EFFECTS OF CATCHABILITY VARIATION ON PERFORMANCE OF DEPLETION ESTIMATORS: APPLICATION TO AN ADAPTIVE MANAGEMENT EXPERIMENT

by
Pier van Dishoeck
Bachelor of Science, University of British Columbia (1997)

RESEARCH PROJECT
SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF RESOURCE MANAGEMENT

In the
School of Resource and Environmental Management
Report No. 483
© Pier van Dishoeck 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for Fair Dealing.
Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately.

APPROVAL

Name:
 Degree:
 Title of Project:
 Examining Committee:

Chair: Mr. Aaron Springford

Dr. Sean P. Cox
Senior Supervisor
Associate Professor
School of Resource and Environmental Management Simon Fraser University

Dr. Michael J. Bradford
Supervisor
Research Scientist
Fisheries and Oceans Canada
Adjunct Faculty
School of Resource and Environmental Management Simon Fraser University

SIMON FRASER UNIVERSITY
LIBRARY

Declaration of Partial Copyright Licence

The author, whose copyright is declared on the title page of this work, has granted to Simon Fraser University the right to lend this thesis, project or extended essay to users of the Simon Fraser University Library, and to make partial or single copies only for such users or in response to a request from the library of any other university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or make a digital copy for use in its circulating collection (currently available to the public at the "Institutional Repository" link of the SFU Library website <www.lib.sfu.ca> at: http://ir.lib.sfu.ca/handle/1892/112) and, without changing the content, to translate the thesis/project or extended essays, if technically possible, to any medium or format for the purpose of preservation of the digital work.

The author has further agreed that permission for multiple copying of this work for scholarly purposes may be granted by either the author or the Dean of Graduate Studies.

It is understood that copying or publication of this work for financial gain shall not be allowed without the author's written permission.

Permission for public performance, or limited permission for private scholarly use, of any multimedia materials forming part of this work, may have been granted by the author. This information may be found on the separately catalogued multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the thesis, project or extended essays, including the right to change the work for subsequent purposes, including editing and publishing the work in whole or in part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this author, may be found in the original bound copy of this work, retained in the Simon Fraser University Archive.

Abstract

Depletion methods use sequential catches to estimate abundance, and commonly assume constant capture probability. Violation of this assumption results in abundance estimates that are biased low, and confidence bounds that indicate unwarranted precision. I used simulation to compare performance of three alternative estimators that explicitly consider catchability change over passes. If catchability declined, non-constant catchability models failed to reduce bias, but better characterised uncertainty. I used nonparametric methods to examine time and treatment effects on the precision and bias of abundance estimates from depletion data for a large management experiment on the Bridge River, BC. Catchability increased over time, suggesting a concurrent change in bias. The magnitude of the change in bias was a function of the decline in catchability within depletion experiments. Because estimates of the decline in catchability were uncertain, it was difficult to assess the magnitude of change in bias.

Keywords: depletion method; removal method; simulation; stock assessment; juvenile salmonid

ACKNOWLEDGEMENTS

I owe particular thanks to my committee, Drs. Sean Cox and Michael Bradford for their guidance, assistance and patience. All of the lower Bridge River data that I used were generously provided by Paul Higgins at BC Hydro. Thanks to Jeff Sneep for assistance with the database, and for words of wisdom.

The assistance of colleagues in the Fisheries Science and Management Research Group at Simon Fraser University is also most appreciated. Discussions with Aaron Springford and Ashleen Benson were particularly influential. Thanks to Cameron MacKenzie and Aaron Springford for editorial suggestions on earlier drafts. Errors and omissions remain firmly my responsibility.

I appreciate the support of the staff at REM: Laurence Lee, Bev Hunter, Iris Schischmanow and Brenda Dallaway.

Funding support was provided by the Natural Sciences and Engineering Research Council of Canada, the Faculty of Applied Sciences at Simon Fraser University and AMEC Earth and Environmental.

Untold gratitude is due to my wife, Sarah.

TABLE OF CONTENTS

Approval ii
Abstract iii
Acknowledgements iv
Table of Contents v
List of Figures viii
List of Tables x
1 Introduction 1
2 Effects of catchability variation on performance of depletion estimators 4
2.1 Introduction 4
2.2 Methods 9
2.2.1 General depletion model 10
2.2.2 Model 1 (Moran 1951): constant catchability 10
2.2.3 Model 2 (Schnute 1983): stepped catchability 11
2.2.4 Model 3 (Schnute 1983): monotonic change in catchability 11
2.2.5 Model 4 (Mäntyniemi et al. 2005): individual catchability model 11
2.2.6 Parameter estimation 12
2.2.7 Prior distributions 14
Non-informative prior distributions 14
Informative prior distributions 14
2.2.8 Simulation approach 16
2.2.9 Performance measures 17
Performance measures for estimates of abundance 18
Performance measures for estimates of catchability 20
Performance measures for estimates of variation in catchability 21
2.2.10 Model selection approaches 21
2.2.11 Relative effects of abundance, catchability, and change in catchability on bias in estimates of abundance 22
2.3 Results 23
2.3.1 Estimation failure 23
2.3.2 Effects of catchability variation on depletion estimates of abundance 23
Base case (total population $N=100, k=4$ pass depletions) 23
Initial catchability $\left(q_{0}\right)=0.8$ 23
Initial catchability $\left(q_{0}\right)=0.6$ 24
Initial catchability $\left(q_{0}\right)=0.4$ 25
Initial catchability $\left(q_{0}\right)=0.2$ 25
Incorporating prior information 26
Incorporating additional depletion passes ($N=100, k=8$) 26
Reducing the number of depletion passes $(N=100, k=3)$ 26
Impact of low true abundance ($\mathrm{N}=25, \mathrm{k}=4$) 27
2.3.3 Effects of catchability variation on depletion estimates of catchability 27
2.3.4 Effects of catchability variation on depletion estimates of change in catchability over depletion passes 28
2.3.5 Model selection approaches 29
2.4 Discussion. 29
2.4.1 Bayesian parameter estimation versus maximum likelihood estimation 30
2.4.2 Selecting an appropriate depletion model. 31
2.4.3 Model selection approaches 32
2.4.4 Relative effects of true abundance and true catchability on estimates of abundance 33
2.4.5 Determining catchability and change in catchability from depletion data. 34
2.4.6 Improving depletion estimator performance by including additional information 35
Additional information from mark-recapture studies 36
Additional information from related sites. 37
2.4.7 Importance of reducing bias in depletion estimates 38
2.4.8 Choosing an appropriate sampling method 39
2.5 Recommendations 39
3 Examining the impact of catchability and on conclusions drawn from a large scale, long term adaptive management study 41
3.1 Introduction 41
3.1.1 Treatment mediated effects on catchability and bias. 42
3.2 Methods 44
3.2.1 Study area 44
3.2.2 Juvenile salmonid stock assessment 46
3.2.3 Data analysis 48
Performance of lower Bridge River depletion estimates 48
Treatment mediated effects on catchability and bias 48
3.3 Results 50
3.3.1 Performance of lower Bridge River depletion estimates 50
3.3.2 Treatment mediated effects on catchability and bias 50
3.4 Discussion. 51
3.4.1 Performance of lower Bridge River depletion estimates 51
3.4.2 Treatment mediated effects on catchability and bias 53
3.5 Conclusions 55
Reference List 57
Appendices
Appendix A: Maximum likelihood parameter estimation. 86
Appendix B: Mäntyniemi et al. (2005) model 94
Appendix C: WinBUGS code for depletion models 97
Appendix D: Point estimates for Bayesian depletion methods 99

LIST OF FIGURES

Figure 2.1: Graphical depiction of depletion method, assuming constant catchability. The regression method of estimation is illustrated, although this is inappropriate because catches are not independent. Estimation using a depletion model is therefore required.

Figure 2.2: \quad Simulated informative prior distributions for initial catchability $\operatorname{Beta}(\alpha, \beta)$, calculated using the method of moments approximation (Equation 2.8) and the known simulated true q_{0} values $\{0.2,0.4, \ldots, 0.8\}$ and $\operatorname{var}(q)=0.01$ (solid lines). The Beta(1.1, 1.1) distribution used to as an uninformative prior is shown as a dashed line.

Figure 2.3: \quad The effect of true abundance (N), true initial catchability $\left(q_{0}\right)$, and the true rate of reduction in catchability between successive passes (r) on the bias in estimates of abundance for Model 3. Indicated fits are locally weighted regression (loess) smoothes. Bias in estimates of N is greatest at low initial catchability, and if catchability declines between passes.
Abundance has less impact on the bias in estimates of N than does catchability. .75

Figure 2.4: Mean and 95% interquartile range of abundance estimates from 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. " $\mathrm{T} "=$ total catch, " $1 "=$ Model 1, " $2 "=$ Model 2, " $3 "=$ Model 3, " $4 "=$ Model 4. Interquartile range is used to represent variation in estimates for N. .76

Figure 3.1: Lower Bridge River study area, reproduced from Sneep (2005)............... 77
Figure 3.2: Distribution of Model 3 depletion estimates for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. (a) distribution of estimates of site population (\hat{N}); (b) distribution of estimates of first pass catchability $\left(\hat{q}_{1}\right)$; (c) distribution of estimated percent change in catchability between pass 1 and pass $k\left(100 \bullet \frac{\left(\hat{q}_{k}-\hat{q}_{1}\right)}{\hat{q}_{1}}\right)$; (d) relationship between estimates of \hat{q}_{1} and percent change in catchability..................... 78

Figure 3.3: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes

Figure 3.4: Conditioning plot of abundance estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Abundance estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.80

Figure 3.5: Conditioning plot of change in catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Change in catchability estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.81

Figure 3.6: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site depth (m), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.
Figure 3.7: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site current velocity (m / s), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.83

Figure 3.8: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site instream substrate size (cm), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.84

Figure 3.9: Trend in first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Boxes represent the first and third quartiles, with the median indicated. Whiskers extend to extreme values, with outliers indicated by open circles. 85
Figure D.1: Model 3 posterior distributions for $\hat{N}, \hat{q}_{1}, \hat{q}^{\prime \prime}, \hat{a}$ based on MCMC samples for the depletion series $C=\{34,14,10,4\}$, generated from true parameters $N=100, q_{1}=0.4, q^{\prime \prime}=0.1, a=0.2$. The mean (solid vertical lines) and median (dashed vertical lines) of posterior distributions are indicated.

LIST OF TABLES

Table 2.1: \quad Non-informative and informative prior distributions simulated for Bayesian depletion models. Shape parameters for informative Beta priors (α, β) defined from true simulation parameters (Equation 2.8).
Table 2.2: Variables systematically tested in simulation study of depletion methods.62
$\begin{array}{ll}\text { Table 2.3: } & \begin{array}{l}\text { Estimation failure rate (\%) aggregated over all catchability } \\ \text { scenarios... } 63\end{array}\end{array}$
Table 2.4: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). 'MPE' is the mean percent difference between true and estimated N; ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of N; ' CI cov' is confidence interval coverage; ' $\mathrm{P}(\rho>1)$ ' is the probability that confidence interval width $>N$.
Table 2.5: \quad Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Informative prior distributions, based on simulation parameters, were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $P(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates from simulations with non-informative priors (cf. Table 2.4)65

Table 2.6: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=8)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates for $k=4$ (cf. Table 2.4).
Table 2.7: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=3)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and
$\mathrm{P}(\rho>1)$, or confidence interval coverage closer to $95 \%)$ relative to analogous estimates for $k=4$ (cf. Table 2.4).67

Table 2.8: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=25, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates for $N=100, k=4$ (cf. Table 2.4).
Table 2.9: Results of 500 Monte Carlo simulations of depletion estimates for first pass catchability $q_{1}(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}=q_{1}\right)$. Non-informative priors were applied (Table 2.1). ' \hat{q}_{1} ' is the estimate of first pass catchability, 'MPE' is the mean percent difference between q_{1} and $\hat{q}_{1} ;{ }^{\prime} \mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of q_{1}.69

Table 2.10: Results of 500 Monte Carlo simulations of depletion estimates for final pass catchability $q_{4}(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). ' \hat{q}_{4} ' is the estimate of first pass catchability, 'MPE' is the mean percent difference between q_{4} and $\hat{q}_{4} ;{ }^{\prime} \mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of q_{4}..
Table 2.11: Results of 500 Monte Carlo simulations of depletion estimates for change in catchability ($q_{4}-q_{1 ;} N=100, k=4$). Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). ' $\Delta \hat{q}$ ' is the difference between estimated catchability for pass 4 and pass $1\left(\hat{q}_{4}-\hat{q}_{1}\right)$; 'MPE $\Delta \hat{q}$ ' is the mean percent error in estimates of $\Delta \hat{q}$ (values $<-100 \%$ indicate $\hat{q}_{4}>\hat{q}_{1}$).71

Table 3.1: \quad Simulation-based change in expected bias (MPE) of abundance estimates for Model 3, for a change in initial catchability from $q_{0}=$ 0.4 to $q_{0}=0.6$, assuming that the reduction in catchability by pass (r) remains constant, for $N=\{25,100\}$ and $k=4$.72

Table A.1: Results of 500 Monte Carlo simulations of maximum likelihood depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. 'MPE' is the mean percent difference between true and estimated N; ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of N; 'CI cov' is confidence interval coverage; ' $P(\rho>1)$ ' is the probability that confidence interval width $>N$

Table D.1: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. The 'median' and 'mean' of posterior distributions for \hat{N} are presented. MPE refers to the mean percent difference between N and $\hat{N} . \mathrm{CV}$ is the standard deviation of estimates, expressed as a percent of the true value N. .103

1 INTRODUCTION

Assessing the abundance of organisms is a basic but crucial task for management biologists. Depletion (or 'removal') sampling is one approach widely used to estimate abundance, and involves the sequential removal of individuals from a defined area (Leslie and Davis 1939; Moran 1951). The pattern of decreasing catches over removal passes is used to infer both the total population size and the catchability (the probability of an individual being captured on a given pass). There is extensive theoretical and practical literature on the merits and limitations of depletion sampling, with on-going development of the statistical models used to estimate abundance and catchability from the catch series. Classic estimators assume equal catchability across sampled individuals and across passes (Zippin 1956, 1958; Carle and Strub 1978), but it is known that this assumption is often violated (Bohlin and Sundström 1977; Riley and Fausch 1992; Peterson et al. 2004). If constant catchability is incorrectly assumed, population estimates are negatively biased, and calculated confidence bounds indicate unwarranted precision. A variety of models have been developed that explicitly consider non-constant catchability (e.g. Schnute 1983, Wang and Loneragan 1996, Mäntyniemi et al. 2005). Although these models may improve performance under certain conditions, there is a lack of rigorous evaluation of performance characteristics.

Depletion sampling is a common assessment technique for freshwater fish populations, particularly stream resident juvenile salmonids (Bohlin et al. 1989; Guy and Brown 2007). Results are often used in an experimental context to measure response to
treatment, or in stock assessment programs, to track juvenile abundance over time. In both contexts, it is crucial that estimators avoid bias and avoid overestimating precision, because these errors may lead to incorrect conclusions when comparing results between treatments or over time. If the bias of an estimator is constant across sites, time and treatments, this might not affect attempts to detect differences in abundance. However, differences in estimator behaviour between sites, over time, or between treatments may affect tests for change over time or due to experimental treatment. Similarly, overstated confidence in results may lead to an erroneous conclusion of difference.

In this study, I addressed two objectives. First, I used simulation methods to evaluate the bias and precision of several depletion estimators under a wide variety of conditions for true abundance and catchability. I found that, if catchability declined over successive passes, non-constant catchability models did not substantially reduce bias in abundance estimates, relative to constant catchability estimators. However, non-constant catchability methods better characterised uncertainty. Constant catchability estimators performed better if true catchability was constant. Three and four pass depletion series did not contain sufficient information to accurately characterise variation in catchability. More accurate measures of catchability variation (e.g. mark-recapture studies) may be required to reduce bias in depletion estimates, and are likely to be of particular importance for rapid assessment techniques (e.g. , which apply the pattern observed at multiple pass sites to more quickly sampled single pass sites.

My second objective was to determine whether trends exist in the magnitude and variation of catchability in the data collected by a long-term, large-scale adaptive management experiment on the lower Bridge River, near Lillooet, British Columbia.

Depletion sampling via electrofishing has been used to monitor juvenile salmonid response to flow over two experimental treatments between 1996 and the present. The intent is to infer a relationship between river discharge and juvenile salmonid productivity. The absence of supplementary information means that assessment of the accuracy and precision of abundance estimates must rely on the three and four pass removal series. I examined the extent to which trends in catchability, and therefore in the bias and precision of abundance estimates, might affect inference from this experiment. I used non-parametric methods to examine time and treatment effects on catchability.

Catchability in lower Bridge River depletion experiments increased over time, but did not appear to vary systematically with treatment or with environmental variables. Estimates of catchability and change in catchability for a given depletion experiment were confounded, and estimates of change in catchability were highly uncertain. Limited evidence from the lower Bridge River dataset, as well as empirical results from other studies, suggested that declining catchability should be expected for juvenile salmonids. Consequently, lower Bridge River abundance estimates may be substantially biased for some sites, but further investigation of patterns is hindered by the limited information contained in the three or four pass depletion series. The potential change in abundance estimate bias was of similar magnitude to the variation in abundance between sites, and so might affect tests for a treatment effect. I suggest that an appropriate next step would be to develop a hierarchical Bayesian model that permits catchability to vary within depletion experiments. This approach permits information transfer between sites with well defined estimates and sites with poorly defined estimates, and may improve estimation over the study as a whole.

2 EFFECTS OF CATCHABILITY VARIATION ON PERFORMANCE OF DEPLETION ESTIMATORS

2.1 Introduction

Estimating the abundance of organisms within a study area is fundamental to ecology and field biology. In freshwater fisheries assessment, depletion sampling using electrofishing is widely applied to estimate the total population size within a site (Otis et al. 1978; Peterson et al. 2004). Fish captured during consecutive events are removed, and the initial population inferred from the pattern of declining captures. Although the approach is conceptually simple, the violation of estimator assumptions can affect the precision and bias of abundance measures (Hilborn and Walters 1992). Improved estimates can be obtained from depletion data by increasing the number of fishing events (Schnute 1983), by collecting ancillary information during surveys (e.g. concurrent markrecapture data; Gatz and Loar 1988; Scruton and Gibson 1995; Peterson et al. 2004), or by improving the estimators used to derive inference. Because collecting additional information in the field is expensive, a great deal of energy has been expended in developing depletion estimators that explicitly address violations of basic assumptions. However, despite widespread literature discussion, a definitive 'best practise' for calculation of depletion estimates has not been established. It is therefore important to test candidate depletion estimators under a wide range of conditions to decide what is appropriate for a specific dataset (Hilborn and Walters 1992).

Depletion models can be applied to both open and closed populations, but are simplest to use where the population is closed to immigration, emigration and recruitment, and when all mortality can be attributed to experimental removals or fishing (Hilborn and Walters 1992). In small streams, it is reasonable to assume that these conditions hold, especially for the net-enclosed sites commonly used to estimate juvenile salmonid abundance. For such sites, depletion estimators depend on distinct, consecutive fishing events (hereafter called "passes"), often using an electrofisher. Although not specifically required (Leslie and Davis 1939; DeLury 1947), depletion estimators often assume equal effort on each pass. The simplest depletion model defines the vector of catches C_{i} as a function of the initial abundance N and the probability of capture, or "catchability" q_{i}, i.e.,

$$
\begin{equation*}
C_{i}=q_{i}\left(N-T_{i-1}\right), i=1, \ldots, k, \tag{2.1}
\end{equation*}
$$

where T_{i} is the cumulative catch to pass i, and k the total number of depletion passes (Leslie and Davis 1939; Moran 1951). If catchability is assumed constant $\left(q_{i}=q\right)$, the catches can be considered as a regression of catch against cumulative catch up to the previous pass (Figure 2.1). The x-intercept estimates the initial abundance (the catch if fishing was continued indefinitely), and the slope estimates the catchability coefficient (Hayne 1949; Ricker 1975; Hilborn and Walters 1992). Non-independence in observed catches, and correlation between catch and cumulative catch, are not modelled by linear regression (Hilborn and Walters 1992), but can be addressed with other statistical methods, such as maximum likelihood or Bayesian estimation.

Maximum likelihood methods compare observed catches with model predictions. Candidate parameter values represent competing hypotheses for the true state of nature
(Hilborn and Mangel 1997; McCarthy 2007). Maximum likelihood estimates are those parameter values that make the observed data most likely to have happened (Bolker 2008). The approach provides inference about future data given a hypothesis (a parameter value) and permits statements about the proportion of confidence intervals, constructed on the basis of hypothetical future experiments, which are expected to contain the true parameter value. Bayesian methods provide inference about a hypothesis given observed data, as well as permitting the incorporation of prior beliefs. The Bayesian approach assesses the probability distribution for an unknown parameter, given collected data, and so is logically more consistent with the questions posed in depletion estimators (McCarthy 2007). Bayesian results provide clear probabilistic statements about parameter values, and well characterise uncertainty. Hierarchical Bayesian models (e.g. Wyatt 2002; Dorazio et al. 2005; Rivot et al. 2008) permit information sharing among similar sites, allowing well defined results to contribute to estimation at similar sites with less informative depletion data (Wyatt 2002).

Both maximum likelihood and Bayesian estimation approaches have been used to develop constant catchability depletion models. Moran (1951) and Zippin (1956) develop the likelihood for a binomial model of fish capture, and use iterative or graphical maximum likelihood procedures to estimate abundance for depletion data. Alternative maximum likelihood estimators are available using iterative (Carle and Strub 1978) or numerical optimisation methods (Schnute 1983). Wyatt (2002) provides a Bayesian approach for a constant catchability depletion model.

Constant catchability depletion estimators remain in widespread use, despite evidence that catchability often changes over the course of removal samples (Bohlin and

Sundström 1977; Peterson and Cederholm 1984; Riley and Fausch 1992; Peterson et al. 2004; Rosenberger and Dunham 2005; Dauwalter and Fisher 2007; Korman et al. 2009). Catchability may change over passes due to variation among individuals, with more vulnerable fish captured first. Catchability may also vary as a function of fish size (Anderson 1995; Dolan and Miranda 2003), operator skill, electrofisher settings (Dolan and Miranda 2003), habitat (Peterson et al. 2004; Rosenberger and Dunham 2005), temperature or fish abundance (Bayley and Austen 2002). For juvenile bull trout and cutthroat trout, Peterson et al. (2004) found a reduction in catchability of between 1.15 and 1.96 times by pass (e.g. pass $1 /$ pass 2 , etc.).

Biased depletion estimates with inaccurate uncertainty measures, based on an unwarranted assumption of constant catchability, are acknowledged as a common problem in stock assessment (Hilborn and Walters 1992). Models that incorrectly assume constant catchability produce total population estimates that are biased low, and uncertainty bounds that are unreliable (Zippin 1956; Schnute 1983; Hilborn and Walters 1992; Peterson et al. 2004; Rosenberger and Dunham 2005; Sweka et al. 2006). Ricker (1975; p. 155) recognises that "inconstant catchability is perhaps the greatest potential source of error in applying methods of estimation based on secular change in catch per unit of effort".

An extensive literature develops depletion models that address non-constant catchability (see reviews by Seber 1986, Seber 1992 and Schwarz and Seber 1999). More recent models increase in complexity, and permit various non-constant relationships for catchability. In most cases, these models assume that catchability declines in some way over consecutive passes, with more vulnerable fish captured on
earlier passes. However, some models (e.g. Schnute 1983; Wang and Loneragan 1996) do not assume that sequential catches decline monotonically. Both maximum likelihood (e.g. Otis et al. 1978; Schnute 1983; Wang and Loneragan 1996; Wang 1999; White and Burnham 1999; Dorazio and Royle 2003) and Bayesian (e.g. Warren 1994; Mäntyniemi et al. 2005) approaches to parameter estimation are applied to depletion models. Despite widespread discussion of the risks associated with assuming constant catchability, and great attention to the development of alternative, non-constant catchability depletion models, no definitively preferred model has emerged for the analysis of removal data. The alternative models encompass disparate assumptions about the patterns of change in catchability, and perform differently. Testing of depletion methods is recommended to select an appropriate approach for a given dataset (Hilborn and Walters 1992).

Simulation experiments allow more precise assessment of the statistical behaviour of candidate depletion models across a wider range of conditions than is possible in field experiments. Data are generated from a suite of known parameters, such that bias and precision in results can be measured directly. Many authors who address depletion models use some form of simulation testing (e.g. Carle and Strub 1978; Otis et al. 1978; Riley and Fausch 1992; Wang and Loneragan 1996; Gould and Pollock 1997a; Gould and Pollock 1997b; Gould et al. 1997; Wang 1999; Peterson et al. 2004; Sweka et al. 2006), while others develop and test depletion estimators using limited example datasets (Schnute 1983; Mäntyniemi et al. 2005).

In this study, I used simulation experiments to assess the performance of four candidate depletion estimators under a range of conditions appropriate to juvenile salmonid surveys. My objective was to select an appropriate estimator for datasets with
three or four depletion passes, and to understand the potential implications of estimator behaviour on subsequent analyses (e.g. for treatment effects in an experimental context). Of particular interest were the bias and precision of total population estimates across the expected range of catchability, change in catchability over passes, and total population. A good estimator should also provide an accurate assessment of uncertainty in abundance estimates; confidence intervals should be as narrow as possible to still contain the true value with specified probability (Rosenblum and van der Laan 2009). I selected depletion models that represent a range of assumptions about catchability. These models include: the constant catchability model of Moran (1951) and Zippin (1956), as parameterised by Schnute (1983); the two parametric non-constant catchability models proposed by Schnute (1983); and, the Mantyniemi et al. (2005) model that assumes a Beta distribution of individual fish catchabilities. I used both maximum likelihood and Bayesian methods to estimate parameters for all models.

2.2 Methods

I used a Monte Carlo simulation approach to testing four candidate models estimation models for depletion data. Model 1 is the constant catchability approach developed by Moran (1951) and Zippin (1956). Model 2 assumes that catchability differs between the initial pass and all subsequent passes (Schnute 1983). Model 3 assumes that catchability changes gradually and monotonically (and might either increase or decrease; Schnute 1983). Model 4 assumes that catchability may differ for each individual in the population (Mäntyniemi et al. 2005). If it is assumed that the distribution of individual catchabilities is described by a Beta distribution, the mean catchability declines monotonically over successive passes (Appendix B). Schnute (1983) describes
maximum likelihood estimation procedures for Models 1, 2, and 3, while Mäntyniemi et al. (2005) use Bayesian methods to estimate parameters for Model 4. I tested both maximum likelihood (Appendix A) and Bayesian methods for all four models.

In the following section, I describe the estimation models, and then detail my simulation approach and parameters selected for testing. I assessed models using a suite of four performance measures, and also attempted to compare model fit using the deviance information criterion (DIC; Spiegelhalter et al. 2002).

2.2.1 General depletion model

Moran (1951) develops the likelihood for the general depletion model presented in Equation 2.1. Assuming that catches are drawn from the binomial distribution, the likelihood is:

$$
\begin{equation*}
L\left(N, q_{i} \mid C_{1}, \ldots, C_{k}\right)=\frac{N!}{\left(N-T_{k}\right)} \prod_{i=1}^{k} \frac{q_{i}^{C_{i}}\left(1-q_{i}\right)^{N-T_{i}}}{C_{i}!}, \quad i=1, \ldots, k \tag{2.2}
\end{equation*}
$$

Although this model has sufficient flexibility to permit catchability to vary by pass, it has more parameters $\left(k+1 ; k\right.$ values of q_{i}, plus $\left.N\right)$ than there are data points (k catches). An additional model describing the distribution of catchability by pass $\left(q_{i}\right)$ is required to calculate estimates of all parameters. Different approaches to modelling q_{i} distinguish the depletion models described in the following sections.

2.2.2 Model 1 (Moran 1951): constant catchability

The constant catchability approach (Model 1) assumes that catchability does not vary between individual fish, or between depletion passes (i.e., $q_{i}=q_{1} \forall i$). The sequence of catches is then predicted by the two parameters N and q_{1} (Moran 1951):

$$
\begin{equation*}
\hat{C}_{i}=q_{1}\left(1-q_{1}\right)^{i-1} N, i=1, \ldots, k \tag{2.3}
\end{equation*}
$$

2.2.3 Model 2 (Schnute 1983): stepped catchability

Model 2 (Schnute 1983) assumes that catchability on the first pass differs from all subsequent passes, but remains constant thereafter (i.e., $q_{1} \neq q_{i}$ and $q_{i}=q, i=2, \ldots, k$); catchability may increase or decrease after the first pass. The three parameters, N, q_{1} and q^{\prime} are required to model the predicted catch:

$$
\begin{align*}
& \hat{C}_{1}=q_{1} N \\
& \hat{C}_{i}=q^{\prime}\left(1-q_{1}\right)\left(1-q^{\prime}\right)^{i-2} N, i=2, \ldots, k . \tag{2.4}
\end{align*}
$$

Model 2 reduces to Model 1 when $q_{1}=q^{\prime}$.

2.2.4 Model 3 (Schnute 1983): monotonic change in catchability

Model 3 assumes a monotonic decrease or increase in catchability over depletion passes (Schnute 1983):

$$
\begin{align*}
& \hat{C}_{i}=q_{i}\left(1-q_{i}\right)^{i-1} N, \\
& q_{i}=q_{1}+\left(q^{\prime \prime}-q_{1}\right)\left(1-a^{i-1}\right), 0 \leq a \leq 1 ; i=1, \ldots, k . \tag{2.5}
\end{align*}
$$

In this model, q_{1} defines the initial pass catchability and, for $a<1, q_{i}$ tends to $q^{\prime \prime}$ as i becomes large. The magnitude of a defines the rate of change from q_{1} towards $q^{\prime \prime}$.

Model 3 contains Models $1(a=1)$ and $2($ as a tends to zero) as special cases.

2.2.5 Model 4 (Mäntyniemi et al. 2005): individual catchability model

Model 4 assumes that, prior to the first removal, each fish in an enclosed site can be characterised by an individual catchability randomly drawn from a Beta distribution.

Mäntyniemi et al. (2005) show (Appendix B) that only the expected value of the distribution of catchabilities on each pass, is required to model the depletion series. Mean catchability declines over passes, and is described by a parametric function analogous to the Schnute (1983) models:

$$
\begin{equation*}
q_{i}=\frac{\mu \eta}{\eta+i-1}, \quad i=1, \ldots, k \tag{2.6}
\end{equation*}
$$

where μ is the mean catchability over all fish, and η is a measure of the relative variation of catchability:

$$
\begin{equation*}
\eta=\frac{\mu(1-\mu)-\sigma^{2}}{\sigma^{2}} \tag{2.7}
\end{equation*}
$$

Large values of η indicate low variation in catchability ($\eta \rightarrow \infty$ as $\sigma^{2} \rightarrow 0$). Estimates are required for the three parameters N, μ and η.

2.2.6 Parameter estimation

I used both maximum likelihood and Bayesian methods to estimate unknown parameter values. I found that Bayesian methods provided better performance. Although the change in bias was generally small, confidence interval coverage was improved relative to maximum likelihood methods. All further results and discussion, therefore, use the Bayesian estimates. To facilitate comparisons, maximum likelihood results are provided in Appendix A.

I used WinBUGS (Lunn et al. 2000; Appendix C) and Markov chain Monte Carlo (MCMC) methods to determine the joint posterior density for the unknown parameters for each model, given observed catches and prior distributions for all parameters. I ran
four MCMC chains initialised at different values in the parameter space. To avoid manual inspection of each simulation for convergence, I used the Gelman-Rubin potential scale reduction statistic (\hat{R}; Gelman and Rubin 1992) to assess whether the posterior samples obtained on the posterior distribution for each parameter. This statistic compares the variance within an MCMC chain of length l to the variance between multiple MCMC chains to estimate the factor by which the scale of the posterior distribution for a given parameter might be reduced if simulations were continued in the limit $l \rightarrow \infty$ (Gelman et al. 2004). If the potential scale reduction is high ($\hat{R} \gg 1$), additional simulation iterations are expected to improve the MCMC sample of the posterior distribution. Because MCMC chains tend to be autocorrelated, I used the $n_{\text {eff }}$ statistic (Gelman et al. 2004) to track the effective number of simulations. I continued simulations until $\hat{R}<1.1$ and $n_{\text {eff }}>100$ for all estimated parameters (Gelman et al. 2004), up to a maximum of 60000 simulations. The $n_{\text {eff }}$ statistic was not tracked for η in Model 4, because depletion series rarely contained enough information to provide more than 100 independent samples for this parameter.

One of the strengths of Bayesian analysis is that the resulting posterior distributions represent probabilistic statements about parameter values. However, to compare results in a simulation context, a point estimate is required. I used simulation to compare the performance of the mean and the median of posterior densities as point estimates for parameters N and q_{i} (Appendix D). The median was a less biased estimator if catchability was constant, and was similar to the estimate obtained from maximum likelihood estimation (the mode of the likelihood; Appendix A). However, the mean is a less biased point estimate if catchability declines (Appendix D). As my focus was to
examine the effects of declining catchability, I selected the mean of posterior distributions as the appropriate point measure. To represent uncertainty in estimates, I calculated Bayesian 95% posterior intervals based on the 2.5% and 97.5% quantiles of posterior samples.

2.2.7 Prior distributions

Bayesian estimation requires prior distributions, which describe prior beliefs about parameter values before depletion sampling. The Bayesian approach uses collected catch data to update prior beliefs and produce posterior probability distributions for unknown parameters. If there is no information to support prior beliefs, the standard approach is to use non-informative priors. I tested the impact of different prior distributions on results for all four depletion models. I conducted simulations using both informative and non-informative prior distributions.

Non-informative prior distributions

Non-informative priors are appropriate where no data are available to describe abundance, catchability or variation in catchability before the completion of a depletion experiment. I followed Mäntyniemi et al. (2005) in assigning non-informative priors for Models $1-4$. I assigned uniform priors for $\log (N)$ and $\log (\eta)$, and uninformative Beta priors for q_{1}, q, a and μ (Table 2.1).

Informative prior distributions

Informative priors are appropriate where there is some basis to assess a prior beliefs for parameter values in advance of a depletion experiment. Data from the experiment are then used to update prior beliefs. This may be appropriate where data are
available for a given species and habitat combination within a watershed or region. An upper bound on the site population (N) may also be known from previous studies, and (after sampling), a lower bound is defined by the total catch T_{k}. However, when the number of passes is small, there is little information about the variation of catchability in the data, and even a weakly informative prior distribution dominates the posterior (e.g. for η in Model 4; Mäntyniemi et al. 2005).

I assigned an informative Beta prior (Table 2.1) for the first pass catchability (Models $1-3=q_{1}$, Model $\left.4=\mu\right)$ based on the true simulated initial catchability $\left(q_{0}\right.$; see following section). Each q_{0} scenario therefore had its own prior for first pass catchability (Figure 2.2). I parameterised the prior using the method of moments approximation (Gelman et al. 2004, p. 582) with mean $=q_{0}$ and standard deviation $=0.1$, i.e.,

$$
\begin{align*}
& \text { Models 1-3: } q_{1} \sim \operatorname{Beta}(\alpha, \beta) \\
& \text { Model 4: } \mu \sim \operatorname{Beta}(\alpha, \beta) ; \\
& \alpha=q_{0}\left(\frac{q_{0}\left(1-q_{0}\right)}{\operatorname{var}(q)}-1\right) ; \quad \beta=\left(1-q_{0}\right)\left(\frac{q_{0}\left(1-q_{0}\right)}{\operatorname{var}(q)}-1\right) ; \\
& q_{0}=\{0.2,0.4, \ldots, 0.8\} ; \quad \operatorname{var}(q)=(0.1)^{2} . \tag{2.8}
\end{align*}
$$

I defined the lower limit of the prior for N using the total catch, i.e.,

$$
\begin{equation*}
\log (N) \sim \operatorname{Uniform}\left(\log \left(T_{k}\right), 10\right) \tag{2.9}
\end{equation*}
$$

As the models are highly sensitive to the prior distributions related to the variation in catchability, I used non-informative priors for q, a and η, as appropriate (Table 2.1).

2.2.8 Simulation approach

The three variables of interest for simulation include the true total population N, the vector of catchability over passes $q_{i},(i=1,2, \ldots, k)$ and the number of passes $(k$; Table 2.2). Catchability is defined by both initial (pass 1) conditions, and by the function defining pattern of change over passes. I simulated three and four pass depletion experiments, with true population $N=\{25,100\}$. Based on empirical results for juvenile salmonids (Riley and Fausch 1992; Peterson et al. 2004; Rosenberger and Dunham 2005), I simulated true initial catchability over the range $q_{0}=\{0.2,0.4,0.6,0.8\}$. To examine whether or not estimates were improved by collecting additional depletion samples, I also simulated eight pass removal experiments for $N=100$.

As a simulation model to generate data, I used the Peterson et al. (2004) expression, i.e.,

$$
\begin{equation*}
q_{i}=q_{0}\left(\frac{1}{r}\right)^{i-1}, i=1, \ldots, k \tag{2.10}
\end{equation*}
$$

where q_{0} is the initial catchability and r defines the rate of decline by pass (i.e. $r=1=$ constant catchability, $r=2=$ catchability declines by $1 / 2=50 \%$ each pass. This function can be parameterised such that the form is similar to Model 3 (Equation 2.5), Model 4 (Equation 2.6) or to an alternative such as an exponential function, i.e.,

$$
\begin{equation*}
q_{i}=q_{0} e^{-\lambda(i-1)}, \quad i=1, \ldots, k . \tag{2.11}
\end{equation*}
$$

However, because the simulation model (Equation 2.10) is different from the estimation models (Models $1-4$), none of the depletion estimators fit the simulated pattern of declines exactly. Based on empirical evidence for reductions in catchability for juvenile salmonids (mean $r=1.71$ for bull trout Salvelinus confluentus and westslope cutthroat
trout Oncorhynchus clarki lewisi; Peterson et al. 2004), I simulated values of r in the range $\{1.0,1.2, \ldots, 2.0\}$.

I simulated catch data series using random draws from the binomial distribution, i.e.,

$$
\begin{equation*}
C_{i}=\operatorname{Binomial}\left(N-\sum_{j=0}^{i-1} C_{j}, q_{i}\right), i=1, \ldots, k . \tag{2.12}
\end{equation*}
$$

Each N, q_{0} and r combination represents a simulation scenario (Table 2.2). For each of the candidate depletion models, and for each scenario, I calculated total population and catchability estimates for $M=500$ Monte Carlo trials.

2.2.9 Performance measures

I defined performance measures for estimates of the total population N, the initial catchability q_{0}, and the variation in catchability. The total population estimate is generally of most interest to researchers applying depletion models. However, I found that the bias in estimates of N is largely a function of the magnitude and variation of catchability. It is therefore of interest to examine how well depletion models define these parameters. Accurate measures of the catchability and variation in catchability might be applied to predict the degree of bias in estimates of N, and, in particular, to assess changes in expected bias between habitat types, over time, or between experimental treatments. I defined performance measures for N that track the bias, variation, confidence interval coverage and confidence interval width for the eight depletion estimators I examined. I calculated these summary statistics over all simulations for each
scenario. I examined the bias and variation of estimates of q_{1} and q_{4}. I examined only bias in estimates of the change in catchability over depletion passes.

Prior to the calculation of summary statistics, I removed simulations for which: (1) posterior samples failed to converge for any one estimated parameter ($\hat{R}>1.1$); (2) fewer than 100 effective samples were obtained for an estimated parameter $\left(n_{\text {eff }}<100 ; \eta\right.$ in Model 4 excepted); or, (3) the estimated population \hat{N} was more than twice the true population N.

Performance measures for estimates of abundance

I calculated mean square error (MSE) for each scenario directly from successful simulations (M^{*}), i.e.,

$$
\begin{equation*}
M S E=\frac{\sum_{m=1}^{M^{*}}\left(\hat{N}_{m}-N\right)^{2}}{M^{*}}, \tag{2.13}
\end{equation*}
$$

where \hat{N}_{m} is the abundance estimate for each simulation m, and N is the known true value. Root mean square error (RMSE) is often used as a model performance measure, because it incorporates both accuracy and precision, and is in the same units as the estimate. However, I was interested in both components of mean square error (MSE = variance + bias 2). To facilitate comparisons across scenarios where N varies, I calculated the bias component of MSE and standardised by the true value (N) to obtain the mean percent error $\left(\mathrm{MPE}_{N}\right)$, i.e.,

$$
\begin{equation*}
M P E_{N}=\frac{\sum_{m=1}^{M^{*}} \frac{\hat{N}_{m}-N}{N}}{M^{*}} \bullet 100 . \tag{2.14}
\end{equation*}
$$

I standardised the variance component of MSE by calculating the simulation based 'coefficient of variation' as the ratio of the standard deviation of estimates across all successful simulations $\left(s_{M^{*}}\right)$ to the true value (N):

$$
\begin{equation*}
C V_{\sin N}=\frac{s_{N}}{N} \bullet 100 \tag{2.15}
\end{equation*}
$$

where $s=\sqrt{M S E-b i a s^{2}}$. I used the true value (N), to calculate $C V_{\text {sim }}$, rather than the mean estimate ($\overline{\hat{N}}$, i.e. $C V=\frac{s}{\bar{x}}=\frac{s_{N}}{\hat{\hat{N}}}$), because I am interested in comparing the variance of estimates across different simulated true abundance.

Confidence interval coverage was calculated as the percentage of simulated confidence intervals that contained the known true value, N. I multiplied by 100 to express this as a percentage, and used 95% as the target for interval coverage (Type I error rate $\alpha=5 \%$).

Extremely wide confidence bounds might obtain 95\% coverage but provide little information to define uncertainty around \hat{N}_{m}. Indeed, for some catch series, there is not enough information in the data to define an upper bound for abundance using maximum likelihood methods (Schnute 1983). Confidence bounds between the total catch and infinity will contain the true value 100% of the time, but will also provide limited information to describe uncertainty in results. Preferably, estimators should provide the narrowest possible confidence bounds that provide 95% coverage. To compare interval width between scenarios with different true abundance, N, and because confidence intervals were not symmetric, I standardised confidence interval width using the known population N, i.e.,

$$
\begin{equation*}
\rho_{m}=\frac{L_{2, m}-L_{1, m}}{N}, \tag{2.16}
\end{equation*}
$$

where $L_{2, m}$ and $L_{1, m}$ are the upper and lower confidence bounds, respectively. Because confidence limits for uninformative depletion series were infinite, reporting the mean confidence interval width was not useful. As a statistic to compare model performance, I calculated the probability that confidence interval width was greater than the known population N (i.e. if true population $N=100$, the confidence interval on \hat{N} was ≥ 100). This statistic, $P\left(\rho_{m}>1\right)$, was calculated as the percent of successful simulations M^{*} for which $\rho_{m}>1$.

Performance measures for estimates of catchability

I calculated the mean percent error for estimates of catchability for each simulated removal pass $\left(M P E_{q_{k}}\right)$, i.e.,

$$
\begin{equation*}
M P E_{q_{k}}=\frac{\sum_{m=1}^{M^{*}} \frac{\hat{q}_{k m}-q_{k}}{q_{k}}}{M^{*}} \bullet 100 . \tag{2.17}
\end{equation*}
$$

I calculated the simulation based 'coefficient of variation' as the ratio of the standard deviation of estimates across all successful simulations $\left(s_{M^{*}}\right)$ to the true value $\left(q_{k}\right)$:

$$
\begin{equation*}
C V_{s i m}^{q_{k}}=\frac{s}{q_{k}} \bullet 100 \tag{2.18}
\end{equation*}
$$

where $s_{q_{k}}=\sqrt{M S E-\text { bias }^{2}}$.

Performance measures for estimates of variation in catchability

I calculated the estimated change in catchability between pass 1 and pass $4(\Delta \hat{q})$, for the base case, $N=100, k=4$ as the mean, over all successful simulations of the difference between the estimate for q_{4} and the estimate for q_{1}. I calculated the mean percent error in estimates of Δq, i.e.,

$$
\begin{equation*}
M P E_{\Delta \hat{q}}=\frac{\sum_{m=1}^{M^{*}} \Delta \hat{q}}{M^{*}} \bullet \frac{100}{\Delta q} \tag{2.19}
\end{equation*}
$$

2.2.10 Model selection approaches

Model selection approaches, such as the likelihood ratio test (Kendall and Stuart 1979; Hilborn and Mangel 1997), the Akaike information criterion (AIC; Akaike 1974) or the deviance information criterion (DIC; Spiegelhalter et al. 2002) can be used to compare the fits of competing models applied to the same dataset. The likelihood ratio test requires that models are nested (i.e. of a suite of models compared, the more complex models reduce to the simpler models under certain conditions; e.g. Models $1-3$). The DIC and AIC approaches do not require models to be nested, and trade-off model complexity with model fit. AIC and DIC use the penalised deviance to test model fit, where deviance is -2 times the log likelihood (i.e. -2 times the logarithm of the probability of the data, given estimated model parameters; Gelman and Hill 2007). A smaller deviance value thus represents a better fit. Adding a parameter to a model is expected to improve the fit, even if the new parameter provides no additional information. For this reason, model selection approaches evaluate model fit using a penalty function incorporating the number of parameters.

The deviance information criterion is appropriate to Bayesian estimation, and is defined as:

$$
\begin{equation*}
D I C=\text { deviance }+2 p D, \tag{2.20}
\end{equation*}
$$

where $p D$ is a measure of the number of effective parameters in a Bayesian model; calculation of the effective number of parameters is required for hierarchical Bayesian models for which the number of parameters is not obvious in the model specification (Gelman and Hill 2007). The effective number of parameters, $p D$, is calculated as the difference between the posterior mean deviance and the deviance at estimated parameter values, where estimates are taken to be the mean of the respective posterior distributions for each parameter ($\hat{\Theta}$; Gelman et al. 2004). Values of $p D$ can be negative if, for example, there is very little information in the data, and the deviance at $\hat{\Theta}$ is greater than the mean deviance. Negative $p D$ values preclude the use of DIC to arbitrate between competing models.

2.2.11 Relative effects of abundance, catchability, and change in catchability on bias in estimates of abundance

To examine the relative effects of abundance (N), initial catchability $\left(q_{0}\right)$ and the rate of decline (r) on the bias of estimates for N, I conducted 100 simulations for $N=\{25$, $50, \ldots, 300\}, k=4$. I used conditioning plots (Cleveland 1993) to examine the influence of N, q_{0} and r on depletion estimates for N. I fitted non-parametric, locally weighted regression (loess) models (Cleveland and Devlin 1988) to data presented in conditioning plots.

2.3 Results

I present results for abundance estimates for $N=100, k=4, q_{0}=\{0.2,0.4,0.6$, $0.8\}$ as a base case. I present sensitivity to changes in abundance and sampling intensity by comparing conclusions from this base case to results for $N=25$ and $k=\{3,8\}$. I then present results for estimates of catchability and change in catchability for the base case. Finally, I present results for the relative effects of abundance, initial catchability and the rate of decline in catchability on abundance estimates derived using Model 3.

2.3.1 Estimation failure

Estimation failures were rare for Models 2 and $3(<1 \%$, aggregated over all simulated catchability scenarios; Table 2.3). For Model 1 and Model 4, failures were more common (1.5% to 13.5%; Table 2.3). In most cases ($>97 \%$), a failure was recorded because the abundance estimate was greater than twice the simulated value.

2.3.2 Effects of catchability variation on depletion estimates of abundance

Base case (total population $N=100, k=4$ pass depletions)
Initial catchability $\left(q_{0}\right)=0.8$
Over a four pass depletion simulation at high catchability ($q_{0}=0.8$), most fish present within the site were captured by the final pass. The mean bias of the total catch ranged between -0.2% for constant catchability (i.e. 99.8% of the total population captured, on average), and -8.7% for strong reductions in catchability over consecutive passes ($r=2$; Table 2.4).

If catchability was constant, the total catch alone provided the best estimate of total population, albeit with no confidence bounds. All depletion estimators exhibited
small, positive, bias in estimates of abundance with low variance (Table 2.4). Because estimates were well defined in the constant catchability case, confidence interval coverage tended to be 100%, with narrow intervals (standardised interval width ρ was uniformly less than N).

If catchability was high, and declined over consecutive passes, total catch was, as expected, less than the true abundance. The constant catchability estimator (Model l) failed to improve on the total catch, and provided negatively biased estimates with tight confidence intervals that did not include the true value at the 95% target threshold. Nonconstant catchability estimators generally reduced bias, except for small changes in catchability $(r=1.2)$, where depletion models tended to exhibit small, positive bias (Table 2.4). Model 2 produced estimates with low bias (-0.8 to $+2.5 \%$, Table 2.4). Confidence interval coverage was less than the target 95% if the reduction in catchability was large ($r \geq 1.6$), despite a high probability of wide, uninformative confidence bounds (Table 2.4). Model 3 was more biased than Model 2 (-2.1 to $+5.6 \%$, Table 2.4), but confidence interval coverage was near to 100%; intervals were also more informative (narrower) than for Model 2. For low declines in catchability ($r=1.4$), Model 4 was less biased than alternatives, with appropriate confidence interval coverage (Table 2.4). For stronger reductions in $q(r=\geq 1.6)$, Model 4 was more biased than Models 2 and 3.

Initial catchability $\left(q_{0}\right)=0.6$

At initial catchability $q_{0}=0.6$, all depletion models provided less biased results than the total catch. At constant catchability, estimators were biased high, with nonconstant catchability estimators more biased $(+3.4 \%$ to $+7.3 \%)$ than Model $1(+0.9 \%$; Table 2.4). For declining catchability, non-constant catchability estimators were less
biased, and provided more appropriate confidence bounds than Model 1. Of non-constant estimators, Model 2 provided the least biased estimates at $r \leq 1.2$. Model 3 was more biased for $r \leq 1.2$, with higher probability of wide, uninformative confidence bounds. However, Model 3 provided the most accurate estimates for $r \geq 1.4$ and reported confidence bounds closest to 95%.

Initial catchability $\left(q_{0}\right)=0.4$

At low values for initial catchability, the information contained in depletion series was reduced, and the quality of estimates declined, as reflected by increased bias, increased variability, reduced confidence interval coverage, and less informative confidence bounds compared to higher catchability conditions. However, the pattern of relative performance by the four estimators was similar. Model l was most accurate if catchability was constant, with substantial positive bias in non-constant catchability models ($+12.0 \%$ to $+34.9 \%$; Table 2.4). Model 2 was the most accurate of non-constant estimators. If catchability declined, results were again more biased than for the $q_{0}=0.6$ case. Models 3 and 4 provided similar results. For high declines in catchability, bias was substantial and confidence interval coverage was much lower than the target 95% (e.g. MPE $=-32.5 \%$, CI coverage $=52.4 \%$ for Model 3, $r=2.0)$.

Initial catchability $\left(q_{0}\right)=0.2$

If initial catchability was very low, all estimators performed very poorly. Bias was substantial under most conditions (Table 2.4). Model 4 provided the most accurate estimates under declining catchability conditions, but exhibited substantial positive bias $(+14.0 \%$ to $+47.7 \%)$ if catchability was constant or close to constant $(r=\{1.0,1.2\})$, and
substantial negative bias (-57.0% to -19.7%) for declining catchability. Model 4 also provided confidence interval coverage closer to the target 95% than other estimators. However, at low catchability, with strong declines ($q_{0}=0.2, r=2.0$), few fish were being captured, and there was little information in the depletion series $($ MPE $=-57.0 \%$, CI coverage $=22.2 \%)$.

Incorporating prior information

As would be expected, informative prior distributions for catchability and the minimum population, based on true simulation parameters and the total catch (Table 2.1, Figure 2.2), generally improved the performance of estimators (Table 2.5). In general, priors reduced the bias of estimates, reduced the variability of estimates, improved confidence interval coverage and reduced confidence width. However, for declining catchability, estimates remain negatively biased, particularly for low catchability and for severe reductions in catchability (i.e. $r=2.0$).

Incorporating additional depletion passes ($N=100, k=8$)
Collecting additional information in the form of additional passes universally decreased the variance of estimates, and generally reduced bias and confidence interval width (Table 2.6). However, if catchability was low, estimates remained substantially biased, particularly if catchability was not constant.

Reducing the number of depletion passes ($N=100, k=3$)
If the number of passes was reduced, it might be expected that the reduction in observations would negatively impact estimator performance. However, this was not universally the case. For high catchability, and constant catchability conditions, three
pass estimates were more biased than the analogous four pass estimates (Table 2.7). However, if catchability was low, and declined by pass, the three pass estimates were generally less biased than the four pass equivalent. Uncertainty in estimates was generally increased, with wider confidence intervals. Because confidence interval coverage for many four pass scenarios was less than the target 95%, wider intervals in three pass scenarios generally improved confidence interval coverage (i.e. closer to 95%).

Impact of low true abundance ($N=25, k=4$)
If the true total population was low $(N=25, k=4)$, estimates at constant catchability, or near constant catchability $(r=\{1.0,1.2\})$ were generally more biased than was the case for $N=100$ (Table 2.8; cf. Table 2.4)

However, if catchability declined over passes, performance relative to the $N=100$ base case depended on initial catchability. At high initial catchability ($q_{0}=0.8$), Model 1 was less biased for $N=25$ than for $N=100$. Models 2,3 and 4 were generally more biased at low N than at high N. However, for lower initial catchability $\left(q_{0}=\{0.2,0.4\right.$, $0.6\}$), estimates were less biased at $N=25$ than at $N=100$.

Estimates at reduced true N were more variable than at $N=100$. Increased uncertainty generally produced confidence interval coverage closer to the target 95%, with higher probability that the confidence interval width was at least equal to 25 .

2.3.3 Effects of catchability variation on depletion estimates of catchability

As depletion models jointly estimate abundance and catchability, abundance estimates that were biased low occurred when the corresponding estimate of catchability was biased high (Table 2.9, cf. Table 2.4). Estimates of first pass catchability were more
biased and more variable for lower true catchability than for higher true catchability, and were more biased if true catchability declined over passes, relative to constant true catchability.

Three and four pass depletion series generally contained too little information to accurately estimate parameters defining the change in catchability over successive depletion passes (for an example, see Appendix D). As a result, estimates of catchability for latter passes were both biased and highly variable (e.g. q_{4} for $k=4$; Table 2.10). Severely biased estimates for q_{4} were not necessarily associated with biased estimates of abundance. For example, for $q_{0}=0.8$ and $r=>1.2$, estimates of q_{4} were badly biased $(\mathrm{MPE}=63.2 \%$ to $737.6 \%)$, but estimates of abundance were relatively unbiased (MPE $=$ -8.3% to $4.4 \%)$.

2.3.4 Effects of catchability variation on depletion estimates of change in catchability over depletion passes

Despite bias and high uncertainty in estimates of late pass catchability, if true catchability declined over passes, non-constant catchability models did track this decline. All models substantially underestimated the change. At moderate and high catchability $\left(q_{0}=\{0.6,0.8\}\right)$, Model 3 estimates of the change in catchability were least biased (e.g. -23.0\%--45.8\% for $q_{0}=0.8$; Table 2.11). At lower catchability, Model 4 estimates of the change in catchability were less biased than the Model 3 estimates.

If true catchability was constant, depletion estimators that permit change in catchability erroneously indicated that such a change had occurred; in general, these errors were small (Table 2.11). At low, constant catchability $\left(q_{0}=\{0.2,0.4\}\right)$, Models 2
and 3 erroneously estimated, on average, that catchability increased between pass 1 and pass 4.

2.3.5 Model selection approaches

Three and four pass depletion series did not contain sufficient information to reliably estimate all parameters of more complex non-constant catchability models. Although simulation results showed that application of these models was justified under some conditions (i.e. bias in abundance estimates was reduced), estimates of parameters defining catchability were highly uncertain. Calculated $p D$ values were often negative. The deviance information criterion could not, therefore, be used to arbitrate between the four models tested.

2.4 Discussion

Depletion models are widely applied, particularly in freshwater fisheries biology, to estimate population abundance from the pattern of decline observed over sequential capture events. Traditional estimators assume that catchability remains constant over successive removals. Empirical evidence has shown that this assumption is often violated. Catchability tends to decline over successive sampling events. It is well established that non-constant catchability causes negative bias in depletion estimates of abundance, if the models applied assume equal catchability. The confidence intervals returned are erroneously precise, and suggest unwarranted confidence in the biased estimates. In order to address this known problem, depletion estimators which explicitly permit catchability to vary over sampling events have been developed. In this study, I
used simulation to rigorously test the performance of these non-constant catchability depletion estimators.

My simulation results showed that, for the three and four pass depletions commonly completed by freshwater fisheries biologists, estimators explicitly designed to address non-constant catchability did not substantially reduce the bias of abundance estimates. Estimator performance was driven by catchability and the change in catchability, rather than by abundance. As might be expected, performance was particularly poor for low catchability, as well as for large declines in catchability by pass. Confidence intervals for non-constant catchability models were more likely to contain the true value than was the case for constant catchability models. These confidence intervals could be very wide, accurately reflecting the high uncertainty in estimates of abundance. Improved estimates (reduced bias, reduced variance and reduced confidence interval width) were obtained if additional information was incorporated in the form of informative prior distributions. The collection of additional depletion passes reduced the variance of estimates, but generally did not substantially reduce bias. Confidence interval coverage was generally reduced (often detrimentally so, with increased certainty indicated for biased results).

2.4.1 Bayesian parameter estimation versus maximum likelihood estimation

If catchability declines, Bayesian abundance estimates were less biased than maximum likelihood estimates (Appendix A). In the case where non-informative priors are assumed, this difference reflects the way in which point estimates and confidence intervals are calculated. If little information is supplied by prior distributions, the Bayesian posterior distribution will be similar to the likelihood. I calculated Bayesian
point estimates for N as the mean of posterior distributions (Appendix D). Maximum likelihood estimates are the mode of the analogous likelihood. For depletion models with declining catchability, posterior distributions and likelihood profiles for N tend to be skewed right by the possibility that catchability is very low (Schnute 1983; Appendix D). As a result, the mean of these distributions (i.e. the Bayesian point estimate) will tend to be less biased than the mode (i.e. the maximum likelihood estimate).

Bayesian methods might also be preferred on conceptual grounds, because: (1) posterior distributions represent probabilistic statements about parameter values, so results are easily interpreted; (2) if prior data are available for any parameters of a given model, there is an explicit mechanism to include this information, and (3) Bayesian models are amenable to hierarchical analyses likely to be appropriate for depletion data collected over a network of related sites in a given study (e.g. Wyatt 2002; Rivot et al 2008).

2.4.2 Selecting an appropriate depletion model

If data are available to show that catchability is constant, constant catchability depletion models are preferred. If supplementary information is not available to test this assumption, biologists must determine if it is better to erroneously assume constant catchability, or to erroneously assume non-constant catchability. Empirical results suggest that catchability is probably not constant for juvenile salmonids (Bohlin and Sundström 1977; Gatz and Loar 1988; Riley and Fausch 1992; Peterson et al. 2004; Rosenberger and Dunham 2005; Carrier et al. 2009) as well as for other fish (Dauwalter and Fisher 2007).

The cost of assuming constant catchability, and being wrong, can be high, because constant catchability models provide biased estimates with inappropriate confidence limits if capture efficiency is in fact variable. Overconfidence in depletion data might lead researchers to erroneously find a difference between sites; this conclusion of difference would not be supported by realistic measures of uncertainty in the respective results (Mäntyniemi et al. 2005).

The cost of assuming non-constant catchability, and being wrong, is positive bias in abundance estimates; non-constant catchability models are positively biased if true catchability is constant. This bias can be substantial at low catchability. However, performance is improved at higher catchability, and confidence intervals appropriately indicate uncertainty in results. Of the three non-constant catchability estimators I tested, the performance of abundance estimates is broadly similar amongst the models, across the range of scenarios examined.

Determining which of the tested models is appropriate for depletion data from a given study depends on the expected range of catchability and change in catchability for the system surveyed (Figure 2.4). Model 1 performs best if catchability is constant. Model 3 is generally preferred if catchability is not constant, with bias similar to alternatives and appropriate confidence interval coverage that is generally better than alternatives. Model 4 performs best at low catchability, if catchability declines.

2.4.3 Model selection approaches

An alternative to choosing a single model is to fit both constant and non-constant catchability models, and assess their ability to explain the observed data. Schnute (1983)
uses a likelihood ratio test to compare the fits of Models $1-3$; I apply this approach to maximum likelihood estimates in Appendix A. Otis et al. (1978) use a similar approach, in that successive models are tested, beginning with the assumption of constant catchability. Rosenberger and Dunham (2005) found that the information in four pass depletions for stream resident salmonids was not sufficient for the Otis et al. (1978) goodness of fit test to detect changing catchability (in their case, independently ascertained from mark-recapture data). Korman et al. (2009) use AIC to test for a difference between constant and non-constant catchability models; they also found that depletion estimates did not detect the change in catchability over successive passes indicated by parallel mark-recapture experiments. Peterson et al. (2004) discuss similar results for goodness of fit tests. I attempted to apply the deviance information criterion to Bayesian estimation models, but found that it was not possible to use this test to arbitrate between models.

2.4.4 Relative effects of true abundance and true catchability on estimates of abundance

At very low sample sizes, estimates of abundance are expected to be biased low as a property of the likelihood (Schnute 1983; Korman et al. 2009). The binomial likelihood applied to removal data is based on probabilities derived from finite samples, and these probabilities are a function of sample size (Schnute 1983). Schnute (1983) and Korman et al (2009) using the following example: if a fair coin is flipped twice, the probability of obtaining one head is higher than the probability of obtaining 50 heads for 100 coin flips. Similarly, at low sample size, estimates of catchability tend to be high, and estimates of abundance low.

For the range of parameters values that I examined, the effects of true abundance on bias were overwhelmed by the effects of initial catchability and the rate of decline in catchability. This might not be the case for a field studies. Based on mark-recapture experiments, Korman et al. (2009) find evidence for density dependence in catchability. However, the ranges that I selected for catchability and the rate of decline in catchability are supported by empirical data for salmonids (e.g. Peterson et al. 2004; Carrier et al. 2009). It is therefore likely that catchability conditions will be a more important determinant of bias in depletion estimates of juvenile salmonid abundance.

2.4.5 Determining catchability and change in catchability from depletion data

Because the performance of depletion estimators depends on the magnitude and variation in catchability, assessing the performance of these estimates for real data is of critical interest. Unfortunately, estimates of abundance from removal data are biased at low and declining catchabilities because estimators fail to correctly estimate both the catchability and the decline in catchability. Estimates are more robust if estimated catchability on the first pass is high (e.g. ~ 0.8). Because estimates of catchability and the change in catchability are confounded, it is not possible to distinguish cases where q_{1} is incorrectly estimated from cases where the estimated change in catchability is inaccurate. For real world data, this distinction might be important, because the bias of estimates for N may differ substantially between the two cases. For example, consider Model 3 estimates for true catchability 0.2 and 0.4 , and the reduction in catchability between passes is 1.8 and 1.4 , respectively (Table 2.4; Table 2.11). In both cases, the Model 3 estimate for q_{0} is expected to be ~ 0.50, and the estimates for Δq are expected to be similar $(-0.04,-0.07)$. Without data in addition to the catch series, it is impossible to
determine what conditions prevailed when the data were collected. However, the difference in bias between the two scenarios might be significant (-56.9, -22.3).

2.4.6 Improving depletion estimator performance by including additional information

Depletion estimators based on three or four pass catch series attempt to estimate between two (Model 1; N, q_{1}) and four (Model 3; $N, q_{1}, q^{\prime \prime}, a$) parameters, from three or four data points. This is ambitious; although robust estimates for N and q_{1} can be obtained under some conditions, three and four pass removal series generally do not contain sufficient information to provide robust estimates, in particular for the parameters defining change in catchability. If estimates of N are unbiased, this may be of little concern. However, estimates of N can be strongly biased under low and/or variable catchability conditions. In this case, estimates of catchability parameters may be crucial to assess potential bias (for example, to determine if the precision or accuracy of abundance estimates may have changed between experimental treatments). Estimator performance can be improved by including additional information, in the form of informative prior distributions or additional removal passes. However, including informative priors for q_{0} and for the minimum population size tended to reduce bias, but improvements were modest, and not universal. My simulations suggested that doubling sampling effort $(k=8)$ universally reduced the variance of estimates, but tended to reduce bias only for Model 1. This result is in contrast to the conclusions of Mäntyniemi et al. (2005), who find that increasing the number of passes provides more accurate estimates for Model 4. This suggests that the simulation model that I chose to generate data may
not reflect the sampling conditions experienced in the collection of the field data (Bohlin and Sundström 1977) used by Mäntyniemi et al. (2005).

Informative priors for the change in catchability are also expected to improve estimates from depletion estimators. Substantial literature evidence for non-constant catchability in juvenile salmonids suggests that more informative priors might be appropriate. For example, Boughton et al. (2009) define and apply a prior using the data reported in Mäntyniemi et al. (2005). However, with only three or four depletion passes, Bayesian models apply most of the available information to estimation of abundance and catchability; estimation of the variation in catchability is highly sensitive to the prior selected (Mäntyniemi et al. 2005). The choice of prior will dominate the posterior unless there is adequate data; additional passes might provide sufficient information to support informative priors for catchability variation.

Additional information from mark-recapture studies

An alternative to depletion sampling is to collect mark-recapture estimates of abundance and catchability. Such surveys might be used in place of depletion experiments, or as an independent measure of catchability to assess depletion estimate performance or to provide informative prior distributions.

Mark-recapture experiments are subject to their own suite of assumptions, which must also be evaluated (i.e., it is assumed that marked fish survive, remain within the sample site, and that the recapture probability of marked fish is equivalent to that for unmarked fish). Mark-recapture experiments also take longer to complete than depletion experiments. However, a number of authors have evaluated both mark-recapture and
depletion experiments to estimate juvenile abundance in small (Peterson et al. 2004; Rosenburger and Dunham 2005; Sweka et al. 2006; Carrier et al. 2009) and large (Korman et al. 2009) rivers. All recommend the use of mark-recapture experiments to obtain unbiased estimates of abundance and catchability.

Using field experiments and simulation, Korman et al. (2009) show that, for backpack and boat electrofishing on a large river, mark-recapture studies provided less biased estimates of capture probability than did maximum likelihood depletion methods. Mark-recapture methods were able to detect a change in catchability between successive passes, while depletion data did not resolve the difference, based on AIC comparison of fits for both constant and non-constant catchability models.

Additional information from related sites

Perhaps the most promising approach to incorporate additional information is to use data from sites that are likely to have similar catchability conditions (for example, sites that are nearby, or sites with similar habitat). Hierarchical Bayesian models (e.g. Dorazio et al. 2005; Wyatt 2002; Rivot et al. 2008) provide a framework to permit analyses of this kind, facilitating information sharing between appropriately similar sites, allowing well defined results to contribute to estimation at sites with more poorly defined estimates. Hierarchical models represent partial pooling of site data. As a result, sitespecific estimates might become biased towards the mean of the sites. However, if the interest in a stock assessment or experimental context is in the aggregate, this partial pooling may improve estimates.

2.4.7 Importance of reducing bias in depletion estimates

There is a trade-off between the time spent collecting data and the precision obtained. More intensive surveys at a given site are expected to provide more precise, accurate results. For example, the collection of additional removal passes, or ancillary mark-recapture estimates may reduce bias and increase precision for depletion data. However, this effort is likely to preclude sampling at other sites. Biologists thus face a trade-off between a few, high precision sites, and a larger sample of lower precision sites. Hankin and Reeves (1988) suggest that additional sites are preferred, to better delineate between-site variance (at the expense of detailed information about within-site variance). The uncertainty in depletion estimates, as a function of catchability and change in catchability, may be much less significant than the uncertainty introduced by variation between sites. In this case, the available effort might be better spent on samples at additional sites, rather than additional samples at existing sites. Dauphin et al. (2009) describe an example of this approach. Rapid assessment techniques often consist of a large sample of low precision sites (e.g. single pass electrofishing, without block nets) calibrated using a smaller sample of high precision sites (e.g. multiple pass depletions with block nets).

Biologists considering depletion sampling should determine: (1) the precision and accuracy required to meet research objectives; (2) expected sources of uncertainty; (3) how uncertainty propagates through analyses; and (4) the expected catchability and variation in catchability.

2.4.8 Choosing an appropriate sampling method

My results summarise the precision and accuracy expected from depletion sampling across a range of parameters, and can be used to determine whether removal experiments are appropriate. If depletion sampling is selected, my results can be used to select the level of effort (the number of passes) appropriate to research objectives. Simple field rules can be developed to determine when collected data do not provide the required resolution, and additional passes are therefore required (Schnute 1983). Alternatively, depletion models can be run using a laptop computer in the field. Sampling would be continued until pre-determined accuracy and precision targets are met. Alternatively, additional passes at a subset of sites, or concurrent, independent measures of catchability might be used to guide selection of an appropriate estimation model, and to develop the prior distributions that improve Bayesian model results. Poor performance of all depletion models under low catchability conditions suggests that researchers should make all reasonable efforts to ensure moderate or high capture efficiency. This might be accomplished through appropriate sampling efforts, fishing technique, and electroshocker settings.

2.5 Recommendations

1. Where practical, independent measures should be obtained to determine whether catchability is constant in surveyed populations. Results will help to inform selection of an appropriate depletion estimator, and to develop priors for Bayesian depletion models.
2. Practical field rules should be developed to determine when a depletion experiment does not meet pre-defined precision requirements, and additional
passes are therefore required. Schnute (1983) suggests using the ratio of successive catches to roughly estimate the escapement fraction $\left(p_{i}=1-q_{i}\right)$. Where $p_{i}>0.75$ or p increases by a factor of more than 3 after the first fishing, additional passes should be considered.
3. Low catchability results in poor depletion estimates. Reasonable measures to obtain high catchability, such as standardised electrofisher settings, should be undertaken, within the usual constraints of depletion sampling (e.g. equal effort on each pass).
4. Variable catchability results in poor depletion estimates. To a large extent, variation is likely to be a function of habitat and fish behaviour, rather than a factor that can be controlled by researchers. However, at a minimum, analysis should split fish into appropriate species and size/age classes.

3 EXAMINING THE IMPACT OF CATCHABILITY AND ON CONCLUSIONS DRAWN FROM A LARGE SCALE, LONG TERM ADAPTIVE MANAGEMENT STUDY

3.1 Introduction

Depletion sampling was selected to test fish population response to increased flow in the context of a long-term, adaptive management experiment on the regulated lower Bridge River, BC. The study examines the effects of experimental discharge manipulation on fish abundance. Two flow treatments have been monitored to date, with surveys between 1996 and 1999 representing historical flow conditions. In 2000, flows were increased, substantially changing both habitat and sampling conditions. Previously dry habitats in the upper river were wetted (and so subsequently sampled), and augmented flows provided different habitat and sampling conditions in some lower river sites. The challenge is to detect a response to treatment, against a background of potential treatment-induced changes in the sampling efficiency, as well as high natural variability. Effective analysis of the available depletion data is imperative if robust conclusions are to be drawn from the adaptive management experiment. If the change in sampling conditions affects the precision or bias of results, this might affect conclusions; if the treatment does affect fish abundance, this might not be detected.

Depletion models use the sequence of captures to infer both the total number of fish present in sampled sites and catchability, the probability of capturing an individual during a given sampling pass. The models are subject to bias and reduced confidence interval coverage if catchability is low or highly variable (Chapter 2). The performance
of depletion estimators for the lower Bridge River dataset is therefore affected by prevailing catchability conditions. Furthermore, because the experimental treatment substantially altered habitat and sampling conditions, catchability may have changed. If so, estimator performance may, in part, be a function of treatment. If there is a flow effect on estimator performance, this may affect subsequent tests for a treatment effect on juvenile salmonid abundance. I therefore had two linked objectives for Chapter 3:

1. to assess the performance of depletion estimators for lower Bridge River data, as a function of catchability and variation in catchability; and,
2. to assess how treatment may have altered catchability conditions, and therefore the performance of depletion estimators.

3.1.1 Treatment mediated effects on catchability and bias

Electrofishing catchability is affected by factors such as stream size (Peterson et al. 2004; Rosenberger and Dunham 2005), habitat complexity (Peterson et al. 2004), fish size and species (Bagenal 1979; Anderson 1995; Peterson et al. 2004; Korman et al. 2009), fish density (Korman et al. 2009), substrate (Peterson et al. 2004), temperature, turbidity, and methods applied, such as electrofisher settings, and the use of block nets (Dauphin et al. 2009). Factors that influence variation in catchability are less well studied. Because both the magnitude and variance of catchability affect the performance of depletion estimators, changes in sampling conditions with experimental treatment may affect tests designed to detect response to that treatment.

Augmentation of flow in the lower Bridge River is explicitly designed to alter conditions, with the intention of improving salmonid rearing habitats. It is therefore
reasonable to expect that the treatment may also affect sampling efficiency. For example, some sites in Reach 3 had been completely isolated during Treatment 1 using two nets across the width of the river. Higher Treatment 2 flows dictate the use of three nets to establish sites along the stream margin. Treatment 2 may have caused a system-wide reduction in sampling efficiency by introducing colder, more turbid water from the reservoir. Changes in fish behaviour may also have affected sampling efficiency. Increased flows permit bull trout, an efficient predator of juvenile salmonids, to move into upper sections of the river from which they were previously absent. It is likely that juvenile fish distribution and behaviour changed with the immigration of this predator. Consequences for sampling efficiency are unclear and untested. In addition, catchability may have changed over the relatively long time-frame of an adaptive management experiment, as a function of researcher behaviour (e.g. learning over repeated sampling, changes in personnel, refinements of methods, etc). There has been remarkable stability in senior field staff over the study period, suggesting continuity of approach; however, subtle changes might be expected as experienced crews sample familiar sites. Although site locations and sampling protocol were standardised, electrofisher settings were initially left to crew discretion. Systematic differences between crews with respect to settings may affect capture efficiency and therefore the performance of calculated estimates.

In this section, my objective was to detect systematic treatment effects on catchability. Because such effects might reduce the power of statistical tests for experimental response, it might be possible to develop corrective models linking catchability conditions with site characteristics (Rosenberger and Dunham 2005). I
therefore examined the impact of a wide variety of site characteristics on catchability estimates derived from a depletion model tested in Chapter 2.

Low and heterogeneous catchability both affect the performance of depletion estimators (Chapter 2). There are two approaches to assess the magnitude and variation of catchability, and thus assess estimator performance: (1) independent measures of catchability can be obtained from mark-recapture studies (Riley and Fausch 1992; Peterson et al. 2004; Rosenberger and Dunham 2005; Carrier et al. 2009); or, (2) a depletion estimator that permits heterogeneity in catchability (Chapter 2) can be applied.

I used depletion models with known performance characteristics to estimate population, catchability and variation in catchability for sampled sites in the lower Bridge River. I assessed performance by comparing estimates with my simulation results from Chapter 2. My objective was to determine whether changes in sampling conditions during the lower Bridge River adaptive management experiment may affect tests designed to detect a treatment effect.

3.2 Methods

3.2.1 Study area

The Bridge River is a sixth order tributary to the Fraser River, near Lillooet, British Columbia. Prior to impoundment the river supported significant populations of resident and anadromous salmonids (Oncorhynchus spp.). The lower river (below the dam) likely functioned as a migration corridor to access rearing habitat upstream, as high flows in a confined channel probably precluded more widespread use (mean annual discharge $=100 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$, maximum historical flow $\sim 950 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1} ;$ Higgins and Bradford
2001). Completion of the Terzaghi Dam, approximately 40 km upstream of the Fraser River, blocked upstream fish migration and diverted flows from the upper Bridge River into Seton Lake, in an altogether separate watershed. Almost all flows were diverted, with the exception of rare discharge events. During normal operations, this dewatered a section of channel approximately 4 km long (Reach 4; Figure 3.1). Downstream of Reach 4, groundwater and tributary inflows created stable, highly productive fish habitat (Reach 3). The Yalakom River, a significant tributary 15 km downstream of the dam, created higher flows and substantially different habitat conditions in Reaches 2 and 1. Despite the dramatic changes caused by regulation, the system continued to support salmonids below the dam.

Diversion raised aesthetic, social and fish production concerns among First Nations, local residents, and fisheries management agencies. In 1988, a preliminary agreement was reached to provide flow releases. As there is no generation capacity at the dam, there is a clear management trade-off between competing water use values. Nonpower flows incur significant foregone generation revenues for each cubic metre per second released rather than diverted. Anadromous fish productivity was identified as one critical issue in the decision process. Existing models of fish production as a function of flow were deemed unsatisfactory (Higgins and Bradford 2001), so an adaptive management experiment was undertaken. The experiment attempts to parameterise a functional relationship between flow and fish production. Current hypotheses suggest that moderate flow increases would improve production, but that too much would reduce capacity (due to excessive velocities and poor water quality - the release of cold, turbid reservoir water). The magnitude, order and duration of experimental flow treatments
were selected using solicited expert opinion and decision analysis (Failing et al. 2004). Five flow regimes $\left(0,3,1,6\right.$ and $\left.9 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}\right)$ over $4-5$ year treatment periods were selected to permit response over at least one salmonid generation ($\sim 3-5$ years) within each treatment. The discharge label for a flow regime (e.g. $0,3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$) represents the annual average, with seasonal discharge linked to the natural hydrograph of the Yalakom River. Flexibility in treatment order and implementation was anticipated, with the progress of the experiment informed by early results. Only two of the planned flow treatments have been applied to date. No discharge from the dam occurred between dam completion and August 2000, when flows were increased to an annual average of $3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$.

3.2.2 Juvenile salmonid stock assessment

Juvenile salmonids were selected as a key response metric because adult abundance is affected by conditions external to the experiment, such as marine survival and fishery interceptions. Given high spatial and temporal variation in juvenile densities (Higgins et al. 2000), monitoring of water quality, primary and benthic productivity, and fish behaviour (Bradford and Higgins 2001), were also undertaken, to provide context and a 'weight of evidence' argument if abundance data lacked power to discriminate between treatment effects. Standardised assessments of juvenile salmonid densities have been conducted annually between 1996 and 2008. Sampling between 1996 and 1999 represents baseline 'Treatment 1' conditions of zero dam discharge. Flows during the 'Treatment 2' period (August 2000 - present) average $3 \mathrm{~m}^{3} \cdot \mathrm{~s}^{-1}$ over each year. Due to the flow increase in August 2000, data for this year represent a transition period.

Representative sample sites were established in pool, riffle, run, cascade and sidechannel (SC) habitats. Between 1996 and 1999, $35-40$ sites were sampled in
reaches 2 and 3. With flow releases beginning in 2000, additional sites were established in Reach 4 (where no wetted habitat had existed previously); between 2001 and 2008, 48 -50 sites were sampled. Sampling locations were permanently marked and the same locations were generally sampled annually, although not all sites were sampled in all years. A total of 525 sites were sampled between 1996 and 2007. Site conditions may have varied within a treatment due to natural changes in riparian vegetation and substrate composition and configuration. Some interannual variation in flow conditions did occur within a given flow treatment. However, all data were collected during the fall low flow period (September), with flow and water temperature conditions broadly similar across years within treatments (Sneep 2005).

Within each sampling site, an area of approximately $100 \mathrm{~m}^{2}($ mean $=96$, range $=$ $20-273 \mathrm{~m}^{2}$) was entirely isolated using block nets anchored with stones. During Treatment 1, some Reach 3 sites used two block nets stretched across the entire width of the channel. The remainder of Reach 3 sites and all Reach 2 sites used three nets to isolate an area along the channel margin. At higher Treatment 2 flows, all sites were three-sided. At each site, a three $(\mathrm{n}=277)$ or four $(\mathrm{n}=246)$ pass depletion was conducted by a three person crew using a Smith-Root backpack electrofishing unit (at two sites, only two passes were completed). Electrofisher settings were initially determined at operator discretion, with some standardization in later years. All sampled fish were identified to species, weighed, measured, and were returned to sites unharmed after sampling was complete. Captured fish were assigned to age classes based on postcapture length frequency analysis. Descriptive information was collected for each site, including habitat type, substrate composition, depth, velocity and area enclosed by block
nets. Habitat type was recorded as pool, riffle, run, cascade or sidechannel. Between 1996 and 1999, substrate type was recorded as the mean particle size, both for the exposed streambank and for the wetted site. Beginning in 2000, the substrate composition, as percent fines $(<2 \mathrm{~mm})$, gravel $(2-64 \mathrm{~mm})$, cobble $(>64-265 \mathrm{~mm})$ and bolder ($>256 \mathrm{~mm}$), and D_{90}, the intermediate axis dimension of the 90% percentile of substrate particles, were also recorded. Three depth and velocity transects were recorded in each site following removal of block nets.

3.2.3 Data analysis

Performance of lower Bridge River depletion estimates

I applied a Bayesian depletion estimator that permits heterogeneous catchability (Model 3, Chapter 2, Schnute 1983) to rainbow/steelhead trout (O. mykiss) fry (age $0+$) data for the lower Bridge River. The depletion model provides reliable estimates of total population (N) and catchability (q), unless catchability is very low and/or highly variable. Estimates of the variation in catchability $\left(\hat{q}_{k}-\hat{q}_{1}\right)$ are uncertain, and biased low for four pass depletions. I selected rainbow/steelhead trout fry because this was the most abundant species/age class in the dataset. I examined the distributions of point estimates for site population, catchability and variation in catchability for the lower Bridge River dataset.

Treatment mediated effects on catchability and bias

I examined the effects of variables that may have changed with experimental treatment on the precision and accuracy of abundance estimates. I tested for the effects of potential correlates (reach, year, habitat type, depth, velocity, substrate, and
electroshocker voltage) on estimates of catchability. The Bridge River adaptive management experiment is a repeated measures design, with the same sites sampled both within and across treatments. However, the design is not balanced, as Reach 4 sites were dry during Treatment 1 and so were not sampled. Reach 3 sites are not 'repeat measures' between treatments; although site locations were identical during both treatment periods, site character and block net placement changed with the augmented flows.

A hierarchical or non-linear mixed effects model is likely required for the complete analysis of treatment effects on fish abundance and catchability. My intent here was to examine depletion data for flaws that might invalidate such tests. I ignored the complexities of the repeated measures design, and used a non-parametric approach. I used conditioning plots (Cleveland 1993) to examine the influence of a suite of variables on first pass catchability $\left(\hat{q}_{1}\right)$ estimated from the depletion data using Model 3. I fitted non-parametric, locally weighted regression (loess) models (Cleveland and Devlin 1988). This approach ignored the non-independence of repeated measures data, but provided for rapid visualisation of relationships that may warrant further testing. This was adequate to identify potential correlations between catchability and variables that might be affected by treatment. If no relationship was suggested by loess fits that ignore the repeated measures nature of the dataset, further investigation is unwarranted. However, relationships evident in the rapid visualisation approach warrant further testing.

I examined reach, year, habitat type, depth, velocity, substrate and electroshocker voltage for an effect on the estimate of first pass catchability. For depth and velocity, I used the average of the 15 measurements collected on transects at each site. For
substrate, I used the mean substrate size estimate for the wetted site, as these data were consistently recorded through all survey years.

3.3 Results

3.3.1 Performance of lower Bridge River depletion estimates

Juvenile rainbow trout (Oncorhynchus mykiss), coho salmon (O. kisutch) and chinook salmon (O. tshawytscha) were captured during sampling of 525 lower Bridge River sites between 1996 and 2007 (total captures $=46$ 141). O. mykiss, which may be resident rainbow trout or anadromous steelhead, represented the majority of captures $(\sim 66 \% ; n=30170)$ and about 81% of these were age $0+$ fish ($n=24564$).

Population estimates for lower Bridge River sites ranged between 1 and 792 rainbow trout fry $($ median $=38.4$, mean $=56.9)$ and the vast majority of sites contained fewer than 200 fish (Figure 3.2a). Catchability estimates were highly variable (mean = 0.55 , median $=0.56$, range $=0.14-0.87$; Figure 3.2b). For most sites, estimates of the change in catchability over depletion passes suggested a 0 to 50% decline (Figure 3.2c). Declines tended to be most pronounced at high initial catchability (Figure 3.2d). Conversely, at low initial catchability, Model 3 suggested that catchability tended to increase over successive removal passes (Figure 3.2d).

3.3.2 Treatment mediated effects on catchability and bias

Graphical analysis of estimated catchability for lower Bridge River sites suggested that catchability has increased over the course of the flow experiment (Figure 3.3). This pattern does not appear to be explained by a parallel shift in abundance (Figure 3.4) or in the change of catchability over successive depletion passes at a given
site (Figure 3.5). Trends in increased catchability over time appeared similar between habitat types and between reaches of the lower Bridge River (Figure 3.3).

It did not appear that there are similar trends in catchability as a function of the depth (Figure 3.6), flow (Figure 3.7) or substrate (Figure 3.8) within sites sampled on the lower Bridge River.

3.4 Discussion

3.4.1 Performance of lower Bridge River depletion estimates

Estimates of catchability and the change in catchability over successive passes for removal data collected at sites on the lower Bridge River suggested that the abundance estimates derived from these data may be negatively biased. The magnitude of bias is uncertain, because bias depends on catchability and the magnitude of decline in catchability within individual depletion experiments, and the latter were poorly estimated. Estimated catchability for lower Bridge River sites tended to be higher than reported for systems with independent measures from unbiased mark-recapture experiments (Peterson et al. 2004; Rosenburger and Dunham 2005; Carrier et al. 2009; Korman et al. 2009). This was expected because estimates based on depletion data are biased high, particularly if catchability is not constant (Chapter 2; Table 2.9).

The magnitude of within-site declines in catchability was poorly estimated for lower Bridge River data. High catchability estimates were associated with estimates of large declines in catchability between successive passes (Figure 3.2d). This was consistent with empirical studies that indicate steep changes in electrofishing catchability (Peterson et al. 2004), and with simulation results (Chapter 2) that showed improved
estimation of the change in catchability at higher initial catchabililty. Abundance estimates under these conditions were expected to be relatively unbiased. However, abundance estimates under intermediate catchability conditions (e.g. $q_{0} \sim 0.5$) may have been substantially biased. Simulation indicated that erroneous estimates of increasing catchability were expected for Model 3 if true catchability was low and constant. For example, Model 3 erroneously estimated a 35% increase between q_{1} and q_{4} for constant true $q_{1}=0.2$ (Table 2.11). The corresponding estimate of catchability was biased high $\left(\hat{q}_{1}=0.24\right)$. These conditions may have existed at some lower Bridge River sites (Figure 3.2d). However, estimates of catchability and the change in catchability were confounded; without external information to improve estimation, it was not possible to determine the accuracy of estimates.

There is evidence from studies with paired depletion and mark-recapture estimates (Peterson et al. 2004; Rosenburger and Dunham; Korman et al. 2009) to suggest that reduction in catchability over successive passes is expected for removal sampling of juvenile salmonids. If this occurs for lower Bridge River sites, it contributes bias that is not corrected by the use of non-constant catchability depletion estimators. Potential bias is of particular concern if differences exist between experimental treatments. The magnitude of bias might be significant. For example, bias for Model 3 across simulation scenarios ranged from -60.2% to $+13.2 \%$ (Table 2.4). This range of potential bias means that within-site error may be similar in magnitude to the variation between sites (Figure 3.2a). This suggests that bias associated with the sampling regime might influence the conclusions of tests for treatment effects.

3.4.2 Treatment mediated effects on catchability and bias

Exploratory analysis of the lower Bridge River dataset suggests that the only variable with a systematic impact on catchability is the year in which catch is estimated. Capture efficiency has increased over the course of the experiment (Figure 3.9). This pattern does not appear to be simply explained by relationships for abundance or the change in catchability (although estimates of the change in catchability passes at a given site are highly uncertain; Chapter 2). The trend of increase in catchability might be explained by experience, as crews became more familiar with sampling conditions over the course of a long term experiment.

I did not find evidence for differences in catchability between habitat types, or as a function of site depth, flow or substrate character. Rosenburger and Dunham (2005) similarly find inconclusive results for the effect of stream parameters on catchability and estimator bias. In contrast, Peterson et al. (2004) find that catchability is a function of site characteristics including cross-sectional area, bank character and substrate type, and Korman et al. (2009) find differences in catchability between deep and shallow habitats for larger streams.

The time trend in catchability may affect conclusions drawn from the analysis of lower Bridge River sampling data. Bias in depletion estimates of abundance is reduced at higher catchability. This suggests that estimates for lower Bridge River sites became less biased with time. Although small, this change in catchability (Figure 3.9; 1996 median $\hat{q}_{1}=0.45,2007$ median $\left.\hat{q}_{1}=0.63\right)$ is expected to change the bias of depletion estimates. The magnitude of the change in bias depends on the extent of declines in catchability between successive passes within individual depletion experiments. Changes in
catchability between depletion experiments over time may be confounded with changes in the within experiment decline of catchability over removal passes. Although three and four pass removal data were inadequate to jointly estimate parameters defining the decline in catchability ($q^{\prime \prime}$ and a for Model 3) as well as abundance and catchability. However, there was little evidence for changes in rates of decline as a function of time.

If it is assumed that the within experiment reduction in catchability over successive depletion passes remained constant over time, simulation results from Chapter 2 can be used to assess the change in bias associated with the change in catchability over time for the lower Bridge River study. For example, for a four pass depletion site with a true population of 25 fish, and an increase in initial catchability from 0.4 to 0.6 , the change in the simulation-based expected bias of abundance estimates ranged from a decrease in bias of 20% to an increase in bias of 8.3% (Table 3.1). Differences are a function of the between pass change in catchability within an individual depletion experiment.

Additional information is required to more completely assess patterns of catchability over removal passes for the lower Bridge River. Such supplementary data might be collected by completing mark-recapture experiments paired with ongoing depletion sampling in the lower Bridge River (Peterson et al. 2004; Rosenburger and Dunham 2005; Korman et al. 2009; Carrier et al. 2009). Incorporating this additional information to inform abundance estimates using the existing lower Bridge River data would be challenging. Information from paired mark-recapture surveys might be used to define prior distributions for catchability and catchability decline for historical lower Bridge River sites. However, non-constant catchability models were highly sensitive to
prior distributions for these parameters (Mantyniemi et al. 2005). As a result, priors established on the basis of mark-recapture results are likely to dominate posterior distributions for depletion estimates. This may be acceptable, if mark-recapture surveys indicate high confidence in the priors so established.

A more profitable approach might be to develop a hierarchical Bayesian model (Dorazio et al. 2005; Wyatt 2002; Rivot et al. 2008) appropriate to the lower Bridge River study. Hierarchical models permit information sharing between appropriately similar sites. A hierarchical model assuming constant catchability has been developed for the lower Bridge River (J. Korman, pers. comm.). This should be expanded to consider non-constant catchability models for depletion data.

3.5 Conclusions

Depletion estimates for juvenile salmonid abundance for sites sampled on the Lower Bridge River may be subject to substantial bias, but it was difficult to assess the quality of estimates without additional information. Only the three and four pass depletion series were available for the Lower Bridge River study. Simulation results (Chapter 2) showed that estimates of abundance and catchability from such depletions are biased, as a function of the true catchability and the decline in catchability. Data from the removal series were generally inadequate to accurately estimate the catchability parameters, so it was difficult to assess and correct for bias in abundance estimates.

Results from the lower Bridge River suggested that non-constant catchability occurred for electrofisher sampling of juvenile salmonids. There is extensive evidence from empirical studies to suggest that such declines in catchability should be expected
(Riley and Fausch 1992; Peterson et al. 2004; Rosenburger and Dunham 2005; Korman et al. 2009; Carrier et al. 2009).

Declining catchability suggested that it was appropriate to apply non-constant catchability models. Under these conditions, abundance estimates for non-constant models are less biased, and confidence intervals more appropriate, than for classic estimators assuming constant catchability (Chapter 2). However, estimates of abundance remain biased, as a function of initial catchability and the decline in catchability. For the lower Bridge River study, bias may be particularly problematic if there are differences between treatments. Although estimates of catchability and the decline in catchability are confounded, I examined trends in catchability as a function of variables that may have changed with experimental treatment. My results suggested that catchability has increased over the course of the experiment, which would result in a decrease in bias. There was no apparent effect of other habitat variables.

Further investigation, in the form of paired mark-recapture and depletion experiments, may be warranted to independently estimate catchability and decline in catchability for lower Bridge River sites. However, application of results to historical lower Bridge River data, in the form of prior distributions for catchability parameters, may remain problematic because non-constant catchability models are sensitive to these prior distributions. An alternative is to develop hierarchical models, which permit information sharing between appropriate sites to improve estimates (Dorazio et al. 2005; Wyatt 2002; Rivot et al. 2008).

REFERENCE LIST

Akaike, H. 1974. New look at statistical-model identification. IEEE Trans. Autom. Control. AC19(6): 716-723.

Anderson, C.S. 1995. Measuring and correcting for size selection in electrofishing markrecapture experiments. Trans. Am. Fish. Soc. 124(5): 663-676.

Bayley, P.B., and Austen, D.J. 2002. Capture efficiency of a boat electrofisher. Trans. Am. Fish. Soc. 131(3): 435-451.

Bohlin, T., and Sundström, B. 1977. Influence of unequal catchability on population estimates using the Lincoln index and the removal method applied to electrofishing. Oikos. 28(1): 123-129.

Bohlin, T., Hamrin, S., Heggberget, T.G., Rasmussen, G., and Saltveit, S.J. 1989. Electrofishing - theory and practice with special emphasis on salmonids. Hydrobiologia. 173(1): 9-43.

Bolker, B.M. 2008. Ecological models and data in R. Princeton University Press, Princeton, NJ.

Boughton, D.A., Fish, H., Pope, J., and Holt, G. 2009. Spatial patterning of habitat for Oncorhynchus mykiss in a system of intermittent and perennial streams. Ecol. Freshwat. Fish. 18(1): 92-105.

Bradford, M., and Higgins, P. 2001. Habitat-, season-, and size-specific variation in diel activity patterns of juvenile chinook salmon (Oncorhynchus tshawytscha) and steelhead trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 58(2): 365-374.

Burnham, K.P., and Anderson, D.R. 2004. Multimodel inference - understanding AIC and BIC in model selection. Sociol. Methods. Res. 33(2): 261-304.

Carle, F.L., and Strub, M.R. 1978. A new method for estimating population size from removal data. Biometrics. 34(4): 621-630.

Carrier, P., Rosenfeld, J.S., and Johnson, R.M. 2009. Dual-gear approach for calibrating electric fishing capture efficiency and abundance estimates. Fish. Manage. Ecol. 16(2): 139-146.

Cleveland, W.S. 1993. Visualizing data. Summit Press, New Jersey.
Cleveland, W.S., and Devlin, S.J. 1988. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association. 83(403): 596-610.

Dauphin, G., Prevost, E., Adams, C.E., and Boylan, P. 2009. A Bayesian approach to estimating Atlantic salmon fry densities using a rapid sampling technique. Fish. Manage. Ecol. 16(5): 399-408.

Dauwalter, D.C., and Fisher, W.L. 2007. Electrofishing capture probability of smallmouth bass in streams. N. Am. J. Fish. Manage. 27(1): 162-171.

DeLury, D.B. 1947. On the estimation of biological populations. Biometrics. 3(4): 145167.

Dolan, C.R., and Miranda, L.E. 2003. Immobilization thresholds of electrofishing relative to fish size. Trans. Am. Fish. Soc. 132(5): 969-976.

Dorazio, R.M., and Royle, J.A. 2003. Mixture models for estimating the size of a closed population when capture rates vary among individuals. Biometrics. 59(2): 351364.

Dorazio, R.M., Jelks, H.L., and Jordan, F. 2005. Improving removal-based estimates of abundance by sampling a population of spatially distinct subpopulations. Biometrics. 61(4): 1093-1101.

Failing, L., Horn, G., and Higgins, P. 2004. Using expert judgment and stakeholder values to evaluate adaptive management options. Ecol. Soc. 9(1): 13.

Gatz, A.J., and Loar, J.M. 1988. Petersen and removal population-size estimates combining methods to adjust and interpret results when assumptions are violated. Environ. Biol. Fishes. 21(4): 293-307.

Gelman, A. and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge.

Gelman, A., and Rubin, D.B. 1992. Inference from iterative simulation using multiple sequences. Statistical Science. 7(4): 457-472.

Gelman, A., Carlin, J.B., Stern, H.S. and Rubin, D.B. 2004. Bayesian Data Analysis. $2^{\text {nd }}$ ed. Chapman and Hall/CRC, Boca Raton, FL.

Gould, W.R., and Pollock, K.H. 1997a. Catch-effort maximum likelihood estimation of important population parameters. Can. J. Fish. Aquat. Sci. 54(4): 890-897.

Gould, W.R., and Pollock, K.H. 1997b. Catch-effort estimation of population parameters under the robust design. Biometrics. 53(1): 207-216.

Gould, W.R., Stefanski, L.A., and Pollock, K.H. 1997. Effects of measurement error on catch-effort estimation. Can. J. Fish. Aquat. Sci. 54(4): 898-906.

Guy, C.S., and Brown, M.L. 2007. Analysis and interpretation of freshwater fisheries data. American Fisheries Society, Bethesda, MD.

Hankin, D.G., and Reeves, G.H. 1988. Estimating total fish abundance and total habitat area in small streams based on visual estimation methods. Can. J. Fish. Aquat. Sci. 45(5): 834-844.

Hayne, D.W. 1949. Two methods for estimating populations from trapping records. J. Mammology. 30: 399-411.

Higgins, P.S., Korman, J., and Bradford, M. 2000. Evaluating the reliability of standing crop abundance time series data for detecting responses of salmonid populations to habitat alteration: a components of variance approach. MS prep'd for BC Hydro, Burnaby, BC.

Hilborn, R., and Mangel, M. 1997. The ecological detective: confronting models with data. Princeton University Press, Princeton, N.J.

Hilborn, R., and Walters, C.J. 1992. Quantitative fisheries stock assessment: choice, dynamics and uncertainty. Chapman \& Hall, New York.

Kendall, M., and Stuart, A. 1979. The advanced theory of statistics. Vol. 2: inference and relationship. $4^{\text {th }}$ ed. Macmillian, New York, NY. Edition.

Korman, J., Yard, M., Walters, C., and Coggins, L.G. 2009. Effects of fish size, habitat, flow, and density on capture probabilities of age-0 rainbow trout estimated from electrofishing at discrete sites in a large river. Trans. Am. Fish. Soc. 138(1): 5875.

Leslie, P., and Davis, D. 1939. An attempt to determine the absolute number of rats on a given area. J. Anim. Ecol. 8: 94-U28.

Lunn, D.J., Thomas, A., Best, N., and Spiegelhalter, D. 2000. WinBUGS - a Bayesian modelling framework: concepts, structure, and extensibility. Statistics and Computing, 10:325--337.

Mäntyniemi, S., Romakkaniemi, A., and Arjas, E. 2005. Bayesian removal estimation of a population size under unequal catchability. Can. J. Fish. Aquat. Sci. 62(2): 291300.

McCarthy, M.A. 2007. Bayesian methods for ecology. Cambridge University Press, Cambridge, UK.

Mebane, W.R. and Sekhon, J.S. 2009. Genetic optimization using derivatives: the rgenoud package for R [online]. Available from http://sekhon.berkeley.edu/papers/rgenoudJSS.pdf [accessed 20 December 2009].

Moran, P.A.P. 1951. A mathematical theory of animal trapping. Biometrika. 38(3-4): 307-311.

Otis, D.L., Burnham, K.P., White, G.C., and Anderson, D.R. 1978. Statistical-inference from capture data on closed animal populations. Wildlife Monographs. 62: 7-135.

Peterson, J.T., Thurow, R.F., and Guzevich, J.W. 2004. An evaluation of multipass electrofishing for estimating the abundance of stream-dwelling salmonids. Trans. Am. Fish. Soc. 133(2): 462-475.

Peterson, N.P., and Cederholm, C.J. 1984. A comparison of the removal and markrecapture methods of population estimation for juvenile coho salmon in a small stream. N. Am. J. Fish. Manage. 4(1): 99-102.

R Development Core Team. 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Ricker, W.E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin No. 191. Fisheries Research Board of Canada.

Riley, S.C., and Fausch, K.D. 1992. Underestimation of trout population size by maximum-likelihood removal estimates in small streams. N. Am. J. Fish. Manage. 12: 768-776.

Rivot, E., Prevost, E., Cuzol, A., Baglinière, J.L., and Parent, E. 2008. Hierarchical Bayesian modelling with habitat and time covariates for estimating riverine fish population size by successive removal method. Can. J. Fish. Aquat. Sci. 65: 117133.

Rosenberger, A.E., and Dunham, J.B. 2005. Validation of abundance estimates from mark-recapture and removal techniques for rainbow trout captured by electrofishing in small streams. N. Am. J. Fish. Manage. 25(4): 1395-1410.

Rosenblum, M.A., and van der Laan, M.J. 2009. Confidence intervals for the population mean tailored to small sample sizes, with applications to survey sampling. Int. J. Biostat. 5(1): 4.

Schnute, J. 1983. A new approach to estimating populations by the removal method. Can. J. Fish. Aquat. Sci. 40(12): 2153-2169.

Schwarz, C.J., and Seber, G.A.F. 1999. Estimating animal abundance: Review III. Statistical Science. 14(4): 427-456.

Scruton, D., and Gibson, R. 1995. Quantitative electrofishing in Newfoundland and Labrador: results of workshops to review current methods and recommend standardization of techniques. Can. Manuscr. Rep. Fish. Aquat. Sci. 2308.

Seber, G.A.F. 1986. A review of estimating animal abundance. Biometrics. 42(2): 267292.

Seber, G.A.F. 1992. A review of estimating animal abundance 2. International Statistical Review. 60(2): 129-166.

Sneep, J. 2005. Lower Bridge River aquatic monitoring: year 2004 data report. MS prep'd for Deputy Comptroller of Water Rights, Victoria, BC.

Spiegelhalter, D.J., Best, N.G., Carlin, B.R., and van der Linde, A. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society Series B-Statistical Methodology. 64: 583-616.

Sweka, J.A., Legault, C.M., Beland, K.F., Trial, J., and Millard, M.J. 2006. Evaluation of removal sampling for basinwide assessment of Atlantic salmon. N. Am. J. Fish. Manage. 26(4): 995-1002.

Wang, Y.G. 1999. Estimating equations for removal data analysis. Biometrics. 55(4): 1263-1268.

Wang, Y.G., and Loneragan, N.R. 1996. An extravariation model for improving confidence intervals of population size estimates from removal data. Can. J. Fish. Aquat. Sci. 53(11): 2533-2539.

Warren, W.G. 1994. Removal estimates of Atlantic salmon parr: maximum likelihood and Bayesian methods. ICES C.M. 1994/D:8 Statistics Committee, Copenhagen, Denmark.

White, G.C. and Burnham, K. P. 1999. Program MARK: survival estimation from populations of marked animals. Bird Study 46 Supplement, 120-138.

Wyatt, R.J. 2002. Estimating riverine fish population size from single- and multiple-pass removal sampling using a hierarchical model. Can. J. Fish. Aquat. Sci. 59(4): 695706.

Zippin, C. 1958. The removal method of population estimation. J. Wildl. Manage. 22(1):82-90.

Zippin, C. 1956. An evaluation of the removal method of estimating animal populations. Biometrics. 12(2): 163-189.

TABLES

Table 2.1: Non-informative and informative prior distributions simulated for Bayesian depletion models. Shape parameters for informative Beta priors (α, β) defined from true simulation parameters (Equation 2.8).

	Non-informative priors	Informative priors
Model 1	$\log (N) \sim \operatorname{Uniform}(0,10)$	$\log (N) \sim \operatorname{Uniform}\left(T_{k}, 10\right)$
	$q_{1} \sim \operatorname{Beta}(1.1,1.1)$	$q_{1} \sim \operatorname{Beta}(\alpha, \beta)$
Model 2	$\log (N) \sim \operatorname{Uniform}(0,10)$	$\log (N) \sim \operatorname{Uniform}\left(T_{k}, 10\right)$
	$q_{1} \sim \operatorname{Beta}(1.1,1.1)$	$q_{1} \sim \operatorname{Beta}(\alpha, \beta)$
	$q^{\prime} \sim \operatorname{Beta}(1.1,1.1)$	$q^{\prime} \sim \operatorname{Beta}(1.1,1.1)$
Model 3	$\log (N) \sim \operatorname{Uniform}(0,10)$	$\log (N) \sim \operatorname{Uniform}\left(T_{k}, 10\right)$
	$q_{1} \sim \operatorname{Beta}(1.1,1.1)$	$q_{1} \sim \operatorname{Beta}(\alpha, \beta)$
	$q^{\prime \prime} \sim \operatorname{Beta}(1.1,1.1)$	$q^{\prime \prime} \sim \operatorname{Beta}(1.1,1.1)$
	$a \sim \operatorname{Beta}(1.1,1.1)$	$a \sim \operatorname{Beta}(1.1,1.1)$
Model 4	$\log (N) \sim \operatorname{Uniform}(0,10)$	$\log (N) \sim \operatorname{Uniform}\left(T_{k}, 10\right)$
	$\log (\eta) \sim \operatorname{Uniform}(0,10)$	$\log (\eta) \sim \operatorname{Uniform}(0,10)$
	$\mu \sim \operatorname{Beta}(1.1,1.1)$	$\mu \sim \operatorname{Beta}(\alpha, \beta)$

Table 2.2: Variables systematically tested in simulation study of depletion methods.

Variable	Meaning	Range tested
N	total site population	$\{25,100\}$
k	depletion passes	$\{3,4\}$
q_{0}	initial catchability	$\{0.2,0.4, \ldots, 0.8\}$
r	defines variation in catchability;	$\{1.0,1.2, \ldots, 2.0\}$
	$q_{i}=q_{0} \cdot\left(\frac{1}{r}\right)^{i-1}$	

Table 2.3: Estimation failure rate (\%) aggregated over all catchability scenarios.

\boldsymbol{N}	\boldsymbol{k}	Model 1	Model 2	Model 3	Model 4
25	3	8.0	0.1	0.0	13.5
25	4	4.9	0.1	0.0	8.2
100	3	2.8	0.4	0.1	4.7
100	4	1.5	0.6	0.4	3.5

Table 2.4: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). 'MPE' is the mean percent difference between true and estimated N; ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of N; ' CI cov' is confidence interval coverage; ' $\mathrm{P}(\rho>1)$ ' is the probability that confidence interval width $>N$.

	Total catch			Model 1				Model 2				Model 3				Model 4			
\underline{q}_{0}	r	MPE	$\mathrm{CV}_{\text {sim }}$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$
0.2	1.0	-40.7	4.7	21.9	33.9	96.6	79.2	7.0	27.5	96.0	79.0	-2.4	20.0	97.4	80.4	47.7	30.3	100.0	99.5
	1.2	-50.5	5.0	-19.1	26.5	69.6	41.3	-22.9	22.0	76.8	50.2	-27.8	15.2	84.0	42.6	14.0	36.3	98.9	93.6
	1.4	-56.9	4.8	-42.7	16.0	29.3	13.0	-40.5	13.1	53.2	26.6	-42.6	9.8	56.0	14.4	-19.7	27.8	88.6	72.7
	1.6	-60.6	5.0	-52.1	14.5	10.8	4.4	-49.2	10.8	32.2	14.2	-50.2	8.6	31.8	6.0	-37.1	22.0	64.4	43.8
	1.8	-64.5	4.9	-59.9	7.7	1.8	0.8	-56.0	9.0	21.4	7.4	-56.9	7.2	12.2	1.4	-50.6	14.8	39.1	21.8
	2.0	-66.7	4.6	-63.7	5.3	0.2	0.0	-59.5	7.7	14.8	5.0	-60.2	6.3	6.0	0.0	-57.0	10.6	22.2	11.4
0.4	1.0	-13.1	3.6	4.3	11.6	94.6	4.8	12.0	19.3	96.2	32.3	13.2	15.7	99.4	54.0	34.9	25.4	98.4	87.2
	1.2	-22.0	4.3	-12.3	7.1	53.2	0.2	-2.0	16.4	87.4	28.0	-0.7	12.9	97.0	45.0	13.7	25.2	99.4	70.4
	1.4	-29.0	4.5	-23.6	5.6	7.8	0.0	-15.8	11.9	65.4	16.6	-13.9	10.1	89.8	21.4	-9.8	16.7	90.7	35.7
	1.6	-34.2	5.0	-30.8	5.6	1.0	0.0	-23.9	10.7	46.0	11.2	-22.3	9.1	79.4	11.2	-22.0	12.7	67.2	14.8
	1.8	-38.1	4.9	-35.6	5.2	0.6	0.0	-29.5	8.8	42.8	9.6	-28.1	7.8	67.0	6.8	-29.6	8.9	42.4	6.8
	2.0	-40.9	5.1	-39.3	5.2	0.0	0.0	-33.8	8.4	34.2	6.8	-32.5	7.7	52.4	3.8	-35.4	7.0	18.6	1.2
0.6	1.0	-2.6	1.7	0.9	2.3	97.2	0.0	3.4	6.0	96.4	3.0	7.3	7.5	98.4	10.6	6.0	6.6	98.6	7.2
	1.2	-7.6	2.8	-4.7	3.1	55.2	0.0	1.0	8.5	90.6	7.6	5.5	8.3	99.0	18.9	1.8	6.8	97.8	3.8
	1.4	-12.3	3.2	-10.2	3.4	8.2	0.0	-3.6	9.3	73.6	9.6	0.1	8.5	97.4	16.8	-4.5	6.8	92.2	2.2
	1.6	-16.6	3.7	-15.0	3.8	0.6	0.0	-9.0	8.5	62.0	7.4	-5.9	7.8	96.8	8.8	-10.7	5.6	72.6	0.6
	1.8	-19.6	3.8	-18.5	3.9	0.0	0.0	-12.8	7.6	55.4	7.8	-10.3	6.8	91.3	6.3	-15.2	5.1	46.2	0.0
	2.0	-22.4	4.2	-21.5	4.2	0.0	0.0	-16.4	7.2	42.7	5.0	-14.5	6.0	87.2	1.8	-18.9	4.7	22.2	0.0
0.8	1.0	-0.2	0.4	0.4	0.5	99.4	0.0	1.2	1.6	100.0	0.2	3.7	2.5	100.0	0.4	1.2	0.9	100.0	0.0
	1.2	-1.5	1.2	-0.9	1.3	71.0	0.0	2.5	5.0	97.3	3.1	5.6	4.4	100.0	2.4	1.1	2.1	99.4	0.0
	1.4	-3.7	2.0	-3.1	2.0	23.0	0.0	2.2	7.4	91.6	5.7	4.4	5.4	100.0	4.6	-0.8	2.8	94.8	0.0
	1.6	-5.5	2.2	-5.0	2.2	3.0	0.0	1.2	8.0	84.9	11.0	2.2	4.6	99.6	2.0	-3.0	2.7	82.8	0.0
	1.8	-7.1	2.7	-6.6	2.7	1.2	0.0	-0.1	7.5	84.5	13.3	0.4	4.7	100.0	2.6	-4.7	3.1	68.2	0.0
	2.0	-8.7	2.8	-8.3	2.8	0.4	0.0	-1.8	7.7	79.5	11.3	-2.1	4.5	99.6	1.8	-6.8	3.1	41.4	0.0

Table 2.5: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Informative prior distributions, based on simulation parameters, were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to $95 \%)$ relative to analogous estimates from simulations with noninformative priors ($c f$. Table 2.4).

	Total catch			Model 1				Model 2				Model 3				Model 4			
\underline{q}_{0}	r	MPE	$\mathrm{CV}_{\text {sim }}$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\mathrm{p}>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\mathbf{\rho}>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\boldsymbol{\rho}>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$
0.2	1.0	-40.7	4.7	21.9	26.1	99.8	86.4	7.8	22.2	98.8	82.8	-0.7	15.1	99.8	88.2	38.2	21.1	100.0	100.0
	1.2	-50.5	5.0	-17.7	19.0	85.0	40.4	-16.1	20.0	90.8	64.0	-20.0	13.6	97.6	73.6	4.9	15.4	100.0	100.0
	1.4	-56.9	4.8	-38.6	11.9	47.0	11.6	-29.4	18.3	80.6	55.6	-30.7	12.8	93.2	69.4	-14.3	12.6	100.0	100.0
	1.6	-60.6	5.0	-49.6	8.6	15.6	3.2	-35.1	18.0	79.2	58.0	-34.5	13.5	93.0	70.8	-26.0	11.4	99.8	97.2
	1.8	-64.5	4.9	-56.3	6.8	4.0	0.2	-38.2	18.4	76.6	58.8	-36.6	13.9	93.0	73.6	-33.3	10.1	99.8	88.2
	2.0	-66.7	4.6	-59.7	6.1	2.4	0.2	-39.2	19.7	77.4	59.6	-36.3	15.9	93.6	76.0	-39.8	10.0	96.0	73.8
0.4	1.0	-13.1	3.6	2.2	6.7	97.6	0.0	4.8	9.7	98.2	2.2	4.1	7.5	100.0	0.4	8.3	6.6	98.6	0.6
	1.2	-22.0	4.3	-11.9	6.2	57.0	0.0	-5.8	9.7	89.2	0.8	-5.8	7.8	97.6	0.4	-4.7	7.0	99.8	0.2
	1.4	-29.0	4.5	-22.8	5.5	6.6	0.0	-15.0	10.2	74.2	3.0	-13.9	8.7	94.2	2.2	-14.2	7.0	97.6	0.4
	1.6	-34.2	5.0	-29.2	5.3	0.6	0.0	-21.0	10.2	64.6	2.6	-18.6	8.9	92.0	3.0	-21.9	6.9	87.4	0.0
	1.8	-38.1	4.9	-34.7	5.3	0.0	0.0	-24.4	11.1	64.8	3.4	-21.3	9.5	92.4	3.4	-26.7	6.6	69.6	0.0
	2.0	-40.9	5.1	-38.5	5.1	0.0	0.0	-27.6	11.6	60.2	5.8	-23.5	9.8	91.4	5.4	-30.9	6.6	42.4	0.0
0.6	1.0	-2.6	1.7	0.6	2.0	98.2	0.0	2.3	3.5	98.0	0.0	3.4	3.5	98.8	0.0	3.2	2.8	99.8	0.0
	1.2	-7.6	2.8	-4.9	2.7	47.4	0.0	-1.3	5.1	88.8	0.0	-0.3	4.7	97.4	0.0	-1.3	4.1	98.2	0.0
	1.4	-12.3	3.2	-10.5	3.3	3.4	0.0	-6.2	5.3	75.6	0.0	-4.9	4.9	95.6	0.0	-6.5	4.6	87.0	0.0
	1.6	-16.6	3.7	-15.2	3.7	0.2	0.0	-10.8	5.8	60.6	0.0	-9.3	5.4	90.6	0.0	-11.2	4.7	70.8	0.0
	1.8	-19.6	3.8	-18.2	4.1	0.0	0.0	-13.5	5.8	55.6	0.0	-11.9	5.6	87.0	0.0	-15.1	4.7	46.2	0.0
	2.0	-22.4	4.2	-20.9	4.0	0.0	0.0	-15.6	6.3	55.1	0.0	-14.0	5.7	87.2	0.0	-17.7	4.8	26.0	0.0
0.8	1.0	-0.2	0.4	0.4	0.4	99.8	0.0	1.0	0.8	99.8	0.0	1.6	1.0	100.0	0.0	1.1	0.8	100.0	0.0
	1.2	-1.5	1.2	-0.9	1.2	71.2	0.0	0.8	2.1	97.4	0.0	1.6	2.0	99.8	0.0	0.4	1.8	98.4	0.0
	1.4	-3.7	2.0	-3.2	1.9	18.6	0.0	-0.7	2.9	90.2	0.0	-0.1	2.6	99.2	0.0	-1.3	2.4	93.8	0.0
	1.6	-5.5	2.2	-5.1	2.2	3.8	0.0	-2.3	3.3	82.6	0.0	-1.9	2.9	97.6	0.0	-3.3	2.6	82.4	0.0
	1.8	-7.1	2.7	-6.8	2.6	0.6	0.0	-4.2	3.3	76.2	0.0	-3.9	3.0	94.8	0.0	-5.2	2.9	60.8	0.0
	2.0	-8.7	2.8	-8.4	2.8	0.0	0.0	-5.6	3.5	70.6	0.0	-5.4	3.1	91.4	0.0	-6.8	3.0	41.0	0.0

Table 2.6: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=8)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates for $k=4$ (cf. Table 2.4).

	Total catch			Model 1				Model 2				Model 3				Model 4			
q_{0}	r	MPE	$\mathrm{CV}_{\text {sim }}$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathrm{P}(\mathrm{\rho}>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathrm{P}(\mathrm{\rho}>1)$
0.2	1.0	-16.7	3.7	4.9	13.2	96.2	9.0	5.9	15.2	96.4	17.8	8.5	17.0	97.2	41.8	42.5	27.7	99.7	92.2
	1.2	-36.9	5.2	-30.0	7.3	9.8	0.4	-28.1	8.4	26.6	2.4	-24.5	9.5	68.8	12.8	2.0	30.2	93.6	70.2
	1.4	-49.8	5.2	-47.7	5.4	0.0	0.0	-46.4	6.0	1.6	0.2	-43.7	6.9	18.3	0.8	-36.0	16.2	53.2	22.4
	1.6	-57.3	5.0	-56.2	5.1	0.0	0.0	-55.6	5.2	0.2	0.0	-53.6	5.9	3.4	0.0	-52.0	8.0	9.2	2.2
	1.8	-62.0	4.9	-61.4	5.0	0.0	0.0	-61.0	5.1	0.0	0.0	-59.5	5.5	0.8	0.0	-59.4	6.6	1.2	0.6
	2.0	-64.9	4.6	-64.4	4.6	0.0	0.0	-64.0	4.6	0.0	0.0	-62.7	4.8	0.0	0.0	-63.1	4.8	0.0	0.0
0.4	1.0	-1.7	1.3	0.6	1.6	98.4	0.0	0.9	1.8	98.4	0.0	3.9	4.8	98.6	2.0	5.6	8.8	99.8	7.6
	1.2	-11.6	3.1	-9.8	3.3	5.8	0.0	-8.6	3.8	30.2	0.0	-2.9	7.2	89.5	7.7	0.4	12.6	88.6	16.4
	1.4	-22.5	4.2	-21.4	4.3	0.0	0.0	-20.6	4.5	2.0	0.0	-16.3	6.5	64.4	2.5	-15.8	8.1	55.0	4.6
	1.6	-29.6	4.6	-28.9	4.6	0.0	0.0	-28.3	4.8	0.6	0.2	-25.0	5.8	40.2	0.8	-26.0	5.8	15.8	0.0
	1.8	-35.0	5.0	-34.6	5.0	0.0	0.0	-34.2	5.0	0.0	0.0	-31.5	5.6	17.0	0.2	-32.8	5.3	0.8	0.0
	2.0	-39.1	5.1	-38.7	5.1	0.0	0.0	-38.4	5.2	0.0	0.0	-36.4	5.4	7.8	0.0	-37.6	5.3	0.0	0.0
0.6	1.0	-0.1	0.2	0.3	0.3	99.4	0.0	0.4	0.3	99.8	0.0	1.7	1.7	100.0	0.2	0.8	0.7	100.0	0.0
	1.2	-2.7	1.6	-2.2	1.6	33.8	0.0	-1.7	1.7	63.2	0.0	2.8	4.2	99.0	3.3	0.7	3.4	94.2	0.0
	1.4	-8.2	2.8	-7.7	2.8	0.2	0.0	-7.2	2.9	8.8	0.0	-2.7	4.9	92.2	2.7	-4.8	4.0	71.2	0.0
	1.6	-13.0	3.5	-12.7	3.5	0.0	0.0	-12.2	3.5	1.2	0.0	-8.4	4.8	83.7	1.6	-10.4	4.0	34.2	0.0
	1.8	-17.0	3.9	-16.7	3.9	0.0	0.0	-16.3	4.0	0.2	0.0	-13.3	5.0	63.7	1.0	-15.2	4.3	6.4	0.0
	2.0	-20.6	4.1	-20.4	4.1	0.0	0.0	-20.0	4.1	0.4	0.0	-17.3	4.7	50.3	0.2	-19.2	4.3	0.2	0.0
0.8	1.0	0.0	0.0	0.1	0.0	100.0	0.0	0.2	0.1	100.0	0.0	1.5	1.1	100.0	0.0	0.3	0.2	100.0	0.0
	1.2	-0.4	0.7	-0.2	0.6	68.6	0.0	0.0	0.7	88.0	0.0	3.1	2.5	100.0	0.9	0.6	1.0	98.8	0.0
	1.4	-1.9	1.4	-1.7	1.4	17.0	0.0	-1.3	1.6	59.6	0.0	2.5	3.6	98.8	2.2	-0.4	1.7	90.6	0.0
	1.6	-4.1	2.0	-3.9	2.0	2.0	0.0	-3.4	2.1	25.8	0.0	-0.1	3.6	98.2	2.2	-2.8	2.1	64.2	0.0
	1.8	-6.2	2.3	-6.0	2.3	0.0	0.0	-5.6	2.4	10.8	0.0	-2.6	3.2	98.0	0.4	-5.1	2.4	31.2	0.0
	2.0	-7.9	2.8	-7.8	2.8	0.2	0.0	-7.3	2.9	6.2	0.0	-4.8	3.4	96.2	0.0	-7.0	2.8	10.4	0.0

Table 2.7: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=3)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates for $k=4$ ($c f$. Table 2.4).

Table 2.8: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=25, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Non-informative priors were applied (Table 2.1). Bold represents improvements (reductions in bias, variance and $\mathrm{P}(\rho>1)$, or confidence interval coverage closer to 95%) relative to analogous estimates for $N=100, k=4$ (cf. Table 2.4).

		Total catch		Model 1				Model 2				Model 3				Model 4			
\underline{q}_{0}	r	MPE	$\mathrm{CV}_{\text {sim }}$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathrm{P}(\rho>1)$
0.2	1.0	-41.1	10.1	17.8	34.5	97.7	90.0	-2.3	26.1	97.8	80.7	-6.6	23.3	99.0	80.8	43.5	34.9	100.0	99.5
	1.2	-51.2	9.5	-1.4	38.3	89.3	78.8	-24.7	20.9	88.6	62.0	-27.8	18.8	89.4	55.8	20.2	40.9	97.9	92.4
	1.4	-57.5	9.7	-15.9	37.8	78.1	66.0	-39.3	15.7	73.6	38.8	-41.6	14.4	71.6	25.0	-2.2	40.4	94.0	81.4
	1.6	-62.6	9.5	-29.0	33.0	70.9	58.4	-47.5	14.9	58.2	25.4	-49.9	13.1	48.0	11.8	-14.0	37.8	85.9	75.7
	1.8	-64.7	9.7	-38.4	29.6	58.6	46.8	-51.2	14.5	49.0	19.6	-53.5	13.0	37.0	7.8	-24.0	35.3	81.3	64.6
	2.0	-66.8	9.2	-44.2	25.7	47.0	34.6	-55.0	12.4	40.8	11.2	-57.2	11.5	23.8	5.0	-31.4	33.5	74.1	54.6
0.4	1.0	-12.8	6.7	23.6	28.3	99.1	59.2	20.8	23.0	99.2	69.4	16.3	17.6	100.0	72.8	42.8	29.4	100.0	91.2
	1.2	-22.1	8.6	4.6	26.8	92.0	42.5	6.0	21.8	97.2	64.1	1.6	16.5	99.0	59.4	29.8	34.0	99.5	83.6
	1.4	-28.7	8.6	-9.4	24.1	74.7	29.5	-4.5	18.9	95.6	54.9	-9.3	14.5	98.8	43.0	12.2	32.8	94.4	66.6
	1.6	-34.0	9.7	-20.1	17.4	57.2	20.1	-13.7	16.1	91.8	50.0	-18.0	13.2	95.6	27.2	-0.4	30.5	89.3	57.8
	1.8	-38.7	9.6	-27.9	14.9	38.7	15.6	-20.4	15.1	89.6	43.6	-24.8	12.3	89.8	19.4	-10.8	28.7	78.8	43.8
	2.0	-41.8	10.1	-33.5	13.9	26.4	8.8	-25.8	14.8	85.6	35.6	-29.7	12.9	78.0	11.0	-20.2	26.3	67.9	32.3
0.6	1.0	-2.6	3.0	6.9	11.0	99.8	6.6	16.3	15.2	100.0	41.8	14.5	8.9	100.0	36.2	20.5	19.0	100.0	43.4
	1.2	-7.6	5.2	0.6	10.1	91.2	6.0	13.0	15.3	99.0	49.8	9.9	9.6	100.0	40.6	14.5	20.3	99.6	40.5
	1.4	-12.6	6.4	-6.1	9.7	74.4	3.2	7.6	14.1	97.8	51.6	3.2	9.3	100.0	31.4	6.1	19.9	98.6	26.9
	1.6	-16.8	7.9	-11.2	10.6	50.4	2.6	3.5	14.9	98.6	52.8	-1.9	10.5	99.8	25.6	-0.5	19.4	91.1	21.8
	1.8	-19.3	7.9	-15.0	8.8	37.4	1.4	0.8	13.4	97.2	56.0	-5.3	10.2	99.6	20.4	-6.1	17.3	84.9	16.1
	2.0	-21.9	8.3	-18.6	8.6	21.6	0.6	-4.0	13.0	98.4	47.4	-9.7	10.1	99.6	13.0	-11.6	15.5	72.5	9.2
0.8	1.0	-0.2	0.8	1.9	1.3	99.8	0.0	12.7	8.3	100.0	29.8	10.5	3.5	100.0	4.6	4.8	3.1	100.0	0.8
	1.2	-1.5	2.6	0.6	2.9	93.2	0.0	15.6	9.8	100.0	49.0	10.4	5.0	100.0	10.4	4.0	4.6	100.0	0.2
	1.4	-3.5	3.7	-1.5	3.9	80.0	0.0	16.1	10.9	100.0	63.4	8.7	5.9	100.0	14.4	1.8	5.2	99.2	1.0
	1.6	-5.4	4.6	-3.6	4.8	65.8	0.0	14.9	11.5	100.0	65.8	6.7	6.9	100.0	14.4	-0.3	6.0	95.8	0.4
	1.8	-7.2	5.0	-5.6	5.1	45.8	0.0	12.7	11.0	100.0	65.6	4.0	7.0	100.0	10.4	-2.7	6.2	92.4	0.8
	2.0	-9.0	5.8	-7.4	5.9	36.4	0.0	10.9	11.6	100.0	68.0	1.9	7.5	100.0	7.2	-4.8	6.6	84.8	0.2

Table 2.9: Results of 500 Monte Carlo simulations of depletion estimates for first pass catchability $q_{1}(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}=q_{1}\right)$. Non-informative priors were applied (Table 2.1). ' \hat{q}_{1} ' is the estimate of first pass catchability, 'MPE' is the mean percent difference between q_{1} and \hat{q}_{1}; ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of q_{1}.

	Model 1				Model 2			Model 3			Model 4		
\underline{q}_{0}	r	\hat{q}_{1}	MPE	$\mathrm{CV}_{\text {sim }}$	\hat{q}_{1}	MPE	CV ${ }_{\text {sim }}$	\hat{q}_{1}	MPE	CV ${ }_{\text {sim }}$	\hat{q}_{1}	MPE	$\mathrm{CV}_{\text {sim }}$
0.2	1.0	0.24	19.3	28.4	0.23	15.2	28.0	0.24	20.6	27.8	0.24	19.2	24.5
	1.2	0.31	54.5	38.2	0.31	53.0	34.3	0.32	58.8	34.6	0.29	44.3	34.4
	1.4	0.39	94.5	42.1	0.38	92.3	36.8	0.38	91.4	35.8	0.36	79.8	41.5
	1.6	0.45	124.3	45.1	0.44	119.3	41.5	0.44	120.5	38.8	0.42	110.4	46.6
	1.8	0.50	150.0	42.7	0.49	143.1	40.3	0.48	141.4	41.4	0.48	138.1	45.5
	2.0	0.54	168.6	41.5	0.52	161.5	39.9	0.53	163.3	38.9	0.52	157.6	45.0
0.4	1.0	0.40	-1.0	16.0	0.39	-3.6	15.2	0.38	-4.8	13.5	0.37	-7.1	15.2
	1.2	0.45	13.4	15.9	0.44	9.6	16.4	0.43	8.1	15.2	0.42	4.9	17.2
	1.4	0.51	28.6	16.1	0.50	24.9	16.9	0.49	22.5	15.2	0.49	21.4	18.1
	1.6	0.56	40.1	15.5	0.55	36.6	16.8	0.53	33.1	15.7	0.54	34.0	18.2
	1.8	0.60	48.8	16.2	0.58	45.4	17.1	0.58	45.5	17.0	0.58	43.9	18.7
	2.0	0.63	58.5	14.4	0.62	55.5	15.5	0.61	52.8	16.1	0.62	54.9	16.4
0.6	1.0	0.59	-1.5	8.2	0.58	-3.2	8.6	0.57	-5.2	8.6	0.58	-3.9	9.4
	1.2	0.61	1.3	7.9	0.60	0.1	8.6	0.59	-2.2	9.2	0.59	-1.8	9.3
	1.4	0.64	6.4	8.0	0.63	5.2	9.2	0.62	3.1	9.3	0.62	3.7	9.6
	1.6	0.67	11.6	8.2	0.66	10.7	9.2	0.65	8.6	9.3	0.66	9.6	9.6
	1.8	0.70	16.9	8.1	0.70	16.0	8.8	0.68	12.7	9.2	0.69	15.6	9.3
	2.0	0.72	20.8	8.1	0.72	20.1	8.6	0.71	18.9	8.7	0.72	20.2	8.9
0.8	1.0	0.79	-1.6	4.4	0.79	-1.9	4.6	0.78	-3.0	4.7	0.79	-1.7	4.5
	1.2	0.78	-2.4	5.1	0.78	-2.4	5.1	0.77	-4.3	5.1	0.78	-2.4	5.4
	1.4	0.79	-1.7	5.1	0.78	-2.0	5.5	0.78	-2.9	5.3	0.79	-1.4	5.5
	1.6	0.81	1.0	5.0	0.80	0.2	5.3	0.79	-0.9	5.3	0.81	1.6	5.2
	1.8	0.82	2.4	5.2	0.81	1.3	5.5	0.81	0.8	5.6	0.82	3.0	5.3
	2.0	0.84	4.7	5.1	0.83	3.1	5.5	0.83	3.1	5.3	0.84	5.3	5.1

Table 2.10: Results of 500 Monte Carlo simulations of depletion estimates for final pass catchability $q_{4}(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Noninformative priors were applied (Table 2.1). ' \hat{q}_{4} ' is the estimate of first pass catchability, 'MPE' is the mean percent difference between q_{4} and $\hat{q}_{4} ;$ ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of q_{4}.

Table 2.11: Results of 500 Monte Carlo simulations of depletion estimates for change in catchability ($q_{4}-q_{1 ;} N=100, k=4$). Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. Noninformative priors were applied (Table 2.1). ' $\Delta \hat{q}$ ' is the difference between estimated catchability for pass 4 and pass 1 $\left(\hat{q}_{4}-\hat{q}_{1}\right)$; 'MPE $\Delta \hat{q}$ ' is the mean percent error in estimates of $\Delta \hat{q}$ (values $<-100 \%$ indicate $\hat{q}_{4}>\hat{q}_{1}$).

$\underline{q_{0}}$	r	True Δq	True $\Delta q(\%)$	$\begin{array}{r} \text { Model } 1 \\ \qquad \Delta \hat{q} \end{array}$	Model 1 MPE $\Delta \hat{q}$	$\begin{array}{r} \text { Model } 2 \\ \Delta \hat{q} \\ \hline \end{array}$	$\begin{array}{r} \text { Model } 2 \\ \Delta \hat{q} \\ (\%) \\ \hline \end{array}$	Model 2 MPE $\Delta \hat{q}$	Model 3 $\Delta \hat{q}$	$\begin{array}{r} \text { Model } 3 \\ \Delta \hat{q} \\ (\%) \\ \hline \end{array}$	Model 3 MPE $\Delta \hat{q}$	Model 4 $\Delta \hat{q}$	$\begin{array}{r} \text { Model } 4 \\ \Delta \hat{q} \\ (\%) \\ \hline \end{array}$	Model 4 MPE $\Delta \hat{q}$
0.2	1.0	0.00	0.00	0	-	0.04	20.4	-	0.04	18.5	-	-0.02	-8.3	-
	1.2	-0.08	-0.42	0	-100.0	0.02	8.8	-126.9	0.02	8.4	-126.5	-0.03	-10.2	-63.9
	1.4	-0.13	-0.64	0	-100.0	-0.01	-2.4	-90.2	0.00	1.4	-101.2	-0.05	-13.0	-61.9
	1.6	-0.15	-0.76	0	-100.0	-0.02	-3.8	-85.1	-0.01	-0.8	-94.0	-0.06	-14.3	-59.0
	1.8	-0.17	-0.83	0	-100.0	-0.04	-6.8	-78.2	-0.03	-5.9	-79.6	-0.07	-15.3	-55.4
	2.0	-0.18	-0.88	0	-100.0	-0.06	-11.7	-63.2	-0.05	-9.1	-70.6	-0.09	-16.8	-49.8
0.4	1.0	0.00	0.00	0	-	0.00	0.1	-	0.01	3.4	-	-0.04	-11.7	-
	1.2	-0.17	-0.42	0	-100.0	-0.04	-8.6	-77.6	-0.02	-3.4	-90.8	-0.06	-14.9	-62.6
	1.4	-0.25	-0.64	0	-100.0	-0.06	-11.6	-77.0	-0.04	-8.7	-83.1	-0.08	-16.7	-67.9
	1.6	-0.30	-0.76	0	-100.0	-0.08	-14.6	-74.0	-0.06	-11.6	-79.3	-0.10	-18.0	-68.3
	1.8	-0.33	-0.83	0	-100.0	-0.10	-16.8	-70.5	-0.08	-14.3	-74.7	-0.11	-19.4	-66.3
	2.0	-0.35	-0.88	0	-100.0	-0.12	-19.4	-65.6	-0.09	-15.2	-73.1	-0.13	-20.7	-63.3
0.6	1.0	0.00	0.00	0	-	-0.01	-2.2	-	-0.03	-5.3	-	-0.07	-12.6	-
	1.2	-0.25	-0.42	0	-100.0	-0.09	-14.9	-64.9	-0.08	-13.5	-68.8	-0.11	-19.4	-55.1
	1.4	-0.38	-0.64	0	-100.0	-0.12	-20.0	-67.3	-0.11	-17.8	-71.3	-0.14	-22.8	-63.1
	1.6	-0.45	-0.76	0	-100.0	-0.15	-22.9	-66.8	-0.13	-19.4	-72.2	-0.16	-24.4	-64.7
	1.8	-0.50	-0.83	0	-100.0	-0.17	-25.2	-65.0	-0.14	-21.4	-71.0	-0.18	-26.0	-63.8
	2.0	-0.53	-0.88	0	-100.0	-0.18	-25.7	-64.9	-0.16	-22.9	-68.9	-0.19	-26.1	-64.0
0.8	1.0	0.00	0.00	0	-	-0.07	-8.2	-	-0.09	-12.1	-	-0.10	-13.2	-
	1.2	-0.34	-0.42	0	-100.0	-0.18	-23.0	-46.9	-0.17	-22.9	-48.2	-0.20	-25.8	-40.3
	1.4	-0.51	-0.64	0	-100.0	-0.23	-29.9	-54.3	-0.21	-26.6	-59.6	-0.25	-31.5	-51.2
	1.6	-0.60	-0.76	0	-100.0	-0.27	-33.5	-56.1	-0.23	-29.7	-61.2	-0.28	-34.0	-54.4
	1.8	-0.66	-0.83	0	-100.0	-0.29	-36.1	-56.3	-0.25	-30.6	-62.9	-0.29	-35.7	-55.7
	2.0	-0.70	-0.88	0	-100.0	-0.30	-36.6	-57.3	-0.26	-31.4	-63.1	-0.29	-8.3	-58.5

Table 3.1: \quad Simulation-based change in expected bias (MPE) of abundance estimates for Model 3, for a change in initial catchability from $q_{0}=0.4$ to $q_{0}=0.6$, assuming that the reduction in catchability by pass (r) remains constant, for $N=\{25,100\}$ and $k=4$.
$\left.\begin{array}{lrr|rrr}\hline & \begin{array}{c}N=25 \\ \text { Simulation-based } \\ \text { expected MPE }\end{array} & \begin{array}{r}\text { Expected } \\ \text { change in } \\ \text { MPE for } \\ \text { increase in }\end{array} & \begin{array}{c}N=100 \\ \text { Simulation-based } \\ \text { expected MPE }\end{array} & \begin{array}{r}\text { Expected } \\ \text { change in } \\ \text { MPE for }\end{array} \\ \text { increase in } \\ q_{0} \text { from }\end{array}\right)$

FIGURES

Figure 2.1: Graphical depiction of depletion method, assuming constant catchability. The regression method of estimation is illustrated, although this is inappropriate because catches are not independent. Estimation using a depletion model is therefore required.

Figure 2.2: Simulated informative prior distributions for initial catchability $\operatorname{Beta}(\alpha, \beta)$, calculated using the method of moments approximation (Equation 2.8) and the known simulated true q_{0} values $\{0.2,0.4, \ldots, 0.8\}$ and $\operatorname{var}(q)=0.01$ (solid lines). The Beta(1.1, 1.1) distribution used to as an uninformative prior is shown as a dashed line.

True N

Figure 2.3: The effect of true abundance (N), true initial catchability $\left(q_{0}\right)$, and the true rate of reduction in catchability between successive passes (r) on the bias in estimates of abundance for Model 3. Indicated fits are locally weighted regression (loess) smoothes. Bias in estimates of N is greatest at low initial catchability, and if catchability declines between passes. Abundance has less impact on the bias in estimates of N than does catchability.

$r=1.0$

$$
r=1.2
$$

$r=1.6$

$$
r=1.8
$$

$$
r=2.0
$$

Figure 2.4: Mean and 95\% interquartile range of abundance estimates from 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. "T" $=$ total catch, " $1 "=$ Model $1, " 2 "=$ Model 2, " $3 "=$ Model 3, " $4 "=$ Model 4 . Interquartile range is used to represent variation in estimates for N.

Figure 3.1: Lower Bridge River study area, reproduced from Sneep (2005).

Figure 3.2: Distribution of Model 3 depletion estimates for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. (a) distribution of estimates of site population (\hat{N}); (b) distribution of estimates of first pass catchability $\left(\hat{q}_{1}\right)$; (c) distribution of estimated percent change in catchability between pass 1 and pass $k\left(100 \bullet \frac{\left(\hat{q}_{k}-\hat{q}_{1}\right)}{\hat{q}_{1}}\right)$; (d) relationship between estimates of \hat{q}_{1} and percent change in catchability.

Figure 3.3: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.4: Conditioning plot of abundance estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Abundance estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.5: Conditioning plot of change in catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Change in catchability estimates are presented as a function of sampling year, reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.6: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site depth (m), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.7: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site current velocity (m / s), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.8: Conditioning plot of first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Catchability estimates are presented as a function of mean site instream substrate size (cm), reach and habitat type. Indicated fits are locally weighted regression (loess) smoothes.

Figure 3.9: Trend in first pass catchability estimates from Model 3, for rainbow trout fry sampled at 525 lower Bridge River sites between 1996 and 2007. Boxes represent the first and third quartiles, with the median indicated.
Whiskers extend to extreme values, with outliers indicated by open circles.

APPENDICES

Appendix A: Maximum likelihood parameter estimation

Maximum likelihood methods are often used to estimate values for unknown parameters in depletion models (Schnute 1983). My simulation results suggest that Bayesian methods are preferred, both because estimates are less biased, for declining catchability cases, and because confidence intervals are more likely to include the true value. Because maximum likelihood methods are widely applied, in this appendix I present results for simulations analogous to those in the main report. Brief details about each of the four methods are repeated here for clarity.

I conducted simulations similar to those reported for Bayesian models in the main report. Simulations were conducted over a more limited range of parameter values: true abundance N over the range $\{25,100\}$, depletion passes $k=\{3,4\}$, true catchabilities $q_{0}=\{0.4,0.6,0.8\}$, reductions in catchability $r=\{1,1.2 .1 .4,1.6,2.0\}$. I calculated the same performance measures detailed in the main report. I present results here only for the $N=100, k=4$ case. Patterns for other simulated conditions, relative to the Bayesian results presented in the main report, were similar.

Model 1: constant catchability (Moran 1951)

Model 1 assumes constant catchability (i.e. $q_{i}=q_{1} \forall i$). Catches are predicted by the two parameters N and q_{1} (Moran 1951):

$$
\begin{equation*}
\hat{C}_{i}=q_{1}\left(1-q_{1}\right)^{i-1} N, i=1, \ldots, k . \tag{A.1}
\end{equation*}
$$

The log of the binomial likelihood (Equation 2.2) can be written with q expressed in terms of the predicted catch by pass \hat{C}_{i} and predicted total catch \hat{T}_{k} (Schnute 1983):

$$
\begin{align*}
& -\ell\left(N, q \mid C_{1}, \ldots, C_{k}\right)= \\
& N \log (N)-T_{k} \log \left(T_{k}\right)-\left(N-T_{k}\right) \log \left(N-\hat{T}_{k}\right)-\log \binom{N}{T_{k}}+\sum_{i=1}^{k} C_{i} \log \left(\frac{C_{i}}{\hat{C}_{i}}\right)+c \tag{A.2}
\end{align*}
$$

where c is a constant that can be ignored. The minimum of the log-likelihood occurs where the first partial derivative of the log-likelihood with respect to each parameter is zero. For the constant catchability case, the partial derivative with respect to q_{1} can be solved to define the conditional maximum likelihood for q, given N (Moran 1951):

$$
\begin{equation*}
q_{1}(N)=\frac{T_{k}}{k N-\sum_{i=1}^{k} T_{i}} . \tag{A.3}
\end{equation*}
$$

Substituting Equation A. 3 into the model predicting catches (Equation A.1) gives the conditional maximum likelihood estimate (MLE) of N given the MLE for q, and means that maximum likelihood estimation for Model 1 is a single parameter problem in N. Once the most likely estimate of N is obtained, the MLE for q is calculated from Equation A. 3 (Schnute 1983). I used the optimise function in R (R Development Core Team 2009) to minimise the negative log-likelihood for the binomial removal model (Equation A.2) using equations A. 1 and A. 3 to define the objective function. I calculated an asymmetrical 95% confidence interval for the estimate of N using a likelihood ratio test (Kendall and Stuart 1979, Schnute 1983, Hilborn and Mangel 1997).

Model 2: stepped catchability Schnute (1983)

Model 2 (Schnute 1983) assumes that catchability on the first pass differs from all subsequent passes, but remains constant thereafter $\left(q_{1} \neq q_{i}\right.$ and $\left.q_{i}=q, i=2, \ldots, k\right)$;
catchability may increase or decrease after the first pass. The three parameters, N, q_{1} and q^{\prime} are required to model the predicted catch:

$$
\begin{align*}
& \hat{C}_{1}=q_{1} N \\
& \hat{C}_{i}=q^{\prime}\left(1-q_{1}\right)\left(1-q^{\prime}\right)^{i-2} N, i=2, \ldots, k \tag{A.4}
\end{align*}
$$

Model 2 reduces to Model 1 when $q_{1}=q^{\prime}$. In analogy with Equation A.3, conditional maximum likelihood estimates for q_{1} and q^{\prime}, given N are (Schnute 1983):

$$
\begin{align*}
& q_{1}(N)=\frac{C_{1}}{N} \\
& q^{\prime}(N)=\frac{T_{k}-C_{1}}{(k-1)\left(N-C_{1}\right)-\sum_{i-1}^{k-1}\left(T_{i}-C_{1}\right)}, i=2, \ldots, k \tag{A.5}
\end{align*}
$$

I obtained maximum likelihood estimates for N by minimising the negative loglikelihood for the binomial removal model (Equation A.2) using equations A. 4 and A. 5 to define the objective function. As for Model 1, estimation is as a single parameter problem in N, with the most likely estimates for q_{1} and q^{\prime} calculated from Equation A.5; the estimates for catchability again depend on the estimate for N. Asymmetrical 95% confidence bounds for N were again calculated using a likelihood ratio test.

Model 3: monotonic change in catchability Schnute (1983)
Model 3 assumes a monotonic decrease or increase in catchability over depletion passes (Schnute 1983):

$$
\begin{align*}
& \hat{C}_{i}=q_{i}\left(1-q_{i}\right)^{i-1} N, \\
& q_{i}=q_{1}+\left(q^{\prime \prime}-q_{1}\right)\left(1-a^{i-1}\right), 0 \leq a \leq 1 ; i=1, \ldots, k \tag{A.6}
\end{align*}
$$

To obtain maximum likelihood estimates for N, I used the R function optim to minimise the negative log-likelihood for the binomial removal model (Equation A.2) as a four parameter problem ($N, q_{1}, q^{\prime \prime}$, and a), using Equation A. 6 to define the objective function. If optim failed to converge, I used the slower but more robust rgenoud package, which combines evolutionary algorithm methods with a derivative based method (Mebane and Sekhon 2009). I used a likelihood ratio test to define a 95% confidence interval for N.

Model 4: individual catchability model (Mäntyniemi et al. 2005)

Model 4 assumes that mean catchability declines over passes, and is described by a parametric function analogous to the Schnute (1983) models:

$$
\begin{equation*}
q_{i}=\frac{\mu \eta}{\eta+i-1}, \quad i=1, \ldots, k \tag{A.7}
\end{equation*}
$$

where μ is the mean catchability over all fish, and η is a measure of the relative variation of catchability:

$$
\begin{equation*}
\eta=\frac{\mu(1-\mu)-\sigma^{2}}{\sigma^{2}} \tag{A.8}
\end{equation*}
$$

Large values of η indicate low variation in catchability ($\eta \rightarrow \infty$ as $\sigma^{2} \rightarrow 0$). Estimates are required for the three parameters N, μ and η. Mäntyniemi et al. (2005) use Bayesian methods to estimate parameters (see main report). I minimised the negative \log-likelihood for the binomial removal model (Equation A.2) using Equation A. 7 to define the objective function. I found that the R package optim was highly sensitive to the selection of initial values when optimising over the three parameters N, μ and η.. I therefore fit the likelihood profile for values of N over the interval between the total catch
$\left(T_{k}\right)$ and $8 * T_{k}$ (i.e. $\left\{T_{k}, T_{k}+1, \ldots, 8 * T_{k}\right\}$). I used optim to find conditional maximum likelihood estimates of μ and η for each value of N profiled. As for the previous models, I calculated a 95% confidence interval for the abundance estimate based using a likelihood ratio test.

Model 5: model selection using likelihood ratio test

I used a likelihood ratio test (Kendall and Stuart 1979, Schnute 1983, Hilborn and Mangel 1997) to determine which of models 1,2 , and 3 best fit the data, and report the preferred output as Model 5. In cases where one of the models failed to converge, the likelihood ratio test excluded the failed model.

Results

If catchability was non-constant, depletion model estimates of abundance based on maximum likelihood estimates were more biased than Bayesian estimates calculated as the mean of a posterior sample (Table A1.1 cf. Table 2.4). ML estimates also tended to be more precise, and confidence intervals were less likely to contain the true value than was the case for Bayesian estimates from the analogous model. Model 5, which used a likelihood ratio test to discriminate between Models 1, 2, and 3 was more biased than Model 3, except when catchability was constant.

Discussion

Maximum likelihood estimates for N were more biased than Bayesian estimates. This reflects the way in which the point estimates compared here were calculated. When non-informative priors are used, the posterior distribution obtained by Bayesian analysis will be similar to the likelihood profile. Bayesian point estimates for N discussed here were the mean of this distribution (Appendix D), whereas the maximum likelihood estimate is the mode of the analogous likelihood profile. As posterior
distributions/likelihood profiles for N for depletion models with declining catchability tend to be biased low but skewed right (Appendix D), the mean of these distributions will tend to be less biased than the mode.

Table A.1: Results of 500 Monte Carlo simulations of maximum likelihood depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability (q_{0}). 'MPE' is the mean percent difference between true and estimated N; ' $\mathrm{CV}_{\text {sim }}$ ' is the standard deviation of estimates expressed as a percent of N; 'CI cov' is confidence interval coverage; ' $\mathrm{P}(\rho>1)$ ' is the probability that confidence interval width $>N$.

\underline{q}_{0}	Total catch			Model 1 - MLE				Model 2 - MLE				Model 3- MLE			
	r	MPE	$\mathrm{CV}_{\text {sim }}$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathbf{P}(\boldsymbol{\rho}>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	CV ${ }_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$
0.2	1.0	-41.0	4.9	-0.3	29.0	95.1	76.9	-7.5	28.8	94.7	84.2	-19.5	26.5	19.1	0.0
	1.2	-50.9	5.2	-36.3	15.4	59.2	32.2	-35.7	20.2	74.7	60.5	-38.6	18.5	5.0	0.0
	1.4	-57.5	5.1	-51.3	9.8	18.2	9.4	-49.7	15.5	51.3	44.7	-47.8	15.0	2.0	0.0
	1.6	-61.5	4.7	-58.5	6.0	6.4	3.8	-57.8	8.9	37.3	31.9	-53.5	9.5	1.0	0.0
	1.8	-64.6	4.9	-63.3	5.3	0.8	0.6	-62.3	7.0	31.7	29.1	-57.8	7.5	0.2	0.0
	2.0	-66.4	4.8	-65.7	5.1	0.4	0.0	-65.3	5.6	23.0	19.4	-60.5	6.6	0.0	0.0
0.4	1.0	-12.8	3.2	0.2	8.4	95.6	4.0	0.7	12.6	95.4	33.3	-0.8	14.2	35.4	0.0
	1.2	-21.9	4.3	-15.1	6.7	43.6	0.4	-13.1	11.2	71.7	26.5	-12.3	11.3	24.7	0.0
	1.4	-29.5	4.5	-26.1	5.2	4.0	0.0	-24.2	8.3	46.4	23.0	-21.4	9.7	12.0	0.0
	1.6	-34.5	4.6	-32.9	5.0	0.0	0.0	-31.7	6.6	26.8	13.6	-27.7	8.0	1.2	0.0
	1.8	-38.2	4.8	-37.4	4.9	0.0	0.0	-36.5	6.3	16.0	8.6	-32.0	7.9	1.2	0.0
	2.0	-41.3	5.0	-40.9	5.1	0.0	0.0	-40.3	5.6	13.8	8.8	-35.5	6.6	0.0	0.0
0.6	1.0	-2.4	1.5	-0.5	2.1	95.2	0.0	-0.5	3.4	93.4	1.0	5.3	9.5	58.6	0.0
	1.2	-7.8	2.8	-6.4	3.1	35.4	0.0	-5.2	4.2	69.7	4.8	-1.3	7.6	40.5	0.0
	1.4	-12.3	3.2	-11.5	3.3	3.6	0.0	-10.2	4.7	48.8	6.2	-6.8	6.7	31.4	0.0
	1.6	-16.5	3.5	-16.2	3.6	0.6	0.0	-15.1	4.3	31.8	6.0	-10.8	6.0	26.5	0.0
	1.8	-19.6	3.8	-19.5	3.8	0.0	0.0	-18.8	4.3	18.6	5.2	-13.3	6.0	17.2	0.0
	2.0	-21.9	4.1	-21.8	4.1	0.0	0.0	-21.3	4.3	15.4	4.2	-15.7	5.8	6.5	0.0
0.8	1.0	-0.1	0.3	-0.1	0.3	94.6	0.0	-0.1	0.4	95.0	0.0	8.6	2.9	9.1	0.0
	1.2	-1.6	1.3	-1.6	1.3	44.2	0.0	-1.4	1.4	74.4	0.4	5.4	3.6	48.8	0.0
	1.4	-3.5	1.8	-3.5	1.8	10.4	0.0	-3.2	2.1	57.4	3.6	2.1	3.7	77.0	0.0
	1.6	-5.6	2.2	-5.6	2.2	0.8	0.0	-5.3	2.3	38.6	3.8	-0.4	3.3	82.5	0.0
	1.8	-7.2	2.5	-7.2	2.5	0.2	0.0	-7.0	2.6	25.0	4.4	-2.5	3.4	76.1	0.0
	2.0	-8.6	2.6	-8.5	2.6	0.0	0.0	-8.4	2.7	22.8	3.6	-4.4	3.5	55.7	0.0

Table A. 1 (continued):

$\underline{q_{0}}$	r	Model 4 - MLE				Model 5 - MLE			
		MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$	MPE	$\mathrm{CV}_{\text {sim }}$	CI cov	$\mathbf{P}(\rho>1)$
0.2	1.0	0.8	29.1	100.0	100.0	-1.7	29.3	92.8	74.3
	1.2	-34.8	17.2	98.8	97.5	-36.5	15.6	57.7	31.3
	1.4	-49.4	14.0	89.9	87.9	-50.6	12.9	19.2	10.6
	1.6	-57.0	11.0	79.2	73.3	-58.4	7.1	6.4	4.0
	1.8	-61.8	10.1	66.4	62.2	-63.1	5.8	1.4	1.2
	2.0	-65.2	5.9	49.0	46.8	-65.7	5.2	0.8	0.4
0.4	1.0	2.9	13.9	98.6	89.1	0.1	9.7	93.8	4.4
	1.2	-11.6	13.6	96.1	78.6	-14.7	9.1	42.5	1.4
	1.4	-20.5	15.2	86.0	66.5	-25.4	7.0	8.0	4.0
	1.6	-29.2	12.3	68.9	53.6	-32.5	5.9	3.0	3.0
	1.8	-35.0	12.0	57.0	46.6	-37.0	6.1	3.4	3.4
	2.0	-39.3	8.3	45.4	37.2	-40.8	5.4	1.8	1.6
0.6	1.0	1.0	4.3	99.0	26.1	-0.4	3.2	93.2	1.0
	1.2	-2.2	11.1	93.0	46.7	-5.9	3.8	39.1	3.8
	1.4	-7.7	9.8	78.8	48.0	-10.8	4.6	11.0	6.0
	1.6	-12.8	9.4	66.7	44.3	-15.6	4.1	10.1	5.9
	1.8	-17.2	8.3	53.4	37.6	-19.1	4.2	8.6	5.1
	2.0	-20.1	6.6	50.4	35.8	-21.5	4.3	9.5	4.3
0.8	1.0	-0.1	0.6	99.6	1.4	-0.1	0.4	94.4	0.0
	1.2	-0.9	2.2	90.2	20.0	-1.5	1.3	48.2	0.4
	1.4	-2.1	4.3	76.2	30.6	-3.2	2.1	29.3	3.6
	1.6	-4.6	3.3	69.0	29.2	-5.4	2.3	19.5	3.8
	1.8	-6.4	3.5	61.8	25.4	-7.1	2.6	17.6	4.3
	2.0	-7.9	3.3	59.8	30.4	-8.4	2.7	20.5	3.6

Appendix B: Mäntyniemi et al. (2005) model

Mäntyniemi et al. (2005) assume that catchability might be a characteristic of each individual fish, but derive a simple expression for mean catchability by pass. Their parametric function is analogous to the expression used by Schnute (1983). This appendix follows the methods section of Mäntyniemi et al. (2005) in describing the catchability model used in Models 6, 7 and 8.

Assume that, prior to the first depletion pass, each fish in an enclosed site can be characterised by an individual catchability $\left(p_{n}\right)$ considered an independent and random draw from the distribution:

$$
\begin{equation*}
f\left(p_{n} \mid \mu, \sigma\right), n=1, \ldots, N, \tag{B.9}
\end{equation*}
$$

where μ and σ are the mean and standard deviation, respectively. Conditionally on p_{n}, let z_{n} be a Bernoulli-distributed indicator variable that takes the value 1 if individual n is captured on Pass 1 , and the value 0 if the individual escapes, i.e.,

$$
\begin{equation*}
P\left(z_{n} \mid p_{n}\right)=p_{n}^{z_{n}}\left(1-p_{n}\right)^{1-z_{n}}, n=1, \ldots, N, \tag{B.10}
\end{equation*}
$$

Define μ as the expected value of p_{n}. The conditional distribution of z_{n} given μ and σ is:

$$
\begin{equation*}
P\left(z_{n} \mid \mu, \sigma\right)=\mu^{z_{n}}(1-\mu)^{1-z_{n}}, n=1, \ldots, N, \tag{B.11}
\end{equation*}
$$

Assuming that fish respond independently to sampling (i.e., values of z_{n} are conditionally independent, given μ), the catch on the first removal pass $\left(C_{l}\right)$ is binomially distributed, i.e.,

$$
\begin{equation*}
C_{1}=\sum_{n=1}^{N} z_{n} \mid N, \mu \sim \operatorname{Binomial}(N, \mu) . \tag{B.12}
\end{equation*}
$$

Only the mean catchability, μ, is required to model the catch.

After the removal of this first catch (generally, those fish easiest to catch), the distribution of catchabilities is no longer $f\left(p_{n} \mid \mu, \sigma\right)$. Using Bayes rule, i.e.,

$$
\begin{equation*}
P(\Theta \mid y)=\frac{P(\Theta) P(y \mid \Theta)}{P(y)} \tag{B.13}
\end{equation*}
$$

the distribution of catchabilities for fish not captured $\left(z_{n}=0\right)$ on Pass 1 can be calculated:

$$
\begin{align*}
f\left(p_{n} \mid z_{n}=0, \mu, \sigma\right) & =\frac{P\left(z_{n}=0 \mid p_{n}\right)\left(f\left(p_{n} \mid \mu, \sigma\right)\right)}{P\left(z_{n}=0 \mid \mu, \sigma\right)} \\
& =\frac{p_{n}^{0}\left(1-p_{n}\right)^{1}\left(f\left(p_{n} \mid \mu, \sigma\right)\right)}{1-\mu} \\
& \propto f\left(p_{n} \mid \mu, \sigma\right)\left(1-p_{n}\right) \tag{B.14}
\end{align*}
$$

The distribution of catchabilities for fish not captured on Pass 2 is proportional to $f\left(p_{n} \mid \mu, \sigma\right)\left(1-p_{n}\right)^{2}$. In general, the distribution of catchabilities prior to pass i is proportional to $f\left(p_{n} \mid \mu, \sigma\right)\left(1-p_{n}\right)^{i-1}$.

Assume that individual catchabilities are independent and random draws from a Beta distribution with shape parameters α and β, i.e.,

$$
\begin{equation*}
f\left(p_{n} \mid \alpha, \beta\right)=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} p_{n}^{\alpha-1}\left(1-p_{n}\right)^{\beta-1} \tag{B.15}
\end{equation*}
$$

The mean and variance of $f\left(p_{n} \mid \alpha, \beta\right)$ are required to calculate $f\left(p_{n} \mid \mu, \sigma\right)\left(1-p_{n}\right)^{i-1}$. The mean of $f\left(p_{n} \mid \alpha, \beta\right)\left(1-p_{n}\right)^{i-1}$ is:

$$
\begin{equation*}
q_{i}=\frac{\alpha}{\alpha+\beta+i+1}, i=1, \ldots, k \tag{B.16}
\end{equation*}
$$

Because the mean μ and standard deviation σ of a Beta distribution are not independent $(\sigma<\sqrt{\mu(1-\mu)})$, introduce the parameter η as a measure of the relative variation of catchability:

$$
\begin{aligned}
& \eta=\frac{\mu(1-\mu)-\sigma^{2}}{\sigma^{2}}=\alpha+\beta \\
& \alpha=\mu \eta \\
& \beta=(1-\mu) \eta
\end{aligned}
$$

The model for mean catchability by pass becomes:

$$
\begin{equation*}
q_{i}=\frac{\mu \eta}{\eta+i-1}, \quad i=1, \ldots, k \tag{B.17}
\end{equation*}
$$

This model defines approximately constant catchability $\sim \mu$ as $\eta \rightarrow \infty$, and declining catchability by pass as $\eta \rightarrow 0$.

Appendix C: WinBUGS code for depletion models

Model 1: constant catchability

```
model1{
    for(j in 1:k ){
        x[j]~ dbin (q1, n[j])
        n[j+1]<-n[j]-x[j]
    }
    u ~ dunif (0,10)
    n[1]<- exp( u )
    q1 ~ dbeta( 1.1, 1.1 )
}
```

Model 2: two catchability
model2 \{
for $(\mathrm{j}$ in $1: \mathrm{k})\{$
$q[j]<-\operatorname{step}(1-j) * q 1+(1-\operatorname{step}(1-j)) * q 2$
$x[j] \sim \operatorname{dbin}(q[j], n[j])$
$n[j+1]<-n[j]-x[j]$
\}
$u \sim \operatorname{dunif}(0,10)$
$\mathrm{n}[1]<-\exp (\mathrm{u})$
q1 ~ dbeta(1.1, 1.1)
q2 ~ dbeta(1.1, 1.1)
\}

Model 3: declining catchability

```
model3{
        for(j in 1:k ){
            q[j]<-q1 + (q0-q1 )*(1-\operatorname{pow}(a,(j-1 )))
            x[j]~ dbin( q[j],n[j])
            n[j+1]<-n[j]-x[j]
    }
    u ~ dunif(0,10)
    n[ 1]<- exp( u )
    q1 ~ dbeta( 1.1, 1.1 )
    q0 ~ dbeta( 1.1, 1.1 )
    a ~ dbeta( 1.1, 1.1)
}
```


Model 4: declining catchability

```
model4{
    for(j in 1:k ){
        q[j]<-mu* (eta / (eta + j - 1 ))
        n[j+1]<-n[j]-x[j]
    }
    u~\operatorname{dunif}(0,10)
    n[1]<- exp(u )
    log.eta ~ dunif( 0, 10)
    eta <- exp(log.eta )
    mu ~ dbeta( 1.1, 1.1 )
}
```


Appendix D: Point estimates for Bayesian depletion methods

Bayesian methods using MCMC produce posterior distributions for parameters of interest. In order to compare results of Bayesian estimators within a simulation context, as well as with results from maximum likelihood estimators, point estimates of parameter values are required. Posterior distributions for depletion data with three or four depletion passes tend to be substantially skewed, particularly for \hat{N}. The left hand side of the distribution is curtailed, as the total population cannot be less than the total catch. However, the right hand side of the distribution is well defined only if the depletion series is informative; there is some possibility that catchability is very low, and the total population extremely large (Schnute 1983). For such distributions, the mean will be larger than the median.

I conducted simulation tests to determine whether the mean or the median is the more appropriate point estimate for \hat{N} and \hat{q}_{i}. Simulations are of the same form as those described in the Methods section of the main report. I compared both mean and median estimates for \hat{N} with the known simulation parameter N. Measures of the dispersion of the posterior distributions are not affected by the choice of point estimate (for a given posterior distribution, the 95% posterior interval is the same, regardless of whether the mean or the median is used). I therefore present the mean $\left(\overline{\hat{N}}_{M}\right)$ and simulation-based coefficient of variation $\left(C V_{\text {sim }}=\left(\frac{s_{M}}{N_{M}}\right)\right.$) over $M=500$ simulations, with the point estimate for total population $\left(\hat{N}_{m}\right)$ calculated using both the mean and the
median of the posterior MCMC sample. Results presented are for four pass depletion series with $N=100$.

If true catchability is constant, the median is less biased than the mean, for almost all scenarios (the exceptions are Models 2 and 3 at very low catchability; Table D.1). Because the posterior distribution has a long right-hand tail, the mean is biased high relative to the median (Figure D.1). This bias can be substantial, particularly at low catchability $\left(+47 \%\right.$ for Model $\left.4, q_{0}=0.2\right)$. Under these conditions, there are substantial differences between the mean and the median of the posterior distribution as point estimates for \hat{N} (Table D.1). The median is also less variable than the mean for Models 2, 3 and 4. For Model 1, the variance of the mean and the median are similar.

If true catchability declines, the catch series suggests a smaller population than is actually present; as the mean is weighted by the right-hand tail of the posterior distribution, it provides the more accurate point estimate for \hat{N}. However, the median is more precise. When Pass 1 catchability is modest or high, there is little difference in bias between the mean and the median as point estimates for \hat{N}; for modest catchability, the median tends to be more precise.

The choice of an appropriate point estimate for \hat{N}, for comparisons between different depletion models, is driven by differences at low constant catchability. Because the mean is more accurate than the median under most of the scenarios I simulated, I selected the mean as the appropriate point estimate of \hat{N}. Researchers applying these models to low, constant catchability situations, and desiring point estimates might consider the trade-off between precision and accuracy differently than I have done.

The posterior distributions for parameters describing the decline in catchability ($\hat{q}^{\prime \prime}, \hat{a}$ in this example for Model 3) are very poorly defined for this four pass example (Figure D.1). This pattern was observed throughout three and four pass simulations, and is noted by Mäntyniemi et al. (2005) for the variance parameter in Model $4(\log (\eta))$.

Mäntyniemi et al. (2005) suggest that additional passes are required to better define the pattern of variation in catchability.

Figure D.1: Model 3 posterior distributions for $\hat{N}, \hat{q}_{1}, \hat{q}^{\prime \prime}, \hat{a}$ based on MCMC samples for the depletion series $C=\{34,14,10,4\}$, generated from true parameters $N=100, q_{1}=0.4, q^{\prime \prime}=0.1, a=0.2$. The mean (solid vertical lines) and median (dashed vertical lines) of posterior distributions are indicated.

Table D.1: Results of 500 Monte Carlo simulations of depletion estimates for $N(N=100, k=4)$. Simulations were run by sequentially increasing the rate of decline in catchability (r) and initial catchability $\left(q_{0}\right)$. The 'median' and 'mean' of posterior distributions for \hat{N} are presented. MPE refers to the mean percent difference between N and \hat{N}. CV is the standard deviation of estimates, expressed as a percent of the true value N.

q_{0}	r	Model 1				Model 2				Model 3				Model 4			
		Median		Mean													
		MPE	CV														
0.2	1.0	6.1	28.8	21.9	33.9	-10.7	18.1	7.0	27.5	-18.1	13.0	-2.4	20.0	14.1	29.1	47.7	30.3
	1.2	-30.9	17.6	-19.1	26.5	-34.4	13.7	-22.9	22.0	-37.8	10.3	-27.8	15.2	-25.3	19.1	14.0	36.3
	1.4	-48.6	8.7	-42.7	16.0	-47.9	8.6	-40.5	13.1	-49.5	7.1	-42.6	9.8	-45.3	10.0	-19.7	27.8
	1.6	-55.7	7.1	-52.1	14.5	-54.7	7.5	-49.2	10.8	-55.6	6.5	-50.2	8.6	-53.5	8.0	-37.1	22.0
	1.8	-61.7	5.7	-59.9	7.7	-60.4	6.5	-56.0	9.0	-61.0	5.8	-56.9	7.2	-60.2	6.2	-50.6	14.8
	2.0	-64.8	4.9	-63.7	5.3	-63.4	5.7	-59.5	7.7	-63.9	5.2	-60.2	6.3	-63.6	5.2	-57.0	10.6
0.4	1.0	1.5	8.8	4.3	11.6	3.6	12.8	12.0	19.3	1.6	9.6	13.2	15.7	7.2	11.2	34.9	25.4
	1.2	-13.8	6.4	-12.3	7.1	-9.7	10.3	-2.0	16.4	-10.8	8.4	-0.7	12.9	-9.2	8.5	13.7	25.2
	1.4	-24.5	5.3	-23.6	5.6	-21.3	7.8	-15.8	11.9	-21.7	6.8	-13.9	10.1	-21.5	6.6	-9.8	16.7
	1.6	-31.4	5.5	-30.8	5.6	-28.5	7.2	-23.9	10.7	-28.7	6.6	-22.3	9.1	-29.1	6.4	-22.0	12.7
	1.8	-36.2	5.2	-35.6	5.2	-33.7	6.1	-29.5	8.8	-33.8	5.8	-28.1	7.8	-34.4	5.6	-29.6	8.9
	2.0	-39.7	5.2	-39.3	5.2	-37.5	6.1	-33.8	8.4	-37.6	5.9	-32.5	7.7	-38.3	5.6	-35.4	7.0
0.6	1.0	0.4	2.2	0.9	2.3	1.3	3.8	3.4	6.0	1.9	4.0	7.3	7.5	2.0	3.4	6.0	6.6
	1.2	-5.2	3.0	-4.7	3.1	-2.5	5.1	1.0	8.5	-1.7	5.0	5.5	8.3	-2.7	4.5	1.8	6.8
	1.4	-10.6	3.3	-10.2	3.4	-7.5	5.6	-3.6	9.3	-7.0	5.3	0.1	8.5	-8.1	4.9	-4.5	6.8
	1.6	-15.4	3.8	-15.0	3.8	-12.7	5.2	-9.0	8.5	-12.3	5.0	-5.9	7.8	-13.4	4.6	-10.7	5.6
	1.8	-18.8	3.9	-18.5	3.9	-16.4	5.0	-12.8	7.6	-16.1	4.8	-10.3	6.8	-17.2	4.5	-15.2	5.1
	2.0	-21.7	4.2	-21.5	4.2	-19.8	4.7	-16.4	7.2	-19.6	4.6	-14.5	6.0	-20.5	4.4	-18.9	4.7
0.8	1.0	0.2	0.5	0.4	0.5	0.5	0.8	1.2	1.6	0.9	0.9	3.7	2.5	0.5	0.7	1.2	0.9
	1.2	-1.0	1.3	-0.9	1.3	0.2	2.3	2.5	5.0	0.7	2.2	5.6	4.4	-0.1	1.8	1.1	2.1
	1.4	-3.3	2.0	-3.1	2.0	-1.3	3.4	2.2	7.4	-1.0	3.1	4.4	5.4	-2.0	2.6	-0.8	2.8
	1.6	-5.1	2.2	-5.0	2.2	-3.1	3.5	1.2	8.0	-3.0	2.9	2.2	4.6	-4.0	2.5	-3.0	2.7
	1.8	-6.7	2.7	-6.6	2.7	-4.7	3.6	-0.1	7.5	-4.7	3.2	0.4	4.7	-5.6	3.0	-4.7	3.1
	2.0	-8.4	2.8	-8.3	2.8	-6.5	3.8	-1.8	7.7	-6.7	3.3	-2.1	4.5	-7.6	3.0	-6.8	3.1

