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Abstract

The SATISFIABILITY problem (SAT) is one of the central subjects of research iderocomputing
science. This problem provides a rich language to modetipedproblems. Moreover modern SAT
solvers are capable of solving large instances of SAT andeasuccessfully applied to industrial
scale problems. Since SAT is NP-complete the success ofr#iutiqal SAT algorithms apparently
contradicts the belief that NP-complete problems are harsbtve. One of the most promising
approaches to explaining this phenomenon is the typical aaalysis.

Local search principles are actively used for practical SAlving, as well as for many other
important problems. In this work we perform a typical casalgsis of the basic Local Search
algorithm on Random Planted 3-SAT. We show that a phaseitinsf the effectiveness of the
Local Search on Random Planted 3-SAT occurs at deps—iiy% Inn. That is, for any constantthe
algorithm with high probability solves instances of dey1$i§ + ¢) Inn and with high probability
fails for instances of densitf — <) Inn.

The first successful practical algorithm based on localcseprinciples, GSAT, was proposed
in 1991 by Selman, Levesque and Mitchell. In fact this altyoni is nothing more than basic Local
Search enhanced with plateau moves. At the time the algosiths proposed, it was outperforming
state of the art systematic search solvers and it contirareig a basis for development of efficient
local search algorithms. We analyze GSAT theoretically and®dm Planted 3-SAT and show that
it can solve Random Planted 3-SAT of any dengiguch thaip > « Inn for some constant. This
theoretical result agrees with, and partially explainsg, éimpirical observation that adding plateau
moves dramatically improves Local Search.

Finally we propose a Weighted Random Walk algorithm. Therlgm is obtained by adding
a simple weighting scheme to the well known Random Walk #lgor. We prove that Weighted
Random Walk with high probability gives a good approximatiaMoreover, in experiments this
simple algorithm solves Random Planted 3-SAT for any caonistansity.
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Chapter 1

Introduction

1.1 Historical Perspective

The SATISFIABILITY (or SAT) problem is important from both theoretical and picat points of
view. In this problem we are given a Boolean formula in CNF #radquestion is whether there is an
assignment of values to variables that satisfies the forn8Ad is one of the first problems that was
proven to be NP-complete [14]. On the other hand, its praktinportance is also unquestionable
since this problem is actively used as a framework to modelynpaactical problems, such as hard-
ware and software verification [13, 51, 9], scheduling [S®ne problems arising in bioinformatics
[47,10] etc.

SAT is a decision problem, so a SAT algorithm must either eribzat a solution exists or prove
that the CNF is unsatisfiable. But if there is no satisfyingigrtament one may wish to find an
assignment that satisfies the maximum number of clausesoftimization problem of finding such
an assignment is called AKiIMuM SATISFIABILITY or MAX-SAT. In case we know that a solution
exists and want to find one, it may be convenient to consideS#I problem as MAX-SAT, since
then optimization techniques can be applied to it. Algonistthat work for only satisfiable instances
are calledncomplete

A k-CNF is a CNF formula in which each clause has at nmiobterals, SAT restricted td:-
CNFs is calledk-SAT. Since fork > 3 a CNF can be easily transformed into an equivale@NF,
by introducing a linear number of auxiliary variabldsSAT for £ > 3 is also an NP-complete
problem. In practice it is often the case that the length afisés in the CNF is bounded above by
some small constant, so it is natural to model such clasgg®blems byk-SAT rather than general
SAT. Consequentlhy%-SAT, and its simplest NP-complete subclass 3-SAT, aregbekiensively
studied in the worst and typical cases.
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1.1.1 SolvingSATISFIABILITY

Great progress has been made in practical solvikgs$IABILITY problems in the last two decades.
Some problems that were considered to be intractable inathg £390’s can be solved in less than
a second by modern solvers [51, 7].

There are two major classes of algorithms used in SAT salvBygtematic searchnd local
search Systematic search algorithms explore the whole solugiate by starting with all variables
unassigned and then assigning them one by one. If at somiemoiariable can be assigned without
making some clause false the algorithm backtracks. Sysiesgarch algorithms are described most
naturally using recursion. The basic systematic seardairighign works as follows. Given a boolean
formula it picks a random variable;, and obtains two smaller formulag andy; by assigninge;
to 0 and 1 respectively. For instance when we assiga 1 we can remove fronp all clauses that
containz; and we remove all literalsz;. If an empty clause appears after such an assignment then
it means that the formula is made false and further explumadf the caser; = 1 is not required.
Then the algorithm is recursively applieditg and; . If, say, g happens to be satisfiable then the
satisfying assignment fop can be obtained from the satisfying assignmenpgfindz; = 0. If
bothyy andy; are unsatisfiable thepis also unsatisfiable.

Modern systematic search algorithms are based on the Patism-Logemann-
Loveland (DPLL) procedure [18Pure literal heuristicandunit propagationwere used in DPLL to
improve the performance of the systematic search. Moddwersouseclause learningor further
speed up. We say that a litetal (or —x;) is a pure literal inp if no clause inp contains literatb-z;

(x; respectively). It is obvious that if we have a pure literalgthen we can assign its variable to
satisfy this literal without risk of loosing solutions. Suat is what the pure literal heuristic does.

Unit propagation looks for a clause imthat contains only one literab(unit clausé. If such
clause is found then the only variable occurring in this stais assigned the value to satisfy the
literal (and the clause). Again we are guaranteed that thisrawill not make us lose any satisfying
assignments. It may happen that after pure literal rule d@rprmpagation were executed another
pure literal or unit clause are generated and we have a kidobiain reaction that simplifies the
formula substantially.

Clause learning works as follows. When a contradiction é&lhed and the algorithm needs to
backtrack, it tries to find a small set of variables which gssient made the rest of the formula
unsatisfiable and records them as a new clause. For instaassigningz; = 1,20 = 1,23 = 0
leads to a sequence of unit propagations and pure literiginemsents that results in a generation of
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the empty clause then we can conclude that no assignmermithi@ins:s, = 1,22 = 1,23 = 0 can
satisfy the formula. Thus we can add the cla(ise; A —x2 A 2:3) to . Adding new clauses in turn
increases chances that unit propagation will be triggeretkeraften and so fewer cases have to be
considered.

Local search algorithms are inherently incomplete. Thgylae the solution space partially
and aim at finding a satisfying assignment, without tryingotove that such an assignment does
not exist. The basic Local Search algorithm (also knownerstive Improvement [32]) starts with
a random assignment and then works as follows. At each stapriputes for each variable what
will be the change in the number of satisfied clauses if thitalée isflipped (i.e. the value of
the variable is changed). Lét be a set of all variables for which flipping increases the nemds
satisfied clauses. The algorithm picks a variable uniforatlyandom fron/, flips it and goes to
the next step.

Local Search will fail to find a satisfying assignment if itgérapped in a local maximum. That
is, where the current assignment is such that flipping aniabte can only decrease the number
of satisfied clauses, or leave it unchang@tateau movess a natural strategy that can be used to
find a better assignment after a local maximum is reachechetktis no variable that we can flip
to increase the number of satisfied clauses then we can eoribil set of variables that does not
change this number and pick a variable to flip from it. It mappen that after some steps we
come to an assignment that will not be a local maximum. Enément of the basic Local Search
algorithm with plateau moves results in algorithms thatcaléed GSAT and CSAT.

The GSAT algorithm is widely known for being the first sucdéakpractical heuristic developed
for SAT that was based on local search principles. It wasgseg in the early 90s by Selman,
Levesque and Mitchell [54]; the name GSAT stands faréedy algorithm foSAT”. This algorithm
starts with a random assignment and then tries to improvagkignment greedily. That is, at every
step it flips one of the variables that give the maximum ineeeia the number of satisfied clauses
(the maximum possible increase can happen to be zero or egative). If a satisfying assignment
is not found after a certain number of steps then the algurithstarts. The number of steps to be
performed before a restart and the number of restarts to be d@ two parameters of the GSAT
algorithm that can be tuned to improve performance on a petass of problems one is interested
in. It is demonstrated in the paper where GSAT is introdué&el fhat this algorithm outperforms
state-of-the-art systematic search algorithms of thae tifextensive empirical analysis of GSAT
was carried out by Gent et al. [24].

Later many algorithms were built on the basis of GSAT. Inipatar Gent and Walsh have
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experimentally demonstrated [26, 25] that greedinesstisery important for the success of GSAT.
The algorithm they designed, CSAT, works as the basic Loeal at assignments that are not
local maxima and switches to plateau moves when a local marim reached.

Local Search, GSAT and CSAT explore the solution space byngakoves that do not decrease
the number of satisfied clausesA quite different approach is used in the Random Walk [50]
algorithm that was proposed by Papadimitriou [50]. Thisodthm flips a variable to satisfy one
of the unsatisfied clauses even if that causes a substaatisgate in the total number of satisfied
clauses. While the basic Local Search algorithm is genedacan be applied to optimization of any
value function, Random Walk was developed specifically f&f.3Random Walk also starts from a
random assignment and then at every step an unsatisfiee d¢tasslected uniformly at random, a
literal is selected uniformly at random from the clause drvariable corresponding to the literal
is flipped. The Random Walk algorithm was used as a basis éopraictical WalkSat algorithm by
Kautz and Selman [53]. WalkSat picks an unsatisfied claugeromly at random and then for each
of the variables in the clause it computes how many clauskb®&dome unsatisfied if this variable
is flipped. It flips the variable that will cause the least nembf clauses to become unsatisfied.
WalkSat happened to be very successfully at planning pmbléValkSat successfully solves SAT
encodings of hard planning problems faster than the bestaitoapecific algorithms that existed
when WalkSat was introduced.

Many local search algorithms have been built upon GSAT anlf S (see Chapter 6 of [8] for
survey). Those algorithms are more sophisticated and mawenful. We believe that theoretical
analysis of these algorithm is crucial for further progriessolving SAT. And yet there is still lack
of theoretical understanding of the success even of the simagle Local Search algorithms: GSAT
and WalkSat.

1.1.2 Algorithms Analysis

Worst-case analysisof SAT algorithms deals with proving polynomial upper bosrfdr the al-
gorithms applied to subclasses of SAT, exponential boundsapproximation results. Since SAT
is NP-complete there is not much hope of designing a polyab(or even sub-exponential [33])
algorithm solving it in the general case.

The best known algorithm [17] for solving the general casSAT takes2”°(") polynomial
time steps. Finding an algorithm that can solve SAT expdakynfaster than irR" steps or proving

Though flips that decrease the number of satisfied clausesecdone by GSAT they do not play substantial role in
the success of GSAT [26].
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that such algorithm does not exist is a well known open prabldpperbounds of the foraf, ¢ < 2,
were obtained for many important large subclasses of SATinstance, algorithms working within
such bounds were found férSAT [16], problems with bounded ratio of the number of cksito the
number of variables [42], problems with bounded number @iitp@ (or negative) occurrences of
variables [34] etc. These results are proven by providiagliging algorithm i.e. an algorithm that
reduces a SAT instance to subproblems of smaller size. Diaggeon the size of these subproblems
the number of such recursive calls required to solve thelpnob differs. There are techniques
[44] that allow bounding this number by analyzing the sizethe subproblems. To apply these
techniques, size of a formula does not have to be defined asuthber of clauses or number of
variables, but can be an arbitrary positive function of threrfula.

A great amount of work [62, 35, 6] has been done in the areamfoxpnating the solution of
the MAX-SAT problem. The best algorithm for the general MAAT problem so far, allows to
get a 0.77 approximation of the optimum [6]. The case of 3-8A&specially interesting in the
context of approximating the solution. It is not hard to deat the expected number of clauses
satisfied by a random assignment eqqialsf the total number of clauses in the formula. On the
other hand Hastad'’s celebrated result [29] states thatinsiag P # N P, there is no deterministic
algorithm that could be guaranteed to achieve a better a&ppation of 3-SAT. This surprising
result was obtained using the notion Pfobabilistically Checkable Proof (PCR)nd the famous
PCP-theorem [5]. Thus the question of optimal polynomialetiapproximability of 3-SAT in the
worst case is essentially closed. And consequently we tatddr general SAT the approximation
ratio that can be achieved in polynomial time is bounded betw.77 and% = 0.875.

The worst case performance of GSAT has been studied in twiextsn Let us recall that the
algorithm can be tuned by setting the number of steps donardoef restart and the number of
restarts. So the algorithm can be used as a polynomial tigueitdm as well as exponential. Worst
case efficiency of GSAT in polynomial settings applied to AR8AT problem is not better than the
performance of the basic Local Search algorithm. It guambnlykiﬂ-th fraction of clauses to
become satisfied [28, 46], which is also always achievabtadypasic Local Search. The worst case
efficiency of GSAT and CSAT as exponential algorithms fonafas of bounded clause to variable
ratio was studied by Hirsch. In particular it was shown tlahé number of restarts &", ¢ < 1,
and each restart makessteps then CSAT succeeds as a Monte-Carlo randomizedthlgorT his
upper bound was obtained for its execution without use diepla moves, that is essentially the
bound was proven for the Local Search with restarts.

This work is devoted to thiypical case analysiof SAT algorithms. In this approach we assume
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that problem instances are generated according to somalplistic distribution. Then we can try
to prove thatwith high probability (i.e. with probability that tends to 1 as the size of the peabl
goes to infinity), the algorithm solves the problem or givegoad approximation of the optimal
solution. Performance of the algorithm with respect to flpécal case can be much better than it is
in the worst case.

Until the early 1990's it appeared that SAT is a very easy lgrolin the typical case and several
very simple algorithms were proposed for it (see for exanpre 31, 37]). In 1992, it was argued
by Selman, Levesque and Mitchell [48, 55] that SAT formulaat tare hard on average, can be
generated by picking some natural distributions and patemwalues. According to the proposed
modelrandomk-SAT of fixed densitfpr simply Randomk-SAT), the problem is sampled as follows:
given adensityp and a number of variables, a formula is picked uniformly at random among all
CNFs containingn k-clauses over the variables, where &-clause is a clause containing exactly
k literals corresponding tb distinct variables.

A randomly generated 3-SAT problem may happen to have aisolor to be unsatisfiable.
Thus it is a natural question to ask what is the probabiligt th Random 3-SAT of density is
satisfiable. It was experimentally shown that there is astiole py ~ 4.25, such that ifp < po,
then with high probability the problem has a solution andeothise with high probability there is no
solution. More experimental evidence of this phenomenas pudblished shortly thereafter, see e.g.
[15, 45]. In 1994 Kirkpatrik and Selman noted that this thidd behavior of the system is known
in statistical physics asphase transition

The term “phase transition” in statistical physics gerieeal the phase transition of medium
between solid, liquid, gas and plasma states. IntuitivpBaking, a system demonstrates the phase
transition phenomenon with respect to parametérfor some values small change pfleads to
a dramatic change of the behavior of the system. Statigtiogsics has certain techniques for
experimental data analysis that indicate whether a sys@modstrates the phase transition at some
point or not. Those techniques were used by Kirkpatrik arth&e in their experimental research
of 3-SAT.

In 1999 Freidgut [22] succeeded in rigorously proving thistexce of a functiopf = pk(n)
such that fop < pk(n) a Randomk-SAT has a solution with high probability and fer> pf(n) it
does not. Plenty of results were bounding bounding the rauinge the transition happens in 3-SAT
from below [57, 56, 11, 1, 38] and above [36, 59, 39, 19]. Th& lmver bound at the moment [38]
is 3.520 and the best upper bound [19] is 4.506.

All lower bounds for the phase transition were obtained byvjaling an algorithm and then
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proving that with high probability it solves the problemsdehsity below the bound. A breakthrough
in this area is due to Achlioptas in 2000. He unified all pragig known algorithms in a so called
Card Gamdramework [2]. These algorithms are essentially diffenagrsions of DPLL algorithms
without backtracking. Since there is no backtrack, oncereabke gets its value it never changes
it. Thus once a variable is assigned the formula can be diegblby removing unsatisfied literals
corresponding to the variable and clauses that becamdiezhtin/ that assignment. In the Card
Game framework a state of the run of the algorithm is repiteseas a layout of cards. Each clause
is represented as a column of cards, each of which corresgoralliteral. So when the algorithm
decides what variable to assign a value for, it can eithek fhie variable uniformly at random
among those which are still unassigned, or pick a size of ldigse and then pick a variable that
corresponds to a random literal in a random clause of this gDnce the variable is assigned the
cards that correspond to unsatisfied literals and columaisdbrrespond to satisfied clauses are
removed. If the algorithm is acting within the Card Game fearark its state can be described as
k + 2 numbers. Namely nhumbers btlauses forl < | < k, the number of satisfied clauses and
the number of unsatisfied clauses. This framework is somierelstricting but still allows a wide
range of algorithms to be implemented. For instance the Biteeal heuristic does not fit into this
framework, but the Unit Propagation algorithm does.

To analyze an algorithm represented in the Card Game frarketahlioptas used Wormald's
theorem. This theorem allows to make the transition fromsgrdie stochastic process to a de-
terministic system of differential equations. The obtdisystem of differential equations can be
studied by numerical methods. The Wormald's theorem wagraily applied in the analysis of
algorithms on random graphs and the Card Game framework ihpdssible to use it for SAT al-
gorithms. The intuitive idea behind the theorem is thatrdigcparameters of a large system behave
almost as if they were continuous. For instance if we plotaglyrof the number of satisfied clauses
versus time for Local Search, then as the number of the ‘asaiyows the graph will look more
and more like a graph of a smooth function. Wormald'’s theopeavides a rigorous basis for using
this phenomenon.

When it was shown that Random 3-SAT for densities close tb wa&s hard for existing algo-
rithms it became a natural problem to find out whether an efiiclgorithm exists for this distribu-
tion of 3-SAT or not. Statistical physics analysis of the&FSolution space resulted in development
of the Survey Propagatiofb1] algorithm that is highly efficient on random 3-SAT inst&s in ex-
periments. The algorithm is capable of finding solutionsaegé (around 0° variables) instances of
random 3-SAT with density close to the threshpjd but is yet to be rigorously analyzed and that
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seems to be very hard.

A random 3-SAT of fixed density with a planted soluf@nsimply Random Planted 3-SAB])
distribution is easier to solve and it provides a model fogroenstrained [60] practical problems.
To generate &-CNF according to this distribution one first picks some gagient of values to the
variables. Then a formula afensityp is sampled uniformly at random from all formulas with
clauses that are satisfied by that assignment. Experimgaiimlsuggest that random planted 3-SAT
is easier than random 3-SAT: modern practical algorithrascapable of solving it for any density.

It was first shown by Flaxman in 2003 that Random Planted 3-&A&ligh constant density can
be solved in polynomial time [21]. A specific algorithm, natri@pectral Heuristiovas developed
to prove that. The algorithm deals with a gra@tof co-occurenses of literals, i. e. a graph in which
vertices are literals and two literals are connected by ge &they occur in the same clause. It was
observed that grapfy has negative eigenvalues and that the eigenvectors condisig to the most
negative eigenvalue @f can be used to get a solution of the problem.

Later Feige and Vilenchik [58] developed another algorithith similar performance on Ran-
dom planted 3-SAT. The algorithm consists of two stagest kivalue for each variable is selected
S0 as to satisfy as many literals as possible. That is, thablaiis assigned 1 or 0 based on whether it
occurs more often in positive or negative literals respebti Next a specific kind of a Local Search
algorithm called thé:-opt heuristicis executed. At each step the algorithm has an assigneiemd
computes the sef of all clauses of the formula that are satisfiedibylhen all subsets of variables
of size at most logarithm of the total number of variablescangsidered. A variable is flipped if that
results in an assignment that satisfies a set of clatfsssch thats” © S.

The k-opt heuristic algorithm is more intuitive than the spéctreuristic, but still uses quite
different ideas than the practical algorithms. Next we ubsctypical case analysis of practical algo-
rithms. We focus on two heuristics used in practical locatsle solvers to escape local maxima and
boost algorithm performance: plateau moves and flipping\@rable occurring in an unsatisfied
clause.

The typical case performance of the GSAT algorithm for rangitanted 3-SAT was studied by
Koutsoupias and Papadimitriou [40]. It was shown that foedir densityp = xn GSAT succeeds
with high probability. As in the proof of the upper bound oéttime complexity in [30] plateau and
downward moves were not used in the analysis. Also the asttamjectured that their upper bound
is not tight and that GSAT can solve random planted 3-SAT farge constant density.

Later Gent [23] adapted techniques of Koutsoupias and Rajiedu [40] to show that even for
the Stupid Algorithm(i. e. an algorithm that assigns 1 or O to a variable dependimghether this
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variable occurs more often in positive or negative literthere exists a large constanf such that
this algorithm can solve Random Planted 3-SAT for densityn, for anyx > k.

The Random Walk algorithm was initially proposed by Papattiou [50] and in the same paper
it was also shown that it can find solution for any 2-SAT prable expected quadratic time. The
algorithm was also analyzed theoretically in the typicalecand tested for 3-SAT by Alekhnovich
and Ben-Sasson [3]. They proved that the algorithm solvesi&a 3-SAT in linear time for den-
sities lower thari .6 and there is experimental evidence that the algorithm satscéor densities up
to 2.7. On the other hand they proved that there exists a constamth that RW does not solve
instances with planted solution of density greater than

1.2 Definitions
1.2.1 Basic Notions

A 3-CNF is a conjunction oB-clausesi.e. clauses with exactly 3 literals. As we consider only
3-CNFs, we will always call them just clauses. Dependingtenrtumber of negated literals, we
distinguish 4 types of clause§s-, —, —), (+, —, —), (+,+, —), and(+, +, +). If p is a 3-CNF over
variablesz, . . ., z,,, anassignmenfor these variables is a Booleantuple i = (ug,...,u,), SO
the value ofz; is u;. Let ¢ be a vector obtained fromi by flipping thei-th coordinate. Statements
“cis a clause inp” and “clausec is satisfied byi” we denote by € ¢ andc¢(v) respectively.

The densityof a 3-CNFy is the number% wherem is the number of clauses, anmdis the
number of variables ip. The uniform distribution of 3-CNFs of density (density may be a
function of n), ®(n, pn) is the set of all 3-CNFs containing variables angn clauses together
with the uniform probability distribution on this set. Tasple a 3-CNF according t®(n, pn), one
chooses uniformly and independently clauses out of the3 (g‘) possible clauses. Thus, we allow
repetitions of clauses, but not repetitions of variablethiwia clauseRandom 3-SATS the problem
of deciding the satisfiability of a 3-CNF randomly sampledadingly to®(n, pn). For short, we
will call such a random formula a 3-CNF frofia(n, pn).

Theuniform planteddistribution of 3-CNF of density is constructed as follows. First, choose
at random a Boolean-tuple i, the plantedsatisfying assignment. Then I&f'2" (n, pn, @) be the
uniform probability distribution over the set of all 3-CNBser variablesr, . .., z, with density
p and such thati is a satisfying assignment. For our purposes we can alwasresthati is
the all-ones tuple, that is a 3-CNF belongs®t®"t(n, pn, @) if and only if it contains no clauses
of the type(—, —, —). We also simplify the notatio®P'2" (n, pn, ii) by ®P2"t(n, pn). To sample
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a 3-CNF according t@P"2"(n, pn) one chooses uniformly and independenly clauses out of
7(%;) possible clauses of typés-, —, —), (+, +, —), and(+, +, +). Random Planted 3-SAT the
problem of deciding the satisfiability of a 3-CNF frab®'2"t(n, pn).

The problemd$&kandom MAX-3-SAandRandom Planted MAX-3-SAdre the optimization ver-
sions of Random 3-SAT and Random Planted 3-SAT. The goaésetproblems is to find an assign-
ment that satisfies as many clauses as possible. In particalstudy Local Search and its practical
modification GSAT algorithm. Local Search terminates whereaches docal maximumof the
function

VA(T) = {ce | c(@)}.
That is when the assignmefitunder consideration is such that there is no variable whichle
flipped to increase the number of satisfied clauses. In tiie wae will just say that is a local
maximum ofp. The functionV¥ is easy to compute and we will use it in the pseudocode.

Below we define several notions assuming tha sampled according to probability distribution
®(n, pn). The definitions are analogous fpre ®P2t(n, pn). By saying that a stateme@i{(p)
is truewith high probabilityfor ¢ € ®(n, pn) we mean that probability of evedt(y) tends tol
for ¢ € ®(n, pn),n — co. We shall also use the standard acronym “whp”. For arbithamgtions
f(n), g(n) we denote equality’(n) = g(n) + o(n) by f(n) ~ g(n) and we writef (n) < g(n) if
inequality f (n) < g(n) holds for all large enough.

Let ¢ be sampled according to probability distributidin, pn) and let€ be some event. We
say that the probability distributiof®(n, pn) demonstrates phase transition with respect © if
there is a functiorpy(n) such that for any > 0, for p > po(1 + €) we haveP (£) — 1, asn
goes to infinity, and fop < po(1 — ) we haveP (£) — 0. In the 3-SAT phase transition we have
& = “formula ¢ is unsatisfiable”. The functiopy(n) is calledthe phase transition thresholdNote
that the phase transition threshold is not necessarily atanthh We also apply the notion of phase
transition to the performance of Local Search on Randomt&#aB-SAT, and in this case we have
& = "“Local Search solveg”.

1.2.2 Classical Local Search algorithms

Local Search, GSAT, CSAT. A formal description of the Local Search algorithm (LS) isegi

in Fig. 1.1. Observe that LS stops when it reaches a local maxi in the number of unsatisfied
clauses. We shall also study One Pass Local Search (OL®)péfsd version of LS. Like LS, OLS
flips variables that give an increase in the number of satisfi@uses, but it considers any variable
only once (see Fig. 1.2).



CHAPTER 1. INTRODUCTION 11

INPUT: 3-SAT formulap over variables:y, . .., z,.
OuTPUT: Booleann-tuple, which is a local maximum op.
METHOD:

pick uniformly at random a Boolean-tuple @
letU = {x; | V(T}) > V(u)}
while U is not empty
pick uniformly at random a variable; from U
changethe value ofz; in @
recompute U
return o

Figure 1.1: The basic Local Search algorithm (lterative ionpment)

INPUT: 3-SAT formulay over variablescy, . . ., ;.
OuTPUT: Booleann-tuple, which is a local maximum op.
METHOD:

pick uniformly at random a Boolean-tuple @
letU = {z; | V(d}) > V(d)}
foriinl,...n
if x; belongs taJ/
changethe value ofr; in @
recomputeU
return «

Figure 1.2: One Pass Local Search algorithm

Given an assignment and a clause it will be convenient to say that votesfor a variablez;
to have value 1 it contains literalr; and its other two literals are unsatisfied. In other words if
either (a)c is not satisfied byz, and it will be satisfied if the value af; is changed, or (b) the only
literal in ¢ satisfied by is z;. Similarly, we say that votes forz; to have valud if ¢ contains the
negation ofz; and its other two literals are not satisfied. Using this teotugy we define the set
U (see Fig. 1.1, 1.2) as the set of all variables such that th&beu of votes received to change the
current value is greater than the number of those to keep it.

The GSAT algorithm is presented in Fig. 1.3. The CSAT algonitis similar to GSAT, but
without greediness as shown in Fig. 1.4. In this work we ater@sted in these algorithms as
decision algorithms rather than optimization algorithststo keep the pseudocode simple we return
fail rather then remembering and returning the best assignimanivas considered.
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INPUT: A 3-CNF ¢, integersMAXTRIES, MAXFLIPS
OuTPUT: fail or an assignmernit that satisfies
METHOD:
do MAXTRIES times
pick uniformly at random a Boolean-tuple v
do MAXFLIPS times
if ¥ satisfiesp then return v
pick a variabler; such thad’(¢}) is maximal uniformly at random
let & = ¢
return fail

Figure 1.3: The GSAT algorithm

Random Walk. Random Walk (see Fig. 1.5) is a very simple algorithm progdsePapadimitriou
[50]. It starts with a random assignment and at every stemaatisfied clauses is picked uniformly
at random. Then a literal in the clause is selected uniforatlyandom and the corresponding
variable is flipped.

1.3 Main Results

In this work we make a contribution into understanding tHeativeness of practical local search
heuristics. Our first result is a typical case study of théquarance of the basic Local Search for
Random 3-SAT and Random Planted 3-SAT. For Random 3-SATlifrary constant density
we show that basic Local Search does not find an optimal salltiit returns an assignment that
satisfiescon clauses. The constantis less thar\g. Thus Local Search typically achieves a result
which is NP-hard to achieve in the worst case. While Randds#@3B-becomes unsatisfiable when
is greater than the phase transition thresheldt(25) the Random Planted 3-SAT gets easier since
counting the number of positive and negative occurrencearidibles can help with assigning them
correct values. We discovered that basic Local Search datesolve Random Planted 3-SAT for
any constant density. But for the density of the fosm= Inn basic Local Search has a phase
transition ats = 7/6. Namely for constankt < 7/6 basic Local Search whp does not solve the
Random 3-SAT and for > 7/6 whp it does.

We generalize the Card Game [2] to model One-Pass Local IséaicS), a restricted version
of the Local Search (LS) algorithm that considers each klaianly once, and prove the following
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INPUT: 3-SAT formulap over variables:y, . . ., x,, integersMAXFLIPS, MAXTRIES
OuTPUT: Booleann-tuple v, which is a local maximum ap.
METHOD:

let U = {u: | V(&) > V(7)}
let Uy = {x; | V(T)) = V(V)}
do MAXTRIES times
pick uniformly at random a Boolean-tuple v
do MAXFLIPS times
if U UUis empty
return fail
if U is not empty
pick uniformly at random a variable; from U
else
pick uniformly at random a variable; from Uy
changethe value ofz; in
recomputeU andUj
if ¥ satisfiesp
return o
return fail

Figure 1.4: The CSAT algorithm.

Theorem 1 For any positivep there is a constant) such that for a random 3-CNB(n, pn) whp
the OLS algorithm finds an assignment such that the numbaeitisfied clauses equalsn + o(n).

Then we build a more sophisticated model to be able to gettaraysf differential equations
describing the work of the Local Search algorithm. To applyrMdald’s theorem to that model we
rely on a certain assumption (See Assumption 1 in Section Btuitively the assumption states
that at each step of the algorithm the pair of the formula &edassignment remains random given
the parameters of the process we are tracking.

We use this assumption in the following theorem.

Theorem 2 If Assumption 1 is true then for any positigethere is a constant such that for a
random 3-CNF®(n, pn) almost surely the LS algorithm finds an assignment such ftieabamber
of satisfied clauses equals: + o(n).

The existence of a phase transition in performance of thelL8earch applied to Random
Planted 3-SAT is formally stated in the following theorem:

Theorem 3 (1) Letp > k- Inn, andk > % Then Local Search whp finds a solution of Random
Planted 3-SAT of densipy.
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INPUT. A CNF ¢ containingn variables, integersiAXFLIPS
OuTPUT. An assignmeni
METHOD:
let #* be a random vector.
for step from 1 tavuAXFLIPS do
pick a random unsatisfied clauégin ¢
for eachvariablez; in C do
let Tj = TT;
return

Figure 1.5: The Random Walk Algorithm

(2) Letc < p < k- Inn, wherec is an arbitrary positive constant, antl < « < % Then Local

Search whp does not find a solution of Random Planted 3-SAdnsftgp.

Next we move to the analysis of the Local Search enhancedphatbau moves. All our proofs
work for both GSAT and CSAT, and for simplicity we formulateebrems for GSAT. It follows from
Corollary 1 (see Section 4.2) that for any finite dengithe GSAT algorithm satisfiesn,c; > 0
more clauses than LS. The gain in performance from plateaesie more impressive for Random
Planted 3-SAT. While LS has a phase transitio% hAtn, GSAT solves Random Planted 3-SAT for
any logarithmic density. This is stated formally in the éoling theorem.

Theorem 4 For any x > 0 GSAT with settingsIAXFLIPS= n9/5+3 MmaxTRIES= 1 finds a solu-
tion for ¢ € P12 (n, pn), p = K Inn whp.

The second heuristic we analyze in this work uses dynamigh®ion variables. We introduce
and study Weighted Random Walk, a modification of the welvkmd&andom Walk algorithm. In
this algorithm we favor selection of variables for a flip thiadre flipped recently. To do that we
assign each variable a positive integer weight and flip atséionly if its weight is one. Similarly
to the Random Walk we pick an unsatisfied clause uniformlyaatiom. For each variable in the
clause if weight is strictly greater than one we decreasevdight by one and if the weight is exactly
one we flip the variable. Every step two variables are saleagtéformly at random and have their
weights increased by one. Pseudocode for the algorithmvénghn Fig. 1.6. Weighted Random
Walk with settingMAXWEIGHT = 1 turns into Random Walk. We increase weights of two variables
at each step and the number 2 appears to be arbitrary. We @l the number of variables that
have their weight increased to be a tuning parameter of gaitim, but the analysis is the easiest
if the number is two.
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INPUT. A CNF ¢ containingn variables, integersiAXFLIPS, MAXWEIGHT
OuTPUT. An assignmeni
METHOD:
let ©* be a random vector.
letw(i) =1, fori e {1,...,n}
for step from 1 tavAXFLIPS do
pick a random unsatisfied clauégin ¢
for eachvariablex; in C' do
let w(j) = w(j) - 1
if w(j) =0:
let T = —wj,w(j) =1
pick two random variables, and for each of them do
if its weight is less thamAXWEIGHT then increaseit by one
return

Figure 1.6: The Weighted Random Walk Algorithm

Our experiments suggest that Weighted Random Walk (WRW)pes well at finding solutions
of random planted instances of 3-SAT of any fixed densitys T$hin contrast with Alekhnovich and
Ben-Sasson’s exponential lower bound for the running tiftbestandard random walk algorithm
for solving random planted 3-SAT of density larger than astant [3]. Random Planted 3-SAT is
not a hard distribution for modern practical algorithms, Weighted Random Walk is much simpler
and is easier to analyze theoretically.

We prove that Weighted Random Walk solves the Full CNF (CN#ssting of all clauses that
are satisfied by the planted solution) and for random CNFb plidnted solution of unbounded
densitiesp = p(n) — oo for anye > 0 whp it finds an assignment that differs from the planted
solution on at mosnizaogtion of all variables.

Theorem 5 Letp be a random 3-CNF with a planted solutigof densityp = p(n) — oo, and
n—aoo

lete > 0 be some constant. With high probability WRW WitAhXWEIGHT > 5 finds a vector
that differs fromy' in at mostsn coordinates.



Chapter 2

Probabilistic tools

In this chapter we formulate several statements regardinpggties of stochastic processes that will
be used throughout the work.

2.1 Chernoff Bounds

Let B(p,n) be random variable, that is the number of successesrdependent trials. I is the
probability of success in each trial, then the followingguoality is known as Chernoff Bound [49]

Next we prove a lemma that generalizes the Chernoff bounidear combinations of binomial
random variables.

Lemmal Letr, s be integersf < 1 a positive real, and letvy, ..., «;, (1, .., 3s be some real
constants. There are constantand C such that we have

P(X >Y) < CeEY) (2.1)

T S
for any random variablesy andY such thatE (X) < E (V) and X = > o X;,Y = > 5,Y;
i=0 i=0
for some binomial random variables, ..., X,,Y7,...,Ys.

Proof. Let¢ = i 10 . Itis easy to see that evet > Y implies occurrence

r~+s) max(max(a;),max(3;))

of at least one of the events from the set

S={{Xi 2 E(X;) +E{E(Y)}icqo,..r1 1Yi S E(Yi) — EE(Y) }icqo,....5) -

16
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Indeed, inequalityX < Y follows from inequalities

X, <E (Xz) +¢E (Y)ie{o,...,r}
Y; >E(Y;) ¢ (}/)iE{O,_ws}
E(X) < 0E(Y).

Application of Chernoff bound to each &f; andY; gives us inequalities

2
_].E)(Z 2 E(Y) 3 B
PUX - B> E) < o "R P o e,

2
—E(Y; 2( E(Y) 3
Py B > By < ¢ )P emos

Thus if we set\ = ¢2/3 andC = r + s then using the union bound we can conclude that
inequality (2.1) holds. O

2.2 Azuma’s Inequality

We say that a sequence of random variabfgs X, . .. is asupermartingalgor submartingalg if

for any k we haveE (Xy1|X1,. .., Xk) < X (or BE(Xk11| X1, ..., Xk) > X}, respectively).
Let Xy, X1,... be a submartingale and A constants such that for eaéh | X, — X;_1| <

¢, E (X, — X;—1) > A. Then according to Azuma'’s inequality [49] for aland any\ we have

(tA—))2
P (Xt — X < )\) < 2e 2tz
The following Observation can be easily done using the AZsimaquality for supermartingales
(see Lemma 1 from [61]).

Observation 1 (1) LetY; be a supermartingale such thBt(Y;1|Y;) < Y;and|Y;11 — Y| < cfor
2

somec. ThenP (Y; — Yy > be) < e‘%, for anyb > 0.
(2) This inequality implies that IE (Y;11]Y;) < Y; —d and|Y;;+1 —Y;| < ¢ < 1then the process
Zy =Y, — dt is a supermartingale and we have the following inequality

_ (b+dt)?

P(Yt—Yozbc):P<Zt—Z0§ <b+@>> <e Tme <e M (2.2)
C
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2.3 Random Graphs

We use some standard probabilistic tools of random graplysisavhich can be found in the book
[4].

Let ¢ be a 3-CNF with variables;, ..., z,. Theprimal graphG(y) of ¢ is the graph with
vertex set{zy,...,z,} and edge sefx;z; | literals containing;, z; appear in the same clayse
ThehypergraphH () associated withp is a hypergraph, whose vertices are the variables afid
edges are the 3-element sets of variables belonging totthecause. Note thatif € ®P'2"t(n, pn)
or ¢ € ®(n,pn) then H(p) is sampled uniformly at random among all 3-hypergraphs with
vertices angn edges.

We will need the following properties that are possessedrhaplts of logarithmic and smaller
density.

Lemma 2 Letp < xInn for a certain constank, and lety € ®P2"(n, pn).

(1) For anya < 1, whp all the subgraphs af(y) induced by at mosD(n®) vertices have
average degree less than 5.

(2) The probability thati(¢) has a vertex of degree greater thart? n is o(n~3).

Proof. (1) This part of the lemma is very similar to Proposition 18nfr [20], and is proven in a
similar way. LetU be a fixed set of variables witl/| = ¢. The number of 3-element sets of
variables that include 2 variables frarhis bounded from above by

<§> (n—2) < %Ezn.

For each of them the probability that this set is the set ofaldes of one of the random clauses
chosen forp (we ignore the type of the clause) equals

knlnn 6kInn

(’;) C(n—-1(n-2)

Thus, the probability tha?/ of them are included as clauses is at most

() () = (s 52)

Letd = e(3ex)?. Using the union bound, the probability that there existecuired set/ with at
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mostn® variables is at most

o 2

Z <n> < gﬁlnn>
k e n

=2

- <ne d 621n2n>z
< reae "
2

! e n?

o~
||

o

(dno‘ In? n)z
n
2

51— (dn® tInn)?
1—dn>1llnn

3

IN

~

= (dn®'In%n)

= O(n**ZIntn).

(2) The probability that the degree of a fixed vertex is attli&asn is bounded from above by

Inn In?n In?n
1 3knlnn _m2p [ Sexkninn 3er
- 2 <n 5 =\ )
n In“n In°n Inn

wheren~10" " is the probability that some particulir? n random clauses include and (%;‘J‘;")
is the number ofn? n-element sets of clauses. Then itis not hard to see that
< 36I€> In%n
n|— —0,
Inn
asn goes to infinity. O

2.4 Wormald's Theorem

The key tool in our analysis in Chapters 3 and 6 is the theongivdrmald [61] that allows one to
replace probabilistic analysis of a combinatorial aldoritwith analysis of a deterministic system
of differential equations.

All random processes we consider are discrete time randatepses. Such a process is a
probability space? denoted by(Qo, @1, -.), where each); takes values in some sét Con-
sider a sequenc,, n = 1,2,..., of random processes. The elements{lpf are sequences
(go(n),q1(n),...) where eachy;(n) € S. For convenience the dependencerowill usually be
dropped from the notation. Asymptotics, denoted by thetiwta andO, are forn — oo, but uni-
form over all other variables. For a randoxn we sayX = o( f(n)) alwaysif max{z|P (X = x) #
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0} = o(f(n)). We denote byS* the set of allh; = (qq,...,q), eachq, € Sfort = 0,1....
By H; we denote théistory of the processes, that is thex (¢ + 1)-matrix with entriesQ;(j),
0 <i<t1<j<n. Afunction f(uy,...,u;) satisfiesLipschitz conditionron D C R’ if a
constantZ > 0 exists with the property that

J
\f(ul, v ,U,j) — f(’l)l,. .o ,’Uj)‘ < LZ ]uj — UZ“
1=1

forall (u1,...,u;)and(vy,...,v;)in D.

Theorem (Wormald, [61]) Letk be fixed. Forl < ¢ < k, lety®: ST — R and f;: RF*! — R,
such that for some consta6tand all ¢, |y*)| < Cn for all h; € S+ for all n. Suppose also that for
some functionn = m(n):

(i) for all ¢ and uniformly over alt < m, P <|Yt(f)1 - Yt(g)| > nl/o | Ht) = o(n~3) always;

(i) for all ¢ and uniformly over alk < m,
BV v | =) = fult/n, YO n, .y n) + o(1) always;

(i) for each ¢ the functionf, is continuous and satisfies a Lipschitz condition®nwhereD is
some bounded connected open set containing the interseaftidt, 21, ..., 2®) | t > 0}
with some neighbourhood ¢f0, (1), ... z(%)) | P (Yo(g) =:20n,1<0< k:) #£ 0 for some

Then:
(@) For (0,2,..., 2()) e D the system of differential equations
? = fi(s,z1,...,2), £ = 1,...,k, has a unique solution i for z,: R — R passing
S
throughz,(0) = 301 < ¢ < k, and which extends to points arbitrarily close to the bourydar
of D.

(b) Whth(é) = nze(t/n)+o(n) uniformly for0 < ¢t < min{on, m} and for eact?, wherez(s)
is the solution in (a) withe(©) = YO(Z)/n, ando = o(n) is the supremum of thoseto which
the solution can be extended.

This theorem was proven by Wormald [61] and was originallgdugor typical case analysis
of algorithms on random graphs. Later it was successfulbdusy Achlioptas [1] to prove lower
bounds for the Random 3-SAT phase transition threshold.



Chapter 3

Local Search in Uniform Random 3-SAT

In this chapter we study performance of the basic Local $ealgorithm and its simplified version
One-Pass Local Search in application to the Random 3-SAblgma We show that the processes
of the execution of LS and OLS can be described by systemdfefalitial equations. Though the
algorithms are very similar their analysis differs subtdly.

In this chapter we use the following trick to simplify the pess of the SAT algorithm execution.
To avoid keeping track of the assignment of values of vagmble shall assume that the assignment
is all-ones. Then when a variabtg needs to be flipped we shall replace all literaJswith —x; and
vice versa.

3.1 One Pass Local Search

One Pass Local Search is a simplified version of the LocalcBesgorithm where each variable is
considered only once (see fig. 1.2). In order to analyze therithm we are going to modify the
Card Game framework [2]. In this section we develop a systedifferential equations and prove
that it describes behavior of the OLS.

3.1.1 Model

To analyze the OLS algorithm we use an extended version dZ#nd Game framework [2]. Every
clause of CNFD is represented by three cards. At stepe intermediate opens all cards withor
—x¢ and also tells us the ‘polarity’ of the remaining literalstive clauses containing;, —z; (that
is how many of them are negative). Then we compare the numitjef$ of clauses containing
-4, the remaining literals of which are negative, diid,) of clauses containing,, the remaining
literals of which are negative. H(z;) > b(x;) then we flipx; replacing everywhere; with —x;

21
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and -z, with x;. Finally we remove clauses containing and remove-z;. If in the latter case a
clause becomes empty we count it as unsatisfied. Note thahinast to the card games used in [2],
in the described game we have some information on the undpeards, and therefore the formula
obtained on each step is not quite random. Thus a more thoranajysis is required.

Such an analysis can be done by monitoring the dynamics bf séds of clauses that we define
at each step of the algorithm. L@ denote the formula at the start of stepVariables (and the
corresponding literals) from the s¢k, ..., X;_1} will be called processedthey cannot change
anymore), the remainining variables will be callegprocessedwe define the following 8 sets:

e F isthe set of all clauses i, that do no contain processed literals;

E4 is the set of all clauses i, containing a positive processed literal;

Ey is the set of all clauses i, that contain three negated processed literals;

E,., E__ FE, are the sets of all clauses i that contain one negated processed literal
and two positive, two negative, or a positive and negatiyrarcessed literals, respectively;

E,, E_ are the sets of all clauses iy containing two processed negative literals, and a
positive, or a negative unprocessed literal, respectively

We will denote the sizes of these setsdyy e1,ep,er1,e1_,e__,er,e_ respectively, and the
vector(eg, e1, eg, 44,6+, e__,eq,e_) by e. These numbers will be our random variables from
Wormald'’s theorem. All these values dependtphut we always refer to them at the current step
and so dropg from the notation. We also useto denoten — ¢ + 1 (the number of steps remaining).

It is easy to see that clauses that once ehteor F; never leave these sets, and that at each step
for each clause that doesn’t belongfg U F, there is a chance to get #6,. The other possible
transitions of clauses between the sets are shown on Figlire 3

If E, andE, are some of the eight sets, then we will denote conditionathgility for a clause
to move from sef, to E, by P (E, — E,), assuming a certain particular value of veator

We will compute the probability that variablg is flipped at steg. This event happens when
there are more unsatisfied clauses containing this var{@@edenoted the set of such clauses by
A(zy)) than clauses that are satisfied onlyahy(we denoted this set bi(z;)). Clauses from sets
E_,E__ and Ey4 can fall into setA(z;), while clauses from set&, , £, and E can fall into
B(xz¢). The probability that a clause frofi_ belongs toA(x;) equals%, this is the probability that
x¢ IS written on the only card currently unrevealed in the okaua a similar way we compute such
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Figure 3.1: Flow diagram
probabilities for clauses fromfv__ and E, which are2 and 2 respectively. The probabilities that
a clause fromt,,, E, _, and E belongs toB(z;) equall, 1, and 2 respectively. Note that for
different clauses the considered events are independent.
Now let F'(nq,ne,ns3,p1,p2,p3) denote the event that exactly, no, andng clauses from
E_,E__, andE4 respectively belong tel(z;), and exactlyp;, p2, andps clauses fromE, E,

andEg belong toB(z;). By the Bernoulli formula we have

e 1 p1 e 1 b2 e 3 b3
P - () (2 (5) (1) () (2)
Y41 v p2 v P3 &v
y e l ni e g n2 ey 3 n3
n1 v o v n3 8v
As n tends to infinity, the Bernoulli distribution tends to thei$dmn distribution and we have

es\P1 seqr_\P2 [3egy\P? re_\m
P(F(n17n27n3,p17p27p3))=<T+> <%> (8—:> <7)

<2e__>n2 <3eg>”3 B o <1>
X — +0 (=
v 8v n1!n2!n3!p1!p2!p3! n
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The probability thate; is flipped can then be calculated as follows:

P (z, is flipped = P (|A(z:)| > |B(xt)|)

= P( \Y |A(ze)| =1+ n2 +n3 & |B(t)] = p1 +p2+p3>
p1+p2+p3<ni+nz+ns
= Z P(F(n17n27n37p17p27p3))
ni+n2+n3>pi1+p2+p3

It will be convenient for us to denote the sum similar to thapearing in the last line of the
equation above, but over , no, n3, p1, p2, p3 satisfying a certain conditiog, by S(=). Using this
notation the probability that variablg is flipped can be expressed as

P (z is flipped = S(n1 + ng + n3 > p1 + p2 + p3), (3.1)

when the parameters are clear from the context we denoteathis byS.

Now we compute probability? (Fz — E__). A clause goes fronk/x to £__ in two disjunct
cases. Firstly, if a clause has only negative literals, dnthem is —x;, and z; is not flipped.
Secondly, if a clause has two negative literals, and ondipediteral z;, andx; is flipped. The
probability of the first event equa@, and under this assumption the conditional probability iha
is flipped equalsS (p1 + p2 + p3 < n1 +n2+n3+1). The probability that a clause has two negative
and one positive literat; equals8% as well, and under this assumption the conditional prolabil
thatz, flips equalsS(p; + p2 + ps + 1 < n1 + n2 + n3). We denote the two values specified in the
last two sentences by, andS_ respectively. Thus

P(Eo— B_)= (i +5) +ol ).
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The other probabilities can be computed in a similar way:

6 1 3 1
P(Eg—>E+_):8—v+O<E>, P(Eg—>E++):8—U+O<—>,

n
1 1 1
P(E++—>E+):;S—|—0<E>, P(E+——’E+):;(1—S)+0<E>,

P(E+_—>E_):%S_—|—o<%>, P(E__—>E_):%(1—S+)—|—o<%>,
(

1 1 1
P(E —>E0):—(1—S+)+O —>, P(E+—>E0):—S_+O<—>,
n v n
65 T(1-85) 35y 3(1-5.) 1
P(Ey— E1) =3 S0 8 8v \n)
1

1 1
P(E_—>E1):;S++O<E>

The probabilitiesP(E, — E,) that are not mentioned above equal zero.

We are ready to check that random procgsd), e(2),e(3), ... ) satisfies conditions (i) - (iii)
of Wormald’s theorem.

(i) Let e, be a component of. It is obvious thatle,(t + 1) — e, (t)] is less than the number
of occurrences of; in ®. The probability thatr; occurs in some clause equags therefore the
probability thatz, occurs ink clauses equal§’”) (£)". So assuming that is large enough we
have

n k
i 3
P (z; occurres in more that'/° clause$ = E ( (P:> <_>
n
k=nl/5

" pn(pn —1)...(pn —k +1)3* < (3p)"1/5n 3
Z kink = pl/s o(n™").

k=nl/5

(i) Let e, be a component af. Then we have

E(e.(t+1) —eu(t)|Hy) =

> (Z Plce E(t+1)— > P(CGEO(t—I—l))) —

Eo#E. \ceBo(t) CEFL(t)

> (eP (Bo — E,) — e,P (B, — E)). (3.2)

60356*
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For arbitrary functionsf(n), g(n) we denote equality (n) = g(n) + o(n) by f(n) ~ g(n) and
we write f(n) < g(n) if inequality f(n) < g(n) holds for large enough. Thus we set = £,

n

fi(s) = Le.(t) (as is easily seem, ~ n(1 — s)) and

3fg(8) p3+n3 1 ni1+nz2+nz+pi1+p2+p3
8 1—s

ey (s)+ey_(s)Fe_(s)+2e_ _(s)+3/4eg (s)
1-s

p(87n17n2,n3,p17p2,p3) = (

P1 P2 ni no €
xS ()2 (s)(2f-~(s)) n1!na!ns!pipa!ps!

Then set
SO(S) = E p(37n17n27n37p17p27p3)7
ni+n2+n3>p1+p2+p3
S+(S) = E p(37n17n27n37p17p27p3)7
ni+nz2+n3+1>p1+p2+p3
8—(8) = § p(37n17n27n37p17p27p3)'
ni+n2+nz+1>p1+p2+p3

Note that these functions are represented by series. Lateshaw that this does not cause any
problems. Finally, the required system of differential &ipns can be obtained from equations (3.2)
usingso(s), s+(s), s—(s) to compute the probabilities instead %, S+, S_.

(iii) The functions constructed above have two substamtéficiencies: they are not defined
whens = 1, and the series used to define them do not converge unifomthei naturally defined
setD. However, this can be overcome using a standard trick, nafoleache > 0, define set
D such that it includes only points with < 1 — e. It is not hard to see that, as the series above
are non-negative and bounded with 1, they converge unifoimminy closed set. Then we find the
required value as the limit when— 0.

Applying Wormald’s theorem we conclude that values of patarse, at stept whp can be
expressed as

ex(t) = nze(t/n) + o(n), (3.3)
where collection o, is a solution of some system of differential equations.

Settingt = n in (3.3) we get that whp

ep(n) = wn + o(n),
wherew = nz,(t/n). Thus we have proven the following.

Theorem 1 For any positivep there is a constant such that for a random 3-CN®(n, pn) almost
surely the OLS algorithm finds an assignment such that théauof satisfied clauses equala +

o(n).
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3.2 Local Search

To analyze the Local Search algorithm we use techniquesssitniones used for the One Pass Local
Search. However, as every variable in this algorithm carobsidered and flipped several times we
cannot use the card game approach; instead we have to firedaggiferent set of random variables
that represents properties of the problem crucial for thopmance of the algorithm. Although we
were unable to carry out a complete rigorous analysis, litstaut that such an analysis boils down
to a certain simple assumption (see Assumption 1 below} d$sumption looks very plausible, but
we could not neither prove nor disprove it. Experiments skimat our model is accurate enough,
this is why we believe that either Assumption 1 is true, oraih de replaced with a property that
gives rise to an equivalent model.

3.2.1 Model

We need some notation. Letbe a 3-CNF and; a variable inp. By Q;,(x;), wherei € {0, 1,2}
anda € {—,+}, we denote the set of clausesuch thatr; € cif « = +, —z; € cif « = —, and
among the other two literals there are exactpositive. Ifc € Q;,(x;) we also say that hastype
i« for x;, and that variable:;; occupiespositionof typeia in the clause:. Let alsog;,(z;) denote
the size ofQ;,(z;). By Egz, a = (ap—, ap+,a1—,a1+,az—, a2+ ) we denote the set of all variables
x; of ® such thaly;, (z;) = a;, for all i anda. By ez we denote the size df;. As @ is changing
over time all these sets and numbers are actually functiblseonumber of steps made. Thus,
sometimes we use notatidiy;(¢), ez(t). Functionsez(t) will be the random variables required in
Wormald’s theorem. Ifr; € Ez then variabler; is said to have typa. Note that as: grows the
number of different tupleg and therefore the number of random variables also grow. €come
this problem we will consider only those variables that appe at most)/ clauses for some fixed
M. Clearly, this does affect the analysis, but in a certairtrotiable way, as we shall see.

Before checking conditions (i)—(iii) of Theorem (Wormajé1]) we make a simple observation.

Lemma 3 If ® is a random 3-CNF of densitywith n variables, then for each variable

(1)

P (gia(11) = a) = — +o(1) if i=0,2,
(1) e

P (Qia(wl) = a) = T —l—O(l) if =1,

P(x€ Bs) = [[P(giale1) =a), E(ea)=n-P(z; € Eg).

7,0
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Lemma 4 If ® is a random 3-CNF of densitywith n variables, therP (|e; — E(eg)| > n'/?) =
o(n=3).

Lemma 4 provides the initial values for equations from TleeofWormald, [61]). Now we are
verifying conditions (i)—(iii).

(i) Possible variations of random variablesare bounded bR K whereK is the degree of the
flipped variable. Therefore condition (i) can be proven ia $ame way as for the OLS algorithm.

(ii) Suppose that on the current stiepf LS the variable to flip is;;. Sincex; is a variable picked
uniformly at random from the se(t) = | Ez(t), we haveP (z; € E(t)) = ebaét)), where

a
ag—>ag4

b(t) = |B(t)|. Also we have

E(gia(1) = Y aio-P (21 € Eg(t)).

a
ag—>ag4

We say that tuples, b areadjacentif there arei, j, a such thatj —i| = 1, ajo = bio + 1, ajo =
bjo — 1, anday = by, in all other cases. Intuitively, adjacency means that i€ £y then it can
be moved ta; or vice versa by flipping one literal in one of the clauses aming z;. Let alsoa’
denote the tuple such thaf_ = a;, anda;, = a;_.

Set Fz changes in two ways. First, variahle can move to or fron¥g, in this case it moves
from or to E;,. Second;r; may happen to be in the same clause with some other varighleand
thenz,, can move to or fromz. Such a variable moves then from or &g for someb adjacent
with @.

Clearly, the expectation of change of the first type eqials; € E;/) — P (z; € Eg). Further
calculation we carry out under the following assumption.

Assumption 1 Assuming histon,, for a random clause of the current formula, any positions
p,r,p # r,inc, any tuplesz, b, and any variables; € Eg, z,,, € I, the events ; is in position
p of clausec” and “ z,,, is in positionr of clausec” are independent.

Let us take a variable,, € F5 and calculate the probability of an eveht :“variable z,,, moves
from E; to E;”, whereb is some tuple adjacent anda, b differ in componentsa and jo. This
happens if in some clausecontaining bothr; andzx,,, some position occupied by, changes its
type fromia to jo. Obviously, depending ofw the type of the position occupied by may vary.
We useié to denote the possible type of such a position. Simple caslgsis shows that = j if
j <ianda = —,orif j > i anda = +, otherwise; = 4. Thend = — if j < ianda = + if j > .
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Let 0.7 denote the number of positions of typ& in ¢ except the one possibly occupied by
Ty Itiseasytoseethadt ;=1ifi=1,0, _=1if j=1,andd._; = 2,0, _ =2 otherwise.

b—a
Thus, the number of positions in the clausesdfuch that ifz; in such a position thef happens
to some variabler,,, equalst__za;.. Let alsok;, (t) = > . a;, - ea(t) be the number of positions
of typeza in the formula.
Suppose that variable that is flipped belongs té&.. Then among alk; , (¢) positions of type
1& we havec;, positions occupied by;, andf__ ;a;, positions such that the presencerpin one
of them makes the eve@t~ happen for some,,. By Assumption 1, we hav® (G~ |x; € Ez) =

%ab735%a

(D) . Therefore,
PG) = Y P eE_)M
a < : ‘ kid(t)
co—>Cco+
96—>l;ai0‘

kia(t)

Similarly, the probability of an everi*:“variable z,, moves fromf; to Eg”, whereb is some

= E(g,(z)|q0-(z1) > qo+ (1))

tuple adjacent t@ anda, b differ in componentsa and;ja, equals

P (G7) = E(q;4(21)]q0- (1) > q0+($l))%

Observing that the expectations of the numbers of variahlkgsmove to and fronE; (excluding

x;) equal
P (GY) and P (G7),

respectively, we get
E(eg(t +1) —eal(t) | Hy) (3.4)
= P21 € Ez(t) | go-(z1) > qo+ (1)) — P (21 € Eg(t) | qo-(21) > qo+(21))

o 2 (- e o ant )

b adjacent taz
0,5,

Denotings = £, z3(s) = ea(sn) and

Za
u(s) = E Za, gia:E QinZa, Hhia = E aiaz
a

a
a0—>a0+ a0—>a0+
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we get

dzg It Z Op_sbja%y GaanjazﬁhA_
ds u “a - s ]
b adjacent taz g] a Yia
i,J,Q

(iii) We are interested in the value gf— whenu(s) becomes 0 for the first time. Thus can
be chosen to be any open set with positive elements satstiggnconditionu > ¢ for somee > 0.
As before we can find the required value as limitas 0.

Theorem 2 If Assumption 1 is true then for any positipethere is a constan such that for a
random 3-CNFP(n, pn) almost surely the LS algorithm finds and assignment suchthieatumber
of satisfied clauses equals: + o(n).

Proof. Applying Wormald’s theorem we get that, for any positivand anyM there is a constant
w’ such that for a random 3-CNB{n, pn) almost surely the SL algorithm finds and assignment such
that the number of satisfied clauses equdis+ o(n) not containing variables of degree higher than
M. We estimate how many clauses may contain a variable (oedation) of degree higher than
M. ltis not hard to see that almost surely the number of suaksekis no more than

/2.5 k(ﬂ:) <2n1_1>k’

k>M

which iso(1) - n whereo means asymptotic ag/ — oo. a

3.2.2 Experiments

In this subsection we report on experiments aiming to eséinsanstantv from Theorem 2 for
different values ofp. In order to do this we solve numerically the system of déféral equations
built in the previous subsection. Unfortunately, even foa#l M this system contains far too many
equations. For example, iff = 15 then the number of equations exceeds one million. However,
while conducting experiments we observed some properfi@aotions involved that allow us to
decrease the number of equations without loss of accuraay.stéle these properties later after
proper definitions.

To simplify the system of equations we introduce new randanables

Eaxt)= |J Ealt), ewlt)= D ealt)

a a
aoiza,a0+:b aoiza,a0+:b
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el

It is also clear thaE (e, (t + 1) — eqn(t)) = > , E(ea(t + 1) — ea(t)). Along with
eqr(t) we shall use the following random variableds(t), B(t), C(t), and D(t) that are equal to
the number of clauses with 0,1,2, and 3 positive literalspeetively. It is not hard to see that
Alt) =1/3%. gcreca(t), B(t) =32, gd-eca(t), andD(t) = pn—(A(t)+B(t)+C(t)). Thus, asa
matter of fact, we need only one extra random variablg,). Now we compute the sum in the right
side of this equation accordingly to the three parts of th@ession (3.4) foE(ez(t + 1) — ez(t)).

ap—=a,a04=

The first part

Z (P (z € Eg (1) | go— (1) > qo+ (1)) — P (21 € Eg(t) | qo-(21) > qo+(21)))

aoiza,a0+:b

can be converted into
P (z; € Ep | qo— (1) > qot(z1)) — P (21 € Egp | qo— (1) > qo+(21))

) Eg ifa<y,
~‘al) ifa>0,

whereG(t) = > - geca(t).

It is easier to compute the second and third parts from dtra@ompute first the third part.
Functione,;,(t) can be decreased if for some variablg € E,;, either (a) a certain clause of type
0— for x,,, contains—z;, or (b) a certain clause of tyfde- containsz;, or (c) a certain clause of type
0+ contains—z;, or (d) a certain clause of tydet+ containsz;. The probabilities of these events are

2K,
M7
2K
%7
2K3
%7
2K,
%.

P (—z; € ¢ | cof typeO— for x,,, qo—(x;) = K1) =
P (z; € c| cof typel— for z,, o+ (1) = K2) =
P (—xz; € ¢ | cof typeO+ for x,,, q1—(x;) = K3) =

P (z; € ¢ | cof typel+ for z,,, g1+ (x;) = Ky) =
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By Assumption 1,

P, =P (—z; € ¢| cof type0— for z,,,) = ZP (g0 (1) = K1) 124[((;1) - 2E(qu_(t(;m))7
K,
Py=P(z €c|coftypel—forz,) = 3 P(q(n)=K2) 12%% - 2E(q;+(gl))’
Ks
P3; =P (—x; € ¢| coftype0+ for z,,,) = ZP (01— () = K5) ZI(?; N 2E(qé_(t()xl))7
K3
) ) . i _ o) = 2K, _ E(Ql-ﬁ-(wl))
Pi=Pacclcoftpeliforan) = 3 Plasa) = Ki) 5o =255

The expectationE(qo—(z;)), E(qo+(x;)) can be easily found, since

P (qo-(z1) = K1) = % P (go+(21) = K2) = %

The expectation&(q1—(2;)), E(q1+(x;)) we find using the following empirical observation.
Observation 2 For a randomly chosen,,, and anyi, o, i # 0, anda, b
E(gia(¥m) | 2m € Eap) ~ E(gia(zm))-
B(t)

Thus, easy computation shows tatq;(7;)) = = andE(qi4 (7)) = @ Then the
expectation for the third part equals

eab(t) (PLE(qo— (7)) + P2E(q1—(2m)) + P3E(qo+ (7)) + PAE(q1+ (7))

= 2ew(t) (aE(ZO(‘tgxl)) n Bflt) + % + @) .

The second part of the expectation equals

E(qo+ (1)) E(qo— (1)) (a + 1) C(t) b+1

2 - €la—1)b 1+ 2 Alt) €a+1)b T 2?%(1)_1) + QTea(bH)-

Similarly we have

E(C(t+1)-C() = E(q1-(71)) + E(g2+ (1)) — E(q1+(71)) — E(g2—(71))-

Denotings = %,zab(s) = @,p(s) = A(S"),q(s) = B(S"),r(s) = C(sn),u(s) = D(S"), (s) =

@. Jab = 2pe If @ < bandgy,, = —zg If a > b, andhy(s) = éZa,b azgp, ha(s) =
a>b
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Figure 3.2: Empirical performance of LS and its predictidine vertical axis shows the number of
unsatisfied clauses divided by the number of variables. Dhiedntal axis shows the number of the
step of the algorithm divided by the number of variables.

157 b bzg We get
9 a>b

dzap Jab ha (a+1)h
= 2992, + _n+(b+1 _
ds g " (9 Hatp T 7 Hat1)p T Zab-1) (b4 1)za(-1)

ah
—2%(f+mwwy

3—2 = 2q+u—3r (3.5)
As the graphs in Fig. 4 show, these equations give a very gpptbrimation for empirical
results. The graphs show the evolutiorp@$) that is the relative number of unsatisfied clauses. Thin
lines are values observed when running LS for particulad@emproblems, and the thick lines are

computed from a numerical solution of the system above. érettamples showp = 4, M = 30,
n = 1000 for the graph on the left and = 10000 for the graph on the right.

The following table shows the dependance betweand the constant from Theorem 2 both
empirical and predicted by the system (3.5). Experimengairéis are average on 10 formulas with

1000 variables each.
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P 2 3 4 4.5 5 6 7 10 15 20 25
c (experiment) | 1.98 295 391 439 486 580 6.74 953 1411 18.69 28.23
c(system (3.5)) 1.98 295 391 438 485 580 6.73 9.52 14.14 18.74 2B.32

Table 3.1: Dependence of the predicted and actual relatimeber of the satisfied clauses on the
density of the problem.



Chapter 4

Phase transition of basic Local Search

We now move to the analysis of the performance of Local SeancRandom Planted 3-SAT. We
prove the following.
Theorem 3 (1) Letp > k- Inn, andk > % Then Local Search whp finds a solution of Random
Planted 3-SAT of density.

7

(2) Letc < p < k- Inn, wherec is an arbitrary positive constant, andl < x < . Then Local
Search whp does not find a solution of Random Planted 3-SAdnsftgp.

Intuitively speaking, this theorem states that Local Se@erformance on Random Planted 3-
SAT of logarithmic density demonstrates a phase transgiitenomenon. The algorithm succeeds
whp if the density of the problem is asymptotically greateart7/61n n and fails if the density is
asymptotically less than/6 1n n.

4.1 Success of Local Search

In this section we prove that Local Search succeeds for Rarftlanted 3-SAT of density greater
than7/6 In n (see Theorem 3(1)). To prove this we need to show that if a B-8& high density,
that is, greater thar logn for somex > % then whp all the local maxima that do not satisfy the
CNF — we call such maximproper— concentrate very far from the planted assignment. This is
the statement of Proposition 1 below. Then we use Lemma Soteepthat starting from a random
assignment LS whp does not go to that remote region. Therdieralgorithm does not get stuck to
a local maximum that is not a solution.

To prove Proposition 1 we use the following three lemmas.aR¢lgat the planted solution is
the all-ones one.

35
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Lemmab5 Letp > xInn for some constant > 0, and let constantgy, ¢; be such thad < ¢ <
q1 < 1. Whp any assignment with less th@am zeros satisfies more clauses than any assignment
with more thany; n zeros.

Proof. Let u, ¥ be some vectors with less thagn and more tham,n zeros, respectively. Letbe
a random clause, then (a) with probabil'#yall its literals are positive, (b) with probabilit% two
literals are positive and similarly (c) with probabilié/one literal is positive. The probabilities that
the clause is not satisfied lain these cases equalsdg. ¢3(1 — qo) andqo(1 — qo)?, respectively.

3 2(1_ — 2
Hence the total probability that a clause is not satisfiecﬂ‘l:@quals"0+3qo(1 q0%+3qo(1 ) _

ﬂ. This function for0 < go < 1 monotonically increases. A similar result holds forThus
the expectation of the number of clauses unsatisfied Bypd v in a random formula is less than
Mm Inn and greater thaﬁ_(%‘“)gm Inn respectively. The random variable “the total
number of clauses satisfied Byis a sum of binomial random variables “the number of claukas
containi positive literals and are satisfied by, i = 1,2, 3, so applying Lemma 1 we conclude that

P ( @ satisfies less clauses thap< e~ """,

for some) > 0. There are less that"*! pairs of assignments, hence, application of the union
bound finishes proof of the lemma. O

Lemma 6 Letp > xInn for somex > 0. There isa < 1 such that forp € ®P2"(n, pn) whp for
any proper local maximuri of ¢ the number of variables assigned to Obis either less tham®,
or greater than3z.

Proof. Let M, |M| = ¢, be the set of all variables thatassigns to 0. LeB%" be event “for
everyz; € M the number of clauses voting for, to be 1 is less than or equal to the number of
clauses voting for:; to be 0”. Since is a local maximumB;f\;Ch is the case fofi. It is easy to see
that event352°" implies event3¢/ = “the total number of votes given by clauses for variables/in
to be 1 is less than or equal to the total number of votes giyetlduses for variables in/ to be
0”. To bound the probability oB5%" we will bound the probability of33%'.

Let ¢ be a random clause. It can contribute from O to 3 votes folatées in)M to be one and
0 or 1 vote for them to remain zero. Let us compute, for exampkeprobability that it contributes
exactly two votes for variables i/ to become one. This happens:is of type(+, +, —), both its
positive variables are i/ and the negative variable is outside/df. The probability of this event
is %6%‘2(1 — ¢/n). So the expectation of the number of clauses voting for éx&@ctariables in
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M to be 1is2/*n~!(1 — ¢/n)xInn. The expectations of the numbers of clauses voting for three
and one variables to be 1 a¢é¢>n s Inn and2(1 — £)2¢x Inn, respectively.

A clause votes for a variable i/ to remain O if its type i+, —, —), one of its negative literals
is not in M, and two other literals are in/, or if its type is(+, +, —) and all the variables in it
belong toM. Thus the expectation of the number of clauses voting faek#es inM to remain 0
is 2kInn (20207 1(1 — £/n) + £3n72).

Hence the expectation of the number of votes for variabled ito flip equals

E (votes for aflip = kInn x (3 : %E?’n_2 +2- %Ezn_l(l —l/n)+1- %E(l - E/n)2>

and the expectation of the number of votes for variable®/ito remain 0 equals

E (votes for status quo= xInn x <g€2n_1(1 —0/n) + %€3n_2> .

If ¢ < &nthen

E (votes for status quo 60(n — ) + 302 1 3(n —0)?
E (votes for a flip o 6ln—0)+302+3(n—0)2 64(n —0) 4+ 302+ 3(n — £)?
< 1- 3- ﬁ?ﬂ B 1

2n? 17 300"
Therefore we can apply Lemma 1 to the votes for and againsh@gyat the following bound
P (Ball) < ¢ B(votes foraflip or some) > 0. Then we can bound number of votes for a flip
from below byd/ In n for some constant and we can bound the number of séfsof size/ as

- _ (" neNt gm0+
#(Mof5|ze€)_<€>§<€) =e .

Therefore if
lln(n/l) +¢ < 6llnn

then union bound implies that whp there is no &esuch thale‘Vl} happens. Itis easy to see that for
¢ > n® anda that is close enough to 1 the above inequality holds, whidkHes the proof of the

lemma. O

Now suppose thai is a proper local maximum ap € ®P2"t(n, pn). There is a clause € ¢
that is not satisfied by. Without loss of generality, let the variablesdme z1, x5, 23, and let the
variable assigned 0 bg . Thus, clause votes forz; to be flipped to 1. Sinc€ is a local maximum
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there must a clause that is satisfied, and that becomesasfiegh8houldz, flipped. We call such a
clause asupportclause for the 0 value af;. In any support clause the supported variable is negated,
and therefore any support clause has the type-, —) or (+, +, —). A variable of a CNF is called
k-isolatedif it appears positively in at mogt clauses of the typé+, —, —). Thedistancebetween
variables of a CNFp is the length of the shortest pathd@#(,) connecting them.

Lemma7 If Kk > % and p > kInn then for any integersl;,d> > 1 and for a randomy €
dPlant (| pn) whp there are no twd, -isolated variables within distana#, from each other.

Proof. Let x be some variable. The probability that itds-isolated can be computed as
rknlnn—d; d1
ds - knlnn 1 i i
d1 ™ ™
3 knlnn 3 —dq 7 —d1
dy _ 2 _ = _
di(knlnn) <1 7n> <1 7n> <3n>

—db
~ d (1 - %) (%{lnn)dle_%“ln”

= O(n~7*9),

P (z is d;-isolated

IN

for anye > 0.

By Lemma 2(2), the degree of every vertex(fip) whp does not excedd? n. Hence, there are
at mostln?? n, vertices at distance at mogt from z. Applying the union bound we can estimate
the probability that there is @ -isolated vertex at distane from = asO(In??2 n - n‘%“). Finally,
taking into account the probability thatitself is d; -isolated, and applying the union bound over all
vertices ofGG() we obtain that the probability that twh -isolated vertices exist at distanégfrom
each other can be bounded from above by

n-0mn~7)-0(n’®2n. n_%”) = O(In*®p,. nl_gn).

Thus forx > % whp there are no two such vertices. O

Proposition 1 Letp > k- Inn, andx > % Then whp proper local maxima of a 3-CNF from

®Pant (i, pn) have at mosts ones.

Proof. Let ¢ € ®P2"(n, pn) be a random planted instance. Suppose dhiata proper local
maximum that has more thafy ones. We use the following observation. lLebe a clause not
satisfied byii. Then it contains at least one variahigthat is assigned to zero i The assignment
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i is a local maximum, so there must be a clads¢hat is satisfied only by;. Hence,d is a
support clause, and contains a variabjewhich is assigned to zero hy. Variablesz; andx; are
at distancel. Settingd; = 11 andd, = 1, by Lemma 7, we conclude that one of them is not
11-isolated.

Setd, = 11, do = 3 and consider the séf of all variables assigned to zero hbythat are not
11-isolated. By the observation above this set is non-emptythe other hand, by Lemma &
is O(n®) for somea < 1. Considerz € Z. It appears positively in at least 10 clauses of the type
(+,—, —). Each of these clauses is either unsatisfied or containsgabl@assigned to 0. Suppose
there are: unsatisfied clauses among them. Sifids a local maximum, to preventfrom flipping,
2 must be supported by at ledssupport clauses, each of which contains a variable assignéd
Thus, at least 6 neighbors ofin G(y) are assigned to 0. Any two neighborszoére at distance 2.
By Lemma 7 at least 5 of the neighbors assigned to 0 are natdlatéd, and therefore belongio
Thus the subgraph induced b¥in G(¢) has average degree greater than 5, which is not possible
by Lemma 2(1). O

Now we are in a position to prove statement (1) of Theorem 3.

Proof. [of Theorem 3(1)] By Lemma 5 for @ € ®P2"t(n, pn) whp any assignment witlin
variables equal to 1, wher? <d< % satisfies more clauses than any assignment with less than
L variables equal to 1. Then, whp a random initial assignment.$ assigns betweehand 2 of
all variables to 1. Therefore, whp LS never arrives to a propeal maximum with less thagy
variables equal to 1, and, by Proposition 1, to any propel lo@ximum. O

4.2 Failure of Local Search

We now prove statement (2) of Theorem 3. The overall strateglye following. First, we show
(Proposition 2) that in contrast to the previous case thexarany proper local maxima in close
proximity of the planted assignment. Then we show (ProjorsiB) that those local maxima are
located so that they intercept almost every run of LS, and #tnost every run is unsuccessful.

A pair of clauses:; = (z1,T2,T3), co = (T1,%4,5) is called acapif =1, z5 are 1-isolated,
that is they do not appear in any clause of the type—, —) except forc; andcz, respectively,
andz,, x3 are not O-isolated (see Figure 4.1(a)). We denote equAlity = g(n)(1 4 o(n)) by

f(n) ~ g(n).
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Figure 4.1: Caps and crowns

Lemmas8 Letc > 0,0 < k < % and density be such that < p < k-lnn. Thereisy, 0 < a < 1,
such that whp a random planted CNFrom ®P'2" (n, pn) contains at leasb® caps.

Proof. The proof is fairly standard, see, e.g. the proof of Theorefddin [4]. We use the second
moment method. The result follows from the fact that a caphagerties similar to the properties of
strictly balanced graphssee [4]. Take some, and letX be a random variable equal to the number
of caps in a 3-CNFp € ®Pa"(n, pn). Straightforward calculation shows that the probabilitsitta
fixed 5-tuple of variables is a cap-s p*n 4% mn. ThereforeE (X) ~ pn!l~# .
Let S be a fixed 5-tuple of variables, say,= (x1, x2, z3, x4, x5), andAg denote the event that
S forms a cap. For any other 5-tuglé the similar event is denoted b, and we writedr < Ag
if these two events are not independent. By Corollary 4.8[8]adt suffices to show that
Y P(Ar| As) = o(E (X)).
T=S
Let T = (y1,vy2,Y3,Y4,Y5). Itis not hard to see that the only cases wheén and Ag are
not independent and the probabillB/(Ar | Ag) is significantly different from 0 isy; = z; and
{y2,y3} = {w2, 23}, oryr = 5 and{yz,ys} = {a1, 24}, Orys = 1 and{y1,ya} = {22, 23},
orys = x5 and{yi,y4} = {z1,24}. Then, as before, it can be found that in each of these cases
P (Ar | As) = O(p'n ™" 7i%).

Finally,
S P(Ar | As) = n?P (Ar | As) =n? - O(p'n 2 7w%) =
T=S
O(p'n~7m7) = o(E (X)).
We can choose = 1 — Sxif p>1,anda=1—4vif 1> p>n="forv < 1. O

Proposition 2 Letec > 0,0 < k < % and density be such that < p < k - Inn. Then there isy,
0 < a < 1, such that a 3-CNF fron®P'2" (n, pn) whp has at least® proper local maxima.
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Indeed, letc; = (x1,%2,%3), co = (T1,T4,25) be a cap andi an assignment such thag =
us = 0, andwu; = 1 for all otheri. It is straightforward thati is a proper local maximum. By
Lemma 8, there is such that whp the number of such maxima is at le&st

Before proving Theorem 3(2), we note that a constructionlainto caps helps evaluate the
approximation rate of Local Search in the case of constamijeon planted and also on arbitrary
CNFs. A subformula consisting of clauses: (z1, z2, 23), c1 = (1,24, 5), c2 = (T2, Tg, T7),C3 =
(T3, xs,29) IS called acrown if the variablesz, ..., z9 do not appear in any clauses other than
¢, c1,c9,c3 (See Fig. 4.1(b)). The crown is satisfiable, but the all-zgsignment is a proper local
maximum. For a CNkp and an assignment to its variables, byOPT(y) andsat(«) we denote
the maximum number of simultaneously satisfiable clausdgtanumber of clauses satisfied by
i, respectively.

Corollary 1 If densityp is such thatc < p < kInn for somec > 0,0 < k < 1/27, then there is

o = o Such that whp Local Search on a 3-CNFe @ (n, pn) (¢ € ®P2™(n, pn)) returns an

assignment such thatOPT(y) — sat(i#) > v, - n, whereOPT(y) denotes the maximal number of
clauses inp that can be simultaneously satisfied a&d(«) denotes the number of clauses satisfied
by .

If p is constant theny, is also constant.

Proof of Corollary 1 is similar to that of Lemma 8. It can be whothat for p that satisfies
conditions of this theorem there i¢ = ﬁ such that whp a random (random planted) formula
has at least/n crowns. Ifp is a constant;’ is also a constant. For a random assignménwhp
the variables of at Ieaqtgz%‘n crowns are assigned zeroes. Such an all-zero assignmert@ia
cannot be changed by Local Search.

Proposition 3 Letc > 0,0 < k < % and densityp be such that < p < k- Inn. Then Local

Search on a 3-CNF fronkP'2"(n, pn) whp ends up in a proper local maximum.

In what follows we prove Proposition 3.

If p = o(lnn) then Proposition 3 follows from Corollary 1. So we assuméd fha> ' -
Inn. The main tool for the proof is coupling of Local Search (LS)hathe algorithm SRAIGHT
DEeEsScENT(SD) that on each step chooses at random a variable assimfeoht changes its value to
1. Obviously SD is not a practical algorithm, since to applyé need to know the solution. For the
purposes of our analysis we modify SD as follows. At each Sephooses a variable at random,
and if it is assigned 0 changes its value (see Fig. 4.2(a@.al¢orithm LS is modified in a similar
way (see Fig. 4.2(b)).
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INPUT: ¢ € ®P2"t(n, pn) with the all-ones  INPUT: 3-SAT formulay, Boolean tuplei,

solution, Boolean tuplé, OuTPUT: Boolean tupley, which is a local maximum ap.
OuTPUT: The all-ones Boolean tuple. ALGORITHM:
ALGORITHM: while 4 is not a local maximum
while there is a variable assigned 0 pick uniformly at random variable; from the set of

pick uniformly at random variable; from all variables

the set of all variables if the number of clauses that can be made satisfied by
if u; = 0thensetu; =1 flipping the value ofx; is strictly greater than the
number of those made unsatisfied
@ then setu; = w;
(b)

Figure 4.2: Straight Descent (a) and Modified Local Seargh (b

We will frequently use the following two properties of thegyatithm SD. Intuitively speaking
the first one follows from the observation that the vectoraot#d by SD at step does not depend
on the formula.

Lemma 9 If SD starts its work at a random vector with, ones and after stef t < n — myg, it

arrives to a vector withn ones, then this vector is selected uniformly at random frimetors
with m ones.

Proof. Let us denote the probability that at stepD arrives to vectotii, conditional on it starting
from a vector withmg ones, byP (4, t,my). We prove by induction on that P (i,t,mg) =
P (d9,t, mg) for any iy, is with m ones. We denote this number By(¢t, m, mg). As the starting
vector is random, it is obvious far= 0. Then fort > 1 and any vectofi with m ones we have

1
P(i,t,mg) = P(dt—1mg) =+ P(&,t—1,mg)-~
n — n
U
= P(t—1mmo) = +P(t—1m—1mg)
n n

wheren is the number of variables in the formula afidgoes over all vectors that can be obtained
from « by flipping a one into zero. It does not depend on a particlgator. O

Lemma 10 Whp the running time of SD does not excéedn n.

Proof. For a variabler; the probability that it is not considered fosteps equal§l — %)t So for

t = 2nInn this probability equal§1 — %)Q"m" < e2nn — p=2_ Applying the union bound over
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all variables we obtain the required statement. O

Given 3-CNFy and an assignmernt we say that a variable; is k-righteousif the number of
clauses voting for it to be one is greater by at Idatttan the number of clauses voting for it to be
zero. Letp € P2t (n, pn) andii be a Boolean tuple. THaall of radiusm with the center af is the
set of all tuples of the same length@st Hamming distance at most from «. Let f(n) andg(n)
be arbitrary functions andbe an integer constant. We say that asef n-tuples is(g(n), d)-safe
if for any @ € S the number of variables that are nbtighteous does not excee(). A run of SD
is said to be(f(n), g(n), d)-safeif at each step of this run the ball of radifi$n) with the center at
the current assignment (g(n), d)-safe.

For a proof of the following lemma we shall need the followitgservation that can be checked
using the inequality’;) < (%)é For anyn, v, anda with 0 < oo < 1

<Vza> < e(1—04)'yn°‘ Inn—yn® Iny+yn® ) (41)

Lemmall Letp > ' - Inn for somex’, " > 0. For any positive constants and d there is a
constanto; < 1 such that, for anyy > a1, whp a run of SD orp € P2t (n pn) is (yn®, n?®, d)-
safe.

Proof. Consider a run of SD op € ®P2"(n, pn) with a random initial assignment. If SD starts its
work at a tuple withm ones, then at stepit hasm < mg + ¢t ones. Then by Lemma 9 if at step
the current assignment of SD hasones then it is drawn uniformly at random from all vectorshwit
m ones. Eventnsafe= “run of SD is not(yn%, n®, d)-safe” is a union of events “at stepf SD’s
run the ball of radiugn® with the center at the current assignment is@ot, d)-safe”. We will use
the union bound to show that probability dhsafeis small.

Let« be a Booleam-tuple havingon ones. Since whp the number of 1s in the initial assignment
is at leasts, for every step the number of 1s is at ledst_et M be an arbitrary set of variables with
|M| = n®. We consider event§;%" = “every variabler; € M is notk-righteous” and3¢/! = “the
total number of votes given by clauses for variabled/rto be 1 does not exceed the total number
of votes given by clauses for variablesif to be 0 plugM | - k.

The same technigue as in Lemma 6 can be used to show that thetbpity of B%f and conse-
quently the probability o354 is bounded above by

S VY
e)\nlnn
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for some constant)’, not dependent ona. By inequality (4.1), there are at most
An® . er(l-an®Inn(l+o(1)) distinct assignments in theyn®-neighborhood of SD and

en*(1—a)Inn(1+o(1)) distinct subsets of size®. So fora close to 1 the union bound implies that
B53<h whp does not take place for any tuple, any subset of varialasy step which completes the
proof of the lemma. |

For CNFsy1, 19 we denote their conjunction hy; A 1.

We will use formulas that are obtained from a random formylatiding some clauses in an
‘adversarial’ manner. Following [41] we call distributi®for such formulasemi-randomHowever,
the type of semi-random distributions we need is differeainf that in [41]. Letp < 1 be some
constant. A formulap is sampled according to semi-random distributi@ﬁm(n,pn) if p =
¢ A b, wherey' is sampled according t@P'2"(n, pn) ande contains at most” clauses and is
given by an adversary.

Corollary 2 If ¢ € <I>£’71‘"‘nt(n, pn) then for any positive constants and d there is a constant
ag < 1 such that for anyy > as arun of SD on¢’ A v is whp(yn®, 2n®, d)-safe.

Indeed, let; be obtained by application of Lemma 1146 Letas = max(ay,n). Then for
a > as whp run of SD on ¢’ is (yn®, n®, d)-safe. Since forn large enough) contains less than
n® variables a run ob' D will be (yn®, 2n®, d)-safe ony’ A 1.
Lemma 12 Let (Dy, ..., D;) be an integer random process,> 0, and letL, H be integer con-
stants such that (apy = 0,0 < L < H; (b) |D,+1 — D;| = 1; (c) if L < D, < H the expectation
of D,41 conditioned onD, satisfies the inequaliti (D,41|D;) < D, — d. Then the probability
that there isr such thatD, > H is less thar - ¢4 5"

Proof. We define a set of auxiliary process@é:

L, if 1 <g,
DE D;, it (1 >¢), (D¢ =L)and(D¢ > L), forall ¢ € {£,...,7}),
D¢ —d(t—(), if7>¢& De=L,and¢ € {¢,...,7} is the least such thdd, < L,
L —d(r - &), otherwise, i.e.D¢ # L andt > &.
The processedD?, ..., D! are designed so that ever@§ for = > ¢ satisfies inequality

E (Dﬁ +1|D$) < Df — d. Indeed, suppose that> ¢. If D # L then

E(D§+1|D£) —L—dr+1-¢)=(L—(r—¢€ —d=D—d.
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Let D¢ = L. If D¢ > Lforall ¢{¢,...,7} thenD$ = D,, D5, | = D,1, and the result follows
from the assumptiolt (D,1|D;) < D —d. Ifthereis¢ € {£, ..., 7} with D < L then

E (DS,,|DS) =B (DS.1|Dc) = D¢ = d(r +1 = ¢) = (D¢ = d(r = ¢)) — d = DE — d.

By Azuma’s inequality (2.2) for each the probability of the event “there existssuch that
DS = H”is less thane—(H-L)d,

On the other hand leb, > L and¢ be equal to the number of the most recent step for which
D¢ = L. Itis easy to see thdD, = D&. Thus if at some step, = H then there i < 7 such that
Dt =H. Using the union bound we get the required inequality. O

Lemma 13 Letp > &’ - Inn for somex’, ' > 0. Lety be a random 3-CNF sampled according to
distribution ®5*** (n, on) such that run ofSD on ¢ is whp(y;n%, v2n®, 1)-safe for some positive
constantsy, y2 with v; > 3. Letw,(m), @;(m) denote the pair of assignments produced by the
pair of processes (SD,LS) on step For anyt, whp the Hamming distance betwegéyit) and;(t)
does not exceeghn®.

Proof. Let NV, be the set of tuples at Hamming distance at mest* from u,(¢), and€ be event
“u(t) ¢ N, for somet”. LS starts with the same initial assignment as SD and weshitiw that it
does not leavéV;.

At some steps the distance betwegiit) and;(¢) remains the same, and at some it changes.
Let u,, 4; be the assignments produced by the algorithms aftdranges have taken place, abd
be the distance between them24,n® < D, < y1n® we haveE (D,1|D;) < D, — % Indeed,
the number of variables voted to be zero does not exegefl and is at least twice less than the
number of variables that differ ifi;(t) and@;(¢). Since any change in the distance between the
assignments happens if and only if a variable voted to be (variable at whichi,(t) and;(t) are
different is considered by SD, we have the required inetyjualow we can apply Lemma 12 for
D settingL = 2y9n®, H = 3v,n®,d = 1/3 and get that probability of LS leavind; is less than
one~""/6, O

Corollary 3 For ¢ € ®5***(n, on) there is a constanti; < 1 such that distance betweef(t)

and;(t) defined in Lemma 13 whp does not exce#d

We say that a variablglaysd-righteously in a run of L¥ every time it is considered for flipping
it is d-righteous. Combining corollaries 2 and 3 we obtain theofelhg
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Lemma 14 For anyd there isay < 1 such that, for a run of LS op € <I>$1a“t(n, on) whp the
number of variables that do not plarrighteously is bounded above b§“.

Proof. From Corollaries 2 and 3 it follows that whp at every step ofth& number of variables
that are noti-righteous is less than®, for somed.

Therefore denoting the number of different assignmentsidened by LS byl" (note thatl” <
pn) and observing that at each step the probability to consideriable voted to be 0 is®~! we
obtain the following upper bound for the expectation of thenber of nond-righteous variables
throughout the runTn®=! < x'n(Inn)n® ! = k'n%Inn < n®*= for arbitrarye with & +2¢ < 1.
We apply Markov inequality and obtai® (I > n®*2¢) < n~¢, wherel denotes the number of
variables that do not play-righteously. Nowxy can be set to ba + 2¢. O

A clause(z, 7, z) is called acap supportf there arew;, wy such that(z, wy,ws, y, z) is a cap
in p. For a formulay) we denote the set of variables that occur in itdy(v). For a set of clauses
K we denote by K a CNF formula constructed by conjunction of the clauses. tRersake of
simplicity we will write var(K) instead ofvar (/A K). In what follows it will be convenient to view
a CNF as a sequence of clauses. Note that representationNf é&sQuite natural when we sample
arandom CNF by generating random clauses. This way evargelaccupies certain position in the
formula. For a set of position® we denote the formula obtained fromby removing all clauses
except for occupying positionB by ¢ | p. The set of variables occurring in the clauses in positions
in P will be denoted byar(P).

We denote by the set of all possible clauses ovevariables. Let us fix a real constant< 1.
We will need the following notation:

—let [k] denote the set of the firgtpositions of clauses ip, V' be the set of all variables ip;

—let S¥* be the set of positions froifm”] occupied by clauses that are cap supports,iand L¥¥

be the set of variables that occur in clauses in positihns;

— letT%" be set of positions ap occupied by clauses containing a variable fréfm”;

— let U¥" be the set of positions inp occupied by clauses containing a variable from
var (gp l[nu]\s%u);

—finally, let M#" = var(T%") and N¥" = var(U®").

Fig. 4.3 pictures the notation just introduced.

Lemma 15 Letc > 0,0 < k < % and density be such that < p < x-Inn. Then there ig;p > 0
such that for any: < pg there isy < 1 such that whp: (1)S%"| ~ nt; (2) M¥Y N N¥" = &,
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Figure 4.3: A scheme of a 3-CNF. Every clause is shown as arrglet with its literals repre-
sented by squares inside the rectangle. Literals corremprio variables fromL®” and from

var (gpl[ny]\sw> are shown as diamonds and circles, respectively. Shad&hgbes with ver-
tical and diagonal lines represent clauses ffBf andU ", respectively.

i.e. variables from clauses &% do not appear in the same clauses with variables f&fr; (3)
|M¥V| = 3|T¥"|, that is no variable occurs twice in the clauses fréifi”.

Proof. It follows from Lemma 8 that fop < klnn, x < % there existsy,0 < a < 1 such that
the number of caps in the formuladsn®. We set

po = a2, v=p+1-—a.

(1) For a subsetz of all positions of clauses iw let Cr denote event R is exactly the set
of positions occupied by cap supports”. Obviously for anis 9@, Rz, |R1| = |R2| we have
P (Cgr,) = P (Cgr,). Thus positions of the cap supports are selected uniforiharedom with-
out repetition. By straightforward computation we haveestation of the number of cap supports
among first” clauses equal approximatety -n”~! = n#tl—a=1+a — i and variance is bounded
above by the expectation, so it follows from Chebyshev iaditjuthat random variable “number of
cap supports among firat’ clauses” is whpv n*.

(2) By Lemma 2(2) whp there is no variable that occurs in mhemtn? n clauses. Therefore
|M#¥| = O(n*In®n) and|[N¥¥| = O(n”In*n). These sets are randomly chosen fromnan
element set, and therefore the probability they have a cametement is at most“+*~! In* n. By
definition of x andv we haveu +v —1 < a/2+a/2+1—a—-1=0.

(3) Since whp|T¥¥| = O(n*1n%n), the probability that two clauses from this set share a
variable is bounded from above "~ !In* n. We have2 — 1 < a — 1 < 0 so this probability
tends to 0. |

Let n be the number of variables, Iptbe density, be a real constant such that< v < 1,
Ty andUj be subsets ofon] such thatly N Uy = @, [n”] C Ty U Uy and letSy = Ty N [n¥]. We
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denote byHr,1,, a hypothesis stating that is such thatS¥” = Sy, T%" = Ty, U¥" = Uy and
alsoM¥¥ NN = &, |[M¥"| = 3|T%"|. The following lemma allows us to concentrate on small
setsUy, Tp.

Lemmal6 Letg € <I>£’71‘"‘nt(n, on), ko, b < o andv be as in Lemma 15. If for an evehtthere is
asequencé(n) — 0 such that for all pairgTy, Up), | ToUUs| < n?” we haveP (E|Hr,u,,) <
n—oo

5(n) thenP (E) — 0.

— 0

Proof. We can bound probability of eveiit as

P(E) < Z P (E‘HTOUO) p (HTOUO) +
To,Uoz‘ToUU0‘<’rL2V

+ P (M?PYNN?Y £V |M?| <3|T?|V|TyUUp| > n*)
< 5(n)+ P (MPY N N? £ @) + P (IM?] < 3|T%]) + P (|Ty UTq| = n*).

By Lemma 15 probabilities of event®/ ¥ N N¥¥ # @ and |M¥"| < 3|T%"| tend to 0 an
approaches infinity. By Lemma 2 (2) we hadg U Uy| < n?” whp. Thus we obtain the resultO

Observation 3 If ¢ is selected according t@P?"(n, pn) conditioned toHz,y,, then formula
© Lion)\(TouU,) has the same distribution as if it was generated by pickiags#s from all clauses
over variablesV \ var([n”]) uniformly at random.

Proof. [of Proposition 3] Letw, be the exponent correspondingd@ndd = 2 by Lemma 14,
let 1 be such thaty, + 2u < 1 and letr be taken by Lemma 15. We fix arbitrary p&ify, Uy)
of subsets ofpn] satisfyingTy, N Uy = 3, [n*] C Ty U Uy, |To U Up| < n?*. We will bound the
probability of success of Local Search under a hypothesiseoform Hz,,17,,, and apply Lemma 16
to get the result.

Let M = M*¥" andL = L¥". We split formulay into p1 = ¢ |1, andpz = ¢ [\, @Nd
first consider a run of LS applied i@ only. Formulaps can in turn be considered as the conjunction
of w21 = ¢ Ly, andpaz = ¢ | [en)\ (oLU0)- N Fig. 4.3 formulay; consists of clauses shaded with
vertical lines, formulaps; of clauses shaded with diagonal lines and formugdaof clauses that are
not shaded. By Observation 3 formuyla, is sampled according ®?*2*(n — §;(n),no — d2(n))
modulo names of variables whefg(n) andds(n) areo(n). So formulay, is sampled according to
@S}La“t(n—él(n), no—dz(n)). By Lemma 14 the number of variables that do not fajghteously
during run of LS ony is bounded from above by*4 for a certainay < 1. We consider coupling
(LS,,LS,,) of runs of LS onp andy,, denoting assignments obtained by the runs of the algorithm
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at stept by i, (t) andi,, (t) respectively. LefK be the set of those variables which do not belong
to L (squares and circles in Fig. 4.3). Formya is a 3-CNF containing only variables fross.

For an assignment of values of all variabiésve will denote byii|x its restriction onto variables
from K. We make proces&sS,, start with a random assignmeiit, (0) = @, to all variables, and
LS, with a random assignment,, (0) = @), to variables ink, such thatil | x = u_,,. Now the
algorithms work as follows. At every step a random variablés chosen. ProcessS,, makes its
step, and processS,,, makes its step if; € K.

Whp LS, will run with at mostn®4 variables that do not plag-righteously. Leti?” denote the
set of such variables. Variables in formuyla are selected uniformly at random sanif + 2u < 1
then whp setV/ does not intersect withl”. Hence, every time.S,, considers some variable from
M it is 2-righteous inpo and belongs to at most one clausef Therefore such a variable is at
least1-righteousy and is flipped to 1, or stays 1, whichever is to happen/f8f,,. Thus whp at
every step of LS, LS, ) We haveii,(t)|x = ii,,(t). In the rest of the proof we consider only this
highly probable case.

Consider some cap suppatt = (Z1,%4,x5) Occupying a position € [n”] and such that
r1 = 0,24 = 1,25 = 0 at time 0, and a seP., of variables occurring in clauses that contain
variablesvar(c;) (obviouslyvar(c;) C F,). Letc; be the clause that forms a cap with We say
that a variable isliscoveredht stept if it is considered for the first time at stépLetpy,...,p; be
an ordering of elements df., according to the step of their discovery. In other words fiafale
p1 Is the first variable fromP,, that is discoveredp, was the last. In the case some variables
are not considered at all, we place them in the end of therlistiandom order. Observe that all
variables that play at leastrighteously are discovered at some step. All orderingsaofbles are
equiprobable, hence, the probability of variables(c;) to occupy placegy_o, px—1 andp equals
3!/k(k — 1)(k — 2). We will call this orderingunlucky

Let us consider what happens if the order of discoveryofis unlucky. All variables inP,, \
var(c;) play 1-righteously, therefore once they are discovered.lby, they equal to 1. Thus when
x1, 24, x5 are finally considered all clauses they occur in are satisérdept forc;. So variables
x1, x4, 5 do not change their values and the clauseemains unsatisfied by the end of the work of
LS,.

By Lemma 2(2) whp no vertex has degree greater than, so the size of the sé., is bounded

above by3 In? n. Thus the probability of everif nluck(i) ="order of discovery ofP.. is unlucky”
[Sol _ n*
In®n = m®n-

is greater thaqné—n. Thus, the expectation ¢fi|Unluck(i)}| equals By definition

of Hr,u,, any variable whp occurs in clauses frdfif” at most once, hence there is no variable
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that occurs in the same clause with a variable frgmand a variable fronz;, for i,i2 € So,

i1 # ig. Thisimplies that events of the fortinluck(i) are independent. Therefore random variable
I{i|Unluck(i)}| is Bernoulli and, as its expectation tends to infinity, thelyability that it equals to

0 goes to 0. Since unlucky ordering of at least one cap suppadslto failure of the LS this proves

the result. O



Chapter 5

On the Power of Plateau Moves

5.1 Main Result and General Intuition

The main result of this chapter is the following

Theorem 4 For any x > 0, p = xInn GSAT with settingsAXFLIPS= n60/5+3 MAXTRIES= 1
finds a solution forp from ®P12% (n pn) whp.

After O(MAXFLIPSXMAXTRIES) steps that did not lead to a solution of the problem GSAT fails
so Theorem 4 implies that GSAT finds solution in a polynomiahber of steps.

It is sufficient to prove the result for < 2, since by Theorem 1 of [12] fot > % GSAT will
find solution without even switching to plateau moves stage.

Lemmas 17-19 describe relations between variables thatssigned to 0 in a local maximum
and variables that occur in feit-, —, —) clauses. These lemmas lead to a proof of Lemma 20 that
will be the key instrument to prove Theorem 4. This lemma isnigdated in terms of a graph of
co-occurrences. In terms of the original formyd.emma 20 states that when a local maximum
of the number of satisfied clauses is reached we have thewfaljopicture. Clauses containing
variables that are still assigned incorrectly fall apatb iseveral sub-formulag, ..., ¢;. Formu-
las o1, ..., are pairwise disjoint, that is ng;, ¢; contain a common clause. Moreover these
sub-formulas are disjoint with respect to variables, tBana ¢;, p; refer to a common variable.
The lemma also states that any such sub-formladhat contains an unsatisfied clause contains
an incorrectly assigned variable that can be flipped by G8Alhe proof of Theorem 4 we apply
Lemma 20 and observe that the solution space is with highapitity such that from any proper
local maximum there is a finite path along a plateau that léadiggher ground. The path is finite
meaning that its length can be bounded by some conéttrdt does not depend on So with

51
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constant probability among the nefi’ steps there will bé steps that will be made along such a
path and a better assignment will be reached.
We will discuss intuition behind Lemmas 17-19 directly brefstating them.

5.2 Proof of the Main Result

Let G¥ be the graph of co-occurences of variableginThat is, vertices of7¥ are variablesy;
andz; are connected if; andxz; occur in the same clause ¢n We shall need several notions from
graph theory that we are going to apply to the gréph For a graphz = (V, E) and a subseX

of its vertices we denote b§|x the subgraph induced by, i.e. graph(X, £ N X?). Letl € N
andE! be the set of pairs of vertices that are connected by patlesigfi at mostin G. We denote
graph(V, E') by G'. We denote byV&4(X) thed-th neighborhood o in G, i.e.

NG4(X) = {y | there exists: € X such that(z,y) € E¢}.

Observation 4 For anyp < 21nn whp no two variables occur together in more that 2 clauses of
from ®PLant (5 pn).

Proof. Indeed if we fix two variables and three clauses then the pitityaof the variables to occur
together in these three clause€ié~%). There areD(n?) pairs of variables an®(m?) triples of
clauses so applying union bound we conclude that the priityathiat there exist such a pair and
triple is less thar© (n~*m?) which tends to zero fom < 2nInn. O

Let us recall that a variable is calle-isolated iny if it occurs positively in fewer tham\
clauses of typg¢+, —, —). From now on we shall denote the set of Allisolated variables by .

Intuitively, our interest iM\-isolated variables comes from the fact that in the casegafrithmic
density of the formula extremely few clauses with two or ¢hpasitive literals are unsatisfied in a
local maximum. This happens because almost all variabéeassmigned correctly and the probability
that a clause has two incorrect variables is very small. Thasy unsatisfied clauses in a local
maximum are(+, —, —) and variables that are assigned wrong tend ta\bisolated variables.
In the following Lemma we show thah-isolated variables do not “flock together” so with high
probability you do not find many of them close to each other.

Lemma 17 For any x € R there is a constant € N such that for any constant& € N,d € N
andp = xInn, ¢ from ®P122t (. pn) whp any connected component@®f|;, contains fewer than
[ variables.
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Proof. Fix an arbitrary constant. Let M be a set of- variables. Obviously
P (all variables inM are inix)
is less than
P (#(positive occurrences of variables fram in (4, —, —)-clauses) |M| x A).
The latter probability can be bounded above by
GIONC
— k n ™
. pn—rA
A7) (- %)

T,APTAA—TAe—?)/?pr/((TA)!) 5 e—3pr/14.

A

The number of connected sets of variablesGifi can be bounded above by the number of
subgraphs of5? isomorphic to trees. Since whp the maximum degree of a Jariabbounded
above byln? n the number of subgraphs of sizeisomorphic to trees can be bounded above by
n(rn?n)™=1 < n? whp.

Now we apply union bound to the probability of an evént “there exists a connected skt
of vertices ofG? of sizer such that all variables if/ are inI»” getting the upper bound

P (8) < n2€—3m“1nn/14 _ elnn(2—3m“/14)‘

Therefore if we set = 10/« then for any constant > | we have the probabilitf? (£) tending to
0. O

For an assignment we denote by¥; a set of all variables assigned Byncorrectly. I. e.
Wgz {xl ’ v; = O}

In Lemma 18 we show that in a local maximum any connected caewmtoof a graph of co-
occurrences of variables assigned incorrectly needs dastdrfsaction of its members to belong to
IA.

Lemma 18 Letx € R, A be odd andA > 11, p = xInn and ¢ from ®P122¢(n_ pn). Then whp

for any local maximuna’ any connected componefitof G|y, contains at leas Cgﬁzg) variables
from Ia.
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Proof. By Lemma 6 there exists such thad) < « < 1 and any local maximum contains less than
n® zeros. Consider an arbitrary local maximarand a connected componefitof G|y .

Let z; be such thatr; € C' \ Ian. Variablex; occurs positively in at leash clauses of type
(+,—,—). If clausec is of type (+,—, —), variablex; occurs positively inc and it is the only
variable inc that is assigned t0 thenc is not satisfied and will become satisfieajfis flipped. But
vis a local maximum and flipping; should not increase the number of satisfied clausas.Hés no
neighbors assigned to 0 bithen after flippinge; the number of satisfied clauses will increase by at
leastA. A neighborz; of 2; may decrease this advantage by making ongrof-, —) clauses that
refer tox; satisfied or by making some other clause whereccurs negatively unsatisfied. But each
neighborz; assigned to 0 can not decrease the advantage of flippibg more than the number of
co-occurences of; andz; in clauses ofp. By Observation 4 whp no two variables occur together
in more than 2 clauses. Soaf hast neighbors assigned to 0 then advantage of flippingill be
at leastA — 2¢. And since the advantage must be a non positive and integhavez > (A +1)/2.

Thereforez; must have at leagtA + 1)/2 neighbors inG that are assigned to zero by Obvi-
ously all these variables are so the degree af; in G|y, is atleas{A+1)/2. We can bound the
average degree @f from below by(|C'\ Ia| - (A +1)/2) /|C|. Since|C| < n® by Lemma 2(1) it
follows that the average degreedfis less than 5. Thus we have

(IC\1al- (A+1)/2) /IC] <5

and consequently

10(C]|
ICN Al < Ao
IC](A—-9)

Since inequality (5.1) was shown for an arbitrary conneaemhponent ofG|yy, the lemma is
proven. O

We say that a variable; is potentially wrongif there is an assignment such that it is a local
maximum andy; = 0. The set of all potentially wrong variables is denotediy that is

W= U Wi
v is a local maximum
In the following lemma we show that for large enoufyithe set ofA-isolated variables is dense

in the set of potentially wrong variables. Namely that anteptally wrong variable must have at
least oneA-isolated variable within a finite (bounded by a predefineastant) distance.



CHAPTER 5. ON THE POWER OF PLATEAU MOVES 55

Lemma 19 Letx € R, A be odd andA > 11. Then there is a constamte N such that whp any
x; € W has aA-isolated variable at distance less than

Proof. Let! be the number corresponding#do satisfy the conditions of Lemma 17, ket 7] and
let
M = {z|z is connected ir;" to somey € In} = N (I,).

Consider an arbitrary local maximuth To prove the lemma we must show that
Wz C M.
To derive a contradiction let us assume that
there existsc; € Wi\ M. (5.2)

Let C' be a connected component @fyy, containingz;. By Lemma 18 set” contains at least

IC](A-9)

A1 variables from/a. ForA > 11 we have

CNIal 2 1/6|C] (5.3)

and consequently nonempfymust contain at leadtvariable form/a. Now we take arbitrary;,
In N C and consider a connected componéhtof Gz’“|1A that containse;,. Note that Lemma 17
implies

INGT(CYNIANC| < INOT(CYNIA| <.

On the other hand sincg; ¢ M D N%7(C’) andz; is connected to an element ©f we have
INGT(CYNC| >r =1l
By definitions of N4 andG¢ any distinct connected componeiits andC,, of G|, satisfy
NET(C)) NN (Cy) = @.

Therefore ifs > 0 is the number of connected componentg36f|;, that intersect withC' we
have bounds
[InNC| < sl (5.4)

and
|C| > Tsl. (5.5)
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Conjunction of (5.4) and (5.5) contradicts (5.3), therefassumption (5.2) was false and the lemma
is proven. O

Now we are in a position to prove the key lemma of the proof ef tain result. As it was
discussed in the beginning of the section the intuitive rmepnf Lemma 20 is that once a local
maximum is reached we observe the following. Incorrectlsigieed variables split into several
finite connected components. Moreover each componentdhgdios a variable occurring in an un-
satisfied clause contains also a variable that can be flipjtedwt reducing the number of satisfied
clauses.

Lemma 20 Letx € R, p = xlnn andyp € ®PL2¢(n, pn). Then there is € N such that whp for
any local maximun@ and any connected componéniof G|y, the following statements is true:

e (' contains less thar elements,

o if there is an unsatisfied clause containing a variable fi@rthen there is a variable;; € C
such that the number of unsatisfied clauses whereccurs equals to the number of clauses
that are satisfied only by;.

Proof. We fix some local maximuni and a connected componegitof G|y, .
By Lemma 19 forA = 11 there is a constant such that whp for every variable € C there
is a variabler; € I such that distance betweepandz; is less thamr. Let us denote such; by
z;1. Itis easy to see that sét; | |z; € C} U (C N1,) is connected iz 1|, and by Lemma 17
its size can not be greater than some congtamhus|C N Ia| < [ and by Lemma 18 foA = 11
we have|C| < 61. So we sek = 6/ and have the first statement of the lemma proven. Note that in
the proof of Lemma 18 we sét= 10/« so here we have = 60/x.
To prove the second statement of the lemma we consider atmaaytvariablez; in C' and a
clausec wherez; occurs.

Observation 5 For c to be satisfied only by; in ¢’ the following two conditions are necessary: (a)
x; occurs inc negatively, (b) there is a variable; that occurs inc positively and such that; = 0.

Consider a directed graph
Sc = (C,{(z;, z;)|there is a clause € ¢ containing literalse; and—z; }).

Assume for the sake of contradiction that for any variable= C' the number of clauses that are
satisfied only byz; is strictly greater than the number of unsatisfied clausesredy occurs. Then
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for eachz; € C there is at least one clause that is satisfied only pbyr'his by Observation 5 means
that the in-degree of every vertexdiy is at least 1. Set’ contains a variable;, that occurs in some
unsatisfied clause. So there must be at least two clauses that are satisfied gnty.bThus the
in-degree ofty in S¢ is at least 2 an& contains at leagt’| + 1 edges. If variables are connected
in S they are connected i@|- and we have that’| contains at leagC'| + 1 edges.

We finish the proof by showing that for any constahtand ¢ such thath > ¢ whp there is
no set of variableg” such thaC'| = ¢ and the grapl@Z|~ containsh edges. Indeed there afg)
sets of variables of size and (’,’Z) sets of clauses of size For a given set of clauses of size
the probability to have@h positions to be occupied by variables from a givenGgiC| = ¢ can
be bounded from above kph)*n=2". Applying union bound we have that the probability under
consideration is less thaBh)2"m"nn=2" which tends to 0 for any fixed if 2 > q.

We are now in a position to prove the main result.

Proof of Theorem 4. By Lemma 20 once GSAT reaches a local maximuisetV; falls apart
into several connected components of size at mosf there are no more unsatisfied clauses left
then the problem is solved and GSAT returns a satisfyinggassént. Otherwise let us consider a
connected componeit of G|y, that contains a variable; that occurs in an unsatisfied clause.

We show that with probability at least * after s steps GSAT will be at some assignment
that satisfies more clauses th&inBy Lemma 20 there is a variablg, € C such that the number
of clauses that are satisfied only by, equals the number of clauses that contajnand are not
satisfied. Thus with probability/» variablex;, will be the next variable that is flipped by GSAT.
If it happens then for an assignmetfitobtained at the next step there are two possibilities?’ 1)
is not a local maximum or 2y’ is still a local maximum. In case X¥SAT will increase the
number of satisfied clauses at the next step. In case 2);ldie a subset o’ \ {z;, } that is
a connected component 6f|y, and contains variable that occurs in an unsatisfied clause. W
have|C;| < |C| — 1 and with probabilityl /n a variable fromC; will be flipped by GSAT at the
next step, which will either lead to an increase of the nundfesatisfied clauses or to a new set
Cs,|Co| < |C| — 2, etc. Size o is at mosts so with probability greater tham™* after s steps the
number of satisfied clauses will be increased.
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Therefore if GSAT is at a local maximum then in*! steps it will increase the number of

ns+1

satisfied clauses with probability at ledst (1 —n~*%) ~ 1 —e~". So once the local maximum

is reached for the first time the problem will be solved aftet*? steps with probability at least

1 —ne ™.

5.3 Discussion

Note that we never used greediness of GSAT and all the reagoviuld go through in the very
same way for CSAT. Therefore, we have the analogous resuR S@T.

Corollary 4 The CSAT algorithm with settingsaxrLIPS= n5/%*3 MAXTRIES= 1 solves ran-
dom planted 3-SAT of logarithmic density whp.

Comparing Corollary 4 with Theorem 3 and noting that CSAThis basic Local Search en-
hanced with plateau moves and restarts we can concludeditiiaigaplateau moves to Local Search
increases its power substantially. The intuitive essefi¢ki®conclusion is by no means novel but
now we have it rigorously proven within the context of randplanted 3-SAT.

We believe that the analysis of the landscape of the soligate of random planted 3-SAT
carried out in our work gives more general intuitive undamding of the process of the execution of
the local search algorithms.



Chapter 6

WRW: A Candidate to Solve Random
Planted 3-SAT

In the last chapter we present the Weighted Random Walkitligo(see Fig. 1.6). This algorithm
is obtained by a simple modification of the Random Walk whes$uits in a substantial increase in
efficiency. We present experimental data and prove thatigfoeilhm reaches a good approximation
of the solution of Random Planted 3-SAT of high density.

6.1 Theoretical Analysis of the Approximation Ratio

We first analyze the behavior of the algorithm given a formuthat has all clauses that are satisfied
by I = (1,...,1). Then we show that if the density of a formula is high enougintive get the
same result.

Let # be some assignment of boolean values to the variables. ALl the set of variables
assigned to 1, an® be the set of variables assigned to 0. We denoté oy, Caap,Casi,CBBB
sets of clauses containing three, two, one and no variatmasA respectively.

6.1.1 Formula with All Clauses

In this section we analyze the performance of WRW on a 3-SAiia ¢ that contains all clauses
that are satisfied by the all-ones assignment, i.e. all elatlgat have at least one positive literal.
Let 7 andw(-) be a vector of values of the variables and weight functionstép of WRW, and
let#',w’(-) be a vector and weight function which are obtained fram(-) by performing one step
of the algorithm. Let4; be the set of all variables that have valuand weighti, B; be the set of all
variables that have valukand weight;, and leta; = @, b; = ‘%", a= Zfil a;,b=1—a.

n

59
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We consider functio’ (&) = "X | ia; — S_X | (i — 1)b;, which is obviously bounded b .
We will show that there exists a positive constastich that for any’ we have

E (V(&) - V(@) >4, (6.1)

which by the Azuma'’s inequality implies that whp afte(n) stepsV (Z) becomes equal t&", and
consequently the process stops.

Lemma 21 LetZ be an assignment and be some variable from, and letY be some variable

from B. If C is an unsatisfied clause, chosen uniformly at random, therptbbability thatX

occurs inC'is g’(%“)—) and the probability thal” occurs inC'is ﬁ

Proof. Let C be a clause chosen uniformly at random (not necessary sfisd}fi Then

e P(C e€Cyun) = a’ P (X € C|C €Cyun) =
P (Y € C|C € Cyqu4) =0,

an’

(C S CABB) = 3a2b P(
P (Y € C|C € Caup) = bi

S C|C S CAAB)

an’

P (C € Casp) = 3ab?*, P (X
(YGC|CECABB) bi

C‘C c CABB) = o

P (C €CppB) :b3,P(X € C|C €Cana) =0,
P(YG C|CECBBB) = %

In the first case the clause will definitely be satisfied andtheof the latter three the probability
that the clause is unsatisfied equalsSo we havéP (—-C(7)) = 3(3a?b+ 3ab® +b%) = L(1—a?).
Now we compute

P(X cC&—-C@F) = P(XeC&-CF)|C € Casg)P(C € Canp) +
P (X € C&-C(Z)|C € Capp)P (C € Capp) +
(X S C&—\C( )’C € CBBB) (C € CBBB)-

EventsX € C and—-C(%) are independent under the conditions, so we have
= 1 2 2 3
P(X € C & -0(F) = ?(—3 b+—3ab 0b>:

> —(1 —a?).

3
= —(2ab+ b
7( +0) = ™
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We plug the obtained expression into the definition of caodil probability and get the desired
expressiorP (X € C|-C(Z)) = ?f:?;{
The probabilityP (Y € C|-C(Z)) is computed similarly. O

=

Now let a;, b, correspond toZ and a, b, to . We are interested in
E (V(2') — V(Z)). We can express the changelinas

K
V(@) -V(@) = ) ilaj—a) -

i=1 i=1

(i—1)(¥, — by) (6.2)

Mx

so to computdE (V (') — V(Z)) we need to computE (a) — a;) andE (b} — b;).

The numbers; andb; are changed similarly. The sdt changes because some variables leave
it and some arrive into it. Now it is convenient to denefe= a; andc_;_1) = b;. Letqge, e,
be the number of variables that leadg and arrive into4;+,. None of the variables can change its
weight by more than one in one step, so we have

® ¢ =Ci — ej—ciy — Qei—cipr + Gei1—e; + Gegii—eir TOr all i, except—K + 1 and K,
® (i = CK — Qeg—ex 1 + Coi1—bg» @and similarly fore_ g 1.
Variables go fromA; to 4,1 when the weights of two variables are increased, so
E (qa;—a;,1) = 2a;. (6.3)

Variables go fromA; to A;_1 and from A; to B; when three variables of an unsatisfied clause
decrease weights/flip. Applying lemma 21 we get

3(1 — a?) 3(1 — a?) 3(1 — a?)
E(q—a ;)= in = iy E(qu,—b ) = ——=2ay. 6.4
(o) = GG = gy @ B lan) = r gy 64)
Analogously we get
E (b, 1) = b E (@ —ar) = ———b1 B (ay-,.,) =26 (65)
7 i—1 (1 _ CL3) Y 1 1 (1 _ ) Y 7 i+1
Substituting the expressions faff into (6.2) we obtain
V(@) - ()= (6.6)
K-1 — K
a —ai41 Z qaz—ﬂlZ 1 Qa1—>b1 - Z Qbi—>bi+1 + Z Qbi—>bi,1 + Qb1—>ba .
=0 — i

Uy V) Vs Wy
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Using equations (6.3) - (6.5) we gB(¥;) = 2a — 2ax,E (¥3) = —3a1(1_;§2),E(\I'3) =
—2b+ 2b, B (¥y) = 225, thus

. . 3a(l — a?) 3b
4a® —a? —a+1
-2 2bg . 6.8
1+a+ta? ax + 20k (6.8)

Using the standard method for finding local maxima by analgdithe first derivative it can
easily be shown théﬁ%ﬁ“ > 0.42, so if we could boun@Qax by ¢ < 0.42 then we would be
able to conclude thdt (V (z') — V(&)) > 0.42 — ¢ > 0.

Next we argue thaiy < % Thus, takingK' > 5 we obtain inequality (6.1) with = 0.02.
Lemma 22 For any natural numbefs and for anyT’ = O(n) whp at any step of the WRW before
stepT we haveny < +.

Proof.
We will use Wormald's theorem to prove that the system behalase to solutions of a system

of differential equations and then argue that the variabteesponding ta x never becomes greater

than%. Below we check conditions (i)-(iii).
(i) As at every step only one variable is flipped we have inéties
maz|a; — ai] < 1,mazx|b; —b| <1

true with probability one.

(i) This condition follows from equations (6.3) - (6.5), &h we setf,,(ap,...,bx) =
E (¢a; 1 —a;) +E (¢ai-1—air1) — E (da;—ais1 ) — E (¢a;—a,_, ) @nd use obtained expressions

for all E (g.) fori > 0, and similarly forfy,, fa, .

(i) The functionsf, are Lipschitz, because they have finite first derivative.

Thus we get the equations

du
D — f (ur,. .. uk) 7 (6.9)
%:fbl(ulf"’ul{)

and initial conditionsug(0) = vp(0) = 4, for 0 < i < K, u;(0) = v;(0) = 0. Almost surely
al(t) = ul(t/n) + 0(1), bl(t) = vl(t/n) + 0(1).
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Thus to finish the proof of the lemma we show that the solutf@ystem (6.9) satisfiesy (¢) <
1
F.

We use induction to show the following:
Claim 1 Forany0 < R < K, if s is such thaty";* ,_, w(s) is maximal and equale(K — R)

thenur(s) > «, which in particular means that the maximum vaIu@ﬁR w(s) is greater than
a(K —R+1).

Proof. We denote Y iSp. . uw(s) by  Trei(s). First note that
dIRgsl(s) = Qup—up+l — Qupii—up, Which follows directly from the definition off, so if
r) — 0 thenug > ugs1. Indeed we have

ds
3(1 — u?)
un—>uR+1 - un+l—>uR = 2UR — muR_,’_l
and the expressio%(—ll__ﬁ)) equal2 if w = 1 and is smaller ifs < 1. Thusugr < ugr1 would imply

A3 gy wis)
— & <0

The induction proof will go fromR = K — 1to R = 0. The base of inductio®® = K — 1
follows from the fact thatig—f = 0impliesuxg_1 > ug.

Induction step:

Considersg such thatZgy1(sp) is maximum and equala(K — R). We haveug(sp) >
ur+1(s0). Assume thatp(sg) < a1, which impliesug.1(sg) < a1. Then

Zr+2(80) = Zr+1(s0) — ur+1(s0) > (K — R)ag — ax,

which leads to a contradicion as(K — R — 1l)ag is the maximum

value ofZg -. O

It follows from the Claim that if the maximum value 8 (s) is «(K — R) then the maximum
value ofZp_1(s) is at leasto(K — R + 1). Thus if the maximum value ofx (s) is a then the
maximum value ofZy(s) is at leastK «. As Zy(s) cannot be greater thahwe get the inequality
ug(s) < %. Thus almost surely we have (t) < +. m

So if K > 5 then there is a constant> 0 such that at every step of the WRW the expectation
of the amount of change 6f (%) is greater tham. The value ofi’(#) cannot change by more than
5 at every step so by Azuma’s inequality we have

(tcan)2

P (V(ft) < nK) < Qe 223
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The right hand side of the above equation starts to decregseiy whentc becomes greater
thann K. This proves the following

Lemma 23 If ¢ is a 3-CNF with all possible clauses that are satisfied bygssient” then almost
surely WRW withK > 5 weights findg”in O(nK) steps.

6.1.2 Random Formula
In this subsection we prove

Theorem 5 Let ¢ be a random 3-CNF with a planted solutiafy of densityp = p(n) — oo,

— 00

ande > 0 be some constant. With high probability WRW with more tharefghts finds a vector
that differs fromz in at mostsn coordinates.

Let o be a random 3-CNF with a planted solutibn For 4, B, A; C A we denote bYau, B
the set of all unsatisfied clauses that have one variable ftpnone variable fromA \ A; and one
from B. By C% 4, 8 We denote the set of clausesyrthat have this property. Analogously we define
Caa,B,Caan,, etc. We define the set of all unsatisfied clause€ pgnd all unsatisfied clauses¢n
by C{.

For a formula with all clauses the expectation of the numlb@anables that at a given step go

from A; to By equals
|Caa,B| +2|Cas 4, 8|
C| ’

(6.10)

while for formula it is
ICAa, Bl +2ICH, 4, Bl
CE|

(6.11)

CL’O
In the next lemma we show tha{:’;—lB is close to6aa;b whp, which equalsc“‘p%. The same
techniques can be used to show that other members of equétid) divided bypn are close to
respective members of equation (6.10) dividedohy Under the conditions of theorem 5 we have

g—’;; = b3 > &3, thus the denominator of (6.10) is separated from zero, pression (6.11) is close

to (6.10).

Lemma 24 Letp(n) tend to infinity and leb be a constant greater thah Let alsoz be a Boolean
assignment and3, A, A; C A be arbitrary subsets of variables such tH% = b and variables
from A equal to 1 in¥ and all variables fromB equal to 0 inZ. Then the following inequality holds

whp: Canyp %a(a —ap)b| <o(1).

pn
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Proof.

By simple counting it can be shown that & is chosen uniformly at random then
P(C €CaaB) = %al(a—al)b. LethAlB be the multiset of clauses inthat belong t&€ 44, 5. In
total pn clauses are chosen to bednso the expectation of the size@f ALB equals%al(a—al)bpn.
Using Chernoff bound we get

c¥
P ( ‘AP%B‘ - %al(a —ap)b

__ 62pn
>e| <2 Farte—any,

We will say thaty is e-badif there exists an assignment, and subsets of variablés A; C A

for which inequality| 442 — 34, (a — ;)b > cis true.

Now we put to use the fact that the probability of a union ofregds less than or equal to the
sum of the probabilities of the events to estimate the pritibabf  beinge-bad.

There are2™ boolean assignment8] ways to selectd and B, and at mosR™ ways to select

A; C A, so we have

52pn

P (pisbad < 2e Fei(a—anbg3n — g=n(nep—2) (6.12)

wherey;, v, are constants. We can choase p~1/3 = o(1) so asp — oo the function in the right
hand side of the equation (6.12)d§l ), which completes the proof. O

Thus for random CNFs with planted solutidrand vectors with more tham zeros, WRW acts
as it does for the Full CNF, that is it tends to get closer andari tol. So with high probability an
assignment with more thgii — £)n ones will be found.

6.1.3 Discussion

The obtained theoretical results provide intuition on thasons of the algorithm’s success. When
standard Random Walk starts with a random assignment thermare occurrences of variables
assigned zero in the unsatisfied clauses, so the humbermf/agables decreases. But when the
golden ratio conjugate is reached the numbers of occursesiceeros and ones become equal and
progress stops. For the same reasons, when WRW starts,iteenof zero variables is decreased.
Once the assignment contains fewer zeros than ones, thetangsenefiting from increasing weight
of randomly picked variables. The problem one might expext his that weights of some one
variables grow infinitely (or up to a maximum allowed sizehil other variables still stay zero.
Lemma 2 shows that this is not the case with WRW: the set of arialles with maximum possible
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weight stays reasonably bounded, and thus the added wesigked in the ‘struggle’ between one
and zero. Formally it is shown via use of a potential function

6.2 Experiments

In this section we describe experiments done with the WRWridlgn. Our experiments are done
on random and random planted 3-SAT.

With regard to random 3-SAT, our experiments show that WRWk&@ linear time for formu-
las with density 3.9. We studied the running time of the atbors on formulas with 10000 variables
and then increased the number of variables in steps of 108(0A00. For each fixed density we
ran the algorithm on 100 random instances. For each run we waiting until the algorithm finds
solution. The result of this experiment shows linear rugnime of WRW for density 3.9 when
K = 4. This is interesting when compared with the empirical enadethat standard random walk
requires exponential time for densities higher than 2.7.

Other experiments that we report here are for random plaBH8AT. In the first set of experi-
ments we try to determine for which densities WRW can soladoan planted 3-SAT in a reasonable
timebound. It turns out that for any fixed density WRW workasenably fast. Our experiment was
done on formulas with 10000 variables. The density starteah 3 and increased to 10 in steps of
0.1. For each fixed density the algorithm ran on 100 randorariges and we looked at the average
running time on these 100 instances. The results of thisrempat are summarized in Fig. 6.1.
As it is seen, the hardest instances are those with densityndrs. When the density is below 3,
the formula has too many solutions and it is easy to find oneeMthe density is higher than 10,
intuitively speaking, the formula contains a lot of infortioa about the planted solution and this
information guides the algorithm toward it.

The next set of experiments was aimed at figuring out the ngntime of WRW on random
planted instances of a fixed density. Our observations sghit were surprising. For density 10,
we ran the algorithm on instances with 10000 to 100000 veasall he running time was the highest
for instances with 10000 variable and then it reduced anglarged to a fixed value and remained
steady. We believe that this is because this number of Jagab not large enough to allow us to
see the asymptotic behavior of the algorithm. We observéahitas behavior when the density was
set to 4.5.

The last set of experiments was done to check how the numberiaibles of specific weight
changes during the course of the algorithm. For this expartnk is set to 5, so there are ten
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Running Time

3 4 5 6 7 8 9 10
Density

Figure 6.1: Running time vs. density.

classes of variables. The experiment was done on formuldgs 000 variables and density 30.
The results are summarized in the Fig. 6.2. Each curve shgws. the total number of variables
with a specific weight in 1000 experiments. The solid linesespond ta, . . ., ck, the dashed to
co, - - -, C_ 11 Starting with the upmost ones and going down. Since all éxygarts were finished
before 90000 steps, when time approaches to 90000 in tha,galtines become straight. Planted
solution was chosen to be all ones. Firstly, we see that fdr AI< | < K we haveq > ¢ + 1,
which agrees with Claim 1. Secondly, wher— 1 we have the valué;/b;; growing, while the
valuea;/a;+1 decreases, as it could have been predicted by (6.3), (6d4§6aB). This intuitively
means that the weights are more and more evenly distribwedomes, while there are more zeros
with small weights than with bigger weights.
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Number of Variables

1
1 2 3 4 5 6
Running Time

Figure 6.2: Number of variables with different weights vmd.
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