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Abstract

Bonus-malus systems in automobile insurance describe how the past claim frequencies de-
termine the future insurance premiums. The potential risks of the policyholders vary due
to differences in driving behavior, which leads to the unobserved heterogeneity in individ-
ual average claim counts. While the Poisson distribution has been used as a simple model
for discrete count data, the negative binomial distribution is suggested for modeling the
claim counts with unobserved heterogeneity by letting the mean parameter of the Poisson
distribution follow a Gamma distribution. In this project, we introduce an integer-valued
autoregressive process with dynamic heterogeneity to model the random fluctuations and
correlations of the heterogeneity from year to year. Some properties of the model are stud-
ied, and a bonus-malus system is built and illustrated using the Gibb’s Sampler algorithm.
Finally, comparisons with other existing models are provided in terms of the extent to which

they use the claim history.

Keywords: Heterogeneity, Bonus-Malus System, Mixed Poisson Model,
Bayesian Posterior Mean, Lognormal Distribution, Integer-Valued
Autoregressive (INAR) Model
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Chapter 1

Introduction

1.1 Automobile Insurance

Risks, as defined in actuarial science, refer to the uncertain events in the future that will
cause damages or losses. When policyholders sign their contracts and pay premiums, they
are covered and hence take a small portion of the potential losses that would have been
significant. In an insurance portfolio, the potential risks exposed by policyholders vary;
specifically for automobile insurance, the likelihood of having accidents varies among the
insured drivers.

One of the main tasks of actuaries is to fairly allocate the burden of baring the poten-
tial losses among policyholders, which is materialized by quantitative analysis to specify
individual risks and thus to determine the premiums. This procedure is called pricing or
rate-making. There are two main phases involved. A base premium is determined when
the policy is issued, and then the premium will be adjusted by discounts or surcharges as
the policy is carried out. The reasons for separating the two phases will be discussed in the
next two sections.

As a key actuarial rate-making principle, the price charged to a policyholder is the
expected future costs related to insurance coverage. For automobile insurance, rate-making
can be based on claim frequency and severity. The claim frequency is defined as the number
of incurred claims per unit of earned exposure (usually a year). Traditionally, the claim
frequency is used as the only factor to differentiate the policyholders with higher risks from
the ones with lower risks. That is, the number of claims a policyholder may have during a

year is assumed to be independent of the cost of these claims. The severity distribution is
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identical among all the policyholders in a portfolio. This assumption may not be realistic;
nevertheless it is adopted by most ratemaking systems and in this project. New claim

frequency models and relevant pricing issues are where most efforts had been put into.

1.2 a prior: Rating System

In automobile insurance practice, actuaries design a tariff structure which partitions policies
when issued according to their risk characteristics, which is often called a priori classifica-
tion. The policyholders in the same class would pay the same base premium. Such a
classification and assigned premium to each class compose an a priori rating system. The
risk characteristics (or risk variables as used in the statistical models) include age, gender
and occupation of the policyholders, the type and use of their cars, the places where they
reside and sometimes even the number of cars in the household, marital status, and the color
of the vehicles. Generalized linear regression is an ideal candidate to model the claim counts

for a priori classification, and the average claim frequency for a class can be expressed as

A = exp(xi'B), (1.1)
where the subscript ¢ identifies the policyholder i, x; = (a:zl, xf, ey :rg)' denotes a vector of
q risk variables, and 3 = (81, B2,...,0,) is the vector of regression coefficients.

The logic behind this tariff structure is that the risk characteristics are correlated to the
underlying risk of a policyholder, and thus the future numbers of claims can be predicted
by them. However, not all of these variables are necessary for prediction purpose if viewed
from a statistical standpoint. It is the competition among insurers that forces actuaries to
refine the partition to match other competitors; otherwise they would lose some drivers with

respect to the factors they do not consider while their competitors do.

1.3 Bonus-Malus Systems

In spite of the trend towards more classification factors considered in the a priori classifi-
cation, the a priori rating system is still not adequate to achieve the goal of distributing
the burden fairly among policyholders. Firstly, some important risk factors may be banned
by law because they are beyond the control of the insured, such as age and gender. More
significantly, factors that could be incorporated in an a priori classification have to be ob-

servable and easy to be quantified; however, they are not necessarily all the factors that
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would affect the risk presented by a driver. Other factors are ruled out of the a priors
rating system, some probably more crucial, such as the respectfulness towards the law and
the aggressiveness when driving. Because they are not easy to observe or quantify, we can
call them hidden factors.

The effect of the hidden factors can be revealed by the driving records of an insured.
Thus, to compensate the inadequacies of the a priori rating system, insurers use experi-
ence rating to adjust premiums according to individual past claim histories. Such systems,
penalizing insured drivers responsible for one or more accidents by premiim surcharges (or
malus), and rewarding claim-free policyholders by premium discounts (or bonus), are called
no-claim discounts, experience ratings, merit ratings, or bonus-malus systems.

Due to the effect of hidden factors, heterogeneity exists in the individual expected claim
frequencies for the policyholders in the same a priori class. However, we assume that the
heterogeneity could be averaged out when one considers the whole group, i.e. the expected
number of claims for the group remains the same as the one identified in the a priori rating
system. This property is also called financial balance.

Let A denote the overall expected claim frequency for an a priori class. A random effect,
often denoted by ©, is introduced to model the heterogeneity. Then the individual expected
claim frequency could be expressed as A©. It is obvious that © is a positive random variable,
and in order to fulfill the financial balance requirement, the mean of © is assumed to be
one. The estimation of © given the past numbers of claims leads to premium discount or

surcharge rates in a bonus-malus system.

1.4 Outline

Insurers implement both the a priori rating and bonus-malus systems at the same time to
better asses individual risks. The a priori rating system determines the base premium for
each class, which is based on the average claim frequency for the class, whereas the bonus-
malus system reflects the deviation of individual mean claim frequency from the overall
average for the class, and leads to discounts/surcharges on the base premium. Since both
the rating systems are driven by the inherent nature of individual risk, they affect each
other. Often a tougher a priori rating system results in a milder bonus-malus system, and
vice versa.

The main aim of this project is to propose an integer-valued autoregressive process
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for the individual annual claim frequency integrated with a dynamic heterogeneity model.
Associated pricing techniques are also demonstrated.

In Chapter 2, we review the basic annual claim count models based on a Poisson process,
which includes the mixed Poisson model as a benchmark for further discussions, and the
classical credibility approach for the premium adjustments. One of the potential problems of
the credibility approach is that the age of a claim is not considered in the resulting premium,
although it may affect the predictive ability of the claim. In Chapter 3, we review the integer-
valued autoregressive (INAR) process accommodating unobserved heterogeneity, followed by
integrating the INAR process with a dynamic heterogeneity in order to sufficiently exploit
the information contained in a driver’s claim history. In Chapter 4, a numerical approach is
employed to obtain the pricing results for the INAR(1) process with dynamic heterogeneity,
illustrating the superiorities over the formerly reviewed models. Chapter 5 concludes the

project.



Chapter 2

Literature Review

Most of the rate-making systems in automobile practice are based only on claim counts. In
this chapter, we review the basic claim count models and the associated pricing techniques.
In Section 2.1, we will introduce the mixed Poisson distribution, which is based on the
regular Poisson distribution and has the mean parameter as a random variable to reflect
the heterogeneity of the portfolio. In Section 2.2, the pricing formula is derived under the
Bayesian statistics framework, followed by two specific cases where the distributions of the
heterogeneity prior to any obtained experience claim counts (the prior distribution) are
assumed to be Gamma and Lognormal, respectively. In the last section, we will briefly
review the relevant researches on other topics in the context of bonus-malus system. Denuit
et al. (2007) and Lemaire (1995) provide comprehensive reviews on the relevant topics of

automobile insurance rating models discussed in this Chapter.

2.1 Claim Counts Model

In this section, we first review the Poisson distribution, Poisson process, and mixed Poisson
distribution, followed by the application of the mixed Poisson model in bonus-malus system

for a non-homogeneous portfolio, which was first introduced by Dionne and Vanasse (1989).

2.1.1 Poisson Distribution

The Poisson distribution plays a prominent role in modeling claim counts due to some desir-

able properties. Assume N is a counting random variable, following a Poisson distribution
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with parameter A, denoted as N ~ Poi(A), A > 0. Then N takes non-negative integer values,

and has probability mass function

k
Pr[Nzk]:e_’\%, k=0,1,2,...

Its mean and variance are given by

E[N] = A,
and
V[N] = E[N?* - E[N]? = A
The probability generating function of N is

N i —-A (/\Z)k A(z—1)
cpN(z)zE[z]:Ze = ,

k=0

-l<z<1.

In addition, it is well known that the sum of n (n > 2) independent Poisson variables
is also Poisson distributed, with the parameter given by the summation of the n Poisson
parameters. This property of Poisson variables can be easily proven with the probability
generating function.

The property that the mean coincides with the variance makes Poisson distribution an
appropriate model for data sets without overdispersion. It is a good fit for individual claim

count in a homogeneous portfolio.

2.1.2 Poisson Process

A counting process is a collection of random variables {N(t),¢ > 0}, with N(0) > 0, indexed
by a positive real-valued parameter ¢, where N (¢) represents the number of events that have
occurred up to time ¢. According to Denuit et al. (2007), such a process must fulfill the

following properties:
e N(t) >0,
e N(t) is integer-valued,
e if s < t, then N(s) < N(t), and

e for s <t, N(t) — N(s) equals the number of events that occurred in the interval (s, t].
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Furthermore, N (t) is said to be a Poisson process with rate A > 0 if

e the process has stationary increments, that is,
Pr[N(t+ A) — N(t) = k] =Pr[N(s+ A) — N(s) = k]
for any integer k£ > 0, instants s < t, and increment A > 0;

e the process has independent increments, that is, for any integer & > 0 and instants
0 <ty <t <ty <---<tg, the random variables N(t;) — N(to), N(t2) — N(t1), ...,
N(tx) — N(tx—1) are mutually independent; and

o for small h,
1 —-Ah+o(h), ifk=0,
Pr[N(h) = k] = ¢ Ah+o(h), if k=1,
o(h), if k> 2,

where o(h) is a function of h such that ’lin}) o(h)/h =0.

The Poisson process is intimately related with the Poisson distribution. The number of
events in any interval of length ¢ > 0 of a Poisson process with rate ), is Poisson distributed
with mean A, i.e., for all s,¢t >0

(At)”

Pr[N(s+t) — N(s) =n] = e —

, n=01,2,...

If the number of claims reported since a policy is issued is a Poisson process, then during
any time increment At¢, the number of claims that newly arrived is Poisson distributed with
mean AAt. Although Poisson process, which implies the aggregate claim counts at any time
point, is continuous in time, in insurance practice the observations are only taken at equally
spaced discrete time points. Therefore, we are interested in the claim counts during the
time increments of equal length. Without loss of generality, we assume that the policies
are being updated with one-year cycles (insurance years), and consequently the number of
claims in any policy year is Poisson distributed with rate A\. Based on Poisson distribution,

more advanced models for annual claim counts will be discussed in the following sections.
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2.1.3 Mixed Poisson Distribution

Let © denote a random variable with distribution function F' and density function f, then

N is said to follow a mixed Poisson distribution if

N|© =6 ~ Poi()), 6> 0,
O~F (2.1)

With the consideration of financial balance discussed in Chapter 1, we apply an additional

condition on the distribution of ©, that is,
E®]=1.

The deployment of the mixed Poisson distribution in this project is motivated by two consid-
erations. First, it is more common to have a non-homogeneous portfolio, in which individual
policies have various mean claim counts, than to have a homogeneous one. The random vari-
able © is introduced to reflect the heterogeneity of the individual mean. Second, in spite
of the mathematical conciseness, the equality of mean and variance tends to constrain the
attempts of modeling with Poisson distribution, as real data often features over-dispersion,
and one could be underestimating the risk if using variance as the measure. The hetero-
geneity © brings more volatility into the model, and therefore increases the variance. The
conditional mean and variance are easily obtained by the properties of Poisson distribution,

E[N|©] = V[N|©] = A6, w‘

which implies that the unconditional mean and variance are
E[N] = E[E[N|9]] = E[AO] = ), (2.2)
and

V[N] = E[VIN|O]] + V[E[N|O]]
= E[X6] + V6]
= A+ A\V[O).

The results above show that the mixed Poisson distribution, with the heterogeneity ©

assumed to be a non-negative random variable with mean one, maintains the same mean
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and has a larger variance. Thus it is superior to the Poisson distribution in terms of modeling
the over-dispersion.

The unconditional distribution of N can be obtained by integrating the joint distribution
of N and © over all the possible values of ©. An illustration is provided below with the
heterogeneity © following a Gamma distribution, denoted as © ~ Gam(a,a), (the two
parameters are set to the same value to fulfill the condition E[©] = 1); the density function
of © is given by

aaea—l e—aG
£(6) = —T@ >0 (2.3)

Then
Pr[N = k] = /oo Pr[N = k|© = 0]£(6)dd
0

00 k ,apa—1 ,—ab
_ / e_)\e ()\0) a 9 € d0
0 k" F((l)
T(k+a) aMF % (A + g)(k+a)gk+a—1 g—(A+a)0
~ T(a)k! (A + a)k+a) /0 I'(k+a)

k+a-1 a @ a k
= 1- k=0,1,2,...
< k )(/\+a) ( /\—I-a) ’ 0,1,2,

which indicates that the unconditional distribution of N is a negative binomial distribution

do

with parameter a and a/(\ + a).

2.2 Bayesian Credibility Premium with the Quadratic Loss

Function

With the mixed Poisson distribution assumed for annual claim frequency, methods in
Bayesian statistics framework can be used to determine the discount or the surcharge rates
after the driving experience is obtained. Assume there are T} years of past numbers of claims
available for policy ¢ in the portfolio. We define three vectors to represent this policy, N; =
(Nits Niggy ooy Niggy o)y Ai = (A1, Ai2e - Aiy ... ), and ©; = (0;1,0;9,...,0;4,...),
where N;; denotes the number of claims reported, );; is the mean claim frequency of the a
priori class the policyholder belongs to, and ©;; represents the heterogeneity of the policy
in policy year t. A great deal of effort has been devoted into modeling the heterogeneity ©;

and addressing the associated questions regarding prediction and pricing. Of various models
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that have been found favorable, we start from the classical one introduced by Dionne and

Vanasse (1989). The assumptions for this model are that

e for policy i, the heterogeneity is a random variable which does not vary over time, i.e.,

©; can be simplified to ©; ~ Fg,; and

e for all policies in the portfolio, ©;,¢ = 1,2,..., are independently and identically

distributed, and the sequences (0;,N;),i =1,2,... are independent.

Given the past numbers of claims, an estimate for the heterogeneity ©; can be obtained.
This estimation would be used to determine the surcharge or discount rate. When the
observations of claim counts for T; years, denoted by n; 1, ni2,...,MN;T,, are available, the
estimation is a function of n; 1, n; 2, ..., n; 1;, denoted by ¥*(n; 1,2, ..., niT,), which is the
closest value to ©; over all the measurable functions ¥. This can be obtained by minimizing

the conditional expected value of the so-called quadratic loss function
E[(©; = ¥(Ni1,Nig, .., Ny1;))’INiy = ni, Nia = ns2, ..., Nipy = ni.1y)- (2.4)

Under the Bayesian statistics framework, the solution is given by the posterior mean of ©;
given the past T; years’ experience of policy i. Let NlTi denote (N;1,N;2,...,N;1,) and
niTi denote (7n;,1,7;2,...,n:1;). According to Carlin and Louis (2000), equation (2.4) can

be expanded as

r 2
r 2

- E (ei - E[©;|NT = n%] 4+ E[©;|N% = nT] — ‘I/(Nf")) INJ? = n?’]
r 2

= E|(6:- El&Nf* = nl])" INT = niT’]

+2E [(6; - B[:NT = nl)(E[6:INT = nf] - ¥(n]))|NT: = nl¥|
2
i [(E[@iiN?‘ = nf] - ¥(nf))" |NT = nﬂ
2 2
= £ | (6.~ EIOINT = nf)’INF = uf| + (EiOUNT = n - wia)’,

which is minimized when W(N;1,...,N;1,) = E[O|N;1,..., N;1,], as the cross term essen-

tially equals to zero.
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Therefore, given N;1 = n;1,Nij2 = nio,..., Ny, = n;7,, the optimal solution of (2.4)

»te

U* has the expression

U*(ni1,nig, .- nin,) = BlOi|Nii =ni1, Nig = nig,..., Nit, = ni 1]
Jo 0172, Pr[Nis = nis|0: = 6i])dFo, (6:)
o (T2 PriNie = nig|©; = 6i])dFo,(6:)
f0+oo e—)\iﬂi 0?i-+1dFei (01)

= : (2.5)

T e=2:0: 7 dFe,, (6;)

where
T;
A = E At
t=1

is the intensity rate of the Poisson distribution for the total claim count over T; years, and

T;
ng. = E ity
t=1

is the total number of claims over T; years. In the following, we illustrate two commonly

used mixed Poisson models.

2.2.1 Poisson-Gamma Model

Assume that ©; is Gamma distributed with density function given by (2.3); the conditional
(posterior) distribution of ©; given all the historical numbers of claims is
e_o('”)"”) 0;1+m.—1

f0+oo e—0ila+X:.) 9q+ni.—1d0i, a>0, 6 >0,
)

fo,n; (Bilniy, .. i) =

which is the density function of a Gamma distribution with parameters a + n;. and a + A;..

That is, we have
@i|(Ni,1 =T 0y Ni,Ti = ’ni’Ti) ~ Gam(a + ni,a+ )\z),
and the estimation of ©; is given by

U*(ni1,ni2, .., nig) = E[OINj1=mn1,Nig=ni2,...,Ni1, = n1]
_ ¢ + n;. (2.6)
a—+ /\i~ ) '
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Furthermore, the pure premium for year T; + 1 derived from (2.5) is

E[Nit,+1INi1 =ni1,..., Ny, = ni1)
=XM1 +1E[0iINiy = ni1, Nig = nio, ..., Ni, = ni13]

a—+n;
=\ T . 2.7
R ey ( ‘)

The Poisson-Gamma model has been widely used in the literature that was developed

for Bonus-Malus systems. It has several appealing properties. First, it is concise in math-
ematical expression. Both the prior distribution and the posterior distribution of ©; are
Gamma. This property of the heterogeneity ©; is called conjugation in the Bayesian statis-
tics framework. Second, if employed in insurance practice, the Bonus-Malus system defined

in (2.6) is fair in the sense that:

e The insurance company does not make profit or lose money by launching such a system.
Considering all the possible sequences of past numbers of claims, the resulting average
pure premium is equal to the premium charged based only on the a priori mean claim
frequency. For a detailed proof, please refer to Lemaire (1995). In other words, if
there are sufficiently many policies such that the sequences of the past numbers of
claims match the exact pattern of claims under the theoretical distribution, then the

surcharges should pay off the discounts granted.

e In the long run, everyone will pay a premium corresponding to his own risk. We con-
sider the results above in the extreme situation. As 7T; approaches infinity, E[©;|N;. =

n;.] converges to n;./A;., which is the actual risk of the policy. The posterior variance

a-+ n;.
VI©ilNig =ni1, Nig =ni2,...,Nit, =ny1,] = m
i

tends to 0 as T; — oo. It indicates that the discrimination among the insureds is

asymptotically perfect.

Finally, the Bayesian credibility premium contains a weighted average when (2.7) is rewritten

as

Ai. Ny
E®:]+ =53

E[N;1,41|Nig =ni1, ..., Ny, =niy] = ( ) E[N;1,41],

a
a+ A\
which is the product of the mean of the marginal distribution of N; 7,41 and the weighted
average consisting of the expectation of the prior distribution of ©; with weight a/(a + A;.),

and the average claim frequency for that policy n;./\;. with a weight Ai./(a + Ai.).
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In the following we give two numerical examples for the Poisson-Gamma model. Tables
2.1 and 2.2 show the pure premiums after various combination of the number of the observed
years T; and the number of the past claims n;.; each shows the results for a good driver

(with smaller )\;) and a moderate driver (with larger )\;), respectively.

Table 2.1: Values of E[O|N;. = n;.] for different combination of the observed periods T, and the
numbers of the past claims n;. for a good driver (average claim frequency 9.28%)

T; Number of claims n;.
0 1 2 3 4 5

1 92.0% 178.4% 264.7% 351.1% 437.5% 523.8%
2 85.2% 165.1% 245.1% 325.0% 405.0% 485.0%
3 79.3% 153.7% 228.2%  302.6% 377.0%  451.5%
4 742% 143.8% 213.4% 283.0% 352.7% 422.3%
5 69.7% 135.1% 200.5% 265.9% 331.3%  396.7%
6 65.7% 127.3% 189.0% 250.6% 312.3% 374.0%
7 62.1% 120.4% 178.9% 237.1% 295.4% 353.7%
8 58.9% 114.3% 169.6% 224.9% 280.2% 335.6%
9 56.0% 108.7% 161.3% 213.9% 266.6% 319.2%
10 53.4% 103.6% 153.8% 204.0% 254.1% 304.3%

To compare the severity of the two scales, let us consider the case where one claim is
reported in the first year. We see the good driver will receive a surcharge of 178.4% at the
beginning of the second year, whereas the surcharge for the moderate driver in the second
year is only 171.2%. The scale for good driver is more severe than the one for the moderate
driver when they have reported claims. On the other hand, the second column of these two
tables show the discount rates for keeping a claim-free record, and we see that moderate
drivers receive better discounts. This is the consequence of the nature of financial balance,
which requires that the surcharges compensate the discounts. Given the fact that the scale
for good drivers, compared to the one for moderate drivers, is applied on a population which
is more likely to have small numbers of claims, it is reasonable that this scale poses more

severe surcharges and less preferable discounts.

2.2.2 Poisson-Lognormal Model

In this section, we derive the estimation of the heterogeneity with the past numbers of claims

under the assumption that the prior distribution is a Lognormal distribution.
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Table 2.2: Vulues of E[B|N,. = n;.| for different combination of the observed periods T; and the
numbers of the past claims n;. for a moderate driver (average claim frequency 14.09%)

T; Number of claims n;.
0 1 2 3 4 5

1 88.3% 171.2% 254.2% 337.1% 420.0% 503.0%
2 79.1% 153.3% 227.6% 301.8% 376.1%  450.4%
3 71.6% 138.8% 206.0% 273.3% 340.5%  407.7%
4 65.4% 126.8% 188.2% 249.6% 311.0% 372.5%
5 60.2% 116.7% 173.2% 229.8% 286.3% 342.8%
6 55.8% 108.1% 160.5% 212.8% 265.2% 317.5%
7 51.9% - 100.7% 149.4% 198.2% 247.0% 295.7%
8 48.6%  94.2%  139.8% 185.5% 231.1% 276.7%
9 45.7%  88.5% 131.4% 174.3% 217.1%  260.0%
10 43.1% 83.5% 123.9% 164.3% 204.8%  245.2%

The heterogeneity ©; is said to follow a Lognormal distribution, denoted by ©; ~
LN(u,0?), if its density function is

1 _ (Ing;—-u)?
fo,(0;) = e 27 , 8;>0, peR, o2>0. (2.8)
2nxo
The mean of ©; is ehto?/ 2 and the financial balance requirement yields u = —¢?/2. The

optimal estimation of ©; can be obtained by applying (2.8) to (2.5), that is,

U*(ni1,ni2,...,nim) = E[©;N;1=mn1,Ni2=ng,...,Ny1, = ng
(ng;—p)?
+oo —);.0; gn.+1 1 - .
_ 0 € 01 V2rb0 € i d9; (2 9)
(In §; —p)? ’ :
FOO Xl g 1 T 46
o €7 Zei \/27r9iae 7 db;

There is no explicit form for the integrations on the numerator and denominator, yet the

estimation can be obtained by numerical approaches.

2.3 The Deficiency of the Classical Models

There are two drawbacks of the classical model. One is that the heterogeneity ©; is assumed
not to vary over time. This is not realistic since all the hidden factors may change; certainly

a driver could grow more careful and responsible. It is reasonable to assume different random
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variables correlated with each other for the heterogeneity in different years {©;,}°,. As
pointed out by Brouhns et al. (2003), a driver will tend to be more prudent after an accident
but this effect naturally decreases with the age of the claim. Pinquet et al. (2001) presented
a dynamic heterogeneity model, and obtained the estimates of the parameters and prediction
on premiums based on the longitudinal data inference.

Another shortcoming of the classical model which can be observed from (2.5) is that
the estimation of the heterogeneity reflects only the sum of all the past numbers of claims.
How the claims are distributed among the past years does not affect the estimation. This
limitation reduces the efficiency of the classical model. The reasons are as follows. First,
not all the information of the past claim frequencies are being used. Second, different
distributions of claims indeed imply different potential risks; thus, the burden of claims is
not distributed fairly. To solve this problem Gourieroux and Jasiak (2004) developed a claim
counting process with the first order Integer-Valued Autoregressive (INAR(1)) process, and
derived the pricing formulas with experience claim counts up to three years. They obtained
the desirable results where the more claims distributed in the latter years, the higher the

premium for the following year would tend to be.

2.4 Other Modeling Approaches

A great deal of efforts had been devoted in modeling the claim counts and developing mech-
anisms to discriminate good drivers from the bad ones by charging premiums differently.
Apart from the classical model for bonus-malus systems reviewed earlier, here are some

other models and aspects for the automobile insurance in the literature.

2.4.1 Bonus-Malus Scales

Instead of directly using all the past numbers of claims to approximate the surcharge or
discount rates, bonus-malus scales are designed to store the information of the past claim
counts of the policyholders and determine the relative premiums. This pricing mechanism
is widely adopted in the insurance industry. A bonus-malus scale consists of a finite number
of levels, and each of them is assigned a surcharge or discount rate (or so called relativity).
Policyholders are transferred by a transition rule within these levels every year according to
the current level occupied and the number of claims filed in the current year.

The process of a policyholder moving in the bonus-malus scale fulfills the properties of a
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Markov Chain. The calculation of the relativities is based on the theory of stationary status
of the Markov Chain and the Bayesian theory. This had been studied by Pitrebois et al.
(2003b), following on from Taylor (1997) for the extension of Norberg’s (1976) pioneering
work on segmented tariffs. Pitrebois et al. (2004) developed the linear relativities more
easily accepted by the insurance agents and customers. Pitrebois et al. (2003a) addressed
the problem of the bonus-malus scale used in Belgium, which is not a Markov Chain due
to some special transition rules, by introducing fictitious levels. In Brouhns et al. (2003), a
more advanced claim counting process model, where the a priori class and the heterogeneity
factor of a certain policy are allowed to change over years, was implemented into the bonus-
malus scale; the authors proposed a numerical simulation to estimate the relativities. Details

on the theory and application of bonus-malus scales can be found in Chapter 4 of Denuit

et al. (2007).

2.4.2 Hierarchical Models

The hierarchical models had been introduced to model the automobile claim frequencies in
order to better reflect the over-dispersion based on mixed Poisson distribution, in which the
Poisson mean is a random variable (called heterogeneity); another layer of randomness is
incorporated by letting one of the parameters of the heterogeneity also be a random vari-
able. For the latter random variable, all the parameters are fully specified as deterministic
constants. Gomez-Deniz et al. (2008) studied the properties of a Poisson-Gamma-Gamma

model as

Nitl(Ait, ©; = ;) ~ Poi(A:16;),
©; ~ Gamma(a,b),

and b ~ Gamma(a, 3)

where a, o, 8 > 0. They derived the marginal distribution of the claim counts, and applied
the central moments matching method to estimate the parameters. In Gomez-Deniz and
Vaquez-Polo (2006) the hierarchical model was used to construct the bonus-malus system,

and the premiums were calculated under the Bayesian statistics framework.
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2.4.3 Bonus Hunger

In the mechanism of bonus-malus systems, on one side, the insurer updates the premium
based on the reported claims and applies surcharges as penalty for causing accidents; on
the other side, as rational customers, the policyholders would be intuitively seeking a bal-
ance between having damages covered with premium increased the next year and bearing
the damage themselves to keep the premium low. It is reasonable to assume that the pol-
icyholders would avoid reporting some minor accidents, which leads to the fact that the
data sets possessed by insurers are highly likely censored. Regarding this issue, Lemaire
(1976) and Lemaire (1977) studied the so-called bonus hunger and proposed a dynamic
programming algorithm to determine the optimal claiming behavior from the perspective of
the policyholders. Following that, Walhin and Paris (2000) applied the Lemaire’s algorithm

and a non-parametric Poisson fit to a censored motor insurance portfolio.

2.4.4 Models Incorporating Claim Severities

Traditionally, the modeling of bonus-malus systems takes only the numbers of claims into
account, regardless of the magnitude of the losses these accidents may have caused. This is
also a common case in practice. It is equivalent to assuming that the number of accidents an
insured may have per year is independent of the severity of these accidents. This assumption
certainly contributes to the necessary simplicity of the model, yet it is closer to reality to
incorporate the claim severity into the risk measure. With this consideration, Picard (1976)
first proposed a model to distinguish the claims that caused only property damage from
those that caused both bodily injury and property damage. Lemaire (1995) established a
credibility model based on the Poisson-Gamma mixture and the assumption that given the
predicted average claim frequency, the portion of the claims with bodily injury involved
follows a Beta distribution. Pinquet (1998) applied the multi-equation Poisson model with
random effects and designed an optimal credibility model that takes into account the types of
claims. Pitrebois et al. (2006) designed a bonus-malus scale that imposes different penalties

for different types of claims.



Chapter 3

Heterogeneous INAR Model

In this chapter, the Integer-Valued Autoregressive (INAR) process is introduced to model
the numbers of claims for consecutive policy years. Al-Osh and Alzaid (1987) proposed
what they have called an integer-valued first order autoregressive (INAR(1)) model. Later,
Gourieroux and Jasiak (2004) applied it in bonus-malus system design. Gourieroux and
Jasiak (2004) also incorporated a static Gamma heterogeneity into the Poisson error terms
of the process, and derived the associated pricing formulas.

We will review their work in the first two sections. In the last section, a dynamic
model is employed for modeling the heterogeneity, which brings reasonable fluctuation and

correlation into the heterogeneity over years, followed by corresponding pricing formulas.

3.1 Integer-Valued Autoregressive Process

The integer-valued autoregressive process has been developed under the time series literature
to fit the integer valued processes, such as the individual annual claim counts. Its expression
is similar to a regular autoregressive process, which consists of an autoregressive component
and the error term(s). Keeping all the notations consistent with the last chapter, the

recursive expression of the INAR(1) process is
Nit=Bi(p)oNjp—1+€y, 0<p<l, t=1,2... (3.1)

In this formula, {€;;}22, is a sequence of random variables taking nonnegative integer values,

and B (p) is the so-called Binomial thinning operator, which is independent of the error terms

18
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and defined by
Nit—1

Bi(p) o Nyp—1 = Z U; (3.2)
=1

where {U;} is a sequence of iid Bernoulli random variables with parameter p.

As an intuitive interpretation of the INAR(1) model above, the number of claims for
year t consists of two parts. First, the error terms are determined by both of the observable
and the hidden factors of the insured, which are represented by Air and ©;; respectively.
The results from the previous chapter are adopted in the INAR(1) process and embedded

in the error terms, i.e., the error terms have a mixed Poisson distribution
€i,¢|Oit = iy ~ Poi(6; 1 \i 1)

The other part is a random portion of the number of claims for the previous policy year.
Each of the claims from the previous year has a probability p to contribute a claim to
the claim count for the next year. Al-Osh and Alzaid (1987) introduced an alternative
expression of the INAR(1), as stated in the following proposition, which is more convenient

for further derivations.

Proposition 3.1. The INAR(1) process {N;}°, defined by (3.1) has the following form

as an infinite summation:

Ny = Z By(p") o €5y (3.3)

=0

Proof. N;; can be expanded recursively by (3.1) as

Nig = €t + Bi(p) o (Bi-1(p) o Nit—2 + €ir-1)
= €+ Bi(p) o Bi—1(p) o Nijy—2+ Be(p) o €;4-1
= €t+Bi(p)oei—1+ Bi(p)oBi_1(p)o€is—a2+...
+By(p) 0 Big-1(p) o -0 By pi1(p) 04— + ...

= Z Bi(p) o €it—j-
J=0

O
Al-Osh and Alzaid (1987) provided an interpretation of the INAR(1) process in the form

of (3.3) in the context of queuing system. The summation represents the total number of

customers in the system. A new queue forms as the time goes forward by one unit, and the
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length of the queue is Poisson distributed. In the meantime, whether an existing customer
stays in the system is a Bernoulli random variable. The likelihood of an existing customer
staying in the system decreases exponentially with time. The customers are assumed to
make their decisions independently. The next proposition gives the mean, variance, and

auto-correlation of the INAR(1) process.

Proposition 3.2. Let j, k, and m be non-negative integers, then the mean and the auto-

correlation of the INAR(1) process are

oo

E[Nit] = Y pEleiyj] (3.4)

=0
and

Cov|Niy, Nig—k] =Y {P Elesi—j) + p7~* (Viei o j] — Eless_j])}
=k

oo
+ Z P *Covle; 4—m, €i,t—j] (3.5)
m=0,j=k
j#m

Proof. By (3.3) in Proposition 3.1, we have the expression for the expected value

o0 oo
E[Nig =E | Bi(p))oeiyj| = > EB(p) o€iy ], (3.6)
=0 =0
and the autocovariance
F o0 ) o0 ) T
Cov[N;t, Niy k] = Cov Z B(p') o € t—m, Z B(p’) o€tk
[' o ' 00 ‘ ]
= Cov [ Y B(p')oeir—m, > B o6, ;. (3.7)
m=0 =k ]

Equation (3.7) can be split into two groups of covariances, one group with two components
having the same Poisson variables, and the other group having different Poisson variables.

Therefore,

o
Cov[Nig, Nigk] = Y Cov[B(p?) o eiy_j, B(p'*) o €it—j]
=k

oo
+ D Cov[B(p™) o €ipm, B ) 0 €i4,]. (3.8)
m=0,j=k
m#j
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Note that B(p?) o€;;_; follows a compound Poisson distribution with Bernoulli severity

random variables. The following results regarding its mean and variance are straightforward.
E[B(Y) o 4] = P Eleis—j), (3.9)

and
Var[B(p’) o €i4-5] = Eleig—;]P (1 —p/) + Varle; +—;1p% . (3.10)

Now in order to derive the covariance involved in (3.8), define four non-negative integers
Jok,1, and m with m # j, and k > 1. Let {Una} and {U;p} be two sets of independent
Bernoulli random variables with parameters p* and p', respectively.

For two same Poisson variables under the thinning operators, the covariance is

Cov[B(p*) 0 € t—m, B(®') 0 €14-m] = C’ov[B(pk_l)oB(pl)oei,t_m,B(pl)oei’t_m]
= p"WarlB(p') o€ ym] : (3.11)

and for two different Poisson variables under the thinning operators, the covariance derived

by using the compound Poisson expression is.

Cov[B(p*) o €i—m, B(p') © €14
€i,t—m €.t~
=Cov [ Z Un.a» Z Uj,bJ
a=1 b=1
€i,t—m €i,t—j €it—m
=E { > Una- Y. Uj,b} —-E [ > Um,a} E
a=1 b=1 a=1
€i,t—m €i,t—j
=E [E [ Z Unm,a - Z Ujp | Gi,t—mvfi,t—j:” — p" M Eles tm] Eleis—j)
a=1 b=1

=p**' Eleis-meit—5] — P Eles—m] E [ei.e-3]

=Pk+lCOU[€i,t—m, fi,t-j]- (3.12)

€i,t—j
Ujs

b=1

All of these above combined, bring the moments of the Compound Poisson variables
stated in (3.9) and (3.10), and the covariance obtained in (3.11) and (3.12), into (3.6) and
(3.8). Then we have

o0

E[Nig] = Y EB(p) oir—j] = Y P Eleiey,
j=0

J=0
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and

Cov[N, ity Nit—k] Z{]ﬂE [e:,6— ] +p2j k(v[flt ] E[ei,t—j])}
Jj=k

o0
+ Z pm+j_kCO’U[Eiyt_m, €i1—j- (3.13)
m=0,j=k
mtj
O

Now consider the pure premium for year T;+1 with T; years’ experience claim frequency
available. Note that B, (p)oN; ;—1 is the sum of N; ¢—1 independent and identically distributed
Bernoulli random variables with the common parameter p, and that ¢;; follows the mixed
Poisson distribution with ©;: as the heterogeneity. For year T; + 1, under the Bayesian

statistics frame, the pure premium is

Pir1 = E[Ni11|Niy, ..., Nip]
= E[Br,(p)o NiT, + €,T;+1|Ni1,-- ., N
= E[Br,(p)o oI Ni, - - yNi1 ]+ E[E[ﬁi,Ti+1’@i,7}+1, Nity ..oy N
= PN, + B[O 111 1,41 Ni, .., Ny,
= pN;T, + /\i,Ti+1E[ei,Ti+1 [Ni1,..., N1, (3.14)

In the following, we first start with the assumption that the heterogeneity for one pol-
icyholder ©;; does not vary over time and follows a static random distribution. However,
as discussed in Chapter 2 the sequence {©:4}2, may be different random variables with
correlations. Instead of assuming @Lt"a constant that follows a static distribution, it is
more realistic to apply a dynamic process with certain level of correlation. The INAR(1)
model with these two types of heterogeneities for the error terms are examined in the next
two sections followed by the associated pricing results. As we concentrate on modeling the
heterogeneity, for simplicity, we assume that the a priori rate A;y does not vary over time

and is a constant ;.

3.2 INAR(1) Process with Static Heterogeneity

In this section, we first assume that the heterogeneity for one particular policyholder ©;; is

a time independent random variable and follows a Gamma distribution; thus ©; degenerates
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to ©;. Given ©; = 6;, the error terms for the INAR(1) process {€i+}5°, are independent and
identically Poisson distributed with parameter );0;. We further assume ©; follows a Gamma,
distribution with parameter a; then the corresponding INAR(1) process can be described
as

Nit = Bi(p) o Nig—1 + €y

€,t|©; = 6; ~ Poi(8;);) (3.15)

0; ~ Gam(a, a), a > 0.

As pointed out by Gourieroux and Jasiak (2004), under the assumption of Poisson dis-
tributed error terms, the INAR(1) defines a counting process which has a marginal Poisson
distribution with a modified parameter A\/(1 — p), and by setting the parameter p=20it
reduces to the classical mixed Poisson model discussed in Chapter 2. More specific results

of this INAR(1) process are obtained below.

Corollary 3.1. With the assumptions listed in (3.15), the conditional mean and autocor-

relation of the INAR(1) process are

(3.16)

E[N;4|0; = 6;] =

and

Cov[Niz, Ny |0; = 6;] = lp_ SO (3.17)

Proof. By equation (3.4) in Proposition 3.2,
N D)
E[N.4|0; = 6] = ]z_%p?em =1

Given ©; = 6;, the Poisson error terms are naturally independent of, and the thinning
operators are independent of all the error terms. The error terms conditioning on ©; =
8; follow Poisson distribution with parameter 6;);. Therefore, the second summation of

equation (3.5) equals zero, and

oo
CoulNig, Ni—l; = 8;] =p*(Var[e;1|0; = 6;] — Ele; 1|©; = 6)) Y _ p?0F)
=k

o0
+p"Eleid|©: = 6,] ) p/*
=k

k
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O

For the pricing formulas with the assumptions listed in (3.15), for various scenarios
where different numbers of years’ experience are available, Gourieroux and Jasiak (2004)
derived the following results and stated that this model addresses one major deficiency
of the classical mixed Poisson model. With the classical Poisson-Gamma model, the past
numbers of claims affect the premium only by the total number of claims for all the past
years, whereas in this model, the arrival time of claims matters, and the earlier a claim
arrives, the less it would impact the premium. The resulting posterior distribution of the
random effect is a mixture of gamma distributions with weights and degrees of freedom
depending on the claim history. Their results are listed below as a proposition. For more

detailed proof, please refer to Gourieroux and Jasiak (2004).
Proposition 3.3. The pure premium for year T; + 1 is
P41 = pNi1, + AE[©|N; 1, ..., N;1].
i) For T; = 0, the conditional distribution of ©; is Gam(a, a).

i) For T; = 1, the conditional distribution of ©; given N;q is

s
Gam (a-{—ni,l,a—}- —z> .
l1—p

i4i) For T; = 2, the conditional distribution of ©;, given Nj 1, N; o is
min(n; 1,n4,2)

A.
(22,751, m2)7(a + niy +mi2 — 20,0+ N + 725
22=0

min(n;,1,n,2)
(22, 14,1, 1 2)

20=0
where
z2
P 1 1 Fla+mni1+nig — 29)
) , . — CZQ 3y )
o) =2, (25) o i @ N+ P

w) For T; = 3, the conditional distribution of ©; gwen Nj 1, N; 2, Ni3 is

min(n;,2,n;,3) min(ng1,n,2) \
7T(22, z3, ni,l, ni,g, n,-,g)'y(a + nivl + ’ni,g — 29 — 23,0 + 2 -+ _l—p)
23=0 29=0

min(n; 2,n; 3) min(n,1,m;,2) !

(22, 23, Mi,1, Ni,2, Ny 3)
230 2220
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where

p 2B 1 1 1
(29,23, M1, N0, N;3) = C?*»_ (C%2 (-
( 2,43, M41, 72 1,3) ni2 n41 (1 _p> \22+23 (y2 _ 22)! (y3 _ 23)!

I(a+mn;1 + nio + nizg — 22 — 23)
[@+2X\ + 1_/\i‘]a+"i'1+”i»2+"i,3*22—23 :
—-p

The estimate of the random effect and the pure premium follow directly from (8.14) as
follows:

A

Z) FO’I‘T;' = 0, @1 = E(@,) = 1, P1 = /\i-

. A +n4,1 a+n; 1
i) ForT; =1, ©; = E[O|n;1] = 2L and P = pn; 1 + A\ 220l
) i , O [ ' 1,1] _T(H_l_p, 2 =DPn;1 la+1’\_p
ii) For T; = 2, P3y = pn; o + \©;, where
min(n;1,n4,2) a+n; 140 2—22
— w22, N1, N 2)— >
N ZZ? 0 (22,741, mi.0) atrit+ 1%

@i = min(ng 1,n4,2)
.13 3
Zzgzo 71'(22, ni1, ni,2)

iv) For T; =3, Py = pn;z + /\i@i, where

a+ni1+n;2—22—23

Zmin(niyz,niyg) Zmin(ni,l ,ni,z)
7= a+2X+ P

0 29=0 (22, 23, 4,1, 4,2, N5 3)

@i = min(niyz,ni,;;) min(ni,l,ni,g) . .
ZZa:O Zzzzo 7T(22, 23, M1, 14,2, ni,3)

3.3 INAR(1) Process with Dynamic Heterogeneity

It is natural for the heterogeneity {©;;}32, to vary from year to year and to be correlated
with each other. Therefore, in this section, a time series model is applied to model {©i}2,.
The INAR(1) model with the heterogeneity embedded in the error terms is discussed in the
form of the Generalized Linear Model (GLM). At the end of this section, the mean, variance,

and pricing formulas of the underlying INAR(1) process are derived.

3.3.1 Dynamic Heterogeneity

As introduced in chapter 2, ®; = (0;1,...,0; 1,) represents the heterogeneity for policy i
over T; years. We assume {O;;}{2, on the logarithm scale to be a first order autoregressive

(AR(1)) process, and E[0;;] = 1 for all ¢ > 0. That is,
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In®;; =pnO;,; + it t=2,3,..., (3.18)

where 0 < p < 1 reflects how strong the heterogeneities for different years are correlated,
and {e;;} are independent Gaussian errors, for which the mean and variance are chosen
to be (p — 1)%2 and o2(1 — p?), respectively, to fulfill the financial balance requirement on
{6:,¢}20. The AR(1) model in (3.18) implies that {©:,:}2 follow a Lognormal distribution
with density function given by (2.8), and that (@iyl,@i’g,...,@i’Ti) is a random vector
following a multivariate Lognormal distribution with density function
1
L 1
(2m)2 0|B4[26;1 - - O,

1 _
f(bia,-- ,0i1;) = eXP{—%j(lnoi - 1) (Ing; — M)},

(3.19)
where
1 P 2 pTi1
2 L
-5 p 1 pli—2
p=| s Zi=| 2 p 1 . phi3 (3.20)
02 . .
5 Tix1 . T. .
T;—1 i—2 ;-3 ...
P P p 1 )TixTi

are the mean vector and correlation matrix of In ©;, respectively.

This approach has been followed by Chan and Ledolter (1995) in analyzing the well-
known polyo incidence data first studied by Zeger (1988). Pinquet et al. (2001) explored its
application in actuarial science, followed by Brouhns et al. (2003) discussing a bonus-malus

scale based on this model, in which the relativities were calculated by simulation.

3.3.2 Generalized Linear Model Interpretation

The error terms of the INAR(1) process {ei,¢}£2; with the dynamic heterogeneity embedded
has the nature of a generalized Linear Model (GLM). The research on Bonus-Malus systems
based on the INAR(1) process benefits from adopting the existing theorems in the context
of GLM, such as the generalized estimating equation (GEE) to estimate the involved pa-
rameters, and various correlation structures to reflect the heterogeneity. In this section, we
discuss the process in the GLM form.

Recall that, in (1.1), the a priori rate Ai¢ is determined by all the observable factors

with a linear regression model. We assume that there are q observable variables. Let
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B = (B1, B2, ...,8;) denote the regression coefficients, and Xit = (a:il,t, x?’t, ..., z},) denote
the values of the g observable factors for policy 7 in year ¢. Define et = In ©; ; as a Gaussian
error with mean ~”72 and variance 0. The mean of the error term of the INAR(1) process

in year t can be written as

Ele;tlxis] = Xi1©iy

!
= exp(B'x;,) exp(e; )
/
= exp(B'x;: + ei ), t=1,2,...,T. (3.21)
Further let
4 1 1
€1 Ti1 Ti2 L €i,1
. 2 2 e 2 .
€2 Tir Tio i, €i,2
€; = . , X; = . . ) ; s e =
. q q e q .
&,T; Tix Tio T; T, €.T;

The mean of the error terms of the INAR(1) process for T, years as an vector can be

expressed as
Eleilx:] = exp{8'x; + e;}. (3.22)

which is the typical expression of a generalized linear model with exponential link function.
The vector of Gaussian errors e; follows the multivariate normal distribution. The density
function is

1

1 _
———F T €XP {—E(ei ~u)'E; (e - M)}
(27‘[’) 2 U|2i|§

f(ei,h R aei,T,—) =
where the covariance matrix 3; is defined in (3.20).

As an advantage of the GLM form, GLM accommodates a big range of correlation
structures for variables being analyzed. X; defined by (3.20) is called AR(1) correlation
structure, which results in the correlation between the heterogeneities for different years
to exponentially decrease as the time lag increases. The correlation structure can also be

designed in other types. Some commonly used ones include (correlation matrices are as

below)
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1 p p p 1 0 0
p 1 p p P p 0
p p 1 p 0 p 1 0
p p p - 1 000 --- 1
Compound Symmetry One-Dependent
1 plti,l—ti,2| p|ii,1—ii,3| .. plti,l—ti,nl
p|ti.2-ti,1| 1 p'ti<2—ti,3| L p'ti,2_tz,n|
plti,s—ti,I' plti,a—ti,Zl 1 L. p[thg—ti,n|
plti,n“ti,ll plti,n—ti,zl plti,n—ti,sl ce 1
Markov

e Compound Symmetry Structure: equal correlation is imposed between observations

at all time points.

¢ One-Dependent Structure: Correlation is expected to be largest in magnitude among
observations that are adjacent in time; relative to this magnitude, correlation between

non-consecutive observations may be negligible!.

e Markov Structure: Adjusted to reflect the correlation for observations with uneven

time intervals, based on AR(1) structure. Correlation decreases with the time lag.

For details on the correlation structure design, refer to Laird and Ware (2004, Chapter 7).

3.3.3 INAR(1) Model with Dynamic Heterogeneity

Under the assumption of the AR(1) correlation structure, the error terms {e;;}%; incor-
porate much more complex correlations, which also contribute to the total auto-correlation
of the INAR(1) model for the claim counts in the consecutive policy years. Starting with
probing the correlation between the error terms {¢;;}3°,, we derive the auto-correlation of
{1132, below.

'Although theoretically this structure cannot be a correlation matrix, it is artificially designed this way
to simplify analysis when p is small.
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Proposition 3.4. Let h be a positive integer, the mean and covariance of the sequence of

the error terms {€;}s2, are

Eleis] = Aits (3.23)
Vieis) = Al + it e’ -1)], (3.24)
Covless, €irin] = Aighiern(e” " ~1). (3.25)

Proof. By the assumptions introduced in the previous section, we know that the
Gaussian errors for the generalized linear model ¢;; = In©;,, t =1,2,..., follow a normal

distribution with

2
o
Elei)) = =5 Vlew] =0 and Covleir, eiesn] = o?p".
Therefore, by the properties of Lognormal distribution,

o2

E[©;] = eBleitl+3Viei — o~%+30% _ 1,
VIO = E[@%t] - E[ei,t]2 = e2Eleit]+2Vies] _ 1 = o0? -1,

and
Cov[©; ¢, 0;14p] = 7" -1,

then we have
Eleis) = Mt E[©i4) = Aig,

Vieit] = E[V]e4]Oiz]] + V[E]€it]©:4]]
= Xig + A2 V[0 = Al + Nig(e” —1)],

and
Covle s, €i01n] = E[Covleiy, €;444|05]] + Cov[Ele; 110], Elei 144]0;]]
= Aedi i+ Cov[O; ¢, Oy p1p]
= )\i,t/\i,t_{_h(eazph —1)

a

By applying the results of Proposition 3.4 into (3.5), more specific results of the autoco-

variance of the lagged claim counts can be obtained. For simplicity, we assume the a priori
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average \;; does not change over time, i.e., Ait = A, for any ¢ > 0. Then, we have

Cov[Nig, Nip—k) =D {p" Eleis—j] + 0¥ (Vleis—j] = Elesr_;])}

Jj=k
(e ¢]
+ Y P Covleitom, €it—j]
m=0,j=k
j#Em
k k

Y4 Y4 o?
o0 . -
+A7 3T pitmekert Ty, (3.26)
m=0,j=k
j#m

It is easy to prove that the summation involved in the expression above converges. The
auto-correlation with time lag 0 to 5 are calculated in Table 3.1, which shows a descending
trend in k. The parameters have been chosen as ¢ = 1.4632, p = 0.5499, p = 0.3, and
A = 0.3, to be consistent with the numerical results in Chapter 4. From (3.26), we know
that the variance of Ni’;ts is same for all ¢ > 0, which implies that the correlation of the
lagged claim counts Cor|[Nj;, N;;_] = Cov[Nst, Nit—i]/\/VINi1]V[N;i 1] decreases with

k, i.e. the predictive ability of a claim decreases with its age.

Table 3.1: Auto-correlation of claim counts with different time lags

Time lag k&
0 1 2 3 4 5
Cory, 1 0.402 0.2226 0.1688 0.1526 0.1478

To determine the pure premium with T,-. years of experience, we continue the work
under the Bayesian framework and use the quadratic loss function. The pricing formula
given by (3.14) still holds, for which we will derive the posterior mean of ©; 1,41 given

Ni 1, Nio, ..., NiT, in the following proposition.

Proposition 3.5. The predicted heterogeneity for policyholder i in year T; + 1, éi,Ti+1, is

S JOimfnig, .. onimy, 051, -, 0im01)d6s 1 -+ - d; i

f e ff(ni,h - T, 01,1, ey el,T.L)dal,l vt dgi,Ti ’
(3.27)

E©;1,41|Nig, ..., Nit,] =

where
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i) when T, =1
Aif; 1\ Tl
_ b 1-p
f(ni1,6:1,60;2) = T-p 4 f(0i1,0:2)
i1
and

Aifi 1 )1
23631 T—p
——f(6,1),

f(ni1,0;1) =e Tp -
it) when T, > 2

fnig, o oma, 051, 0i110)

Aif1 )"
Aifin 1—p

=f(0ixs-- -, 0m41) € T ,
ng1-

T, min(n; ;,n; ;1) o Q. i, %5
H Z ( Nij—1 )pzj(l — p)eim17% e Al M (3,28)

2 (nij — 2)!

j=2 Zj=0

and

fig, - nim, 651, .., 6i1)

;6 ()‘iei,l)ni’l
X6 1—p
=f(9¢’1,...,0i7Ti)e I-p - 7

n,—yl!
T; min(ni,j,ni,j_l) .
ng . o ] o (B )
Iy X ( v )p%(l = p)et T e N —E({ ) | 629
j=2 2;=0 25 ni,j Zj):

with f(0i1,...,0;1,41) being the density function of a (T; + 1)-dimension multivariate Log-

normal distribution.

Proof. By the definition of conditional expected value we have

E©i1;41|Nix, ..., Ni1] = [Oire1f(Oim1Inin, ... nim)d0; 7y

_ f 0, F(0:, 141,00, 9ma, 1)
—J VTl fia,niTy)

do; 1,41

_ f"'fei,Ti—Hf(ni,l7---vnz‘,TZ—yei,ly-~-’0i,Ti+l)d9i,l"'dei,Ti+l (3 30)
j"'ff(ni,lv-~~vni,Ti70i,1»~-~79i,Ti)d0i,1‘“dgz',Ti ) ’

i) When T} = 1, the distribution of N+ given the heterogeneity ©;,1 = 6; for the first

. . © e . . Ai0;
year, is a Poisson distribution with parameter ff’;. Therefore,

i1 \ L
i ( T—p )
f(nin,0i1,652) = f(ni116;1,0:2) f(6i1,0;0) = 1-p f(6i1,0i2),

n“!

)
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and
ng1

Aib; 1
X8 ( l—p)
f(nin, 0i1) = f(ni116:1) f(6:,1) = e 1-p

f(6:,1).

ii) When T; > 2, the joint distribution is the product of a series of conditional distribu-

tions and a Lognormal density function.

f(ni,17 sy ni,Tiv ei,l’ ey Hi,Ti—I—l)
:f(ni,Tilni,l, C ’ni,Ti—la ai,ly ceey Hi,TH—l)

fnim—1lngy, . nim—2,0i1,. .., 0;1,01)

fnialbit, ..., 0i141) f(0i1,...,0;141) (3.31)

The conditional distribution functions involved in the formula above can be written

as follows.

The first year claim count given the heterogeneity ©;,1 = 6;1 has Poisson mass prob-

Aibi 1
i—p > SO that

ability function with parameter

Aibi 1\ Ml
_Aibin ( 1—p )
fialbi,....0040) = 170 —— L (3.32)

Note that f(n;j|ni1,...,n5-1,0i1,...,0i1,41), 5 =2,..., T, is the density function
of the sum of a Poisson variable and a Binomial variable, which could be expressed as

convolutions. Therefore,

fniglng, ... nij—1,0i1, ..., 0i1,41)

min(ng,;,n4,5-1) o
- XJ: ] i.j-1 P (1 — p)™i=17% = Aib; (’\i‘gi,j)nw_zj . (3.33)
Zj=0 Zj (nlvj - ZJ)'

(3.28) and (3.29) can be obtained by applying (3.32) and (3.32) into (3.31)
O

With the results given by Proposition 3.5, the updated premiums can be calculated by

Prt1=pNi1, + ME[©;1,41|Ni 1, ..., NiT)].
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The explicit results of the pricing formula involves high dimensional integrations and
a large amount of calculation. In fact, an efficient numerical algorithm for the integra-
tion would be appealing. In the next chapter, Gibb’s sampling method is used to obtain

numerical results.



Chapter 4
Numerical Illustration

In the previous two chapters, we considered claims count models and their associated pricing
techniques with various assumptions for the heterogeneity. In Chapter 3, an integer-valued
autoregressive process is introduced with dynamic heterogeneity embedded in the error
terms. The pricing formulas are derived in Proposition 3.5. The problem becomes how to
evaluate the multi-dimensional integrations involved in the pricing formula (3.27).

For convenience, let us restate the integrands on the numerator and denominator in

(3.27). For the numerator, from (3.28), the integrand can be written as

O i1 f(Rits e nigy, 05y, 01 41)
Aifiq ) Mt
_ 20,1 1—p
=f(0i1,-. -, 0i141)0i 1,418 Top T
in!

Mij-1 Zi(1 — p\Pii-1—25 o—Aibyj (/\igi,j)ni'j_zj
p7(1-p) e R Y
% (nij — z)!

I

j:2 2 =0

T; min(ni,j,n,—,j_l) (

=f(0i1, -, 0i1,41)1 (051, ., Oy 1iman, . .. T, )-

For the denominator, by (3.29), the integrand can be expressed as

34
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f(n,-’l, ey nini, 01'71, ey ai,Ti)

e (/\iei,l)ni’l
_X%a |\,
:f(Hi,l,...,GLTi)e -p —

nM!

(4,5 — 25)!

II

T; [min(n;j,n;5-1) (
j=2 Z]' =0

N
W) pF (1 — p)raami g Mbi
Zj

=f(0i1,--,0i1,)92(05 1, .., 0i 13 min, . . ).
Therefore, the pricing formula is the ratio of two expected values of functions of the
random variables g; and go, respectively, which can be expressed as

Elg1(©i1,...,0im413m61,- - i)
Elg2(8i1,...,0im;ni1,...,ni1)]

where ©; = (©;1,...,0;7,+1) is a random vector which, under the assumptions given in
Section 3.3.3, follows the multivariate Lognormal distribution with density function given by
(3.19). The integrations have no closed form solutions, and it is quite time consuming trying
to solve them with numerical calculation packages such as SAS or Matlab. The simulated
average can be obtained by sampling ©;. With the Gibb’s Sampler presented in Section 4.1,
the complicated calculations can be avoided and replaced by simpler ones, and therefore the

process of simulation became fairly time efficient.

4.1 Gibb’s Sampler

The Gibb’s sampler is a computer-intensive algorithm that has been found useful in many
practical problems in statistics. While applications of the Gibb’s sampler have been found
mostly in Bayesian models, it is also extremely useful in the classical (likelihood) calcula-
tions, as pointed out in Casella and George (1992). The authors also explained the mecha-
nism of the scheme that drives the sampling process using elementary properties of Markov

Chains.
The Algorithm

We are going to illustrate the Gibb’s sampling algorithm with the joint distribution of the

multivariate Lognormal distribution f(6;1,...,8;,), where the random variables {@i,t}tT;'l



CHAPTER 4. NUMERICAL ILLUSTRATION 36

denote the heterogeneity for one policyholder for 7} policy years. Suppose M iterations are
going to be obtained, and let Ol(j ) = (egfi), ceey Hl(JT)z) denote the values for the j** iteration.

Then the sampling procedure is described as follows.

i) Specify the initial value of 02(2), e ,9§’0T)i_1.

ii) Repeat for j =0,1,...,M —1,

generate 01-(7]‘1“) from f(91,1l9§,jz), e ’01(,%)’
generate 91(7'2+1) from f(9i,2|9§,3i+1), 91'(:5)7 fe ,az(?%)»
generate 01.(’]}1,1) from f(ei,Tilai(,le)v T 91-(,3;:91 :

iii) Return the values {051),01(2), ey Bl(M)}.

4.2 Numerical Illustration

With the simulation procedure described above, we generate 100, 000 four-dimensional ran-
dom vectors that follow the multivariate Lognormal distribution with o = 1.4632, and
p = 0.5499, which were estimated by Brouhns et al. (2003) based on the data set of a
Belgium automobile insurance portfolio. The values of other parameters are chosen to be
p=0.3 and A = 0.3 for comparison between different claim patterns. The sensitivity of the
results against p and X is discussed in the later section. We consider the scenarios where
three claims were reported during a period of three years. The arrival time of the claims
varies in ten different ways, as shown by the first column of Table 4.1 (the three integers in
the brackets, separated by commas, orderly denote the numbers of claims reported in years
1, 2, and 3). The predicted heterogeneity and the resulting premium at the beginning of
years 2, 3, and 4 are calculated for these different patterns of claims and comparisons are

made between various models.

4.2.1 Predicted Heterogeneity

Table 4.1 shows the predicted heterogeneity at the beginning of years 2, 3, and 4, denoted by
©i2 = E[©;2|Ni 1], 6,3 = E[©:3|Ni1, Ni 2], and ©;4 = E[0;3|Ni1, N2, N; 3], respectively.

~

The rows are sorted by ©;4 in a descending order. The same results are also graphed in
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Figures 4.1, 4.2, and 4.3. For convenience, the formula of the INAR(1) procedure is restated

as

Nit = Bi(p) o Niy—1 + €it-

The error term serves as an adjustment to the random portion of the number of reported

claims in the previous year when the number of claims for the following year is projected.

Table 4.1: Predicted heterogeneity with various patterns of the past numbers of claims

Claim

History éi’g éi3 éi4
(0,0,3) 0.7213 0.6954 3.1502
(1,0,2) 1.3846 0.9274 2.4158
(0,1,2) 0.7213 1.3763 2.0207
(2,0,1) 2.0990 1.0965 1.6225
(0,2,1) 0.7213 2.1917 1.3475
(1,1,1) 1.3846 1.1667 1.0940
(0,3,0) 0.7213 3.0173 1.3190
(1,2,0) 1.3846 1.9773 1.0832
(3,0,0) 2.7962 1.2180 0.9160
(2,1,0) 2.0990 1.2791 0.9092

To examine how the different claim patterns impact the predicted heterogeneity, let us
start with Figure 4.1, which shows the estimation of ©;2 with one year’s experience. It
presents a strict descending trend with the number of claims in year 1 decreasing from
three to zero. As mentioned in Chapter 3, the number of claims for year 1 without any
gained experience is Poisson distributed with parameter ©;1A/(1—p), and O, 7 is positively
correlated with ©;;, which explains the trend in Figure 4.1 that éi,g is positively driven by
the claim count for year 1.

We now proceed to look at Figure 4.2, which shows the predicted heterogeneity for year
3 with two years’ experience. Note that ©; 3 is positively correlated with both ©;1 and ©; 5.
©;,2 drives the error term ¢; 2 and therefore part of the increment (positive or negative) of
the claim counts from year 1 to year 2. Thus, the prediction (:),-,3 carries information of
not only the absolute number of claims in year 1, but also the increment from year 1 to
year 2. Shown by Figure 4.2, the claim pattern (2,0) indicates a decrease in the number of

claims. As a result, the predicted heterogeneity in this case is lower than the one for the
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Figure 4.1: Predicted heterogeneity for the second year with various patterns of claim counts
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Figure 4.2: Predicted heterogeneity for the third year with various patterns of claim counts
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Figure 4.3: Predicted heterogeneity for the fourth year with various patterns of claim counts

pattern (0,2), which presents a steep growth in the second year. The pattern (1,1) shows
a stable trend around one claim per year. Consequently, the predicted heterogeneity is in
between the two cases discussed above. However, the pattern (3,0) has a larger predicted
heterogeneity than the one for (2,0) and a steeper decreasing trend, which is due to the
higher claim counts for year 1 that also contribute to the estimation.

To expand this reasoning to éz‘A, let us look at Figure 4.3, the predicted heterogeneity
with three years of experience where two pairs of consecutive numbers of claims are available.
The estimation of the heterogeneity for year 4 carries the information given by the mixture
of three pieces: the absolute number of claims for year 1, the increment from year 1 to year
2, and the increment from year 2 to year 3. Since the AR(1) correlation structure is adopted
to model the heterogeneity, the most recent increment has the largest weight to impact the
prediction. Therefore, it is reasonable that the pattern (0,0,3) with the steepest increase
during the last two years results in the highest predicted heterogeneity. However, which
one of the three pieces of information would dominate the trend also relies on the specific
claim patterns as well as the value of the parameters. Shown by Figure 4.3, compared to
the pattern (2,1,0), (1,2,0) results in a higher prediction, which indicates that the increase
from one claim in year 1 to two claims in year 2 shadows the steeper decrease from year 2
to year 3 and the smaller claim count in year 1. This could also be explained by the fact

that, with this set of parameters, the system sees a driver with a steady descending claim
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history less likely to have a positive increment in year 4. With another set of parameters,

some local orders in Figure 4.3 may change.

4.2.2 The Premiums and Comparison of Models

With the predicted heterogeneities discussed in the previous section, the premiums for years
2, 3, and 4, denoted by P» = E[N;2|N;1], P3 = E[N;3|N;2), and Py = E[N;3|N; 2], are
calculated and shown in columns three to five, respectively in Table 4.2. For comparison,
from column six to column eleven, we state the premiums with the same patterns of claim
counts generated by two formerly discussed models, the mixed Poisson with a Lognormal
heterogeneity and the INAR(1) process with a static Gamma heterogeneity. At last, to
test the AR(1) correlation structure, the premiums are calculated with p = 0, which means
{©:,1}£2, on logarithm degenerates to a white noise process, and the results are listed in the
last three columns of Table 4.2.

From Table 4.2 and Figure 4.4, we see that the Bonus-Malus system driven by the
INAR(1) process with a dynamic heterogeneity has two features worth mentioning. First,

the system sees the increment of claim counts from year to year being carried forward.

e As shown by the first four rows of Table 4.2, the four highest premiums result from
the claim patterns that respectively have increments +3, +2, +1, and +1, respectively
in the last two years . The system punishes those who had sudden increased numbers

of claims in recent years the most severely.

Second, the system is sensitive to how the claims are distributed. We compare the results

between two pairs of patterns to illustrate the property.
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Figure 4.4: Three years’ premium trend with various patterns of claim counts

e We first compare the results between the patterns (1,2,0) and (2,1,0). The two patterns
result in similar premiums for year 4, which are among the lowest ones, but through
very different paths. Pz for the pattern (1,2,0) is slower than P, for the pattern (2,1,0).
This can be explained by the fact that Ps for (1,2,0) is the premium after the first
year with 1 claim and the second year with 2 claims, the system treats the two claims
in year 2 as a step-upward from the one claim in year 1, and a part of the penalty
had already been imposed by the surcharge incorporated in P, for the pattern (1,2,0),
thus it is lower than P for causing 2 claims in the year immediately after the issuance

of the policy.
e Similarly, P for the pattern (2,1,0) is lower than P, for the pattern (1,2,0).

However, the premium trend shows the opposite order when a claim-free year is involved

in the first two years. As an example, we compare the results between the patterns (1,0,2)
and (0,1,2).

e The two patterns result in similar premiums for year 4, which are among the highest

ones. P3 for the pattern (1,0,2) is higher than P for the pattern (0,1,2). It shows

that the system remembers the claim in year 1 and tends to be more conservative for

a discount.
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e Similarly, P3 for the pattern (0,1,2) is lower than P, for the pattern (1,0,2), which
shows that the system remembers the claim-free year immediately after the issuance
of the policy, and sees the driver with the pattern (0,1,2) less risky at the end of year

2 than a driver that caused one claim in year 1.

Furthermore, both pairs have similar results for the premium for year 4. Since within both

pairs, the numbers of claims for year 3 are the same, the subtle difference in P; depends

only on the predicted heterogeneity for year 4, which is discussed in the last section.
Table 4.2 also lists the results with three other models for parallel comparison. We have

the following observations.

e For the mixed Poisson model with a Lognormal heterogeneity, whose results are shown
in columns 6 - 8, we let A and o take the same values as in the INAR(1) model discussed
above. The results demonstrate the property of the mixed Poisson model stated in
Chapter 2 that the premiums rely only on the total number of past claims, whereas
the results for the INAR(1) model with dynamic heterogeneity are different for the
possible 10 patterns in all three years. Compared to the classical mixed Poisson model,
the INAR(1) model with dynamic heterogeneity brings more variation to the premium,

and the premium trends reflect the claim history more closely.

o The results for INAR(1) process with a static Gamma heterogeneity are given in
columns 9 - 11. The parameter a is set equal to 9, and all other parameters are
kept the same. Although not all the predicted heterogeneities are distinguishable with
different claim patterns, all the premiums are different due to the autoregreés‘ive part
of the process up to year 3. However, for year 4, two pairs of patterns lead to the
same premiums. The Gamma heterogeneity results in a smaller range for P; than
the dynamic heterogeneity, because it has less fluctuation. Yet it has more fluctuation
than the mixed Poisson model and therefore a larger range for Py due to the allowance

of the regressive part in the INAR(1) process.

e In the INAR(1) process with a white noise heterogeneity, {©;,}%°, identically and
independently follow the Lognormal distribution. The predicted heterogeneity carries
no information from the past. As a result, P clusters around 1.2, 0.89, 0.6, and 0.3,

in which cases, the last claim counts are 3, 2, 1, and 0, respectively.
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4.2.3 Effect of Parameters p and )\

Figures 4.5 - 4.24 show the effect of the autoregressive factor p and the Poisson parameter \
for the error terms to the predicted heterogeneities and premiums for year 4. In each figure,
five curves are drawn for A = 0.2, 0.4, 0.6, 0.8, and 1, respectively. Parameter p is measured

on the x-axis. The effect of the two parameters are as follows.

e The predicted heterogeneity decreases with . The Poisson mean of the error terms
is the product of A and the heterogeneity. With a larger A, a given claim experience
indicates a smaller predicted heterogeneity. In contrast, the premium increases with

A. Both the trends are consistent for all ten different claim patterns.

e p, as the autoregressive parameter, is the probability that each of the incurred claims
in the previous year contributes one claim into the claim count for the next year. The
predicted heterogeneity decreases with p consistently for all claim patterns. With any
given claim experience, the more likely that a claim from the previous year contributes
a claim to the claim count for the next year, the smaller the heterogeneity for the error

term would be indicated.

e The effect of p on premium varies in different claim patterns. The premium decreases
with p for the claim patterns that have no claims in the third year, showing the same
trend as the predicted heterogeneity. This is easy to see from the pricing formula
(3.14). In this case, the premium is the product of the predicted heterogeneity and .
In contrast, for the claim patterns that have claim count larger than 0 for the third
year, the premium increases with p. In this case it is the autoregressive component of

the INAR(1) process that dominates the projected premium.
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Chapter 5

Conclusion

Since the pioneer work of Dionne and Vanasse (1989) on the application of mixed Poisson
model in automobile insurance, numerous efforts have been put into claim count modeling
for a non-homogeneous portfolio and the associated pricing techniques. Seeking the Bayesian
posterior mean has been a well established and accepted approach to obtain the estimation
of the individual heterogeneity given past numbers of claims. Gourieroux and Jasiak (2004)
discussed the INAR(1) process for automobile insurance modeling, where the claim counts
regressively rely on the lagged claim counts, and the heterogeneity of the portfolio is reflected
in the error terms. Brouhns et al. (2003) introduced advanced model for the heterogeneity.
They applied an AR(1) model and pointed out that how the individual mean claim frequency
departs from the overall average of the portfolio should be dynamic and correlated over time.

We studied an INAR(1) process, formerly discussed in Gourieroux and Jasiak=2004),
with a dynamic heterogeneity, introduced by Brouhns et al. (2003), integrated through the
error terms. We studied the properties of this model and developed pricing formulas. A
simulation is performed to obtain the numerical results.

The claim history affects the prediction of future claim counts and therefore the premium
in two ways: the autoregressive part which directly connects the lagged counts, and the
estimation of the heterogeneity. For the autocorrelation of the lagged claim counts, we found
that the correlation decreases as the time lag increases, which is a natural consequence of the
AR(1) assumptions, and corresponds the fact that the predictive ability of a claim declines
as it ages.

The numerical illustration is performed with ten different claim patterns where three

claims are spread in three years. It is shown from the results that the predicted premium

50
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is sensitive to different distributions of claims. Not only are the past numbers of claims
reflected in the updated premium, but also the trend of claim counts changing from year to
year is carried forward. Compared to other models, the bonus-malus system based on the
INAR(1) process with dynamic heterogeneity exploits the past information more efficiently.

For the INAR(1) process with the dynamic heterogeneity, we could explore more appli-
cations in automobile insurance. First, as for the modeling of the correlated heterogeneity
for years, more correlation structures could be considered as discussed at the end of section
3.3.2. Secondly, based on the first and second moments discussed in Chapter 3, a general-
ized estimating equation method could be employed to estimate the parameters, and once
the observation of a sufficiently large sample is obtained, the bonus-malus system for the
population could be established. Lastly, one could also consider a bonus-malus scale with
a defined transition rule based on the model, for which the relativities may be obtained by

numerical simulations.
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