 to 16 bits increases performance by 16.8%. As seen in the previous analysis,
the node degree has a significant impact on performance. Therefore, since each node of the
torus topology has twice the node degree of a ring, decreasing the link width by 8 bits for
the torus topology, results in approximately two times the reduction in wires (ND x LW)
when compared to the same change for the ring topology. This results in link width having

a greater impact on performance for topologies with higher node degrees.

4.5.3 Bandwidth

Another interesting observation from Figures 4.14 and 4.15 is that a ring topology with a
32-bit link width has a lower maximum frequency than the torus topology with a 16-bit link
width. Both networks have the same number of incident wires to each node, and hence the
local routing demand should be the same. Using FPGA Editor, we observe that the tools
tend to route the wires in a single link using the same global route (along the same set of

channels). Thus, networks with larger link widths create a harder routing problem. We



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 49

investigate this further by analyzing the effect of changing the bandwidth to a single node.
This is done using the ring and torus topology, since they are both regular topologies (all
nodes have the same number of links). We increase the link width and vary the number of
links between nodes to create custom ring and torus topologies.

Each topology is labelled TopologyX_Y, with X indicating the link width and Y indicat-
ing the number of total channels (2 unidirectinonal links) between each network node. For
example Ringl6_2 is a ring topology with 16-bit link widths, but with two channels between
each node. Therefore the baseline 32-bit ring topology is classified as Ring32_1. Using these
custom topologies, we are able to reduce the link width while increasing the number of
links between connected nodes. This allows us to isolate the effects due to individual links.
Therefore, a Ringl6_2 and Ring32_1 should have the same performance as the number of
incident links to each node are the same.

The performance of the ring and torus topologies for a variety of link width combinations
on a Xilinx Virtex 5 LX330 FPGA are shown in Figure 4.16. A system with 2x16 bit link
widths, should have the same performance as a system with 1x32 bit link width since the
same number of wires are used to connect two nodes. However, as shown in Figure 4.16,
splitting links into smaller link widths tend to perform better than single links with large
widths. Therefore, in order to maximize bandwidth, multiple small width links are a better
choice than single links with large widths.

In this section, we discuss the effects of local routing demand on performance. Node
degree has a significant impact on local routing demand by causing the CAD tools to
distribute a single node to alleviate local congestion due to a high node degree. Furthermore,
changing the link width has a direct impact on performance as it varies the number of wires
connected to each node. The CAD tools seem able to better leverage available resources
when the link width is small, thus resulting in systems with multiple links with small bit-

widths performing better than systems with single large links.



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 50

200 == Torus32_|
240 1 o i Torusd 3 1
: s Tomzlt 2

Torsid 2

s Tomizla 3
g gl |
oo Fingd 5 1
emgpem Fitigl i 2
e Fipgld 2
s Binglf 3

Max Operating Frequency(IVHz)

K 16 32 4% fi4 al il
Nurmnber of Nodes

Figure 4.16: Bandwidth analysis for ring and torus topologies

4.6 Global Routing Demand

Local routing demand characterizes the effects of changing the network’s routing require-
ments for a single network node. Recall that in Figures 4.10 and 4.11, local routing demand
results in an initial rapid linear degradation in performance. Global routing demand leads
to the eventual flattening of performance when the CAD tools leverage global resources to
spread out all network links over the entire FPGA fabric. Therefore, as described in the
beginning of this chapter, the global routing demand factor (kgrp) characterizes the impact
of the routing requirements of all network links. The total number of network links is equal
to the number of nodes in the system (N) multiplied by the average node degree (AND). To
show the effects due to changing the total number of links on performance, we vary AND
and N using the fully connected topology (a regular topology where AND = N — 1).
Figures 4.17 and 4.18 show fully connected topologies with 32-bit link widths as a func-
tion of the number of nodes, along with a star topology with MultBase nodes as a reference
point for comparison. As a fully connected topology grows in size, the impact on perfor-

mance is severe as the total number of links increases quadratically. For up to 20 nodes



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS

51

Max Operating Frequency (MHz)

130
140
140
120
100
&l
&l
40
20

_ 200 mmpmsl 01110 geneou s (mult half) —
s 120 ===} omogeneous (mult base) E—_
= sgeeh o geneous (mult douhle)
5160 - st eterogencous (mult smal) [—
2 140 - s etero geneons (mult full) L _
E s=fe=h etero geneous (mult large)
E ]. 2 D ot gt 4 ) —
= 100
bl
.é all
S 60
& 4o
& 20
= g . .
8 12 ld 20 24 28 32 1] 40
Number of Nodes
Figure 4.17: Fully connected topologies on Xilinx Virtex 5 LX330
200

sy 0o geneous (mult small)
==} omogeneous (mult_ong)
s b nmogeneous (mult hig)
s eterogeneous (mult small)
s b etero geneous (mult full)
s h eterogeneous (mult big)
s ctar

8 12 14 20 24

28
Number of Nodes

32

Figure 4.18: Fully connected topologies on Altera Stratix IIT 340



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 52

on the Xilinx Virtex 5 LX330, performance has a rapid linear degradation in performance.
Performance then drops dramatically and flattens out at 24 nodes before routing eventually
fails. The same trend can be seen on the Altera Stratix IIT 340. Up to 28 nodes, perfor-
mance drops linearly and flattens out before routing failure. However, the fully connected
topology on the Altera Stratix IIT 340 exhibit higher operating frequencies before routing
failure, suggesting that the Altera CAD tools and routing architecture can better handle
global routing demand.

As the average node degree increases up to 24 nodes, much like the star topology, the
network interface for each node is distributed to allow the CAD tools to use the available
routing resources. However, this is a much more difficult problem than that for a star
topology since there are many more links in a fully connected network. Therefore, the
designs become unroutable before running out of logic resources, as shown in Figure 4.17
for the Xilinx Virtex 5 LX330 where the largest fully connected topologies capable of routing
uses only =~ 50% of the logic, and for the Altera Stratix III 340 in Figure 4.18 where the
largest fully connected topology used = 35% of the logic. Fully connected topologies with
24 and 16-bit link widths exhibit the same trends, with a significant performance drop at
28 and 32 nodes and routing failure at 40 and 44 nodes respectively, on the Xilinx Virtex
5 LX330. For the Altera Stratix III 340, significant performance drops occur at 32 and 36
nodes, and routing failure at 44 and 48 nodes for 24 and 16-bit link widths respectively.

Comparing Figures 4.10 and 4.11 and Figures 4.17 and 4.18 reinforce the greater impact
of global routing demand than local routing demand; we see that for the Xilinx Virtex 5
X330, the performance of the two topologies varies by only 8.2% up to 20 nodes and then
diverges as the star topology’s performance flattens out and the fully connected topologies
performance continues to decline. For the Altera Stratix IIT 340, the performance of the
two topologies varies by 6.9% up to 28 nodes and then diverges. This suggests that up to
these divergence points, the CAD tools are able to leverage the global routing resources
to facilitate fully connected topologies. However, above this point the impact due to the

global routing demand of all nodes outweighs that of the local routing demand of each node,



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 53

200
150
160
140
120

Max Operating Frequency (MHz)

100
el mpem | nodes
== nodes
60 H sm=q3 nodes
40 -+ =m==id nodes
ag el nodes
] =] 28 nodes

2 3 4 5 fi T 8 g 1o
Average NodeDegree

Figure 4.19: Heterogeneous random topologies on Xilinx Virtex 5 LX330

resulting in rapid performance decline and routing failure.

Fully connected topologies show that the total number of links have a significant impact
on performance by varying the number of nodes (N) and average node degree (AND),
without isolating the two variables as they both increase at the same rate. In order to
isolate the effects of average node degree from the number of nodes, we create and map
benchmarks containing random topologies ranging from 16 to 128 nodes with average node
degrees of 2 to 10. Figures 4.19 and 4.20 show the performance results for heterogeneous
NoCs utilizing the MultFull range of node sizes with 32-bit link widths, where each line
represents random topologies with a fixed number of nodes. The topologies with 16 nodes
have the highest performance, which degrades as the number of nodes increases to 128.
For a fixed number of nodes, the performance decreases almost linearly as the average node
degree increases, until routing fails. The rate of degradation increases as the number of nodes
increases, as shown by the increase in the slope’s magnitude for each line in Figures 4.19
and 4.20. This is because for a fixed number of nodes, N links are added as the average node

degree increases by one. Thus, we expect a greater drop in performance for systems with



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 54

200 -

150

=] nodes
100 =il nodes
el 8 nodes
50 il nodes
im0 f nodes

Max Operating Frequency (MHz)

sefem | 7 % nodes I
0 T T . . . T —Lr—%
2 3 4 5 f 7 8 g 10
Average NodeDegree

Figure 4.20: Heterogeneous random topologies on Altera Stratix 11T 340

more nodes. Furthermore, comparing Figures 4.19 and 4.20, we see that performance on the
Altera Stratix III 340 exhibit less variations as shown by the “smoother” lines compared to
the Xilinx Virtex 5 LX330. This cis due to the Altera CAD tool differences with the Xilinx
CAD tools.

Much like the fully connected topology, systems with high average node degrees fail to
route before all logic resources are utilized. For example on the Xilinx Virtex 5 L.X330, for a
64-node random topology in Figure 4.19, the highest average node degree that consistently
route is nine, using 46% of the logic. 96 and 128-node random topologies are routable
with an average node degree of nine and five, respectively, but only use 66% and 77% of
the total resources. As shown in Figure 4.20, For the Altera Stratix III 340, a 128-node
random topology with an average node degree of seven only use 58% of total resource usage
before routing fails at an average node degree of eight. This is because for a high average
node degree, the stresses of global routing demand requirements on the CAD tools for the
FPGA fabric cause routing to fail well before logic utilization approaches 71% for Altera
FPGAs and 80% for Xilinx FPGAs. Therefore, using the results found in this section, we
utilize AND and N to determine the effects that global routing demand has on network



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 55

. 2410

T

E 220

200

g

T 180

=

1

= 1a0

.E -

2140 1+

& |

H 120 6 +

= -

].I:II:I T T T T T T T T 1
8 16 32 4% fi4 a0 0f 112 128
Number of Nodes

Figure 4.21: Performance of torus topology and random topologies on Xilinx Virtex 5 LX330
(AND = 4)

performance in our analytical model.

4.7 Regularity

In the previous sections, topologies such as the ring, torus, and fully connected topologies
represent regular topologies where all network nodes have the same number of links. How-
ever, the vast majority of networks use irregular topologies such as the mesh or application-
specific topologies where the node degree of each each network node is different. Many
applications may benefit from an irregular topology, which is optimized specifically for that
application. When quantifying the performance loss due to global and local routing demand,
we did not take regularity into consideration when determining the parameters that affect
performance. Therefore, in this section, we demonstrate that application-specific topolo-
gies modeled using random topologies have minimal variation in performance compared to

regular topologies.



CHAPTER 4. DERIVING AN ANALYTICAL FRAMEWORK FOR NOCS 56

-
[N
[}

[-2
]
]

[

—_

[}
|

[
[}
[}

—_
Rm)
[}

- )
e 4

—_

(=)

[}
|

-
=
|

Max Operating Frequency (MHz)

—_
(=33
[}

8 16 32 48 fi4 a0 i 112 128
Number of Nodes

Figure 4.22: Performance of torus topology and random topologies on Altera Stratix 111 340
(AND = 4)

Figures 4.21 and 4.22 illustrate the average performance of all heterogeneous and ho-
mogeneous torus topologies compared to ten random topologies with the same number of
nodes (N), the same average node degree (AND), and the same link width (LW). Each line
corresponds to the performance of the torus topology for a fixed link width and the error
bars represent the performance variation exhibited by the corresponding random topolo-
gies. The error bars show an average variation of 2.3% and a maximum variation of 4.8%
for Xilinx FPGAs and an average variation of 2.1% and a maximum variation of 3.9% for
Altera FPGAs. These results suggest that an expression written in terms of only the num-
ber of nodes (N), average node degree (AND), and link width (LW) can apply to irregular
application-specific networks as well as regular networks. This allows our analytical model
to encompass both regular and irregular topologies so long as they can be modelled by these
parameters. The derivation and calibration of the factors kgrp and krgrp, in terms of these

variables, are described in the following chapter.



Chapter 5

Analytical Model

Based on the results found in the past sections, we analytically derive the equations for
karp and krprp and tune the coefficients using experimental curve fitting to predict the
maximum operating frequency of an NoC implemented on Xilinx and Altera FPGAs. As
described in Section 3.3, a number of FPGAs are used in our training experiments to tune
the coefficients of our model. The equations for kgrp and krrp are presented in this section

along with the empirical curve-fitting used to tune the coefficients of our model.

5.1 Xilinx Analytical Model

We use experiments run on three different Xilinx FPGA families as our training data.
Each device family has a unique frequency, Fp.se, for the 8-node ring topology with 32-bit
link widths that we use as our baseline architecture. For our training data, the baseline
frequencies used in our model are 190MHz for Virtex 5, 145MHz for Virtex 4, and 110MHz
for Virtex 2 Pro. Recalling from Equation 4.1, we choose to express the model in terms
of karp and krppp multiplied by the Fpqs. Therefore, the predicted frequency represents
the remaining percentage of Fy,s after accounting for changes in global and local routing
demand with respect to our baseline architecture. If we wish to “predict” the performance

of our baseline 8-node ring topology with 32-bit link widths, we expect kgrp = krrp = 1

o7



CHAPTER 5. ANALYTICAL MODEL o8

and Fpred = Fpase-

5.1.1 Local Routing Demand

Local routing demand (kprp) describes the performance impact from the perspective of a
single network node. As discussed in Section 4.5, local routing demand is directly correlated
with the node degree (ND) and link width (LW) of the network node. Since our focus is on
application-specific topologies, we simplify our model by approximating the node degree of
individual nodes in the topology as being equal to the average node degree (ND ~ AN D).
However, as discussed previously in Section 4.6, the average node degree also affects the
global routing demand of the entire system. Therefore, we chose to only encapsulate the
effects due to a change in link width and how it is magnified by average node degree in
krrp- The overall effect of average node degree will be encapsulated in korp and discussed
in the following section.

Increasing the link width increases the number of wires to a node, causing the CAD tools
to distribute the network interface, creating longer wire lengths and impacting performance.
As average node degree increases, a fixed change in link width will result in more wires being
added for higher average node degrees thus further impacting performance. Analytically,
this corresponds to a linear equation for a change in link width. The magnitude of the slope
will then change depending on the average node degree. Therefore krrp is expressed as a
change in link width magnified by the average node degree. The expression for local routing

demand is shown below:

krpp = LRDg, x ALW +1 (5.1)

where ALW represents the change in link width given by (ALW = LWg, ., — LWF,, .
where LWp, .. = 32). If ALW = 0 then there is no change in link width and ALW
reduces to zero resulting in krgrp = 1. The slope (LRDgy,) describes the rate of change of

performance due to link width for a fixed average node degree.



CHAPTER 5. ANALYTICAL MODEL 59

125%
120%
115%
110%:
105%%
100%:
9555
0%
B5%%
80%%
TS5

PercentagePerformance (%o f ;)

-lé -8 0 8 16

Link Width (F,y,) - Link Width (F,.,)

Figure 5.1: Performance variation due to a change in link width for Xilinx FPGAs

In order to calculate LRDgy, Figure 5.1 shows a family of lines representing the per-
formance of all topologies as a percentage of Fp,s with respect to changing the link width,
where each line in the figure represents topologies with a constant average node degree.
The horizontal axis indicates the change in link width from the 32-bit link width in the

baseline architecture (i.e. ALW = LWg, , — 32). For a fixed average node degree, a

red
constant change in link width results in a constant change in the number of wires added
to a network node. Since the number of wires is directly proportional to the link width
(numberofwires = ND x LW ~ AND x LW), the impact on performance due to change
in link width has the linear relationship given in Equation 5.1 for a constant value of AND.

As shown in Figure 5.1, adjusting the average node degree varies the impact of changing
the link width on performance, corresponding to the slope of each line (LRDgy). For
example, if a node has AND = 2, then increasing the link width by 8 bits requires 16
additional wires to be routed to that node. However, if a node has AND = 3, then 24 more

wires must be routed to that node. Therefore a topology with an average node degree of

three would result in more wires being routed, and thus an increased local routing demand



CHAPTER 5. ANALYTICAL MODEL 60

(on average), than the same change in link width for a topology with an average node degree
of two. Thus, the higher the average node degree, the greater the effect link width has on
performance. Since the value of LRDgy, is directly proportional to the average node degree,
the slope remains constant for a fixed average node degree, and decreases linearly as the
average node degree increases. We isolate the slope (LRDgy,) of each line in Figure 5.1 and
map the change in slope as a linear relationship, deriving the slope and intercept through

curve fitting as:

LRDgr, = (—1.21 x 1072 AND) — (4.62 x 107?) (5.2)

5.1.2 Global Routing Demand

Global routing demand (kgrp) is characterized by the routing requirements of the entire
system. Independent of network node, type, and size, global routing demand is directly
affected by the total number of links in the system (N x AND). In order to model these
effects, we first consider how average node degree impacts performance and how the number
of nodes magnifies this effect. An increase in average node degree results in more links being
added to the topology since ALinks = N x AAND. As the number of nodes in a system
increases, a change in average node degree results in even more links being added. The
number of links affects performance by increasing the number of wires in the system, thus
expanding the network over the fabric and effectively decreasing performance. Since kgrp

is directly correlated with the number of links, the effect due to kgrp is shown below:

karp = GRDgy, % (AND — 2) + GRDinT (5.3)

The linear equation is characterized by a slope, GRDgy,, and an intercept, GRDnT,
which vary when the number of nodes change. Since kgrp is equal to one for an eight node
ring topology (N =8, AND =2), the (AND — 2) terms reduces the slope to zero and the
intercept is equal to one when N = 1. In order to determine GRDgy, and GRDin7, we

analyze the effect of varying average node degree for sets of NoCs with fixed numbers of



CHAPTER 5. ANALYTICAL MODEL 61

100%%
0%
BO0%:
T0%
B0%
50%
40%%
30%
20%:
10%%

0%

Percentange Performance (%oF;, ..}

) WA

3 4 5 i 7 g 3 10
AverageNodeDegree

Figure 5.2: Performance loss due to average node degree for Xilinx FPGAs

nodes. Figure 5.2 shows the remaining percentage of Fy.s. as a function of average node
degree for a given number of nodes. Each line corresponds to a set of topologies with
the same number of nodes and link width at varying average node degrees as expressed in
Equation 5.3. For a fixed number of nodes, as the average node degree increases, a constant
number of wires is added to the network. This number of wires is directly proportional to
the average node degree, thus a change in average node degree from 2 to 3, or 4 to 5 will
always result in the same number of additional wires being added to the system.

When moving between the different lines in Figure 5.2, the slope (GRDgr) and intercept
(GRDynT) change to reflect the rate of performance loss (slope) and maximum possible
performance (intercept) for that number of nodes. Since the slope (GRDgy,) describes the
rate of performance decrease when changing the average node degree for a fixed N, it varies
when N changes. For example, changing the average node degree of a system with 128
nodes should have a higher impact on performance than changing the average node degree
of a 16-node system as there are a greater number of links added to the system. For a

change in average node degree of one, adding 128 links results in significantly more network



CHAPTER 5. ANALYTICAL MODEL 62

connectivity than 16 links. Analytically, this corresponds to the slope having a polynomial
relationship to account for the increased connectivity in very large systems. In order to find
the different values of GRDgy, for each number of nodes, we find the slope of each line in
Figure 5.2. We determine that the slope has a square polynomial relation to the number of

nodes and increases in magnitude when the number of nodes increases.

GRDsp, = (—2.48 x 1075N?) — (2.61 x 1074N) — (3.58 x 1072) (5.4)

The slope (GRDgy,) takes the form of a square polynomial to account for the increased
complexity of routing very large systems. For small systems (under 64 nodes), the N?
term becomes negligible under 0.01) and a linear relationship approximates the effect of the
CAD tools distributing the topology over the FPGA fabric. However, as systems and their
corresponding network become very large, the tools are challenged to find available global
resources, which cause a significant decrease in performance resulting in the N? term.

The intercept (GRDrn7) defines the fixed performance loss when N = 8 and ND = 2
and changes as the number of nodes varies. Increasing the number of nodes should result in
a linear decrease in performance as adding one node to a topology results in a fixed gain in
routing demand. In other words, going from 10 to 11 nodes or 100 to 101 nodes for a fixed
AND results in the same increase in routing demand and consequently the same decrease
in maximum performance. Therefore, we isolate GRDynT for each line in Figure 5.2 and
using curve fitting, we find that the value of GRDyn7 decreases linearly as the number of

nodes in the system increases according to the following relation:

GRDin7 = (—1.49 x 1073 N) + 1.01 (5.5)

The intercept for Equation 5.3 results in GRD;yr = 1, when N = 8 to ensure that
karp = 1 for our baseline 8-node ring topology. By substituting the relations given in
Equations 5.1 to 5.5 back into our original framework given in Equation 4.1, we obtain our
final model for predicting the frequency of any regular or irregular topology. On a Xilinx

FPGA, the accuracy of our model will be verified in Section 6.1.



CHAPTER 5. ANALYTICAL MODEL 63

5.2 Altera Analytical Model

In Chapter 4, the analytical model is shown to be extendable to all FPGAs. However, due
to Altera FPGA’s unique routing fabric, the coefficients of the model need to be recalibrated
to account for these differences. The corresponding Fp.se for an 8-node ring topology with
a 32-bit link width on a Stratix III FPGA is 210MHz. The coefficients for kgrp and krrp

are derived in this section along with a comparison with the Xilinx analytical model.

5.2.1 Local Routing Demand

As previously described, local routing demand, krgrp, is characterized by the routing re-
quirements of a single network node. The parameters that affect local routing demand are
the average node degree (AN D) and link width (LW). While the expression for krgp for
Altera FPGAs is the same as for Xilinx FPGAs, the coeflicients for the equation need to be
recalibrated to reflect the different routing fabric and CAD tools. The expression for kz,grp

is shown again here:

krrp = LRDgr, x ALW +1 (5.6)

Figure 5.3 shows a family of lines representing the performance of all topologies as a
percentage of Fp,s with respect to changing the link width, where each line in the figure
represents topologies with a fixed average node degree. The horizontal axis indicates the
change in link width from 32-bits, and the vertical axis is the performance change compared
to an 8-node ring topology.

In order to determine the expression for LRDgy, the slope of each line in Figure 5.3 is
isolated and found to change linearly as the average node degree changed. The expression
for LRDgy, is identical to the Xilinx model, but has different slope and intercept coefficients.

The expression for LRDgy, is shown below:

LRDgy, = (—1.39 x 1073AND) + (1.62 x 1073) (5.7)



CHAPTER 5. ANALYTICAL MODEL 64

125%
120% N
115%6
110%
105%%

PercentagePerformance (%oF ;)

100% " omomniD =3
95%
==}D =4
0% T D = 6
B30 T e ND = 2 ,
30% _ \7
=D = 11
75% I T T T
16 K 0 3 16

Link Width (F,) - Link Width (Fj,.)

Figure 5.3: Performance variation due to a change in link width for Altera FPGAs

Compared to the Xilinx model, LRDg;, increases in magnitude faster for Altera FPGAs
than Xilinx FPGAs. Therefore, as the average node degree increases, the performance
variation due to a change in link width increases in magnitude at a greater rate than Xilinx
FPGAs. These differences are due to a combination of the unique routing fabrics and CAD

tool flows.

5.2.2 Global Routing Demand

Recall that global routing demand, kgrp, is characterized by the routing requirements of the
entire NoC. The parameters that affect global routing are the average node degree (AN D)
and the number of nodes (N). Much like for local routing demand, the expression for kgrp
for Xilinx FPGAs is also used for Altera FPGAs and only requires that the coefficients be
recalibrated to account for different routing fabric and CAD tools. The equation for kgrp

is shown below:

kGrp = GRDsr, x (AND — 2) + GRD|nT (5.8)

The linear equation is characterized by the slope, GRDgr,, and the intercept GRDnT.



CHAPTER 5. ANALYTICAL MODEL 65

0%
a0%
T0%
60%%
50%
40%%
30%
20%

10% ——c5
e

PercentagePerformance (% Fbase)

0%
3 4 5 i 7 8 3 10

AverageNode Degree

Figure 5.4: Performance loss due to average node degree for Altera FPGAs

In order to determine GRDgy, and GRDnT, we analyze the effects of changing the average
node degree for a variety of systems with a fixed number of nodes. Figure 5.4 shows a
family of lines, with each line representing NoCs with a different fixed number of nodes. The
horizontal axis is the average node degree, and the vertical axis represents the performance
loss compared to an 8-node ring topology.

When moving between different lines, the slope GRDgr, and the intercept GRDnT,
changes as the number of nodes change for a given NoC. The analytical model is the same
as Xilinx FPGAs, thus the expression’s form is the same, but the coefficients are different
as Altera FPGAs exhibit slightly different changes between each line in Figure 5.4. The

expressions for GRDgy, and GRD;nt are shown below:

GRDgsp, = (—2.22 x 1075N?) — (1.47 x 1075N) — (4.29 x 1072) (5.9)

GRDiyt = (—1.39 x 1073N) + 1.01 (5.10)

The slope and intercept expressions have different coefficients when compared to the



CHAPTER 5. ANALYTICAL MODEL 66

Xilinx model. Looking at GRDgy, the Altera model exhibits a N? and N terms that are
smaller in magnitude than the Xilinx model. This means that the rate of performance
loss due to average node degree, does not change as much as the Xilinx model when the
number of nodes increases in the system. This can be seen when comparing Figure 5.4
with Figure 5.2, as each line becomes considerably ”steeper” for the Xilinx model when the
number of nodes increases in Figure 5.2 compared to Figure 5.4. Furthermore, the GRDnT
expression for the Altera model has a slope that is slightly smaller in magnitude compared
to the Xilinx model. Therefore, for an average node degree of two, when the number of
nodes in an NoC increases to more than eight nodes, Xilinx FPGAs will exhibit a greater
decrease in performance than Altera FPGAs.

As seen in the previous sections, performance on Altera IIT 340 generally have higher
maximum operating frequency than the Xilinx Virtex 5 LX330. When comparing the Xilinx
Virtex 5 LX330 and Altera Stratix III 340, the baseline 8-node ring topology with a 32-bit
link width has a base frequency Fpqse of 190MHz and 210MHz respectively. The performance
improvement on Altera FPGAs can be attributed to a combination of different CAD tool
algorithms or the unique routing fabric. Since the architecture and algorithm are proprietary

for both vendors, a direct comparison is not done here.

5.3 Summary

While the analytical models developed for Xilinx and Altera FPGAs have identical forms,
the coefficients of our model are different for each FPGA vendor. This account for the
performance fluctuations that are impacted by the different FPGA routing fabric and CAD
tools of each vendor. Furthermore, differences in CAD tool suites can cause performance
fluctuations as each suite can utilize different algorithms that may better leverage available
resources. The derived analytical model is summarized and repeated here, along with the

corresponding Fyqse for each family used in our training experiments in Table 5.1.



CHAPTER 5. ANALYTICAL MODEL 67

Table 5.1: Base frequencies for training experiments
Xilinx FPGAs Altera FPGAs
Family Frose Family Frose

Virtex 2 Pro | 110MHz

Virtex 4 145MHz
Virtex 5 190MHz | Stratix III | 210MHz

Analytical Framework:

Fyrea = karp X kELRD X Fpase (5.11)

Framework for effects due to Local and Global Routing Demand:

krpp = LRDg, x ALW +1 (5.12)
kcrp = GRDgp, X (AND — 2) + GRDnT (5.13)

Effects due to Local and Global Routing demand for Xilinx FPGAs:

LRDgr, = (—1.21 x 1073 AND) — (4.62 x 107?) (5.14)
GRDsp, = (—2.48 x 107N?) — (2.61 x 107*N) — (3.58 x 1072) (5.15)
GRDyn7 = (—1.49 x 1073N) + 1.01 (5.16)

Effects due to Local and Global Routing demand for Altera FPGAs:

LRDgr, = (—1.39 x 1072 AND) + (1.62 x 107?) (5.17)
GRDsr, = (—2.22 x 107N?) — (1.47 x 107°N) — (4.29 x 1072) (5.18)
GRDn7 = (—1.39 x 1073N) + 1.01 (5.19)

As previously stated, the expressions of our analytical model shown in Equations 5.11-

5.19 are analytically derived. In order to tune our model to Xilinx and Altera FPGAs, we



CHAPTER 5. ANALYTICAL MODEL 68

used empirical curve-fitting to determine the coefficients given in Equations 5.14- 5.19. In
the following chapter, the expressions developed in this chapter are verified utilizing more
modern Xilinx Virtex 6 FPGAs and Altera Stratix IV FPGAs. This will ensure that our
model is extendable to the newest FPGAs from both FPGA vendors. Furthermore, an
analysis on error will be performed to ensure that our model is capable of characterizing a

majority of NoC topologies.



Chapter 6

Verification

Our analytical model provides an approximation of performance given the global and local
routing demands of an NoC topology. Utilizing approximately 3600 experiments per device
on both Altera and Xilinx FPGAs, we tune this analytical model, which is capable of
predicting performance for a range of FPGA device families. In order to verify our model,
we create 750 new benchmark circuits and synthesize them for the most recent Xilinx and
Altera FPGAs. These new benchmark circuits consist of heterogeneous and homogeneous
systems with 8 to 128 nodes using random topologies with average node degree from 2-10
and link widths of 16, 24, 32, 40, or 48-bits. In this section, we verify our analytical model

and perform an error analysis to demonstrate where our model fails.

6.1 Xilinx Verification

To measure the accuracy of our model, we map the new benchmark circuits for Virtex 4,
Virtex 5, and Virtex 6 FPGAs, resulting in 2250 data points. Since the Virtex 6 FPGA’s
recent release is not supported in Xilinx EDK 10.1.02, we use Xilinx EDK 11.2 to run
our verification experiments. In order to see the improvements of new CAD tools and
technologies, we ran several preliminary experiments on the Virtex 5 LX330 in EDK 11.2.

The results show that the actual performance increased on average by 8.4% with a standard

69



CHAPTER 6. VERIFICATION 70

12.00%
= 10.00%
Hog00vs
g
= 6.00%
£ 468% _
E 4.00% ﬁ
E L wmpes byerage Mode Degree (54%)
aQ —
2.00% =l=]lax Node Degree (73%5)
0.00% Max - Average Mode Degree (82%)
. [r} T T T T 1
0 ] 1a 15 20 25
Average Node Degree

Figure 6.1: Geometric mean error as a function of node degree for Xilinx FPGAs

deviation of 3.2%. However, when normalized, the new CAD flow’s performance only varied
by 1.8% with a standard deviation of 1.4%.

Table 77 shows a sample set of the operating frequencies predicted by our model. The
properties of each topology are shown by the number of nodes in Column 1, the average
node degree in Column 2, and the link width in Column 3. Column 4 shows the predicted
frequency, Column 5 presents the actual frequencies obtained from the CAD tools and
Column 6 shows the geometric mean error for each NoC topology. Finally, Column 7
indicates the resource usage of each topology as a percentage of total available resources.
The devices shown in Tables 6.1 and 6.2 have approximately the same number of LUTs.
We use the geometric mean error as it weights the error’s magnitude depending on the
maximum operating frequencies. For example, an error of 5% between the actual and
predicted frequencies has a greater significance for topologies with an actual frequency of
200MHz vs 50MHz. The new Fpqqe for each device generated with EDK 11.2 is also listed
in Tables 6.1 and 6.2. The overall error was found to be 4.68% with a standard deviation

of 3.41%.



CHAPTER 6. VERIFICATION 71

Table 6.1: Predicted operating frequencies for Xilinx Virtex 4 and Virtex 5 FPGAs

Virtex 4LX200 Base Frequency = 150MHz
# of Nodes | NodeDegree | Width | Predicted(MHz) | Actual(MHz) | Error | % RU
16 ) 48 105.1 110.1 4.58% 9%
16 8 24 116.8 113.6 2.73% 11%
32 3 16 154.5 150.4 2.68% | 16%
32 6 32 112.5 114.7 1.94% 23%
32 8 16 107.4 111.5 3.61% 21%
48 3 16 149.4 143.6 4.01% | 22%
48 5 24 123.9 116.7 6.16% | 26%
48 8 32 87.4 88.2 0.89% | 32%
64 5 32 107.5 103.5 3.86% | 44%
64 6 24 106.8 97.5 9.48% | 40%
64 7 40 78.5 80.4 2.37% | 45%
96 4 24 113.4 108.7 4.28% 55%
96 8 48 43.3 47.1 8.01% | 76%
96 9 16 54.4 52.8 18.8% | 59%
128 3 82 107.8 92.9 15.9% | 79%
128 5 24 83.9 84.9 1.21% | 76%
128 6 40 56.3 53.1 591% | 8%
Virtex 5LX220 Base Frequency = 200MHz
# of Nodes | NodeDegree | Width | Predicted(MHz) | Actual(MHz) | Error | % RU

16 7 32 149.4 147.9 1.08% | 10%
16 9 24 146.2 150.7 2.97% 9%
32 5 16 187.9 178.3 5.44% | 16%
32 7 32 139.3 136.4 2.10% | 20%
32 9 40 103.4 99.4 4.03% | 28%
48 5 24 165.2 156.7 5.41% | 25%
48 7 32 128.4 119.5 7.49% | 31%
48 7 24 141.8 134.7 5.32% | 26%
64 3 48 203.5 201.1 1.23% | 33%
64 5 16 167.7 166.5 0.73% | 32%
64 8 40 91.2 93.1 1.46% | 44%
96 2 24 183.3 190.1 3.58% | 41%
96 3 32 157.1 148.9 5.52% | 54%
96 5 40 113.6 110.4 2.93% | 59%
128 4 48 104.9 110.1 4.77% | 68%
128 6 32 82.8 73.2 13.1% | 75%
128 8 16 51.9 45.7 13.5% | 79%




CHAPTER 6. VERIFICATION 72
Table 6.2: Predicted operating frequencies for Xilinx Virtex 6 FPGA
Virtex 6LX240T Base Frequency = 240MHz
# of Nodes | NodeDegree | Width | Predicted(MHz) | Actual(MHz) | Error | % RU

16 3 32 225.6 232.2 2.85% 8%
16 7 24 197.9 196.5 0.76% 8%
32 3 16 247.2 256.9 3.78% | 13%
32 4 24 221.2 223.3 0.98% | 14%
32 6 40 163.1 162.2 0.58% | 12%
48 3 32 211.3 199.4 597% | 22%
48 5 24 198.3 189.5 4.58% | 22%
48 7 16 186.2 182.2 2.20% | 22%
64 2 32 219.8 218.1 0.82% | 21%
64 3 48 177.2 180.4 1.80% | 30%
64 7 24 154.8 160.9 3.80% | 31%
96 3 16 213.3 215.3 0.95% | 40%
96 4 40 156.1 153.1 1.94% | 48%
96 9 24 78.5 72.5 8.19% | 48%
128 4 32 148.1 125.8 17.8% | 75%
128 5 40 113.3 115.1 1.61% | 7%
128 6 16 118.2 92.5 27.9% | 56%
Geometric Mean Error for all Virtex Experiments 4.68%




CHAPTER 6. VERIFICATION 73

As seen in Tables 6.1 and 6.2, our equation results in large errors for some topologies (see
highlighted entries). To determine the relationship between error and NoC characteristics,
we analyze the relationship between error and the values of N, LW, and AND. In Figure 6.1,
we plot the geometric mean error as a function of average node degree, maximum node
degree, and (max node degree - average node degree). We choose these parameters to see
how our model encapsulates application-specific topologies. If a single node has much higher
node degree, than the max node degree is much greater than the average node degree. Thus,
local routing demand should have a large effect on performance as seen for the star topology.
We also analyzed the variation in error in relation to N and LW. For these cases, the error
remained small (1.3%) and never exceeded 7%, thus we do not show them here. The dotted
line in Figure 6.1 shows the geometric mean error of all our benchmarks. While numerous
data points lie above this line, the majority of our benchmarks resulted in points below this
line. The percentage of systems below this line is given in the legend.

From Figure 6.1, we can see that the error increases minimally and remains less than 11%
for all three cases, indicating that error is not directly correlated with the node degree as
there are no significant trends. Thus our analytical model is still capable of accurately pre-
dicting application-specific topologies where max node degree may be greater than average
node degree. However, not captured in this analysis is the star topology, which represents an
extreme case when the maximum node degree is much larger than the average node degree.
For the star topology, our predictor exceeds 25% error when the number of nodes is larger
than 16. Addressing this is a topic of future work.

In Table 77, all benchmarks in which the error was above 10% had a resource usage
above 70%. Our current model does not include the resource usage as an input parameter.
We plot our set of benchmark circuits by resource usage, and calculate the average error
for each bin. The results are shown in Figure 6.2. For benchmarks with less than 65%
resource usage, the geometric mean error is less than 10%; however above this point, the
geometric mean error increases dramatically. These results suggest that to improve the

accuracy of our equation, resource usage needs to be considered. Since our objective is



CHAPTER 6. VERIFICATION 74

30.00%%

25.00% ,

20.00%

15 00%

10.00%

Geometric Mean Exrror

5.00%

DI:H:I% T T T T T T T T T T T T T T T 1

e n'lﬁ!‘ el gle ele gle ol L\'llﬂ ale gl n'l,“‘ o 2l

R RIS R LR R L A A R N U L PO L
.f\- f\- :‘b r [ h ﬁ [ } E] T JE. aF Jﬂ“ JA“ % -l%

Fesource Usage

Figure 6.2: Geometric mean error as a function of resource usage for Xilinx FPGAs

to provide designers with a means of early design space exploration, including resource
usage would not meet our objectives as it would require the designer to fully map the NoC.
Therefore, provided the NoC has sufficient routing resources on a respective FPGA, our
equation provides an accurate method of predicting the maximum frequency with no design
time. The same verification experiments and error analysis are repeated in the next section

for Altera FPGAs.

6.2 Altera Verification

We used the same methodology to verify our Altera tuned analytical model as we did for
the Xilinx model. We verify our analytical model with the Stratix IV family of FPGAs
and utilize the same benchmark circuits as the previous section. We use Stratix III and
Stratix IV FPGAs in our verification experiments. Table 6.3 illustrates several benchmark
circuits that are used to verify our model, and compares the actual frequency obtained from
the Altera tool flow with the predicted frequency from our Altera analytical model. The

properties of each topology are shown by the number of nodes in Column 1, the average



CHAPTER 6. VERIFICATION 75

9.00%
2.00%
T.00%
6.00%
5.00%
4.00%
3.00%
2.00%

g fyerage Mode Degree (5 5%)

=l=11ax Mode Degree (75%)
1.00%% —

Geometric Mean Exrror

Ifax - Average Node Degree (35%)
0.00%% . . . T

a 5 10 15 20 25
Average Node Degree

Figure 6.3: Geometric mean error as a function of node degree for Altera FPGAs

node degree in Column 2, and the link width in Column 3. Column 4 shows the predicted
frequency, Column 5 presents the actual frequencies obtained from the CAD tools and
Column 6 shows the geometric mean error for each NoC topology.

Each benchmark circuit is characterized by the number of nodes, average node degree,
and link width. For our analytical model, the corresponding Fje for each family is 250MHz
for Stratix IV FPGAs, and 210MHz for Stratix III FPGAs. The error is given for each
topology in Table 6.3, and the geometric mean error of all verification experiments is found
to be 5.12% with a standard deviation of 2.14%. While the error is approximately the same
as the Xilinx model, the standard deviation is significantly less. Therefore, the variation in
error for our Altera model is less than the Xilinx model. This can be seen in our Altera
results through Chapter 4 and 5. Much of our results for Altera FPGAs exhibit more
consistent trends with less unpredictability in performance.

In order to determine the cause of error from our tuned Altera analytical model, we
analyze error in relation to N, AND, LW and resource usage. Similar to our Xilinx analytical

model, the Altera analytical model did not show any significant relation between error and



CHAPTER 6. VERIFICATION 76
Table 6.3: Predicted operating frequencies for Altera FPGAs
Stratix EP3SL200 Base Frequency = 210MHz

# of Nodes | NodeDegree | Width | Predicted(MHz) | Actual(MHz) | Error | % RU
16 3 24 202.7 214.2 5.65% 9%
16 6 32 171.5 173.9 1.39% | 10%
32 4 32 184.7 196.9 6.56% %
32 7 48 136.8 130.4 4.70% | 20%
32 9 16 163.9 165.9 1.26% | 19%
48 2 32 198.2 202.3 2.03% | 24%
48 5 24 178.2 181.8 2.01% | 26%
48 6 16 179.2 177.2 1.14% | 25%
64 2 24 195.4 209.5 7.20% 24%
64 5 32 165.8 161.9 2.35% | 38%
64 7 40 137.7 128.4 6.73% | 40%
96 5 16 169.1 185.5 9.66% | 51%
96 6 40 138.2 135.1 2.24% | 57%
96 10 24 118.9 134.4 13.0% | 55%
128 3 32 164.9 171.2 3.86% | 75%
128 6 B 135.4 118.4 12.6% | 7%
128 8 24 124.6 118.9 4.59% | 2%

Stratix EP4SE230 Base Frequency = 250MHz

# of Nodes | NodeDegree | Width | Predicted(MHz) | Actual(MHz) | Error | % RU
16 4 16 240.1 223.1 7.08% ™%
16 7 32 139.3 182.8 5.47% 8%
32 2 24 243.9 258.4 5.93% 12%
32 8 16 203.8 186.8 8.36% | 14%
32 10 40 139.7 140.8 0.79% | 16%
48 3 24 229.8 222.7 3.08% | 20%
48 7 32 181.5 172.7 4.86% | 24%
48 9 16 187.9 173.2 7.82% | 21%
64 4 48 195.1 201.1 3.12% | 32%
64 6 24 196.5 181.9 747T% | 29%
64 8 32 164.4 153.9 6.41% | 32%
96 3 16 216.6 222.1 2.55% | 42%
96 7 24 173.4 180.2 3.92% | 44%
96 10 24 141.6 140.9 0.49% | 44%
128 3 16 204.5 210.2 2.79% | 56%
128 5 32 172.9 157.8 8.76% | 64%
128 8 40 127.2 131.1 3.08% | 68%
Geometric Mean Error for all Stratix Experiments 5.12%




CHAPTER 6. VERIFICATION 7

25.00%
g
= 20.00%
£ 5]
T 15.00%
E
2 10.00%
£
5 5.00%
DDD% 1 L) 1 T T T T T T T T T T T T 1
\ | i \ES b al al ol | al \ al a
wa'?"a NveH HS'?IP 2 ’1@'@ w5 : rﬁln oy ‘-:-@G o8 s I "8 S" #‘qa
ERRCEE A I S S S S S
Resource Usage

Figure 6.4: Geometric mean error as a function of resource usage for Altera FPGAs

N, AND, and LW as shown in Figure 6.3. For all three cases, error remains relatively
constant and is always below 9.0%. However, when analyzing error in relation to resource
usage, we found the same relation we found in the previous section. Figure 6.4 illustrates
this relation.

In Figure 6.4, the error remains relatively constant up till 55% resource usage. Above this
point, error increases dramatically up till 75-80% when systems start to fail routing. Much
like our Xilinx model, this suggests that as designs become more congested, the CAD tools
are unable to leverage available resources. This leads to systems with significantly lower
performance than would be expected from our analytical model creating an exponential

increase in error.

6.3 PlanAhead - Manual Placement of NoC Topologies

Our analytical model is used to provide a means of design space exploration without ac-
tual implementation on an FPGA. This allows a designer to choose an appropriate NoC

topology for their application from a very large design space. However, the Xilinx model



CHAPTER 6. VERIFICATION 78

is derived using placement and routing tools by Xilinx. Xilinx’s EDK and ISE CAD tool
suites provide an automated synthesis tool that facilitates a simple design process. For NoC
implementations, the individual blocks and connectivity need only to be defined for the tool
suite to successfully implement the design.

While our analytical model provides an approximation of performance, we further look
at the possibility of optimizing a design using guided placement. Since our model relies on
the performance obtained using automated CAD tools, it is also possible to manually place
nodes to see if a better result can be obtained. Since many NoC topologies can be flattened
to two dimensional layouts, such as the ring, torus, and mesh topologies, the placement of
individual network nodes should map well onto the two dimensional fabric of an FPGA. We
look at manually placing these topologies using relatively placed modules (RPMs) to define
the location of individual network nodes. We then see the impact on performance and if
performance can be improved using these RPMs.

In order to facilitate these experiments, we use Xilinx PlanAhead 10.1, which allows a
designer to define the location of individual blocks or nets in a design. First, a topology
is run through the ISE tool flow, which iterates placement and routing ten times using
different effort levels that are known to have the best results. Once this is complete, a
manual placement of the topology is determined and the design is synthesized using Xilinx
ExploreAhead, which re-iterates the CAD flow 10 times with different effort levels to try
to optimize the maximum operating frequency. While manual placement can often achieve
better results, the effort required often leads to extremely long design times as designers try
to re-iterate manual designs to find the best solution. Therefore in our analysis, we only
attempt an initial placement based on the layout of a two-dimensional NoC topology. Each
node is assigned a location on the FPGA fabric, with each location having at least 10%
more resources than is required by each node.

In order to “simulate” a congested design, we use designs that utilize approximately 80-
90% resource usage when resource usage starts to have an affect on performance. Therefore

to get this scenario, we used large designs on smaller FPGA chips. We chose 64-node ring,



CHAPTER 6. VERIFICATION 79

e kg
il
ﬁ'ﬂ.ﬁum

#iy

i lF"li'i' IW'HI‘
i

‘5 'IIIEH ﬁl‘lI Mﬂ“] I:i' h|'thF.;l”' H.’:!; i "“:::It;u;.li;; Jmm ;"
R R T

Figure 6.5: Example automatic placement of homogeneous 64-node mesh topology




CHAPTER 6. VERIFICATION 80

g

Figure 6.6: Example manual placement of homogeneous 64-node mesh topology



CHAPTER 6. VERIFICATION 81
Table 6.4: Homogeneous MultBase topologies with manual placement
Ring Torus Mesh
Link Width Auto RPM Auto RPM Auto RPM
32 198MHz | 214MHz | 176MHz | 187MHz | 184MHz | 200MHz
24 201MHz | 220MHz | 184MHz | 191MHz | 197MHz | 215MHz
16 215MHz | 232MHz | 192MHz | 200MHz | 204MHz | 229MHz
Avg % Improvement 8.48% 4.74% 10.1%
Table 6.5: Heterogeneous MultBase topologies with manual placement
Ring Torus Mesh
Link Width Auto RPM Auto RPM Auto RPM
32 198MHz | 208MHz | 176MHz | 181MHz | 184MHz | 200MHz
24 201MHz | 207TMHz | 184MHz | 190MHz | 197MHz | 206MHz
16 215MHz | 221MHz | 192MHz | 194MHz | 204MHz | 214MHz
Avg % Improvement 3.61% 2.38% 5.89%

torus, and mesh topologies implemented on a Virtex 5 LX150 for a variety of heterogeneous
and homogeneous node types with 16, 24, and 32-bit link widths. Figure 6.5 shows an
example automatic placement of a 64-node mesh topology with MultBase nodes and 32-bit
link width. Using the same topology, we manually placed the design using the same FPGA
and is shown in Figure 6.6.

Analyzing the performance of the two systems, we find that using relatively placed
modules improves performance by 8.7%. This suggests that it is possible to improve the
performance of certain topologies by using RPMs. Table 6.4 illustrates the performances for
the ring, torus, and mesh topologies using the same methodology for automatic and manual
placement as previously described.

The results in Table 6.4 show that the mesh topology exhibits the greatest improvement
in performance of 12.6% when using RPMs as its structure maps extremely well to an
island style FPGA. Other topologies also show performance improvements of 8.48% for the
ring topology and 4.74% for the torus topology. The torus topology exhibits the smallest
improvement due to the longer wires required to route a folded torus. We repeat the same

experiments for heterogeneous systems, and list the results in Table 6.5.

As seen in Table 6.5, the performance improvement for manually placed heterogeneous



CHAPTER 6. VERIFICATION 82

Figure 6.7: Example manual placement of heterogeneous 64-node mesh topology



CHAPTER 6. VERIFICATION 83

topologies is less dramatic than for homogeneous topologies. However, all topologies do
experience a small performance improvement. This is due to the fact that heterogeneous
topologies are much more difficult to place manually due to the different node sizes. This
can be seen in Figure 6.7, which shows a heterogeneous 64-node mesh topology with 32-bit
link widths. Since each node requires different resource utilizations, part of the inherent two
dimensionality of the mesh topology is lost. Thus, heterogeneous topologies do not exhibit
as great an increase in performance as their homogeneous counterparts. The analysis shown
here demonstrates that using relatively placed modules can improve performance by up
to 12.6%. Therefore, when used in conjunction with our analytical model, the designer
can take into consideration the possibility of using manual placement to further improve

performance.



Chapter 7

Conclusion

In this work, our analysis demonstrates a concrete understanding of how NoCs perform
on FPGAs. Performance is primarily dictated by the network connectivity so long as the
network interface masks the performance of the network node. Therefore, by doing so,
the network node only effects performance in so much as increasing the overall resource
usage causing global resources to be stressed. Furthermore, our work shows that regularity
has little effect on performance and irregular topologies modeled using application-specific
topologies have the same performance characteristics as regular topologies.

Using these conclusions, we present an analytical model in the form of a simple equation
that describes the maximum operating frequency (performance) of an NoC as a function of
various network parameters related to the overall network topology. The predicted frequency
is a function of the global and local routing demand of the topology, which in turn is affected
by the number of nodes, average node degree and link width of the system. In order to
characterize these parameters, random topologies are used to emulate application-specific
NoCs. Although random topologies are used, our research shows that common topologies
such as the torus and mesh topology exhibit almost identical performance results as random
topologies with the same network parameters.

The analytical model is shown to be applicable to Xilinx Virtex 2 Pro, Virtex 4, Virtex
5, and Virtex 6 FPGAs along with Altera Stratix III and Stratix IV FPGAs. For our

84



CHAPTER 7. CONCLUSION 85

Xilinx analytical model, the equation was shown to be accurate to within 4.68%, and for
our Altera analytical model, within 5.12%. This model provides a measure of the effect
of varying different topology parameters on NoC performance on FPGAs. Furthermore,
it provides guidance to a designer during early design space exploration when a suitable
network topology is being chosen.

A key observation from this work is that modern FPGAs contain enough routing to
implement fairly complex NoCs. This opens the door to new system architectures based on
application-specific NoCs rather than the more restricted mesh topologies that are typically
used in ASIC SoC implementations. These application-specific NoCs can be tailored to the
problem at hand, leading to an overall improvement in system-level performance measures.
While our model is derived utilizing Altera and Xilinx’s automatic CAD tool flow, further
research utilizing Xilinx PlanAhead shows that with minimal effort, manual placement can
further improve NoC performance. By taking advantage of topologies that are inherently
two dimensional such as the ring, mesh, and torus topologies, manually placing network

nodes in a defined pattern shows performance increases of up to 12.6%.

7.1 Future Work

The work presented in this thesis focuses on the derivation of a model capable of predicting
the performance of an NoC using analytical modelling and empirical curve-fitting. The re-
sults presented herein suggest a number of possible research topics for future work. Firstly,
our research focuses primarily on analyzing existing FPGA fabrics, and not on FPGA archi-
tectural changes that could benefit NoCs. However, we have begun to run experiments using
versatile place and route (VPR) [42], a place and route tool developed at the University
of Toronto, to determine if small architectural changes improve the performance of NoCs.
However, the results obtained are not included in this thesis as they do not accurately model
modern FPGAs. Modern FPGAs, such as the Virtex 6 and Stratix IV, have a hierarchical
architecture that cannot be replicated in VPR. Furthermore, timing analysis utilizing VPR

is still relatively new, and accurate results could not be obtained. With future releases of



CHAPTER 7. CONCLUSION 86

VPR, this analysis may be possible; however, the current results are not included in this
thesis due to these drawbacks.

There can also be significantly more work done in analyzing manual placement using
RPMs. While topologies that exhibit two dimensional structures are analyzed using RPMs,
other topologies such as hypercube, star, and application-specific topologies are not inves-
tigated. Due to their increased complexity, these topologies may not benefit from manual
placement as the CAD tools may be more suited at finding an optimal placement. It would
also be interesting to see why manual placement results in performance improvements; how-
ever, this would require a more in depth analysis of how the routing channels are used in
the automatic placement of NoC topologies.

Another area of future work would be improving the accuracy of the analytical model
developed in this thesis. Our model results in significant error whenever resource usage
exceeds 80%. In order to alleviate this, resource usage needs to be considered in a more
accurate model. This can be done by either fully mapping the design and inputting the
resource usage or estimating the total resource usage based on the resource utilization of
individual network nodes and network switches. Furthermore, our model does not encap-
sulate the star topology when the max node degree is much greater than the average node
degree. Therefore, a future model should incorporate max node degree to account for the
star topology into consideration. While the maximum operating frequency of NoC topologies
is the focus in this thesis, other NoC performance metrics are of significant interest. Future
models should consider bandwidth and throughput, which are very important performance

parameters for NoC designers.



Bibliography

1]

M. Abramovici, C. Stroud, and M. Emmert. Using embedded FPGAs for SoC yield
improvement. In Proceedings of the 39th conference on Design automation, pages 713—
724. ACM New York, NY, USA, 2002.

A. Adriahantenaina, H. Charlery, A. Greiner, L. Mortiez, and CA Zeferino. SPIN: a
scalable, packet switched, on-chip micro-network. In Design, Automation and Test in
FEurope Conference and FExhibition, 2003, pages 70-73, 2003.

A. Ahmadinia, C. Bobda, J. Ding, M. Majer, J. Teich, S.P. Fekete, and J. van der
Veen. A practical approach for circuit routing on dynamic reconfigurable devices. In
Proceedings of the 16th IEEE International Workshop on Rapid System Prototyping,
Montreal, Canada, pages 84-90. Citeseer, 2005.

F. Angiolini, P. Meloni, S. Carta, L. Benini, and L. Raffo. Contrasting a NoC and a
traditional interconnect fabric with layout awareness. In Proceedings of the conference
on Design, automation and test in Furope: Proceedings, page 129. European Design
and Automation Association, 2006.

TA Bartic, JY Mignolet, V. Nollet, T. Marescaux, D. Verkest, S. Vernalde, and
R. Lauwereins. Topology adaptive network-on-chip design and implementation. [FFE
Proceedings-Computers and Digital Techniques, 152(4):467-472, 2005.

L. Benini and G. De Micheli. Networks on chips: A new SoC paradigm. Computer,
35(1):70-78, 2002.

D. Bertozzi and L. Benini. Xpipes: A network-on-chip architecture for gigascale
systems-on-chip. IEEE Clircuits and Systems Magazine, 4(2):18-31, 2004.

D. Bertozzi, A. Jalabert, S. Murali, R. Tamhankar, S. Stergiou, L. Benini, and
G. De Micheli. NoC synthesis flow for customized domain specific multiprocessor
systems-on-chip. IFEE Transactions on Parallel and Distributed Systems, pages 113—
129, 2005.

G. Brebner and D. Levi. Networking on chip with platform FPGAs. In 2003 IEEE
International Conference on Field-Programmable Technology (FPT), 2003. Proceedings,
pages 13-20, 2003.

87



BIBLIOGRAPHY 88

[10]

[11]
[12]
[13]
[14]

[18]

[19]

J. Chan and S. Parameswaran. NoCOUT: NoC topology generation with mixed packet-
switched and point-to-point networks. In Proceedings of the 2008 conference on Asia
and South Pacific design automation, pages 265-270. IEEE Computer Society Press
Los Alamitos, CA, USA, 2008.

Altera Corp. Stratix II Family Device Overview. 2007.
Altera Corp. Stratix III Family Device Overview, 2009.
Altera Corp. Stratix IV Family Device Overview, 20009.

W.J. Dally and B. Towles. Route packets, not wires: On-chip interconnection networks.
In Proceedings of the 38th Design Automation Conference (DAC), pages 684-689, 2001.

R. Francis, S. Moore, and R. Mullins. A Network of Time-Division Multiplexed Wiring
for FPGAs. In Proceedings of the Second ACM/IEEE International Symposium on
NEtworks-on-Chip, pages 45—44. IEEE Computer Society Washington, DC, USA, 2008.

R.M. Francis and S.W. Moore. FPGAs with time-division multiplexed wiring: an
architectural exploration and area analysis. 2009.

H.C. Freitas, D.M. Colombo, F.L. Kastensmidt, and P.O.A. Navaux. Evaluating
Network-on-Chip for Homogeneous Embedded Multiprocessors in FPGAs. In IEEE
International Symposium on Circuits and Systems, pages 3776-3779, 2007.

R. Gindin, I. Cidon, and I. Keidar. NoC-based FPGA: architecture and routing. In
Proceedings of the First International Symposium on Networks-on-Chip, pages 253—-264.
IEEE Computer Society Washington, DC, USA, 2007.

K. Goossens, M. Bennebroek, J.Y. Hur, and M.A. Wahlah. Hardwired Networks on
Chip in FPGAs to Unify Functional and Configuration Interconnects. In Proceedings of
the Second ACM/IEEE International Symposium on Networks-on-Chip, pages 45-54.
IEEE Computer Society Washington, DC, USA, 2008.

J. Greenbaum, C.S. Inc, and CA San Jose. Reconfigurable logic in SoC systems. In
Custom Integrated Circuits Conference, 2002. Proceedings of the IEEE 2002, pages 58,
2002.

P. Guerrier and A. Greiner. A generic architecture for on-chip packet-switched intercon-
nections. In Proceedings of the conference on Design, automation and test in Europe,

page 256. ACM, 2000.

R. Hecht, S. Kubisch, A. Herrholtz, and D. Timmermann. Dynamic Reconfiguration
with hardwired Networks-on-Chip on future FPGAs. In Proc. of the 15th Int. Conf.
on Field Programmable Logic and Applications (FPL05), Tampere, Finland, 2005.



BIBLIOGRAPHY 89

[23]

[24]

A. Hemani, A. Jantsch, S. Kumar, A. Postula, J. Oberg, M. Millberg, and D. Lindqvist.
Network on chip: An architecture for billion transistor era. In Proceeding of the IEEE
NorChip Conference, pages 166—173. Citeseer, 2000.

C. Hilton and B. Nelson. PNoC: a flexible circuit-switched NoC for FPGA-based
systems. IEE Proceedings-Computers and Digital Techniques, 153(3):181-188, 2006.

X. Inc. Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet.
Xilinz Inc, 2005.

X. Inc. Virtex-5 Family Overview-LX, LXT, and SXT Platforms, 2007.
X. Inc. Virtex-4 Data Sheets: Virtex-4 Family Overview, 2008.
X. Inc. Virtex-6 Family Overview, 2009.

S. Jovanovic, C. Tanougast, S. Weber, and C. Bobda. Cunoc: A scalable dynamic noc
for dynamically reconfigurable fpgas. In Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pages 753756, 2007.

N. Kapre. Packet-switched on-chip FPGA overlay networks. PhD thesis, California
Institute of Technology, 2006.

N. Kapre, N. Mehta, M. DeLorimier, R. Rubin, H. Barnor, MJ Wilson, M. Wrighton,
and A. DeHon. Packet switched vs. time multiplexed FPGA overlay networks. In
Field-Programmable Custom Computing Machines, 2006. FCCM’06. 14th Annual IEEE
Symposium on, pages 205-216, 2006.

D. Kim, K. Lee, S. Lee, and H. Yoo. A reconfigurable crossbar switch with adaptive
bandwidth control for networks-on-chip. In IEEFE International Symposium on Circuits
and Systems, volume 3, page 2369. IEEE; 1999, 2005.

T. Kogel, M. Doerper, A. Wieferink, R. Leupers, G. Ascheid, H. Meyr, and S. Goossens.
A modular simulation framework for architectural exploration of on-chip interconnec-
tion networks. In Proceedings of the 1st IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis, pages 7-12. ACM New York, NY,

USA, 2003.

A. Kumar, A. Hansson, J. Huisken, and H. Corporaal. An fpga design flow for reconfig-
urable network-based multi-processor systems on chip. In Design, Automation € Test
in BEurope Conference & Exhibition, 2007. DATE’ 07, pages 1-6, 2007.

S. Kumar, A. Jantsch, J.P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,
and A. Hemani. A network on chip architecture and design methodology. In IEEE
Computer Society Annual Symposium on VLSI, volume 102, pages 117-124, 2002.



BIBLIOGRAPHY 90

[36]

[37]

[40]
[41]

[42]

A. Lam, S.J.E. Wilton, P. Leong, and W. Luk. An analytical model describing the
relationships between logic architecture and FPGA density. In Intl Conf. on Field-
Programmable Logic and Applications, 2008.

H.G. Lee, N. Chang, U.Y. Ogras, and R. Marculescu. On-chip communication ar-
chitecture exploration: A quantitative evaluation of point-to-point, bus, and network-
on-chip approaches. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 12(3):23, 2007.

J. Lee and L. Shannon. The effect of number of nodes, heterogeneity, and node size on
NoCs on FPGAs. In Proceedings of Sizth Annual IEEE International Symposium on
Field Programmable Technologies, pages 5864, 2009.

J. Lee and L. Shannon. Predicting the Performance and Routability of FPGA based
NoCs. In Proceedings of Eighteenth Annual IEEE International Symposium on Field
Programmable Gate Arrays, 2010.

ARM Limited. AMBA specification (rev 2.0). ARM Limited, 1999.

S. Lukovic and L. Fiorin. An automated design flow for noc-based mpsocs on fpga. In
Rapid System Prototyping, 2008. RSP’08. The 19th IEEE/IFIP International Sympo-
stum on, pages 5864, 2008.

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W.M. Fang, and J. Rose. VPR 5.0:
FPGA cad and architecture exploration tools with single-driver routing, heterogeneity
and process scaling. In Proceeding of the ACM/SIGDA international symposium on
Field programmable gate arrays, pages 133-142. ACM, 2009.

T.S.T. Mak, P. Sedcole, P.Y.K. Cheung, and W. Luk. On-FPGA communication ar-
chitectures and design factors. In Proceedings of the FPL. Citeseer, 2006.

N. Mehta. Time-multiplexed FPGA overlay networks on chip. PhD thesis, Citeseer,
2006.

IBM Microelectronics. CoreConnect bus architecture, 1999.

UY Ogras and R. Marculescu. Application-specific network-on-chip architecture cus-
tomization via long-range link insertion. In Proceedings of the 2005 IEEE/ACM In-
ternational conference on Computer-aided design, page 253. IEEE Computer Society,
2005.

N. Ohba and K. Takano. An SoC design methodology using FPGAs and embedded
microprocessors. In Proceedings of the 41st annual Conference on Design Automation,
pages 747-752. ACM New York, NY, USA, 2004.

P.P. Pande, C. Grecu, M. Jones, A. Ivanov, and R. Saleh. Performance evaluation and
design trade-offs for network-on-chip interconnect architectures. IEEE Transactions on
Computers, 54(8):1025-1040, 2005.



BIBLIOGRAPHY 91

[49]

[50]

[51]

[56]

W.D. Peterson. WISHBONE System-on-Chip (SoC) Interconnection Architecture for
Portable IP Cores. OpenCores. org, 2002.

A. Rahman, S. Das, A.P. Chandrakasan, and R. Reif. Wiring requirement and three-
dimensional integration technology for field programmable gate arrays. IEEE Trans-
actions on Very Large Scale Integration(VLSI) Systems, 11(1):44-54, 2003.

M. Saldana, L. Shannon, and P. Chow. The routability of multiprocessor network
topologies in FPGAs. In Proceedings of the 2006 international workshop on System-
level interconnect prediction, page 56. ACM, 2006.

E. Salminen, A. Kulmala, and TD Hamalainen. HIBI-based multiprocessor SoC on
FPGA. In IEEE International Symposium on Circuits and Systems, 2005. ISCAS
2005, pages 3351-3354, 2005.

C.L. Seitz. Let’s route packets instead of wires. In Proceedings of the sizth MIT
conference on Advanced research in VLSI table of contents, pages 133-138. MIT Press
Cambridge, MA, USA, 1990.

B. Sethuraman, P. Bhattacharya, J. Khan, and R. Vemuri. LiPaR: A light-weight
parallel router for FPGA-based networks-on-chip. In Proceedings of the 15th ACM
Great Lakes symposium on VLSI pages 452-457. ACM New York, NY, USA, 2005.

B. Sethuraman and R. Vemuri. optiMap: a tool for automated generation of NoC
architectures using multi-port routers for FPGAs. In Proceedings of the conference on
Design, automation and test in Furope: Proceedings, page 952. European Design and
Automation Association, 2006.

L. Shannon and P. Chow. Simplifying the integration of processing elements in com-
puting systems using a programmable controller. In Field- Programmable Custom Com-
puting Machines, 2005. FCCM 2005. 13th Annual IEEE Symposium on, pages 63-72,
2005.

A M. Smith, S.J.E. Wilton, and J. Das. Wirelength modeling for homogeneous and
heterogeneous FPGA architectural development. In Proceeding of the ACM/SIGDA
international symposium on Field programmable gate arrays, pages 181-190. ACM,
2009.

M.B. Stensgaard and J. Sparsg. Renoc: A network-on-chip architecture with recon-
figurable topology. In Proceedings of the Second ACM/IEEE International Symposium
on Networks-on-Chip, pages 55—64. IEEE Computer Society, 2008.

C.A. Zeferino, M.E. Kreutz, and A.A. Susin. RASoC: A router soft-core for networks-
on-chip. In Proceedings of the conference on Design, automation and test in Furope-
Volume 3. IEEE Computer Society Washington, DC, USA, 2004.



Appendix A

Topology (enerator

As described in Section 3.2, the topology generator is used to generate a topology description
file that defines the structure of the NoC. The user is prompted for the NoC type, the number
of nodes, and topology specific parameters. The topology description file is used as an input
to the system generator to produce all necessary files for synthesis. The script consists of

two files: 1) main.c and 2) globals.c. The two files are shown in the following sections.

A.1 Main Function (main.c)

In ”main.c”, the script generates the appropriate topology description file based on the

user’s input.

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include "globals.h"

// Number of topologies used in script
#define P_NUM_TOPOLOGIES 7

// Used to generate a random number
int int_rand(int N){

return(rand()/(int) (((unsigned)RAND_MAX + 1) / N));
}

92



APPENDIX A. TOPOLOGY GENERATOR

// Generates the topology description file
void generate_topology(){

// Topology File
FILE *topology;

int i,j,k;
int NUM_SWITCH_TYPES;

// Keeps track of channels used
int channels[P_NUM_NODES];

// Used for Random Topology Generator number of connections per node
int node_num_connections [P_NUM_NODES] ;

int node_congested;

int connections;

// connections per node, max number of connections is total # of nodes
int node_connections[P_NUM_NODES] [P_NUM_NODES] ;

int num_rand_gen;

int node, connection, connected, done, full;

// Count types of nodes

int num_node_sizes;

int node_sizes[P_NUM_NODES];

int node_size;

int size_exists;

int all_connected;

int connected_congested_node;

// Populate Arrays

for (i=0;i<P_NUM_NODES;i++){
channels[i] = 0;
node_num_connections[i] = 0;
node_sizes[i] = 0;

}

for (i=0;i<P_NUM_NODES;i++){
for (j=0;j<P_NUM_NODES;j++){

node_connections[i] [j] = 0;

// Node Types
char topology_file[100];
char num_nodes[100];

char avg_connections[100];

itoa(P_NUM_NODES,num_nodes,10) ;
itoa(P_AVG_CONNECTION,avg_connections,10) ;

// Generate Topology File Name

93



APPENDIX A. TOPOLOGY GENERATOR

strcpy(topology_file, topology_names[P_TOPOLOGY]);
strcat(topology_file, "_");
strcat (topology_file, num_nodes) ;
// for random
if (P_TOPOLOGY == 6){
strcat(topology_file, "_");
strcat (topology_file, avg_connections);
}
strcat (topology_file, ".txt");

printf("\nTopology File Name = ");
printf (topology_file);
printf ("\n");

topology = fopen(topology_file,"w");

// Generate the Topology Characteristics
//0 - Fully Connected
if (P_TOPOLOGY == 0){

// Number of Switch Types
// All Nodes connected to all other nodes
NUM_SWITCH_TYPES = 1;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

fprintf (topology,"%d ", NUM_SWITCH_TYPES);

//only one switch type, each node connected to all other nodes
fprintf (topology,"%d\n", P_NUM_NODES-1);

//Node Properties
for (i=0;i<P_NUM_NODES;i++){\
// Node Number
fprintf (topology, "%d ", i);
// Node Size
fprintf (topology, "%d ", P_NUM_NODES-1);

//Connections
for (j=0;j<P_NUM_NODES;j++){
// connect to all nodes except current node
if (1= i)
// current node to connect to
fprintf (topology,"%d ", j);
// connect to channel
fprintf (topology,"%d ", channels[jl);
// increment to next channel

channels[j]++;

}
fprintf (topology, "\n");

94



APPENDIX A. TOPOLOGY GENERATOR

}
//1 - Hypercube
Yelse if (P_TOPOLOGY == 1){

// Number of Switch Types
// Central Node, and all exterior nodes
NUM_SWITCH_TYPES = 1;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);
// One Type.. 4 connections/Edge of Cube
fprintf (topology,"%d\n", 4);

for (i=0;i<P_NUM_NODES;i++){\
// Node Number
fprintf (topology, "%d ", 1i);
// Node Size
fprintf (topology, "%d ", 4);

// Connect to Neighbours
if (i%4==0){
// Connect to Neighbours
fprintf (topology,"/%d ", i+1);
fprintf (topology,"%d ", channels[i+1]);
channels [i+1]++;
fprintf (topology,"%d ", i+2);
fprintf (topology,"%d ", channels[i+2]);
channels[i+2]++;
Yelse if ((i-1)%4==0){
// Connect to Neighbours
fprintf (topology,"%d ", i-1);
fprintf (topology,"%d ", channels[i-1]);
channels [i-1]++;
fprintf (topology,"%d ", i+2);
fprintf (topology,"%d ", channels[i+2]);
channels[i+2]++;
Yelse if ((i-2)%4==0){
// Connect to Neighbours
fprintf (topology,"%d ", i+1);
fprintf (topology,"%d ", channels[i+1]);
channels[i+1]++;
fprintf (topology,"%d ", i-2);
fprintf (topology,"%d ", channels[i-2]);
channels [i-2]++;
Yelse if ((i-3)%4==0){
// Connect to Neighbours
fprintf (topology,"%d ", i-1);
fprintf (topology,"%d ", channels[i-1]);



APPENDIX A. TOPOLOGY GENERATOR

channels[i-1]++;
fprintf (topology,"%d ", i-2);
fprintf (topology,"%d ", channels[i-2]);
channels [i-2]++;
}
// Connect Up One Layer
// Highest Layer
if (i >= P_NUM_NODES-4){
// Connect Lowest Layer
fprintf (topology,"%d ", i-(P_NUM_NODES-4));
// Connect to available channel
fprintf (topology,"%d ", channels[i-(P_NUM_NODES-4)]1);
channels[i-(P_NUM_NODES-4)]++;
Yelsed{
// Connect to Next Layer
fprintf (topology,"%d ", i+4);
// Connect to available channel
fprintf (topology,"%d ", channels[i+4]);
channels[i+4]++;
}
// Connect Down One Layer
// Lowest Layer
if (i < 4){
// Connect Highest Layer
fprintf (topology,"%d ", i+(P_NUM_NODES-4));
// Connect to available channel
fprintf (topology,"%d ", channels[i+(P_NUM_NODES-4)]);
channels[i+(P_NUM_NODES-4)]++;
Yelse{
// Connect to Lower Layer
fprintf (topology,"%d ", i-4);
// Connect to available channel
fprintf (topology,"%d ", channels[i-4]);
channels [i-4]++;
}
fprintf (topology, "\n");

//2 - Mesh

}Yelse if (P_TOPOLOGY == 2){
// Number of Switch Types
// Central Node, and all exterior nodes
NUM_SWITCH_TYPES = 3;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);
// Three Types

// Corner, Edge, and Center

96



APPENDIX A. TOPOLOGY GENERATOR

fprintf (topology,"%d\n", 4);
fprintf (topology,"%d\n", 3);
fprintf (topology,"%d\n", 2);

//Node Properties
for (i=0;i<P_NUM_NODES;i++){
// Node Number
fprintf (topology, "%d ", i);

// Edges
// Top Edge
if (i < P_COLUMNS){
//Top Left Corner
if (i%P_COLUMNS == 0){
// Two Connections
fprintf (topology, "%d ", 2);
// Right Neighbour
fprintf (topology, "%d ", i+1);
fprintf (topology, "%d ", channels[i+1]);
channels[i+1]++;
// Bottom Neighbour
fprintf (topology, "%d ", i+P_COLUMNS);
fprintf (topology, "%d ", channels[i+P_COLUMNS]);
channels [i+P_COLUMNS] ++;
//Top Right Corner
Yelse if (((i+1)-P_COLUMNS)?%P_COLUMNS == 0){
// Two Connections
fprintf (topology, "%d ", 2);
// Left Neighbour
fprintf (topology, "%d ", i-1);
fprintf (topology, "%d ", channels[i-1]);
channels[i-1]++;
// Bottom Neighbour
fprintf (topology, "%d ", i+P_COLUMNS);
fprintf (topology, "%d ", channels[i+P_COLUMNS]);
channels [i+P_COLUMNS] ++;
Yelse{
// Three Connections
fprintf (topology, "%d ", 3);
// Right Neighbour
fprintf (topology, "%d ", i+1);
fprintf (topology, "%d ", channels[i+1]);
channels[i+1]++;
// Left Neighbour
fprintf (topology, "%d ", i-1);
fprintf (topology, "%d ", channels[i-1]);
channels[i-1]++;
// Bottom Neighbour
fprintf (topology, "%d ", i+P_COLUMNS);
fprintf (topology, "%d ", channels[i+P_COLUMNS]);



APPENDIX A. TOPOLOGY GENERATOR

}

channels [i+P_COLUMNS] ++;

// Bottom Edge
}else if (i>=P_NUM_NODES-P_COLUMNS){

//Bottom Left Corner
if (i%P_COLUMNS == 0){

// Two Connections
fprintf (topology, "%d ",
// Right Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i+1]++;

// Top Neighbour

fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i-P_COLUMNS] ++;

//Bottom Right Cormner
}Yelse if (((i+1)-P_COLUMNS)’P_COLUMNS == 0){

// Two Connections
fprintf (topology, "%d ",
// Left Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i-1]++;

// Top Neighbour

fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+P_COLUMNS] ++;

Yelse{

}

// Three Connections
fprintf (topology, "%d ",
// Right Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+1]++;

// Left Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i-1]++;

// Top Neighbour

fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i-P_COLUMNS] ++;

// Left Edge
}Yelse if (i%P_COLUMNS == 0){
// Three Connections

fprintf (topology, "%d ", 3);
// Top Neighbour

2);
i+1);

channels[i+1]);

i-P_COLUMNS) ;
channels[i-P_COLUMNS]) ;

2);
i-1);

channels[i-1]1);

i-P_COLUMNS) ;
channels[i-P_COLUMNS]) ;

3);
i+1);

channels[i+1]);

i-1);

channels[i-1]);

i-P_COLUMNS) ;
channels[i-P_COLUMNS]) ;

98



APPENDIX A. TOPOLOGY GENERATOR

fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i-P_COLUMNS] ++;
// Bottom Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i+P_COLUMNS] ++;
// Right Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+1]++;
// Right Edge

99

i-P_COLUMNS) ;
channels[i-P_COLUMNS]) ;

i+P_COLUMNS) ;
channels[i+P_COLUMNS]) ;

i+1);

channels[i+1]);

}Yelse if (((i+1)-P_COLUMNS)%P_COLUMNS == 0){

// Three Connections
fprintf (topology, "%d ",
// Top Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i-P_COLUMNS] ++;
// Bottom Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+P_COLUMNS] ++;
// Left Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i-1]++;

// Central Node

Yelse{
// Three Connections
fprintf (topology, "%d ",
// Top Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i-P_COLUMNS] ++;
// Bottom Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+P_COLUMNS] ++;
// Left Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels[i-1]++;
// Right Neighbour
fprintf (topology, "%d ",
fprintf (topology, "%d ",
channels [i+1]++;

}
fprintf (topology, "\n");

3);
i-P_COLUMNS) ;

channels[i-P_COLUMNS]) ;

i+P_COLUMNS) ;
channels[i+P_COLUMNS]) ;

i-1);

channels[i-1]);

4);
i-P_COLUMNS) ;

channels[i-P_COLUMNS]) ;

i+P_COLUMNS) ;
channels[i+P_COLUMNS]);

i-1);
channels[i-1]);

i+1);

channels[i+1]);



APPENDIX A. TOPOLOGY GENERATOR

//3 - Star

}Yelse if (P_TOPOLOGY == 3){
// Number of Switch Types

// Central Node, and all exterior nodes
NUM_SWITCH_TYPES = 2;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);

//two types

// central node, and exterior nodes
fprintf (topology,"%d ", P_NUM_NODES-1);
fprintf (topology,"%d\n", 1);

//Node Properties
for (i=0;i<P_NUM_NODES;i++){
// Node Number
fprintf (topology, "%d ", i);

// Central Node
if (i==0){
// Node Size
fprintf (topology, "%d ", P_NUM_NODES-1);
//Connections to all nodes
for (j=0;j<P_NUM_NODES;j++){

}

// connect to all nodes except current node
if (Gr= 1)1

// current node to comnect to

fprintf (topology,"%d ", j);

// connect to channel 0

fprintf (topology,"%d ", 0);

// Exterior Nodes

Yelsed{

// Node Size

fprintf (topology, "%d ", 1);

// Connect to Central Node
fprintf (topology,"%d ", 0);

// Connect to available channel

fprintf (topology,"%d ", channels[0]);

channels [0]++;

}

fprintf (topology, "\n");

//4 - Ring

}else if (P_TOPOLOGY == 4){

100



APPENDIX A. TOPOLOGY GENERATOR 101

// Number of Switch Types
NUM_SWITCH_TYPES = 1;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);
// one type, each connected to neighbours
fprintf (topology,"%d\n", 2);

//Node Properties
for (i=0;i<P_NUM_NODES;i++){
// Node Number
fprintf (topology, "%d ", i);

// First Node

if (i==0){
// Node Size
fprintf (topology, "%d ", 2);
//Connected to Neighbours
//+1 Neighbour (Channel 0)
fprintf (topology,"%d ", i+1);
fprintf (topology,"%d ", 0);
// Last node
fprintf (topology,"%d ", P_NUM_NODES-1);
fprintf (topology,"%d ", 1);

// All Other Nodes

}else if (i==P_NUM_NODES-1){
// Node Size
fprintf (topology, "%d ", 2);
//Connected to Neighbours
// First Node (Channel 0)
fprintf (topology,"%d ", 0);
fprintf (topology,"%d ", 0);
//-1 Neighbour (Channel 1) Last node
fprintf (topology,"%d ", i-1);
fprintf (topology,"%d ", 1);

Yelse{
// Node Size
fprintf (topology, "%d ", 2);
//Connected to Neighbours
//+1 Neighbour
fprintf (topology,"%d ", i+1);
fprintf (topology,"%d ", 0);
//-1 Neighbour
fprintf (topology,"%d ", i-1);
fprintf (topology,"%d ", 1);

}

fprintf (topology, "\n");



APPENDIX A. TOPOLOGY GENERATOR

//5 - Torus

}Yelse if (P_TOPOLOGY == 5){
// Number of Switch Types
NUM_SWITCH_TYPES = 1;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);
// one type, each connected to neighbours

fprintf (topology,"%d\n", 4);

//Node Properties
for (i=0;i<P_NUM_NODES;i++){
// Node Number
fprintf (topology, "%d ", 1i);
// Node Size
fprintf (topology, "%d ", 4);

// First Ring
if (i < P_RINGS){

// First Node in Ring

if (i==0){
// Next Node
fprintf (topology, "%d ", i+1);
fprintf (topology, "%d ", channels[i+1]);
channels [i+1]++;
// Last Node
fprintf (topology, "%d ", P_RINGS-1);
fprintf (topology, "%d ", channels[P_RINGS-1]);
channels [P_RINGS-1]++;
// Next Ring
fprintf (topology, "%d ", i+P_RINGS);
fprintf (topology, "/%d ", channels[i+P_RINGS]);
channels [i+P_RINGS]++;
// Last Ring
fprintf (topology, "%d ", P_NUM_NODES-P_RINGS);
fprintf (topology, "%d ", channels[P_NUM_NODES-P_RINGS]);
channels [P_NUM_NODES-P_RINGS]++;

// Last Node in Ring

Yelse if (i==P_RINGS-1){
// First Node
fprintf (topology, "%d ", 0);
fprintf (topology, "%d ", channels[0]);
channels [0]++;
// Previous Node
fprintf (topology, "%d ", i-1);
fprintf (topology, "%d ", channels[i-1]);

102



APPENDIX A. TOPOLOGY GENERATOR

}

channels[i-1]++;
// Next Ring

fprintf (topology, "%d ", i+P_RINGS);
fprintf (topology, "%d ", channels[i+P_RINGS]);

channels[i+P_RINGS]++;

// Last Ring
fprintf (topology,

"%d

", P_NUM_NODES-1);

fprintf (topology, "%d ", channels[P_NUM_NODES-1]);
channels [P_NUM_NODES-1]++;

// Other Nodes
Yelse{

// Next Node
fprintf (topology,
fprintf (topology,
channels[i+1]++;
// Previous Node
fprintf (topology,
fprintf (topology,
channels[i-1]++;
// Next Ring
fprintf (topology,
fprintf (topology,

channels[i+P_RINGS]++;

// Last Ring
fprintf (topology,
fprintf (topology,

"%d
"%d

"%d
ll%d

n%d
" d

"%d
"%d

LRETEPP

", channels[i+1]);

", oi-1);
", channels[i-1]);

", i+P_RINGS);
", channels[i+P_RINGS]);

", (P_NUM_NODES-P_RINGS)+i);

", channels[(P_NUM_NODES-P_RINGS)+il);

channels [ (P_NUM_NODES-P_RINGS)+i]++;

// Last Ring
}Yelse if (i > ((P_NUM_NODES-1)-P_RINGS)){

// First Node in Ring

if (i==P_NUM_NODES-P_RINGS){

// Next Node
fprintf (topology,
fprintf (topology,
channels [i+1]++;
// Last Node
fprintf (topology,
fprintf (topology,

"4
"%d

"%d
"%d

", it1);

", channels[i+1]);

", i+(P_RINGS-1));
", channels[i+(P_RINGS-1)]);

channels[i+(P_RINGS-1)]++;

// Previous Ring

fprintf (topology,

ll%d

", i-P_RINGS);

fprintf (topology, "%d ", channels[i-P_RINGS]);

channels[i-P_RINGS]++;

// First Ring
fprintf (topology,

"d

", 0);

fprintf (topology, "%d ", channels[0]);

channels[0] ++;

// Last Node in Ring
}else if (i==P_NUM_NODES-1){

103



APPENDIX A. TOPOLOGY GENERATOR

// Previous Node
fprintf (topology,
fprintf (topology,
channels [i-1]++;
// First Node

fprintf (topology,
fprintf (topology,

"%d
n%d

ll%d
"%d

", im1);

", channels[i-1]);

", i-(P_RINGS-1));

", channels[i-(P_RINGS-1)]);

channels[i-(P_RINGS-1)]++;

// Previous Ring
fprintf (topology,
fprintf (topology,

channels[i-P_RINGS]++;

// First Ring
fprintf (topology,
fprintf (topology,

channels[P_RINGS-1]++;

// Other Nodes
Yelse{

}

// Previous Node
fprintf (topology,
fprintf (topology,
channels[i-1]++;
// Next Node

fprintf (topology,
fprintf (topology,
channels [i+1]++;
// Previous Ring
fprintf (topology,
fprintf (topology,

channels [i-P_RINGS]++;

// First Ring
fprintf (topology,
fprintf (topology,

"4
"%d

"%d

n%d

"%d

n%d

ll%d
"%d

"4
"%d

"%d
n%d

", i-P_RINGS);

", channels[i-P_RINGS]);

", P_RINGS-1);

", channels[P_RINGS-1]);

", i1

", channels[i-1]);

", i)

", channels[i+1]);

", i-P_RINGS);

", channels[i-P_RINGS]);

", i-(P_NUM_NODES-P_RINGS));
", channels[i-(P_NUM_NODES-P_RINGS)]1);

channels[i-(P_NUM_NODES-P_RINGS)]++;

// Central Ring

Yelsed{

// First Node in Ring
if (i%P_RINGS == 0){

// Next Node

fprintf (topology,
fprintf (topology,
channels[i+1]++;
// Last Node

fprintf (topology,
fprintf (topology,

"%d
ll%d

"%d
"d

",oitl);

", channels[i+1]);

", i+(P_RINGS-1));

", channels[i+(P_RINGS-1)]);

channels [i+(P_RINGS-1)]++;

// Previous Ring

fprintf (topology, "%d ", i-P_RINGS);

fprintf (topology, "%d ", channels[i-P_RINGS]);

104



APPENDIX A.

TOPOLOGY GENERATOR

channels[i-P_RINGS]++;

// Next Ring

fprintf (topology, "%d ", i+P_RINGS);

fprintf (topology, "%d ", channels[i+P_RINGS]);
channels [i+P_RINGS]++;

// Last Node in Ring
Yelse if ((i+1)%P_RINGS == 0){

// Previous Node

fprintf (topology, "%d ", i-1);

fprintf (topology, "%d ", channels[i-1]);
channels[i-1]++;

// First Node

fprintf (topology, "%d ", i-(P_RINGS-1));
fprintf (topology, "%d ", channels[i-(P_RINGS-1)]);
channels [i-(P_RINGS-1)]++;

// Previous Ring

fprintf (topology, "%d ", i-P_RINGS);

fprintf (topology, "/%d ", channels[i-P_RINGS]);
channels[i-P_RINGS]++;

// First Ring

fprintf (topology, "%d ", i+P_RINGS);

fprintf (topology, "%d ", channels[i+P_RINGS]);
channels [i+P_RINGS]++;

//0ther Nodes
}Yelsed{

}

// Previous Node

fprintf (topology, "%d ", i-1);

fprintf (topology, "%d ", channels[i-1]);
channels[i-1]++;

// Next Node

fprintf (topology, "%d ", i+1);

fprintf (topology, "%d ", channels[i+1]);
channels[i+1]++;

// Previous Ring

fprintf (topology, "%d ", i-P_RINGS);

fprintf (topology, "%d ", channels[i-P_RINGS]);
channels[i-P_RINGS]++;

// First Ring

fprintf (topology, "%d ", i+P_RINGS);

fprintf (topology, "%d ", channels[i+P_RINGS]);
channels [i+P_RINGS]++;

fprintf (topology, "\n");

//6 - Random. ..

Random connections...

}else if (P_TOPOLOGY == 6){

// Randomly generate Connections

105



APPENDIX A. TOPOLOGY GENERATOR 106

// Number of Connections = Number of Nodes*Average Connections
num_rand_gen = P_NUM_NODES*P_AVG_CONNECTION/2;
for (i=0;i<num_rand_gen;i++){
// pick a node that isn’t full
full = 0;
while (!full){
node = int_rand(P_NUM_NODES-1);
if (node_num_connections[node] != P_NUM_NODES){
full = 1;

}
connected = 0;
// pick a connection, must pick a new connection
while(!connected){
// pick a connection
connection = int_rand(P_NUM_NODES-1);
// assume it’s a good connection
connected = 1;
for (j=0;j<P_NUM_NODES;j++){
// if connection already exists
// reset back to zero
if (node_connections[node] [j] == connection){

connected = 0;

}
// if connect to itself
if (connection == node){

connected = 0;

}

// store connection -- bi-directional

node_connections[node] [node_num_connections[node]] = connection;
node_connections[connection] [node_num_connections[connection]] = node;

// increment to next location to store, and increment how many connections made
node_num_connections[node] ++;

node_num_connections [connection]++;

all_connected = O;
while(!all_connected){
// Check all nodes to ensure that they have connections
for (i=0; i<P_NUM_NODES; i++){
// if node has no connections
if (node_num_connections[i] == 0){
// CONNECT THE NODE to SOMETHING

node_congested = 0;

connections = 0;

// Remove a connection from the most congested net



APPENDIX A. TOPOLOGY GENERATOR 107

for (j=0;j<P_NUM_NODES;j++){
// find most congested net
if (node_num_connections[j] > connections){
node_congested = j;
connections = node_num_connections[j];
}
}
// decrement from the most congested net
// decrement from congested node’s connection
connected_congested_node = node_connections[node_congested]

[node_num_connections[node_congested]-1];

// search through list and move congested node to end of list
for (k=0;k<node_num_connections[connected_congested_node]-1;k++){
if (node_connections[connected_congested_node] [k] == node_congested){
// swap to end of list
node_connections[connected_congested_node] [k] = node_connections
[connected_congested_node] [node_num_connections
[connected_congested_node]-1];
node_connections[connected_congested_node] [node_num_connections

[connected_congested_node]] = node_congested;

}
// decrement from congested node and connection
node_num_connections[connected_congested_node]——;

node_num_connections[node_congested]--; // this is correct

connected = 0;
// pick a connection, must pick a new connection
while(!connected){
// pick a connection
connection = int_rand(P_NUM_NODES-1);
// assume it’s a good connection
connected = 1;
for (j=0;j<P_NUM_NODES;j++){
// if connection already exists
// reset back to zero
if (node_connections[i] [j] == connection){

connected = 0;

}
// if connect to itself
if (connection == i){

connected = 0;

}
}
// store connection -- bi-directional
node_connections[i] [node_num_connections[i]] = connection;
node_connections[connection] [node_num_connections[connection]] = i;

// increment to next location to store, and increment how many connections made



APPENDIX A. TOPOLOGY GENERATOR 108

node_num_connections [i]++;

node_num_connections [connection] ++;

}
// Check all nodes to ensure that they have connections
all_connected = 1;
for (i=0; i<P_NUM_NODES; i++){
if (node_num_connections[i] == 0){
// repeat cycle if there are still empty connections

all_connected = 0;

}
// Print out all node sizes in description file

num_node_sizes = 0;

// Store Node Sizes
for (i=0;i<P_NUM_NODES;i++){
// check node size
node_size = node_num_connections[i];
// assume size does not exist
size_exists = 0;
// scan through existing nodes
for (j=0;j<num_node_sizes;j++){
// if size already exists, then don’t store
if (node_size == node_sizes[j]){

size_exists = 1;

¥

// if size did not exist

if (size_exists == 0){
// store new size
node_sizes[num_node_sizes] = node_size;
// move to next entry

num_node_sizes++;

// Print out all characteristics to the description file
// Number of Switch Types
NUM_SWITCH_TYPES = num_node_sizes;

//# of Nodes and Switch Types

fprintf (topology,"%d\n", P_NUM_NODES);

// Switch Types

fprintf (topology,"%d ", NUM_SWITCH_TYPES);

for (i=0;i<NUM_SWITCH_TYPES;i++){



APPENDIX A. TOPOLOGY GENERATOR

fprintf (topology,"%d ", node_sizes[i]);
}
fprintf (topology,"\n");

//Node Properties
for (i=0;i<P_NUM_NODES;i++){
// Node Properties

// Node Number
fprintf (topology, "%d ", i);

// Node Size
fprintf (topology, "%d ", node_num_connections[i]);
for (j=0;j<node_num_connections[i];j++){

// node connection

fprintf (topology, "%d ", node_connections[i] [j1);

// Connect to available channel

fprintf (topology,"%d ", channels[node_connections[il[j1]1);

channels[node_connections[i] [j1]++;

}
fprintf (topology, "\n");
}
}
fclose(topology) ;

1111111771711717771777777777777777771777/7717777777
// Main Function

117171717771777777177777117717717771177177117717777
int main(){
while(1){
// Reset control parameters
P_TOPOLOGY = -1;

P_NUM_NODES = -1;
P_COLUMNS = -1;

P_ROWS = -1;
P_AVG_CONNECTION = -1;
P_RINGS = -1;

P_NUM_RINGS = -1;

// Select Topology
printf("Available Topologies:\n");
printf("0 - Fully Connected\n");
printf("1 - Hypercube\n");
printf("2 - Mesh\n");

printf ("3 - Star\n");

109



APPENDIX A. TOPOLOGY GENERATOR

printf("4 - Ring\n");
printf ("5 - Torus\n");
printf("6 - Random\n");

// Ensure that user selects a topology
while (P_TOPOLOGY < O || P_TOPOLOGY > 6){
printf("Select Topology: ");
scanf ("%d", &P_TOPOLOGY);

if (P_TOPOLOGY < O || P_TOPOLOGY > 6){
printf("Invalid Selection, Choose Again\n");

// Select Number of Nodes for fully, star and ring

if (P_TOPOLOGY == O || P_TOPOLOGY == 3 || P_TOPOLOGY == 4){

printf ("Number of Nodes: ");
scanf ("%d", &P_NUM_NODES);
// Error checking for Hypercube
Yelse if (P_TOPOLOGY == 1){
while (P_NUM_NODES%4 !'= 0){
printf ("Number of Nodes: ");
scanf ("%d", &P_NUM_NODES) ;

if (P_NUM_NODES != 2 && P_NUM_NODES != 4 && P_NUM_NODES != 8 && P_NUM_NODES != 16
&% P_NUM_NODES != 32 && P_NUM_NODES != 64 && P_NUM_NODES != 128){

printf ("Number of Nodes must be 2°n\n");

}
// Error checking for Mesh
Yelse if (P_TOPOLOGY == 2){
while (P_ROWS < 1){
printf ("Number of Rows in Mesh: ");
scanf ("%d", &P_ROWS);
if (P_ROWS < 1){

printf ("Must have more than one row\n");

}

while (P_COLUMNS < 1){
printf ("Number of Columns in Mesh: ");
scanf ("%d", &P_COLUMNS);
if (P_COLUMNS < 1){

printf ("Must have more than one column\n");

}
P_NUM_NODES = P_ROWS*P_COLUMNS;
// Error checking for TOrus
}else if (P_TOPOLOGY == 5){
while (P_RINGS < 1){
printf ("Number of Nodes in Ring: ");
scanf ("%d", &P_RINGS);

110



APPENDIX A. TOPOLOGY GENERATOR 111

if (P_RINGS < 1){

printf ("Must have more than 1 nodes in ring\n");

}

while (P_NUM_RINGS < 1){
printf ("Number of Rings: ");
scanf ("%d", &P_NUM_RINGS);
if (P_NUM_RINGS < 1){

printf ("Must have more than 1 rings\n");

}
P_NUM_NODES = P_NUM_RINGS*P_RINGS;

// Specify Parameters for Random Topology
if (P_TOPOLOGY == 6){
printf ("Number of Nodes: ");
scanf ("%d", &P_NUM_NODES);
while (P_AVG_CONNECTION < O || P_AVG_CONNECTION > P_NUM_NODES){
printf("Average number of connections per node: ");
scanf ("%d", &P_AVG_CONNECTION);
if (P_AVG_CONNECTION > P_NUM_NODES){
printf ("Average Connections cannot exceed number of Nodes\n");
}
if (P_AVG_CONNECTION < 0){

printf("Invalid Selection, Choose Again\n");

printf ("Generating Topology Description File\n");

// Generate Topology
generate_topology();

A.2 Global Variables (globals.c)

The globals.c file is used to store the overall characteristics of the topology, which is used
to generate the topology description file.

#define P_NUM_TOPOLOGIES 7

// Topologies



APPENDIX A. TOPOLOGY GENERATOR 112

char topology_names[P_NUM_TOPOLOGIES] [100] = {{"fully"},{"hypercube"},{"mesh"},{"star"},{"ring"},

{"torus"},{"random"}};

// Properties

int P_NUM_NODES = -1; // Number of Nodes
int P_AVG_CONNECTION = -1;

int P_TOPOLOGY = -1;

int P_COLUMNS = -1;

int P_ROWS = -1;

int P_RINGS = -1;

int P_NUM_RINGS = -1;



Appendix B

System (Generator

As described in Section 3.2, the system generator is used to produce all necessary files needed
by the CAD tools to synthesize the NoC topology. The system generator requires several

input files to operate. These files are listed below:

e constraints.txt - defines the FPGA device family, maximum operating frequency, and

node types (heterogeneous or homogeneous)

e topologies.txt - lists the topology description files to use as inputs to the system

generator

e ram_X - M-LAB RAM block used by Altera devices where X is the link width of the

NoC topology

The system generator prompts the user for the type of system to generate. First, the user
will be asked to generate an Altera or Xilinx system. If the system is a Xilinx system, the user
will then decide to use either MicroBlaze or Multiplier nodes. The user will then be given
an option to generate individual topologies, or all topologies listed in the 'topologies.txt’

file.

113



APPENDIX B. SYSTEM GENERATOR 114

The inputs files required by the program need to be in the same directory as the exe-

cutable. The format of ’constraints.txt’ is shown below:

Architecture: virtexb
Device: XC5VLX330
Package: FF1760

Clock: 250000

FSL_Width: 32
Multiplicand_Width: 6
Multiplicand_Width_Min: 4
Multiplicand_Width_Max: 8

The user can change the values associated with each parameter. Note that the current
version of the system generator shown here can support all Xilinx and Altera devices. For
Altera devices, the FPGA device family does not need to be specified here and ’altera’ should
be filled in for Architecture, Device, Package and Speed. The device family is specified at
run time when Quartus is invoked. For the node properties, the system generator can only
support even values for the FSL_Width and Multiplicand_Width. The Multiplicand_Width
specifies the average value between the min and max values. If a homogeneous system
is desired Multiplicand_Width = Multiplicand_Width_Min = Multiplicand_Width_Max. If
a heterogeneous system is desired, Multiplicand_Width_-Min must be less than Multipli-
cand_Width and Multiplicand_Width_Max must be greater than Multiplicand_Width. Fur-
thermore, Multiplicand_Width_Max cannot exceed FSL_Width.

In order to specify the topologies to generate, an input file called 'topologies.txt’ is used.

The format of the file is shown below:

ring 8
ring_16
mesh_4
mesh_8
random_48_6



APPENDIX B. SYSTEM GENERATOR 115

The user can list as many topology description files as they desire. All topology descrip-
tion files need to be in the same directory as the program itself. A folder with the same
name as the topology, containing all necessary files is generated by the system generator.

If the user wishes to generate a system for Altera devices, a pre-generated ram block must
be included in the same directory. The ram block can be generated using the MegaWizard
tool, and must be specified to use only M-LAB RAM blocks. For our systems, the width
of the ram block is equal to the FSL_Width and the depth is always set at 16. An example

ram block used for a 16-bit FSL is shown below:

// megafunction wizard: %RAM: 2-PORT%
// GENERATION: STANDARD

// VERSION: WM1.0

// MODULE: altsyncram

//
// File Name: ram_16.v

// Megafunction Name(s):

// altsyncram

//

// Simulation Library Files(s):
// altera_mf

//

// 3k 3k 3k >k 3k 3k 3k 3k 5k 5k >k >k >k 5k 5k 5k >k %k %k 3k 5k 5k 5k >k %k >k 5k 5k 5k 5k >k >k %k 3k 5k 5K 5k >k %k >k %k 3k 5k 5k >k >k %k %k %k 3K 5k %k Xk %k %k %k >k k k k
// THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!

//

// 8.1 Build 163 10/28/2008 SJ Full Version

// 3k >k 3k >k 3k >k 3k ok 3k 3k ok 3k ok 3k ok >k ok >k 3k >k 3k ok 3k ok >k 3k >k 3k >k 3k ok 3k k >k 3k ok 3k ok 3k ok >k k >k 3k ok 3k ok ok ok >k 3k >k 3k >k 3k %k >k %k kK k

//Copyright (C) 1991-2008 Altera Corporation

//Your use of Altera Corporation’s design tools, logic functions
//and other software and tools, and its AMPP partner logic
//functions, and any output files from any of the foregoing
//(including device programming or simulation files), and any
//associated documentation or information are expressly subject
//to the terms and conditions of the Altera Program License
//Subscription Agreement, Altera MegaCore Function License
//Agreement, or other applicable license agreement, including,
//without limitation, that your use is for the sole purpose of
//programming logic devices manufactured by Altera and sold by
//Altera or its authorized distributors. Please refer to the

//applicable agreement for further details.



APPENDIX B. SYSTEM GENERATOR 116

// synopsys translate_off
‘timescale 1 ps / 1 ps
// synopsys translate_on
module ram (

clock,

data,

rdaddress,

wraddress,

wren,

qQ);

input clock;

input [15:0] data;
input [3:0] rdaddress;
input [3:0] wraddress;
input wren;

output [15:0] q;

wire [15:0] sub_wireO;
wire [15:0] q = sub_wire0[15:0];

altsyncram altsyncram_component (
.wren_a (wren),
.clock0 (clock),
.address_a (wraddress),
.address_b (rdaddress),
.data_a (data),
.q_b (sub_wire0),
.aclr0 (1°b0),
.aclrl (1°b0),
.addressstall_a (1’b0),
.addressstall_b (1’b0),
.byteena_a (1’b1),
.byteena_b (1’b1),
.clockl (1’b1),
.clocken0 (1’b1l),
.clockenl (1’b1),
.clocken2 (1’b1),
.clocken3 (1’b1l),
.data_b ({16{1°b1}}),
.eccstatus (),
.q_a O,
.rden_a (1°’b1),
.rden_b (1°bl),
.wren_b (1°b0));

defparam
altsyncram_component.address_aclr_b = "NONE",
altsyncram_component.address_reg_b = "CLOCKO",

altsyncram_component.clock_enable_input_a = "BYPASS",



APPENDIX B. SYSTEM GENERATOR

altsyncram_component.
altsyncram_component.
altsyncram_component.

altsyncram_component.

altsyncram_component

altsyncram_component

altsyncram_component.
altsyncram_component.
altsyncram_component.
altsyncram_component.
altsyncram_component.

altsyncram_component.

altsyncram_component

altsyncram_component

altsyncram_component.

altsyncram_component.

altsyncram_component

endmodule

//
//
//
//
//
//
//
//
1/
//
/7
//
//
//
//
//
//
//
//
//
1/
//
//
//
//
//
//
//
//

clock_enable_input_b = "BYPASS",
clock_enable_output_b = "BYPASS",
intended_device_family = "Stratix III",
lpm_type = "altsyncram",
.numwords_a = 16,

.numwords_b = 16,

operation_mode = "DUAL_PORT",
outdata_aclr_b = "NONE",
outdata_reg_b = "CLOCKO",
power_up_uninitialized = "FALSE",
ram_block_type = "MLAB",

.widthad_a = 4,
.widthad_b = 4,
width_a = 16,
width_b = 16,
.width_byteena_a = 1;

CNX file retrieval info

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

ADDRESSSTALL_A NUMERIC "O"
ADDRESSSTALL_B NUMERIC "O"
BYTEENA_ACLR_A NUMERIC "O"
BYTEENA_ACLR_B NUMERIC "O"
BYTE_ENABLE_A NUMERIC "O"
BYTE_ENABLE_B NUMERIC "O"
BYTE_SIZE NUMERIC "8"
BlankMemory NUMERIC "1"
CLOCK_ENABLE_INPUT_A NUMERIC "O"
CLOCK_ENABLE_INPUT_B NUMERIC "O"
CLOCK_ENABLE_OUTPUT_A NUMERIC "O"
CLOCK_ENABLE_QUTPUT_B NUMERIC "O"
CLRdata NUMERIC "O"

CLRq NUMERIC "O"

CLRrdaddress NUMERIC "O"

CLRrren NUMERIC "O"

CLRwraddress NUMERIC "O"

CLRwren NUMERIC "O"

Clock NUMERIC "O"

Clock_A NUMERIC "O"

Clock_B NUMERIC "O"

ECC NUMERIC "O"

IMPLEMENT_IN_LES NUMERIC "O"
INDATA_ACLR_B NUMERIC "O"
INDATA_REG_B NUMERIC "O"
INIT_FILE_LAYOUT STRING "PORT_B"

read_during_write_mode_mixed_ports = "DONT_CARE",

117



APPENDIX B.

//
//
//
//
//
1/
//
//
/7
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//
//
//
//
1/
//
/7
//
//
//
//
//
//
//
//
//
1/
//
//
//
//
//
//
//
//

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

SYSTEM GENERATOR

PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:
PRIVATE:

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

INIT_TO_SIM_X NUMERIC "O"
INTENDED_DEVICE_FAMILY STRING "Stratix III"
JTAG_ENABLED NUMERIC "O"

JTAG_ID STRING "NONE"

MAXIMUM_DEPTH NUMERIC "O"

MEMSIZE NUMERIC "256"

MEM_IN_BITS NUMERIC "O"

MIFfilename STRING ""

OPERATION_MODE NUMERIC "2"

OUTDATA_ACLR_B NUMERIC "O"

OUTDATA_REG_B NUMERIC "1"

RAM_BLOCK_TYPE NUMERIC "1"
READ_DURING_WRITE_MODE_MIXED_PORTS NUMERIC "2"
READ_DURING_WRITE_MODE_PORT_A NUMERIC "1"
READ_DURING_WRITE_MODE_PORT_B NUMERIC "3"
REGdata NUMERIC "1"

REGq NUMERIC "1"

REGrdaddress NUMERIC "1"

REGrren NUMERIC "1"

REGwraddress NUMERIC "1"

REGwren NUMERIC "1"
SYNTH_WRAPPER_GEN_POSTFIX STRING "O"

USE_DIFF_CLKEN NUMERIC "O"

UseDPRAM NUMERIC "1"

VarWidth NUMERIC "O"

WIDTH_READ_A NUMERIC "16"

WIDTH_READ_B NUMERIC "16"

WIDTH_WRITE_A NUMERIC "16"

WIDTH_WRITE_B NUMERIC "16"

WRADDR_ACLR_B NUMERIC "O"

WRADDR_REG_B NUMERIC "O"

WRCTRL_ACLR_B NUMERIC "O"

enable NUMERIC "O"

rden NUMERIC "O"

ADDRESS_ACLR_B STRING "NONE"
ADDRESS_REG_B STRING "CLOCKO"
CLOCK_ENABLE_INPUT_A STRING "BYPASS"
CLOCK_ENABLE_INPUT_B STRING "BYPASS"
CLOCK_ENABLE_OUTPUT_B STRING "BYPASS"
INTENDED_DEVICE_FAMILY STRING "Stratix III"
LPM_TYPE STRING "altsyncram"

NUMWORDS_A NUMERIC "16"

NUMWORDS_B NUMERIC "16"

OPERATION_MODE STRING "DUAL_PORT"
OUTDATA_ACLR_B STRING "NONE"
OUTDATA_REG_B STRING "CLOCKO"
POWER_UP_UNINITIALIZED STRING "FALSE"
RAM_BLOCK_TYPE STRING "MLAB"

READ_DURING_WRITE_MODE_MIXED_PORTS STRING "DONT_CARE"

WIDTHAD_A NUMERIC "4"

118



APPENDIX B.

//
//
//
//
//
1/
//
//
/7
//
//
//
//
//
//
//
//
//
//
//
/7
//
//
//
//
//
//

Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval
Retrieval

Retrieval

info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:
info:

info:

SYSTEM GENERATOR

CONSTANT:
CONSTANT:
CONSTANT:
CONSTANT:

USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:
USED_PORT:

CONNECT:
CONNECT:
CONNECT:
CONNECT:
CONNECT:
CONNECT:
LIBRARY:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
GEN_FILE:
LIB_FILE:

WIDTHAD_B NUMERIC "4"
WIDTH_A NUMERIC "16"
WIDTH_B NUMERIC "16"
WIDTH_BYTEENA_A NUMERIC "1"

clock 0 0 0 0 INPUT NODEFVAL clock

data 0 0 16 O INPUT NODEFVAL data[15..0]
q 0 0 16 0 OUTPUT NODEFVAL q[15..0]

wren O 0 0 O INPUT VCC wren

@data_a 0 0 16 0 data 0 0 16 0O

Quwren_a 0 0 0 O wren 0 0 0 O

q 0016 0 @q_b 0 0 16 0O

Qaddress_a 0 0 4 O wraddress 0 0 4 O
Qaddress_b 0 0 4 O rdaddress 0 0 4 O
Q@clockO 0 0 0 O clock 0 0 0 O

altera_mf altera_mf.altera_mf_components.all
TYPE_NORMAL ram_16.v TRUE

TYPE_NORMAL ram_16.inc FALSE
TYPE_NORMAL ram_16.cmp FALSE
TYPE_NORMAL ram_16.bsf FALSE
TYPE_NORMAL ram_16_inst.v FALSE
TYPE_NORMAL ram_16_bb.v FALSE
TYPE_NORMAL ram_16_waveforms.html TRUE
TYPE_NORMAL ram_16_wave*.jpg FALSE

altera_mf

B.1 Main (main.c)

rdaddress O 0 4 0 INPUT NODEFVAL rdaddress[3.
wraddress O 0 4 0 INPUT NODEFVAL wraddress[3.

.0]
.0]

119

The following code is the main function of the system generator. It queries the user for the

input files and input parameters and utilizes a set of functions to generate the individual

files needed by the Altera and Xilinx CAD tools. Below is the code for 'main.c’ and all

associated function calls.

#include
#include
#include
#include
#include
#include
#include

#include

<stdio.h>

"generate_xmp.h"

"generate_mhs.h"

"generate_mss.h"

"generate_opt.h"

"generate_switch_pcore.h"
"globals.h"

"generate_ucf.h"



APPENDIX B. SYSTEM GENERATOR

#include "generate_mult.h"

#include "generate_fsl.h"

// Node Properties
int PLB_CONNECT;

int P_CONNECT_RS232;
int P_DCM_FREQUENCY;

// Xilinx CAD Tool Properties (Do Not Change)
int P_TIMING_CONSTRAINT = 1; // don’t change
int P_MAP_EFFORT = 1;

int P_PAR_EFFORT = 1;

int P_CONSTRAIN_BOARD = 0; // don’t change

// Control Variables
int P_NODE;

int P_NUM_NODE;

int Byte;

int init_multiplier;

int P_NODE_SIZE[P_MAX_NODES]; // Number of Connections for Node
int P_NODE_CONNECTIONS[P_MAX_NODES] [P_MAX_NODES]; // Connections for Node
int P_NODE_CHANNELS[P_MAX_NODES] [P_MAX_NODES]; // Connections for Node

int P_NUM_SWITCHES; // Number of Switches
int P_SWITCHES[P_MAX_NODES]; // Number of types of switches

// Used to generate directory structures
char topology[100];

char directory[100];

char gen_directory[100];

char pcore_directory[100];

char switch_directory[100];
char multiplier_directory[100];
char switch_size[100];

char fsl_size[100];

char multiplicand_sizes[100];
char generate_file[100];

char hdl_directory[100];

char temp_path[100];

// Directory Structure Files

120

FILE *xmp_file, *mhs_file, *mss_file, *ucf_file, *v_switch, *v_switch_fsm, *switch_pao, *switch_mpd,

*opt_file, *tcl_file;

FILE *topology_file, *system_file, *fsl_file, *inFile, *outFile;

FILE *multiplier_mpd, *multiplier_pao, *multiplier_v, *xbyx_mult_v, *xby2_mult_v, *two_mult_v;

// Used to generate tcl file that is used to automatically run Xilinx EDK

void generate_tcl(FILE *tcl_file){
fprintf(tcl_file, "xload xmp system.xmp\n");



APPENDIX B. SYSTEM GENERATOR 121

fprintf(tcl_file, "xset enable_par_timing_error O\n");
fprintf(tcl_file, "run bits\n");
fprintf(tcl_file, "exit\n");

// Generates all necessary CAD tool files for Xilinx and Altera tools
// Uses functions described in other sections of this code to generate
// individual files
void generate_system(int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH,

int P_MULTIPLICAND_WIDTH_MIN, int P_MULTIPLICAND_WIDTH_MAX){

int i,j,k;
int multiplicand_width;

P_DCM_FREQUENCY = P_CLK_FREQUENCY;

// Change FSL and Multiplicand Width to strings
itoa(P_FSL_WIDTH, fsl_size, 10);
itoa(P_MULTIPLICAND_WIDTH, multiplicand_sizes, 10);
strcpy(directory, topology);

// Open topology description file and parse topology parameters
strcat(topology, ".txt");
topology_file = fopen(topology, "r");

// P_NUM_NODES
fscanf (topology_file, "%d", &P_NUM_NODES) ;

// P_NUM_SWITCHES
fscanf (topology_file, "%d ", &P_NUM_SWITCHES);

// P_SWITCHES
for (i=0; i<P_NUM_SWITCHES;i++){
fscanf (topology_file, "%d ", &P_SWITCHES[il]);

// Node Properties
for (i=0;i<P_NUM_NODES;i++){
// temporary P_NODE
fscanf (topology_file, "%d ", &P_NODE);
// P_NODE_SIZE
fscanf (topology_file, "%d ", &P_NODE_SIZE[P_NODE]);
// P_NODE_CONNECTIONS
// P_NODE_CHANNELS
for (j=0;j<P_NODE_SIZE[P_NODE];j++){
fscanf (topology_file, "%d %d ", &P_NODE_CONNECTIONS[P_NODE][j],
&P_NODE_CHANNELS [P_NODE] [j1) ;

}
fclose(topology_file);



APPENDIX B. SYSTEM GENERATOR 122

II17707777777777777777777777777777777777777777717777777117771777777
// Xilinx FPGAs

// Used to generate all Xilinx Files if chosen vendor is Xilinx

if (P_VENDOR == 1){

// Generate Directory Structure
mkdir (directory) ;

// data directory
strcpy(gen_directory, directory);
strcat(gen_directory, "/data");
mkdir(gen_directory);

// etc directory
strcpy(gen_directory, directory);
strcat(gen_directory, "/etc");
mkdir (gen_directory) ;

// pcores directory
strcpy(gen_directory, directory);
strcat(gen_directory, "/pcores");
mkdir(gen_directory);

strcpy(pcore_directory, gen_directory);

// Generate Multiplier Node Types else use MicroBlaze nodes
if (P_NODE_TYPE == 1){
// Multiplier
for (i=0;i<2;i++){ // Two Types of multipliers Init and everything else

// pcore directory

// Generate standard size init multiplier

if (i==0){
// pcore directory
strcpy(gen_directory, pcore_directory);
strcat(gen_directory, "/init_multiplier_");
itoa(P_FSL_WIDTH, fsl_size, 10);
strcat(gen_directory, fsl_size);
strcat(gen_directory, "_");
itoa(P_MULTIPLICAND_WIDTH, multiplicand_sizes, 10);
strcat(gen_directory, multiplicand_sizes);
strcat(gen_directory, "_v1_00_a");
mkdir(gen_directory);
strcpy(switch_directory, gen_directory);
// data directory
strcpy(gen_directory, switch_directory);
strcat(gen_directory, "/data");
mkdir (gen_directory);
// devl directory
strcpy(gen_directory, switch_directory);
strcat(gen_directory, "/devl");
mkdir(gen_directory);
// hdl directory

strcpy(gen_directory, switch_directory);



APPENDIX B. SYSTEM GENERATOR

strcat(gen_directory,
mkdir (gen_directory);
// vhdl directory

strcpy(hdl_directory,
strcat(gen_directory,
mkdir(gen_directory);
// verilog directory
strcpy(gen_directory,
strcat(gen_directory,

mkdir(gen_directory);

"/hdl") ;

gen_directory) ;
"/vhdl");

hdl_directory) ;

"/verilog");

}elseq{

for (i = P_MULTIPLICAND_WIDTH_MIN;i<=P_MULTIPLICAND_WIDTH_MAX;i=i+2){

// Switches

// pcore directory
strcpy(gen_directory,

strcat(gen_directory,

pcore_directory) ;

"/multiplier_");

itoa(P_FSL_WIDTH, fsl_size, 10);

strcat(gen_directory,

strcat(gen_directory,

fsl_size);

ll_ll) ;

itoa(i, multiplicand_sizes, 10);

strcat(gen_directory, multiplicand_sizes);

strcat(gen_directory,

mkdir (gen_directory);

"_v1_00_a");

strcpy(switch_directory, gen_directory);

// data directory
strcpy(gen_directory,
strcat(gen_directory,
mkdir(gen_directory);
// devl directory
strcpy(gen_directory,
strcat(gen_directory,
mkdir (gen_directory) ;
// hdl directory
strcpy(gen_directory,
strcat(gen_directory,
mkdir (gen_directory);
//vhdl directory
strcpy(hdl_directory,
strcat(gen_directory,
mkdir(gen_directory);
//verilog directory
strcpy(gen_directory,
strcat(gen_directory,

mkdir (gen_directory) ;

switch_directory);
"/data") ;

switch_directory);
"/devl");

switch_directory);
ll/hdlll) ;

gen_directory) ;
"/vhdl") ;

hdl_directory);

"/verilog");

123



APPENDIX B. SYSTEM GENERATOR 124

for (i=0;i<P_NUM_SWITCHES;i++){
strcpy(gen_directory, pcore_directory);
// pcore directory
strcat(gen_directory, "/switch");
itoa(P_SWITCHES[i], switch_size, 10);
strcat(gen_directory, switch_size);
strcat(gen_directory, "_v1_00_a");
mkdir (gen_directory) ;
strcpy(switch_directory, gen_directory);
// data directory
strcpy(gen_directory, switch_directory);
strcat(gen_directory, "/data");
mkdir (gen_directory) ;
// devl directory
strcpy(gen_directory, switch_directory);
strcat(gen_directory, "/devl");
mkdir(gen_directory);
// hdl directory
strcpy(gen_directory, switch_directory);
strcat(gen_directory, "/hdl");
mkdir (gen_directory);
//vhdl directory
strcpy(hdl_directory, gen_directory);
strcat(gen_directory, "/vhdl");
mkdir (gen_directory) ;
//verilog directory
strcpy(gen_directory, hdl_directory);
strcat(gen_directory, "/verilog");

mkdir(gen_directory) ;

// Generate XMP File
strcpy(generate_file, directory);
strcat(generate_file, "/system.xmp");
xmp_file = fopen(generate_file, "w");
generate_xmp (xmp_file);

fclose(xmp_file);

// Generate MHS File

strcpy(generate_file, directory);

strcat(generate_file, "/system.mhs");

mhs_file = fopen(generate_file, "w");

generate_mhs(mhs_file, P_NODE_SIZE, P_NODE_CONNECTIONS, P_NODE_CHANNELS,
P_CLK_FREQUENCY, P_NUM_NODES, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,
P_MULTIPLICAND_WIDTH_MIN, P_MULTIPLICAND_WIDTH_MAX, P_TIMING_CONSTRAINT);

fclose(mhs_file);

// Generate MSS File
strcpy(generate_file, directory);

strcat(generate_file, "/system.mss");



APPENDIX B. SYSTEM GENERATOR 125

mss_file = fopen(generate_file, "w");
generate_mss(mss_file, P_NUM_NODES, P_NODE_SIZE, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

fclose(mss_file);

// Generate TCL File
strcpy(generate_file, directory);
strcat(generate_file, "/gen_bits.tcl");
tcl_file = fopen(generate_file, "w");
generate_tcl(tcl_file);
fclose(tcl_file);

// Generate UCF File

strcpy(generate_file, directory);

strcat(generate_file, "/data/system.ucf");

ucf_file = fopen(generate_file, "w");

generate_ucf (ucf_file, P_CLK_FREQUENCY, P_CONSTRAIN_BOARD, P_TIMING_CONSTRAINT);
fclose(ucf_file);

// Generate ETC Files

strcpy(generate_file, directory);
strcat(generate_file, "/etc/fast_runtime.opt");
opt_file = fopen(generate_file, "w");

generate_opt (opt_file, P_MAP_EFFORT, P_PAR_EFFORT);
fclose(opt_file);

// Generate Switch PCORES

for (i=0;i<P_NUM_SWITCHES;i++){
strcpy(generate_file,pcore_directory) ;
strcat(generate_file, "/switch");
itoa(P_SWITCHES[i], switch_size, 10);
strcat(generate_file, switch_size);
strcat(generate_file, "_v1_00_a");
strcpy(switch_directory, generate_file);
// data files
strcat(generate_file, "/data/switch");
strcat(generate_file, switch_size);
strcat(generate_file, "_v2_1_0.mpd");
// generate mpd
switch_mpd = fopen(generate_file, "w");
strcpy(generate_file, switch_directory);
strcat(generate_file, "/data/switch");
strcat(generate_file, switch_size);
strcat(generate_file, "_v2_1_0.pao");
// generate pao
switch_pao = fopen(generate_file, "w");
generate_switch_data(P_SWITCHES[i], switch_mpd, switch_pao, P_FSL_WIDTH);
fclose(switch_mpd) ;
fclose(switch_pao);
// verilog files
strcpy(generate_file, switch_directory);



APPENDIX B. SYSTEM GENERATOR 126

strcat(generate_file, "/hdl/verilog/switch");
strcat(generate_file, switch_size);
strcat(generate_file, ".v");

// generate switch

v_switch = fopen(generate_file, "w");
strcpy(generate_file, switch_directory);
strcat(generate_file, "/hdl/verilog/switch_fsm");
strcat(generate_file, switch_size);
strcat(generate_file, ".v");

// generate fsm

v_switch_fsm = fopen(generate_file, "w");
generate_switch_hdl(P_SWITCHES[i], v_switch, v_switch_fsm, P_FSL_WIDTH);
fclose(v_switch);

fclose(v_switch_fsm);

// Generate files for Multiplier Nodes
if (P_NODE_TYPE == 1){
// Generate all Multiplier Node Sizes Required
for (i=0;i<((P_MULTIPLICAND_WIDTH_MAX-P_MULTIPLICAND_WIDTH_MIN)/2+2);i++){

strcpy(generate_file,pcore_directory);

// Generate init_multiplier (connected to output pins)
// If this is the first node
if (i==0){
strcat(generate_file, "/init_multiplier_");
multiplicand_width = P_MULTIPLICAND_WIDTH;
// Else generate standard multiplier node
Yelse{
strcat(generate_file, "/multiplier_");
multiplicand_width = P_MULTIPLICAND_WIDTH_MIN+2*(i-1);
}
// File structure of Multiplier node
itoa(P_FSL_WIDTH, fsl_size, 10);
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
itoa(multiplicand_width, multiplicand_sizes, 10);
strcat(generate_file, multiplicand_sizes);
strcat(generate_file, "_v1_00_a");

strcpy(multiplier_directory, generate_file);

// File structure for data files
if (i==0){

strcat(generate_file, "/data/init_multiplier_");
Yelsed{

strcat(generate_file, "/data/multiplier_");
}
strcat(generate_file, fsl_size);
strcat(generate_file, "_");

strcat(generate_file, multiplicand_sizes);



APPENDIX B. SYSTEM GENERATOR 127

strcat(generate_file, "_v2_1_0.mpd");

// generate mpd
multiplier_mpd = fopen(generate_file, "w");
strcpy(generate_file, multiplier_directory) ;
if (i==0){

strcat(generate_file, "/data/init_multiplier_");
Yelseq{

strcat(generate_file, "/data/multiplier_");
}
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
strcat(generate_file, multiplicand_sizes);

strcat(generate_file, "_v2_1_0.pao");

// generate pao

multiplier_pao = fopen(generate_file, "w");

if (i==0){init_multiplier = 1;}else{init_multiplier = 0;}

gen_mult_data(multiplier_mpd, multiplier_pao, P_FSL_WIDTH,
multiplicand_width, init_multiplier);

fclose(multiplier_mpd);

fclose(multiplier_pao);

// Generate Verilog Files
strcpy(generate_file, multiplier_directory);
// generate multipliers
if (i==0){
strcat(generate_file, "/hdl/verilog/init_multiplier_");
Yelse{
strcat(generate_file, "/hdl/verilog/multiplier_");
}
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
strcat(generate_file, multiplicand_sizes);
strcat(generate_file, ".v");
multiplier_v = fopen(generate_file, "w");
if (i==0){init_multiplier = 1;}else{init_multiplier = 0;}
gen_multiplier(multiplier_v,P_FSL_WIDTH, multiplicand_width, init_multiplier);

// generate xbyx multiplier

strcpy(generate_file, multiplier_directory);
strcat(generate_file, "/hdl/verilog/xbyx_bit_multiplier.v");
xbyx_mult_v = fopen(generate_file, "w");

gen_xbyx (xbyx_mult_v, P_FSL_WIDTH, multiplicand_width);

// generate xby2 multiplier

strcpy(generate_file, multiplier_directory);
strcat(generate_file, "/hdl/verilog/xbytwo_bit_multiplier.v");
xby2_mult_v = fopen(generate_file, "w");

gen_xbytwo (xbyx_mult_v, P_FSL_WIDTH, multiplicand_width);



APPENDIX B. SYSTEM GENERATOR 128

// generate 2 bit multiplier

strcpy(generate_file, multiplier_directory) ;
strcat(generate_file, "/hdl/verilog/two_bit_multiplier.v");
two_mult_v = fopen(generate_file, "w");

gen_twobytwo (two_mult_v) ;

fclose(multiplier_v);

fclose(xbyx_mult_v);

fclose(xby2_mult_v);

fclose(two_mult_v);

II11110777777777777777777777777777777777777777777777771777717777777177777777
// Altera FPGAs
// Used to generate all Altera CAD tool files if chosen vendor is Altera
else{

// Generate Directory Structure

mkdir(directory);

// Generate all system verilog files

strcpy(generate_file, directory);

strcat(generate_file, "/system.v");

system_file = fopen(generate_file, "w");

generate_system_verilog(system_file, P_NODE_SIZE, P_NODE_CONNECTIONS, P_NODE_CHANNELS,
P_NUM_NODES, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_MULTIPLICAND_WIDTH_MIN,
P_MULTIPLICAND_WIDTH_MAX);

fclose(system_file);

// Generate custom FSL File
strcpy(generate_file, directory);
strcat(generate_file, "/fsl.v");
fsl_file = fopen(generate_file, "w");
gen_fsl(fsl_file, P_FSL_WIDTH);
fclose(fsl_file);

// Generate Switch Files
for (i=0;i<P_NUM_SWITCHES;i++){

// verilog files

strcpy(generate_file, directory);
strcat(generate_file, "/switch_");
itoa(P_SWITCHES[i], switch_size, 10);
strcat(generate_file, switch_size);
strcat(generate_file, ".v");

v_switch = fopen(generate_file, "w");
strcpy(generate_file, directory);
strcat(generate_file, "/switch_fsm_");

strcat(generate_file, switch_size);



APPENDIX B. SYSTEM GENERATOR 129

strcat(generate_file, ".v");

v_switch_fsm = fopen(generate_file, "w");

// generate verilog files
generate_switch_hdl1(P_SWITCHES[i], v_switch, v_switch_fsm, P_FSL_WIDTH);
fclose(v_switch);

fclose(v_switch_fsm);

// Generate Multiplier Nodes
for (i=0;i<((P_MULTIPLICAND_WIDTH_MAX-P_MULTIPLICAND_WIDTH_MIN)/2+2);i++){

// Init_Multiplier and Standard Multiplier

if (i==0){
strcpy(generate_file, directory);
strcat(generate_file, "/init_multiplier_");
multiplicand_width = P_MULTIPLICAND_WIDTH;

Yelsed{
strcpy(generate_file, directory);
strcat(generate_file, "/multiplier_");
multiplicand_width = P_MULTIPLICAND_WIDTH_MIN+2#(i-1);
}
itoa(P_FSL_WIDTH, fsl_size, 10);
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
itoa(multiplicand_width, multiplicand_sizes, 10);
strcat(generate_file, multiplicand_sizes);
strcat(generate_file, ".v");

multiplier_v = fopen(generate_file, "w");

if (i==0){init_multiplier = 1;}else{init_multiplier = 0;}
gen_multiplier(multiplier_v,P_FSL_WIDTH, multiplicand_width, init_multiplier);

// generate xbyx multiplier

strcpy(generate_file, directory);
strcat(generate_file, "/xbyx_bit_multiplier_");
itoa(P_FSL_WIDTH, fsl_size, 10);
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
itoa(multiplicand_width, multiplicand_sizes, 10);
strcat(generate_file, multiplicand_sizes);
strcat(generate_file, ".v");

xbyx_mult_v = fopen(generate_file, "w");

gen_xbyx (xbyx_mult_v, P_FSL_WIDTH, multiplicand_width);

// generate xby2 multiplier
strcpy(generate_file, directory);

strcat(generate_file, "/xbytwo_bit_multiplier_");



APPENDIX B. SYSTEM GENERATOR

itoa(P_FSL_WIDTH, fsl_size, 10);
strcat(generate_file, fsl_size);
strcat(generate_file, "_");
itoa(multiplicand_width, multiplicand_sizes, 10);
strcat(generate_file, multiplicand_sizes);
strcat(generate_file, ".v");

xby2_mult_v = fopen(generate_file, "w");

gen_xbytwo (xbyx_mult_v, P_FSL_WIDTH, multiplicand_width);

// generate 2 bit multiplier
strcpy(generate_file, directory);
strcat(generate_file, "/two_bit_multiplier.v");
two_mult_v = fopen(generate_file, "w");
gen_twobytwo (two_mult_v);

fclose(multiplier_v);

fclose(xbyx_mult_v);

fclose(xby2_mult_v);

fclose(two_mult_v);

fclose(topology_file);

// copy Altera M-LAB RAM block, which is used for the custom FSL
strcpy(generate_file, "ram_");

strcat(generate_file, fsl_size);

strcat(generate_file, ".v");

inFile = fopen(generate_file, "rb");

strcpy(generate_file, directory);

strcat(generate_file, "/ram.v");

outFile = fopen(generate_file, "wb");

// Copy entire file
while(1){
if (Byte!=EOF){
Byte=fgetc(inFile);

fputc(Byte,outFile);
}
elseq{
break; // adds weird character at end of file
}
}
Byte = 0;

fclose(outFile);

fclose(inFile);

L11111777777177777777777117171777777711771117777777117

// Main Function used to prompt user for all constraints

130



APPENDIX B. SYSTEM GENERATOR

// and calls function to generate all necessary files
//

int main(){

FILE *constraints;
FILE *topologies;
char ignore[100];

int num_topology;

int i,generate_all;

// Generate for Xilinx or Altera?

printf ("Generate for Xilinx or Altera? (1-Xilinx, O-Altera): ");

scanf ("%d", &P_VENDOR);

// 1f Xilinx, prompt user for MicroBlaze or Multiplier Nodes
if (P_VENDOR == 1){

printf("Use Multiplier or MicroBlaze nodes? (1-Multiplier, O-MicroBlaze):

scanf ("%d", &P_NODE_TYPE);
Yelsed{
P_NODE_TYPE = 1;

printf ("\nReading Constraints File\n");

// Open Constraints File
constraints = fopen("constraints.txt", "r");

// Scan Constraint File for FPGA Architecture Parameters
fscanf (constraints, "Ys", &ignore);

fscanf (constraints, "%s", &P_ARCH);

fscanf (constraints, "Ys", &ignore);

fscanf (constraints, "%s", &P_DEVICE);

fscanf (constraints, "¥%s", &ignore);

fscanf (constraints, "Y%s", &P_PACKAGE);

fscanf (constraints, "Ys", &ignore);

fscanf (constraints, "Y%s", &P_SPEED);

// Clock Frequency
fscanf (constraints, "¥%s", &ignore);
fscanf (constraints, "%d", &P_CLK_FREQUENCY);

// FSL and Node Parameters
fscanf (constraints, "%s", &ignore);
fscanf (constraints, "%d", &P_FSL_WIDTH);

// force FSL width to 32 bits if using MicroBlaze nodes
if (P_NODE_TYPE == 0){
P_FSL_WIDTH = 32;

")

131



APPENDIX B. SYSTEM GENERATOR 132

// Multiplier Properties

fscanf (constraints, "¥%s", &ignore);

fscanf (constraints, "%d", &P_MULTIPLICAND_WIDTH);
fscanf (constraints, "Ys", &ignore);

fscanf (constraints, "J%d", &P_MULTIPLICAND_WIDTH_MIN);
fscanf (constraints, "¥s", &ignore);

fscanf (constraints, "%d", &P_MULTIPLICAND_WIDTH_MAX);

fclose(constraints);

// Generate all topologies from file?
printf ("Generate all topologies from ’topologies.txt’? (1-Yes, 0-No): ");
scanf ("}d", &generate_all);

if (generate_all == 0){
// Parse Topology
while(1){
printf ("\nEnter topology benchmark name: ");
scanf ("%s", &topology);
generate_system(P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_MULTIPLICAND_WIDTH_MIN,
P_MULTIPLICAND_WIDTH_MAX);
}
Yelse{
printf ("Generating All Topologies\n");

// Read in File
topologies = fopen("topologies.txt", "r");
fscanf (topologies, "%d", &num_topology);
// Generate each topology
for (i=0;i<num_topology;i++){

fscanf (topologies, "¥s", &topology);

generate_system(P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_MULTIPLICAND_WIDTH_MIN,
P_MULTIPLICAND_WIDTH_MAX);

fclose(topologies);

B.2 Global Variables (globals.c)

The globals.c file is used to store the overall characteristics of the topology, which is used

to generate the NoC topology.



APPENDIX B. SYSTEM GENERATOR 133

// Read in from Description File
// FPGA Architecture Properties
int P_VENDOR; // 1 = Xilinx, 0 = Altera;

int P_NODE_TYPE; // 1

Multiplier, O = MicroBlaze
char P_ARCH[100];

char P_DEVICE[100];

char P_PACKAGE[100];

char P_SPEED[100];

// Node Properties

int P_CLK_FREQUENCY;

int P_FSL_WIDTH;

int P_MULTIPLICAND_WIDTH;

int P_MULTIPLICAND_WIDTH_MIN;
int P_MULTIPLICAND_WIDTH_MAX;
int multiplicand_size[128];

int P_NUM_NODES;



APPENDIX B. SYSTEM GENERATOR 134

B.3 Generate Multiplier PCORE (generate mult.c)

The following functions are used to generate the individual HDL files and data files for a
specified multiplier node size. The functions are capable of generating any even multiplier

node size. The functions used are shown below:

#include <stdio.h>
#include "globals.h"

[1117777777777777777777777777777777777777777777777777777777777777771777777777777
// TWO BY TWO MULTIPLIER

// Bottom Level module for multiplier node 2bit by 2 bit multiplier

//
I1117777777777777777777777777777777777777777777777777777777777777777777777777777

void gen_twobytwo(FILE *twobytwo_mult){

[1177177777777717777777777777777/77777777777777/77/77777777777777/77/717777777/
// Instantiate Module

fprintf (twobytwo_mult, "‘timescale 1ns / 1ps\n");

fprintf (twobytwo_mult, "“////////////11777777717777777/7/////7777777/7/////77/77/7/////\n");
fprintf (twobytwo_mult, "// twobytwo mult \n");

fprintf (twobytwo_mult, "// by: Jason Lee \n");

fprintf (twobytwo_mult, "// \n");

fprintf (twobytwo_mult, “//////////////7/77////77777/7///////7777////////////////\n\n");
fprintf (twobytwo_mult, "module two_bit_multiplier(\n\n");

fprintf (twobytwo_mult, "\t multiplicand,\n");
fprintf (twobytwo_mult, "\t multiplier,\n");
fprintf (twobytwo_mult, "\t result\n\n");

fprintf (twobytwo_mult, ");\n\n");

[111117771177777777777777777777777777777777777777777777777777777777777177777
// Port List

fprintf (twobytwo_mult, "“////////////////1/7////7////7//7///7//7//7/7//7/////7//7/////////\n");
fprintf (twobytwo_mult, "// Ports\n\n");

fprintf (twobytwo_mult, "\tinput\t\t\t[1:0]\t\t\tmultiplicand;\n");
fprintf (twobytwo_mult, "\tinput\t\t\t[1:0]\t\t\tmultiplier;\n");
fprintf (twobytwo_mult, "\toutput\t\t\t[3:0]1\t\t\tresult;\n\n");

II11117777777777777777777777777777777777777777777777771777717777777177777777

// Wires and Registers



APPENDIX B. SYSTEM GENERATOR 135

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

IIIIIIII1I11777777777777777777777777777777777777777777/\n");
"// Wires and Registers\n\n");

"\twire\t\t\t[3:0]\t\t\tpartial_product_0;\n");
"\twire\t\t\t[3:0]\t\t\tpartial_product_1;\n\n");

"\twire\t\t\t[1:0]\t\t\tmultiplicand_0;\n");
"\twire\t\t\t[1:0]\t\t\tmultiplicand_1;\n\n");

[1717777777777777777777777777777777777777777777777777777777777777777771777777

// Assigns

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,
fprintf (twobytwo_mult,
fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,

fprintf (twobytwo_mult,
fprintf (twobytwo_mult,

fprintf (twobytwo_mult,

fclose (twobytwo_mult) ;

JIIIII7777077777777777777777777777777777777777/\n");
"// Assigns\n\n");

"\t// Multiplicands\n");
"\tassign multiplicand_0[0] = multiplicand[0];\n");
"\tassign multiplicand_O[1] = multiplicand[0];\n\n");

"\tassign multiplicand_1[0] = multiplicand[1];\n");
"\tassign multiplicand_1[1] = multiplicand[1];\n\n");

"\t// Partial Products\n");
"\tassign partial_product_0[1:0]

multiplier & multiplicand_0;\n");
0;\n\n");

"\tassign partial_product_0[3:2]
"\tassign partial_product_1[0] = 0;\n");
"\tassign partial_product_1[2:1] = multiplier & multiplicand_1;\n");

"\tassign partial_product_1[3] = 0;\n\n");

"\t// Result\n");
"\tassign result = partial_product_O + partial_product_1;\n\n");

"endmodule\n") ;

I1117777777777777777777777777777777777777777777777777777777777777777777777777777

// X BY TWO MULTIPLIER

// Second level module for multiplier, instantiates 2bit by 2bit multipliers

// to form Xbytwo bit multiplier depending on FSL width

//

LILILLI77771777777777777777777777777777777777777771777777777777777711717777711777

void gen_xbytwo(FILE *xbytwo_mult, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH){

int P_NUM_STAGES;
int P_NUM_MULTIPLIERS;



APPENDIX B. SYSTEM GENERATOR

int P_NUM_SUMS;
int P_NUM_POINTS;
int i,j,k;

int num_points_per_stage[10];

// Number of Stages
if (P_FSL_WIDTH<4){
P_NUM_STAGES = 0;
Yelse if (P_FSL_WIDTH<8){
P_NUM_STAGES = 1;
Yelse if (P_FSL_WIDTH<14){
P_NUM_STAGES = 2;
}else if (P_FSL_WIDTH<26){
P_NUM_STAGES = 3;
Yelse if (P_FSL_WIDTH<48){
P_NUM_STAGES = 4;
}else if (P_FSL_WIDTH<98){
P_NUM_STAGES = 5;
Yelse if (P_FSL_WIDTH<=128){
P_NUM_STAGES = 6;

P_NUM_MULTIPLIERS = P_FSL_WIDTH/2;

[117177777777777777777777777777777777777777777/7777777777/7777777/777777777777/
// Instantiate Module

fprintf (xbytwo_mult, "‘timescale ins / 1ps\n");

fprintf (xbytwo_mult, "“/////////1/7/777771/177777777771177777777777///777//\n");
fprintf (xbytwo_mult, "//xbytwo mult \n");

fprintf (xbytwo_mult, "// by: Jason Lee \n");

fprintf (xbytwo_mult, "// \n");

fprintf (xbytwo_mult, "///////////17//7//777///77//7/7/7/77///7/////7///////\n\n");

if (P_VENDOR == 1){
fprintf (xbytwo_mult, "module xbytwo_bit_multiplier(\n\n");
Yelseq{
fprintf (xbytwo_mult, "module xbytwo_bit_multiplier_%d_%d(\n\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

fprintf (xbytwo_mult, "\tsys_clk,\n");
fprintf (xbytwo_mult, "\tsys_rst,\n\n");
fprintf (xbytwo_mult, "\tmultiplicand,\n");
fprintf (xbytwo_mult, "\tmultiplier,\n");

fprintf (xbytwo_mult, "\tresult,\n\n");

fprintf (xbytwo_mult, "\tinput_data_valid,\n");

136



APPENDIX B. SYSTEM GENERATOR 137

//fprintf (xbytwo_mult, "\tready_for_data,\n");
fprintf (xbytwo_mult, "\tdata_valid\n");
fprintf (xbytwo_mult, ");\n\n");

II11777777777777777777777777777777777777777777777777771777777777777717777717177777717

// Parameters

fprintf (xbytwo_mult, "//////////////71777777777177777777//7//777777777/7///7777/77/7///\n");
fprintf (xbytwo_mult, "// Parameters\n\n");

fprintf (xbytwo_mult, "\tlocalparam P_MULTIPLIER_WIDTH\t= %d;\n", P_FSL_WIDTH);

fprintf (xbytwo_mult, "\tlocalparam P_MULTIPLICAND_WIDTH\t= 2;\n");

fprintf (xbytwo_mult, "\tlocalparam P_RESULT_WIDTH\t\t= P_MULTIPLIER_WIDTH
+P_MULTIPLICAND_WIDTH;\n\n");

[11771771777777177777777777777777/77777777777777777/7777777777/777777/777/7777771777777/
// Ports

fprintf (xbytwo_mult, "“/////////////7/7//7/7/7/7/7//7/7/77//7////7/7///////7///7////\n");
fprintf (xbytwo_mult, "// Ports\n\n");

fprintf (xbytwo_mult, "\tinput\t\t\t\t\t\tsys_clk;\n");
fprintf (xbytwo_mult, "\tinput\t\t\t\t\t\tsys_rst;\n\n");

fprintf (xbytwo_mult, "\tinput\t\t[P_MULTIPLICAND_WIDTH-1:0]\t\tmultiplicand;\n");
fprintf (xbytwo_mult, "\tinput\t\t[P_MULTIPLIER_WIDTH-1:0]\t\tmultiplier;\n");
fprintf (xbytwo_mult, "\toutput\t[P_RESULT_WIDTH-1:0]\t\t\tresult;\n\n");

fprintf (xbytwo_mult, "\tinput\t\t\t\t\t\t\tinput_data_valid;\n");
//fprintf (xbytwo_mult, "\toutput\t\t\t\t\t\tready_for_data;\n");
fprintf (xbytwo_mult, "\toutput\t\t\t\t\t\tdata_valid;\n\n");

[1111177717717777777777777777777777777777777/777777777777777777777777777777777777777
// States

fprintf (xbytwo_mult, "“/////////////7/7///7/7/7/777/77/7/77//7/7///7/7/////7///7//7////\n");
fprintf (xbytwo_mult, "// States\n\n");

fprintf (xbytwo_mult, "\tlocalparam\tIdle_State\t\t= 0;\n");
fprintf (xbytwo_mult, "\tlocalparam\tMultiply_State\t\t= 1;\n");

=2

for (i=0;i<P_NUM_STAGES-1;i++){
fprintf (xbytwo_mult, "\tlocalparam\tAdd_State_%d\t\t= %d;\n",i,j);
jH+s

fprintf (xbytwo_mult, "\tlocalparam\tFinal_Add_State\t\t= ’%d;\n",j);
fprintf (xbytwo_mult, "\tlocalparam\tTransmit_State\t\t= %d;\n\n",j+1);



APPENDIX B. SYSTEM GENERATOR 138

II111177777777777777777777777777777777777777777777777717771177777771777717777777717

// Wires and Registers

fprintf (xbytwo_mult, "“//////////7//7/77771/777777777771/777777777771/77777777777////\n");
fprintf (xbytwo_mult, "// Wires and Registers\n\n");

fprintf (xbytwo_mult, "\t// State Machine\n");
fprintf (xbytwo_mult, "\treg\t\t\t[3:0]\t\t\tmultiplier_state_cs;\n");
fprintf (xbytwo_mult, "\treg\t\t\t[3:0]\t\t\tmultiplier_state_ns;\n\n");

fprintf (xbytwo_mult, "\t// Generate More for Longer Lengths\n");
fprintf (xbytwo_mult, "\t// Multipliers\n");
for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbytwo_mult, "\twire\t\t\t[1:0]\t\t\tmultiplicand_%d;\n",i);
fprintf (xbytwo_mult, "\twire\t\t\t[1:0]J\t\t\tmultiplier_%d;\n",i);
fprintf (xbytwo_mult, "\twire\t\t\t[3:0]\t\t\tresult_%d;\n",i);
fprintf (xbytwo_mult, "\treg\t\t\t[3:0]\t\t\tmultiplier_result_%d;\n\n",i);

fprintf (xbytwo_mult, "\t// pipeline stages\n");
fprintf (xbytwo_mult, "\treg\t\t\t[P_MULTIPLICAND_WIDTH-1:0]\t\t\tinput_multiplicand;\n");
fprintf (xbytwo_mult, "\treg\t\t\t[P_MULTIPLIER_WIDTH-1:0]\t\t\tinput_multiplier;\n\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){

fprintf (xbytwo_mult, "\twire\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tpartial_product_%d;\n",i);
}
fprintf (xbytwo_mult, "\n");

// Partial Sum
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for(i=0;i<P_NUM_STAGES-1;i++){

// Number of Sums to do for this stage
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTS%2 ==1){

P_NUM_SUMS++;

// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i] = P_NUM_POINTS;

for(j=0; j<P_NUM_SUMS; j++) {

fprintf (xbytwo_mult, "\treg\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tpartial_sum_%d_%d;\n",i,j);
}
fprintf (xbytwo_mult, "\n");



APPENDIX B. SYSTEM GENERATOR 139

fprintf (xbytwo_mult, "\treg\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tresult;\n\n");

11777777777777777777777777777777777777777777777777777777777777777771777777777/77/77777
// Assigns

fprintf (xbytwo_mult, "“/////////7///77777117717777777717777777777771/77777777777/////\n");
fprintf (xbytwo_mult, "// Assigns\n\n");

// Multipler Inputs
fprintf (xbytwo_mult, "\t// Generate More for Longer Lengths\n");
for(i=0;i<P_NUM_MULTIPLIERS;i++){

fprintf (xbytwo_mult, "\tassign multiplicand_%d = input_multiplicand;\n", i);
}
fprintf (xbytwo_mult, "\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){

fprintf (xbytwo_mult, "\tassign multiplier_%d= input_multiplier[%d:%d];\n", i,2%i+1,2%i);
}
fprintf (xbytwo_mult, "\n");

// Partial Products
for (i=0;i<P_NUM_MULTIPLIERS;i++){

if (i'=0){
fprintf (xbytwo_mult, "\tassign partial_product_%d[%d:0] = 0;\n", i, 2*i-1);

fprintf (xbytwo_mult, "\tassign partial_product_%d[%d:%d]

multiplier_result_%d;\n", i,2*%i+3,2%i,i);

if (i!=P_NUM_MULTIPLIERS-1){

fprintf (xbytwo_mult, "\tassign partial_product_%d[%d:%d] 0;\n",i,P_FSL_WIDTH+1,2*i+4);

fprintf (xbytwo_mult, "\n");

fprintf (xbytwo_mult, "\t// Control Signals\n");
fprintf (xbytwo_mult, "\tassign data_valid = (multiplier_state_cs == Transmit_State);\n");
//fprintf (xbytwo_mult, "\tassign ready_for_data = (multiplier_state_cs == Idle_State);\n\n");

[11117777117777717777777777777777777777777777777777777777777777777777777777777777777
// State Machine

fprintf (xbytwo_mult, "“///////////////7///7/7/7/7/7/77/7/7/7//77////7/7/7///////7//7/////7////\n");
fprintf (xbytwo_mult, "// State Machine\n\n");

// Register part of state machine

fprintf (xbytwo_mult, "\t// Register part of state machine\n");

fprintf (xbytwo_mult, "\talways @(posedge sys_clk) \n");

fprintf (xbytwo_mult, "\tbegin\n");

fprintf (xbytwo_mult, "\t\tif (sys_rst == 1’bl) // reset active high\n");



fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,

fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,
fprintf (xbytwo_mult,

APPENDIX B. SYSTEM GENERATOR

"\t\t\tbegin\n");

"\t\t\t\tmultiplier_state_cs <=

"\t\t\tend\n");
"\t\telse\n");
"\t\t\tbegin\n");

"\t\t\t\tmultiplier_state_cs <=

"\t\t\tend\n");
"\tend\n\n") ;

"\talways Q@(sys_rst or input_data_valid or multiplier_state_cs)\n");

"\tbegin\n");

"\t\tif (sys_rst == 1’b1)\n");

"\t\tbegin\n") ;

Idle_State;\n");

multiplier_state_ns;\n");

140

fprintf (xbytwo_mult, "\t\t\tmultiplier_state_ns <= Idle_State;\n");
fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\t\telse\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tcase(multiplier_state_cs)\n");

fprintf (xbytwo_mult, "\t\t\t\tIdle_State:\n");

fprintf (xbytwo_mult, "\t\t\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\t\t\tif (input_data_valid == 1’b1)\n");
fprintf (xbytwo_mult, "\t\t\t\t\t\tmultiplier_state_ns <= Multiply_State;\n");
fprintf (xbytwo_mult, "\t\t\t\t\telse\n");

fprintf (xbytwo_mult, "\t\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");
fprintf (xbytwo_mult, "\t\t\t\tend\n");

fprintf (xbytwo_mult, "\t\t\t\tMultiply_State:\n");

fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_state_ns <= Add_State_0;\n");

// Add Stages
for (i=0;i<P_NUM_STAGES-1;i++){

if (i==P_NUM_STAGES-2){

fprintf (xbytwo_mult, "\t\t\t\tAdd_State_%d:\n",i);

fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_state_ns <= Final_Add_State;\n");
}elseq{

fprintf (xbytwo_mult, "\t\t\t\tAdd_State_%d:\n",i);

fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_state_ns <= Add_State_%d;\n",i+1);

fprintf (xbytwo_mult, "\t\t\t\tFinal_Add_State:\n");

fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_state_ns <= Transmit_State;\n");

fprintf (xbytwo_mult, "\t\t\t\tTransmit_State:\n");

fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");

fprintf (xbytwo_mult, "\t\t\t\tdefault: multiplier_state_ns <= multiplier_state_ns;\n");
fprintf (xbytwo_mult, "\t\t\tendcase\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\tend\n\n");

// multiplier && multiplicand



APPENDIX B. SYSTEM GENERATOR 141

fprintf (xbytwo_mult, "\t// multiplier && multiplicand\n");

fprintf (xbytwo_mult, "\talways@(posedge sys_clk)\n");

fprintf (xbytwo_mult, "\tbegin\n");

fprintf (xbytwo_mult, "\t\tif (sys_rst == 1’b1)\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tinput_multiplicand <= 0;\n");

fprintf (xbytwo_mult, "\t\t\tinput_multiplier <= 0;\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\t\telse\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tcase (multiplier_state_cs)\n");

fprintf (xbytwo_mult, "\t\t\tIdle_State:\n");

fprintf (xbytwo_mult, "\t\t\t\tif (input_data_valid == 1’b1)\n");

fprintf (xbytwo_mult, "\t\t\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\t\t\tinput_multiplicand <= multiplicand;\n");
fprintf (xbytwo_mult, "\t\t\t\tinput_multiplier <= multiplier;\n");
fprintf (xbytwo_mult, "\t\t\t\tend\n");

fprintf (xbytwo_mult, "\t\t\tdefault:\n");

fprintf (xbytwo_mult, "\t\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\t\tinput_multiplicand <= input_multiplicand;\n");
fprintf (xbytwo_mult, "\t\t\t\tinput_multiplier <= input_multiplier;\n");
fprintf (xbytwo_mult, "\t\t\tend\n");

fprintf (xbytwo_mult, "\t\t\tendcase\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\tend\n\n");

// Multiplier Results

fprintf (xbytwo_mult, "\t// Multiplier Results\n");

fprintf (xbytwo_mult, "\t// Generate More for Longer Lengths\n");
fprintf (xbytwo_mult, "\talways@(posedge sys_clk)\n");

fprintf (xbytwo_mult, "\tbegin\n");

fprintf (xbytwo_mult, "\t\tif (sys_rst == 1’b1)\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbytwo_mult, "\t\t\tmultiplier_result_%d <= 0;\n",i);

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\t\telse\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (xbytwo_mult, "\t\t\tMultiply_State:\n");

fprintf (xbytwo_mult, "\t\t\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbytwo_mult, "\t\t\t\t\tmultiplier_result_%d <= result_%d;\n",i,i);

fprintf (xbytwo_mult, "\t\t\t\tend\n");



APPENDIX B. SYSTEM GENERATOR 142

fprintf (xbytwo_mult, "\t\t\tdefault:\n");
fprintf (xbytwo_mult, "\t\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbytwo_mult, "\t\t\t\tmultiplier_result_%d <= multiplier_result_%d;\n",i,i);

fprintf (xbytwo_mult, "\t\t\tend\n");
fprintf (xbytwo_mult, "\t\t\tendcase\n");
fprintf (xbytwo_mult, "\t\tend\n");
fprintf (xbytwo_mult, "\tend\n\n");

// Partial Sums

fprintf (xbytwo_mult, "\t// Partial Sums\n");

fprintf (xbytwo_mult, "\talways@(posedge sys_clk)\n");
fprintf (xbytwo_mult, "\tbegin\n");

fprintf (xbytwo_mult, "\t\tif (sys_rst == 1°b1)\n");
fprintf (xbytwo_mult, "\t\tbegin\n");

// Partial Sums
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for(i=0;i<P_NUM_STAGES-1;i++){

// Number of Sums to do for this stage
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTS%2 ==1){

P_NUM_SUMS++;

// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i] = P_NUM_POINTS;

for (j=0; j<P_NUM_SUMS; j++){
fprintf (xbytwo_mult, "\t\t\tpartial_sum_%d_%d <= 0;\n",i,j);

}
fprintf (xbytwo_mult, "\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\t\telse\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tcase (multiplier_state_cs)\n");

for(i=0;i<P_NUM_STAGES-1;i++){
fprintf (xbytwo_mult, "\t\t\tAdd_State_%d:\n",i);
fprintf (xbytwo_mult, "\t\t\t\tbegin\n");



APPENDIX B. SYSTEM GENERATOR

if (i==0){
for(j=0;j<num_points_per_stage[i];j++){
if (j==num_points_per_stage[i]l-1 && P_NUM_MULTIPLIERS%2!=0){
fprintf (xbytwo_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_product_%d;\n",i,j,2*j);
}else{
fprintf (xbytwo_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_product_Yd+partial_product_%d;\n",i,j,2%j,2%j+1);

}elsed{
for(j=0; j<num_points_per_stage[i];j++){
if (j==num_points_per_stage[i]l-1 && num_points_per_stage[i-1]%2!=0){
fprintf (xbytwo_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_sum_%d_%d;\n",i,j,i-1,2%j);
Yelse{
fprintf (xbytwo_mult, "\t\t\t\t\tpartial_sum_j%d_%d <=
partial_sum_%d_%d+partial_sum_%d_%d;\n",i,j,1i-1,2%j,i-1,2%j+1);

fprintf (xbytwo_mult, "\t\t\t\tend\n");
}
fprintf (xbytwo_mult, "\n");

fprintf (xbytwo_mult, "\t\t\tdefault:\n");
fprintf (xbytwo_mult, "\t\t\tbegin\n");

// Partial Sums
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for(i=0;i<P_NUM_STAGES-1;i++){

// Number of Sums to do for this stage q
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTS%2 ==1){

P_NUM_SUMS++;

}
// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i] = P_NUM_POINTS;
for (j=0; j<P_NUM_SUMS; j++){
fprintf (xbytwo_mult, "\t\t\t\tpartial_sum_%d_%d <= partial_sum_%d_%d;\n",i,j,i,j);
}
}

fprintf (xbytwo_mult, "\n");

143



APPENDIX B. SYSTEM GENERATOR 144

fprintf (xbytwo_mult, "\t\t\tend\n");
fprintf (xbytwo_mult, "\t\t\tendcase\n");
fprintf (xbytwo_mult, "\t\tend\n");
fprintf (xbytwo_mult, "\tend\n");

// Final Result

fprintf (xbytwo_mult, "\t// Final Result\n");

fprintf (xbytwo_mult, "\talways@(posedge sys_clk)\n");
fprintf (xbytwo_mult, "\tbegin\n");

fprintf (xbytwo_mult, "\t\tif (sys_rst == 1’b1)\n");
fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tresult <= 0;\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\t\telse\n");

fprintf (xbytwo_mult, "\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (xbytwo_mult, "\t\t\tFinal_Add_State:\n");
fprintf (xbytwo_mult, "\t\t\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\t\t\tresult <= ");
if (num_points_per_stage [P_NUM_STAGES-2]==2){
fprintf (xbytwo_mult, "partial_sum_%d_O+partial_sum_%d_1;\n", P_NUM_STAGES-2,P_NUM_STAGES-2);
}else if (num_points_per_stage [P_NUM_STAGES-2]==3){
fprintf (xbytwo_mult, "partial_sum_%d_O+partial_sum_Jd_1i+partial_sum_%d_2;\n",
P_NUM_STAGES-2,P_NUM_STAGES-2,P_NUM_STAGES-2) ;

fprintf (xbytwo_mult, "\t\t\t\tend\n");

fprintf (xbytwo_mult, "\t\t\tdefault:\n");

fprintf (xbytwo_mult, "\t\t\tbegin\n");

fprintf (xbytwo_mult, "\t\t\t\tresult <= result;\n");
fprintf (xbytwo_mult, "\t\t\tend\n");

fprintf (xbytwo_mult, "\t\t\tendcase\n");

fprintf (xbytwo_mult, "\t\tend\n");

fprintf (xbytwo_mult, "\tend\n\n");

1117117777777777717777777777777777777777777777777777777777777777777777777777771777777
// Sub-Modules

fprintf (xbytwo_mult, "“/////////////7/7//77/7/7/7/7//7/7777//7/7///7/7/////7//7/7//7////\n");
fprintf (xbytwo_mult, "// Sub-Modules\n\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbytwo_mult, "\ttwo_bit_multiplier two_bit_multiplier_%d (\n",i);
fprintf (xbytwo_mult, "\t.multiplicand(multiplicand_%d), \n",i);
fprintf (xbytwo_mult, "\t.multiplier(multiplier_%d), \n",i);



APPENDIX B. SYSTEM GENERATOR

fprintf (xbytwo_mult, "\t.result(result_%d)\n",i);
fprintf (xbytwo_mult, "\t);\n\n");

fprintf (xbytwo_mult, "endmodule");

fclose(xbytwo_mult);

II117777777777777777777777777777777777777777777777777777777777777777777777777777
// X BY X MULTIPLIER

//
LII1110777777777777777777777777777777777777777777717777777777771777171717777771177

void gen_xbyx(FILE *xbyx_mult, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH){

int P_NUM_STAGES;

int P_NUM_MULTIPLIERS;
int P_NUM_SUMS;

int P_NUM_POINTS;

int i,j,k;

int num_points_per_stage[10];

// Number of Stages

if (P_MULTIPLICAND_WIDTH<4){
P_NUM_STAGES = 0;

}else if (P_MULTIPLICAND_WIDTH<8){
P_NUM_STAGES = 1;

Yelse if (P_MULTIPLICAND_WIDTH<14){
P_NUM_STAGES = 2;

}else if (P_MULTIPLICAND_WIDTH<26){
P_NUM_STAGES = 3;

}else if (P_MULTIPLICAND_WIDTH<48){
P_NUM_STAGES = 4;

}else if (P_MULTIPLICAND_WIDTH<98){
P_NUM_STAGES = 5;

}else if (P_MULTIPLICAND_WIDTH<=128){
P_NUM_STAGES = 6;

P_NUM_MULTIPLIERS = P_MULTIPLICAND_WIDTH/2;

[117777777777777777777777777777777777777777777/77777777777777777/7777177777777
// Instantiate Module

fprintf (xbyx_mult, "‘timescale ins / 1ps\n");

fprintf (xbyx_mult, "/////////177777777771/77717777777//77777777777///7777///\n");
fprintf (xbyx_mult, "//xbyx mult \n");

fprintf (xbyx_mult, "// by: Jason Lee \n");



APPENDIX B. SYSTEM GENERATOR 146

fprintf (xbyx_mult, "// \n");
fprintf (xbyx_mult, "////////177777777771/77777777777//77777/7/77777/////////\n\n");

if (P_VENDOR == 1){
fprintf (xbyx_mult, "module xbyx_bit_multiplier(\n\n");
Yelseq{
fprintf (xbyx_mult, "module xbyx_bit_multiplier_%d_%d(\n\n", P_FSL_WIDTH,
P_MULTIPLICAND_WIDTH) ;

fprintf (xbyx_mult, "\tsys_clk,\n");
fprintf (xbyx_mult, "\tsys_rst,\n\n");

fprintf (xbyx_mult, "\tmultiplicand,\n");
fprintf (xbyx_mult, "\tmultiplier,\n");
fprintf (xbyx_mult, "\tresult,\n\n");

fprintf (xbyx_mult, "\tinput_data_valid,\n");
fprintf (xbyx_mult, "\tready_for_data,\n");
fprintf (xbyx_mult, "\tdata_valid,\n");

fprintf (xbyx_mult, "\ttarget_ready_for_data\n");
fprintf (xbyx_mult, ");\n\n");

II1111777777777777777777777777777777777777777777777777177711777777771777171777777717

// Parameters

fprintf (xbyx_mult, “/////////////77777/1/77777/7/777777/77777777/77/7/77/77/77//77/7/77/7//7//\n");
fprintf (xbyx_mult, "// Parameters\n\n");

fprintf (xbyx_mult, "\tlocalparam P_MULTIPLIER_WIDTH\t= %d;\n", P_FSL_WIDTH);

fprintf (xbyx_mult, "\tlocalparam P_MULTIPLICAND_WIDTH\t= %d;\n", P_MULTIPLICAND_WIDTH);

fprintf (xbyx_mult, "\tlocalparam P_RESULT_WIDTH\t\t=
P_MULTIPLIER_WIDTH+P_MULTIPLICAND_WIDTH;\n\n");

[1177777777777177777777777777777/77777777777777777/7777177777777777/777/7777777777777/
// Ports

fprintf (xbyx_mult, "////////////////77777777777777777777//7//7/7/7777777/77//7/7777/7/////\n");
fprintf (xbyx_mult, "// Ports\n\n");

fprintf (xbyx_mult, "\tinput\t\t\t\t\t\tsys_clk;\n");
fprintf (xbyx_mult, "\tinput\t\t\t\t\t\tsys_rst;\n\n");

fprintf (xbyx_mult, "\tinput\t\t[P_MULTIPLICAND_WIDTH-1:0]\t\tmultiplicand;\n");
fprintf (xbyx_mult, "\tinput\t\t[P_MULTIPLIER_WIDTH-1:0]\t\tmultiplier;\n");
fprintf (xbyx_mult, "\toutput\t[P_RESULT_WIDTH-1:0]\t\t\tresult;\n\n");

fprintf (xbyx_mult, "\tinput\t\t\t\t\t\t\tinput_data_valid;\n");
fprintf (xbyx_mult, "\toutput\t\t\t\t\t\tready_for_data;\n");



APPENDIX B. SYSTEM GENERATOR 147

fprintf (xbyx_mult, "\toutput\t\t\t\t\t\tdata_valid;\n\n");
fprintf (xbyx_mult, "\tinput\t\t\t\t\t\t\ttarget_ready_for_data;\n");

[1711777717717777777777777777777777777777777777777777777777777777777771777777777777
// States

fprintf (xbyx_mult, "//////////////777777777777777777/7/7/7//7/77777777////777777/7///////\n");
fprintf (xbyx_mult, "// States\n\n");

fprintf (xbyx_mult, "\tlocalparam\tIdle_State\t\t= 0;\n");
fprintf (xbyx_mult, "\tlocalparam\tMultiply_State\t\t= 1;\n");

i=2

for (i=0;i<P_NUM_STAGES-1;i++){
fprintf (xbyx_mult, "\tlocalparam\tAdd_State_%d\t\t= %d;\n",i,j);
jH+s

fprintf (xbyx_mult, "\tlocalparam\tFinal_Add_State\t\t= %d;\n",j);
fprintf (xbyx_mult, "\tlocalparam\tTransmit_State\t\t= %d;\n\n",j+1);

[1177777777777777777777777777777777777777777777777777777777777777777777777777777777

// Wires and Registers

fprintf (xbyx_mult, "/////////77777777777117777177777771777717777777//7777777777///\n");
fprintf (xbyx_mult, "// Wires and Registers\n\n");

fprintf (xbyx_mult, "\t// State Machine\n");
fprintf (xbyx_mult, "\treg\t\t\t[3:0]\t\t\tmultiplier_state_cs;\n");
fprintf (xbyx_mult, "\treg\t\t\t[3:0]\t\t\tmultiplier_state_ns;\n\n");

fprintf (xbyx_mult, "\t// Generate More for Longer Lengths\n");
fprintf (xbyx_mult, "\t// Multipliers\n");
for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbyx_mult, "\twire\t\t\t\t\t\t\t\t\t\t\t\t\t\t\tdata_valid_%d;\n",i);
fprintf (xbyx_mult, "\twire\t\t\t[(P_MULTIPLIER_WIDTH+2)-1:0]\t\t\tresult_%d;\n",i);
fprintf (xbyx_mult, "\treg\t\t\t[(P_MULTIPLIER_WIDTH+2)-1:0]
\t\t\tmultiplier_result_%d;\n\n",i);

for (i=0;i<P_NUM_MULTIPLIERS;i++){

fprintf (xbyx_mult, "\twire\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tpartial_product_%d;\n",i);
}
fprintf (xbyx_mult, "\n");

// Partial Sum
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for (i=0;1i<P_NUM_STAGES-1;i++){



APPENDIX B. SYSTEM GENERATOR 148

// Number of Sums to do for this stage
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTS%2 ==1){

P_NUM_SUMS++;

// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i] = P_NUM_POINTS;

for(j=0; j<P_NUM_SUMS; j++){

fprintf (xbyx_mult, "\treg\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tpartial_sum_%d_%d;\n",i,j);
}
fprintf (xbyx_mult, "\n");

fprintf (xbyx_mult, "\treg\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tresult;\n\n");

11777777777777777777777777777777777777777777777777777777777777777771777777777/77/77777
// Assigns

fprintf (xbyx_mult, "//////////////77777777777177777////7/7/7777777////7777/77/7//////7//7//\n");
fprintf (xbyx_mult, "// Assigns\n\n");

// Partial Products
for (i=0;i<P_NUM_MULTIPLIERS;i++){

if (i'=0){
fprintf (xbyx_mult, "\tassign partial_product_%d[%d:0] = 0;\n", i, 2%i-1);
}
fprintf (xbyx_mult, "\tassign partial_product_%d[%d:%d] =
multiplier_result_%d;\n", i,2*%i+(P_FSL_WIDTH+1),2%i,i);

if (i!=P_NUM_MULTIPLIERS-1){
fprintf (xbyx_mult, "\tassign partial_product_}d[%d:%d] =
0;\n",i,P_FSL_WIDTH+P_MULTIPLICAND_WIDTH-1,2%i+(P_FSL_WIDTH+2));
}
fprintf (xbyx_mult, "\n");

fprintf (xbyx_mult, "\t// Control Signals\n");
fprintf (xbyx_mult, "\tassign data_valid = (multiplier_state_cs == Transmit_State);\n");
fprintf (xbyx_mult, "\tassign ready_for_data = (multiplier_state_cs == Idle_State);\n\n");

[11117777177777717777777777777777777777777777777777777777777777777777777777777177777
// State Machine

fprintf (xbyx_mult, "//////////7/7//7//7/7//7/7/7//7/7/7/7/7////7/7/7//7/7//7//7/////7/////\n");
fprintf (xbyx_mult, "// State Machine\n\n");



APPENDIX B. SYSTEM GENERATOR

// Register part of state machine

fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,

fprintf (xbyx_mult,

"\t// Register part of state machine\n");

"\talways @(posedge sys_clk) \n");

"\tbegin\n");

"\t\tif (sys_rst == 1’b1) // reset active high\n");
"\t\t\tbegin\n");

"\t\t\t\tmultiplier_state_cs <= Idle_State;\n");
"\t\t\tend\n");

"\t\telse\n");

"\t\t\tbegin\n");

"\t\t\t\tmultiplier_state_cs <= multiplier_state_ns;\n");
"\t\t\tend\n");

"\tend\n\n");

"\talways Q@(sys_rst or input_data_valid or

multiplier_state_cs or data_valid_0)\n");

fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,

"\tbegin\n") ;

"\t\tif (sys_rst == 1’b1)\n");

"\t\tbegin\n") ;

"\t\t\tmultiplier_state_ns <= Idle_State;\n");
"\t\tend\n");

"\t\telse\n");

"\t\tbegin\n") ;
"\t\t\tcase(multiplier_state_cs)\n");
"\t\t\t\tIdle_State:\n");

"\t\t\t\tbegin\n");

"\t\t\t\t\tif (input_data_valid == 1’b1)\n");
"\t\t\t\t\t\tmultiplier_state_ns <= Multiply_State;\n");
"\t\t\t\t\telse\n");
"\t\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");
"\t\t\t\tend\n");

"\t\t\t\tMultiply_State:\n");

"\t\t\t\t\tif (data_valid_0)\n");
"\t\t\t\t\tbegin\n");

if (P_NUM_STAGES <= 1){

fprintf (xbyx_mult, "\t\t\t\t\t\tmultiplier_state_ns <= Final_Add_State;\n");

Yelsed{

fprintf (xbyx_mult, "\t\t\t\t\t\tmultiplier_state_ns <= Add_State_0;\n");

}

fprintf (xbyx_mult,
fprintf (xbyx_mult,
fprintf (xbyx_mult,

// Add Stages

"\t\t\t\t\tend\n");
"\t\t\t\t\telse\n");
"\t\t\t\t\t\tmultiplier_state_ns <= Multiply_State; \n");

for (i=0;i<P_NUM_STAGES-1;i++){
if (i==P_NUM_STAGES-2){
fprintf (xbyx_mult, "\t\t\t\tAdd_State_ld:\n",i);

fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_state_ns <= Final_Add_State;\n");

149



APPENDIX B. SYSTEM GENERATOR

Yelsed{
fprintf (xbyx_mult, "\t\t\t\tAdd_State_%d:\n",i);
fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_state_ns <= Add_State_%d;\n",i+1);

fprintf (xbyx_mult, "\t\t\t\tFinal_Add_State:\n");

fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_state_ns <= Transmit_State;\n");
fprintf (xbyx_mult, "\t\t\t\tTransmit_State:\n");

fprintf (xbyx_mult, "\t\t\t\tif (target_ready_for_data)\n");

fprintf (xbyx_mult, "\t\t\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");
fprintf (xbyx_mult, "\t\t\t\tend\n");

fprintf (xbyx_mult, "\t\t\t\telse\n");

fprintf (xbyx_mult, "\t\t\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_state_ns <= Transmit_State;\n");
fprintf (xbyx_mult, "\t\t\t\tend\n");

fprintf (xbyx_mult, "\t\t\t\tdefault: multiplier_state_ns <= multiplier_state_ns;\n");
fprintf (xbyx_mult, "\t\t\tendcase\n");

fprintf (xbyx_mult, "\t\tend\n");

fprintf (xbyx_mult, "\tend\n\n");

// Multiplier Results

fprintf (xbyx_mult, "\t// Multiplier Results\n");

fprintf (xbyx_mult, "\t// Generate More for Longer Lengths\n");
fprintf (xbyx_mult, "\talways@(posedge sys_clk)\n");

fprintf (xbyx_mult, "\tbegin\n");

fprintf (xbyx_mult, "\t\tif (sys_rst == 1’b1)\n");

fprintf (xbyx_mult, "\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbyx_mult, "\t\t\tmultiplier_result_%d <= 0;\n",i);

fprintf (xbyx_mult, "\t\tend\n");

fprintf (xbyx_mult, "\t\telse\n");

fprintf (xbyx_mult, "\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (xbyx_mult, "\t\t\tMultiply_State:\n");

fprintf (xbyx_mult, "\t\t\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){

fprintf (xbyx_mult, "\t\t\t\t\tmultiplier_result_%d <= result_%d;\n",i,i);

fprintf (xbyx_mult, "\t\t\t\tend\n");
fprintf (xbyx_mult, "\t\t\tdefault:\n");
fprintf (xbyx_mult, "\t\t\tbegin\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){

1

0



APPENDIX B. SYSTEM GENERATOR

fprintf (xbyx_mult, "\t\t\t\tmultiplier_result_%d <= multiplier_result_%d;\n",i,i)

fprintf (xbyx_mult, "\t\t\tend\n");
fprintf (xbyx_mult, "\t\t\tendcase\n");
fprintf (xbyx_mult, "\t\tend\n");
fprintf (xbyx_mult, "\tend\n\n");

if (P_NUM_STAGES > 1){

// Partial Sums

fprintf (xbyx_mult, "\t// Partial Sums\n");

fprintf (xbyx_mult, "\talways@(posedge sys_clk)\n");
fprintf (xbyx_mult, "\tbegin\n");

fprintf (xbyx_mult, "\t\tif (sys_rst == 1’b1)\n");
fprintf (xbyx_mult, "\t\tbegin\n");

// Partial Sums
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for(i=0;i<P_NUM_STAGES-1;i++){

// Number of Sums to do for this stage
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTS%2 ==1){

P_NUM_SUMS++;

// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i] = P_NUM_POINTS;

for (j=0; j<P_NUM_SUMS; j++){
fprintf (xbyx_mult, "\t\t\tpartial_sum_%d_%d <= 0;\n",i,j);

}
fprintf (xbyx_mult, "\n");

fprintf (xbyx_mult, "\t\tend\n");

fprintf (xbyx_mult, "\t\telse\n");

fprintf (xbyx_mult, "\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\tcase (multiplier_state_cs)\n");
for(i=0;i<P_NUM_STAGES—1;i++){

fprintf (xbyx_mult, "\t\t\tAdd_State_Jd:\n",i);
fprintf (xbyx_mult, "\t\t\t\tbegin\n");

if (i==0){
for(j=0;j<num_points_per_stage[i];j++){

1

1



APPENDIX B. SYSTEM GENERATOR 152

}

if (j==num_points_per_stage[i]-1 && P_NUM_MULTIPLIERS%2!=0){
fprintf (xbyx_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_product_%d;\n",i,j,2%j);
Yelse{
fprintf (xbyx_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_product_jd+partial_product_%d;\n",i,j,2%j,2*%j+1);

Yelsed{
for(j=0; j<num_points_per_stage[i];j++){
if (j==num_points_per_stage[i]-1 && num_points_per_stage[i-1]7%2!=0){
fprintf (xbyx_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_sum_%d_%d\n",i,j,i-1,2%j);
}else{
fprintf (xbyx_mult, "\t\t\t\t\tpartial_sum_%d_%d <=
partial_sum_%d_%d+partial_sum_%d_%d;\n",i,j,i-1,2%j,i-1,2%j+1);

}
fprintf (xbyx_mult, "\t\t\t\tend\n");

fprintf (xbyx_mult, "\n");

fprintf (xbyx_mult, "\t\t\tdefault:\n");
fprintf (xbyx_mult, "\t\t\tbegin\n");

// Partial Sums
P_NUM_POINTS = P_NUM_MULTIPLIERS;

for (i=0;i<P_NUM_STAGES-1;i++){

}

// Number of Sums to do for this stage q
P_NUM_SUMS = (P_NUM_POINTS-(P_NUM_POINTS%2))/2;
if (P_NUM_POINTSY2 ==1){

P_NUM_SUMS++;

// Keep track of number of sums for this stage
P_NUM_POINTS = P_NUM_SUMS;
num_points_per_stage[i]l = P_NUM_POINTS;

for(j=0;j<P_NUM_SUMS; j++){
fprintf (xbyx_mult, "\t\t\t\tpartial_sum_%d_%d <= partial_sum_%d_%d;\n",i,j,i,j);

fprintf (xbyx_mult, "\n");

fprintf (xbyx_mult, "\t\t\tend\n");
fprintf (xbyx_mult, "\t\t\tendcase\n");



APPENDIX B. SYSTEM GENERATOR 153

fprintf (xbyx_mult, "\t\tend\n");
fprintf (xbyx_mult, "\tend\n");

// Final Result

fprintf (xbyx_mult, "\t// Final Result\n");

fprintf (xbyx_mult, "\talways@(posedge sys_clk)\n");
fprintf (xbyx_mult, "\tbegin\n");

fprintf (xbyx_mult, "\t\tif (sys_rst == 1’b1)\n");
fprintf (xbyx_mult, "\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\tresult <= 0;\n");

fprintf (xbyx_mult, "\t\tend\n");

fprintf (xbyx_mult, "\t\telse\n");

fprintf (xbyx_mult, "\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (xbyx_mult, "\t\t\tFinal Add_State:\n");
fprintf (xbyx_mult, "\t\t\t\tbegin\n");

if (P_NUM_STAGES <= 1){
fprintf (xbyx_mult, "\t\t\t\t\tresult <= ");
if (P_NUM_MULTIPLIERS==1){
fprintf (xbyx_mult, "partial_product_0;\n");
Yelse if (P_NUM_MULTIPLIERS==2){
fprintf (xbyx_mult, "partial_product_O + partial_product_1;\n");
}else if (P_NUM_MULTIPLIERS==3){
fprintf (xbyx_mult, "partial_product_O + partial_product_1l+partial_product_2;\n",
P_NUM_STAGES-2,P_NUM_STAGES-2,P_NUM_STAGES-2) ;
}
Yelsed{
fprintf (xbyx_mult, "\t\t\t\t\tresult <= ");
if (num_points_per_stage [P_NUM_STAGES-2]==2){
fprintf (xbyx_mult, "partial_sum_}%d_O+partial_sum_%d_1;\n", P_NUM_STAGES-2,P_NUM_STAGES-2);
}else if (num_points_per_stage[P_NUM_STAGES-2]==3){
fprintf (xbyx_mult, "partial_sum_%d_O+partial_sum_%d_1+partial_sum_%d_2;\n",
P_NUM_STAGES-2,P_NUM_STAGES-2,P_NUM_STAGES-2) ;

fprintf (xbyx_mult, "\t\t\t\tend\n");

fprintf (xbyx_mult, "\t\t\tdefault:\n");

fprintf (xbyx_mult, "\t\t\tbegin\n");

fprintf (xbyx_mult, "\t\t\t\tresult <= result;\n");
fprintf (xbyx_mult, "\t\t\tend\n");

fprintf (xbyx_mult, "\t\t\tendcase\n");

fprintf (xbyx_mult, "\t\tend\n");

fprintf (xbyx_mult, "\tend\n\n");

[1177717777777777717777777777777777/77777777777777777/77777777777777/77/7/77777/777777/
// Sub-Modules



APPENDIX B. SYSTEM GENERATOR

if (P_VENDOR == 1){
fprintf (xbyx_mult, "/////////177777777777/1777177777777177777777777///77///\n");
fprintf (xbyx_mult, "// Sub-Modules\n\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbyx_mult, "\txbytwo_bit_multiplier xbytwo_bit_multiplier_%d (\n",i);
fprintf (xbyx_mult, "\t.sys_clk(sys_clk), \n");
fprintf (xbyx_mult, "\t.sys_rst(sys_rst), \n");
fprintf (xbyx_mult, "\t.multiplicand(multiplicand[%d:%d]l),\n", 2*%i+1, 2%i);
fprintf (xbyx_mult, "\t.multiplier(multiplier), // from FSL\n");
fprintf (xbyx_mult, "\t.result(result_%d), \n",i);
fprintf (xbyx_mult, "\t.input_data_valid(input_data_valid), \n");
fprintf (xbyx_mult, "\t.data_valid(data_valid_%d)\n",i);
fprintf (xbyx_mult, "\t);\n\n");

}

fprintf (xbyx_mult, "endmodule");

Yelse{
fprintf (xbyx_mult, “////////////77777777777777777/7/7///77777777////7777/7//////\n");
fprintf (xbyx_mult, "// Sub-Modules\n\n");

for (i=0;i<P_NUM_MULTIPLIERS;i++){
fprintf (xbyx_mult, "\txbytwo_bit_multiplier_%d_%d xbytwo_bit_multiplier_j%d_%d_%d
(\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,i);
fprintf (xbyx_mult, "\t.sys_clk(sys_clk), \n");
fprintf (xbyx_mult, "\t.sys_rst(sys_rst), \n");
fprintf (xbyx_mult, "\t.multiplicand(multiplicand[%d:%d]),\n", 2*i+1, 2*i);
fprintf (xbyx_mult, "\t.multiplier(multiplier), // from FSL\n");
fprintf (xbyx_mult, "\t.result(result_%d), \n",i);
fprintf (xbyx_mult, "\t.input_data_valid(input_data_valid), \n");
fprintf (xbyx_mult, "\t.data_valid(data_valid_%d)\n",i);
fprintf (xbyx_mult, "\t);\n\n");
}
fprintf (xbyx_mult, "endmodule");
}
fclose(xbyx_mult) ;

I1117777777777777777777777777777777777777777777777777777777777777777777777777777
// MULTIPLIER

1/
LI111177771777777777777777777777777777777777777777777777777777177711717777771177

void gen_multiplier(FILE *mult, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH, int init_multiplier){

[11711771777777777777777777777777/77777777777777/77/7777777777/7777/77/717777777/
// Instantiate Module

fprintf (mult, "‘timescale 1ns / 1ps\n");



APPENDIX B. SYSTEM GENERATOR 15

ot

fprintf (mult, "///////77777177777777777717777777777777777777777777/17777/7///\n");

fprintf (mult, "//
fprintf (mult, "//
fprintf (mult, "//

multiplier \n");
by: Jason Lee \n");
\n");

fprintf (mult, "///////7777711777777777771/777777777777/77777777777///7///\n\n");

if (init_multiplier == 1){

fprintf (mult,
Yelsed{
fprintf (mult,

fprintf (mult, "\t
fprintf (mult, "\t

fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t

fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t

"module init_multiplier_%d_%d(\n\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

"module multiplier_%d_%d(\n\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

FSL_Clk,\n");
FSL_Rst,\n\n");

FSL_S_Clk,\n");
FSL_S_Exists,\n");
FSL_S_Read,\n");
FSL_S_Data,\n");
FSL_S_Control,\n\n");

FSL_M_Clk,\n");
FSL_M_Full,\n");
FSL_M_Write,\n");
FSL_M_Data,\n");

if (init_multiplier == 1){

fprintf (mult,

fprintf (mult,

fprintf (mult,
Yelsed{

fprintf (mult,

"\t FSL_M_Control,\n\n");
"\t output_result,\n");
"\t multiplicand\n\n");

"\t FSL_M_Control\n\n");

fprintf (mult, ");\n\n");

II111177777777777777777777777777777777777777777777777717777177777771177711777777717

// Parameters

fprintf (malt, "/////777777777777777777777777777777777777777/77777777777////7/77/\n");

fprintf (mult, "//

Parameters\n\n");

fprintf (mult, "\tlocalparam P_FSL_WIDTH = %d;\n",P_FSL_WIDTH);

fprintf (mult, "\tlocalparam P_MULTIPLIER_WIDTH = %d;// from FSL\n",P_FSL_WIDTH);

fprintf (mult, "\tlocalparam P_MULTIPLICAND_WIDTH = %d;\n",P_MULTIPLICAND_WIDTH) ;

fprintf (mult, "\tlocalparam P_RESULT_WIDTH = P_MULTIPLIER_WIDTH+P_MULTIPLICAND_WIDTH;\n\n");

I11177777777777777777777777777777777777777777777777777777777777777771777171777777717

// Ports



APPENDIX B. SYSTEM GENERATOR

fprintf (mult, "“////////7/7/7/777/777/7177777/777777/777/7777/777/7/7/7/7/7/7/7//7/7////7////\n");
fprintf (mult, "// Ports\n\n");

fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_Clk;\n");
fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_Rst;\n\n");

fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_S_Clk;\n");

fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_S_Exists;\n");

fprintf (mult, "\toutput\t\t\t\t\t\t\t\tFSL_S_Read;\n");

fprintf (mult, "\tinput\t\t\t\t[%d:0]J\t\t\t\tFSL_S_Data;\n",P_FSL_WIDTH-1);
fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_S_Control;\n\n");

fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_M_Clk;\n");

fprintf (mult, "\tinput\t\t\t\t\t\t\t\tFSL_M_Full;\n");

fprintf (mult, "\toutput\t\t\t\t\t\t\t\tFSL_M_Write;\n");

fprintf (mult, "\toutput\t\t\t\t[%d:0]\t\t\t\tFSL_M_Data;\n",P_FSL_WIDTH-1);
fprintf (mult, "\toutput\t\t\t\t\t\t\t\tFSL_M_Control; \n\n");

if (init_multiplier == 1){
fprintf (mult, "\toutput\t\t\t\t[/d:0]\t\t\t\toutput_result;\n",P_FSL_WIDTH-1);
fprintf (mult, "\tinput\t\t\t\t[%d:0]J\t\t\t\tmultiplicand;\n",P_MULTIPLICAND_WIDTH-1);

[1177177777777177777777777777777/77777777777777777/7777177777/777777/777/7777777777777/
// States

fprintf(mault, "/////7/17777777777777777777777777777777777/77/777777777777/7777777////\n");
fprintf (mult, "// States\n\n");

fprintf (mult, "\tlocalparam Idle_State\t\t= 0;\n");
fprintf (mult, "\tlocalparam Load_State\t\t= 1;\n");
fprintf (mult, "\tlocalparam Calculate_State\t= 2;\n");
fprintf (mult, "\tlocalparam Transmit_State\t= 3;\n\n");

II1177777777777777777777777777777777777777777777777777777771777777771777717777777777

// VWires and Registers

fprintf (mult, "“////////7/7/77/777/7777777/777/7777/77/7777777/777/7/77/77/7777//7/7//7/7/7///\n");
fprintf (mult, "// Wires and Registers\n\n");

fprintf (mult, "\t// State Machine\n");
fprintf (mult, "\treg\t\t\t[1:0]1\t\t\tmultiplier_state_cs;\n");
fprintf (mult, "\treg\t\t\t[1:0]\t\t\tmultiplier_state_ns;\n\n");

fprintf (mult, "\t// Multiplier\n");
if (init_multiplier == 0){
fprintf (mult, "\treg\t\t\t [P_MULTIPLICAND_WIDTH-1:0] \t\tmultiplicand; \n");
}
fprintf (mult, "\treg\t\t\t[P_MULTIPLIER_WIDTH-1:0]\t\tmultiplier;\n\n");



APPENDIX B. SYSTEM GENERATOR

fprintf (mult, "\twire\t\t\t\t\t\t\t\tinput_data_valid;\n");

fprintf (mult, "\twire\t\t\t\t\t\t\t\tready_for_data;\n");

fprintf (mult, "\twire\t\t\t\t\t\t\t\tdata_valid;\n");

fprintf (mult, "\twire\t\t\t[P_RESULT_WIDTH-1:0]\t\t\tresult;\n\n");

fprintf (mult, "\treg\t\t\t[/d:0]J\t\t\tFSL_M_Data;\n\n", P_FSL_WIDTH-1);

11177777777777777777777777777777777777777777777777777777777777777771777777777/7/7/77777
// Assigns

fprintf (mult, "///////777771177777777777777777777777717777777777771/777777777777/77/\n");
fprintf (mult, "// Assigns\n\n");

fprintf (mult, "\tassign FSL_S_Read = (multiplier_state_cs ==
Idle_State && FSL_S_Exists == 1’b1);\n");

fprintf (mult, "\tassign FSL_M_Write = (multiplier_state_cs ==
Transmit_State && FSL_M_Full == 1’b0);\n\n");

fprintf(mult, "\tassign input_data_valid = (multiplier_state_cs == Load_State);\n");
fprintf (mult, "\tassign target_ready_for_data = 1’bl; // not used for now\n\n");

if (init_multiplier == 1){
fprintf(mult, "\tassign output_result = FSL_M_Data; // Output pin from system\n\n");
}
if (P_VENDOR == 0){
fprintf (mult, "\tassign FSL_M_Control = (multiplier_state_cs == Calculate_State);\n\n");

[117777777717771777777777777777777777777777777777/77777777777777/77/77777777777777/77/7
// State Machine

fprintf (mult, "///////177/7777777777777777777777777777/77/7777777777/777/777777/7//7//7//7//\n");
fprintf (mult, "// State Machine\n\n");

fprintf (mult, "\t// Register part of state machine\n");

fprintf (mult, "\talways @(posedge FSL_Clk) \n");

fprintf (mult, "\tbegin\n");

fprintf (mult, "\t\tif (FSL_Rst == 1’bl) // reset active high\n");
fprintf (mult, "\t\t\tbegin\n");

fprintf (mult, "\t\t\t\tmultiplier_state_cs <= Idle_State;\n");
fprintf (mult, "\t\t\tend\n");

fprintf (mult, "\t\telse\n");

fprintf (mult, "\t\t\tbegin\n");

fprintf (mult, "\t\t\t\tmultiplier_state_cs <= multiplier_state_ns;\n");
fprintf (mult, "\t\t\tend\n");

fprintf (mult, "\tend\n\n");

// State Machine
fprintf (mult, "\t// State Machine\n");

1

7



APPENDIX B. SYSTEM GENERATOR 158

fprintf (mult, "\talways @(FSL_Rst, FSL_S_Exists, ready_for_data, data_valid,
FSL_M_Full, multiplier_state_cs)\n");

fprintf (mult, "\tbegin\n");

fprintf (mult, "\t\tif (FSL_Rst == 1’b1)\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tmultiplier_state_ns <= Idle_State;\n");

fprintf (mult, "\t\tend\n");

fprintf (mult, "\t\telse\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tcase(multiplier_state_cs)\n");

fprintf (mult, "\t\t\t\tIdle_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (FSL_S_Exists == 1’b1)\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Load_State;\n");

fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");

fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\t\tLoad_State:\n");

fprintf (mult, "\t\t\t\t\tif (ready_for_data == 1’b1)\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Calculate_State;\n");

fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Load_State;\n");

fprintf (mult, "\t\t\t\tCalculate_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (data_valid == 1’b1)\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Transmit_State;\n");

fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Calculate_State;\n");

fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\t\tTransmit_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (FSL_M_Full == 1°b0)\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Idle_State;\n");

fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier_state_ns <= Transmit_State;\n");

fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\t\tdefault: multiplier_state_ns <= multiplier_state_ns;\n");

fprintf (mult, "\t\t\tendcase\n");

fprintf (mult, "\t\tend\n");

fprintf (mult, "\tend\n\n");

if (init_multiplier == 0){
// multiplicand
fprintf (mult, "\t// multiplicand\n");
fprintf (mult, "\talways@(posedge FSL_Clk)\n");
fprintf (mult, "\tbegin\n");
fprintf (mult, "\t\tif (FSL_Rst == 1°b1)\n");
fprintf (mult, "\t\tbegin\n");
fprintf (mult, "\t\t\tmultiplicand <= 7; // some arbitrary value\n");
fprintf (mult, "\t\tend\n");



APPENDIX B. SYSTEM GENERATOR

fprintf (mult, "\t\telse\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tcase (multiplier_state_cs)\n");

fprintf (mult, "\t\t\tCalculate_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (data_valid == 1’b1)\n");

fprintf (mult, "\t\t\t\t\t\tif (result[P_RESULT_WIDTH-1:P_RESULT_WIDTH-P_MULTIPLICAND_ WIDTH]
== 0) // to prevent multiplicand from going to zero\n");

fprintf (mult, "\t\t\t\t\t\t\tmultiplicand <= multiplicand - 1;\n");

fprintf (mult, "\t\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\t\tmultiplicand <= result[P_RESULT_WIDTH-1:
P_RESULT_WIDTH-P_MULTIPLICAND_WIDTH];\n");

fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplicand <= multiplicand;\n");

fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\tdefault:\n");

fprintf (mult, "\t\t\tbegin\n");

fprintf (mult, "\t\t\t\tmultiplicand <= multiplicand;\n");

fprintf (mult, "\t\t\tend\n");

fprintf (mult, "\t\t\tendcase\n");

fprintf (mult, "\t\tend\n");

fprintf (mult, "\tend\n\n");

// multiplier

fprintf (mult, "\t// multiplier\n");

fprintf (mult, "\talways@(posedge FSL_Clk)\n");

fprintf (mult, "\tbegin\n");

fprintf (mult, "\t\tif (FSL_Rst == 1’b1)\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tmultiplier <= 0; // some arbitrary value\n");
fprintf (mult, "\t\tend\n");

fprintf (mult, "\t\telse\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (mult, "\t\t\tIdle_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (FSL_S_Exists == 1’b1)\n");
fprintf (mult, "\t\t\t\t\t\tmultiplier <= FSL_S_Data;\n");
fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tmultiplier <= multiplier;\n");
fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\tdefault:\n");

fprintf (mult, "\t\t\tbegin\n");

fprintf (mult, "\t\t\t\tmultiplier <= multiplier;\n");
fprintf (mult, "\t\t\tend\n");

fprintf (mult, "\t\t\tendcase\n");

fprintf (mult, "\t\tend\n");

fprintf (mult, "\tend\n\n");

1

9



APPENDIX B. SYSTEM GENERATOR 160

// FSL_M_Data

fprintf (mult, "\t// FSL_M_Data\n");

fprintf (mult, "\talways@(posedge FSL_Clk)\n");

fprintf (mult, "\tbegin\n");

fprintf (mult, "\t\tif (FSL_Rst == 1’b1)\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tFSL_M_Data <= 0; // some arbitrary value\n");
fprintf (mult, "\t\tend\n");

fprintf (mult, "\t\telse\n");

fprintf (mult, "\t\tbegin\n");

fprintf (mult, "\t\t\tcase (multiplier_state_cs)\n");
fprintf (mult, "\t\t\tCalculate_State:\n");

fprintf (mult, "\t\t\t\tbegin\n");

fprintf (mult, "\t\t\t\t\tif (data_valid == 1’b1)\n");
fprintf (mult, "\t\t\t\t\t\tFSL_M_Data <= result[P_FSL_WIDTH-1:0];\n");
fprintf (mult, "\t\t\t\t\telse\n");

fprintf (mult, "\t\t\t\t\t\tFSL_M_Data <= FSL_M_Data;\n");
fprintf (mult, "\t\t\t\tend\n");

fprintf (mult, "\t\t\tdefault:\n");

fprintf (mult, "\t\t\tbegin\n");

fprintf (mult, "\t\t\t\tFSL_M_Data <= FSL_M_Data;\n");
fprintf (mult, "\t\t\tend\n");

fprintf (mult, "\t\t\tendcase\n");

fprintf (mult, "\t\tend\n");

fprintf (mult, "\tend\n\n");

LII11177777777777777777777177777777777777777777777777777777777777717771717777771177

// Sub-Modules

if (P_VENDOR==1){

fprintf (mult, "////////7///7/777/7177/777/777777/777/7777777/7/7/7/7/7//7/7/////7////\n");
fprintf (mult, "// Sub-Modules\n\n");

fprintf (mult, "\txbyx_bit_multiplier xbyx_bit_multiplier (\n");

fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t
fprintf (mult, "\t

.sys_clk(FSL_C1lk), \n");

.sys_rst(FSL_Rst), \n");
.multiplicand(multiplicand), \n");
.multiplier(multiplier), \n");

.result(result), \n");
.input_data_valid(input_data_valid), \n");
.ready_for_data(ready_for_data), \n");
.data_valid(data_valid), \n");
.target_ready_for_data(target_ready_for_data)\n");

fprintf (mult, "\t);\n\n");

fprintf (mult, "endmodule\n");

Yelseq{

fprintf (mult, "/////////7/77/77/7777/777/777/7/77/77/777/7/77/777/777/7/7///7/7/////\n");
fprintf (mult, "// Sub-Modules\n\n");



APPENDIX B. SYSTEM GENERATOR 161

fprintf (mult, "\txbyx_bit_multiplier_%d_%d xbyx_bit_multiplier_%d_%d
(\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

fprintf (mult, "\t .sys_clk(FSL_Clk), \n");

fprintf (mult, "\t .sys_rst(FSL_Rst), \n");

fprintf (mult, "\t .multiplicand(multiplicand), \n");

fprintf(mult, "\t .multiplier(multiplier), \n");

fprintf (mult, "\t .result(result), \n");

fprintf (mult, "\t .input_data_valid(input_data_valid), \n");

fprintf (mult, "\t .ready_for_data(ready_for_data), \n");

fprintf (mult, "\t .data_valid(data_valid), \n");

fprintf (mult, "\t .target_ready_for_data(target_ready_for_data)\n");

fprintf (mult, "\t);\n\n");

fprintf (mult, "endmodule\n");

fclose(mult);

LIIIII777717777777777777777777777777177777777777777777777777771777711717777771777
// MULTIPLIER DATA FILES

//
LI1111707777717777777777771777177777777777777777777777777777777717177117777771177

void gen_mult_data(FILE *multiplier_mpd, FILE #multiplier_pao, int P_FSL_WIDTH,
int P_MULTIPLICAND_WIDTH, int init_multiplier){

// MPD FILE

fprintf (multiplier_mpd, " \n");
fprintf (multiplier_mpd, "## MPD FILE\n");

fprintf (multiplier_mpd, "##\n");

fprintf (multiplier_mpd, "######H#HHEHEHHEEEHEHEEEEHEEHEHEE A \n\n") ;

if (init_multiplier == 1){

fprintf (multiplier_mpd, "BEGIN init_multiplier_%d_%d\n\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
Yelse{

fprintf (multiplier_mpd, "BEGIN multiplier_%d_%d\n\n", P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

fprintf (multiplier_mpd, "## Peripheral Options\n");

fprintf (multiplier_mpd, "OPTION IPTYPE = PERIPHERAL\n");

fprintf (multiplier_mpd, "OPTION IMP_NETLIST = TRUE\n");

fprintf (multiplier_mpd, "OPTION HDL = VERILOG\n");

fprintf (multiplier_mpd, "OPTION IP_GROUP = MICROBLAZE:PPC:USER\n\n");

fprintf (multiplier_mpd, "## Bus Interfaces\n");
fprintf (multiplier_mpd, "BUS_INTERFACE BUS = SFSL, BUS_TYPE = SLAVE, BUS_STD = FSL\n");
fprintf (multiplier_mpd, "BUS_INTERFACE BUS = MFSL, BUS_TYPE = MASTER, BUS_STD = FSL\n\n");



APPENDIX B. SYSTEM GENERATOR 162

fprintf(multiplier_mpd, "## Generics for VHDL or Parameters for Verilog\n\n");

fprintf (multiplier_mpd, "## Ports\n");
fprintf (multiplier_mpd, "PORT FSL_Clk = "", DIR = I, BUS = SFSL:MFSL, SIGIS = CLK\n");
fprintf (multiplier_mpd, "PORT FSL_Rst = OPB_Rst, DIR = I, BUS = SFSL:MFSL, SIGIS = RST\n");
fprintf (multiplier_mpd, "PORT FSL_S_Clk = FSL_S_Clk, DIR = I, BUS = SFSL\n");
fprintf (multiplier_mpd, "PORT FSL_S_Exists = FSL_S_Exists, DIR = I, BUS = SFSL\n");
fprintf (multiplier_mpd, "PORT FSL_S_Read = FSL_S_Read, DIR = 0, BUS = SFSL\n");
fprintf (multiplier_mpd, "PORT FSL_S_Data = FSL_S_Data, DIR = I, VEC = [}d:0],

BUS = SFSL\n", P_FSL_WIDTH-1);
fprintf(multiplier_mpd, "PORT FSL_S_Control = FSL_S_Control, DIR = I, BUS = SFSL\n");
fprintf (multiplier_mpd, "PORT FSL_M_Clk = FSL_M_Clk, DIR = I, BUS = MFSL\n");
fprintf (multiplier_mpd, "PORT FSL_M_Full = FSL_M_Full, DIR = I, BUS = MFSL\n");
fprintf (multiplier_mpd, "PORT FSL_M_Write = FSL_M_Write, DIR = 0, BUS = MFSL\n");
fprintf (multiplier_mpd, "PORT FSL_M_Data = FSL_M_Data, DIR = 0, VEC = [}d:0],

BUS = MFSL\n", P_FSL_WIDTH-1);
fprintf (multiplier_mpd, "PORT FSL_M_Control = FSL_M_Control, DIR = 0, BUS = MFSL\n\n");
if (init_multiplier == 1){

fprintf (multiplier_mpd, "PORT output_result = output_result, DIR = 0, VEC =

[%d:0]\n", P_FSL_WIDTH-1);
fprintf (multiplier_mpd, "PORT multiplicand = multiplicand, DIR = I, VEC =
[%d:0]\n\n", P_MULTIPLICAND_WIDTH-1);

fprintf (multiplier_mpd, "END\n\n");

// PAO FILE

fprintf (multiplier_pao, " \n") ;
fprintf (multiplier_pao, "## PAOD FILE\n");
fprintf (multiplier_pao, "##\n");

fprintf (multiplier_pao, "########HHEHHHHEHEHEHEHEEEEHEEEEHEHE \n\n") ;

if (init_multiplier == 1){
fprintf (multiplier_pao, "lib init_multiplier_%d_%d_v1_00_a init_multiplier_%d_%d verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
fprintf(multiplier_pao, "lib init_multiplier_%d_%d_v1_00_a two_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
fprintf (multiplier_pao, "lib init_multiplier_%d_%d_v1_00_a xbytwo_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
fprintf (multiplier_pao, "lib init_multiplier_%d_%d_v1_00_a xbyx_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
Yelseq{
fprintf (multiplier_pao, "1lib multiplier_%d_%d_v1_00_a multiplier_%d_%d verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
fprintf (multiplier_pao, "lib multiplier_%d_%d_v1_00_a two_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
fprintf(multiplier_pao, "lib multiplier_%d_%d_v1_00_a xbytwo_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);



APPENDIX B. SYSTEM GENERATOR 163

fprintf (multiplier_pao, "lib multiplier_%d_%d_v1_00_a xbyx_bit_multiplier verilog\n",
P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);



APPENDIX B. SYSTEM GENERATOR 164

B.4 Generate Switch PCORE (generate switch.c)

The following functions are used to generate the network switch for each network node.

#include <stdio.h>
#include "globals.h"

// Generate MPD File
void generate_switch_mpd(int P_NODE_SIZE, FILE *switch_mpd, int P_FSL_WIDTH){

int i;

[1177777717777777777777777777777777777777777777777777777777777777777777777777777
// Generate Switch MPD File

// switch.mpd

// Upper Level Wrapper for Switch Node
III111107777777777777777777777777777777777777777777717777777777771777117177777717

fprintf (switch_mpd, "########ftt R R\ ")
fprintf (switch_mpd, "##\n");

fprintf (switch_mpd, "## Name : switch’%d\n", P_NODE_SIZE);
fprintf (switch_mpd, "## Desc : Microprocessor Peripheral Description\n");
fprintf (switch_mpd, "## : Automatically generated by PsfUtility\n");

fprintf (switch_mpd, "##\n");
fprintf (switch_mpd, "########dtttH R \n\n " ) ;

fprintf (switch_mpd, "BEGIN switch)d\n\n", P_NODE_SIZE);

// Peripheral Options

fprintf (switch_mpd, "## Peripheral Options\n");

fprintf (switch_mpd, "OPTION IPTYPE = PERIPHERAL\n");

fprintf (switch_mpd, "OPTION IMP_NETLIST = TRUE\n");

fprintf (switch_mpd, "OPTION HDL = VERILOG\n");

fprintf (switch_mpd, "OPTION IP_GROUP = MICROBLAZE:PPC:USER\n\n\n");

// Bus Interface

fprintf (switch_mpd, "## Bus Interfaces\n");

fprintf (switch_mpd, "BUS_INTERFACE BUS = SFSL, BUS_TYPE = SLAVE, BUS_STD = FSL\n");
fprintf (switch_mpd, "BUS_INTERFACE BUS = MFSL, BUS_TYPE = MASTER, BUS_STD = FSL\n\n");

// Parameters

fprintf (switch_mpd, "## Generics for VHDL or Parameters for Verilog\n");

fprintf (switch_mpd, "PARAMETER C_DEST_L = O, DT = integer\n");

fprintf (switch_mpd, "PARAMETER C_DEST_H = 0, DT = integer\n\n");

// Ports

fprintf (switch_mpd, "## Ports\n");

fprintf (switch_mpd, "PORT FSL_Clk = \"\", DIR = I, BUS = SFSL:MFSL, SIGIS = CLK\n");
fprintf (switch_mpd, "PORT FSL_Rst = OPB_Rst, DIR = I, BUS = SFSL:MFSL, SIGIS = RST\n");
fprintf (switch_mpd, "PORT FSL_S_Clk = FSL_S_Clk, DIR = I, BUS = SFSL\n");



APPENDIX B. SYSTEM GENERATOR

fprintf (switch_mpd, "PORT FSL_M_Clk = FSL_M_Clk, DIR = I, BUS = MFSL\n");
fprintf (switch_mpd, "PORT FSL_M_Data = FSL_M_Data, DIR = 0, VEC = [%d:0],

BUS = MFSL\n", P_FSL_WIDTH-1);
fprintf (switch_mpd, "PORT FSL_M_Control = FSL_M_Control, DIR = 0, BUS = MFSL\n");
fprintf (switch_mpd, "PORT FSL_M_Write = FSL_M_Write, DIR = 0, BUS = MFSL\n");
fprintf (switch_mpd, "PORT FSL_M_Full = FSL_M_Full, DIR = BUS = MFSL\n");
fprintf (switch_mpd, "PORT FSL_S_Data = FSL_S_Data, DIR = VEC = [%d:0],

BUS = SFSL\n", P_FSL_WIDTH-1);
fprintf (switch_mpd, "PORT FSL_S_Control = FSL_S_Control, DIR = I, BUS = SFSL\n");
fprintf (switch_mpd, "PORT FSL_S_Read = FSL_S_Read, DIR = 0, BUS = SFSL\n");
fprintf (switch_mpd, "PORT FSL_S_Exists = FSL_S_Exists, DIR = I, BUS = SFSL\n");

I,
I,

for (i=0;i<P_NODE_SIZE;i++){

fprintf (switch_mpd, "PORT ch)%d_in_data = "", DIR = I, VEC = [}d:0]\n",i, P_FSL_WIDTH-1);
fprintf (switch_mpd, "PORT ch)d_in_ctrl = "", DIR = I\n",i);

fprintf (switch_mpd, "PORT ch)d_in_exists = "", DIR = I\n",i);

fprintf (switch_mpd, "PORT ch)d_in_read = "", DIR = O\n",i);

fprintf (switch_mpd, "PORT ch¥%d_out_data = "", DIR = 0, VEC = [%d:0]\n",i, P_FSL_WIDTH-1);
fprintf (switch_mpd, "PORT chd_out_ctrl = "", DIR = O\n",i);

fprintf (switch_mpd, "PORT ch)d_out_exists = "", DIR = O\n",i);

fprintf (switch_mpd, "PORT ch)d_out_read = "", DIR = I\n\n",i);

}
fprintf (switch_mpd, "END\n\n");

LI11117777777777777777777177777777777717777117777777
// Generate Switch File
// Upper Level Wrapper for Switch Node

void generate_switch_v(int P_NODE_SIZE, FILE *v_switch, int P_FSL_WIDTH){

int i;

fprintf(v_switch, "‘timescale 1ns / 1ps\n");

fprintf (v_switch, "////////////////7//7/7//7//7//7//7//7/7///7//7/7///7//////////\n");
fprintf(v_switch, "// Switch\n");

fprintf(v_switch, "// # of Channels: %d\n", P_NODE_SIZE);

fprintf(v_switch, "// \n");

fprintf (v_switch, "//////////////////7/7//7/7///////7///7////7/7/////////\n\n");

[17117777177777777777777777777777777777777777777777777777777777777777/7777777777/
// MODULE DEFINITION

if (P_VENDOR == 1){

fprintf(v_switch, "module switch¥%d(\n\n",P_NODE_SIZE);
Yelseq{

fprintf(v_switch, "module switch_%d(\n\n",P_NODE_SIZE);

// single wire definition



APPENDIX B. SYSTEM GENERATOR 166

fprintf(v_switch, "\tFSL_Clk,\n");
fprintf(v_switch, "\tFSL_Rst,\n\n");

fprintf (v_switch, "\tFSL_S_Clk,\n");
fprintf (v_switch, "\tFSL_M_Clk,\n\n");

// Interface to MicroBlaze

fprintf(v_switch, "\t// MicroBlaze Interface\n");
fprintf(v_switch, "\tFSL_M_Data,\n");

fprintf (v_switch, "\tFSL_M_Control,\n");
fprintf(v_switch, "\tFSL_M_Write,\n");
fprintf(v_switch, "\tFSL_M_Full,\n\n");

fprintf(v_switch, "\tFSL_S_Data,\n");
fprintf (v_switch, "\tFSL_S_Control,\n");
fprintf (v_switch, "\tFSL_S_Read,\n");
fprintf(v_switch, "\tFSL_S_Exists,\n\n");

// Number of Channels

for (i=0; i<P_NODE_SIZE; i++){
fprintf(v_switch, "\t// Channel %d Interface\n", i);
fprintf(v_switch, "\tch¥%d_in_data,\n", i);
fprintf (v_switch, "\tch%d_in_ctrl,\n", i);
fprintf(v_switch, "\tch¥d_in_exists,\n", i);
fprintf(v_switch, "\tch)d_in_read,\n\n", i);

fprintf(v_switch, "\tch)d_out_data,\n", i);

fprintf (v_switch, "\tch%d_out_ctrl,\n", i);

fprintf (v_switch, "\tch%d_out_exists,\n", i);

if (i == P_NODE_SIZE-1){ // Last One
fprintf(v_switch, "\tchld_out_read\n\n", i);

}
else{

fprintf(v_switch, "\tch%d_out_read,\n\n", i);
}

fprintf (v_switch, ");\n\n");

[1777777717777777777771777777777777777777777777777777777777777777777777777777777
// PARAMETERS

fprintf(v_switch, "////////111777777777717777777777777777777777777///777/7///\n");

fprintf(v_switch, "// PARAMETERS\n\n");

fprintf(v_switch, "\tlocalparam P_DATA_WIDTH = 32;\n\n");

[17117777117777717777777777777777777777777777777777777777777777777777777177777777
// PORTS



APPENDIX B. SYSTEM GENERATOR 167

fprintf(v_switch, "/////////7//////7777777777/77777777/7/7//7/7//7777///////////\n");
fprintf(v_switch, "// PORTS\n\n");

fprintf (v_switch, "\tparameter\t\t\t\t\t\t\t\t\t\tC_DEST_L = 0;\n");
fprintf(v_switch, "\tparameter\t\t\t\t\t\t\t\t\t\tC_DEST_H = 1;\n");

fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_Clk;\n");
fprintf(v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_Rst;\n\n");

fprintf(v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_S_Clk;\n");
fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_M_Clk;\n\n");

fprintf(v_switch, "\t// Input Data to MicroBlaze\n");

fprintf(v_switch, "\t// Writes Data to FSL connecting to MicroBlaze if data
on Switch is valid\n");

fprintf(v_switch, "\toutput\t[/d:0]\t\tFSL_M_Data;\n", P_FSL_WIDTH-1);

fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tFSL_M_Control;\n");

fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tFSL_M_Write;\n");

fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_M_Full;\n\n");

fprintf(v_switch, "\t// Output Data from MicroBlaze\n");

fprintf(v_switch, "\t// Reads Data from FSL Connecting to MicroBlaze
to all Channels\n");

fprintf(v_switch, "\tinput\t\t[/d:0]\t\tFSL_S_Data;\n", P_FSL_WIDTH-1);

fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_S_Control;\n");

fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tFSL_S_Read;\n");

fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tFSL_S_Exists;\n\n");

for (i=0;i<P_NODE_SIZE;i++){
fprintf(v_switch, "\t// Channel %d\n",i);
fprintf(v_switch, "\t// Input Data to MicroBlaze, reads data from other

MicroBlaze’s FSL\n");

fprintf (v_switch, "\tinput\t\t[%d:0]\t\tch/d_in_data;\n", P_FSL_WIDTH-1,i);
fprintf (v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tch%d_in_ctrl;\n",i);
fprintf(v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tch/%d_in_exists;\n",i);
fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tch/d_in_read;\n\n",i);

fprintf(v_switch, "\t// Output Data from MicroBlaze, reads data from
MicroBlaze’s FSL\n");

fprintf (v_switch, "\toutput\t[%d:0]\t\tch%d_out_data;\n", P_FSL_WIDTH-1,i);

fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tch/d_out_ctrl;\n",i);

fprintf (v_switch, "\toutput\t\t\t\t\t\t\t\t\tch/d_out_exists;\n",i);

fprintf(v_switch, "\tinput\t\t\t\t\t\t\t\t\t\tch¥d_out_read;\n\n",i);

II117777777777777777777777777777777777777777777777777177777777777111771177777771/
// WIRES/REGISTERS

fprintf (v_switch, "///////1117717777777717777777777771777777777777//7777//\n");



APPENDIX B. SYSTEM GENERATOR 168

fprintf(v_switch, "// WIRES/REGISTERS\n\n");

III11110777777777777777777777777777777777777777777777777777777777177711177777117
// ASSIGNS

fprintf (v_switch, "///////////7///7/7/7/7//7////7/7/7//7//7/7/7/7////7//7/7//7//////\n");
fprintf(v_switch, "// ASSIGNS\n\n");

fprintf(v_switch, "\t// All Channels see the FSL output from uB\n");

fprintf(v_switch, "\t// Reads from the FSL if the address is corresponding to
its own switch\n");

fprintf(v_switch, "\tassign FSL_S_Read = ");

for (i=0;i<P_NODE_SIZE;i++){
if (i==P_NODE_SIZE-1){
fprintf (v_switch, "ch¥%d_out_read;\n\n",i);

}
elseq{

fprintf(v_switch, "ch¥d_out_read || ",i);
}

for (i=0;i<P_NODE_SIZE;i++){
fprintf(v_switch, "\tassign ch¥%d_out_data = FSL_S_Data;\n",i);
fprintf(v_switch, "\tassign ch¥%d_out_ctrl = FSL_S_Control;\n",i);
fprintf(v_switch, "\tassign ch’%d_out_exists = FSL_S_Exists;\n\n",i);

II117177777777777777777777717777777777777777777777777177717777777111711717777771/
// INSTANTIATIONS

fprintf (v_switch, "////////177777777777717777777777777777777777777117777//\n");
fprintf(v_switch, "// INSTANTIATIONS\n\n");

fprintf(v_switch, "\t// Looks at the input Channels and sees if address is
corresponding to uB\n");
fprintf(v_switch, "\t// If it is, reads from the connected FSL Channel\n");
if (P_VENDOR == 1){
fprintf (v_switch, "\tswitch_fsmid #(\n",P_NODE_SIZE);
Yelse{
fprintf(v_switch, "\tswitch_fsm_%d #(\n",P_NODE_SIZE);
}
fprintf (v_switch, "\t .C_DEST_L(C_DEST_L),\n");
fprintf(v_switch, "\t .C_DEST_H(C_DEST_H))\n");
fprintf (v_switch, "\tswitch_fsm%d(\n", P_NODE_SIZE);
fprintf(v_switch, "\t .clk(FSL_Clk),\n");
fprintf(v_switch, "\t .rst(FSL_Rst),\n");

for (i=0;i<P_NODE_SIZE;i++){



APPENDIX B. SYSTEM GENERATOR

fprintf (v_switch,
fprintf (v_switch,
fprintf (v_switch,
fprintf (v_switch,

fprintf(v_switch, "\t
fprintf(v_switch, "\t
fprintf(v_switch, "\t
fprintf(v_switch, "\t

"\t .chld_s_data(ch¥%d_in_data),\n",i,i);
"\t .chl)d_s_control(ch%d_in_ctrl),\n",i,i);
"\t .ch%d_s_read(ch%d_in_read),\n",i,i);

"\t .ch’d_s_exists(ch)d_in_exists),\n",i,i);

.ch_out_m_data(FSL_M_Data),\n");
.ch_out_m_ctrl(FSL_M_Control),\n");
.ch_out_m_write(FSL_M_Write),\n");
.ch_out_m_full(FSL_M_Full)\n");

fprintf (v_switch, "\t);\n\n");

fprintf(v_switch, "endmodule");

II111777777717777777777777777777777777777777777777777777777777777177117777771177

// Generate Switch state machine

//

void generate_switch_fsm_v(int P_NODE_SIZE, FILE *v_switch_fsm, int P_FSL_WIDTH){

int i;

fprintf (v_switch_fsm,

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"‘timescale 1ns / 1ps\n");

I 777777777777777777777777777777777777/\n");
"// Switch_FSM\n");

"// # of Channels: %d\n", P_NODE_SIZE);

"// \n");
“IIII11101717777777777777777777777777777777/77777///\n\n");

LII1110777777777777777777777777777777777777777777777777177777777177711777777717

// MODULE DEFINITION

if (P_VENDOR == 1){

fprintf(v_switch_fsm, "module switch_fsm)d(\n\n",P_NODE_SIZE);

Yelsed{

fprintf(v_switch_fsm, "module switch_fsm_%d(\n\n",P_NODE_SIZE);

// single wire definition

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

// Number of Channels

"\tclk,\n");
"\trst,\n\n");

for (i=0; i<P_NODE_SIZE; i++){
fprintf(v_switch_fsm, "\t// Channel %d Interface\n", i);
fprintf(v_switch_fsm, "\tchld_s_data,\n", i);
fprintf(v_switch_fsm, "\tch)d_s_control,\n", i);

169



APPENDIX B. SYSTEM GENERATOR

170

fprintf(v_switch_fsm, "\tchld_s_read,\n", i);
fprintf(v_switch_fsm, "\tch)d_s_exists,\n\n", i);

fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\tch_out_m_data,\n");
"\tch_out_m_ctrl,\n");
"\tch_out_m_write,\n");

"\tch_out_m_full\n\n");

");\n\n");

II11707777777777777777777777777777777777777777777777717771777777711171177777771/

// PARAMETERS

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

I 1771177777777777777777777777777777/\n");
"// PARAMETERS\n\n");

"\tlocalparam P_DATA_WIDTH = %d;\n", P_FSL_WIDTH);
"\tlocalparam P_MSG_WIDTH = %d;\n", P_FSL_WIDTH/2);
"\tlocalparam P_ADDR_WIDTH = ¥%d;\n\n", P_FSL_WIDTH/2);

[1777777717777777777771777777777777777777777777777777777777777777777777777777777

// PORTS

fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf (v_switch_fsm,

fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

“II1II1II11777777777777777777177777777777777777777/\n");
"// PORTS\n\n");

0;\n");
1;\n");

"\tparameter\t\t\t\t\t\t\t\t\t\tC_DEST_L
"\tparameter\t\t\t\t\t\t\t\t\t\tC_DEST_H

"\tinput\t\t\t\t\t\t\t\t\t\tclk;\n");
"\tinput\t\t\t\t\t\t\t\t\t\trst;\n\n");

for (i=0;i<P_NODE_SIZE;i++){

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

"\t// Channel %d\n",i);

"\tinput\t\t [P_DATA_WIDTH-1:0]\t\tch¥%d_s_data;\n",i);
"\tinput\t\t\t\t\t\t\t\t\t\tch%d_s_control;\n",i);
"\toutput\t\t\t\t\t\t\t\t\tch¥%d_s_read;\n",i);
"\tinput\t\t\t\t\t\t\t\t\t\tch%d_s_exists;\n\n",i);

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\t// Output Channel\n");

"\toutput\t [P_DATA_WIDTH-1:0]\t\tch_out_m_data;\n");
"\toutput\t\t\t\t\t\t\t\t\tch_out_m_ctrl;\n");
"\toutput\t\t\t\t\t\t\t\t\tch_out_m_write;\n");
"\tinput\t\t\t\t\t\t\t\t\t\tch_out_m_full;\n\n");

II11717777777777777777777771777777777777777777777777717777777777711171177777777/

// STATES



fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

IIT111107777777777777777777777777777777777777777777717777777777771777117177777717

// WIRES/REGISTERS

fprintf (v_switch_fsm,

fprintf (v_switch_fsm,

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

fprintf (v_switch_fsm,

APPENDIX B. SYSTEM GENERATOR

V1111111177777 7777777777777177777777777777777777/\n");

"// STATES\n\n");

"\tlocalparam Idle_State = 0;\n");
"\tlocalparam Wait_State = 1;\n");
"\tlocalparam Transmit_State = 2;\n\n");

“II1111111777777717777777777777177777777777777777777/\n");

"// WIRES/REGISTERS\n\n");

"\t// State Machine\n");
"\treg\t\t[1:0]\t\t\t\t\t\t\tswitch_state_cs;\n");
"\treg\t\t[1:0]\t\t\t\t\t\t\tswitch_state_ns;\n\n");

"\t// Registers\n");
"\treg\t\t [P_MSG_WIDTH-1:0]\t\t\tch_out_msg_size;\n");
"\treg\t\t [P_ADDR_WIDTH-1:0]\t\tch_out_src;\n\n");

"\t// FSM Outputs\n");
"\treg\t\t\t\t\t\t\t\t\t\tld_ch_out_src;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_ld_cntr;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_en_cntr;\n");
"\treg\t\t [P_MSG_WIDTH-1:0]\t\t\tch_out_cntr;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_write;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_ctrl;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_read;\n");
"\treg\t\t\t\t\t\t\t\t\t\tch_out_exists;\n\n");

"\t// Message Exists\n");
"\twire\t\t\t\t\t\t\t\t\t\tincoming_msg;\n\n") ;

"\t// Multiplexed Read Message and Data\n");

for (i=0;i<P_NODE_SIZE;i++){
fprintf(v_switch_fsm, "\treg\t\t\t\t\t\t\t\t\t\tchid_s_read;\n",i);

}

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\treg\t\t [P_DATA_WIDTH-1:0]\t\tch_out_m_data;\n\n");

"\t// Wires\n");

for (i=0;i<P_NODE_SIZE;i++){

171

fprintf(v_switch_fsm, "\twire\t\t[P_ADDR_WIDTH-1:0]\t\tch%d_dest;\n",i);
fprintf(v_switch_fsm, "\twire\t\t[P_MSG_WIDTH-1:0]\t\t\tch’d_size;\n",i);
fprintf(v_switch_fsm, "\twire\t\t[P_DATA_WIDTH-1:0]\t\tchid_data;\n",i);
fprintf(v_switch_fsm, "\twire\t\t\t\t\t\t\t\t\t\tchid_ctrl;\n\n",i);

LII1II777777777777777777777717777777777777777777777777777777777777771777777711777



APPENDIX B. SYSTEM GENERATOR 172

// ASSIGNS

fprintf (v_switch_fsm, "“///////////7777771777777777777177777777777///77/7//\n");
fprintf(v_switch_fsm, "// ASSIGNS\n\n");

fprintf(v_switch_fsm, "\tassign ch_out_m_ctrl = ch_out_ctrl;\n\n");
fprintf(v_switch_fsm, "\tassign ch_out_m_write = ch_out_write;\n\n");

// Incoming Message Definition
fprintf(v_switch_fsm, "\tassign incoming_msg = (");
for (i=0;i<P_NODE_SIZE;i++){
if (i==P_NODE_SIZE-1 && i!'=0){
fprintf(v_switch_fsm, "\t\t\t(ch)d_dest >= C_DEST_L && ch),d_dest <=
C_DEST_H && ch%d_s_control == 1’°bl && chd_s_exists == 1°b1));\n\n",i,i,i,i);
}
else if (i==P_NODE_SIZE-1 && i == 0){
fprintf(v_switch_fsm, "(ch/%d_dest >= C_DEST_L && ch¥%d_dest <=
C_DEST_H && ch’d_s_control == 1’bl && ch’d_s_exists == 1°b1));\n\n",i,i,i,i);
}
else if (i == 0){
fprintf(v_switch_fsm, "(ch¥%d_dest >= C_DEST_L && chld_dest <=
C_DEST_H && ch’d_s_control == 1’bl && chld_s_exists == 1’°b1) ||\n",i,i,i,i);

}
else{
fprintf(v_switch_fsm, "\t\t\t(ch)d_dest >= C_DEST_L && ch)d_dest <=
C_DEST_H && ch%d_s_control == 1’bl && chld_s_exists == 1’b1) |[|\n",i,i,i,1i);
}

// Channel Assigns

for (i=0;i<P_NODE_SIZE;i++){
fprintf (v_switch_£fsm, "\t//////////////////////////////////////////\n");
fprintf(v_switch_fsm, "\t// CHANNEL %d\n",i);
fprintf (v_switch_£sm, "\t//////////////////////////////////////////\n");
fprintf(v_switch_fsm, "\tassign ch¥d_ctrl = ch¥%d_s_control;\n",i,i);
fprintf(v_switch_fsm, "\tassign chld_dest = ch¥d_s_datal[%d:%d]; //when ch)d_s_exists =

1> else (others=>’Z’);\n",i,i,P_FSL_WIDTH-1, P_FSL_WIDTH/2,i);

fprintf(v_switch_fsm, "\tassign chd_size = ch)d_s_data[%d:0];\n",i,i, P_FSL_WIDTH/2-1);
fprintf(v_switch_fsm, "\tassign ch,d_data = chd_s_data; // when c/d_s_exists =

71’ else (others=>’Z’);\n\n",i,i,i);
[1111777771777771777771777777777777777777777777777777777777777777777777777777777
// MAIN CODE

fprintf (v_switch_£fsm, "//////////////////////7//7///7/7///7///////7/////////////\n");
fprintf(v_switch_fsm, "// MAIN CODE\n\n");

// STATE MACHINE



APPENDIX B. SYSTEM GENERATOR 173

fprintf(v_switch_fsm, "\t////////////////////7//7////////////////////\n");
fprintf(v_switch_fsm, "\t// STATE MACHINE\n");

fprintf (v_switch_fsm, "\t//////////////////////////////////////////\n");
fprintf (v_switch_fsm, "\talways@(posedge clk)\n");

fprintf(v_switch_fsm, "\tbegin\n");

fprintf(v_switch_fsm, "\t\tif (rst == 1’b1)\n");

fprintf(v_switch_fsm, "\t\t\tswitch_state_cs <= Idle_State;\n");

fprintf (v_switch_fsm, "\t\telse\n");

fprintf(v_switch_fsm, "\t\t\tswitch_state_cs <= switch_state_ns;\n");
fprintf (v_switch_fsm, "\tend\n\n");

fprintf(v_switch_fsm, "\talways@(switch_state_cs, ch_out_exists, ch_out_cntr,
ch_out_m_full, incoming _msg)\n");

fprintf(v_switch_fsm, "\tbegin\n");

fprintf(v_switch_fsm, "\t\tcase(switch_state_cs)\n");

fprintf (v_switch_fsm, "\t\t\tIdle_State:\n");

fprintf(v_switch_fsm, "\t\t\tbegin\n");

fprintf(v_switch_fsm, "\t\t\t\tif (incoming_msg == 1’b1)\n");

fprintf(v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Wait_State;\n");

fprintf(v_switch_fsm, "\t\t\t\telse\n");

fprintf(v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Idle_State;\n");

fprintf (v_switch_fsm, "\t\t\tend\n");

fprintf(v_switch_fsm, "\t\t\tWait_State:\n");

fprintf(v_switch_fsm, "\t\t\tbegin\n");

fprintf(v_switch_fsm, "\t\t\t\tif (ch_out_m_full == 1’bl || ch_out_exists == 1’b0)\n");

fprintf (v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Wait_State;\n");

fprintf(v_switch_fsm, "\t\t\t\telse\n");

fprintf(v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Transmit_State;\n");

fprintf (v_switch_fsm, "\t\t\tend\n");

fprintf(v_switch_fsm, "\t\t\tTransmit_State:\n");

fprintf(v_switch_fsm, "\t\t\t\tif (ch_out_cntr == 0)\n");

fprintf (v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Idle_State;\n");

fprintf(v_switch_fsm, "\t\t\t\telse\n");

fprintf(v_switch_fsm, "\t\t\t\t\tswitch_state_ns <= Transmit_State;\n");

fprintf(v_switch_fsm, "\t\t\tdefault: switch_state_ns <= switch_state_cs;\n");

fprintf(v_switch_fsm, "\t\tendcase\n");

fprintf(v_switch_fsm, "\tend\n\n");

// FSM OUTPUTS

fprintf (v_switch_£sm, "\t//////////////////////////////////////////\n");

fprintf(v_switch_fsm, "\t// FSM Outputs\n");

fprintf (v_switch_£fsm, "\t////////////////////7//////////////////////\n");

fprintf(v_switch_fsm, "\talways@(switch_state_cs, ch_out_m_full, ch_out_exists,
incoming_msg, rst)\n");

fprintf(v_switch_fsm, "\tbegin\n");

fprintf(v_switch_fsm, "\t\tif (rst == 1’b1)\n");

fprintf(v_switch_fsm, "\t\tbegin\n");

fprintf(v_switch_fsm, "\t\t\tch_out_read <= 1’b0;\n");

fprintf(v_switch_fsm, "\t\t\tch_out_write <= 1°b0;\n");

fprintf (v_switch_fsm, "\t\t\tch_out_ctrl <= 1°b0;\n");



APPENDIX B. SYSTEM GENERATOR 174

fprintf(v_switch_fsm, "\t\t\tch_out_en_cntr <= 1’°b0;\n");
fprintf(v_switch_fsm, "\t\t\tld_ch_out_src <= 1°b0;\n");
fprintf(v_switch_fsm, "\t\t\tch_out_ld_cntr <= 1’b0;\n");
fprintf (v_switch_fsm, "\t\tend\n");

fprintf(v_switch_fsm, "\t\telse\n");
fprintf(v_switch_fsm, "\t\tbegin\n");
fprintf(v_switch_fsm, "\t\t\tcase(switch_state_cs)\n");
fprintf(v_switch_fsm, "\t\t\t\tIdle_State:\n");
fprintf(v_switch_fsm, "\t\t\t\tbegin\n\n");

fprintf (v_switch_fsm, "\t\t\t\t\tch_out_read <= 1’b0;\n");
fprintf(v_switch_fsm, "\t\t\t\t\tch_out_write <= 1’b0;\n");
fprintf (v_switch_fsm, "\t\t\t\t\tch_out_ctrl <= 1°b0;\n");
fprintf(v_switch_fsm, "\t\t\t\t\tch_out_en_cntr <= 1°b0;\n");
fprintf(v_switch_fsm, "\t\t\t\t\tch_out_ld_cntr <= 1°b0;\n\n");

fprintf (v_switch_fsm, "\t\t\t\t\tif (incoming_msg == 1’b1)\n");
fprintf(v_switch_fsm, "\t\t\t\t\t\tld_ch_out_src <= 1’bl;\n");
fprintf(v_switch_fsm, "\t\t\t\t\telse\n");
fprintf(v_switch_fsm, "\t\t\t\t\t\tld_ch_out_src <= 1’b0;\n");
fprintf(v_switch_fsm, "\t\t\t\tend\n");

fprintf (v_switch_fsm, "\t\t\t\tWait_State:\n");

fprintf (v_switch_fsm, "\t\t\t\tbegin\n\n");

fprintf(v_switch_fsm, "\t\t\t\t\tch_out_en_cntr <= 1’b0;\n");
fprintf(v_switch_fsm, "\t\t\t\t\tld_ch_out_src <= 1’b0;\n\n");

fprintf (v_switch_fsm, "\t\t\t\t\tif (ch_out_m_full == 1°b0 && ch_out_exists == 1’b1)\n");
fprintf (v_switch_fsm, "\t\t\t\t\tbegin\n");
fprintf(v_switch_fsm, "\t\t\t\t\t\tch_out_write <= 1’bi;\n");
fprintf (v_switch_fsm, "\t\t\t\t\t\tch_out_read <= 1’bi;\n");
fprintf (v_switch_fsm, "\t\t\t\t\t\tch_out_ctrl <= 1’b1;\n");
fprintf(v_switch_fsm, "\t\t\t\t\t\tch_out_ld_cntr <= 1’b1;\n");
fprintf (v_switch_fsm, "\t\t\t\t\tend\n");

fprintf(v_switch_fsm, "\t\t\t\t\telse\n");

fprintf (v_switch_fsm, "\t\t\t\t\tbegin\n");
fprintf(v_switch_fsm, "\t\t\t\t\t\tch_out_write <= 1’b0;\n");
fprintf (v_switch_fsm, "\t\t\t\t\t\tch_out_read <= 1’b0;\n");
fprintf (v_switch_fsm, "\t\t\t\t\t\tch_out_ctrl <= 1°b0;\n");
fprintf (v_switch_fsm, "\t\t\t\t\t\tch_out_ld_cntr <= 1’b0;\n");
fprintf(v_switch_fsm, "\t\t\t\t\tend\n");

fprintf(v_switch_fsm, "\t\t\t\tend\n");

fprintf(v_switch_fsm, "\t\t\t\tTransmit_State:\n");
fprintf(v_switch_fsm, "\t\t\t\tbegin\n\n");

fprintf (v_switch_fsm, "\t\t\t\t\tld_ch_out_src <= 1’b0;\n");
fprintf (v_switch_fsm, "\t\t\t\t\tch_out_ld_cntr <= 1’b0;\n\n");

fprintf(v_switch_fsm, "\t\t\t\t\tif (ch_out_m_full == 1°b0 && ch_out_exists == 1’b1)\n");
fprintf(v_switch_fsm, "\t\t\t\t\tbegin\n");



APPENDIX B. SYSTEM GENERATOR

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,

fprintf (v_switch_fsm,

// Channel Output

fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
for(i=0;i<P_NODE_SIZE;

fprintf(v_switch_fsm, "chyd_s_exists,

}

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\t\t\t\t\t\tch_out_write <= 1’b1;\n");

"\t\t\t\t\t\tch_out_en_cntr <= 1’b1;\n");
"\t\t\t\t\t\tch_out_read <= 1’bi;\n");
"\t\t\t\t\t\tch_out_ctrl <= 1°b0;\n");

"\t\t\t\t\tend\n");
"\t\t\t\t\telse\n");
"\t\t\t\t\tbegin\n");
"\t\t\t\t\t\tch_out_write <= 1°b0;\n");

"\t\t\t\t\t\tch_out_en_cntr <= 1°b0;\n");
"\t\t\t\t\t\tch_out_read <= 1’b0;\n");
"\t\t\t\t\t\tch_out_ctrl <= 1°b0;\n");

"\t\t\t\t\tend\n");

"\t\t\t\tend\n");

"\t\t\t\tdefault:\n");

"\t\t\t\tbegin\n");

"\t\t\t\t\tch_out_read <= ch_out_read;\n");
"\t\t\t\t\tch_out_write <= ch_out_write;\n");
"\t\t\t\t\tch_out_ctrl <= ch_out_ctrl;\n");
"\t\t\t\t\tch_out_en_cntr <= ch_out_en_cntr;\n");
"\t\t\t\t\tld_ch_out_src <= 1ld_ch_out_src;\n");
"\t\t\t\t\tch_out_ld_cntr <= ch_out_ld_cntr;\n");
"\t\t\t\tend\n");

"\t\t\tendcase\n");

"\t\tend\n");

"\tend\n\n");

"\t// Channel Output Exists\n");
"\talways@(rst, ");
i++){

",i);
"ch_out_src)\n");

"\tbegin\n") ;

"\t\tif (rst == 1’b1)\n");
"\t\t\tch_out_exists <= 1’b0;\n");
"\t\telse\n");

"\t\tbegin\n");

"\t\t\tif (");

for (i=0;i<P_NODE_SIZE;i++){
if (i==P_NODE_SIZE-1 && i==0){
fprintf(v_switch_fsm, "(ch/%d_s_exists == 1’bl && ch_out_src == %d))\n",i,i);
Yelse if (i==P_NODE_SIZE-1 && i!=0){

fprintf(v_switch_fsm, "\t\t\t(ch/d_s_exists == 1’bl && ch_out_src

Yelse if (i!'=0){

%d))\n",i,1);

fprintf (v_switch_fsm, "\t\t\t(ch%d_s_exists == 1’bl && ch_out_src == %d) ||\n",i,i);
Yelseq{
fprintf(v_switch_fsm, "(ch%d_s_exists == 1’bl && ch_out_src == %d) ||\n",i,i);



}

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

// Message Properties
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

for(i=0;i<P_NODE_SIZE;

if (i==0){

APPENDIX B. SYSTEM GENERATOR

"\t\t\t\tch_out_exists <= 1’b1;\n");
"\t\t\telse\n");
"\t\t\t\tch_out_exists <= 1’b0;\n");
"\t\tend\n");

"\tend\n\n");

"\t/////11/7/17117/77/7/7777//7/7/7//7////7//7/////\n");
"\t// Message Properties\n");
"\t//////1/771/7171/17/7//7/7/7/7///7//7///7////7////\n");
"\talways@(posedge clk)\n");

"\tbegin\n") ;

"\t\tif (rst == 1’b1)\n");

"\t\tbegin\n");

"\t\t\tch_out_src <= 0;\n");
"\t\t\tch_out_msg_size <= 0;\n");

"\t\tend\n");

"\t\telse\n");

"\t\tbegin\n");

"\t\t\tif (1ld_ch_out_src == 1’b1)\n");
"\t\t\tbegin\n");

i++){

fprintf(v_switch_fsm, "\t\t\t\tif (ch¥d_dest >= C_DEST_L && chid_dest <=
C_DEST_H && ch%d_s_control == 1’bl && chd_s_exists == 1’b1)\n",i,i,i,i);

fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

Yelsed{

fprintf(v_switch_fsm,

"\t\t\t\tbegin\n");

"\t\t\t\t\tch_out_src <= ¥%d;\n",i);
"\t\t\t\t\tch_out_msg_size <= chd_size;\n",i);
"\t\t\t\tend\n");

"\t\t\t\telse if (ch¥%d_dest >= C_DEST_L && ch%d_dest <=

C_DEST_H && ch¥d_s_control == 1’bl && ch)d_s_exists == 1’b1)\n",i,i,i,i);

fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\t\t\t\tbegin\n");

"\t\t\t\t\tch_out_src <= %d;\n",i);
"\t\t\t\t\tch_out_msg_size <= ch}d_size;\n",i);
"\t\t\t\tend\n");

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

"\t\t\tend\n");

"\t\t\telse\n");

"\t\t\tbegin\n");

"\t\t\t\tch_out_src <= ch_out_src;\n");
"\t\t\t\tch_out_msg_size <= ch_out_msg_size;\n");
"\t\t\tend\n");

"\t\tend\n");

"\tend\n\n");

176



APPENDIX B. SYSTEM GENERATOR

// Counter

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

// Multiplexed Data
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

177

"\t/////11/7/7/717/77/7/7/777//7//7/7/7////7//7/////\n");
"\t// Counter\n");
"\t/////1/77/77171777771/77/777/77/777/7//77/7////\n");
"\talways@(posedge clk)\n");

"\tbegin\n") ;

"\t\tif (rst == 1’bl || ch_out_ld_cntr == 1’b1)\n");
"\t\t\tch_out_cntr <= ch_out_msg_size;\n");
"\t\telse\n");

"\t\tbegin\n") ;

"\t\t\tif (ch_out_en_cntr == 1’b1)\n");
"\t\t\t\tch_out_cntr <= ch_out_cntr - 1;\n");
"\t\tend\n");

"\tend\n\n") ;

"\t///117171771777777777777777777777777777777//\n");
"\t// Multiplexed Read/Data\n");
"\t///117177777777777777777777777777777777///\n\n");

for (i=0;i<P_NODE_SIZE;i++){

fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\t// Channel %d Read\n",i);

"\talways@(rst,ch_out_read, ch_out_src)\n");

"\tbegin\n") ;

"\t\tif (rst == 1’b1)\n");

"\t\t\tch)d_s_read <= 1°b0;\n",i);

"\t\telse\n");

"\t\tbegin\n") ;

"\t\t\tif (ch_out_read == 1’bl && ch_out_src == %d)\n",i);
"\t\t\t\tch%d_s_read <= 1’b1;\n",i);

"\t\t\telse\n");
"\t\t\t\tch%d_s_read <= 1°b0;\n",i);
"\t\tend\n");

"\tend\n\n") ;

fprintf(v_switch_fsm,
fprintf (v_switch_fsm,
fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

// Output Data
fprintf(v_switch_fsm, "\t// Output Data\n");
fprintf(v_switch_fsm, "\talways@(");
for (i=0;i<P_NODE_SIZE;i++){
fprintf(v_switch_fsm, "ch)d_data, ",i);
}
fprintf(v_switch_fsm, "ch_out_write, ch_out_src, rst)\n");
fprintf(v_switch_fsm, "\tbegin\n");
for(i=0;i<P_NODE_SIZE;i++){
if (i==0){
fprintf(v_switch_fsm, "\t\tif (ch_out_write == 1’bl && ch_out_src == %d)\n",i);
fprintf(v_switch_fsm, "\t\t\tch_out_m_data <= chid_data;\n",i);
Yelsed{

fprintf(v_switch_fsm, "\t\telse if (ch_out_write == 1’bl && ch_out_src == %d)\n",i);



APPENDIX B. SYSTEM GENERATOR

fprintf(v_switch_fsm, "\t\t\tch_out_m_data <= chid_data;\n",i);

}
fprintf(v_switch_fsm,
fprintf (v_switch_fsm,

fprintf(v_switch_fsm,

fprintf(v_switch_fsm,

"\t\telse\n");
"\t\t\tch_out_m_data
"\tend\n\n");

"endmodule") ;

<= 0;\n");

[1171717777777777717777777777777777/77777777777777/777/7777777/777/7777/77/717777777/
// Generate Switch Data Files

// Generate Pao File

void generate_switch_pao(int P_NODE_SIZE, FILE

fprintf (switch_pao,
fprintf (switch_pao,
fprintf (switch_pao,

fprintf (switch_pao,
fprintf (switch_pao,

// Generate HDL Files

*switch_pao){

"## Description:

Peripheral Analysis Order\n");

"1lib switch’d_v1_00_a
"1lib switch)d_v1_00_a

void generate_switch_hdl(int P_NODE_SIZE, FILE

\n\n") ;

switch/%d verilog\n", P_NODE_SIZE, P_NODE_SIZE);
switch_fsmjd verilog\n", P_NODE_SIZE, P_NODE_SIZE);

*v_switch, FILE *v_switch_fsm, int P_FSL_WIDTH){

generate_switch_v(P_NODE_SIZE, v_switch, P_FSL_WIDTH);
generate_switch_fsm_v(P_NODE_SIZE, v_switch_fsm, P_FSL_WIDTH);

// Generate Data Files

void generate_switch_data(int P_NODE_SIZE, FILE *switch_mpd, FILE *switch_pao, int P_FSL_WIDTH){

generate_switch_mpd (P_NODE_SIZE, switch_mpd, P_FSL_WIDTH);
generate_switch_pao(P_NODE_SIZE, switch_pao);

178



APPENDIX B. SYSTEM GENERATOR 179

B.5 Generate Xilinx *.xmp file (generate xmp.c)

The following functions are used to generate the system.xmp file required by the Xilinx

CAD tools.

#include <stdio.h>
#include "globals.h"

//Generate Version Number

void gen_xmp_version(FILE *xmp_file){

fprintf (xmp_£file,
fprintf (xmp_£file,
fprintf (xmp_file,

fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,

// Generate Parameters

fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_£file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_£file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,
fprintf (xmp_file,

int i;

"XmpVersion: 10.1.02\n");
"VerMgmt: 10.1.02\n");
"IntStyle: default\n");

// Generate File Locations

void gen_xmp_file_locations(FILE *xmp_file){

"MHS File:
"MSS File:
"NPL File: projnav/system.ise\n");
"UcfFile: data/system.ucf\n");

system.mhs\n");

system.mss\n") ;

void gen_xmp_parameters(FILE *xmp_file){

"UserCmd1l: \n");
"UserCmd1Type: O\n");
"UserCmd2: \n");
"UserCmd2Type: O\n");
"TopInst: system_i\n");
"GenSimTB: O0\n");
"InsertNoPads: 0\n");
"WarnForEAArch: 1\n");
"HdlLang: VHDL\n");
"Simulator: mti\n");
"SimModel: BEHAVIORAL\n");
"MixLangSim: 1\n");
"FpgaImpMode: O\n");
"EnableParTimingError: 1\n");
"EnableResetOptimization: 0\n");

"ShowLicenseDialog: 1\n");

// Generate MicroBlazes

void gen_xmp_processors(FILE *xmp_file, int P_NUM_NODES){

char gen_xmp_microblaze[100];



APPENDIX B. SYSTEM GENERATOR 180

strcpy(gen_xmp_microblaze, "Processor: microblaze_");

for (i=0;i<P_NUM_NODES;i++){
fprintf (xmp_file, gen_xmp_microblaze); // declare uB
fprintf (xmp_file, "%d", i);
fprintf (xmp_file, "\nBootLoop: O\n");
fprintf(xmp_file, "XmdStub: O\n");

// Generate FPGA Architecture

void gen_xmp_architecture(FILE *xmp_file){
fprintf (xmp_file, "Architecture: ");
fprintf (xmp_file, P_ARCH);
fprintf (xmp_file, "\n");
fprintf (xmp_file, "Device: ");
fprintf (xmp_file, P_DEVICE);
fprintf (xmp_file, "\n");
fprintf(xmp_file, "Package: ");
fprintf (xmp_file, P_PACKAGE);
fprintf (xmp_file, "\n");
fprintf (xmp_file, "SpeedGrade: ");
fprintf (xmp_file, P_SPEED);
fprintf (xmp_file, "\n");

// Generate XMP File

void generate_xmp(FILE *xmp_file){
gen_xmp_version(xmp_file);
gen_xmp_file_locations(xmp_file);
gen_xmp_architecture(xmp_file);

gen_xmp_parameters (xmp_file);

// Generate MicroBlaze nodes
if (P_NODE_TYPE == 0){
gen_xmp_processors (xmp_file, P_NUM_NODES);



APPENDIX B. SYSTEM GENERATOR 181

B.6 Generate Xilinx *.mbhs file (generate mbhs.c)

The following functions are used to generate the system.mbhs file required by the Xilinx CAD

tools.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#include "globals.h"

#define P_MAX_CONNECTIONS_PER_NODE 128
#define P_MAX_NODES 128

// Generate Random Number
int int_rand(int N){
return(rand()/(int) (((unsigned)RAND_MAX + 1) / N));

// Function to generate MicroBlaze Nodes in *.mhs file
void generate_mhs_microblaze(FILE *mhs_file, int P_NODE, int PLB_CONNECT, char P_ARCH[100],
int P_W_RESET){

// Generate MicroBlaze HW Instance

fprintf(mhs_file, "BEGIN microblaze\n");

PARAMETER INSTANCE = microblaze_%d\n", P_NODE);
PARAMETER HW_VER = 7.10.c \n");

PARAMETER C_FSL_LINKS = 1\n");

fprintf (mhs_file, " PARAMETER C_FAMILY = ");

fprintf (mhs_file, P_ARCH);

fprintf (mhs_file, "\n");

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

// Set MicroBlaze parameters

PARAMETER C_INSTANCE = microblaze_%d\n", P_NODE);

PARAMETER C_USE_HW_MUL = O\n");

PARAMETER C_USE_MSR_INSTR = O\n");

PARAMETER C_USE_PCMP_INSTR = O\n");

fprintf (mhs_file, PARAMETER C_AREA_OPTIMIZED = 1\n");

// COnnect to PLB bus

if (PLB_CONNECT == 1){
fprintf(mhs_file, " BUS_INTERFACE DPLB = mb_plb\n");
fprintf(mhs_file, " BUS_INTERFACE IPLB = mb_plb\n");

"

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

}
// Connect to Associated FSL Bus
fprintf(mhs_file, " BUS_INTERFACE SFSLO = fsl_v20_%d\n", P_NODE*2+1);
fprintf(mhs_file, " BUS_INTERFACE DLMB = dlmb_%d\n", P_NODE);
fprintf(mhs_file, " BUS_INTERFACE ILMB = ilmb_%d\n", P_NODE);
fprintf(mhs_file, " BUS_INTERFACE MFSLO = fsl_v20_%d\n", P_NODE*2);
if (P_W_RESET == 1){

fprintf(mhs_file, " PORT MB_RESET = mb_reset\n");



APPENDIX B. SYSTEM GENERATOR

Yelsed{

182

fprintf(mhs_file, " PORT MB_RESET = sys_rst_s\n");

}
fprintf (mhs_file,

"END\n\n") ;

// Generate LMB/Controller/Memory

// Generate Instruction Bus

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

if (P_W_RESET == 1){
fprintf(mhs_file, " PORT SYS_Rst =

Yelsed{

fprintf(mhs_file, " PORT SYS_Rst =

}
fprintf (mhs_file,

"BEGIN 1lmb_vi10\n");

" PARAMETER INSTANCE = ilmb_%d\n", P_NODE);
" PARAMETER HW_VER = 1.00.a\n");
" PORT LMB_Clk = sys_clk_s\n");
// Connect to Reset Controller

// Always connected to sys_clk_s

sys_bus_reset\n");

sys_rst_s\n");

"END\n\n") ;

// Generate Data Bus

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

if (P_W_RESET == 1){
fprintf(mhs_file, " PORT SYS_Rst =

Yelsed{

fprintf(mhs_file, " PORT SYS_Rst =

}
fprintf (mhs_file,

"BEGIN 1lmb_vi10\n");

" PARAMETER INSTANCE = dlmb_%d\n", P_NODE);
" PARAMETER HW_VER = 1.00.a\n");
" PORT LMB_Clk = sys_clk_s\n"); // Always connected to sys_clk_s
// Connect to Reset Controller

sys_bus_reset\n");

sys_rst_s\n");

"END\n\n") ;

// Generate DLMB Controller

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

"BEGIN 1lmb_bram_if_cntlr\n");

" PARAMETER INSTANCE = dlmb_cntlr_%d\n", P_NODE);
PARAMETER HW_VER = 2.10.a\n");

PARAMETER C_BASEADDR = 0x00000000\n") ;

PARAMETER C_HIGHADDR = 0x00001fff\n");
BUS_INTERFACE SLMB = dlmb_%d\n", P_NODE);
BUS_INTERFACE BRAM_PORT = dlmb_port_%d\n", P_NODE);
"END\n\n") ;

[l

"

"

"

"

// Generate ILMB Controller

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
// Generate BRAM
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

"BEGIN 1mb_bram_if_cntlr\n");

" PARAMETER INSTANCE = ilmb_cntlr_%d\n", P_NODE);
PARAMETER HW_VER = 2.10.a\n");

PARAMETER C_BASEADDR = 0x00000000\n");

PARAMETER C_HIGHADDR = 0x00001fff\n");
BUS_INTERFACE SLMB = ilmb_%d\n", P_NODE);
BUS_INTERFACE BRAM_PORT = ilmb_port_%d\n", P_NODE);
"END\n\n") ;

"

[l

[l

"

[

"BEGIN bram_block\n");
" PARAMETER INSTANCE = lmb_bram_%d\n", P_NODE);
" PARAMETER HW_VER = 1.00.a\n");



APPENDIX B. SYSTEM GENERATOR 183

fprintf(mhs_file, " BUS_INTERFACE PORTA = ilmb_port_%d\n", P_NODE);
fprintf (mhs_file, " BUS_INTERFACE PORTB = dlmb_port_%d\n", P_NODE);
fprintf (mhs_file, "END\n\n");

// Generate FSL Ports
// Master and Slave
fprintf(mhs_file, "BEGIN fsl_v20\n");
fprintf(mhs_file, " PARAMETER INSTANCE = fsl_v20_%d\n", P_NODE*2);
fprintf(mhs_file, " PARAMETER HW_VER = 2.11.a\n");
fprintf (mhs_file, " PORT FSL_Clk = sys_clk_s\n");
if (P_W_RESET == 1){
fprintf(mhs_file, " PORT SYS_Rst = sys_bus_reset\n");
Yelsed{
fprintf(mhs_file, " PORT SYS_Rst = sys_rst_s\n");
}
fprintf (mhs_file, "END\n\n");

fprintf(mhs_file, "BEGIN fsl_v20\n");
fprintf (mhs_file, " PARAMETER INSTANCE = fs1_v20_%d\n", P_NODE#2+1);
fprintf(mhs_file, " PARAMETER HW_VER = 2.11.a\n");
fprintf (mhs_file, " PORT FSL_Clk = sys_clk_s\n");
if (P_W_RESET == 1){
fprintf(mhs_file, " PORT SYS_Rst = sys_bus_reset\n");
Yelse{
fprintf(mhs_file, " PORT SYS_Rst = sys_rst_s\n");
}
fprintf (mhs_file, "END\n\n");

// Generate Multiplier Node Specifications

void generate_mhs_node(FILE *mhs_file, int P_NODE, int P_W_RESET, int P_FSL_WIDTH,
int P_MULTIPLICAND_WIDTH, int P_MULTIPLICAND_WIDTH_MIN,
int P_MULTIPLICAND_WIDTH_MAX){

int multiplicand_width;

// determine node size

if (P_NODE == 0){
multiplicand_width = P_MULTIPLICAND_WIDTH;
multiplicand_size[P_NODE] = multiplicand_width;

Yelseq{
multiplicand_width = int_rand ((P_MULTIPLICAND_WIDTH_MAX -

P_MULTIPLICAND_WIDTH_MIN)/2+1)*2+P_MULTIPLICAND_WIDTH_MIN;

multiplicand_size[P_NODE] = multiplicand_width;

// Generate Multiplier
if (P_NODE == 0){
fprintf(mhs_file, "BEGIN init_multiplier_%d_%d\n", P_FSL_WIDTH, multiplicand_width);



APPENDIX B. SYSTEM GENERATOR 184

fprintf (mhs_file, " PARAMETER INSTANCE = init_multiplier_%d_%d_%d\n", P_FSL_WIDTH,
multiplicand_width, P_NODE);
Yelsed{
fprintf(mhs_file, "BEGIN multiplier_%d_%d\n", P_FSL_WIDTH, multiplicand_width);
fprintf(mhs_file, " PARAMETER INSTANCE = multiplier_%d_%d_%d\n", P_FSL_WIDTH,
multiplicand_width, P_NODE) ;
}
fprintf(mhs_file, " PARAMETER HW_VER = 1.00.a\n");
fprintf(mhs_file, " BUS_INTERFACE MFSL = fsl_v20_%d\n", P_NODEx2);
fprintf(mhs_file, " BUS_INTERFACE SFSL = fsl_v20_%d\n", P_NODE*2+1);
if (P_NODE == 0){
fprintf(mhs_file, " PORT output_result = output_result_pin\n");
fprintf(mhs_file, " PORT multiplicand = multiplicand_pin\n");
}
fprintf(mhs_file, "END\n\n");

// Generate FSL Ports

// Master and Slave

fprintf (mhs_file, "BEGIN fsl_v20\n");

fprintf (mhs_file, " PARAMETER INSTANCE = fsl_v20_%d\n", P_NODE*2);
fprintf(mhs_file, " PARAMETER HW_VER = 2.11.a\n");
fprintf(mhs_file, " PARAMETER C_FSL_DWIDTH = %d\n", P_FSL_WIDTH);
fprintf (mhs_file, " PORT FSL_Clk = sys_clk_s\n");

if (P_W_RESET == 1){ // Connect to Reset Controller
fprintf(mhs_file, " PORT SYS_Rst = sys_bus_reset\n");
Yelsed{

fprintf(mhs_file, " PORT SYS_Rst = sys_rst_s\n");
}
fprintf (mhs_file, "END\n\n");

fprintf(mhs_file, "BEGIN fsl_v20\n");
fprintf(mhs_file, " PARAMETER INSTANCE = fs1_v20_%d\n", P_NODE#2+1);
fprintf(mhs_file, " PARAMETER HW_VER = 2.11.a\n");
fprintf(mhs_file, " PARAMETER C_FSL_DWIDTH = %d\n", P_FSL_WIDTH);
fprintf (mhs_file, " PORT FSL_Clk = sys_clk_s\n");
if (P_W_RESET == 1){ // Connect to Reset Controller
fprintf(mhs_file, " PORT SYS_Rst
Yelsed{
fprintf(mhs_file, " PORT SYS_Rst = sys_rst_s\n");

sys_bus_reset\n");

}
fprintf (mhs_file, "END\n\n");

// Generate PLB Bus
void generate_mhs_plb(FILE *mhs_file, int P_W_RESET){

fprintf (mhs_file, "BEGIN plb_v46\n");

fprintf (mhs_file, " PARAMETER INSTANCE = mb_plb\n");
fprintf (mhs_file, " PARAMETER HW_VER = 1.02.a\n");
fprintf(mhs_file, " PORT PLB_Clk = sys_clk_s\n");



APPENDIX B. SYSTEM GENERATOR 185

if (P_W_RESET == 1){ // Connect to Reset Controller
fprintf(mhs_file, " PORT SYS_Rst = sys_bus_reset\n");
Yelsed{

fprintf(mhs_file, " PORT SYS_Rst = sys_rst_s\n");
}
fprintf(mhs_file, "END\n\n");

// Generate UART
void generate_mhs_uart(FILE *mhs_file, int P_DCM_FREQUENCY, int P_CLK_FREQUENCY, int P_W_CLK){

fprintf(mhs_file, "BEGIN xps_uartlite\n");

PARAMETER INSTANCE = RS232_Uart\n");
PARAMETER HW_VER = 1.00.a\n");
PARAMETER C_BAUDRATE = 9600\n");
PARAMETER C_DATA_BITS = 8\n");
PARAMETER C_ODD_PARITY = 0O\n");
PARAMETER C_USE_PARITY = O\n");

[l

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

if (P_W_CLK == 1){

fprintf(mhs_file, " PARAMETER C_SPLB_CLK_FREQ_HZ
Yelse{

fprintf(mhs_file, " PARAMETER C_SPLB_CLK_FREQ_HZ = %d\n", P_CLK_FREQUENCY);

%d\n", P_DCM_FREQUENCY) ;

PARAMETER C_BASEADDR = 0x84000000\n") ;
PARAMETER C_HIGHADDR = 0x8400ffff\n");
BUS_INTERFACE SPLB = mb_plb\n");

PORT RX = RS232_Uart_RX\n");

fprintf (mhs_file, " PORT TX = RS232_Uart_TX\n");
fprintf(mhs_file, "END\n\n");

fprintf (mhs_file,

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

[l

// Generate Switch Specifications

void generate_mhs_switch(FILE *mhs_file, int P_NODE,int P_NODE_SIZE,
int P_NODE_CONNECTIONS[P_MAX_CONNECTIONS_PER_NODE],
int P_NODE_CHANNELS[P_MAX_CONNECTIONS_PER_NODE]){

int i;

fprintf (mhs_file, "BEGIN switch%d\n", P_NODE_SIZE);

PARAMETER INSTANCE = switch’d_%d\n", P_NODE_SIZE, P_NODE);
PARAMETER HW_VER = 1.00.a\n");

PARAMETER C_DEST_L = %d\n", P_NODE);

PARAMETER C_DEST_H = %d\n", P_NODE);

BUS_INTERFACE MFSL = fsl_v20_%d\n", P_NODE*2+1);
BUS_INTERFACE SFSL = fsl_v20_%d\n", P_NODE*2);

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

fprintf (mhs_file,

_SIZE;i++){

for (i=0;i<P_NODE



APPENDIX B. SYSTEM GENERATOR

// output ports associated to own switch

fprintf(mhs_file, " PORT ch)d_out_read = switch_%d_ch)d_read\n", i, P_NODE, i);
fprintf(mhs_file, " PORT ch)d_out_exists = switch_%d_ch/d_exists\n", i, P_NODE,
fprintf(mhs_file, " PORT ch)d_out_ctrl = switch_%d_ch¥%d_ctrl\n", i, P_NODE, i);
fprintf(mhs_file, " PORT ch%d_out_data = switch_%d_ch¥%d_data\n", i, P_NODE, i);

// input ports connected to desired connection

fprintf(mhs_file, " PORT ch)d_in_read = switch_%d_chld_read\n", i,
P_NODE_CONNECTIONS([i], P_NODE_CHANNELS[il);

fprintf(mhs_file, " PORT ch)d_in_exists = switch_Jd_ch%d_exists\n", i,
P_NODE_CONNECTIONS([i], P_NODE_CHANNELS[il);

fprintf(mhs_file, " PORT ch)d_in_ctrl = switch_%d_ch)d_ctrl\n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[i]);

fprintf(mhs_file, " PORT ch)d_in_data = switch_}d_ch’d_data \n", i,
P_NODE_CONNECTIONS([i], P_NODE_CHANNELS[il);

}
fprintf (mhs_file,

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,
fprintf (mhs_file,

"END\n\n") ;

// Generate Clock Generator (Optional Function)
void generate_mhs_clock_gen(FILE *mhs_file, int P_CLK_FREQUENCY, int P_DCM_FREQUENCY){

"BEGIN clock_generator\n");

" PARAMETER INSTANCE = clock_generator_0\n");
PARAMETER HW_VER = 2.01.a\n");

PARAMETER C_EXT_RESET_HIGH = 1\n");

PARAMETER C_CLKIN_FREQ = %d\n", P_CLK_FREQUENCY);
PARAMETER C_CLKOUTO_FREQ = %d\n", P_DCM_FREQUENCY) ;
PARAMETER C_CLKOUTO_BUF = TRUE\n");

PARAMETER C_CLKOUTO_PHASE = O\n");

PARAMETER C_CLKOUTO_GROUP = NONE\n");

PARAMETER C_DCMO_CLKIN_PERIOD = 10.000000\n");
PARAMETER C_DCM1_CLKIN_PERIOD = 10.000000\n");
PARAMETER C_DCM2_CLKIN_PERIOD = 10.000000\n");
PARAMETER C_DCM3_CLKIN_PERIOD = 10.000000\n");
PORT CLKOUTO = sys_clk_s\n");

PORT CLKIN = dcm_clk_s\n");

PORT RST = net_gnd\n");

PORT LOCKED = Dcm_all_locked\n");

"END\n\n") ;

[l

[l

[l

[l

"

// Generate Reset Controller (Optional Function)

void generate_mhs_reset_controller(FILE *mhs_file, int P_W_CLK){

"BEGIN proc_sys_reset\n");

"PARAMETER INSTANCE = proc_sys_reset_O\n");
"PARAMETER HW_VER = 2.00.a\n");

"PARAMETER C_EXT_RESET_HIGH = O\n");

"PORT Slowest_sync_clk = sys_clk_s\n");

i);

186



APPENDIX B. SYSTEM GENERATOR 187

if (P_W_CLK == 1){

fprintf(mhs_file, "PORT Dcm_locked = Dcm_all_locked\n");
}
fprintf (mhs_file, "PORT Ext_Reset_In = sys_rst_s\n");
fprintf (mhs_file, "PORT MB_Reset = mb_reset\n");
fprintf(mhs_file, "PORT Bus_Struct_Reset = sys_bus_reset\n");
fprintf(mhs_file, "PORT Peripheral_Reset = sys_periph_reset\n");
fprintf (mhs_file, "END\n\n");

// Generate Header used in MHS Function
void generate_mhs_header (FILE *mhs_file, int P_CLK_FREQUENCY, int P_W_CLK,
int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH, int P_TIMING_CONSTRAINT){

// Generate Header

fprintf (mhs_file, "#####H#HEHHEHEHEHEEHEHEREEHEHEHEEHEHEHESEE R \n");
fprintf (mhs_file, "# MHS FILE\n\n");

fprintf(mhs_file, "PARAMETER VERSION = 2.1.0\n\n");

// Generate External Ports
if (P_NODE_TYPE==1){
fprintf(mhs_file, " PORT result_output= output_result_pin , DIR = 0, VEC =
[%d:0]\n", P_FSL_WIDTH-1);
fprintf(mhs_file, " PORT multiplicand_input = multiplicand_pin, DIR = I, VEC =
[%d:0]\n\n", P_MULTIPLICAND_WIDTH-1);
Yelseq{
fprintf(mhs_file, " PORT fpga_O_RS232_Uart_RX_pin = RS232_Uart_RX, DIR = I\n");
fprintf (mhs_file, " PORT fpga_0_RS232_Uart_TX_pin = RS232_Uart_TX, DIR = 0\n");

fprintf(mhs_file, " PORT sys_clk_pin = ");
if (P_W_CLK == 1){
fprintf (mhs_file, "dcm_clk_s,");
Yelse{
fprintf(mhs_file, "sys_clk_s,");
}
if (P_TIMING_CONSTRAINT == 1){
fprintf(mhs_file, " DIR = I, SIGIS = CLK, CLK_FREQ = ’%d\n",P_CLK_FREQUENCY);
}else{
fprintf(mhs_file, " DIR = I, SIGIS = CLK\n");
}
fprintf(mhs_file, " PORT sys_rst_pin = sys_rst_s, DIR = I, RST_POLARITY = 1, SIGIS = RST\n\n");

// Main function used to generate MHS file, calls subfunctions to generate

// each section corresponding to individual elements

void generate_mhs(FILE #mhs_file, int P_NODE_SIZE[P_MAX_NODES], int P_NODE_CONNECTIONS
[P_MAX_NODES] [P_MAX_NODES], int P_NODE_CHANNELS[P_MAX_NODES] [P_MAX_NODES],
int P_CLK_FREQUENCY, int P_NUM_NODES, int P_FSL_WIDTH,



APPENDIX B. SYSTEM GENERATOR

int P_MULTIPLICAND_WIDTH, int P_MULTIPLICAND_WIDTH_MIN,
int P_MULTIPLICAND_WIDTH_MAX, int P_TIMING_CONSTRAINT){

int 1i,j;
int P_CONNECTIONS[P_MAX_CONNECTIONS_PER_NODE];
int P_CHANNELS [P_MAX_CONNECTIONS_PER_NODE] ;

int P_W_CLK = O;
int P_W_RESET = 0;

// Put this elsewhere
int P_DCM_FREQUENCY = P_CLK_FREQUENCY;

generate_mhs_header (mhs_file, P_CLK_FREQUENCY, P_W_CLK, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,

P_TIMING_CONSTRAINT);

//Generate Multiplier nodes
if (P_NODE_TYPE == 1){
for (i=0;i<P_NUM_NODES;i++){
if (i==0){

generate_mhs_node(mhs_file, i, P_W_RESET, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,

P_MULTIPLICAND_WIDTH_MIN, P_MULTIPLICAND_WIDTH_MAX);
Yelse{

generate_mhs_node(mhs_file, i, P_W_RESET, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,

P_MULTIPLICAND_WIDTH_MIN, P_MULTIPLICAND_WIDTH_MAX) ;

}
}
// Generate MicroBlaze Nodes
Yelseq{
for (i=0;i<P_NUM_NODES;i++){
if (i==0){
generate_mhs_microblaze(mhs_file, i, 1, P_ARCH, P_W_RESET);
Yelse{
generate_mhs_microblaze(mhs_file, i, O, P_ARCH, P_W_RESET);
}
}
// Generate busses for MicroBlaze
//generate buses
generate_mhs_plb(mhs_file, P_W_RESET);
//generate uart
generate_mhs_uart(mhs_file, P_DCM_FREQUENCY, P_CLK_FREQUENCY, P_W_CLK);
}

//generate switch
for (i=0;i<P_NUM_NODES;i++){

for (j=0;j<P_NODE_SIZE[i];j++){
P_CONNECTIONS[j] = P_NODE_CONNECTIONS[i] [j];
P_CHANNELS[j] = P_NODE_CHANNELS[i][j];

188



APPENDIX B. SYSTEM GENERATOR 189

}

generate_mhs_switch(mhs_file, i, P_NODE_SIZE[i], P_CONNECTIONS, P_CHANNELS);
}
//generate clock generator
if (P_W_CLK == 1){

generate_mhs_clock_gen(mhs_file, P_CLK_FREQUENCY, P_DCM_FREQUENCY) ;

//generate reset controller
if (P_W_RESET == 1){
generate_mhs_reset_controller (mhs_file, P_W_CLK);



APPENDIX B. SYSTEM GENERATOR 190

B.7 Generate Xilinx *.mss file (generate mss.c)

The following functions are used to generate the system.mss file required by the Xilinx CAD

tools.

#include <stdio.h>
#include "globals.h"

#define P_MAX_NODES 128

// Generate MicroBlaze Drivers
void generate_mss_microblaze(FILE #*mss_file, int P_NODE, int P_CONNECT_RS232){

//Generate 0S

fprintf(mss_file, "BEGIN 0S\n");

PARAMETER OS_NAME = standalone\n");

PARAMETER OS_VER = 2.00.a\n");

fprintf(mss_file, " PARAMETER PROC_INSTANCE = microblaze_%d\n", P_NODE);

if (P_CONNECT_RS232 == 1){
fprintf(mss_file, " PARAMETER STDIN = RS232_Uart\n");
fprintf(mss_file, " PARAMETER STDOUT = RS232_Uart\n");

fprintf (mss_file,

fprintf(mss_file,

}
fprintf(mss_file, "END\n\n");

//Generate uB

fprintf(mss_file, "BEGIN PROCESSOR\n");

PARAMETER DRIVER_NAME = cpu\n");

PARAMETER DRIVER_VER = 1.11.b\n");

PARAMETER HW_INSTANCE = microblaze_%d\n", P_NODE);
PARAMETER COMPILER = mb-gcc\n");

fprintf (mss_file, PARAMETER ARCHIVER = mb-ar\n");

fprintf(mss_file, "END\n\n");

fprintf (mss_file,

fprintf (mss_file,

fprintf (mss_file,

fprintf(mss_file,

"

//Generate LMB Controller

fprintf(mss_file, "BEGIN DRIVER\n");

fprintf(mss_file, " PARAMETER DRIVER_NAME = bram\n");
fprintf(mss_file, " PARAMETER DRIVER_VER = 1.00.a\n");
fprintf(mss_file, " PARAMETER HW_INSTANCE = dlmb_cntlr_%d\n", P_NODE);
fprintf(mss_file, "END\n\n");

fprintf(mss_file, "BEGIN DRIVER\n");

fprintf(mss_file, " PARAMETER DRIVER_NAME = bram\n");
fprintf(mss_file, " PARAMETER DRIVER_VER = 1.00.a\n");
fprintf(mss_file, " PARAMETER HW_INSTANCE = ilmb_cntlr_%d\n", P_NODE);
fprintf(mss_file, "END\n\n");

//Generate BRAM Block
fprintf(mss_file, "BEGIN DRIVER\n");



APPENDIX B. SYSTEM GENERATOR 191

fprintf(mss_file, "PARAMETER DRIVER_NAME = generic\n");
fprintf(mss_file, "PARAMETER DRIVER_VER = 1.00.a\n");
fprintf(mss_file, "PARAMETER HW_INSTANCE = lmb_bram_%d\n", P_NODE);
fprintf(mss_file, "END\n\n");

// Generate Driver for Multiplier Node
void generate_mss_node(FILE *mss_file, int P_NODE, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH){

//Generate Multiplier
fprintf(mss_file, "BEGIN DRIVER\n");
fprintf(mss_file, " PARAMETER DRIVER_NAME = generic\n");
fprintf(mss_file, " PARAMETER DRIVER_VER = 1.00.a\n");
if (P_NODE == 0){
fprintf(mss_file, " PARAMETER HW_INSTANCE = init_multiplier_%d_%d_%d\n",
P_FSL_WIDTH, multiplicand_size[P_NODE], P_NODE);
Yelseq{
fprintf(mss_file, " PARAMETER HW_INSTANCE = multiplier_%d_%d_%d\n",
P_FSL_WIDTH, multiplicand_size[P_NDDE], P_NODE) ;
}
fprintf(mss_file, "END\n");

// Generate Driver for Custom Switch
void generate_mss_switch(FILE *mss_file, int P_NODE, int P_NODE_SIZE){

fprintf(mss_file, "BEGIN DRIVER\n");

fprintf(mss_file, " PARAMETER DRIVER_NAME = generic\n");

fprintf(mss_file, " PARAMETER DRIVER_VER = 1.00.a\n");

fprintf(mss_file, " PARAMETER HW_INSTANCE = switch’d_%d\n", P_NODE_SIZE, P_NODE);
fprintf(mss_file, "END\n\n");

// Generate Driver for UART
void generate_mss_uart(FILE *mss_file){

fprintf(mss_file, "BEGIN DRIVER\n");

fprintf(mss_file, " PARAMETER DRIVER_NAME = uartlite\n");
fprintf(mss_file, " PARAMETER DRIVER_VER = 1.13.a\n");
fprintf(mss_file, " PARAMETER HW_INSTANCE = RS232_Uart\n");
fprintf(mss_file, "END\n");

// Generate Driver for Clock

void generate_mss_clock_gen(FILE *mss_file){

fprintf (mss_file, "BEGIN DRIVER\n");
fprintf(mss_file, " PARAMETER DRIVER_NAME = generic\n");
fprintf(mss_file, " PARAMETER DRIVER_VER = 1.00.a\n");



APPENDIX B. SYSTEM GENERATOR 192

fprintf(mss_file, " PARAMETER HW_INSTANCE = clock_generator_O\n");
fprintf(mss_file, "END\n");

// Generate Header for MSS File

void generate_mss_header (FILE *mss_file){

fprintf (mss_file, "###HEHEHHEHEHHHEHEHEEHEHEEEHEHEEEHEHEEEHEHE D) 5
fprintf(mss_file, "# MSS FILE\n\n");

// Main function that generates MSS file using subfunctions to generate

// individual elements

void generate_mss(FILE *mss_file, int P_NUM_NODES, int P_NODE_SIZE[P_MAX_NODES],
int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH){

int i;
int P_W_CLK = 0;

// generate header

generate_mss_header (mss_file);

// generate multiplier
if (P_NODE_TYPE == 1){
for (i=0;1i<P_NUM_NODES;i++){

if (i==0){
generate_mss_node(mss_file, i, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH) ;
Yelse{
generate_mss_node(mss_file, i, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);
}
}
Yelse{

// generate MicroBlaze
for (i=0;i<P_NUM_NODES;i++){
if (i==0){
generate_mss_microblaze(mss_file, i, 1);
Yelse{

generate_mss_microblaze(mss_file, i, 1);

// generate switches
for (i=0;i<P_NUM_NODES;i++){
generate_mss_switch(mss_file, i, P_NODE_SIZE[il);

// generate uart

//generate_mss_uart(mss_file);



APPENDIX B. SYSTEM GENERATOR 193

// generate clock
if (P_W_CLK == 1){
generate_mss_clock_gen(mss_file);

}



APPENDIX B. SYSTEM GENERATOR 194

B.8 Generate Xilinx *.opt file (generate opt.c)

The following functions are used to generate the fast_runtime.opt file required by the Xilinx

CAD tools.

#include <stdio.h>

// Generate option file, which characterizes the CAD tool’s run-time
// parameters
void generate_opt(FILE *opt_file, int P_MAP_EFFORT, int P_PAR_EFFORT) {

char map_effort[100];
char par_effort[100];

// Define Map Effort Level
if (P_MAP_EFFORT == 1){
strcpy(map_effort, "-ol high;");

Yelsed{

strcpy(map_effort, "-ol std;");

// Define PAR Effort Level
if (P_PAR_EFFORT == 1){
strcpy(par_effort, "-ol high;");

Yelseq{

strcpy(par_effort, "-ol std;");

fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf(opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf(opt_file,
fprintf (opt_£file,

"FLOWTYPE = FPGA;\n");
WIS \D ")
"## Filename: fast_runtime.opt\n");

"##\n") ;

"## Option File For Xilinx FPGA Implementation Flow for Fast\n");

"## Runtime.\n");

l|## \nll) ;

"## Version: 4.1.1\n");
A D)
"#\1’1") ;

"# Options for Tramslator\n");

l|#\nll) ;

"# Type \"ngdbuild -h\" for a list of ngdbuild command line options\n");
l|#\n|l) ;

"Program ngdbuild \n");

"-p <partname>; # Partname to use - picked from xflow commandline\n");
"-nt timestamp; # NGO File generation. Regenerate only when\n");

" # source netlist is newer than existing \n");

" # NGO file (default)\n");

"-bm <design>.bmm # Block RAM memory map file\n");

"<userdesign>; # User design - pick from xflow command line\n");



APPENDIX B. SYSTEM GENERATOR 195

fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,

fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf(opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,

fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf(opt_file,
fprintf (opt_£file,

fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_£file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,
fprintf (opt_file,

fprintf (opt_file,

"-uc <design>.ucf;# ucf constraints\n");
"<design>.ngd; # Name of NGD file. Filebase same as design filebase\n");
"End Program ngdbuild\n\n");

"a") ;

"# Options for Mapper\n");

"H\n");

"# Type \"map -h <arch>\" for alist of map command line options\n");
"#\n") ;

"Program map\n");

"-o0 <design>_map.ncd; # Output Mapped ncd file\n");

"-w; # Overwrite output files.\n");

"-pr b; # Pack internal FF/latches into IOBs\n");
"#-fp <design>.mfp; # Floorplan file\n");

map_effort);

" # Overall Effort\n");

"\n-timing;\n");

"<inputdir><design>.ngd; # Input NGD file\n");
"<inputdir><design>.pcf; # Physical constraints file\n");

"END Program map\n\n");

"#\n") ;

"# Options for Post Map Trace\n");

"#\n") ;

"# Type \"trce -h\" for a list of trce command line options\n");
"#\n") ;

"Program post_map_trce\n");

"-e 3; # error report limited to 3 items per constraint\n");
"#-0 <design>_map.twr; # Output trace report file\n");

"-xml <design>_map.twx;# Output XML version of timing report\n");
"#-tsi <design>_map.tsi; # Produce Timing Interaction report\n");
"<inputdir><design>_map.ncd; # Input mapped ncd\n");
"<inputdir><design>.pcf; # Physical constraints file\n");
"END Program post_map_trce\n\n");

"#\Il") ;

"# Options for Place and Route\n");

ll#\nll) ;

"# Type \"par -h\" for alist of par command line options\n");
l|#\nll) ;

"Program par\n");

"-w; # Overwrite existing placed and routed ncd\n");
par_effort);

" # Overall Effort\n");

"<inputdir><design>_map.ncd; # Input mapped NCD file\n");
"<design>.ncd; # Output placed and routed NCD\n");
"<inputdir><design>.pcf; # Input physical constraints file\n");
"END Program par\n\n");

"#\Il") ;



APPENDIX B. SYSTEM GENERATOR 196

fprintf(opt_file, "# Options for Post Par Trace\n");

fprintf(opt_file, "#\n");

fprintf(opt_file, "# Type \"trce -h\" for a 1list of trce command line options\n");
fprintf (opt_file, "#\n");

fprintf (opt_file, "Program post_par_trce\n");

fprintf (opt_file, "-e 3; # error report limited to 3 items per constraint\n");
fprintf(opt_file, "#-o <design>.twr; # Output trace report file\n");
fprintf(opt_file, "-xml <design>.twx; # Output XML version of the timing report\n");
fprintf(opt_file, "#-tsi <design>.tsi; #Timing Specification Interaction report\n");
fprintf(opt_file, "<inputdir><design>.ncd; # Input placed and routed ncd\n");
fprintf (opt_file, "<inputdir><design>.pcf; # Physical constraints file\n");

fprintf (opt_file, "END Program post_par_trce\n\n");



APPENDIX B. SYSTEM GENERATOR

B.9 Generate Xilinx *.ucf file (generate_ucf.c)

197

The following functions are used to generate the system.ucf file required by the Xilinx CAD

tools.

#include

<stdio.h>

void generate_ucf(FILE *ucf_file, int P_CLK_FREQUENCY, int P_CONSTRAIN_BOARD,
int P_TIMING_CONSTRAINT){

int

char
char
char
char

char

int

// C

P_CL
P_CL

i;

clk_pin[100];
rst_pin[100];
rx_pin[100];
tx_pin[100];
period[100];

P_CLK_PERIOD;

alculate clock period from clock frequency
K_PERIOD = (P_CLK_FREQUENCY/100000) ;

K_PERIOD

10000000/P_CLK_PERIOD;

itoa(P_CLK_PERIOD, period, 10);

// Default Pin Locations, not used right now

strcpy(clk_pin, "AH15;");

strcpy (rst_pin, "E9;");

strcpy(rx_pin, "AG15;");

strcpy(tx_pin, "AG20;");

fpri

ntf (ucf_file, "

fprintf(ucf_file, "## UCF File\n\n");

\n");

// If constraining output pins to specific locations, use above

// p
if (

in locations

P_CONSTRAIN_BOARD
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,
fprintf (ucf_file,

== 1){

"Net sys_clk_pin
"Net sys_clk_pin
clk_pin);

Il\nll) ;

"Net sys_clk_pin
"Net sys_rst_pin
rst_pin);

Il\nll) ;

"Net sys_rst_pin

"Net sys_rst_pin

TNM_NET = sys_clk_pin;\n");
LaC = ");

IOSTANDARD=LVCMOS33;\n");
LoC = ");

IOSTANDARD=LVCMOS33;\n");
PULLUP;\n\n");



APPENDIX B. SYSTEM GENERATOR 198

// Otherwise, only constraint is the max clock frequency
fprintf(ucf_file, "## System level constraints\n");
fprintf(ucf_file, "Net sys_clk_pin TNM_NET = sys_clk_pin;\n");
if (P_TIMING_CONSTRAINT == 1){
fprintf(ucf_file, "TIMESPEC TS_sys_clk_pin = PERIOD sys_clk_pin ");
fprintf(ucf_file, period);
fprintf (ucf_file, " ps;\n");
}
fprintf (ucf_file, "Net sys_rst_pin TIG;\n");



APPENDIX B. SYSTEM GENERATOR 199

B.10 Generate FSL for Altera FPGAs (generate fsl.c)

The following functions are used to generate the system level wrapper for the FSL link used
by Altera FPGAs. These functions are only used for Altera systems, as Xilinx systems have

predefined IP cores that can be instantiated in the system.mhs files.

#include <stdio.h>

// Used to generate wrapper for equivalent FSL FIFO for Altera FPGAs
void gen_fsl(FILE *fsl_file, int P_FSL_WIDTH){

fprintf(fsl_file, "///////////////////7///7////7//7///////\n");
fprintf(fsl_file, "// FSL\n");

fprintf(£sl_file, "///////////77777/7/7/777///777////7/7///\n\n");

// Define output ports

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

fprintf(fsl_file,

"module fsl(\n");
"\tFSL_Clk,\n");
"\tSYS_Rst,\n");
"\tFSL_Rst,\n\n");

"\tFSL_M_Clk,\n");

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

"\tFSL_M_Data,\n");
"\tFSL_M_Control,\n");
"\tFSL_M_Write,\n");
"\tFSL_M_Full,\n\n");

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

"\tFSL_S_Clk,\n");
"\tFSL_S_Data,\n");
"\tFSL_S_Control,\n");
"\tFSL_S_Read,\n");
"\tFSL_S_Exists\n\n");
fprintf(fsl_file, "\t);\n\n");

fprintf(fsl_file,
fprintf(fsl_file,

"\t///1117777777777777777777777777777/\n");
"\t// PARAMETER\n\n");

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

C_FSL_DWIDTH = %d;\n", P_FSL_WIDTH);
C_FSL_DEPTH = 16;\n");

C_FSL_ADDR = 4;\n");

C_RST_POLARITY = 1;\n\n");

"\tlocalparam
"\tlocalparam
"\tlocalparam

"\tlocalparam

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

"\t/////11177/7177777/7/77/7/77/77/7/77////\n");
"\t// Input Output Ports \n\n");
"\tinput\t\t\t\t\t\t\tFSL_Clk;\n");
"\tinput\t\t\t\t\t\t\tSYS_Rst; \n");



APPENDIX B. SYSTEM GENERATOR 200

fprintf(fsl_file, "\tinput\t\t\t\t\t\t\tFSL_Rst; \n\n");

fprintf (fsl_file, "\tinput\t\t\t\t\t\t\tFSL_M_Clk;\n");
fprintf(fsl_file, "\tinput\t\t[C_FSL_DWIDTH-1:0]\t\t\tFSL_M_Data;\n");
fprintf(fsl_file, "\tinput\t\t\t\t\t\t\tFSL_M_Control;\n");
fprintf(fsl_file, "\tinput\t\t\t\t\t\t\tFSL_M_Write;\n");
fprintf(fsl_file, "\toutput\t\t\t\t\t\t\tFSL_M_Full;\n\n");

fprintf (fsl_file, "\tinput\t\t\t\t\t\t\tFSL_S_Clk;\n");
fprintf(fsl_file, "\toutput\t[C_FSL_DWIDTH-1:0]\t\t\tFSL_S_Data;\n");
fprintf(fsl_file, "\toutput\t\t\t\t\t\t\tFSL_S_Control;\n");
fprintf(fsl_file, "\tinput\t\t\t\t\t\t\tFSL_S_Read;\n");
fprintf(fsl_file, "\toutput\t\t\t\t\t\t\tFSL_S_Exists;\n\n");

// Input and Output Addresses
fprintf(fs1_file, "\t///////////////////////////////////\n");
fprintf(fsl_file, "\t// Wires and Registers\n\n");

fprintf(fsl_file, "\treg\t\t\t\t\t\t\tFSL_M_Full;\n");
fprintf(fsl_file, "\treg\t[C_FSL_ADDR-1:0]\t\t\tRead_Address;\n");
fprintf(fsl_file, "\treg\t[C_FSL_ADDR-1:0]\t\t\tWrite_Address;\n\n");

// FSL Control Logic
fprintf(£sl_file, "\t//////////1/////777/////71//7/7/7////\n");
fprintf(fsl_file, "\t// Combinatorial Logic\n\n");

fprintf(fsl_file, "\tassign FSL_S_Exists = Write_Address != Read_Address;\n");
fprintf(fsl_file, "\tassign FSL_S_Control = FSL_M_Control;\n");

fprintf(£sl_file, "\t//////////1/////777/////7///7/7/7////\n");
fprintf(fsl_file, "\t// Sequantial Logic\n\n");

// FSM for Control Logic used on FSL

fprintf(fsl_file, "\talways @ (posedge FSL_Clk)\n");

fprintf(fsl_file, "\tbegin\n");

fprintf(fsl_file, "\t\tif (FSL_Rst || SYS_Rst == C_RST_POLARITY)\n");

fprintf(fsl_file, "\t\tbegin\n");

fprintf(fsl_file, "\t\t\tFSL_M_Full <= 0;\n");

fprintf(fsl_file, "\t\tend\n");

fprintf(fsl_file, "\t\telse\n");

fprintf(fsl_file, "\t\tbegin\n");

fprintf(fsl_file, "\t\t\tif ((Write_Address == Read_Address-1) ||
(Read_Address == 0 && Write_Address == C_FSL_DEPTH-1))\n");

fprintf(fsl_file, "\t\t\t\tFSL_M_Full <= 1;\n");

fprintf(fsl_file, "\t\t\telse\n");

fprintf (fsl_file, "\t\t\t\tFSL_M_Full <= 0;\n");

fprintf(fsl_file, "\t\tend\n");

fprintf(fsl_file, "\tend\n\n");

// Read Address



APPENDIX B. SYSTEM GENERATOR

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

// Write Address
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

201

"\talways @ (posedge FSL_Clk)\n");
"\tbegin\n") ;
"\t\tif (FSL_Rst
"\t\tbegin\n") ;
"\t\t\tRead_Address <= 0;\n");
"\t\tend\n");
"\t\telse\n");
"\t\tbegin\n") ;
"\t\t\tif (FSL_S_Read &&
"\t\t\t\tRead_Address <=
"\t\t\telse\n");
"\t\t\t\tRead_Address <=
"\t\tend\n");
"\tend\n\n") ;

|l SYS_Rst C_RST_POLARITY)\n");

FSL_S_Exists)\n");
Read_Address+1;\n");

Read_Address;\n");

"\t// Write_Address\n");

"\talways @ (posedge FSL_Clk)\n");
"\tbegin\n") ;
"\t\tif (FSL_Rst
"\t\tbegin\n") ;
"\t\t\tWrite_Address <= 0;\n");
"\t\tend\n");
"\t\telse\n");
"\t\tbegin\n") ;

"\t\t\tif (FSL_M_Write &&
"\t\t\t\tWrite_Address <=
"\t\t\telse\n");
"\t\t\t\tWrite_Address <=
"\t\tend\n") ;
"\tend\n\n") ;

|| SYS_Rst C_RST_POLARITY)\n");

'FSL_M_Full)\n");
Write_Address+1;\n");

Write_Address;\n");

// Instantiate M-LAB RAM block used in FIFO

fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,
fprintf(fsl_file,

fprintf(fsl_file,

"\tram ram (\n");

"\t\t.clock(FSL_C1lk), \n");
"\t\t.data(FSL_M_Data), // INPUT\n");
"\t\t.rdaddress (Read_Address), \n");
"\t\t.wraddress(Write_Address), \n");
"\t\t.wren(FSL_M_Write && !FSL_M_Full), \n");
"\t\t.q(FSL_S_Data), // OUTPUT\n");
"\t);\n\n");

"endmodule") ;



APPENDIX B. SYSTEM GENERATOR 202

B.11 Generate System Wrapper for Altera FPGAs (gener-

ate_system.c)

The following functions are used to generate the high level system wrapper, which instanti-
ates all the individual elements of the NoC topology. This function is only used for Altera
FPGASs, as the Quartus tools requires a complete system description as an input. For Xilinx
FPGAs, the experiments are run using Xilinx EDK, which acted as the high level wrapper
of the NoC topology. Individual elements are instantiated using CAD tool specific files such

as the *.xmp, *.mhs, *.mss, and *.ucf files.

#include <stdio.h>

#include <math.h>

#include <stdlib.h>

#define P_MAX_CONNECTIONS_PER_NODE 128
#define P_MAX_NODES 128

int multiplicand_size[128];

// Generate individual multiplier node definitions
void generate_system_node(FILE *system_file, int P_NODE, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH,
int P_MULTIPLICAND_WIDTH_MIN, int P_MULTIPLICAND_WIDTH_MAX){

int multiplicand_width;

// determine node size

if (P_NODE == 0){
multiplicand_width = P_MULTIPLICAND_WIDTH;
multiplicand_size[P_NODE] = multiplicand_width;

Yelse{
multiplicand_width = int_rand ((P_MULTIPLICAND_WIDTH_MAX -

P_MULTIPLICAND_WIDTH_MIN)/2+1)*2+P_MULTIPLICAND_WIDTH_MIN;

multiplicand_size[P_NODE] = multiplicand_width;

// Generate Multiplier Instantiations
if (P_NODE == 0){
fprintf(system_file, "\tinit_multiplier_%d_%d init_multiplier_%d_%d_%d
(\n", P_FSL_WIDTH, multiplicand_width, P_FSL_WIDTH, multiplicand_width, P_NODE);
fprintf(system_file, "\t .output_result(result_output),// tie to output port\n");
fprintf(system_file, "\t .multiplicand(multiplicand_input),// tie to output port\n");
Yelse{
fprintf (system_file, "\tmultiplier_%d_%d multiplier_%d_%d_%d (\n",



APPENDIX B. SYSTEM GENERATOR 203

P_FSL_WIDTH, multiplicand_width, P_FSL_WIDTH, multiplicand_width, P_NODE) ;

// Generate Associated FSL Ports

fprintf (system_file, "\t .FSL_Clk(FSL_Clk), \n");

fprintf(system_file, "\t .FSL_Rst(FSL_Rst), \n");

fprintf(system_file, "\t .FSL_S_Clk(FSL_S_Clk_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Exists(FSL_S_Exists_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Read(FSL_S_Read_%d), \n", P_NODE*2+1);
fprintf (system_file, "\t .FSL_S_Data(FSL_S_Data_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Control(FSL_S_Control_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Clk(FSL_M_Clk_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_M_Full(FSL_M_Full_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_M_Write(FSL_M_Write_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_M_Data(FSL_M_Data_%d), \n", P_NODE*2);
fprintf (system_file, "\t .FSL_M_Control(FSL_M_Control_%d) \n", P_NODEx2);
fprintf(system_file, "\t);\n\n");

// Generate FSL FIFOs

fprintf(system_file, "\tfsl fsl_%d (\n", P_NODE*2);

fprintf(system_file, "\t .FSL_Clk(FSL_Clk), \n");

fprintf(system_file, "\t .SYS_Rst(SYS_Rst), \n");

fprintf(system_file, "\t .FSL_Rst(FSL_Rst), \n");

fprintf(system_file, "\t .FSL_M_Clk(FSL_M_Clk_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_M_Data(FSL_M_Data_%d), \n", P_NODEx2);
fprintf(system_file, "\t .FSL_M_Control(FSL_M_Control_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_M_Write(FSL_M_Write_%d), \n", P_NODEx2);
fprintf(system_file, "\t .FSL_M_Full(FSL_M_Full_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_S_Clk(FSL_S_Clk_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_S_Data(FSL_S_Data_%d), \n", P_NODEx2);
fprintf(system_file, "\t .FSL_S_Control(FSL_S_Control_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_S_Read(FSL_S_Read_%d), \n", P_NODE*2);
fprintf(system_file, "\t .FSL_S_Exists(FSL_S_Exists_%d)\n", P_NODEx2);
fprintf (system_file, "\t);\n\n");

fprintf(system_file, "\tfsl fsl_}d (\n", P_NODE*2+1);

fprintf(system_file, "\t .FSL_Clk(FSL_Clk), \n");

fprintf(system_file, "\t .SYS_Rst(SYS_Rst), \n");

fprintf(system_file, "\t .FSL_Rst(FSL_Rst), \n");

fprintf(system_file, "\t .FSL_M_Clk(FSL_M_Clk_%d), \n", P_NODE*2+1);

fprintf (system_file, "\t .FSL_M_Data(FSL_M_Data_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Control(FSL_M_Control_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Write(FSL_M_Write_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Full(FSL_M_Full_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Clk(FSL_S_Clk_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Data(FSL_S_Data_%d), \n", P_NODE*2+1);
fprintf (system_file, "\t .FSL_S_Control(FSL_S_Control_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Read(FSL_S_Read_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Exists(FSL_S_Exists_%d)\n", P_NODE*2+1);
fprintf(system_file, "\t);\n\n");



APPENDIX B. SYSTEM GENERATOR 204

// Generates Switch Instantiations

void generate_system_switch(FILE *system_file, int P_NODE,int P_NODE_SIZE,
int P_NODE_CONNECTIONS[P_MAX_CONNECTIONS_PER_NODE],
int P_NODE_CHANNELS[P_MAX_CONNECTIONS_PER_NODE]){

int i;

fprintf (system_file, "\tswitch_%d #(\n", P_NODE_SIZE);
fprintf(system_file, "\t .C_DEST_L(%d), \n",P_NODE);

fprintf(system_file, "\t .C_DEST_H(%d)) \n",P_NODE);

fprintf(system_file, "\tswitch_%d_%d (\n", P_NODE_SIZE, P_NODE);
fprintf(system_file, "\t .FSL_Clk(FSL_Clk), \n");

fprintf(system_file, "\t .FSL_Rst(FSL_Rst), \n");

fprintf(system_file, "\t .FSL_M_Clk(FSL_M_Clk_%d), \n", P_NODE*2+1);
fprintf (system_file, "\t .FSL_M_Data(FSL_M_Data_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Control(FSL_M_Control_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Write(FSL_M_Write_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_M_Full(FSL_M_Full_%d), \n", P_NODE*2+1);
fprintf(system_file, "\t .FSL_S_Clk(FSL_S_Clk_%d), \n", P_NODEx2);
fprintf(system_file, "\t .FSL_S_Data(FSL_S_Data_%d), \n", P_NODEx2);
fprintf (system_file, "\t .FSL_S_Control(FSL_S_Control_%d), \n", P_NODE*2);
fprintf (system_file, "\t .FSL_S_Read(FSL_S_Read_%d), \n", P_NODE%2);
fprintf(system_file, "\t .FSL_S_Exists(FSL_S_Exists_%d), \n", P_NODE*2);

// Connect all Switches
for (i=0;i<P_NODE_SIZE;i++){

// output ports associated to own switch

fprintf (system_file, "\t .ch%d_out_data(switch_%d_chld_data),\n", i, P_NODE, i);
fprintf (system_file, "\t .ch%d_out_ctrl(switch_%d_ch’d_ctrl), \n", i, P_NODE, i);
fprintf(system_file, "\t .ch/d_out_exists(switch_Jd_ch%d_exists), \n", i, P_NODE, i);
fprintf (system_file, "\t .ch%d_out_read(switch_%d_ch’d_read), \n", i, P_NODE, i);

// input ports connected to desired connection

fprintf(system_file, "\t .ch%d_in_data(switch_%d_ch%d_data),\n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[il);

fprintf (system_file, "\t .ch%d_in_ctrl(switch_%d_ch%d_ctrl), \n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[i]);

fprintf(system_file, "\t .chd_in_exists(switch_%d_ch)d_exists), \n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[il);

if (i==P_NODE_SIZE-1){
fprintf(system_file, "\t .ch¥%d_in_read(switch_%d_ch¥%d_read) \n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[il);
Yelse{
fprintf (system_file, "\t .ch%d_in_read(switch_%d_ch%d_read), \n", i,
P_NODE_CONNECTIONS[i], P_NODE_CHANNELS[il);



APPENDIX B. SYSTEM GENERATOR

}
fprintf (system_file,

// Generate Header

fprintf (system_file,
fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf(system_file,
fprintf (system_file,
fprintf (system_file,
fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf(system_file,

fprintf (system_file,
fprintf (system_file,
fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf (system_file,

fprintf (system_file,
fprintf (system_file,
fprintf (system_file,

// FSL Pins

fprintf (system_file,
fprintf (system_file,
fprintf (system_file,
fprintf (system_file,
fprintf (system_file,

"\t);\n\n");

// Generate header for System file defining all input and output ports of system
void generate_system_header(FILE *system_file, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH) {

“I1111717777177777777777777777777777777/7/7777/7/7/7/\n");
"// system.v\n");
“I111177177717777777777777/777777/777777777/7/7777/7/7///\n\n");

"module system(\n");
"\tresult_output,\n");
"\tmultiplicand_input,\n");
"\tsys_clk_pin,\n");
"\tsys_rst_pin\n");
");\n\n") ;

IIIIILIII7777777777777777771777777777777777777777/\n");

"// Parameters\n\n");

"\tlocalparam C_FSL_DWIDTH = %d;\n", P_FSL_WIDTH);
"\tlocalparam C_MULTIPLICAND_DWIDTH = %d;\n\n", P_MULTIPLICAND_WIDTH);

SIIIIIIIIITTT777777177777777777777777777777777777/\n");
"// Input Output\n\n");

"\toutput\t [C_FSL_DWIDTH-1:0]\t\tresult_output;\n");
"\tinput\t\t[C_MULTIPLICAND_DWIDTH-l:0]\tmultiplicand_input;\n");
"\tinput\t\t\t\t\t\t\tsys_clk_pin;\n");
"\tinput\t\t\t\t\t\t\tsys_rst_pin;\n\n");

“I11111177717117777777777777777777777777777777777777//7//\n");
"// Wires\n\n");

"\twire\t\t\t\t\t\t\tFSL_Clk;\n");
"\twire\t\t\t\t\t\t\tFSL_Rst;\n");
"\twire\t\t\t\t\t\t\tSYS_Rst;\n\n");

// Generate all wires used by FSL Links
void generate_fsl_wires(FILE *system_file, int P_NODE, int P_FSL_WIDTH){

"\twire\t\t\t\t\t\t\tFSL_M_Clk_%d;\n",P_NODE) ;

"\twire\t\t [C_FSL_DWIDTH-1:0]\t\tFSL_M_Data_%d;\n",P_NODE) ;
"\twire\t\t\t\t\t\t\tFSL_M_Control_%d;\n",P_NODE);
"\twire\t\t\t\t\t\t\tFSL_M_Write_%d;\n",P_NODE);
"\twire\t\t\t\t\t\t\tFSL_M_Full_%d;\n",P_NODE);



APPENDIX B. SYSTEM GENERATOR 206

fprintf(system_file, "\twire\t\t\t\t\t\t\tFSL_S_Clk_%d;\n",P_NODE);
fprintf(system_file, "\twire\t\t[C_FSL_DWIDTH-1:0]\t\tFSL_S_Data_%d;\n",P_NODE);
fprintf(system_file, "\twire\t\t\t\t\t\t\tFSL_S_Control_%d;\n",P_NODE);

fprintf (system_file, "\twire\t\t\t\t\t\t\tFSL_S_Read_%d;\n",P_NODE);

fprintf (system_file, "\twire\t\t\t\t\t\t\tFSL_S_Exists_%d;\n\n",P_NODE);

// Generate all wires used by Switches
void generate_switch_wires(FILE *system_file, int P_NODE,int P_NODE_SIZE){

int i;

for (i=0;i<P_NODE_SIZE;i++){
fprintf (system_file, "\twire\t\t[C_FSL_DWIDTH-1:0]\t\tswitch_%d_ch’d_data;\n",P_NODE,i);
fprintf(system_file, "\twire\t\t\t\t\t\t\tswitch_%d_ch¥%d_ctrl;\n",P_NODE,i);
fprintf (system_file, "\twire\t\t\t\t\t\t\tswitch_}d_ch¥%d_exists;\n",P_NODE,i);
fprintf (system_file, "\twire\t\t\t\t\t\t\tswitch_d_ch¥%d_read;\n",P_NODE,i);

fprintf(system_file, "\n\n");

// Main function used to generate the top level system wrapper file defining
// the NoC for Altera FPGAs
void generate_system_verilog(FILE *system_file, int P_NODE_SIZE[P_MAX_NODES],
int P_NODE_CONNECTIONS[P_MAX_NODES] [P_MAX_NODES],
int P_NODE_CHANNELS [P_MAX_NODES] [P_MAX_NODES],
int P_NUM_NODES, int P_FSL_WIDTH, int P_MULTIPLICAND_WIDTH,
int P_MULTIPLICAND_WIDTH_MIN, int P_MULTIPLICAND_WIDTH_MAX){

int i,j;
int P_CONNECTIONS [P_MAX_CONNECTIONS_PER_NODE] ;
int P_CHANNELS[P_MAX_CONNECTIONS_PER_NODE] ;

// generate header, io ports
generate_system_header(system_file, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH);

//generate fsl_wires
for (i=0;i<P_NUM_NODES*2;i++){
generate_fsl_wires(system_file, i, P_FSL_WIDTH);

// generate switch wires
for (i=0;i<P_NUM_NODES;i++){
generate_switch_wires(system_file, i, P_NODE_SIZE[i]);

fprintf(system_file, "“//////////////7777/1/777/7/7/77777///77/7//77777////\n");



APPENDIX B. SYSTEM GENERATOR 207

fprintf (system_file,
fprintf(system_file,
fprintf (system_file,

fprintf (system_file,

fprintf (system_file,
fprintf (system_file,

//generate nodes

"// Assigns\n\n");

"\tassign FSL_Clk = sys_clk_pin;\n");
"\tassign FSL_Rst = sys_rst_pin;\n");
"\tassign SYS_Rst = sys_rst_pin;\n\n");

SIIIIIIIIIIIT1777777777777777777777777777777777/\n");
"// Sub Components\n\n");

for (i=0;i<P_NUM_NODES;i++){

if (i==0){

generate_system_node(system_file, i, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,

Yelsed{

P_MULTIPLICAND_WIDTH_MIN, P_MULTIPLICAND_WIDTH_MAX) ;

generate_system_node(system_file, i, P_FSL_WIDTH, P_MULTIPLICAND_WIDTH,

// generate switches

P_MULTIPLICAND_WIDTH_MIN, P_MULTIPLICAND_WIDTH_MAX);

for (i=0;i<P_NUM_NODES;i++){

for (j=0;j<P_NODE_SIZE[i];j++){
P_CONNECTIONS[j] = P_NODE_CONNECTIONS[i] [j];
P_CHANNELS[j] = P_NODE_CHANNELS[i][j];

}

generate_system_switch(system_file, i, P_NODE_SIZE[i], P_CONNECTIONS, P_CHANNELS);

fprintf(system_file, "endmodule\n\n");





