
THEORETICAL ANALYSIS OF

PRACTICAL HEURISTICS FOR SATISFIABILITY

by

Evgeny Skvortsov

B.Sc., Ural State University, 2001

M.Sc., Ural State University, 2003

A THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OFPHILOSOPHY

in the School

of

Computing Science

c© Evgeny Skvortsov 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without the permission of the author.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

The SATISFIABILITY problem (SAT) is one of the central subjects of research in modern computing

science. This problem provides a rich language to model practical problems. Moreover modern SAT

solvers are capable of solving large instances of SAT and canbe successfully applied to industrial

scale problems. Since SAT is NP-complete the success of the practical SAT algorithms apparently

contradicts the belief that NP-complete problems are hard to solve. One of the most promising

approaches to explaining this phenomenon is the typical case analysis.

Local search principles are actively used for practical SATsolving, as well as for many other

important problems. In this work we perform a typical case analysis of the basic Local Search

algorithm on Random Planted 3-SAT. We show that a phase transition of the effectiveness of the

Local Search on Random Planted 3-SAT occurs at densityρ = 7
6 lnn. That is, for any constantε the

algorithm with high probability solves instances of density (7
6 + ε) ln n and with high probability

fails for instances of density(7
6 − ε) ln n.

The first successful practical algorithm based on local search principles, GSAT, was proposed

in 1991 by Selman, Levesque and Mitchell. In fact this algorithm is nothing more than basic Local

Search enhanced with plateau moves. At the time the algorithm was proposed, it was outperforming

state of the art systematic search solvers and it continues serving a basis for development of efficient

local search algorithms. We analyze GSAT theoretically on Random Planted 3-SAT and show that

it can solve Random Planted 3-SAT of any densityρ such thatρ > κ ln n for some constantκ. This

theoretical result agrees with, and partially explains, the empirical observation that adding plateau

moves dramatically improves Local Search.

Finally we propose a Weighted Random Walk algorithm. The algorithm is obtained by adding

a simple weighting scheme to the well known Random Walk algorithm. We prove that Weighted

Random Walk with high probability gives a good approximation. Moreover, in experiments this

simple algorithm solves Random Planted 3-SAT for any constant density.

iii

To my grandmother Galina Efimovna and
grandfather Evgeny Emeljanovich.

iv

Acknowledgments

I would like to thank my senior supervisor Dr. Andrei Bulatovfor the exciting joint work, continuous

support of the research and strong encouragement to pay attention to a physical activity as well as

to mental. I am also grateful to my supervisor Dr. David Mitchell for multiple fruitful discussions

of the topic of the thesis and encouragement to pursue research in the area of heuristics analysis.

I owe particular thanks for Dr. Funda Ergun, Dr. Evgeny Dantsin and Dr. Richard Vaughan, for

their questions and comments that helped me to look at the problem in a more broad context.

I am grateful to Ehsam Amiri for the fruitful interesting joint work and many discussions on the

topic of the thesis.

It is a pleasure to thank those who helped me to keep connection to the practical areas of com-

puter science while working on the thesis: Duncan Phillips,Ian Andrew Bell, Derek Ferguson and

Nick Arden.

I thank all my friends for their support, especially Yaroslav Litus, Bradley Coleman and Javier

Thaine for numerous discussions of the work.

Special thanks are owned to my wife Natalia Skvortsova and myparents Irina Skvortsova and

Sergej Skvortsov for their continuous support and encouragement.

v

Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Historical Perspective 1

1.1.1 Solving SATISFIABILITY . 2

1.1.2 Algorithms Analysis .. 4

1.2 Definitions .. 9

1.2.1 Basic Notions . 9

1.2.2 Classical Local Search algorithms 10

1.3 Main Results .12

2 Probabilistic tools 16

2.1 Chernoff Bounds .. 16

2.2 Azuma’s Inequality 17

2.3 Random Graphs .18

2.4 Wormald’s Theorem .. 19

vi

3 Local Search in Uniform Random 3-SAT 21

3.1 One Pass Local Search .. . 21

3.1.1 Model . 21

3.2 Local Search .27

3.2.1 Model . 27

3.2.2 Experiments . 30

4 Phase transition of basic Local Search 35

4.1 Success of Local Search 35

4.2 Failure of Local Search 39

5 On the Power of Plateau Moves 51

5.1 Main Result and General Intuition 51

5.2 Proof of the Main Result 52

5.3 Discussion .. 58

6 WRW: A Candidate to Solve Random Planted 3-SAT 59

6.1 Theoretical Analysis of the Approximation Ratio 59

6.1.1 Formula with All Clauses .. 59

6.1.2 Random Formula . 64

6.1.3 Discussion . 65

6.2 Experiments .. 66

Bibliography 69

vii

List of Tables

3.1 Dependence of the predicted and actual relative number of the satisfied clauses on

the density of the problem. .. . 34

viii

List of Figures

1.1 The basic Local Search algorithm (Iterative Improvement) 11

1.2 One Pass Local Search algorithm 11

1.3 The GSAT algorithm .. 12

1.4 The CSAT algorithm. .. . 13

1.5 The Random Walk Algorithm 14

1.6 The Weighted Random Walk Algorithm 15

3.1 Flow diagram .23

3.2 Empirical performance of LS and its prediction. The vertical axis shows the number

of unsatisfied clauses divided by the number of variables. The horizontal axis shows

the number of the step of the algorithm divided by the number of variables. 33

4.1 Caps and crowns .40

4.2 Straight Descent (a) and Modified Local Search (b) 42

4.3 A scheme of a 3-CNF. Every clause is shown as a rectangle with its literals rep-

resented by squares inside the rectangle. Literals corresponding to variables from

Lφν and fromvar
(

ϕ ↓[nν]\Sϕ,ν

)

are shown as diamonds and circles, respectively.

Shaded rectangles with vertical and diagonal lines represent clauses fromT φν and

Uφν , respectively. 47

6.1 Running time vs. density. 67

6.2 Number of variables with different weights vs. time. 68

ix

Chapter 1

Introduction

1.1 Historical Perspective

The SATISFIABILITY (or SAT) problem is important from both theoretical and practical points of

view. In this problem we are given a Boolean formula in CNF andthe question is whether there is an

assignment of values to variables that satisfies the formula. SAT is one of the first problems that was

proven to be NP-complete [14]. On the other hand, its practical importance is also unquestionable

since this problem is actively used as a framework to model many practical problems, such as hard-

ware and software verification [13, 51, 9], scheduling [52],some problems arising in bioinformatics

[47, 10] etc.

SAT is a decision problem, so a SAT algorithm must either prove that a solution exists or prove

that the CNF is unsatisfiable. But if there is no satisfying assignment one may wish to find an

assignment that satisfies the maximum number of clauses. Theoptimization problem of finding such

an assignment is called MAXIMUM SATISFIABILITY or MAX-SAT. In case we know that a solution

exists and want to find one, it may be convenient to consider the SAT problem as MAX-SAT, since

then optimization techniques can be applied to it. Algorithms that work for only satisfiable instances

are calledincomplete.

A k-CNF is a CNF formula in which each clause has at mostk literals, SAT restricted tok-

CNFs is calledk-SAT. Since fork ≥ 3 a CNF can be easily transformed into an equivalentk-CNF,

by introducing a linear number of auxiliary variables,k-SAT for k ≥ 3 is also an NP-complete

problem. In practice it is often the case that the length of clauses in the CNF is bounded above by

some small constant, so it is natural to model such classes ofproblems byk-SAT rather than general

SAT. Consequentlyk-SAT, and its simplest NP-complete subclass 3-SAT, are being extensively

studied in the worst and typical cases.

1

CHAPTER 1. INTRODUCTION 2

1.1.1 SolvingSATISFIABILITY

Great progress has been made in practical solving SATISFIABILITY problems in the last two decades.

Some problems that were considered to be intractable in the early 1990’s can be solved in less than

a second by modern solvers [51, 7].

There are two major classes of algorithms used in SAT solving: systematic searchand local

search. Systematic search algorithms explore the whole solution space by starting with all variables

unassigned and then assigning them one by one. If at some point no variable can be assigned without

making some clause false the algorithm backtracks. Systematic search algorithms are described most

naturally using recursion. The basic systematic search algorithm works as follows. Given a boolean

formulaϕ it picks a random variablexi, and obtains two smaller formulasϕ0 andϕ1 by assigningxi

to 0 and 1 respectively. For instance when we assignxi = 1 we can remove fromϕ all clauses that

containxi and we remove all literals¬xi. If an empty clause appears after such an assignment then

it means that the formula is made false and further exploration of the casexi = 1 is not required.

Then the algorithm is recursively applied toϕ0 andϕ1. If, say,ϕ0 happens to be satisfiable then the

satisfying assignment forϕ can be obtained from the satisfying assignment ofϕ0 andxi = 0. If

bothϕ0 andϕ1 are unsatisfiable thenϕ is also unsatisfiable.

Modern systematic search algorithms are based on the Davis-Putnam-Logemann-

Loveland (DPLL) procedure [18].Pure literal heuristicandunit propagationwere used in DPLL to

improve the performance of the systematic search. Modern solvers useclause learningfor further

speed up. We say that a literalxi (or ¬xi) is a pure literal inϕ if no clause inϕ contains literal¬xi

(xi respectively). It is obvious that if we have a pure literal inϕ then we can assign its variable to

satisfy this literal without risk of loosing solutions. So that is what the pure literal heuristic does.

Unit propagation looks for a clause inϕ that contains only one literal (a unit clause). If such

clause is found then the only variable occurring in this clause is assigned the value to satisfy the

literal (and the clause). Again we are guaranteed that this action will not make us lose any satisfying

assignments. It may happen that after pure literal rule or unit propagation were executed another

pure literal or unit clause are generated and we have a kind ofa chain reaction that simplifies the

formula substantially.

Clause learning works as follows. When a contradiction is reached and the algorithm needs to

backtrack, it tries to find a small set of variables which assignment made the rest of the formula

unsatisfiable and records them as a new clause. For instance if assigningx1 = 1, x2 = 1, x3 = 0

leads to a sequence of unit propagations and pure literal assignments that results in a generation of

CHAPTER 1. INTRODUCTION 3

the empty clause then we can conclude that no assignment thatcontainsx1 = 1, x2 = 1, x3 = 0 can

satisfy the formula. Thus we can add the clause(¬x1 ∧¬x2 ∧ x3) toϕ. Adding new clauses in turn

increases chances that unit propagation will be triggered more often and so fewer cases have to be

considered.

Local search algorithms are inherently incomplete. They explore the solution space partially

and aim at finding a satisfying assignment, without trying toprove that such an assignment does

not exist. The basic Local Search algorithm (also known as Iterative Improvement [32]) starts with

a random assignment and then works as follows. At each step itcomputes for each variable what

will be the change in the number of satisfied clauses if this variable is flipped (i.e. the value of

the variable is changed). LetU be a set of all variables for which flipping increases the number of

satisfied clauses. The algorithm picks a variable uniformlyat random fromU , flips it and goes to

the next step.

Local Search will fail to find a satisfying assignment if it gets trapped in a local maximum. That

is, where the current assignment is such that flipping any variable can only decrease the number

of satisfied clauses, or leave it unchanged.Plateau movesis a natural strategy that can be used to

find a better assignment after a local maximum is reached. If there is no variable that we can flip

to increase the number of satisfied clauses then we can consider the set of variables that does not

change this number and pick a variable to flip from it. It may happen that after some steps we

come to an assignment that will not be a local maximum. Enhancement of the basic Local Search

algorithm with plateau moves results in algorithms that arecalled GSAT and CSAT.

The GSAT algorithm is widely known for being the first successful practical heuristic developed

for SAT that was based on local search principles. It was proposed in the early 90s by Selman,

Levesque and Mitchell [54]; the name GSAT stands for “Greedy algorithm forSAT”. This algorithm

starts with a random assignment and then tries to improve theassignment greedily. That is, at every

step it flips one of the variables that give the maximum increase in the number of satisfied clauses

(the maximum possible increase can happen to be zero or even negative). If a satisfying assignment

is not found after a certain number of steps then the algorithm restarts. The number of steps to be

performed before a restart and the number of restarts to be done are two parameters of the GSAT

algorithm that can be tuned to improve performance on a specific class of problems one is interested

in. It is demonstrated in the paper where GSAT is introduced [54] that this algorithm outperforms

state-of-the-art systematic search algorithms of that time. Extensive empirical analysis of GSAT

was carried out by Gent et al. [24].

Later many algorithms were built on the basis of GSAT. In particular Gent and Walsh have

CHAPTER 1. INTRODUCTION 4

experimentally demonstrated [26, 25] that greediness is not very important for the success of GSAT.

The algorithm they designed, CSAT, works as the basic Local Search at assignments that are not

local maxima and switches to plateau moves when a local maximum is reached.

Local Search, GSAT and CSAT explore the solution space by making moves that do not decrease

the number of satisfied clauses1. A quite different approach is used in the Random Walk [50]

algorithm that was proposed by Papadimitriou [50]. This algorithm flips a variable to satisfy one

of the unsatisfied clauses even if that causes a substantial decrease in the total number of satisfied

clauses. While the basic Local Search algorithm is generic and can be applied to optimization of any

value function, Random Walk was developed specifically for SAT. Random Walk also starts from a

random assignment and then at every step an unsatisfied clause is selected uniformly at random, a

literal is selected uniformly at random from the clause and the variable corresponding to the literal

is flipped. The Random Walk algorithm was used as a basis for the practical WalkSat algorithm by

Kautz and Selman [53]. WalkSat picks an unsatisfied clause uniformly at random and then for each

of the variables in the clause it computes how many clauses will become unsatisfied if this variable

is flipped. It flips the variable that will cause the least number of clauses to become unsatisfied.

WalkSat happened to be very successfully at planning problems. WalkSat successfully solves SAT

encodings of hard planning problems faster than the best domain specific algorithms that existed

when WalkSat was introduced.

Many local search algorithms have been built upon GSAT and WalkSat (see Chapter 6 of [8] for

survey). Those algorithms are more sophisticated and more powerful. We believe that theoretical

analysis of these algorithm is crucial for further progressin solving SAT. And yet there is still lack

of theoretical understanding of the success even of the mostsimple Local Search algorithms: GSAT

and WalkSat.

1.1.2 Algorithms Analysis

Worst-case analysisof SAT algorithms deals with proving polynomial upper bounds for the al-

gorithms applied to subclasses of SAT, exponential bounds and approximation results. Since SAT

is NP-complete there is not much hope of designing a polynomial (or even sub-exponential [33])

algorithm solving it in the general case.

The best known algorithm [17] for solving the general case ofSAT takes2n−o(n) polynomial

time steps. Finding an algorithm that can solve SAT exponentially faster than in2n steps or proving

1Though flips that decrease the number of satisfied clauses canbe done by GSAT they do not play substantial role in
the success of GSAT [26].

CHAPTER 1. INTRODUCTION 5

that such algorithm does not exist is a well known open problem. Upperbounds of the formcn, c < 2,

were obtained for many important large subclasses of SAT. For instance, algorithms working within

such bounds were found fork-SAT [16], problems with bounded ratio of the number of clauses to the

number of variables [42], problems with bounded number of positive (or negative) occurrences of

variables [34] etc. These results are proven by providing asplitting algorithm, i.e. an algorithm that

reduces a SAT instance to subproblems of smaller size. Depending on the size of these subproblems

the number of such recursive calls required to solve the problems differs. There are techniques

[44] that allow bounding this number by analyzing the sizes of the subproblems. To apply these

techniques, size of a formula does not have to be defined as thenumber of clauses or number of

variables, but can be an arbitrary positive function of the formula.

A great amount of work [62, 35, 6] has been done in the area of approximating the solution of

the MAX-SAT problem. The best algorithm for the general MAX-SAT problem so far, allows to

get a 0.77 approximation of the optimum [6]. The case of 3-SATis especially interesting in the

context of approximating the solution. It is not hard to see that the expected number of clauses

satisfied by a random assignment equals7
8 of the total number of clauses in the formula. On the

other hand Håstad’s celebrated result [29] states that, assumingP 6= NP , there is no deterministic

algorithm that could be guaranteed to achieve a better approximation of 3-SAT. This surprising

result was obtained using the notion ofProbabilistically Checkable Proof (PCP)and the famous

PCP-theorem [5]. Thus the question of optimal polynomial time approximability of 3-SAT in the

worst case is essentially closed. And consequently we have that for general SAT the approximation

ratio that can be achieved in polynomial time is bounded between0.77 and 7
8 = 0.875.

The worst case performance of GSAT has been studied in two contexts. Let us recall that the

algorithm can be tuned by setting the number of steps done before a restart and the number of

restarts. So the algorithm can be used as a polynomial time algorithm as well as exponential. Worst

case efficiency of GSAT in polynomial settings applied to thek-SAT problem is not better than the

performance of the basic Local Search algorithm. It guarantees only k
k+1-th fraction of clauses to

become satisfied [28, 46], which is also always achievable bythe basic Local Search. The worst case

efficiency of GSAT and CSAT as exponential algorithms for formulas of bounded clause to variable

ratio was studied by Hirsch. In particular it was shown that if the number of restarts is2cn, c < 1,

and each restart makesn steps then CSAT succeeds as a Monte-Carlo randomized algorithm. This

upper bound was obtained for its execution without use of plateau moves, that is essentially the

bound was proven for the Local Search with restarts.

This work is devoted to thetypical case analysisof SAT algorithms. In this approach we assume

CHAPTER 1. INTRODUCTION 6

that problem instances are generated according to some probabilistic distribution. Then we can try

to prove thatwith high probability(i.e. with probability that tends to 1 as the size of the problem

goes to infinity), the algorithm solves the problem or gives agood approximation of the optimal

solution. Performance of the algorithm with respect to the typical case can be much better than it is

in the worst case.

Until the early 1990’s it appeared that SAT is a very easy problem in the typical case and several

very simple algorithms were proposed for it (see for example[27, 31, 37]). In 1992, it was argued

by Selman, Levesque and Mitchell [48, 55] that SAT formulas that are hard on average, can be

generated by picking some natural distributions and parameter values. According to the proposed

modelrandomk-SAT of fixed density(or simplyRandomk-SAT), the problem is sampled as follows:

given adensityρ and a number of variablesn, a formula is picked uniformly at random among all

CNFs containingρn k-clauses over then variables, where ak-clause is a clause containing exactly

k literals corresponding tok distinct variables.

A randomly generated 3-SAT problem may happen to have a solution or to be unsatisfiable.

Thus it is a natural question to ask what is the probability that a Random 3-SAT of densityρ is

satisfiable. It was experimentally shown that there is a thresholdρ0 ≈ 4.25, such that ifρ < ρ0,

then with high probability the problem has a solution and otherwise with high probability there is no

solution. More experimental evidence of this phenomenon was published shortly thereafter, see e.g.

[15, 45]. In 1994 Kirkpatrik and Selman noted that this threshold behavior of the system is known

in statistical physics as aphase transition.

The term “phase transition” in statistical physics generalizes the phase transition of medium

between solid, liquid, gas and plasma states. Intuitively speaking, a system demonstrates the phase

transition phenomenon with respect to parameterp if for some values small change ofp leads to

a dramatic change of the behavior of the system. Statisticalphysics has certain techniques for

experimental data analysis that indicate whether a system demonstrates the phase transition at some

point or not. Those techniques were used by Kirkpatrik and Selman in their experimental research

of 3-SAT.

In 1999 Freidgut [22] succeeded in rigorously proving the existence of a functionρk
0 = ρk

0(n)

such that forρ < ρk
0(n) a Randomk-SAT has a solution with high probability and forρ > ρk

0(n) it

does not. Plenty of results were bounding bounding the rangewhere the transition happens in 3-SAT

from below [57, 56, 11, 1, 38] and above [36, 59, 39, 19]. The best lower bound at the moment [38]

is 3.520 and the best upper bound [19] is 4.506.

All lower bounds for the phase transition were obtained by providing an algorithm and then

CHAPTER 1. INTRODUCTION 7

proving that with high probability it solves the problems ofdensity below the bound. A breakthrough

in this area is due to Achlioptas in 2000. He unified all previously known algorithms in a so called

Card Gameframework [2]. These algorithms are essentially differentversions of DPLL algorithms

without backtracking. Since there is no backtrack, once a variable gets its value it never changes

it. Thus once a variable is assigned the formula can be simplified by removing unsatisfied literals

corresponding to the variable and clauses that became satisfied by that assignment. In the Card

Game framework a state of the run of the algorithm is represented as a layout of cards. Each clause

is represented as a column of cards, each of which corresponds to a literal. So when the algorithm

decides what variable to assign a value for, it can either pick the variable uniformly at random

among those which are still unassigned, or pick a size of the clause and then pick a variable that

corresponds to a random literal in a random clause of this size. Once the variable is assigned the

cards that correspond to unsatisfied literals and columns that correspond to satisfied clauses are

removed. If the algorithm is acting within the Card Game framework its state can be described as

k + 2 numbers. Namely numbers ofl-clauses for1 ≤ l ≤ k, the number of satisfied clauses and

the number of unsatisfied clauses. This framework is somewhat restricting but still allows a wide

range of algorithms to be implemented. For instance the PureLiteral heuristic does not fit into this

framework, but the Unit Propagation algorithm does.

To analyze an algorithm represented in the Card Game framework Achlioptas used Wormald’s

theorem. This theorem allows to make the transition from a discrete stochastic process to a de-

terministic system of differential equations. The obtained system of differential equations can be

studied by numerical methods. The Wormald’s theorem was originally applied in the analysis of

algorithms on random graphs and the Card Game framework madeit possible to use it for SAT al-

gorithms. The intuitive idea behind the theorem is that discrete parameters of a large system behave

almost as if they were continuous. For instance if we plot a graph of the number of satisfied clauses

versus time for Local Search, then as the number of the variables grows the graph will look more

and more like a graph of a smooth function. Wormald’s theoremprovides a rigorous basis for using

this phenomenon.

When it was shown that Random 3-SAT for densities close to 4.25 was hard for existing algo-

rithms it became a natural problem to find out whether an efficient algorithm exists for this distribu-

tion of 3-SAT or not. Statistical physics analysis of the 3-SAT solution space resulted in development

of theSurvey Propagation[51] algorithm that is highly efficient on random 3-SAT instances in ex-

periments. The algorithm is capable of finding solutions of large (around106 variables) instances of

random 3-SAT with density close to the thresholdρ0, but is yet to be rigorously analyzed and that

CHAPTER 1. INTRODUCTION 8

seems to be very hard.

A random 3-SAT of fixed density with a planted solution(or simplyRandom Planted 3-SAT[3])

distribution is easier to solve and it provides a model for overconstrained [60] practical problems.

To generate ak-CNF according to this distribution one first picks some assignment of values to the

variables. Then a formula ofdensityρ is sampled uniformly at random from all formulas withρn

clauses that are satisfied by that assignment. Experimentaldata suggest that random planted 3-SAT

is easier than random 3-SAT: modern practical algorithms are capable of solving it for any density.

It was first shown by Flaxman in 2003 that Random Planted 3-SATof high constant density can

be solved in polynomial time [21]. A specific algorithm, named Spectral Heuristicwas developed

to prove that. The algorithm deals with a graphG of co-occurenses of literals, i. e. a graph in which

vertices are literals and two literals are connected by an edge if they occur in the same clause. It was

observed that graphG has negative eigenvalues and that the eigenvectors corresponding to the most

negative eigenvalue ofG can be used to get a solution of the problem.

Later Feige and Vilenchik [58] developed another algorithmwith similar performance on Ran-

dom planted 3-SAT. The algorithm consists of two stages. First a value for each variable is selected

so as to satisfy as many literals as possible. That is, the variable is assigned 1 or 0 based on whether it

occurs more often in positive or negative literals respectively. Next a specific kind of a Local Search

algorithm called thek-opt heuristicis executed. At each step the algorithm has an assignment~v and

computes the setS of all clauses of the formula that are satisfied by~v. Then all subsets of variables

of size at most logarithm of the total number of variables areconsidered. A variable is flipped if that

results in an assignment that satisfies a set of clausesS′ such thatS′ ⊃ S.

The k-opt heuristic algorithm is more intuitive than the spectral heuristic, but still uses quite

different ideas than the practical algorithms. Next we discuss typical case analysis of practical algo-

rithms. We focus on two heuristics used in practical local search solvers to escape local maxima and

boost algorithm performance: plateau moves and flipping of avariable occurring in an unsatisfied

clause.

The typical case performance of the GSAT algorithm for random planted 3-SAT was studied by

Koutsoupias and Papadimitriou [40]. It was shown that for linear densityρ = κn GSAT succeeds

with high probability. As in the proof of the upper bound of the time complexity in [30] plateau and

downward moves were not used in the analysis. Also the authors conjectured that their upper bound

is not tight and that GSAT can solve random planted 3-SAT for alarge constant density.

Later Gent [23] adapted techniques of Koutsoupias and Papadimitriou [40] to show that even for

theStupid Algorithm(i. e. an algorithm that assigns 1 or 0 to a variable dependingon whether this

CHAPTER 1. INTRODUCTION 9

variable occurs more often in positive or negative literals) there exists a large constantκ0 such that

this algorithm can solve Random Planted 3-SAT for densityκ lnn, for anyκ > κ0.

The Random Walk algorithm was initially proposed by Papadimitriou [50] and in the same paper

it was also shown that it can find solution for any 2-SAT problem in expected quadratic time. The

algorithm was also analyzed theoretically in the typical case and tested for 3-SAT by Alekhnovich

and Ben-Sasson [3]. They proved that the algorithm solves Random 3-SAT in linear time for den-

sities lower than1.6 and there is experimental evidence that the algorithm succeeds for densities up

to 2.7. On the other hand they proved that there exists a constantc such that RW does not solve

instances with planted solution of density greater thanc.

1.2 Definitions

1.2.1 Basic Notions

A 3-CNF is a conjunction of3-clausesi.e. clauses with exactly 3 literals. As we consider only

3-CNFs, we will always call them just clauses. Depending on the number of negated literals, we

distinguish 4 types of clauses:(−,−,−), (+,−,−), (+,+,−), and(+,+,+). If ϕ is a 3-CNF over

variablesx1, . . . , xn, anassignmentfor these variables is a Booleann-tuple~u = (u1, . . . , un), so

the value ofxi is ui. Let~v′i be a vector obtained from~v by flipping thei-th coordinate. Statements

“c is a clause inϕ” and “clausec is satisfied by~v” we denote byc ∈ ϕ andc(~v) respectively.

The densityof a 3-CNFϕ is the numbermn wherem is the number of clauses, andn is the

number of variables inϕ. The uniform distribution of 3-CNFs of densityρ (density may be a

function of n), Φ(n, ρn) is the set of all 3-CNFs containingn variables andρn clauses together

with the uniform probability distribution on this set. To sample a 3-CNF according toΦ(n, ρn), one

chooses uniformly and independentlyρn clauses out of the23
(n
3

)
possible clauses. Thus, we allow

repetitions of clauses, but not repetitions of variables within a clause.Random 3-SATis the problem

of deciding the satisfiability of a 3-CNF randomly sampled accordingly toΦ(n, ρn). For short, we

will call such a random formula a 3-CNF fromΦ(n, ρn).

Theuniform planteddistribution of 3-CNF of densityρ is constructed as follows. First, choose

at random a Booleann-tuple~u, theplantedsatisfying assignment. Then letΦplant(n, ρn, ~u) be the

uniform probability distribution over the set of all 3-CNFsover variablesx1, . . . , xn with density

ρ and such that~u is a satisfying assignment. For our purposes we can always assume that~u is

the all-ones tuple, that is a 3-CNF belongs toΦplant(n, ρn, ~u) if and only if it contains no clauses

of the type(−,−,−). We also simplify the notationΦplant(n, ρn, ~u) by Φplant(n, ρn). To sample

CHAPTER 1. INTRODUCTION 10

a 3-CNF according toΦplant(n, ρn) one chooses uniformly and independentlyρn clauses out of

7
(
n
3

)
possible clauses of types(+,−,−), (+,+,−), and(+,+,+). Random Planted 3-SATis the

problem of deciding the satisfiability of a 3-CNF fromΦplant(n, ρn).

The problemsRandom MAX-3-SATandRandom Planted MAX-3-SATare the optimization ver-

sions of Random 3-SAT and Random Planted 3-SAT. The goal in these problems is to find an assign-

ment that satisfies as many clauses as possible. In particular we study Local Search and its practical

modification GSAT algorithm. Local Search terminates when it reaches alocal maximumof the

function

Vϕ(~x) = |{c ∈ ϕ | c(~x)}|.

That is when the assignment~v under consideration is such that there is no variable which can be

flipped to increase the number of satisfied clauses. In this case we will just say that~v is a local

maximum ofϕ. The functionVϕ is easy to compute and we will use it in the pseudocode.

Below we define several notions assuming thatϕ is sampled according to probability distribution

Φ(n, ρn). The definitions are analogous forϕ ∈ Φplant(n, ρn). By saying that a statementE(ϕ)

is truewith high probabilityfor ϕ ∈ Φ(n, ρn) we mean that probability of eventE(ϕ) tends to1

for ϕ ∈ Φ(n, ρn), n → ∞. We shall also use the standard acronym “whp”. For arbitraryfunctions

f(n), g(n) we denote equalityf(n) = g(n) + o(n) by f(n) ≈ g(n) and we writef(n) . g(n) if

inequalityf(n) ≤ g(n) holds for all large enoughn.

Let ϕ be sampled according to probability distributionΦ(n, ρn) and letE be some event. We

say that the probability distributionΦ(n, ρn) demonstrates aphase transition with respect toE if

there is a functionρ0(n) such that for anyε > 0, for ρ > ρ0(1 + ε) we haveP (E)−→ 1, asn

goes to infinity, and forρ < ρ0(1 − ε) we haveP (E)−→ 0. In the 3-SAT phase transition we have

E = “formula ϕ is unsatisfiable”. The functionρ0(n) is calledthe phase transition threshold. Note

that the phase transition threshold is not necessarily a constant. We also apply the notion of phase

transition to the performance of Local Search on Random Planted 3-SAT, and in this case we have

E = “Local Search solvesϕ”.

1.2.2 Classical Local Search algorithms

Local Search, GSAT, CSAT. A formal description of the Local Search algorithm (LS) is given

in Fig. 1.1. Observe that LS stops when it reaches a local maximum in the number of unsatisfied

clauses. We shall also study One Pass Local Search (OLS), a simplified version of LS. Like LS, OLS

flips variables that give an increase in the number of satisfied clauses, but it considers any variable

only once (see Fig. 1.2).

CHAPTER 1. INTRODUCTION 11

INPUT: 3-SAT formulaϕ over variablesx1, . . . , xn.
OUTPUT: Booleann-tuple~u, which is a local maximum ofϕ.
METHOD:

pick uniformly at random a Booleann-tuple~u
let U = {xi | V(~u′i) > V(~u)}
while U is not empty

pick uniformly at random a variablexj from U
changethe value ofxj in ~u
recomputeU

return ~u

Figure 1.1: The basic Local Search algorithm (Iterative Improvement)

INPUT: 3-SAT formulaϕ over variablesx1, . . . , xn.
OUTPUT: Booleann-tuple~u, which is a local maximum ofϕ.
METHOD:

pick uniformly at random a Booleann-tuple~u
let U = {xi | V(~u′i) > V(~u)}
for i in 1, . . . n

if xi belongs toU
changethe value ofxi in ~u
recomputeU

return ~u

Figure 1.2: One Pass Local Search algorithm

Given an assignment~u and a clausec it will be convenient to say thatc votesfor a variablexi

to have value 1 ifc contains literalxi and its other two literals are unsatisfied. In other words if

either (a)c is not satisfied by~u, and it will be satisfied if the value ofxi is changed, or (b) the only

literal in c satisfied by~u is xi. Similarly, we say thatc votes forxi to have value0 if c contains the

negation ofxi and its other two literals are not satisfied. Using this terminology we define the set

U (see Fig. 1.1, 1.2) as the set of all variables such that the number of votes received to change the

current value is greater than the number of those to keep it.

The GSAT algorithm is presented in Fig. 1.3. The CSAT algorithm is similar to GSAT, but

without greediness as shown in Fig. 1.4. In this work we are interested in these algorithms as

decision algorithms rather than optimization algorithms,so to keep the pseudocode simple we return

fail rather then remembering and returning the best assignment that was considered.

CHAPTER 1. INTRODUCTION 12

INPUT: A 3-CNFϕ, integersMAXTRIES, MAXFLIPS

OUTPUT: fail or an assignment~v that satisfiesϕ
METHOD:

do MAXTRIES times
pick uniformly at random a Booleann-tuple~v
do MAXFLIPS times

if ~v satisfiesϕ then return ~v
pick a variablexi such thatV(~v′i) is maximal uniformly at random
let ~v = ~v′i

return fail

Figure 1.3: The GSAT algorithm

Random Walk. Random Walk (see Fig. 1.5) is a very simple algorithm proposed by Papadimitriou

[50]. It starts with a random assignment and at every step an unsatisfied clauses is picked uniformly

at random. Then a literal in the clause is selected uniformlyat random and the corresponding

variable is flipped.

1.3 Main Results

In this work we make a contribution into understanding the effectiveness of practical local search

heuristics. Our first result is a typical case study of the performance of the basic Local Search for

Random 3-SAT and Random Planted 3-SAT. For Random 3-SAT of arbitrary constant densityρ

we show that basic Local Search does not find an optimal solution but returns an assignment that

satisfiescρn clauses. The constantc is less than7
8 . Thus Local Search typically achieves a result

which is NP-hard to achieve in the worst case. While Random 3-SAT becomes unsatisfiable whenρ

is greater than the phase transition threshold (≈ 4.25) the Random Planted 3-SAT gets easier since

counting the number of positive and negative occurrences ofvariables can help with assigning them

correct values. We discovered that basic Local Search does not solve Random Planted 3-SAT for

any constant density. But for the density of the formρ = κ lnn basic Local Search has a phase

transition atκ = 7/6. Namely for constantκ < 7/6 basic Local Search whp does not solve the

Random 3-SAT and forκ > 7/6 whp it does.

We generalize the Card Game [2] to model One-Pass Local Search (OLS), a restricted version

of the Local Search (LS) algorithm that considers each variable only once, and prove the following

CHAPTER 1. INTRODUCTION 13

INPUT: 3-SAT formulaϕ over variablesx1, . . . , xn, integersMAXFLIPS, MAXTRIES

OUTPUT: Booleann-tuple~v, which is a local maximum ofϕ.
METHOD:

let U = {xi | V(~v′i) > V(~v)}
let U0 = {xi | V(~v′i) = V(~v)}
do MAXTRIES times

pick uniformly at random a Booleann-tuple~v
do MAXFLIPS times

if U ∪ U0 is empty
return fail

if U is not empty
pick uniformly at random a variablexj fromU

else
pick uniformly at random a variablexj fromU0

changethe value ofxj in ~v
recomputeU andU0

if ~v satisfiesϕ
return ~v

return fail

Figure 1.4: The CSAT algorithm.

Theorem 1 For any positiveρ there is a constantω such that for a random 3-CNFΦ(n, ρn) whp
the OLS algorithm finds an assignment such that the number of satisfied clauses equalsωn+ o(n).

Then we build a more sophisticated model to be able to get a system of differential equations

describing the work of the Local Search algorithm. To apply Worlmald’s theorem to that model we

rely on a certain assumption (See Assumption 1 in Section 3.1). Intuitively the assumption states

that at each step of the algorithm the pair of the formula and the assignment remains random given

the parameters of the process we are tracking.

We use this assumption in the following theorem.

Theorem 2 If Assumption 1 is true then for any positiveρ there is a constantω such that for a
random 3-CNFΦ(n, ρn) almost surely the LS algorithm finds an assignment such that the number
of satisfied clauses equalsωn+ o(n).

The existence of a phase transition in performance of the Local Search applied to Random

Planted 3-SAT is formally stated in the following theorem:

Theorem 3 (1) Letρ ≥ κ · lnn, andκ > 7
6 . Then Local Search whp finds a solution of Random

Planted 3-SAT of densityρ.

CHAPTER 1. INTRODUCTION 14

INPUT: A CNFϕ containingn variables, integersMAXFLIPS

OUTPUT: An assignment~x
METHOD:

let ~x be a random vector.
for step from 1 toMAXFLIPS do

pick a random unsatisfied clauseC in ϕ
for each variablexj in C do

let xj = ¬xj

return ~x

Figure 1.5: The Random Walk Algorithm

(2) Let c ≤ ρ ≤ κ · lnn, wherec is an arbitrary positive constant, and0 < κ < 7
6 . Then Local

Search whp does not find a solution of Random Planted 3-SAT of densityρ.

Next we move to the analysis of the Local Search enhanced withplateau moves. All our proofs

work for both GSAT and CSAT, and for simplicity we formulate theorems for GSAT. It follows from

Corollary 1 (see Section 4.2) that for any finite densityρ the GSAT algorithm satisfiesc1n, c1 > 0

more clauses than LS. The gain in performance from plateau moves is more impressive for Random

Planted 3-SAT. While LS has a phase transition at7
6 lnn, GSAT solves Random Planted 3-SAT for

any logarithmic density. This is stated formally in the following theorem.

Theorem 4 For anyκ > 0 GSAT with settingsMAXFLIPS= n60/κ+3, MAXTRIES= 1 finds a solu-
tion for ϕ ∈ Φplant(n, ρn), ρ = κ ln n whp.

The second heuristic we analyze in this work uses dynamic weights on variables. We introduce

and study Weighted Random Walk, a modification of the well known Random Walk algorithm. In

this algorithm we favor selection of variables for a flip thatwere flipped recently. To do that we

assign each variable a positive integer weight and flip a variable only if its weight is one. Similarly

to the Random Walk we pick an unsatisfied clause uniformly at random. For each variable in the

clause if weight is strictly greater than one we decrease theweight by one and if the weight is exactly

one we flip the variable. Every step two variables are selected uniformly at random and have their

weights increased by one. Pseudocode for the algorithm is given in Fig. 1.6. Weighted Random

Walk with settingMAXWEIGHT= 1 turns into Random Walk. We increase weights of two variables

at each step and the number 2 appears to be arbitrary. We couldmake the number of variables that

have their weight increased to be a tuning parameter of the algorithm, but the analysis is the easiest

if the number is two.

CHAPTER 1. INTRODUCTION 15

INPUT: A CNFϕ containingn variables, integersMAXFLIPS, MAXWEIGHT

OUTPUT: An assignment~x
METHOD:

let ~x be a random vector.
let w(i) = 1, for i ∈ {1, . . . , n}
for step from 1 toMAXFLIPS do

pick a random unsatisfied clauseC in ϕ
for each variablexj in C do

let w(j) = w(j) − 1
if w(j) = 0:

let xj = ¬xj, w(j) = 1
pick two random variables, and for each of them do

if its weight is less thanMAXWEIGHT then increaseit by one
return ~x

Figure 1.6: The Weighted Random Walk Algorithm

Our experiments suggest that Weighted Random Walk (WRW) performs well at finding solutions

of random planted instances of 3-SAT of any fixed density. This is in contrast with Alekhnovich and

Ben-Sasson’s exponential lower bound for the running time of the standard random walk algorithm

for solving random planted 3-SAT of density larger than a constant [3]. Random Planted 3-SAT is

not a hard distribution for modern practical algorithms, but Weighted Random Walk is much simpler

and is easier to analyze theoretically.

We prove that Weighted Random Walk solves the Full CNF (CNF consisting of all clauses that

are satisfied by the planted solution) and for random CNFs with planted solution of unbounded

densitiesρ = ρ(n) −→
n−→∞

∞ for anyε > 0 whp it finds an assignment that differs from the planted

solution on at mostε-fraction of all variables.

Theorem 5 Letϕ be a random 3-CNF with a planted solution~r of densityρ = ρ(n) −→
n−→∞

∞, and

let ε > 0 be some constant. With high probability WRW withMAXWEIGHT ≥ 5 finds a vector
that differs from~r in at mostεn coordinates.

Chapter 2

Probabilistic tools

In this chapter we formulate several statements regarding properties of stochastic processes that will

be used throughout the work.

2.1 Chernoff Bounds

LetB(p, n) be random variable, that is the number of successes inn independent trials. Ifp is the

probability of success in each trial, then the following inequality is known as Chernoff Bound [49]

P

(∣
∣
∣
∣

B(p, n)

n
− p

∣
∣
∣
∣
≤ ε

)

≤ 2e−
ε2n
3p .

Next we prove a lemma that generalizes the Chernoff bound to linear combinations of binomial

random variables.

Lemma 1 Let r, s be integers,θ < 1 a positive real, and letα1, . . . , αr, β1, . . . , βs be some real
constants. There are constantsλ andC such that we have

P (X > Y) < Ce−λE(Y) (2.1)

for any random variablesX andY such thatE (X) < θE (Y) andX =
r∑

i=0
αiXi, Y =

s∑

i=0
βiYi

for some binomial random variablesX1, . . . ,Xr, Y1, . . . , Ys.

Proof. Let ξ = 1−θ
(r+s)max(max(αi),max(βi))

. It is easy to see that eventX > Y implies occurrence

of at least one of the events from the set

S = {{Xi ≥ E (Xi) + ξE (Y)}i∈{0,...,r}, {Yi ≤ E (Yi) − ξE (Y)}i∈{0,...,s}}.

16

CHAPTER 2. PROBABILISTIC TOOLS 17

Indeed, inequalityX < Y follows from inequalities

Xi < E (Xi) + ξE (Y)i∈{0,...,r}

Yi > E (Yi) − ξE (Y)i∈{0,...,s}

E (X) < θE (Y) .

Application of Chernoff bound to each ofXi andYi gives us inequalities

P (|X − E (Xi) | > ξE (Y)) < e
−E(Xi)ξ2

„

E(Y)

E(Xi)

«2

/3
≤ e−ξ2

E(Y)θ−2/3,

P (|Y − E (Yi) | > ξE (Y)) < e
−E(Yi)ξ

2

„

E(Y)

E(Yi)

«2

/3
≤ e−ξ2

E(Y)/3.

Thus if we setλ = ξ2/3 andC = r + s then using the union bound we can conclude that

inequality (2.1) holds. 2

2.2 Azuma’s Inequality

We say that a sequence of random variablesX0,X1, . . . is asupermartingale(or submartingale) if

for anyk we haveE(Xk+1|X1, . . . ,Xk) < Xk (orE(Xk+1|X1, . . . ,Xk) > Xk respectively).

Let X0,X1, . . . be a submartingale andc,∆ constants such that for eachk, |Xk − Xk−1| ≤

c,E (Xk −Xk−1) ≥ ∆. Then according to Azuma’s inequality [49] for allt and anyλ we have

P (Xt −X0 ≤ λ) ≤ 2e−
(t∆−λ)2

2tc2 .

The following Observation can be easily done using the Azuma’s inequality for supermartingales

(see Lemma 1 from [61]).

Observation 1 (1) LetYt be a supermartingale such thatE (Yt+1|Yt) ≤ Yt and|Yt+1 −Yt| < c for

somec. ThenP (Yt − Y0 ≥ bc) ≤ e−
b2

2t , for anyb > 0.
(2) This inequality implies that ifE (Yt+1|Yt) < Yt−d and|Yt+1−Yt| < c ≤ 1 then the process

Zt = Yt − dt is a supermartingale and we have the following inequality

P (Yt − Y0 ≥ bc) = P

(

Zt − Z0 ≤

(

b+
dt

c

))

≤ e−
(b+dt)2

2tc2 ≤ e−bd. (2.2)

CHAPTER 2. PROBABILISTIC TOOLS 18

2.3 Random Graphs

We use some standard probabilistic tools of random graph analysis which can be found in the book

[4].

Let ϕ be a 3-CNF with variablesx1, . . . , xn. Theprimal graphG(ϕ) of ϕ is the graph with

vertex set{x1, . . . , xn} and edge set{xixj | literals containingxi, xj appear in the same clause}.

ThehypergraphH(ϕ) associated withϕ is a hypergraph, whose vertices are the variables ofϕ and

edges are the 3-element sets of variables belonging to the same clause. Note that ifϕ ∈ Φplant(n, ρn)

or ϕ ∈ Φ(n, ρn) thenH(ϕ) is sampled uniformly at random among all 3-hypergraphs withn

vertices andρn edges.

We will need the following properties that are possessed by graphs of logarithmic and smaller

density.

Lemma 2 Letρ < κ ln n for a certain constantκ, and letϕ ∈ Φplant(n, ρn).
(1) For anyα < 1, whp all the subgraphs ofG(ϕ) induced by at mostO(nα) vertices have

average degree less than 5.
(2) The probability thatG(ϕ) has a vertex of degree greater thanln2 n is o(n−3).

Proof. (1) This part of the lemma is very similar to Proposition 13 from [20], and is proven in a

similar way. LetU be a fixed set of variables with|U | = ℓ. The number of 3-element sets of

variables that include 2 variables fromU is bounded from above by
(
ℓ

2

)

(n − 2) ≤
1

2
ℓ2n.

For each of them the probability that this set is the set of variables of one of the random clauses

chosen forϕ (we ignore the type of the clause) equals

κn lnn
(n
3

) =
6κ ln n

(n − 1)(n − 2)
.

Thus, the probability that2ℓ of them are included as clauses is at most

(1
2ℓ

2n

2ℓ

)(
6κ ln n

(n− 1)(n − 2)

)

≤

(

3eκ ·
ℓ lnn

n

)2ℓ

.

Let d = e(3eκ)2. Using the union bound, the probability that there exists a required setU with at

CHAPTER 2. PROBABILISTIC TOOLS 19

mostnα variables is at most

nα
∑

ℓ=2

(
n

k

)(√

d

e

ℓ lnn

n

)2ℓ

≤
nα
∑

ℓ=2

(
ne

ℓ
·
d

e
·
ℓ2 ln2 n

n2

)ℓ

≤
nα
∑

ℓ=2

(

d
nα ln2 n

n

)ℓ

= (dnα−1 ln2 n)2
1 − (dnα−1 lnn)ℓ−1

1 − dnα−1 lnn

= O(n2α−2 ln4 n).

(2) The probability that the degree of a fixed vertex is at least ln2 n is bounded from above by

(
1

n

)ln2 n(3κn lnn

ln2 n

)

≤ n− ln2 n

(
3eκn ln n

ln2 n

)ln2 n

=

(
3eκ

lnn

)ln2 n

,

wheren− ln2 n is the probability that some particularln2 n random clauses includex, and
(3κn ln n

ln2 n

)

is the number ofln2 n-element sets of clauses. Then it is not hard to see that

n

(
3eκ

lnn

)ln2 n

−→ 0,

asn goes to infinity. 2

2.4 Wormald’s Theorem

The key tool in our analysis in Chapters 3 and 6 is the theorem by Wormald [61] that allows one to

replace probabilistic analysis of a combinatorial algorithm with analysis of a deterministic system

of differential equations.

All random processes we consider are discrete time random processes. Such a process is a

probability spaceΩ denoted by(Q0, Q1, . . .), where eachQi takes values in some setS. Con-

sider a sequenceΩn, n = 1, 2, . . ., of random processes. The elements ofΩn are sequences

(q0(n), q1(n), . . .) where eachqi(n) ∈ S. For convenience the dependence onn will usually be

dropped from the notation. Asymptotics, denoted by the notation o andO, are forn → ∞, but uni-

form over all other variables. For a randomX, we sayX = o(f(n)) alwaysif max{x|P (X = x) 6=

CHAPTER 2. PROBABILISTIC TOOLS 20

0} = o(f(n)). We denote byS+ the set of allht = (q0, . . . , qt), eachqt ∈ S for t = 0, 1

By Ht we denote thehistory of the processes, that is then × (t + 1)-matrix with entriesQi(j),

0 ≤ i ≤ t, 1 ≤ j ≤ n. A function f(u1, . . . , uj) satisfiesLipschitz conditionon D ⊆ R
j if a

constantL > 0 exists with the property that

|f(u1, . . . , uj) − f(v1, . . . , vj)| ≤ L

j
∑

i=1

|uj − vi|

for all (u1, . . . , uj) and(v1, . . . , vj) in D.

Theorem (Wormald, [61]) Let k be fixed. For1 ≤ ℓ ≤ k, let y(ℓ) : S+ → R andfℓ : R
k+1 → R,

such that for some constantC and all ℓ, |y(ℓ)| < Cn for all ht ∈ S+ for all n. Suppose also that for
some functionm = m(n):

(i) for all ℓ and uniformly over allt < m, P
(

|Y
(ℓ)
t+1 − Y

(ℓ)
t | > n1/5 | Ht

)

= o(n−3) always;

(ii) for all ℓ and uniformly over allt < m,
E(Y

(ℓ)
t+1 − Y

(ℓ)
t | Ht) = fℓ(t/n, Y

(1)
t /n, . . . , y

(k)
t /n) + o(1) always;

(iii) for each ℓ the functionfℓ is continuous and satisfies a Lipschitz condition onD, whereD is
some bounded connected open set containing the intersection of {(t, z(1), . . . , z(k)) | t ≥ 0}

with some neighbourhood of{(0, z(1), . . . , z(k)) | P
(

Y
(ℓ)
0 = z(ℓ)n, 1 ≤ ℓ ≤ k

)

6= 0 for some

n}.

Then:
(a) For (0, ẑ(1), . . . , ẑ(k)) ∈ D the system of differential equations

dzℓ
ds

= fℓ(s, z1, . . . , zk), ℓ = 1, . . . , k, has a unique solution inD for zℓ : R → R passing

throughzℓ(0) = ẑ(ℓ), 1 ≤ ℓ ≤ k, and which extends to points arbitrarily close to the boundary
ofD.

(b) WhpY (ℓ)
t = nzℓ(t/n)+o(n) uniformly for0 ≤ t ≤ min{σn,m} and for eachℓ, wherezℓ(s)

is the solution in (a) witĥz(ℓ) = Y
(ℓ)
0 /n, andσ = σ(n) is the supremum of thoses to which

the solution can be extended.

This theorem was proven by Wormald [61] and was originally used for typical case analysis

of algorithms on random graphs. Later it was successfully used by Achlioptas [1] to prove lower

bounds for the Random 3-SAT phase transition threshold.

Chapter 3

Local Search in Uniform Random 3-SAT

In this chapter we study performance of the basic Local Search algorithm and its simplified version

One-Pass Local Search in application to the Random 3-SAT problem. We show that the processes

of the execution of LS and OLS can be described by systems of differential equations. Though the

algorithms are very similar their analysis differs substantially.

In this chapter we use the following trick to simplify the process of the SAT algorithm execution.

To avoid keeping track of the assignment of values of variables we shall assume that the assignment

is all-ones. Then when a variablext needs to be flipped we shall replace all literalsxt with ¬xt and

vice versa.

3.1 One Pass Local Search

One Pass Local Search is a simplified version of the Local Search algorithm where each variable is

considered only once (see fig. 1.2). In order to analyze the algorithm we are going to modify the

Card Game framework [2]. In this section we develop a system of differential equations and prove

that it describes behavior of the OLS.

3.1.1 Model

To analyze the OLS algorithm we use an extended version of theCard Game framework [2]. Every

clause of CNFΦ is represented by three cards. At stept the intermediate opens all cards withxt or

¬xt and also tells us the ‘polarity’ of the remaining literals inthe clauses containingxt,¬xt (that

is how many of them are negative). Then we compare the numbersa(xt) of clauses containing

¬xt, the remaining literals of which are negative, andb(xt) of clauses containingxt, the remaining

literals of which are negative. Ifa(xt) > b(xt) then we flipxt replacing everywherext with ¬xt

21

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 22

and¬xt with xt. Finally we remove clauses containingxt and remove¬xt. If in the latter case a

clause becomes empty we count it as unsatisfied. Note that in contrast to the card games used in [2],

in the described game we have some information on the unopened cards, and therefore the formula

obtained on each step is not quite random. Thus a more thorough analysis is required.

Such an analysis can be done by monitoring the dynamics of eight sets of clauses that we define

at each step of the algorithm. LetΦt denote the formula at the start of stept. Variables (and the

corresponding literals) from the set{X1, . . . ,Xt−1} will be calledprocessed(they cannot change

anymore), the remainining variables will be calledunprocessed. We define the following 8 sets:

• E∅ is the set of all clauses inΦt that do no contain processed literals;

• E1 is the set of all clauses inΦt containing a positive processed literal;

• E0 is the set of all clauses inΦt that contain three negated processed literals;

• E++, E−−, E+− are the sets of all clauses inΦt that contain one negated processed literal

and two positive, two negative, or a positive and negative unprocessed literals, respectively;

• E+, E− are the sets of all clauses inΦt containing two processed negative literals, and a

positive, or a negative unprocessed literal, respectively.

We will denote the sizes of these sets bye∅, e1, e0, e++, e+−, e−−, e+, e− respectively, and the

vector(e∅, e1, e0, e++, e+−, e−−, e+, e−) by e. These numbers will be our random variables from

Wormald’s theorem. All these values depend ont, but we always refer to them at the current stept,

and so dropt from the notation. We also usev to denoten− t+ 1 (the number of steps remaining).

It is easy to see that clauses that once enterE0 orE1 never leave these sets, and that at each step

for each clause that doesn’t belong toE0 ∪ E1 there is a chance to get toE1. The other possible

transitions of clauses between the sets are shown on Figure 3.1.

If E⋄ andE⋆ are some of the eight sets, then we will denote conditional probability for a clause

to move from setE⋄ toE⋆ by P (E⋄ → E⋆), assuming a certain particular value of vectore.

We will compute the probability that variablext is flipped at stept. This event happens when

there are more unsatisfied clauses containing this variable(we denoted the set of such clauses by

A(xt)) than clauses that are satisfied only byxt (we denoted this set byB(xt)). Clauses from sets

E−, E−− andE∅ can fall into setA(xt), while clauses from setsE+, E+− andE∅ can fall into

B(xt). The probability that a clause fromE− belongs toA(xt) equals1
v , this is the probability that

xt is written on the only card currently unrevealed in the clause. In a similar way we compute such

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 23

Figure 3.1: Flow diagram
probabilities for clauses fromE−− andE∅, which are2

v and 3
8v respectively. The probabilities that

a clause fromE+, E+−, andE∅ belongs toB(xt) equal 1v , 1
v , and 3

8v respectively. Note that for

different clauses the considered events are independent.

Now let F (n1, n2, n3, p1, p2, p3) denote the event that exactlyn1, n2, andn3 clauses from

E−, E−−, andE∅ respectively belong toA(xt), and exactlyp1, p2, andp3 clauses fromE+, E+−

andE∅ belong toB(xt). By the Bernoulli formula we have

P (F (n1, n2, n3, p1, p2, p3)) =

(
e+
p1

)(
1

v

)p1
(
e+−

p2

)(
1

v

)p2
(
e∅

p3

)(
3

8v

)p3

×

(
e−
n1

)(
1

v

)n1
(
e−−

n2

)(
2

v

)n2
(
e∅

n3

)(
3

8v

)n3

As n tends to infinity, the Bernoulli distribution tends to the Poisson distribution and we have

P (F (n1, n2, n3, p1, p2, p3)) =
(e+
v

)p1
(e+−

v

)p2
(

3e∅

8v

)p3 (e−
v

)n1

×

(
2e−−

v

)n2
(

3e∅

8v

)n3 e
e+
v

+
e+−

v
+

3e∅

8v
+

e−
v

+
2e−−

v
+

3e∅

8v

n1!n2!n3!p1!p2!p3!
+O

(
1

n

)

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 24

The probability thatxt is flipped can then be calculated as follows:

P (xt is flipped) = P (|A(xt)| > |B(xt)|)

= P

(
∨

p1+p2+p3<n1+n2+n3

|A(xt)| = n1 + n2 + n3 & |B(t)| = p1 + p2 + p3

)

=
∑

n1+n2+n3>p1+p2+p3

P (F (n1, n2, n3, p1, p2, p3))

It will be convenient for us to denote the sum similar to that appearing in the last line of the

equation above, but overn1, n2, n3, p1, p2, p3 satisfying a certain conditionΞ, by S(Ξ). Using this

notation the probability that variablext is flipped can be expressed as

P (xt is flipped) = S(n1 + n2 + n3 > p1 + p2 + p3), (3.1)

when the parameters are clear from the context we denote thisvalue byS.

Now we compute probabilityP (E∅ → E−−). A clause goes fromE∅ toE−− in two disjunct

cases. Firstly, if a clause has only negative literals, one of them is¬xt, andxt is not flipped.

Secondly, if a clause has two negative literals, and one positive literal xt, andxt is flipped. The

probability of the first event equals38v , and under this assumption the conditional probability that xt

is flipped equalsS(p1 +p2 +p3 < n1 +n2 +n3 +1). The probability that a clause has two negative

and one positive literalxt equals 3
8v as well, and under this assumption the conditional probability

thatxt flips equalsS(p1 + p2 + p3 + 1 < n1 + n2 + n3). We denote the two values specified in the

last two sentences byS+ andS− respectively. Thus

P (E∅ → E−−) =
3

8v
(S+ + S−) + o(

1

n
).

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 25

The other probabilities can be computed in a similar way:

P (E∅ → E+−) =
6

8v
+ o

(
1

n

)

, P (E∅ → E++) =
3

8v
+ o

(
1

n

)

,

P (E++ → E+) =
2

v
S + o

(
1

n

)

, P (E+− → E+) =
1

v
(1 − S) + o

(
1

n

)

,

P (E+− → E−) =
1

v
S− + o

(
1

n

)

, P (E−− → E−) =
2

v
(1 − S+) + o

(
1

n

)

,

P (E− → E0) =
1

v
(1 − S+) + o

(
1

n

)

, P (E+ → E0) =
1

v
S− + o

(
1

n

)

,

P (E∅ → E1) =
6S

8v
+

7(1 − S)

8v
+

3S+

8v
+

3(1 − S−)

8v
+ o

(
1

n

)

,

P (E++ → E1) =
2

v
(1 − S) + o

(
1

n

)

, P (E+− → E1) =
1

v
(1 − S− + S) + o

(
1

n

)

,

P (E−− → E1) =
2

v
S+ + o

(
1

n

)

, P (E+ → E1) =
1

v
(1 − S−) + o

(
1

n

)

,

P (E− → E1) =
1

v
S+ + o

(
1

n

)

.

The probabilitiesP (E⋄ → E⋆) that are not mentioned above equal zero.

We are ready to check that random process(e(1), e(2), e(3), . . .) satisfies conditions (i) - (iii)

of Wormald’s theorem.

(i) Let e⋄ be a component ofe. It is obvious that|e⋄(t + 1) − e⋄(t)| is less than the number

of occurrences ofxt in Φ. The probability thatxt occurs in some clause equals3
n , therefore the

probability thatxt occurs ink clauses equals
(ρn

k

) (
3
n

)k
. So assuming thatn is large enough we

have

P
(
xt occurres in more thatn1/5 clauses

)
=

n∑

k=n1/5

(
ρn

k

)(
3

n

)k

=
n∑

k=n1/5

ρn(ρn− 1) . . . (ρn− k + 1)3k

k!nk
≤

(3ρ)n
1/5
n

n1/5!
= o(n−3).

(ii) Let e⋆ be a component ofe. Then we have

E(e⋆(t+ 1) − e⋆(t)|Ht) =

∑

E⋄ 6=E⋆

∑

c∈E⋄(t)

P (c ∈ E⋆(t+ 1)) −
∑

c∈E⋆(t)

P (c ∈ E⋄(t+ 1))

 =

∑

e⋄ 6=e⋆

(e⋄P (E⋄ → E⋆) − e⋆P (E⋆ → E⋄)) . (3.2)

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 26

For arbitrary functionsf(n), g(n) we denote equalityf(n) = g(n) + o(n) by f(n) ≈ g(n) and

we write f(n) . g(n) if inequality f(n) ≤ g(n) holds for large enoughn. Thus we sets = t
n ,

f⋆(s) = 1
ne⋆(t) (as is easily seen,v ≈ n(1 − s)) and

p(s, n1, n2, n3, p1, p2, p3) =

(
3f∅(s)

8

)p3+n3
(

1

1 − s

)n1+n2+n3+p1+p2+p3

× fp1
+ (s)fp2

+−(s)fn1
− (s)(2f−−(s))n2

e
e+(s)+e+−(s)+e−(s)+2e−−(s)+3/4e∅ (s)

1−s

n1!n2!n3!p1!p2!p3!
.

Then set

s0(s) =
∑

n1+n2+n3>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3),

s+(s) =
∑

n1+n2+n3+1>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3),

s−(s) =
∑

n1+n2+n3+1>p1+p2+p3

p(s, n1, n2, n3, p1, p2, p3).

Note that these functions are represented by series. Later we show that this does not cause any

problems. Finally, the required system of differential equations can be obtained from equations (3.2)

usings0(s), s+(s), s−(s) to compute the probabilities instead ofS0, S+, S−.

(iii) The functions constructed above have two substantialdeficiencies: they are not defined

whens = 1, and the series used to define them do not converge uniformly in the naturally defined

setD. However, this can be overcome using a standard trick, namely, for eachǫ > 0, define set

D such that it includes only points withs ≤ 1 − ǫ. It is not hard to see that, as the series above

are non-negative and bounded with 1, they converge uniformly in any closed set. Then we find the

required value as the limit whenǫ→ 0.

Applying Wormald’s theorem we conclude that values of parameterse⋆ at stept whp can be

expressed as

e⋆(t) = nz⋆(t/n) + o(n), (3.3)

where collection ofz⋆ is a solution of some system of differential equations.

Settingt = n in (3.3) we get that whp

e0(n) = ωn+ o(n),

whereω = nz⋆(t/n). Thus we have proven the following.

Theorem 1 For any positiveρ there is a constantω such that for a random 3-CNFΦ(n, ρn) almost
surely the OLS algorithm finds an assignment such that the number of satisfied clauses equalsωn+
o(n).

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 27

3.2 Local Search

To analyze the Local Search algorithm we use techniques similar to ones used for the One Pass Local

Search. However, as every variable in this algorithm can be considered and flipped several times we

cannot use the card game approach; instead we have to find quite a different set of random variables

that represents properties of the problem crucial for the performance of the algorithm. Although we

were unable to carry out a complete rigorous analysis, it turns out that such an analysis boils down

to a certain simple assumption (see Assumption 1 below). This assumption looks very plausible, but

we could not neither prove nor disprove it. Experiments showthat our model is accurate enough,

this is why we believe that either Assumption 1 is true, or it can be replaced with a property that

gives rise to an equivalent model.

3.2.1 Model

We need some notation. Letϕ be a 3-CNF andxl a variable inϕ. ByQiα(xl), wherei ∈ {0, 1, 2}

andα ∈ {−,+}, we denote the set of clausesc such thatxl ∈ c if α = +, ¬xl ∈ c if α = −, and

among the other two literals there are exactlyi positive. If c ∈ Qiα(xl) we also say thatc hastype

iα for xl, and that variablexl occupiespositionof type iα in the clausec. Let alsoqiα(xl) denote

the size ofQiα(xl). By Ea, a = (a0−, a0+, a1−, a1+, a2−, a2+) we denote the set of all variables

xl of Φ such thatqiα(xl) = aiα for all i andα. By ea we denote the size ofEa. As Φ is changing

over time all these sets and numbers are actually functions of the number of steps made. Thus,

sometimes we use notationEa(t), ea(t). Functionsea(t) will be the random variables required in

Wormald’s theorem. Ifxl ∈ Ea then variablexl is said to have typea. Note that asn grows the

number of different tuplesa and therefore the number of random variables also grow. To overcome

this problem we will consider only those variables that appear in at mostM clauses for some fixed

M . Clearly, this does affect the analysis, but in a certain controllable way, as we shall see.

Before checking conditions (i)–(iii) of Theorem (Wormald,[61]) we make a simple observation.

Lemma 3 If Φ is a random 3-CNF of densityρ with n variables, then for each variablexl

P (qiα(xl) = a) =

(
3ρ
8

)a
e3ρ/8

a!
+ o(1) if i = 0, 2,

P (qiα(xl) = a) =

(
3ρ
4

)a
e3ρ/4

a!
+ o(1) if i = 1,

P (xl ∈ Ea) =
∏

i,α

P (qiα(xl) = a) , E(ea) = n · P (xl ∈ Ea) .

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 28

Lemma 4 If Φ is a random 3-CNF of densityρ with n variables, thenP
(
|ea − E(ea)| > n1/5

)
=

o(n−3).

Lemma 4 provides the initial values for equations from Theorem (Wormald, [61]). Now we are

verifying conditions (i)–(iii).

(i) Possible variations of random variablesea are bounded by2K whereK is the degree of the

flipped variable. Therefore condition (i) can be proven in the same way as for the OLS algorithm.

(ii) Suppose that on the current stept of LS the variable to flip isxl. Sincexl is a variable picked

uniformly at random from the setB(t) =
⋃

a
a0−>a0+

Ea(t), we haveP (xl ∈ Ea(t)) = ea(t)
b(t) , where

b(t) = |B(t)|. Also we have

E(qiα(xl)) =
∑

a
a0−>a0+

aiα ·P (xl ∈ Ea(t)) .

We say that tuplesa, b areadjacentif there arei, j, α such that|j− i| = 1, aiα = biα +1, ajα =

bjα − 1, andai′α′ = bi′α′ in all other cases. Intuitively, adjacency means that ifxl ∈ Eb then it can

be moved toEa or vice versa by flipping one literal in one of the clauses containingxl. Let alsoa′

denote the tuple such thata′i− = ai+ anda′i+ = ai−.

SetEa changes in two ways. First, variablexl can move to or fromEa, in this case it moves

from or toEa′ . Second,xl may happen to be in the same clause with some other variable,xm, and

thenxm can move to or fromEa. Such a variable moves then from or toEb for someb adjacent

with a.

Clearly, the expectation of change of the first type equalsP (xl ∈ Ea′) − P (xl ∈ Ea). Further

calculation we carry out under the following assumption.

Assumption 1 Assuming historyHt, for a random clausec of the current formula, any positions
p, r, p 6= r, in c, any tuplesa, b, and any variablesxl ∈ Ea, xm ∈ Eb, the events “xl is in position
p of clausec” and “ xm is in positionr of clausec” are independent.

Let us take a variablexm ∈ Ea and calculate the probability of an eventG−:“variablexm moves

from Ea toEb”, whereb is some tuple adjacent toa anda, b differ in componentsiα andjα. This

happens if in some clausec containing bothxl andxm some position occupied byxm changes its

type fromiα to jα. Obviously, depending oniα the type of the position occupied byxl may vary.

We usêiα̂ to denote the possible type of such a position. Simple case analysis shows that̂i = j if

j < i andα = −, or if j > i andα = +, otherwisêi = i. Thenα̂ = − if j < i andα̂ = + if j > i.

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 29

Let θa→b denote the number of positions of typeîα̂ in c except the one possibly occupied by

xm. It is easy to see thatθa→b = 1 if i = 1, θb→a = 1 if j = 1, andθa→b = 2, θb→a = 2 otherwise.

Thus, the number of positions in the clauses ofΦ such that ifxl in such a position thenG happens

to some variablexm equalsθa→baiα. Let alsokîα̂(t) =
∑

a aîα̂ · ea(t) be the number of positions

of type îα̂ in the formula.

Suppose that variablexl that is flipped belongs toEc. Then among allkîα̂(t) positions of type

îα̂ we haveĉiα̂ positions occupied byxl, andθa→baiα positions such that the presence ofxl in one

of them makes the eventG− happen for somexm. By Assumption 1, we haveP (G−|xl ∈ Ec) =
cîα̂θa→baiα

kîα̂(t) . Therefore,

P
(
G−
)

=
∑

c
c0−>c0+

P (xl ∈ Ec)
ĉiα̂θa→baiα

kîα̂(t)

= E(qîα̂(xl)|q0−(xl) > q0+(xl))
θa→baiα

kîα̂(t)

Similarly, the probability of an eventG+:“variablexm moves fromEb toEa”, whereb is some

tuple adjacent toa anda, b differ in componentsiα andjα, equals

P
(
G+
)

= E(qĵα̂(xl)|q0−(xl) > q0+(xl))
θb→abjα
kĵα̂(t)

Observing that the expectations of the numbers of variablesthat move to and fromEa (excluding

xl) equal

ebP
(
G+
)

and eaP
(
G−
)
,

respectively, we get

E(ea(t+ 1) − ea(t) | Ht) (3.4)

= P (xl ∈ Ea′(t) | q0−(xl) > q0+(xl)) − P (xl ∈ Ea(t) | q0−(xl) > q0+(xl))

+
∑

b adjacent toa
i,j,α

(

θb→abjαeb(t)

kĵα̂(t)
−
θa→bajαea(t)

kîα̂(t)
E(qîα̂(xl) | q0−(xl) > q0+(xl))

)

.

Denotings = t
n , za(s) = ea(sn) and

u(s) =
∑

a
a0−>a0+

za, giα =
∑

a

aiαza, hiα =
∑

a
a0−>a0+

aiα
za
u

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 30

we get
dza
ds

=
za′ − za

u
+

∑

b adjacent toa
i,j,α

(

θb→abjαzb
gĵα̂

−
θa→bajαza

gîα̂

hîα̂

)

.

(iii) We are interested in the value ofg0− whenu(s) becomes 0 for the first time. ThusD can

be chosen to be any open set with positive elements satisfying the conditionu > ǫ for someǫ > 0.

As before we can find the required value as limit asǫ→ 0.

Theorem 2 If Assumption 1 is true then for any positiveρ there is a constantω such that for a
random 3-CNFΦ(n, ρn) almost surely the LS algorithm finds and assignment such thatthe number
of satisfied clauses equalsωn+ o(n).

Proof. Applying Wormald’s theorem we get that, for any positiveρ and anyM there is a constant

ω′ such that for a random 3-CNFΦ(n, ρn) almost surely the SL algorithm finds and assignment such

that the number of satisfied clauses equalsω′n+o(n) not containing variables of degree higher than

M . We estimate how many clauses may contain a variable (or its negation) of degree higher than

M . It is not hard to see that almost surely the number of such clauses is no more than

eρ/2 ·
∑

k>M

k

(
ρn

k

)(
1

2n− 1

)k

,

which iso(1) · n whereo means asymptotic asM → ∞. 2

3.2.2 Experiments

In this subsection we report on experiments aiming to estimate constantω from Theorem 2 for

different values ofρ. In order to do this we solve numerically the system of differential equations

built in the previous subsection. Unfortunately, even for smallM this system contains far too many

equations. For example, ifM = 15 then the number of equations exceeds one million. However,

while conducting experiments we observed some properties of functions involved that allow us to

decrease the number of equations without loss of accuracy. We state these properties later after

proper definitions.

To simplify the system of equations we introduce new random variables

Eab(t) =
⋃

a
a0−=a,a0+=b

Ea(t), eab(t) =
∑

a
a0−=a,a0+=b

ea(t).

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 31

It is also clear thatE(eab(t + 1) − eab(t)) =
∑

a
a0−=a,a0+=b

E(ea(t + 1) − ea(t)). Along with

eab(t) we shall use the following random variables:A(t), B(t), C(t), andD(t) that are equal to

the number of clauses with 0,1,2, and 3 positive literals, respectively. It is not hard to see that

A(t) = 1/3
∑

c,d c·ecd(t),B(t) =
∑

c,d d·ecd(t), andD(t) = ρn−(A(t)+B(t)+C(t)). Thus, as a

matter of fact, we need only one extra random variable,C(t). Now we compute the sum in the right

side of this equation accordingly to the three parts of the expression (3.4) forE(ea(t+ 1) − ea(t)).

The first part

∑

a
a0−=a,a0+=b

(P (xl ∈ Ea′(t) | q0−(xl) > q0+(xl)) − P (xl ∈ Ea(t) | q0−(xl) > q0+(xl)))

can be converted into

P (xl ∈ Eba | q0−(xl) > q0+(xl)) − P (xl ∈ Eab | q0−(xl) > q0+(xl))

=

eba(t)
G(t) , if a < b,

− eab(t)
G(t) if a > b,

whereG(t) =
∑

c>d ecd(t).

It is easier to compute the second and third parts from scratch. Compute first the third part.

Functioneab(t) can be decreased if for some variablexm ∈ Eab either (a) a certain clause of type

0− for xm contains¬xl, or (b) a certain clause of type1− containsxl, or (c) a certain clause of type

0+ contains¬xl, or (d) a certain clause of type1+ containsxl. The probabilities of these events are

P (¬xl ∈ c | c of type0− for xm, q0−(xl) = K1) =
2K1

A(t)
,

P (xl ∈ c | c of type1− for xm, q0+(xl) = K2) =
2K2

B(t)
,

P (¬xl ∈ c | c of type0+ for xm, q1−(xl) = K3) =
2K3

B(t)
,

P (xl ∈ c | c of type1+ for xm, q1+(xl) = K4) =
2K4

C(t)
.

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 32

By Assumption 1,

P1 = P (¬xl ∈ c | c of type0− for xm) =
∑

K1

P (q0−(xl) = K1)
2K1

A(t)
= 2

E(q0−(xl))

A(t)
,

P2 = P (xl ∈ c | c of type1− for xm) =
∑

K2

P (q0+(xl) = K2)
2K2

B(t)
= 2

E(q0+(xl))

B(t)
,

P3 = P (¬xl ∈ c | c of type0+ for xm) =
∑

K3

P (q1−(xl) = K3)
2K3

B(t)
= 2

E(q1−(xl))

B(t)
,

P4 = P (xl ∈ c | c of type1+ for xm) =
∑

K4

P (q1+(xl) = K4)
2K4

C(t)
= 2

E(q1+(xl))

C(t)
.

The expectationsE(q0−(xl)),E(q0+(xl)) can be easily found, since

P (q0−(xl) = K1) =

∑

b eK1b(t)

G(t)
, P (q0+(xl) = K2) =

∑

a eaK2(t)

G(t)
.

The expectationsE(q1−(xl)),E(q1+(xl)) we find using the following empirical observation.

Observation 2 For a randomly chosenxm and anyi, α, i 6= 0, anda, b

E(qiα(xm) | xm ∈ Eab) ≈ E(qiα(xm)).

Thus, easy computation shows thatE(q1−(xl)) = B(t)
n and E(q1+(xl)) = C(t)

n . Then the

expectation for the third part equals

eab(t)(P1E(q0−(xm)) + P2E(q1−(xm)) + P3E(q0+(xm)) + P4E(q1+(xm)))

= 2eab(t)

(
aE(q0−(xl))

A(t)
+
B(t)

n
+
b

n
+
C(t)

n

)

.

The second part of the expectation equals

2
E(q0+(xl))

n
e(a−1)b + 2

E(q0−(xl))(a + 1)

A(t)
e(a+1)b + 2

C(t)

n2
ea(b−1) + 2

b+ 1

n
ea(b+1).

Similarly we have

E(C(t+ 1) − C(t)) = E(q1−(xl)) + E(q2+(xl)) − E(q1+(xl)) − E(q2−(xl)).

Denotings = t
n , zab(s) = eab(sn)

n , p(s) = A(sn)
n , q(s) = B(sn)

n , r(s) = C(sn)
n , u(s) = D(sn)

n , g(s) =
G(sn)

n , gab = zba if a < b and gab = −zab if a > b, andh1(s) = 1
g

∑
a,b
a>b

azab, h2(s) =

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 33

Figure 3.2: Empirical performance of LS and its prediction.The vertical axis shows the number of
unsatisfied clauses divided by the number of variables. The horizontal axis shows the number of the
step of the algorithm divided by the number of variables.

1
g

∑
a,b
a>b

bzab we get

dzab

ds
=

gab

g
+ 2

(
h2

g
z(a−1)b +

(a+ 1)h1

g
z(a+1)b + rza(b−1) + (b+ 1)za(b−1)

)

− 2zab

(
ah1

p
+ q + b+ r

)

,

dr

ds
= 2q + u− 3r. (3.5)

As the graphs in Fig. 4 show, these equations give a very good approximation for empirical

results. The graphs show the evolution ofp(s) that is the relative number of unsatisfied clauses. Thin

lines are values observed when running LS for particular random problems, and the thick lines are

computed from a numerical solution of the system above. In the examples shownρ = 4,M = 30,

n = 1000 for the graph on the left andn = 10000 for the graph on the right.

The following table shows the dependance betweenρ and the constantω from Theorem 2 both

empirical and predicted by the system (3.5). Experimental figures are average on 10 formulas with

1000 variables each.

CHAPTER 3. LOCAL SEARCH IN UNIFORM RANDOM 3-SAT 34

ρ 2 3 4 4.5 5 6 7 10 15 20 25
c (experiment) 1.98 2.95 3.91 4.39 4.86 5.80 6.74 9.53 14.11 18.69 23.23
c (system (3.5)) 1.98 2.95 3.91 4.38 4.85 5.80 6.73 9.52 14.14 18.74 23.32

Table 3.1: Dependence of the predicted and actual relative number of the satisfied clauses on the
density of the problem.

Chapter 4

Phase transition of basic Local Search

We now move to the analysis of the performance of Local Searchon Random Planted 3-SAT. We

prove the following.

Theorem 3 (1) Letρ ≥ κ · lnn, andκ > 7
6 . Then Local Search whp finds a solution of Random

Planted 3-SAT of densityρ.

(2) Let c ≤ ρ ≤ κ · lnn, wherec is an arbitrary positive constant, and0 < κ < 7
6 . Then Local

Search whp does not find a solution of Random Planted 3-SAT of densityρ.

Intuitively speaking, this theorem states that Local Search performance on Random Planted 3-

SAT of logarithmic density demonstrates a phase transitionphenomenon. The algorithm succeeds

whp if the density of the problem is asymptotically greater than7/6 ln n and fails if the density is

asymptotically less than7/6 ln n.

4.1 Success of Local Search

In this section we prove that Local Search succeeds for Random Planted 3-SAT of density greater

than7/6 ln n (see Theorem 3(1)). To prove this we need to show that if a 3-CNF has high density,

that is, greater thanκ log n for someκ > 7
6 then whp all the local maxima that do not satisfy the

CNF — we call such maximaproper — concentrate very far from the planted assignment. This is

the statement of Proposition 1 below. Then we use Lemma 5 to prove that starting from a random

assignment LS whp does not go to that remote region. Therefore the algorithm does not get stuck to

a local maximum that is not a solution.

To prove Proposition 1 we use the following three lemmas. Recall that the planted solution is

the all-ones one.

35

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 36

Lemma 5 Let ρ ≥ κ lnn for some constantκ > 0, and let constantsq0, q1 be such that0 ≤ q0 <
q1 ≤ 1. Whp any assignment with less thanq0n zeros satisfies more clauses than any assignment
with more thanq1n zeros.

Proof. Let ~u,~v be some vectors with less thanq0n and more thanq1n zeros, respectively. Letc be

a random clause, then (a) with probability1
7 all its literals are positive, (b) with probability37 two

literals are positive and similarly (c) with probability37 one literal is positive. The probabilities that

the clause is not satisfied by~u in these cases equals toq30, q
2
0(1 − q0) andq0(1 − q0)

2, respectively.

Hence the total probability that a clause is not satisfied by~u equals q3
0+3q2

0(1−q0)+3q0(1−q0)2

7 =
1−(1−q0)3

7 . This function for0 ≤ q0 ≤ 1 monotonically increases. A similar result holds for~v. Thus

the expectation of the number of clauses unsatisfied by~u and~v in a random formula is less than
1−(1−q0)3

7 κn lnn and greater than1−(1−q1)3

7 κn lnn respectively. The random variable “the total

number of clauses satisfied by~u” is a sum of binomial random variables “the number of clausesthat

containi positive literals and are satisfied by~u”, i = 1, 2, 3, so applying Lemma 1 we conclude that

P (~u satisfies less clauses than~v) < e−λ′n lnn,

for someλ′ > 0. There are less than2n+1 pairs of assignments, hence, application of the union

bound finishes proof of the lemma. 2

Lemma 6 Let ρ ≥ κ ln n for someκ > 0. There isα < 1 such that forϕ ∈ Φplant(n, ρn) whp for
any proper local maximum~u ofϕ the number of variables assigned to 0 by~u is either less thannα,
or greater than9n

10 .

Proof. Let M, |M | = ℓ, be the set of all variables that~u assigns to 0. LetBeach
M be event “for

everyxi ∈ M the number of clauses voting forxi to be 1 is less than or equal to the number of

clauses voting forxi to be 0”. Since~u is a local maximum,Beach
M is the case for~u. It is easy to see

that eventBeach
M implies eventBall

M = “the total number of votes given by clauses for variables inM

to be 1 is less than or equal to the total number of votes given by clauses for variables inM to be

0”. To bound the probability ofBeach
M we will bound the probability ofBall

M .

Let c be a random clause. It can contribute from 0 to 3 votes for variables inM to be one and

0 or 1 vote for them to remain zero. Let us compute, for example, the probability that it contributes

exactly two votes for variables inM to become one. This happens ifc is of type(+,+,−), both its

positive variables are inM and the negative variable is outside ofM . The probability of this event

is 3
7ℓ

2n−2(1 − ℓ/n). So the expectation of the number of clauses voting for exactly 2 variables in

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 37

M to be 1 is3
7ℓ

2n−1(1 − ℓ/n)κ ln n. The expectations of the numbers of clauses voting for three

and one variables to be 1 are1
7ℓ

3n−2κ lnn and 3
7 (1 − ℓ

n)2ℓκ lnn, respectively.

A clause votes for a variable inM to remain 0 if its type is(+,−,−), one of its negative literals

is not inM , and two other literals are inM , or if its type is(+,+,−) and all the variables in it

belong toM . Thus the expectation of the number of clauses voting for variables inM to remain 0

is 3
7κ ln n

(
2ℓ2n−1(1 − ℓ/n) + ℓ3n−2

)
.

Hence the expectation of the number of votes for variables inM to flip equals

E (votes for a flip) = κ lnn×

(

3 ·
1

7
ℓ3n−2 + 2 ·

3

7
ℓ2n−1(1 − ℓ/n) + 1 ·

3

7
ℓ(1 − ℓ/n)2

)

and the expectation of the number of votes for variables inM to remain 0 equals

E (votes for status quo) = κ ln n×

(
6

7
ℓ2n−1(1 − ℓ/n) +

3

7
ℓ3n−2

)

.

If ℓ < 9
10n then

E (votes for status quo)
E (votes for a flip)

=
6ℓ(n− ℓ) + 3ℓ2

6ℓ(n − ℓ) + 3ℓ2 + 3(n − ℓ)2
= 1 −

3(n − ℓ)2

6ℓ(n− ℓ) + 3ℓ2 + 3(n − ℓ)2

< 1 −
3 · 1

100n
2

12n2
= 1 −

1

400
.

Therefore we can apply Lemma 1 to the votes for and against 0s and get the following bound

P
(
Ball

M

)
< e−λE(votes for a flip) for someλ > 0. Then we can bound number of votes for a flip

from below byδℓ ln n for some constantδ and we can bound the number of setsM of sizeℓ as

#(M of sizeℓ) =

(
n

ℓ

)

≤
(ne

ℓ

)ℓ
= eℓ ln(n/ℓ)+ℓ.

Therefore if

ℓ ln(n/ℓ) + ℓ < δℓ ln n

then union bound implies that whp there is no setM such thatBall
M happens. It is easy to see that for

ℓ > nα andα that is close enough to 1 the above inequality holds, which finishes the proof of the

lemma. 2

Now suppose that~u is a proper local maximum ofϕ ∈ Φplant(n, ρn). There is a clausec ∈ ϕ

that is not satisfied by~u. Without loss of generality, let the variables inc bex1, x2, x3, and let the

variable assigned 0 bex1. Thus, clausec votes forx1 to be flipped to 1. Since~u is a local maximum

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 38

there must a clause that is satisfied, and that becomes unsatisfied shouldx1 flipped. We call such a

clause asupportclause for the 0 value ofx1. In any support clause the supported variable is negated,

and therefore any support clause has the type(+,−,−) or (+,+,−). A variable of a CNF is called

k-isolatedif it appears positively in at mostk clauses of the type(+,−,−). Thedistancebetween

variables of a CNFϕ is the length of the shortest path inG(ϕ) connecting them.

Lemma 7 If κ > 7
6 and ρ ≥ κ ln n then for any integersd1, d2 ≥ 1 and for a randomϕ ∈

Φplant(n, ρn) whp there are no twod1-isolated variables within distanced2 from each other.

Proof. Let x be some variable. The probability that it isd1-isolated can be computed as

P (x is d1-isolated) = d1 ·

(
κn lnn

d1

)(

1 −
3

7n

)κn ln n−d1
(

3

7n

)d1

≤ d1(κn ln n)d1

(

1 −
3

7n

)κn ln n(

1 −
3

7n

)−d1
(

7

3
n

)−d1

∼ d1

(

1 −
3

7n

)−d1

(
7κ

3
lnn)d1e−

3
7
κ ln n

= O(n−
3κ
7

+ε),

for anyǫ > 0.

By Lemma 2(2), the degree of every vertex ofG(ϕ) whp does not exceedln2 n. Hence, there are

at mostln2d2 n vertices at distance at mostd2 from x. Applying the union bound we can estimate

the probability that there is ad1-isolated vertex at distanced2 from x asO(ln2d2 n · n−
3
7
κ). Finally,

taking into account the probability thatx itself isd1-isolated, and applying the union bound over all

vertices ofG(ϕ) we obtain that the probability that twod1-isolated vertices exist at distanced2 from

each other can be bounded from above by

n ·O(n−
3κ
7) ·O(ln2d2 n · n−

3
7
κ) = O(ln2d2 n · n1− 6

7
κ).

Thus forκ > 7
6 whp there are no two such vertices. 2

Proposition 1 Let ρ ≥ κ · lnn, and κ > 7
6 . Then whp proper local maxima of a 3-CNF from

Φplant(n, ρn) have at mostn10 ones.

Proof. Let ϕ ∈ Φplant(n, ρn) be a random planted instance. Suppose that~u is a proper local

maximum that has more thann10 ones. We use the following observation. Letc be a clause not

satisfied by~u. Then it contains at least one variablexi that is assigned to zero by~u. The assignment

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 39

~u is a local maximum, so there must be a clausec′ that is satisfied only byxi. Hence,c′ is a

support clause, and contains a variablexj which is assigned to zero by~u. Variablesxi andxj are

at distance1. Settingd1 = 11 andd2 = 1, by Lemma 7, we conclude that one of them is not

11-isolated.

Setd1 = 11, d2 = 3 and consider the setZ of all variables assigned to zero by~u that are not

11-isolated. By the observation above this set is non-empty. On the other hand, by Lemma 6,|Z|

isO(nα) for someα < 1. Considerx ∈ Z. It appears positively in at least 10 clauses of the type

(+,−,−). Each of these clauses is either unsatisfied or contains a variable assigned to 0. Suppose

there arek unsatisfied clauses among them. Since~u is a local maximum, to preventx from flipping,

x must be supported by at leastk support clauses, each of which contains a variable assignedto 0.

Thus, at least 6 neighbors ofx in G(ϕ) are assigned to 0. Any two neighbors ofx are at distance 2.

By Lemma 7 at least 5 of the neighbors assigned to 0 are not 11-isolated, and therefore belong toZ.

Thus the subgraph induced byZ in G(ϕ) has average degree greater than 5, which is not possible

by Lemma 2(1). 2

Now we are in a position to prove statement (1) of Theorem 3.

Proof. [of Theorem 3(1)] By Lemma 5 for aϕ ∈ Φplant(n, ρn) whp any assignment withdn

variables equal to 1, where13 ≤ d ≤ 2
3 , satisfies more clauses than any assignment with less than

n
10 variables equal to 1. Then, whp a random initial assignment for LS assigns between13 and 2

3 of

all variables to 1. Therefore, whp LS never arrives to a proper local maximum with less thann10
variables equal to 1, and, by Proposition 1, to any proper local maximum. 2

4.2 Failure of Local Search

We now prove statement (2) of Theorem 3. The overall strategyis the following. First, we show

(Proposition 2) that in contrast to the previous case there are many proper local maxima in close

proximity of the planted assignment. Then we show (Proposition 3) that those local maxima are

located so that they intercept almost every run of LS, and thus almost every run is unsuccessful.

A pair of clausesc1 = (x1, x2, x3), c2 = (x1, x4, x5) is called acap if x1, x5 are 1-isolated,

that is they do not appear in any clause of the type(+,−,−) except forc1 and c2, respectively,

andx2, x3 are not 0-isolated (see Figure 4.1(a)). We denote equalityf(n) = g(n)(1 + o(n)) by

f(n) ∼ g(n).

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 40

x x

x
x

4 5

2
3 x1

x1

(a)

x1 x2 x3

x1

x4

x5

x x

xx

6

7 9

8

x

x
2

3

(b)

Figure 4.1: Caps and crowns

Lemma 8 Letc > 0, 0 < κ < 7
6 , and densityρ be such thatc < ρ ≤ κ·lnn. There isα, 0 < α < 1,

such that whp a random planted CNFϕ fromΦplant(n, ρn) contains at leastnα caps.

Proof. The proof is fairly standard, see, e.g. the proof of Theorem 4.4.4 in [4]. We use the second

moment method. The result follows from the fact that a cap hasproperties similar to the properties of

strictly balanced graphs, see [4]. Take somen, and letX be a random variable equal to the number

of caps in a 3-CNFϕ ∈ Φplant(n, ρn). Straightforward calculation shows that the probability that a

fixed 5-tuple of variables is a cap is∼ ρ4n−4− 6
7

ρ
ln n . ThereforeE (X) ∼ ρ4n1− 6

7
ρ

ln n .

LetS be a fixed 5-tuple of variables, say,S = (x1, x2, x3, x4, x5), andAS denote the event that

S forms a cap. For any other 5-tupleT , the similar event is denoted byAT , and we writeAT ≍ AS

if these two events are not independent. By Corollary 4.3.5 of [4] it suffices to show that
∑

T≍S

P (AT | AS) = o(E (X)).

Let T = (y1, y2, y3, y4, y5). It is not hard to see that the only cases whenAT andAS are

not independent and the probabilityP (AT | AS) is significantly different from 0 is:y1 = x1 and

{y2, y3} = {x2, x3}, or y1 = x5 and{y2, y3} = {x1, x4}, or y5 = x1 and{y1, y4} = {x2, x3},

or y5 = x5 and{y1, y4} = {x1, x4}. Then, as before, it can be found that in each of these cases

P (AT | AS) = O(ρ4n−2− 3
7

̺
ln n).

Finally,
∑

T≍S

P (AT | AS) = n2
P (AT | AS) = n2 ·O(ρ4n−2− 3

7
̺

ln n) =

O(ρ4n−
3
7

̺
ln n) = o(E (X)).

We can chooseα = 1 − 6
7κ if ρ ≥ 1, andα = 1 − 4ν if 1 > ρ > n−ν for ν < 1

4 . 2

Proposition 2 Let c > 0, 0 < κ < 7
6 , and densityρ be such thatc < ρ ≤ κ · lnn. Then there isα,

0 < α ≤ 1, such that a 3-CNF fromΦplant(n, ρn) whp has at leastnα proper local maxima.

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 41

Indeed, letc1 = (x1, x2, x3), c2 = (x1, x4, x5) be a cap and~u an assignment such thatu3 =

u5 = 0, andui = 1 for all other i. It is straightforward that~u is a proper local maximum. By

Lemma 8, there isα such that whp the number of such maxima is at leastnα.

Before proving Theorem 3(2), we note that a construction similar to caps helps evaluate the

approximation rate of Local Search in the case of constant density on planted and also on arbitrary

CNFs. A subformula consisting of clausesc = (x1, x2, x3), c1 = (x1, x4, x5), c2 = (x2, x6, x7), c3 =

(x3, x8, x9) is called acrown if the variablesx1, . . . , x9 do not appear in any clauses other than

c, c1, c2, c3 (see Fig. 4.1(b)). The crown is satisfiable, but the all-zeroassignment is a proper local

maximum. For a CNFϕ and an assignment~u to its variables, byOPT(ϕ) andsat(~u) we denote

the maximum number of simultaneously satisfiable clauses and the number of clauses satisfied by

~u, respectively.

Corollary 1 If densityρ is such thatc ≤ ρ ≤ κ ln n for somec > 0, 0 < κ < 1/27, then there is
γρ = 1

o(n) such that whp Local Search on a 3-CNFϕ ∈ Φ(n, ρn) (ϕ ∈ Φplant(n, ρn)) returns an

assignment~u such thatOPT(ϕ)− sat(~u) ≥ γρ · n, whereOPT(ϕ) denotes the maximal number of
clauses inϕ that can be simultaneously satisfied andsat(~u) denotes the number of clauses satisfied
by~u.

If ρ is constant thenγρ is also constant.

Proof of Corollary 1 is similar to that of Lemma 8. It can be shown that forρ that satisfies

conditions of this theorem there isγ′ = 1
o(n) such that whp a random (random planted) formula

has at leastγ′n crowns. Ifρ is a constant,γ′ is also a constant. For a random assignment~u, whp

the variables of at leastγ
′

1024n crowns are assigned zeroes. Such an all-zero assignment of acrown

cannot be changed by Local Search.

Proposition 3 Let c > 0, 0 < κ < 7
6 , and densityρ be such thatc < ρ ≤ κ · lnn. Then Local

Search on a 3-CNF fromΦplant(n, ρn) whp ends up in a proper local maximum.

In what follows we prove Proposition 3.

If ρ = o(ln n) then Proposition 3 follows from Corollary 1. So we assume that ρ > κ′ ·

lnn. The main tool for the proof is coupling of Local Search (LS) with the algorithm STRAIGHT

DESCENT(SD) that on each step chooses at random a variable assigned to 0 and changes its value to

1. Obviously SD is not a practical algorithm, since to apply it we need to know the solution. For the

purposes of our analysis we modify SD as follows. At each stepSD chooses a variable at random,

and if it is assigned 0 changes its value (see Fig. 4.2(a)). The algorithm LS is modified in a similar

way (see Fig. 4.2(b)).

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 42

INPUT: ϕ ∈ Φplant(n, ρn) with the all-ones
solution, Boolean tuple~u,

OUTPUT: The all-ones Boolean tuple.
ALGORITHM:
while there is a variable assigned 0

pick uniformly at random variablexj from
the set of all variables

if uj = 0 then setuj = 1

(a)

INPUT: 3-SAT formulaϕ, Boolean tuple~u,
OUTPUT: Boolean tuple~v, which is a local maximum ofϕ.
ALGORITHM:
while ~u is not a local maximum

pick uniformly at random variablexj from the set of
all variables
if the number of clauses that can be made satisfied by
flipping the value ofxi is strictly greater than the
number of those made unsatisfied
then setui = ui

(b)

Figure 4.2: Straight Descent (a) and Modified Local Search (b)

We will frequently use the following two properties of the algorithm SD. Intuitively speaking

the first one follows from the observation that the vector obtained by SD at stept does not depend

on the formula.

Lemma 9 If SD starts its work at a random vector withm0 ones and after stept, t ≤ n −m0, it
arrives to a vector withm ones, then this vector is selected uniformly at random from all vectors
withm ones.

Proof. Let us denote the probability that at stept SD arrives to vector~u, conditional on it starting

from a vector withm0 ones, byP (~u, t,m0). We prove by induction ont that P (~u1, t,m0) =

P (~u2, t,m0) for any~u1, ~u2 with m ones. We denote this number byP (t,m,m0). As the starting

vector is random, it is obvious fort = 0. Then fort > 1 and any vector~u with m ones we have

P (~u, t,m0) = P (~u, t− 1,m0) ·
m

n
+
∑

~u′

P
(
~u′, t− 1,m0

)
·
1

n

= P (t− 1,m,m0) ·
m

n
+ P (t− 1,m− 1,m0) ·

m

n
,

wheren is the number of variables in the formula and~u′ goes over all vectors that can be obtained

from ~u by flipping a one into zero. It does not depend on a particular vector~u. 2

Lemma 10 Whp the running time of SD does not exceed2n ln n.

Proof. For a variablexi the probability that it is not considered fort steps equals
(
1 − 1

n

)t
. So for

t = 2n lnn this probability equals
(
1 − 1

n

)2n ln n
≤ e−2 ln n = n−2. Applying the union bound over

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 43

all variables we obtain the required statement. 2

Given 3-CNFϕ and an assignment~u we say that a variablexi is k-righteousif the number of

clauses voting for it to be one is greater by at leastk than the number of clauses voting for it to be

zero. Letϕ ∈ Φplant(n, ρn) and~u be a Boolean tuple. Theball of radiusmwith the center at~u is the

set of all tuples of the same length as~u at Hamming distance at mostm from ~u. Let f(n) andg(n)

be arbitrary functions andd be an integer constant. We say that a setS of n-tuples is(g(n), d)-safe,

if for any ~u ∈ S the number of variables that are notd-righteous does not exceedg(n). A run of SD

is said to be(f(n), g(n), d)-safeif at each step of this run the ball of radiusf(n) with the center at

the current assignment is(g(n), d)-safe.

For a proof of the following lemma we shall need the followingobservation that can be checked

using the inequality
(n

ℓ

)
≤
(

ne
ℓ

)ℓ
. For anyn, γ, andα with 0 < α < 1

(
n

γnα

)

≤ e(1−α)γnα ln n−γnα ln γ+γnα
. (4.1)

Lemma 11 Let ρ > κ′ · lnn for someκ′, κ′ > 0. For any positive constantsγ and d there is a
constantα1 < 1 such that, for anyα > α1, whp a run of SD onϕ ∈ Φplant(n, ρn) is (γnα, nα, d)-
safe.

Proof. Consider a run of SD onϕ ∈ Φplant(n, ρn) with a random initial assignment. If SD starts its

work at a tuple withm0 ones, then at stept it hasm ≤ m0 + t ones. Then by Lemma 9 if at stept

the current assignment of SD hasm ones then it is drawn uniformly at random from all vectors with

m ones. EventUnsafe= “run of SD is not(γnα, nα, d)-safe” is a union of events “at stept of SD’s

run the ball of radiusγnα with the center at the current assignment is not(nα, d)-safe”. We will use

the union bound to show that probability ofUnsafeis small.

Let~u be a Booleann-tuple havingpn ones. Since whp the number of 1s in the initial assignment

is at leastn3 , for every step the number of 1s is at leastn
3 . LetM be an arbitrary set of variables with

|M | = nα. We consider eventsBeach
M = “every variablexi ∈M is notk-righteous” andBall

M = “the

total number of votes given by clauses for variables inM to be 1 does not exceed the total number

of votes given by clauses for variables inM to be 0 plus|M | · k.”

The same technique as in Lemma 6 can be used to show that the probability of Ball
M and conse-

quently the probability ofBeach
M is bounded above by

e−λ′nα lnn

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 44

for some constantλ′, not dependent onα. By inequality (4.1), there are at most

γnα · eγ(1−α)nα lnn·(1+o(1)) distinct assignments in theγnα-neighborhood of SD and

en
α(1−α) ln n(1+o(1)) distinct subsets of sizenα. So forα close to 1 the union bound implies that

Beach
M whp does not take place for any tuple, any subset of variablesat any step which completes the

proof of the lemma. 2

For CNFsψ1, ψ2 we denote their conjunction byψ1 ∧ ψ2.

We will use formulas that are obtained from a random formula by adding some clauses in an

‘adversarial’ manner. Following [41] we call distributions for such formulassemi-random. However,

the type of semi-random distributions we need is different from that in [41]. Letη < 1 be some

constant. A formulaϕ is sampled according to semi-random distributionΦ
plant
η (n, ρn) if ϕ =

ϕ′ ∧ ψ, whereϕ′ is sampled according toΦplant(n, ρn) andψ contains at mostnη clauses and is

given by an adversary.

Corollary 2 If ϕ′ ∈ Φ
plant
η (n, ρn) then for any positive constantsγ and d there is a constant

α2 < 1 such that for anyα > α2 a run ofSD onϕ′ ∧ ψ is whp(γnα, 2nα, d)-safe.

Indeed, letα1 be obtained by application of Lemma 11 toϕ′. Letα2 = max(α1, η). Then for

α > α2 whp run ofSD onϕ′ is (γnα, nα, d)-safe. Since forn large enoughψ contains less than

nα variables a run ofSD will be (γnα, 2nα, d)-safe onϕ′ ∧ ψ.

Lemma 12 Let (D0, . . . ,Dl) be an integer random process,d > 0, and letL, H be integer con-
stants such that (a)D0 = 0, 0 < L < H; (b) |Dτ+1 −Dτ | = 1; (c) if L ≤ Dτ ≤ H the expectation
ofDτ+1 conditioned onDτ satisfies the inequalityE (Dτ+1|Dτ) < Dτ − d. Then the probability

that there isτ such thatDτ > H is less thanl · e−dH−L
2 .

Proof. We define a set of auxiliary processesDξ
τ :

Dξ
τ =

L, if τ < ξ,

Dτ , if (τ ≥ ξ), (Dξ = L) and(Dζ ≥ L), for all ζ ∈ {ξ, . . . , τ}),

Dζ − d(τ − ζ), if τ > ξ,Dξ = L, andζ ∈ {ξ, . . . , τ} is the least such thatDζ < L,

L− d(τ − ξ), otherwise, i.e.,Dξ 6= L andτ ≥ ξ.

The processesD0
τ , . . . ,D

l
τ are designed so that everyDξ

τ for τ ≥ ξ satisfies inequality

E

(

Dξ
τ+1|D

ξ
τ

)

≤ Dξ
τ − d. Indeed, suppose thatτ ≥ ξ. If Dξ 6= L then

E

(

Dξ
τ+1|D

ξ
τ

)

= L− d(τ + 1 − ξ) = (L− (τ − ξ) − d = Dξ
τ − d.

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 45

LetDξ = L. If Dζ ≥ L for all ζ{ξ, . . . , τ} thenDξ
τ = Dτ , Dξ

τ+1 = Dτ+1, and the result follows

from the assumptionE (Dτ+1|Dτ) < Dτ − d. If there isζ ∈ {ξ, . . . , τ} with Dζ < L then

E

(

Dξ
τ+1|D

ξ
τ

)

= E

(

Dξ
τ+1|Dζ

)

= Dζ − d(τ + 1 − ζ) = (Dζ − d(τ − ζ)) − d = Dξ
τ − d.

By Azuma’s inequality (2.2) for eachξ the probability of the event “there existsτ such that

Dξ
τ = H” is less thane−(H−L)d.

On the other hand letDτ > L andξ be equal to the number of the most recent step for which

Dξ = L. It is easy to see thatDτ = Dξ
τ . Thus if at some stepDτ = H then there isξ < τ such that

Dξ
τ = H. Using the union bound we get the required inequality. 2

Lemma 13 Letρ > κ′ · lnn for someκ′, κ′ > 0. Letϕ be a random 3-CNF sampled according to
distributionΦ

plant
η (n, ̺n) such that run ofSD onϕ is whp(γ1n

α, γ2n
α, 1)-safe for some positive

constantsγ1, γ2 with γ1 > 3γ2. Let~ud(m), ~ul(m) denote the pair of assignments produced by the
pair of processes (SD,LS) on stepm. For anyt, whp the Hamming distance between~ud(t) and~ul(t)
does not exceedγ1n

α.

Proof. LetNt be the set of tuples at Hamming distance at mostγ1n
α from ~ud(t), andE be event

“~ul(t) 6∈ Nt for somet”. LS starts with the same initial assignment as SD and we willshow that it

does not leaveNt.

At some steps the distance between~ud(t) and~ul(t) remains the same, and at some it changes.

Let ~ud, ~ul be the assignments produced by the algorithms afterτ changes have taken place, andDτ

be the distance between them. If2γ2n
α < Dτ < γ1n

α we haveE (Dτ+1|Dτ) < Dτ − 1
3 . Indeed,

the number of variables voted to be zero does not exceedγ2n
α and is at least twice less than the

number of variables that differ in~ud(t) and~ul(t). Since any change in the distance between the

assignments happens if and only if a variable voted to be 0 or avariable at which~ud(t) and~ul(t) are

different is considered by SD, we have the required inequality. Now we can apply Lemma 12 for

D settingL = 2γ2n
α,H = 3γ2n

α, d = 1/3 and get that probability of LS leavingNt is less than

̺ne−nα/6. 2

Corollary 3 For ϕ ∈ Φ
plant
η (n, ̺n) there is a constantα3 < 1 such that distance between~ud(t)

and~ul(t) defined in Lemma 13 whp does not exceednα3 .

We say that a variableplaysd-righteously in a run of LSif every time it is considered for flipping

it is d-righteous. Combining corollaries 2 and 3 we obtain the following

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 46

Lemma 14 For any d there isα4 < 1 such that, for a run of LS onϕ ∈ Φ
plant
η (n, ̺n) whp the

number of variables that do not playd-righteously is bounded above bynα4.

Proof. From Corollaries 2 and 3 it follows that whp at every step of LSthe number of variables

that are notd-righteous is less thannα̃, for someα̃.

Therefore denoting the number of different assignments considered by LS byT (note thatT ≤

ρn) and observing that at each step the probability to considera variable voted to be 0 isnα̃−1 we

obtain the following upper bound for the expectation of the number of non-d-righteous variables

throughout the run:Tnα̃−1 ≤ κ′n(lnn)nα̃−1 = κ′nα̃ lnn ≤ nα̃+ε, for arbitraryε with α̃+2ε < 1.

We apply Markov inequality and obtainP
(
I > nα̃+2ε

)
≤ n−ε, whereI denotes the number of

variables that do not playd-righteously. Nowα4 can be set to bẽα+ 2ε. 2

A clause(x, y, z) is called acap supportif there arew1, w2 such that(x,w1, w2, y, z) is a cap

in ϕ. For a formulaψ we denote the set of variables that occur in it byvar(ψ). For a set of clauses

K we denote by
∧
K a CNF formula constructed by conjunction of the clauses. Forthe sake of

simplicity we will write var(K) instead ofvar (
∧
K). In what follows it will be convenient to view

a CNF as a sequence of clauses. Note that representation of a CNF is quite natural when we sample

a random CNF by generating random clauses. This way every clause occupies certain position in the

formula. For a set of positionsP we denote the formula obtained fromϕ by removing all clauses

except for occupying positionsP byϕ ↓P . The set of variables occurring in the clauses in positions

in P will be denoted byvar(P).

We denote byC the set of all possible clauses overn variables. Let us fix a real constantν < 1.

We will need the following notation:

– let [k] denote the set of the firstk positions of clauses inϕ, V be the set of all variables inϕ;

– letSϕ,ν be the set of positions from[nν] occupied by clauses that are cap supports inϕ, andLϕ,ν

be the set of variables that occur in clauses in positionsSϕ,ν ;

– letTϕ,ν be set of positions ofϕ occupied by clauses containing a variable fromLϕ,ν ;

– let Uϕ,ν be the set of positions inϕ occupied by clauses containing a variable from

var
(

ϕ ↓[nν]\Sϕ,ν

)

;

– finally, letMϕ,ν = var(Tϕ,ν) andNϕ,ν = var(Uϕ,ν).

Fig. 4.3 pictures the notation just introduced.

Lemma 15 Letc > 0, 0 < κ < 7
6 , and densityρ be such thatc < ρ ≤ κ · ln n. Then there isµ0 > 0

such that for anyµ < µ0 there isν < 1 such that whp: (1)|Sϕ,ν | ∼ nµ; (2) Mϕ,ν ∩ Nϕ,ν = ∅,

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 47

nν
first clauses

Sφ,ν

. . .

Figure 4.3: A scheme of a 3-CNF. Every clause is shown as a rectangle with its literals repre-
sented by squares inside the rectangle. Literals corresponding to variables fromLφν and from

var
(

ϕ ↓[nν]\Sϕ,ν

)

are shown as diamonds and circles, respectively. Shaded rectangles with ver-

tical and diagonal lines represent clauses fromT φν andUφν , respectively.

i.e. variables from clauses inUϕ,ν do not appear in the same clauses with variables fromSϕ,ν ; (3)
|Mϕ,ν | = 3|Tϕ,ν |, that is no variable occurs twice in the clauses fromTϕ,ν.

Proof. It follows from Lemma 8 that for̺ ≤ κ ln n, κ < 7
6 there existsα, 0 < α < 1 such that

the number of caps in the formula is∼ nα. We set

µ0 = α/2, ν = µ+ 1 − α.

(1) For a subsetR of all positions of clauses inφ let CR denote event “R is exactly the set

of positions occupied by cap supports”. Obviously for any sets R1, R2, |R1| = |R2| we have

P (CR1) = P (CR2). Thus positions of the cap supports are selected uniformly at random with-

out repetition. By straightforward computation we have expectation of the number of cap supports

among firstnν clauses equal approximatelynα·nν−1 = nµ+1−α−1+α = nµ and variance is bounded

above by the expectation, so it follows from Chebyshev inequality that random variable “number of

cap supports among firstnν clauses” is whp∼ nµ.

(2) By Lemma 2(2) whp there is no variable that occurs in more thanln2 n clauses. Therefore

|Mϕ,ν | = O(nµ ln2 n) and |Nϕ,ν | = O(nν ln2 n). These sets are randomly chosen from ann-

element set, and therefore the probability they have a common element is at mostnµ+ν−1 ln4 n. By

definition ofµ andν we haveµ+ ν − 1 < α/2 + α/2 + 1 − α− 1 = 0.

(3) Since whp|Tϕ,ν | = O(nµ ln2 n), the probability that two clauses from this set share a

variable is bounded from above byn2µ−1 ln4 n. We have2µ − 1 < α − 1 < 0 so this probability

tends to 0. 2

Let n be the number of variables, letρ be density,ν be a real constant such that0 < ν < 1,

T0 andU0 be subsets of[̺n] such thatT0 ∩ U0 = ∅, [nν] ⊆ T0 ∪ U0 and letS0 = T0 ∩ [nν]. We

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 48

denote byHT0U0ν a hypothesis stating thatϕ is such thatSϕ,ν = S0, Tϕ,ν = T0, Uϕ,ν = U0 and

alsoMϕ,ν ∩Nϕ,ν = ∅, |Mϕ,ν | = 3 |Tϕ,ν |. The following lemma allows us to concentrate on small

setsU0, T0.

Lemma 16 Letφ ∈ Φ
plant
η (n, ̺n), µ0, µ < µ0 andν be as in Lemma 15. If for an eventE there is

a sequenceδ(n) −→
n−→∞

0 such that for all pairs(T0, U0), |T0∪U0| < n2ν we haveP (E|HT0U0ν) ≤

δ(n) thenP (E) −→
n−→∞

0.

Proof. We can bound probability of eventE as

P (E) ≤
∑

T0,U0:|T0∪U0|<n2ν

P (E|HT0U0)P (HT0U0) +

+ P
(
Mϕ,ν ∩Nϕ,ν 6= ∅ ∨ |Mϕ,ν | < 3 |Tϕ,ν| ∨ |T0 ∪ U0| ≥ n2ν

)

≤ δ(n) + P (Mϕ,ν ∩Nϕ,ν 6= ∅) + P (|Mϕ,ν | < 3 |Tϕ,ν|) + P
(
|T0 ∪ U0| ≥ n2ν

)
.

By Lemma 15 probabilities of eventsMϕ,ν ∩ Nϕ,ν 6= ∅ and |Mϕ,ν | < 3 |Tϕ,ν | tend to 0 asn

approaches infinity. By Lemma 2 (2) we have|T0 ∪ U0| < n2ν whp. Thus we obtain the result.2

Observation 3 If ϕ is selected according toΦplant(n, ρn) conditioned toHT0U0ν then formula
ϕ ↓[̺n]\(T0∪U0) has the same distribution as if it was generated by picking clauses from all clauses
over variablesV \ var([nν]) uniformly at random.

Proof. [of Proposition 3] Letα4 be the exponent corresponding toρ andd = 2 by Lemma 14,

let µ be such thatα4 + 2µ < 1 and letν be taken by Lemma 15. We fix arbitrary pair(T0, U0)

of subsets of[ρn] satisfyingT0 ∩ U0 = ∅, [nν] ⊆ T0 ∪ U0, |T0 ∪ U0| < n2ν . We will bound the

probability of success of Local Search under a hypothesis ofthe formHT0U0ν and apply Lemma 16

to get the result.

LetM = Mϕ,ν andL = Lϕ,ν. We split formulaϕ into ϕ1 = ϕ ↓T0 andϕ2 = ϕ ↓[̺n]\T0
and

first consider a run of LS applied toϕ2 only. Formulaϕ2 can in turn be considered as the conjunction

of ϕ21 = ϕ ↓U0 andϕ22 = ϕ ↓[̺n]\(T0∪U0). In Fig. 4.3 formulaϕ1 consists of clauses shaded with

vertical lines, formulaϕ21 of clauses shaded with diagonal lines and formulaϕ22 of clauses that are

not shaded. By Observation 3 formulaϕ22 is sampled according toΦplant(n− δ1(n), n̺− δ2(n))

modulo names of variables whereδ1(n) andδ2(n) areo(n). So formulaϕ2 is sampled according to

Φ
plant

2µ (n−δ1(n), n̺−δ2(n)). By Lemma 14 the number of variables that do not play2-righteously

during run of LS onϕ2 is bounded from above bynα4 for a certainα4 < 1. We consider coupling

(LSϕ, LSϕ2) of runs of LS onϕ andϕ2, denoting assignments obtained by the runs of the algorithm

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 49

at stept by ~uϕ(t) and~uϕ2(t) respectively. LetK be the set of those variables which do not belong

to L (squares and circles in Fig. 4.3). Formulaϕ2 is a 3-CNF containing only variables fromK.

For an assignment of values of all variables~u we will denote by~u|K its restriction onto variables

from K. We make processLSϕ start with a random assignment~uϕ(0) = ~u0
ϕ to all variables, and

LSϕ2 with a random assignment~uϕ2(0) = ~u0
ϕ2

to variables inK, such that~u0
ϕ|K = ~u0

ϕ2
. Now the

algorithms work as follows. At every step a random variablexi is chosen. ProcessLSϕ makes its

step, and processLSϕ2 makes its step ifxi ∈ K.

WhpLSϕ2 will run with at mostnα4 variables that do not play2-righteously. LetW denote the

set of such variables. Variables in formulaϕ1 are selected uniformly at random so ifα4 + 2µ < 1

then whp setM does not intersect withW . Hence, every timeLSϕ considers some variable from

M it is 2-righteous inϕ2 and belongs to at most one clause ofϕ1. Therefore such a variable is at

least1-righteousϕ and is flipped to 1, or stays 1, whichever is to happen forLSϕ2. Thus whp at

every step of(LSϕ, LSϕ2) we have~uϕ(t)|K = ~uϕ2(t). In the rest of the proof we consider only this

highly probable case.

Consider some cap supportci = (x1, x4, x5) occupying a positioni ∈ [nν] and such that

x1 = 0, x4 = 1, x5 = 0 at time 0, and a setPci of variables occurring in clauses that contain

variablesvar(ci) (obviouslyvar(ci) ⊆ Pci). Let cj be the clause that forms a cap withci. We say

that a variable isdiscoveredat stept if it is considered for the first time at stept. Let p1, . . . , pk be

an ordering of elements ofPci according to the step of their discovery. In other words if variable

p1 is the first variable fromPci that is discovered,pk was the last. In the case some variables

are not considered at all, we place them in the end of the list in a random order. Observe that all

variables that play at least1-righteously are discovered at some step. All orderings of variables are

equiprobable, hence, the probability of variablesvar(ci) to occupy placespk−2, pk−1 andpk equals

3!/k(k − 1)(k − 2). We will call this orderingunlucky.

Let us consider what happens if the order of discovery ofPci is unlucky. All variables inPci \

var(ci) play 1-righteously, therefore once they are discovered byLSϕ they equal to 1. Thus when

x1, x4, x5 are finally considered all clauses they occur in are satisfied, except forcj . So variables

x1, x4, x5 do not change their values and the clausecj remains unsatisfied by the end of the work of

LSϕ.

By Lemma 2(2) whp no vertex has degree greater thanln2 n, so the size of the setPci is bounded

above by3 ln2 n. Thus the probability of eventUnluck(i) =“order of discovery ofPci is unlucky”

is greater than 1
ln6 n

. Thus, the expectation of|{i|Unluck(i)}| equals |S0|

ln6 n
= nµ

ln6 n
. By definition

of HT0U0ν any variable whp occurs in clauses fromTϕ,ν at most once, hence there is no variable

CHAPTER 4. PHASE TRANSITION OF BASIC LOCAL SEARCH 50

that occurs in the same clause with a variable fromci1 and a variable fromci2 for i1, i2 ∈ S0,

i1 6= i2. This implies that events of the formUnluck(i) are independent. Therefore random variable

|{i|Unluck(i)}| is Bernoulli and, as its expectation tends to infinity, the probability that it equals to

0 goes to 0. Since unlucky ordering of at least one cap support leads to failure of the LS this proves

the result. 2

Chapter 5

On the Power of Plateau Moves

5.1 Main Result and General Intuition

The main result of this chapter is the following

Theorem 4 For anyκ > 0, ρ = κ ln n GSAT with settingsMAXFLIPS= n60/κ+3, MAXTRIES= 1
finds a solution forϕ fromΦplant(n, ρn) whp.

AfterO(MAXFLIPS×MAXTRIES) steps that did not lead to a solution of the problem GSAT fails

so Theorem 4 implies that GSAT finds solution in a polynomial number of steps.

It is sufficient to prove the result forκ < 2, since by Theorem 1 of [12] forκ > 7
6 GSAT will

find solution without even switching to plateau moves stage.

Lemmas 17-19 describe relations between variables that areassigned to 0 in a local maximum

and variables that occur in few(+,−,−) clauses. These lemmas lead to a proof of Lemma 20 that

will be the key instrument to prove Theorem 4. This lemma is formulated in terms of a graph of

co-occurrences. In terms of the original formulaϕ Lemma 20 states that when a local maximum

of the number of satisfied clauses is reached we have the following picture. Clauses containing

variables that are still assigned incorrectly fall apart into several sub-formulasϕ1, . . . , ϕt. Formu-

lasϕ1, . . . , ϕt are pairwise disjoint, that is noϕi, ϕj contain a common clause. Moreover these

sub-formulas are disjoint with respect to variables, that is noϕi, ϕj refer to a common variable.

The lemma also states that any such sub-formulaϕi that contains an unsatisfied clause contains

an incorrectly assigned variable that can be flipped by GSAT.In the proof of Theorem 4 we apply

Lemma 20 and observe that the solution space is with high probability such that from any proper

local maximum there is a finite path along a plateau that leadsto higher ground. The path is finite

meaning that its length can be bounded by some constantℓ that does not depend onn. So with

51

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 52

constant probability among the nextℓnℓ steps there will beℓ steps that will be made along such a

path and a better assignment will be reached.

We will discuss intuition behind Lemmas 17-19 directly before stating them.

5.2 Proof of the Main Result

Let Gϕ be the graph of co-occurences of variables inϕ. That is, vertices ofGϕ are variables;xi

andxj are connected ifxi andxj occur in the same clause inϕ. We shall need several notions from

graph theory that we are going to apply to the graphGϕ. For a graphG = (V,E) and a subsetX

of its vertices we denote byG|X the subgraph induced byX, i.e. graph(X,E ∩ X2). Let l ∈ N

andEl be the set of pairs of vertices that are connected by paths of length at mostl in G. We denote

graph(V,El) byGl. We denote byNG,d(X) thed-th neighborhood ofX in G, i.e.

NG,d(X) = {y | there existsx ∈ X such that(x, y) ∈ Ed}.

Observation 4 For anyρ ≤ 2 ln n whp no two variables occur together in more that 2 clauses ofϕ
fromΦplant(n, ρn).

Proof. Indeed if we fix two variables and three clauses then the probability of the variables to occur

together in these three clauses isO(n−6). There areO(n2) pairs of variables andO(m3) triples of

clauses so applying union bound we conclude that the probability that there exist such a pair and

triple is less thanO(n−4m3) which tends to zero form ≤ 2n lnn. 2

Let us recall that a variable is called∆-isolated inϕ if it occurs positively in fewer than∆

clauses of type(+,−,−). From now on we shall denote the set of all∆-isolated variables byI∆.

Intuitively, our interest in∆-isolated variables comes from the fact that in the case of logarithmic

density of the formula extremely few clauses with two or three positive literals are unsatisfied in a

local maximum. This happens because almost all variables are assigned correctly and the probability

that a clause has two incorrect variables is very small. Thusmany unsatisfied clauses in a local

maximum are(+,−,−) and variables that are assigned wrong tend to be∆-isolated variables.

In the following Lemma we show that∆-isolated variables do not “flock together” so with high

probability you do not find many of them close to each other.

Lemma 17 For anyκ ∈ R there is a constantl ∈ N such that for any constants∆ ∈ N, d ∈ N

andρ = κ lnn,ϕ from Φplant(n, ρn) whp any connected component ofGd|I∆ contains fewer than
l variables.

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 53

Proof. Fix an arbitrary constantr. LetM be a set ofr variables. Obviously

P (all variables inM are inI∆)

is less than

P (#(positive occurrences of variables fromM in (+,−,−)-clauses)≤ |M | × ∆) .

The latter probability can be bounded above by

r∆∑

k=0

(
ρn

k

)(r

n

)k
(

1 −
3r

7n

)ρn−k

≤

r∆

(
ρn

r∆

)(r

n

)r∆
(

1 −
3r

7n

)ρn−r∆

.

r∆ρr∆∆−r∆e−3/7ρr/((r∆)!) . e−3ρr/14.

The number of connected sets of variables inGd can be bounded above by the number of

subgraphs ofGd isomorphic to trees. Since whp the maximum degree of a variable is bounded

above byln2 n the number of subgraphs of sizer isomorphic to trees can be bounded above by

n(r ln2d n)r−1 . n2 whp.

Now we apply union bound to the probability of an eventE = “there exists a connected setM

of vertices ofGd of sizer such that all variables inM are inI∆” getting the upper bound

P (E) ≤ n2e−3κr ln n/14 = eln n(2−3κr/14).

Therefore if we setl = 10/κ then for any constantr > l we have the probabilityP (E) tending to

0. 2

For an assignment~v we denote byW~v a set of all variables assigned by~v incorrectly. I. e.

W~v = {xi | vi = 0}.

In Lemma 18 we show that in a local maximum any connected component of a graph of co-

occurrences of variables assigned incorrectly needs a constant fraction of its members to belong to

I∆.

Lemma 18 Let κ ∈ R, ∆ be odd and∆ ≥ 11, ρ = κ lnn andϕ from Φplant(n, ρn). Then whp
for any local maximum~v any connected componentC ofG|W~v

contains at least|C|(∆−9)
∆+1 variables

from I∆.

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 54

Proof. By Lemma 6 there existsα such that0 < α < 1 and any local maximum contains less than

nα zeros. Consider an arbitrary local maximum~v and a connected componentC of G|W~v
.

Let xi be such thatxi ∈ C \ I∆. Variablexi occurs positively in at least∆ clauses of type

(+,−,−). If clausec is of type (+,−,−), variablexi occurs positively inc and it is the only

variable inc that is assigned to0 thenc is not satisfied and will become satisfied ifxi is flipped. But

~v is a local maximum and flippingxi should not increase the number of satisfied clauses. Ifxi has no

neighbors assigned to 0 by~v then after flippingxi the number of satisfied clauses will increase by at

least∆. A neighborxj of xi may decrease this advantage by making one of(+,−,−) clauses that

refer toxi satisfied or by making some other clause wherexi occurs negatively unsatisfied. But each

neighborxj assigned to 0 can not decrease the advantage of flippingxi by more than the number of

co-occurences ofxi andxj in clauses ofϕ. By Observation 4 whp no two variables occur together

in more than 2 clauses. So ifxi hast neighbors assigned to 0 then advantage of flippingxi will be

at least∆− 2t. And since the advantage must be a non positive and integer wehavet ≥ (∆+1)/2.

Thereforexi must have at least(∆ + 1)/2 neighbors inG that are assigned to zero by~v. Obvi-

ously all these variables are inC, so the degree ofxi inG|W~v
is at least(∆+1)/2. We can bound the

average degree ofC from below by(|C \ I∆| · (∆ + 1)/2) /|C|. Since|C| < nα by Lemma 2(1) it

follows that the average degree ofC is less than 5. Thus we have

(|C \ I∆| · (∆ + 1)/2) /|C| < 5

and consequently

|C \ I∆| <
10|C|

∆ + 1
,

|C ∩ I∆| >
|C|(∆ − 9)

∆ + 1
. (5.1)

Since inequality (5.1) was shown for an arbitrary connectedcomponent ofG|W~v
the lemma is

proven. 2

We say that a variablexi is potentially wrongif there is an assignment~v such that it is a local

maximum andvi = 0. The set of all potentially wrong variables is denoted byW , that is

W =
⋃

~v is a local maximum

W~v.

In the following lemma we show that for large enough∆ the set of∆-isolated variables is dense

in the set of potentially wrong variables. Namely that any potentially wrong variable must have at

least one∆-isolated variable within a finite (bounded by a predefined constant) distance.

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 55

Lemma 19 Letκ ∈ R, ∆ be odd and∆ ≥ 11. Then there is a constantr ∈ N such that whp any
xi ∈W has a∆-isolated variable at distance less thanr.

Proof. Let l be the number corresponding toκ to satisfy the conditions of Lemma 17, letr = 7l and

let

M = {x|x is connected inGr to somey ∈ I∆} = NG,r(I∆).

Consider an arbitrary local maximum~v. To prove the lemma we must show that

W~v ⊆M.

To derive a contradiction let us assume that

there existsxj ∈W~v \M . (5.2)

Let C be a connected component ofG|W~v
containingxj. By Lemma 18 setC contains at least

|C|(∆−9)
∆+1 variables fromI∆. For∆ ≥ 11 we have

|C ∩ I∆| ≥ 1/6|C| (5.3)

and consequently nonemptyC must contain at least1 variable formI∆. Now we take arbitraryxk ∈

I∆ ∩ C and consider a connected componentC ′ of G2r|I∆ that containsxk. Note that Lemma 17

implies

|NG,r(C ′) ∩ I∆ ∩ C| ≤ |NG,r(C ′) ∩ I∆| ≤ l.

On the other hand sincexj 6∈M ⊇ NG,r(C ′) andxj is connected to an element ofC ′ we have

|NG,r(C ′) ∩ C| ≥ r = 7l.

By definitions ofNG,d andGd any distinct connected componentsC1 andC2 of G2r|I∆ satisfy

NG,r(C1) ∩N
G,r(C2) = ∅.

Therefore ifs > 0 is the number of connected components ofG2r|I∆ that intersect withC we

have bounds

|I∆ ∩C| ≤ sl (5.4)

and

|C| ≥ 7sl. (5.5)

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 56

Conjunction of (5.4) and (5.5) contradicts (5.3), therefore assumption (5.2) was false and the lemma

is proven. 2

Now we are in a position to prove the key lemma of the proof of the main result. As it was

discussed in the beginning of the section the intuitive meaning of Lemma 20 is that once a local

maximum is reached we observe the following. Incorrectly assigned variables split into several

finite connected components. Moreover each component that contains a variable occurring in an un-

satisfied clause contains also a variable that can be flipped without reducing the number of satisfied

clauses.

Lemma 20 Letκ ∈ R, ρ = κ ln n andϕ ∈ Φplant(n, ρn). Then there iss ∈ N such that whp for
any local maximum~v and any connected componentC ofG|W~v

the following statements is true:

• C contains less thans elements,

• if there is an unsatisfied clause containing a variable fromC then there is a variablexj ∈ C
such that the number of unsatisfied clauses wherexj occurs equals to the number of clauses
that are satisfied only byxj .

Proof. We fix some local maximum~v and a connected componentC of G|W~v
.

By Lemma 19 for∆ = 11 there is a constantr such that whp for every variablexi ∈ C there

is a variablexj ∈ I∆ such that distance betweenxi andxj is less thanr. Let us denote suchxj by

xi↑. It is easy to see that set{xi↑ |xi ∈ C}∪ (C ∩ I∆) is connected inG2r+1|I∆ and by Lemma 17

its size can not be greater than some constantl. Thus|C ∩ I∆| < l and by Lemma 18 for∆ = 11

we have|C| < 6l. So we sets = 6l and have the first statement of the lemma proven. Note that in

the proof of Lemma 18 we setl = 10/κ so here we haves = 60/κ.

To prove the second statement of the lemma we consider an arbitrary variablexj in C and a

clausec wherexj occurs.

Observation 5 For c to be satisfied only byxj in ~v the following two conditions are necessary: (a)
xj occurs inc negatively, (b) there is a variablexi that occurs inc positively and such thatvi = 0.

Consider a directed graph

SC = (C, {(xi, xj)|there is a clausec ∈ ϕ containing literalsxi and¬xj}).

Assume for the sake of contradiction that for any variablexj ∈ C the number of clauses that are

satisfied only byxj is strictly greater than the number of unsatisfied clauses wherexj occurs. Then

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 57

for eachxj ∈ C there is at least one clause that is satisfied only byxj. This by Observation 5 means

that the in-degree of every vertex inSC is at least 1. SetC contains a variablexk that occurs in some

unsatisfied clausec. So there must be at least two clauses that are satisfied only by xk. Thus the

in-degree ofxk in SC is at least 2 andSC contains at least|C|+ 1 edges. If variables are connected

in SC they are connected inG|C and we have thatG|C contains at least|C| + 1 edges.

We finish the proof by showing that for any constantsh andq such thath > q whp there is

no set of variablesC such that|C| = q and the graphG|C containsh edges. Indeed there are
(
n
q

)

sets of variables of sizeq and
(m

h

)
sets of clauses of sizeh. For a given set of clauses of sizeh

the probability to have2h positions to be occupied by variables from a given setC, |C| = q can

be bounded from above by(3h)2hn−2h. Applying union bound we have that the probability under

consideration is less than(3h)2hmhnqn−2h which tends to 0 for any fixedκ if h > q.

2

We are now in a position to prove the main result.

Proof of Theorem 4. By Lemma 20 once GSAT reaches a local maximum~v setW~v falls apart

into several connected components of size at mosts. If there are no more unsatisfied clauses left

then the problem is solved and GSAT returns a satisfying assignment. Otherwise let us consider a

connected componentC of G|W~v
that contains a variablexi that occurs in an unsatisfied clause.

We show that with probability at leastn−s after s steps GSAT will be at some assignment~u

that satisfies more clauses than~v. By Lemma 20 there is a variablexi1 ∈ C such that the number

of clauses that are satisfied only byxi1 equals the number of clauses that containxi1 and are not

satisfied. Thus with probability1/n variablexi1 will be the next variable that is flipped by GSAT.

If it happens then for an assignment~v′ obtained at the next step there are two possibilities: 1)~v′

is not a local maximum or 2)~v′ is still a local maximum. In case 1)GSAT will increase the

number of satisfied clauses at the next step. In case 2) letC1 be a subset ofC \ {xi1} that is

a connected component ofG|W~v
and contains variable that occurs in an unsatisfied clause. We

have|C1| ≤ |C| − 1 and with probability1/n a variable fromC1 will be flipped by GSAT at the

next step, which will either lead to an increase of the numberof satisfied clauses or to a new set

C2, |C2| ≤ |C| − 2, etc. Size ofC is at mosts so with probability greater thann−s afters steps the

number of satisfied clauses will be increased.

CHAPTER 5. ON THE POWER OF PLATEAU MOVES 58

Therefore if GSAT is at a local maximum then insns+1 steps it will increase the number of

satisfied clauses with probability at least1− (1−n−s)n
s+1

≈ 1− e−n. So once the local maximum

is reached for the first time the problem will be solved aftersns+2 steps with probability at least

1 − ne−n.

2

5.3 Discussion

Note that we never used greediness of GSAT and all the reasoning would go through in the very

same way for CSAT. Therefore, we have the analogous result for CSAT.

Corollary 4 The CSAT algorithm with settingsMAXFLIPS= n60/κ+3, MAXTRIES= 1 solves ran-
dom planted 3-SAT of logarithmic density whp.

Comparing Corollary 4 with Theorem 3 and noting that CSAT is the basic Local Search en-

hanced with plateau moves and restarts we can conclude that adding plateau moves to Local Search

increases its power substantially. The intuitive essence of this conclusion is by no means novel but

now we have it rigorously proven within the context of randomplanted 3-SAT.

We believe that the analysis of the landscape of the solutionspace of random planted 3-SAT

carried out in our work gives more general intuitive understanding of the process of the execution of

the local search algorithms.

Chapter 6

WRW: A Candidate to Solve Random
Planted 3-SAT

In the last chapter we present the Weighted Random Walk algorithm (see Fig. 1.6). This algorithm

is obtained by a simple modification of the Random Walk which results in a substantial increase in

efficiency. We present experimental data and prove that the algorithm reaches a good approximation

of the solution of Random Planted 3-SAT of high density.

6.1 Theoretical Analysis of the Approximation Ratio

We first analyze the behavior of the algorithm given a formulaϕ that has all clauses that are satisfied

by ~1 = (1, . . . , 1). Then we show that if the density of a formula is high enough then we get the

same result.

Let ~x be some assignment of boolean values to the variables. LetA be the set of variables

assigned to 1, andB be the set of variables assigned to 0. We denote byCAAA, CAAB, CABB , CBBB

sets of clauses containing three, two, one and no variables fromA respectively.

6.1.1 Formula with All Clauses

In this section we analyze the performance of WRW on a 3-SAT formulaϕ that contains all clauses

that are satisfied by the all-ones assignment, i.e. all clauses that have at least one positive literal.

Let ~x andw(·) be a vector of values of the variables and weight function at astep of WRW, and

let ~x′, w′(·) be a vector and weight function which are obtained from~x,w(·) by performing one step

of the algorithm. LetAi be the set of all variables that have value1 and weighti,Bi be the set of all

variables that have value0 and weighti, and letai = |Ai|
n , bi = |Bi|

n , a =
∑K

i=1 ai, b = 1 − a.

59

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 60

We consider functionV (~x) =
∑K

i=1 iai −
∑K

i=1(i − 1)bi, which is obviously bounded byK.

We will show that there exists a positive constantδ such that for any~x we have

E
(
V (~x′) − V (~x)

)
> δ, (6.1)

which by the Azuma’s inequality implies that whp afterO(n) stepsV (~x) becomes equal toK, and

consequently the process stops.

Lemma 21 Let ~x be an assignment andX be some variable fromA, and letY be some variable
from B. If C is an unsatisfied clause, chosen uniformly at random, then the probability thatX

occurs inC is 3(1−a2)
(1−a3)n and the probability thatY occurs inC is 3

(1−a3)n .

Proof. LetC be a clause chosen uniformly at random (not necessary unsatisfied). Then

• P (C ∈ CAAA) = a3,P (X ∈ C|C ∈ CAAA) = 3
an ,

P (Y ∈ C|C ∈ CAAA) = 0,

• P (C ∈ CABB) = 3a2b,P (X ∈ C|C ∈ CAAB) = 2
an ,

P (Y ∈ C|C ∈ CAAB) = 1
bn ,

• P (C ∈ CAAB) = 3ab2,P (X ∈ C|C ∈ CABB) = 1
an ,

P (Y ∈ C|C ∈ CABB) = 2
bn ,

• P (C ∈ CBBB) = b3,P (X ∈ C|C ∈ CAAA) = 0,

P (Y ∈ C|C ∈ CBBB) = 3
bn .

In the first case the clause will definitely be satisfied and in each of the latter three the probability

that the clause is unsatisfied equals1
7 . So we haveP (¬C(~x)) = 1

7(3a2b+ 3ab2 + b3) = 1
7(1− a3).

Now we compute

P (X ∈ C & ¬C(~x)) = P (X ∈ C & ¬C(~x)|C ∈ CAAB)P (C ∈ CAAB) +

P (X ∈ C & ¬C(~x)|C ∈ CABB)P (C ∈ CABB) +

P (X ∈ C & ¬C(~x)|C ∈ CBBB)P (C ∈ CBBB) .

EventsX ∈ C and¬C(~x) are independent under the conditions, so we have

P (X ∈ C & ¬C(~x)) =
1

7

(2

an
3a2b+

1

an
3ab2 + 0b3

)

=

=
3

7n
(2ab+ b2) =

3

7n
(1 − a2).

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 61

We plug the obtained expression into the definition of conditional probability and get the desired

expressionP (X ∈ C|¬C(~x)) = 3(1−a2)
(1−a3)n

.

The probabilityP (Y ∈ C|¬C(~x)) is computed similarly. 2

Now let ai, bi correspond to ~x and a′i, b′i to ~x′. We are interested in

E (V (~x′) − V (~x)). We can express the change inV as

V (~x′) − V (~x) =
K∑

i=1

i(a′i − ai) −
K∑

i=1

(i− 1)(b′i − bi) (6.2)

so to computeE (V (~x′) − V (~x)) we need to computeE (a′i − ai) andE (b′i − bi).

The numbersai andbi are changed similarly. The setAi changes because some variables leave

it and some arrive into it. Now it is convenient to denoteci = ai andc−(i−1) = bi. Let qci→ci±1

be the number of variables that leaveAi and arrive intoAi±1. None of the variables can change its

weight by more than one in one step, so we have

• c′i = ci − qci→ci−1 − qci→ci+1 + qci−1→ci + qci+1→ci , for all i, except−K + 1 andK,

• c′K = cK − qcK→cK−1
+ cbK−1→bK

, and similarly forc−K+1.

Variables go fromAi toAi+1 when the weights of two variables are increased, so

E
(
qai→ai+1

)
= 2ai. (6.3)

Variables go fromAi to Ai−1 and fromA1 to B1 when three variables of an unsatisfied clause

decrease weights/flip. Applying lemma 21 we get

E
(
qai→ai−1

)
=

3(1 − a2)

(1 − a3)n
ain =

3(1 − a2)

(1 − a3)
ai,E (qa1→b1) =

3(1 − a2)

(1 − a3)
a1. (6.4)

Analogously we get

E
(
qbi→bi−1

)
=

3

(1 − a3)
bi,E (qb1→a1) =

3

(1 − a3)
b1,E

(
qbi→bi+1

)
= 2bi. (6.5)

Substituting the expressions fora′i into (6.2) we obtain

V (~x′) − V (~x) = (6.6)
K−1∑

i=0

qai→ai+1

︸ ︷︷ ︸

Ψ1

−
K∑

i=1

qai→ai−1 − qa1→b1

︸ ︷︷ ︸

Ψ2

−
K−1∑

i=0

qbi→bi+1

︸ ︷︷ ︸

Ψ3

+
K∑

i=1

qbi→bi−1
+ qb1→ba

︸ ︷︷ ︸

Ψ4

.

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 62

Using equations (6.3) - (6.5) we getE (Ψ1) = 2a − 2aK ,E (Ψ2) = −3a(1−a2)
1−a3 ,E (Ψ3) =

−2b+ 2bK ,E (Ψ4) = 3b
1−a3 , thus

E
(
V (~x′) − V (~x)

)
= 2a− 2aK −

3a(1 − a2)

1 − a3
− 2b+ 2bK +

3b

1 − a3
= (6.7)

4a3 − a2 − a+ 1

1 + a+ a2
− 2aK + 2bK . (6.8)

Using the standard method for finding local maxima by analysis of the first derivative it can

easily be shown that4a3−a2−a+1
1+a+a2 > 0.42, so if we could bound2aK by c < 0.42 then we would be

able to conclude thatE (V (~x′) − V (~x)) ≥ 0.42 − c > 0.

Next we argue thataK ≤ 1
K . Thus, takingK ≥ 5 we obtain inequality (6.1) withδ = 0.02.

Lemma 22 For any natural numberK and for anyT = O(n) whp at any step of the WRW before
stepT we haveaK ≤ 1

K .

Proof.

We will use Wormald’s theorem to prove that the system behaves close to solutions of a system

of differential equations and then argue that the variable corresponding toaK never becomes greater

than 1
K . Below we check conditions (i)-(iii).

(i) As at every step only one variable is flipped we have inequalities

max|a′l − al| ≤ 1,max|b′l − bl| ≤ 1

true with probability one.

(ii) This condition follows from equations (6.3) - (6.5), when we setfai(a0, . . . , bK) =

E
(
qai+1→ai

)
+E

(
qai−1→ai+1

)
−E

(
qai→ai+1

)
−E

(
qai→ai−1

)
and use obtained expressions

for all E (q⋄) for i > 0, and similarly forfbi
, fa1 .

(iii) The functionsf⋄ are Lipschitz, because they have finite first derivative.

Thus we get the equations

dul
dx = fal

(u1, . . . , uK)

dvl
dx = fbl

(u1, . . . , uK)
, (6.9)

and initial conditionsu0(0) = v0(0) = 1
2 , for 0 < i ≤ K, ui(0) = vi(0) = 0. Almost surely

al(t) = ul(t/n) + o(1), bl(t) = vl(t/n) + o(1).

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 63

Thus to finish the proof of the lemma we show that the solution of system (6.9) satisfiesuK(x) <
1
K .

We use induction to show the following:

Claim 1 For any 0 ≤ R < K, if s is such that
∑K

l=R+1 ul(s) is maximal and equalsα(K − R)

thenuR(s) > α, which in particular means that the maximum value of
∑K

l=R ul(s) is greater than
α(K −R+ 1).

Proof. We denote
∑K

l=R+1 ul(s) by IR+1(s). First note that
dIR+1(s)

ds = quR→uR+1 − quR+1→uR
, which follows directly from the definition off , so if

dIR(s)
ds = 0 thenuR ≥ uR+1. Indeed we have

quR→uR+1 − quR+1→uR
= 2uR −

3(1 − u2)

(1 − u3)
uR+1

and the expression3(1−u2)
(1−u3)

equals2 if u = 1 and is smaller ifu < 1. ThusuR < uR+1 would imply
d

PK
l=R+1 ul(s)

ds < 0.

The induction proof will go fromR = K − 1 to R = 0. The base of inductionR = K − 1

follows from the fact thatduK
ds = 0 impliesuK−1 ≥ uK .

Induction step:

Considers0 such thatIR+1(s0) is maximum and equalsα(K − R). We haveuR(s0) ≥

uR+1(s0). Assume thatuR(s0) < α1, which impliesuR+1(s0) < α1. Then

IR+2(s0) = IR+1(s0) − uR+1(s0) > (K −R)α1 − α1,

which leads to a contradiction as (K − R − 1)α1 is the maximum

value ofIR+2. 2

It follows from the Claim that if the maximum value ofIR(s) is α(K − R) then the maximum

value ofIR−1(s) is at leastα(K − R + 1). Thus if the maximum value ofuK(s) is α then the

maximum value ofI0(s) is at leastKα. As I0(s) cannot be greater than1 we get the inequality

uK(s) < 1
K . Thus almost surely we haveaK(t) < 1

K . 2

So ifK ≥ 5 then there is a constantc > 0 such that at every step of the WRW the expectation

of the amount of change ofV (~x) is greater thanc. The value ofV (~x) cannot change by more than

5 at every step so by Azuma’s inequality we have

P
(
V (~xt) ≤ nK

)
≤ 2e−

(tc−nK)2

2·25t .

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 64

The right hand side of the above equation starts to decrease rapidly whentc becomes greater

thannK. This proves the following

Lemma 23 If ϕ is a 3-CNF with all possible clauses that are satisfied by assignment~r then almost
surely WRW withK ≥ 5 weights finds~r in O(nK) steps.

6.1.2 Random Formula

In this subsection we prove

Theorem 5 Letϕ be a random 3-CNF with a planted solution~x0 of densityρ = ρ(n) −→
n−→∞

∞,

andε > 0 be some constant. With high probability WRW with more than 5 weights finds a vector
that differs from~x0 in at mostεn coordinates.

Let ϕ be a random 3-CNF with a planted solution~1. ForA,B,A1 ⊆ A we denote byCAA1B

the set of all unsatisfied clauses that have one variable fromA1, one variable fromA \ A1 and one

fromB. By Cϕ
AA1B we denote the set of clauses inϕ that have this property. Analogously we define

CAAiB, CAABi , etc. We define the set of all unsatisfied clauses byCu and all unsatisfied clauses inϕ

by Cϕ
u .

For a formula with all clauses the expectation of the number of variables that at a given step go

fromA1 toB1 equals
|CAA1B | + 2|CA1A1B |

|Cu|
, (6.10)

while for formulaϕ it is
|Cϕ

AA1B | + 2|Cϕ
A1A1B |

|Cϕ
u |

. (6.11)

In the next lemma we show that
Cϕ

AA1B

ρn is close to6aa1b whp, which equals
CAA1B

ρn . The same

techniques can be used to show that other members of equation(6.11) divided byρn are close to

respective members of equation (6.10) divided byρn. Under the conditions of theorem 5 we have
Cu
ρn = b3 > ε3, thus the denominator of (6.10) is separated from zero, so expression (6.11) is close

to (6.10).

Lemma 24 Letρ(n) tend to infinity and letb be a constant greater than0. Let also~x be a Boolean

assignment andB,A,A1 ⊆ A be arbitrary subsets of variables such that|B|
n = b and variables

fromA equal to 1 in~x and all variables fromB equal to 0 in~x. Then the following inequality holds

whp:
∣
∣
∣
CAA1B

ρn − 3
7a(a− a1)b

∣
∣
∣ ≤ o(1).

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 65

Proof.

By simple counting it can be shown that ifC is chosen uniformly at random then

P (C ∈ CAA1B) = 3
7a1(a−a1)b. LetCϕ

AA1B be the multiset of clauses inϕ that belong toCAA1B . In

totalρn clauses are chosen to be inϕ, so the expectation of the size ofCϕ
AA1B equals3

7a1(a−a1)bρn.

Using Chernoff bound we get

P

(∣
∣
∣
∣
∣

|Cϕ
AA1B |

ρn
−

3

7
a1(a− a1)b

∣
∣
∣
∣
∣
> ǫ

)

< 2e
− ǫ2ρn

3
7 a1(a−a1)b .

We will say thatϕ is ǫ-bad if there exists an assignment, and subsets of variablesA,B,A1 ⊆ A

for which inequality

∣
∣
∣
∣

|Cϕ
AA1B|

ρn − 3
7a1(a− a1)b

∣
∣
∣
∣
> ǫ is true.

Now we put to use the fact that the probability of a union of events is less than or equal to the

sum of the probabilities of the events to estimate the probability of ϕ beingǫ-bad.

There are2n boolean assignments,2n ways to selectA andB, and at most2n ways to select

Ai ⊆ A, so we have

P (ϕ is bad) ≤ 2e
− ǫ2ρn

3
7 a1(a−a1)b 23n = e−n(γ1ǫ2ρ−γ2), (6.12)

whereγ1, γ2 are constants. We can chooseǫ = ρ−1/3 = o(1) so asρ→ ∞ the function in the right

hand side of the equation (6.12) iso(1), which completes the proof. 2

Thus for random CNFs with planted solution~1 and vectors with more thanεn zeros, WRW acts

as it does for the Full CNF, that is it tends to get closer and closer to~1. So with high probability an

assignment with more than(1 − ε)n ones will be found.

6.1.3 Discussion

The obtained theoretical results provide intuition on the reasons of the algorithm’s success. When

standard Random Walk starts with a random assignment there are more occurrences of variables

assigned zero in the unsatisfied clauses, so the number of zero variables decreases. But when the

golden ratio conjugate is reached the numbers of occurrences of zeros and ones become equal and

progress stops. For the same reasons, when WRW starts, the number of zero variables is decreased.

Once the assignment contains fewer zeros than ones, the onesstart benefiting from increasing weight

of randomly picked variables. The problem one might expect here is that weights of some one

variables grow infinitely (or up to a maximum allowed size), while other variables still stay zero.

Lemma 2 shows that this is not the case with WRW: the set of one variables with maximum possible

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 66

weight stays reasonably bounded, and thus the added weight is used in the ‘struggle’ between one

and zero. Formally it is shown via use of a potential functionV .

6.2 Experiments

In this section we describe experiments done with the WRW algorithm. Our experiments are done

on random and random planted 3-SAT.

With regard to random 3-SAT, our experiments show that WRW works in linear time for formu-

las with density 3.9. We studied the running time of the algorithms on formulas with 10000 variables

and then increased the number of variables in steps of 1000 until 50000. For each fixed density we

ran the algorithm on 100 random instances. For each run we were waiting until the algorithm finds

solution. The result of this experiment shows linear running time of WRW for density 3.9 when

K = 4. This is interesting when compared with the empirical evidence that standard random walk

requires exponential time for densities higher than 2.7.

Other experiments that we report here are for random planted3-SAT. In the first set of experi-

ments we try to determine for which densities WRW can solve random planted 3-SAT in a reasonable

timebound. It turns out that for any fixed density WRW works reasonably fast. Our experiment was

done on formulas with 10000 variables. The density started from 3 and increased to 10 in steps of

0.1. For each fixed density the algorithm ran on 100 random instances and we looked at the average

running time on these 100 instances. The results of this experiment are summarized in Fig. 6.1.

As it is seen, the hardest instances are those with density around 5. When the density is below 3,

the formula has too many solutions and it is easy to find one. When the density is higher than 10,

intuitively speaking, the formula contains a lot of information about the planted solution and this

information guides the algorithm toward it.

The next set of experiments was aimed at figuring out the running time of WRW on random

planted instances of a fixed density. Our observations in this part were surprising. For density 10,

we ran the algorithm on instances with 10000 to 100000 variables. The running time was the highest

for instances with 10000 variable and then it reduced and converged to a fixed value and remained

steady. We believe that this is because this number of variables is not large enough to allow us to

see the asymptotic behavior of the algorithm. We observed a similar behavior when the density was

set to 4.5.

The last set of experiments was done to check how the number ofvariables of specific weight

changes during the course of the algorithm. For this experimentK is set to 5, so there are ten

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 67

3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

5

Density

R
un

ni
ng

 T
im

e

Figure 6.1: Running time vs. density.

classes of variables. The experiment was done on formulas with 10000 variables and density 30.

The results are summarized in the Fig. 6.2. Each curve showscl, i.e. the total number of variables

with a specific weight in 1000 experiments. The solid lines correspond toc1, . . . , cK , the dashed to

c0, . . . , c−K+1 starting with the upmost ones and going down. Since all experiments were finished

before 90000 steps, when time approaches to 90000 in the graph, all lines become straight. Planted

solution was chosen to be all ones. Firstly, we see that for all l, 1 ≤ l < K we havecl > cl + 1,

which agrees with Claim 1. Secondly, whena−→ 1 we have the valuebi/bi+1 growing, while the

valueai/ai+1 decreases, as it could have been predicted by (6.3), (6.4) and (6.5). This intuitively

means that the weights are more and more evenly distributed over ones, while there are more zeros

with small weights than with bigger weights.

CHAPTER 6. WRW: A CANDIDATE TO SOLVE RANDOM PLANTED 3-SAT 68

0 1 2 3 4 5 6 7 8 9

x 10
4

0

1

2

3

4

5

6
x 10

6

Running Time

N
um

be
r

of
 V

ar
ia

bl
es

Figure 6.2: Number of variables with different weights vs. time.

Bibliography

[1] Dimitris Achlioptas. Setting 2 variables at a time yields a new lower bound for random 3-sat
(extended abstract). InSTOC, pages 28–37, 2000.

[2] Dimitris Achlioptas. Lower bounds for random 3-sat via differential equations.Theor. Comput.
Sci., 265(1-2):159–185, 2001.

[3] Mikhail Alekhnovich and Eli Ben-Sasson. Analysis of therandom walk algorithm on random
3-CNFs, technical report ECCC TR04-016, 2002.

[4] Noga Alon and Joel Spencer.The Probabilistic Method. John Wiley, 1992.

[5] Sanjeev Arora and Shmuel Safra. Probabilistic checkingof proofs: a new characterization of
np. J. ACM, 45(1):70–122, 1998.

[6] Takao Asano, Takao Ono, and Tomio Hirata. Approximationalgorithms for the maximum
satisfiability problem.Nordic J. of Computing, 3(4):388–404, 1996.

[7] Armin Biere. A short history on sat solver technology andwhat is next? InSAT, 2007.

[8] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and TobyWalsh, editors.Handbook of
Satisfiability, volume 185 ofFrontiers in Artificial Intelligence and Applications. IOS Press,
February 2009.

[9] Armin Biere and Wolfgang Kunz. SAT and ATPG: Boolean engines for formal hardware
verification. In Lawrence T. Pileggi and Andreas Kuehlmann,editors, ICCAD, pages 782–
785. ACM, 2002.

[10] Maria Luisa Bonet and Katherine St. John. Efficiently calculating evolutionary tree measures
using sat. In Kullmann [43], pages 4–17.

[11] Andrei Z. Broder, Alan M. Frieze, and Eli Upfal. On the satisfiability and maximum satisfia-
bility of random 3-cnf formulas. InSODA, pages 322–330, 1993.

[12] Andrei A. Bulatov and Evgeny S. Skvortsov. Phase transition for local search on planted SAT.
CoRR, abs/0811.2546, 2008.

69

BIBLIOGRAPHY 70

[13] Edmund M. Clarke, Daniel Kroening, Natasha Sharygina,and Karen Yorav. SATABS: SAT-
based predicate abstraction for ANSI-C. In Nicolas Halbwachs and Lenore D. Zuck, editors,
TACAS, volume 3440 ofLecture Notes in Computer Science, pages 570–574. Springer, 2005.

[14] Stephen A. Cook. The complexity of theorem-proving procedures. InSTOC, pages 151–158.
ACM, 1971.

[15] James M. Crawford and Larry D. Auton. Experimental results on the crossover point in random
3-sat.Artif. Intell., 81(1-2):31–57, 1996.

[16] Evgeny Dantsin, Andreas Goerdt, Edward A. Hirsch, RaviKannan, Jon M. Kleinberg, Chris-
tos H. Papadimitriou, Prabhakar Raghavan, and Uwe Schöning. A deterministic (2-2/(k+1))n

algorithm for k-sat based on local search.Theor. Comput. Sci., 289(1):69–83, 2002.

[17] Evgeny Dantsin, Edward A. Hirsch, and Alexander Wolpert. Clause shortening combined with
pruning yields a new upper bound for deterministic SAT algorithms. InCIAC, pages 60–68,
2006.

[18] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Commun. ACM, 5(7):394–397, 1962.

[19] Olivier Dubois, Yacine Boufkhad, and Jacques Mandler.Typical random 3-SAT formulae and
the satisfiability threshold. InSODA, pages 126–127, Philadelphia, PA, USA, 2000. Society
for Industrial and Applied Mathematics.

[20] Uriel Feige, Elchanan Mossel, and Dan Vilenchik. Complete convergence of message passing
algorithms for some satisfiability problems. In Josep Dı́az, Klaus Jansen, José D. P. Rolim, and
Uri Zwick, editors,APPROX-RANDOM, volume 4110 ofLecture Notes in Computer Science,
pages 339–350. Springer, 2006.

[21] Abraham Flaxman. A spectral technique for random satisfiable 3cnf formulas. InSODA, pages
357–363, 2003.

[22] Ehud Freidgut. Necessary and sufficient conditions forsharp thresholds of graph properties
and the k-problem.Journal of AMS, 12:1017–1054, 1999.

[23] Ian P. Gent. On the stupid algorithm for Satisfiability.APES Report APES-03-1998. APES
Research Group, 1998.

[24] Ian P. Gent, South Bridge, and Toby Walsh. An empirical analysis of search in GSAT.Journal
of Artificial Intelligence Research, 1:47–59, 1993.

[25] Ian P. Gent and Toby Walsh. The enigma of SAT hill-climbing procedures. Technical report,
Department of AI, University of Edinburgh, 1992.

[26] Ian P. Gent and Toby Walsh. Towards an understanding of hill-climbing procedures for SAT.
In AAAI, pages 28–33, 1993.

BIBLIOGRAPHY 71

[27] Allen Goldberg. On the complexity of the satisfiabilityproblem. Fourth Workshop on Auto-
mated Deduction, Austin, TX, pages 1–6, 1979.

[28] Pierre Hansen and Brigitte Jaumard. Algorithms for themaximum satisfiability problem.Com-
puting, 44:279–303, 1990.

[29] Johan Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.

[30] Edward A. Hirsch. Sat local search algorithms: Worst-case study. J. Autom. Reasoning,
24(1/2):127–143, 2000.

[31] John N. Hooker. Resolution vs. cutting plane solution of inference problems: Some computa-
tional experience.Operations Research Letter, 7(1), pages 1–7, 1988.

[32] Holger Hoos and Thomas Sttzle.Stochastic Local Search: Foundations & Applications. Mor-
gan Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[33] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001.

[34] Daniel Johannsen, Igor Razgon, and Magnus Wahlström.Solving SAT for CNF formulas with
a one-sided restriction on variable occurrences. In Kullmann [43], pages 80–85.

[35] David S. Johnson. Approximation algorithms for combinatorial problems.J. Comput. Syst.
Sci., 9(3):256–278, 1974.

[36] Anil Kamath, Rajeev Motwani, Paul Spirakis, and Krishna Palem. Tail bounds for occupancy
and the satisfiability threshold conjecture.Random Struct. Algorithms, 7(1):59–80, 1995.

[37] Anil P. Kamath, Narendra Karmarkar, K. G. Ramakrishnan, and Mauricio G. C. Resende.
Computational experience with an interior point algorithmon the satisfiability problem. In
Ravi Kannan and William R. Pulleyblank, editors,IPCO, pages 333–349. University of Wa-
terloo Press, 1990.

[38] Alexis C. Kaporis, Lefteris M. Kirousis, and EfthimiosG. Lalas. The probabilistic analysis of
a greedy satisfiability algorithm.Random Struct. Algorithms, 28(4):444–480, 2006.

[39] Lefteris M. Kirousis, Evangelos Kranakis, Danny Krizanc, and Yannis C. Stamatiou. Ap-
proximating the unsatisfiability threshold of random formulas. Random Struct. Algorithms,
12(3):253–269, 1998.

[40] Elias Koutsoupias and Christos H. Papadimitriou. On the greedy algorithm for satisfiability.
Inf. Process. Lett., 43(1):53–55, 1992.

[41] Michael Krivelevich and Dan Vilenchik. Solving randomsatisfiable 3CNF formulas in ex-
pected polynomial time. InSODA, pages 454–463. ACM Press, 2006.

BIBLIOGRAPHY 72

[42] Alexander S. Kulikov and Konstantin Kutzkov. New bounds for MAX-SAT by clause learning.
In CSR, pages 194–204, 2007.

[43] Oliver Kullmann, editor.Theory and Applications of Satisfiability Testing - SAT 2009, 12th In-
ternational Conference, SAT 2009, Swansea, UK, June 30 - July 3, 2009. Proceedings, volume
5584 ofLecture Notes in Computer Science. Springer, 2009.

[44] Oliver Kullmann and Horst Luckhardt. Algorithms for SAT/TAUT decision based on various
measures. Technical report, Information and Computation,1999.

[45] Tracy Larrabee and Yumi Tsuji. Evidence for a satisfiability threshold for random 3CNF
formulas.Proceedings AAAI Symposium on AI and NP-hard problems, 1993.

[46] Monaldo Mastrolilli and Luca Maria Gambardella. Maximum satisfiability: How good are
tabu search and plateau moves in the worst-case?European Journal of Operational Research,
166(1):63–76, October 2005.

[47] David G. Mitchell, Faraz Hach, and Raheleh Mohebali. Faster phylogenetic inference with
mxg. In Nachum Dershowitz and Andrei Voronkov, editors,LPAR, volume 4790 ofLecture
Notes in Computer Science, pages 423–437. Springer, 2007.

[48] David G. Mitchell, Bart Selman, and Hector J. Levesque.Hard and easy distributions of sat
problems. InAAAI, pages 459–465, 1992.

[49] Raghavan P. Motwani R.Randomized Algorithms. Cambridge University Press, 1995.

[50] Christos H. Papadimitriou. On selecting a satisfying truth assignment (extended abstract). In
FOCS, pages 163–169. IEEE, 1991.

[51] Mukul R. Prasad, Armin Biere, and Aarti Gupta. A survey of recent advances in SAT-based
formal verification.STTT, 7(2):156–173, 2005.

[52] Jussi Rintanen and Jörg Hoffmann. An overview of recent algorithms for AI planning.KI,
15(2):5–11, 2001.

[53] Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiability testing.
In DIMACS Series in Discrete Mathematics and Theoretical Computer Science, pages 521–
532, 1995.

[54] Bart Selman, Hector J. Levesque, and David G. Mitchell.A new method for solving hard
satisfiability problems. InAAAI, pages 440–446, 1992.

[55] Bart Selman, David Mitchell, and Hector Levesque. Generating hard satisfiability problems.
Artificial Intelligence, 81:17–29, 1996.

[56] Min te Chao and John Franco. Probabilistic analysis of ageneralization of the unit-clause
literal selection heuristics for the k-satisfiability problem. Information Science, 51:289–314,
1990.

BIBLIOGRAPHY 73

[57] Ming te Chao and John Franco. Probabilistic analysis oftwo heuristics for the 3-satisfiability
problem.SIAM Journal on Computing, 15:1106–1118, 1986.

[58] Dan Vilenchik Uriel Feige. A local search algorithm for3SAT. Technical report MCS04-07 of
the Weizmann Institute, 2004.

[59] Van H. Vu. A general upper bound on the list chromatic number of locally sparse graphs.
Comb. Probab. Comput., 11(1):103–111, 2002.

[60] Toby Walsh. The constrainedness knife-edge. InAAAI/IAAI, pages 406–411, 1998.

[61] Nick Wormald. Differential equations for random processes and random graphs.The Annals
of Applied Probability, 5(4):1217–1235, 1995.

[62] Mihalis Yannakakis. On the approximation of maximum satisfiability. In SODA, pages 1–9,
Philadelphia, PA, USA, 1992. Society for Industrial and Applied Mathematics.

