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Abstract 

The objectives of this thesis are to  design, analyze and numerically investigate easily im- 

plementable Variable Step-Size Implicit-Explicit (VSIMEX) Linear Multistep Methods 

for time-dependent PDEs. 

The thesis begins with a derivation of the family of second-order, two-step VSIMEX 

schemes with two free parameters. A zero-stability analysis of these VSIMEX schemes 

gives analytical results on the restriction of the step-size ratio for general second-order 

VSIMEX schemes. The family of third-order, three-step VSIMEX schemes with three 

free parameters is also derived. A zero-stability analysis of these VSIMEX schemes 

gives numerical values for the step-size restrictions. A fourth-order, four-step VSIMEX 

scheme and its stability properties are also studied. 

Numerically, we apply our new VSIMEX schemes to  the 1-D advection-diffusion 

and Burgers' equations. The expected orders of convergence are achieved, and accurate 

approximate solutions are obtained. Our results demonstrate the superiority of VSIMEX 

schemes over classical IMEX schemes in solving Burgers' equation. 
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Chapter 1 

Introduction 

1.1 IMEX Schemes 

Many problems in physics, engineering, chemistry, biology and other areas involve the 

numerical solution of time-dependent Partial Differential Equations (PDEs). Some types 

of PDEs can conveniently be transformed into large systems of Ordinary Differential 

Equations (ODEs) in time by doing spatial discretizations based on finite difference 

methods, finite volume methods, spectral methods or finite element methods. 

For large systems of ODEs with both stiff and nonstiff parts, the classical Implicit- 

Explicit (IMEX) linear multistep methods treat the stiff part implicitly and the nonstiff 

part explicitly (see Ascher, Ruuth and Wetton [I]). This has proven to be a powerful 

technique. The main idea behind these IMEX methods developed in [I] is outlined 

below. 

Large systems of ODEs typically have the form 

1; = f (u) + g(u). (1.1) 

The term f (u) in (1.1) is a nonstiff and possibly nonlinear term which we do not wish 

to integrate implicitly. This could be because the Jacobian of f (u) is non-symmetric 

and non-definite and an iterative solution of the implicit equations is desired, or the 

Jacobian could be dense, requiring the inversion of a full matrix at each time step (see 

Ascher et al. [I]), or else an explicit scheme may be preferred for ease of implementation. 

On the other hand, the g(u) term in (1.1) is stiff. Consequently, an implicit time 

integrator should be used to prevent the unrealistically small time steps which arise 

from an explicit treatment. 
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Hence for solving ODEs (1.1), numerical schemes which integrate the g(u)  term 

implicitly and f (u) term explicitly are highly desired. Such implicit-explicit methods 

are referred to as IMEX schemes in Ascher et al. [I]. 

1.2 Motivation for VSIMEX Methods 

For solutions of ODEs (1.1) with different time scales, i.e. solutions rapidly varying in 

some regions of the time domain while slowly changing in other regions, variable step- 

size schemes are often essential to obtain computationally efficient, accurate results. For 

example, small time steps may be necessary to capture rapidly varying initial transients, 

while large time steps may be desirable to capture the subsequent slowly changing, long- 

term evolution of the system. 

Standard IMEX linear multistep methods are designed for the case of constant step- 

sizes. Thus starting values must be computed every time the temporal step-size is varied 

for standard IMEX schemes. 

A commonly used approach for handling variable step-sizes for linear multistep meth- 

ods is the interpolation method (see Nordsieck [9]). At each time-step, a standard fixed 

step-size linear multistep formula is applied, and if necessary the required starting values 

are approximated by interpolating through the past saved values. Unfortunately, this 

process is sufficiently complicated that it is often avoided in practice. 

The motivation behind this thesis is to provide the end-users of IMEX schemes with 

easily implementable variable stepsize IMEX (VSIMEX) linear multistep schemes. 

1.3 Overview 

The overview of this thesis is as follows: 

In Chapter 2, general VSIMEX linear multistep schemes are defined. The order 

conditions for order-s, s-step VSIMEX schemes are derived from the local truncation 

error. This is followed by the derivation of different VSIMEX schemes up to fourth- 

order. First-order, one-step IMEX schemes are also VSIMEX schemes. A general 

class of second-order, two-step VSIMEX schemes with two parameters is developed, 

and some popular second-order IMEX schemes and their corresponding variable step- 

size versions are presented. A particular parameterization of third-order, three-step 
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VSIMEX schemes with three parameters is given and a fourth-order VSIMEX scheme 

is also presented. 

In Chapter 3, the linear stability analysis of IMEX schemes is discussed and reviewed, 

and stability contours for different order IMEX schemes are plotted. The second part 

of this chapter deals with the zero-stability analysis of VSIMEX schemes. Zero-stability 

imposes restrictions on the step-size ratios required to ensure that VSIMEX schemes 

are stable in the limit as the step-sizes approach zero. 

In Chapter 4, numerical experiments for the linear advection-diffusion equation and 

Burgers' equation are carried out using various IMEX and VSIMEX schemes. Accurate 

approximate solutions are obtained, and the expected orders of convergence for our 

VSIMEX schemes are verified for a variety of time-step strategies. 

In Chapter 5, a summary of this thesis and ideas for future work are presented. 



Chapter 2 

Lower and Higher Order VSIMEX 

Schemes 

In this chapter, different VSIMEX linear multistep schemes up to fourth-order are de- 

rived. The first-, second- and third-order VSIMEX linear multistep schemes are families 

of methods which admit one, two and three free parameters respectively. For the fourth- 

order VSIMEX linear multistep scheme, we focus on the fourth-order variable step-size, 

semi-implicit, Backward Differentiation Formula (VSSBDF4). 

2.1 General VSIMEX Linear Multistep Methods 

We consider an arbitrary grid {t,) and denote the step-size k,+j = tn+j+l - t,+j. Fur- 

thermore, assume that the previous s approximations un+j to u(t,+j), j = 0, l , .  . . , s-  l, 

are known. 

The general s-step VSIMEX linear multistep schemes for ODES (1.1) take the form 

where a,,, # 0, C,,, # 0 and s 2 2. The variable coefficients aj,,, Pj,, and Cj,, are 

functions of the mesh ratios wi = ki/ki-l for i = n + 1, ..., n + s - 1, s 2 2 and must 

satisfy the order conditions (2.4) listed below. 

Ascher et al. [I] proved for fixed step-sizes k that s-step IMEX schemes achieve at 

most order-s accuracy and that this is achieved by an s-parameter family of schemes. 
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In this thesis, we only consider s-step, 0 ( E s )  VSIMEX linear multistep schemes, where 
- 
k is the average temporal step-size. 

Begin by assuming that the mesh ratios k i / kn  and the variable coefficients aj,,, 

P j ,  and Cj,, are all bounded for i = n + 1, ..., n + s - 1 ,  replace the approximate 

solutions Un+j ,  j = 0,1, ... , s by the corresponding exact solutions ~ ( t , + ~ )  in the variable 

coefficient difference equation (2.1) to obtain the Local Truncation Error (LTE) 

1 
LTE = - C aj,nu(tn+j) - C Pj,nf ( ~ ( t n + j  )) - C Cj.ng(u(tn+j)) .  (2.2) 

kn+3-l j=o j=O j=O 

For a smooth function u ( t ) ,  expanding equation (2.2) in a Taylor series about tn yields 

j - 1  

LTE = - u ( t n )  + u l ( t n )  C kn+i+ 
j=1 i=O 

1 d ( ~ - ' ) ~  +-- 
(p - I ) !  dt(p-l) 

Applying equation (1.1) to the LTE (2.3), a pth-order VSIMEX scheme is obtained 

provided that the following constraints for ajYn, &, and cj,, hold: 
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Taken together, these constraints are known as the order conditions. 

2.2 First-Order VSIMEX Schemes 

First-order, one-step IMEX schemes are actually VSIMEX schemes, since they allow for 

variable time-stepping. This one-parameter family of schemes for (1.1) can be expressed 

as (see Ascher et al. [I]) 

The leading order term in the LTE in (2.5) is given by 

which suggests the restriction y E [ O , 1 ]  to maintain a moderate LTE. 

Some schemes in this one-parameter family are familiar. For example y = 0 gives 

the Forward Euler scheme 

Since this is a fully explicit scheme, rather than an IMEX scheme, we will not consider 

it further. 

When y = 4, we have 

which applies the second-order, one-step Crank-Nicolson method to g(u )  and the For- 

ward Euler method to f (u). 

Another choice, y = 1, yields 
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which applies Backward Euler to g(u) and Forward Euler to f (u). As we know, the 

Backward Euler method is the first-order member of the class of Backward Differentia- 

tion Formulas (BDFs) (see Lambert [8]). 

In later sections, we will also develop some order-p VSIMEX schemes (p = 2,3,4) 

similar to (2.9), which apply BDFs to g and extrapolate f to time step tn+,. Those 

schemes will be referred to as order-p Variable Step-size Semi-implicit BDF (VSSBDFp) 

schemes. 

In practice, at  least a second-order time integrator is desirable since a second-order 

spatial discretization is often used. In the next section, we derive the general second- 

order, two-step VSIMEX schemes with two free parameters, and highlight some partic- 

ular VSIMEX schemes whose corresponding IMEX schemes are quite familiar to us. 

Second-Order VSIMEX Schemes 

Second-order, two-step VSIMEX schemes admit two free parameters. If our VSIMEX 

schemes are centered in time about time-step tn+l+, to second-order, we derive second- 

order VSIMEX schemes, viz., a family of schemes involving two parameters (7, c) for 

which equation (2.1) is 

where 
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In the constant step size case (i.e., if we set all consecutive step-size ratios w,+~ = 1 

for all n = 0,1, . . . , N - 2, where N is the number of total nodes in time interval [0, TI), 

the schemes (2.10) reduce to the family of IMEX schemes (see Ascher et al. [I]) 

1 1 1 
- [(y + pni2 - 2yun+' + (y - - )un]  = 
k 2 

(7 + Of (Un+') - yf  (Un) + 

where k is the constant temporal step-size. 

Some VSIMEX schemes corresponding to familiar IMEX schemes are as follows: 

( y , ~ )  = ( i , O )  gives 

Since it applies Crank-Nicolson to the stiff term and the variable step-size second- 

order Adams-Bashforth scheme to the nonstiff term, this scheme will be referred 

to VSCNAB (Variable Step-size Crank-Nicolson, Adams-Bashforth). 

The corresponding constant stepsize IMEX version (CNAB) is a popular scheme 

in computational fluid dynamics (see Ascher et al. [I]). It has the form 

(7, c) = (1,O) gives 

As mentioned in Section 2.2, this scheme applies a variable stepsize BDF2 scheme 

to the stiff part and extrapolates the nonstiff part to time step tn+2. This scheme 

will be referred to as the variable step-size second-order semi-implicit BDF (VSS- 

BDF2). 

The corresponding constant step-size IMEX version (SBDF2) is given by 
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( y , c) = (0 , l )  gives 

The corresponding constant step-size IMEX scheme is 

which applies a scheme somewhat like the Crank-Nicolson to  the stiff part and a 

Leap-Frog scheme to nonstiff part. In Ascher et al. [I], scheme (2.18) is referred 

to  as CNLF (Crank-Nicolson, Leap-Frog). Correspondingly, we call scheme (2.17) 

VSCNLF (Variable Step-size CNLF). 

(7, c )  = (i, i )  gives 

The corresponding constant step-size scheme, referred to as the Modified CNAB 

method in Ascher et al. [I] is 

Similar to CNAB, the modified CNAB scheme has a small truncation error. For 

problems with small mesh Reynolds numbers, this modified scheme will be pre- 

ferred due to its superior damping of high frequency errors ([I]). 
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which treats the stiff g term using the two-step variable step-size implicit Adams- 

Moulton scheme, and the nonstiff f term using the two-step variable step-size 

explicit Adams-Bashforth scheme. We refer to (2.21) as VSAMAB. 

The corresponding constant step-size AMAB scheme is given by 

Schemes (2.21) and (2.22) are rarely useful in practical computation since they 

exhibit poor linear stability. See Figure 3.10 of the next chapter for further details. 

(7,  c) = (i, -u,+~) yields the fully explicit second-order, two-step variable step- 

size Adams-Bashforth scheme 

This is not a VSIMEX scheme, so we will not consider it further. 

2.4 Third-Order VSIMEX Schemes 

Third-order, three-step VSIMEX schemes admit three free parameters. One particular 

parametrization for equation (2.1) can be derived by introducing the three parameters 

(y ,8 ,  c). This leads to 
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where 
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Remark: 

Restricting scheme (2.24) to constant step-sizes leads to the three-parameter fam- 

ily of third-order IMEX schemes appearing in Ascher et al. [l] 

Scheme (2.24) is centered a t  time step tn+2+, whenever 8 = 0. 

Letting 8 + f oo in (2.25) yields the variable step-size third-order fully explicit 

Adams-Bashforth scheme. 
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Note that choosing (y, 8,c )  = (1,0,O) in scheme (2.24) yields the variable step-size 

third-order semi-implicit BDF (VSSBDF3) 

where 
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2.5 Fourth-Order VSIMEX Schemes 

For the fourth-order, four-step VSIMEX schemes, we only develop the variable stepsize 

fourth-order, four-step semi-implicit BDF (VSSBDF4) scheme. This particular fourth- 

order scheme for equation (2.1) has the form 

where 

In the constant temporal step-size case, equation (2.29) reduces to the fourth-order 

SBDF (see equation (33) in Ascher et al. [I]). This scheme is given by 



Chapter 3 

Stability Analyses of IMEX and 

VSIMEX Schemes 

If the constraints (2.4) are satisfied, then the VSIMEX methods (2.1) are consistent. 

By the Lax-Richtmeyer Theorem (see Strikwerda [lo]), IMEX methods are convergent 

when applied to a well-posed initial value problem, provided stability is ensured (see 

Ascher et al. [I]). 

Hence, we are also interested in the stability properties of our VSIMEX schemes, 

namely, what restrictions on step-size ratios wi, i = n + 1,. . . , n + s - 1 are required in 

order to ensure order-s, s-step VSIMEX schemes are stable. 

It is difficult to develop a linear stability analysis of VSIMEX schemes due to the 

freedom introduced by the stepsize ratios, wi. In this thesis, we focus on zero-stability. 

This analysis appears in Section 3.2. 

When constant step-sizes are utilized, our VSIMEX schemes reduce to IMEX schemes. 

To better understand the stability properties associated with these IMEX schemes, a 

linear stability analysis is presented in Section 3.1. 

3.1 Linear Stability Analysis of IMEX Schemes 

In this thesis, our linear stability analysis of IMEX schemes mainly follows the methods 

developed in Ascher et al. [I]. 

The model problem for our linear stability analysis of IMEX schemes is the 1-D 
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advection-diffusion equation, 

subject to periodic boundary conditions on the interval [0,1]. Here a,  b are constants 

and b 2 0. 

In the spatial discretization, central finite differences schemes are used to approx- 

imate u, and u,, and we denote by Dl and D2 the first- and second-order derivative 

approximations in x respectively. Then equation (3.1) is discretized into a system of 

semi-discrete equations in time 

where 1 5 j <_ M and M is the number of spatial mesh grids. Here we assume M is 

even, and the spatial mesh grid size is h = $. 
By applying the discrete Fourier transform (DFT) and its Inverse DFT (see Tre- 

fethen [ll]) to (3.2) we obtain for every j 

where 

u!, the DFT of Ue, is given by 

M 

and its Inverse DFT is given by 

By equating the coefficients in (3.3) and making use of the following identities, 
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we find for every wavenumber f2 
a 2b M M Ue = i- sin(27~lh)ce + - [cos(27~lh) - l] u ~ ,  l = -- + 1 , .  . . - 
h h2 2 ' 2 '  

(3.8) 

Letting 

then we can rewrite (3.8) as 

Ue = i@eUe + C Y ~ U ~ .  

From (3.9), 

it follows that the coefficient pairs (ae1 Pe) lie on an ellipse. See Figure 3.1. 

Figure 3.1 : Ellipse of ( a ,  P )  . 

The general order-s, s-step multistep IMEX schemes for u = f (u) + g(u) have the 

form 
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where aj ,  bj and cj are constant coefficients, and k is the temporal step-size. 

Applying the IMEX scheme (3.12) to (3.10), yields 

which is a linear difference equation with constant coefficients for each fixed wavenumber 

e. 
The solution to (3.13) is given by (see Bender & Orszag [3]) 

where ri is the ith root of the characteristic polynomial p(r) defined by 

and pi is constant when ri is simple and a polynomial of degree d - 1 in n for multiple 

roots ri with multiple degree of d. 

To ensure linear stability, the IMEX schemes (3.12) must satisfy the root conditions, 

i.e., all of the roots of the characteristic polynomial (3.15) have modulus less than or 

equal to unity, and those of modulus unity are simple (see Lambert [8]). In practice, 

determining the time-stepping restrictions is equivalent to finding the largest time-step 

for which the ellipse in Figure 3.1 lies in the absolute stability region of the IMEX 

schemes. 

We can also obtain another important property for an IMEX scheme. From (3.10) 

we know the exact solution is given by 

~l (t) = e(a'+i4')t ue (0). (3.16) 

which indicates the magnitude of & is amplified by a factor eaek over a time interval of 

length k. We plot the corresponding amplification contours in the ( a ,  P) plane in Figure 

3.2. 

Figure 3.2 suggests that the roots of the characteristic polynomial of (3.15) should 
be small for large and negative a t .  This fact corresponds to the fast decay property of 

high frequency modes when b is large. 
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Next, the linear stability properties for different IMEX schemes are presented. For 

notational convenience, we simply rewrite (3.10) as 

Figure 3.2: Amplification contours over a time interval of length k. 

3.1.1 First-Order Methods 

To test the linear stability of first-order IMEX schemes, we apply (2.5) to  the model 

test problem v = iPV + o V  to  obtain 

Solving for Vn+', we get 

vn+l = [(a, p)Vn,  

where 

The stability region is given by 
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We plot the stability region contours for the first order SBDF with y = 1 in Figure 3.3 , 
and for two other first-order IMEX schemes, y = $ and y = in Figure 3.4 and Figure 

3.5 respectively. 

Among all first-order IMEX schemes, the SBDFl scheme possesses the largest sta- 

bility region and the strongest decay for a large and negative. Analytically, we can 

verify this decay property by letting a + -oo in (3.21). This leads to  <(-oo, P) = 0 for 

y = 1 (i.e., SBDF1). For smaller y values, the corresponding first-order IMEX scheme 

will not have as  strong a decay property and may even be unstable for large b. Hence, 

among the first order IMEX schemes, the SBDF scheme is often preferred to  the others. 

Next, we examine the linear stability along the P-axis. For the origin ( a ,  P) = (0,O) , 
we have 

Im 0) 1 = 1. (3.23) 

This indicates that the origin of the a - P plane lies in the stability region. For other 

(0, P) with P # 01 

Thus, it follows 

IE(0,P)I = 11 + ikPI = JlfIC2P2 > 1. (3.24) 

that first-order IMEX schemes are unstable for b = 0, a # 0 in (3.1). 

Figure 3.3: Linear stability contour plot for SBDFl (y = 1). 
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a 

Figure 3.4: Linear stability contour plot for y = i. 

Figure 3.5: Linear stability contour plot for y = $. 
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3.1.2 Second-Order Methods 

To determine the linear stability contours for second-order methods, we apply equation 

(2.12) to the model test problem v = iBV + aV .  This yields 

iB [(y + l)Vn+' - yvn) ]  + 

and the corresponding second-degree characteristic polynomial is given by (see Ascher 

et al. [I]) 

Letting el, 5 2  denote the two roots of p(z) in (3.26) for any given pairs (a, B) and 

(y, c), we can solve explicitly for J1 and J2 by using the quadratic formula. The stability 

region for any pair (y, c) is thus 

Some stability contours for particular IMEX schemes discussed in Section 2.3 are pre- 

sented in Figures 3.6 to 3.10 below. 

For the 1-D advection-diffusion equation (3.1), and over the family of second-order, 

twestep IMEX methods, Ascher et al. [I] demonstrate that the SBDF2 scheme allows 

the largest stable time step when the discrete diffusion part dominates (i.e. 2 > i), and 

that the CNLF scheme allows the largest stable time step when the discrete convection 

part dominates (i.e. & < i ) .  Also, the popular CNAB is competitive only when 2 = i .  
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- 1 Olk 0 
a 

Figure 3.6: Linear stability contours for CNAB (y = 4, c = 

Figure 3.7: Linear stability contours for Modified CNAB (y = i, c = i). 
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Figure 3.8: Linear stability contours for CNLF (y = 0, c = 1). 

a 

Figure 3.9: Linear stability contours for SBDF (y = 1, c = 0). 
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Figure 3.10: Linear stability contours for AMAB (y = i, c = - i). 

3.1.3 Third-Order Methods 

Applying the general third-order, three-step IMEX scheme (2.26) to the model problem 

v = ipV + a V ,  yields 

vnt2 

2  

y2 + 7 +, v n + 3  + 1 - y2 - 3c + + ( q + % ) v n ] + a [ ( l  12 ) ( 
(3.28) 
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The corresponding third degree characteristic polynomial p(z) is given by 

4 ,  S T -  1 + ik@ y2 + 2 y +  -8 - kcv 
3 

Define the three roots of polynomial (3.29) by 11, I2 and J3 for any given pairs (a, @) 

and (y,9, c)  . The stability region for any pair ( y, 9, c )  is thus 

Some stability contours are displayed in Figures 3.11 to 3.13. 

Ascher et al. [l] prove that the third-order SBDF scheme has the strongest asymp- 

totic decay among the third-order IMEX schemes and is stable on the @-axis for suffi- 

ciently small @. 

The plots for two other interesting third-order methods appear in Figures 3.12 and 

3.13. These plots indicate that the corresponding methods possess large stability regions 

as well as strong high frequency decay. 
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Figure 3.1 1: Linear stability contours for SBDF3 (y,O, c) = (1,0,0).  

Figure 3.12: Linear stability contours for (y,8, c )  = (0, -2.036, -0.876). 
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Figure 3.13: Linear stability contours for (y, 8, c) = (0.5, -1.25, -0.52). 

3.1.4 A Fourth-Order Method 

As shown in Ascher et al. [I], the general fourth-order, four-step IMEX scheme is a 

four-parameter family of methods. In that paper, the authors mainly investigate the 

fourth-order SBDF method. This scheme has good stability properties for solving stiff 

problems. 

Applying (2.31) to our test equation v = z@V + a V ,  yields 

The corresponding fourth degree characteristic polynomial p(z) is given by 

p(r) = ( z  - ka) r4 - (4 + i4kp)r3 + (3 + i6kp)z2 

Define the four roots of polynomial (3.32) by J1, J2, J3 and J4. The stability region 

for the SBDF4 scheme is thus 

the linear stability contours are plotted in Figure 3.14. 
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Figure 3.14: Linear stability contours for SBDF4. 

We are interested in finding IMEX schemes with good linear stability properties. We 

also want the corresponding VSIMEX schemes to have good zero-stability properties. 

Thus we consider the zero-stability of VSIMEX schemes in the next section. 

3.2 Zero-Stability Analysis of VSIMEX Schemes 

Zero-stability is concerned with the stability of a numerical method in the limit as the 

step-size goes to zero; that is, zero-stability measures how computational errors, such 

as errors in the starting values, round-off errors, etc. propagate as the computation 

proceeds and as the temporal step-size approaches zero. 

It is known that a zero-stable numerical scheme is insensitive to perturbations such 

as round-off errors (see Lambert [8]). Moreover, necessary and sufficient conditions for 

a linear multistep method to be convergent are that it is both consistent and zero-stable 

(see Lambert [8]). Thus, zero-stability is an essential property of any usable linear 

multistep method. 

Zero-stability analysis deals with the behaviour of solutions as the step-size ap- 

proaches zero. This can be interpreted in terms of the numerical solution of the linear 
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multistep method applied to the differential equation (see Hairer et al. [6]) 

Although this test problem is special in the sense that the right hand side of (3.34) 

denoted by F ( t ,  v) equals zero, the stability characteristics for this equation determine 

the stability for the situation when F ( t ,  v) is not identically zero. This is because the 

solution to the homogeneous equation (3.34) is embedded in the solution to any equation 

(see Burden and Faires [4]). 

The zero-stability analysis of consistent linear multistep methods is carried out using 

the root conditions. This is described in many reference books, such as Lambert [a], 
Hairer et al. [6] and Burden and Faires [4], etc. 

In this thesis, our goal is to find restrictions on the step-size variations that are re- 

quired to ensure our VSIMEX schemes are zero-stable. Our presentation mainly follows 

Hairer et al. [6]. 

Applying order-s, s-step VSIMEX method (2.1) to the scalar differential equation 

u = 0 yields the variable coefficient difference equation (make the coefficient of Un+" 

equal to 1) 

We define the polynomial pn(r) of degree s, 

and remark that the consistency condition of our VSIMEX schemes implies 

and N is the number of total nodes in time interval [0, TI. 

Define the divided polynomials &(r)  of degree s - 1 (Grigorieff [ 5 ] )  

From (3.36) and (3.38), we have 
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Z9  + a3-l,nzS-1 + . . . + CYl,,Z + = 

( Z  - 1)  (z3-' + a:-2,n~3-2 + . . . + a;,,z + a:,,) . 

Equating the coefficients of the corresponding terms yields 

a,*-2,, = 1 + a,-l,n, 

a:,, = -00,n 

- - 
~ ; - j - l , n  - a8-j,,, for j = 2 , " .  , S  - 1. (3.40) 

If we introduce the vector Un = (Un+'-', Un+3-2,. . . , Un)T ,  then equation (3.35) 

becomes 

For convenience, we write 

Un+l = AnUn, 

where A,, as in (3.41) is known as the companion matrix. It can be shown that the 

roots of the polynomial p,(z) are the eigenvalues of the companion matrix A,. 

Similar to A,, the companion matrix A: associated with the divided polynomial pi 

in (3.38) is given by 

A* = 
n 

Definition 3.1. (Hairer et al. [6]) VSIMEX schemes (2.1) are called zero-stable, if 

for all n and m 2 0 and ( 1  . I( is an appropriate subordinate matrix norm1. 

'IIAl = sup w, where vector v # 0, and llAVll, llvll are vector norm values. 
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We are also interested in exploring the relationship between A, and A; defined 

above. This can be easily done by introducing matrix T and its inverse T-' (Hairer et 

al. [6], Grigorieff [5]) 

with dimensions s x s.  

A simple calculation leads to 

where block matrix A t  is defined in (3.43) with dimension ( s  - 1) x ( s  - 1); e:-] = 

10,. . . ,0 ,1]  with dimension 1 x (s - 1); the zero block matrix has dimension (s - 1) x 1 

and 1 is just a scalar. 

The next theorem is taken from Hairer et al. [6] and Grigorieff [5]. 

Theorem 3.2. The order-s, s-step VSIMEX scheme (2.1) is zero-stable if and only if 

the following two conditions are satisfied for all n and m 2 0: 

Proof. From (3.46), we see 

By mathematical induction, we can deduce 
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and therefore, the assertion follows from Definition 3.1. 0 

An important attribute of Theorem 3.2 lies in that the dimension of the matrices 

under consideration is reduced by one (Hairer et al. [6]). This property is especially 

useful for the zero-stability analysis of second-order, two-step VSIMEX methods which 

is provided in Section 3.2.2. 

From the above discussion, we have the following observations: 

0 The purpose of introducing the companion matrix A, in (3.41) is to  conveniently 

set up the framework for the zero-stability analysis. By the recurrence relation 

(3.42), we can easily get 

To measure whether computational errors (or perturbations) in U, are under con- 

trol as the computation proceeds and the step-size approaches zero, we simply 

require that [[An+, . . . An+lAn 1 1  is bounded for some suitably chosen matrix norm. 

This naturally leads to  the Definition 3.1. 

In general, the companion matrix A: involves the step-size ratios wj, j = n + 
1 , .  . . , n + s - 1. The variable coefficients a;,,, j = 0 , .  . . , s - 2 are functions of 

stepsize ratios, hence the Theorem 3.2 will impose restrictions on these values wj 

in order to  ensure zero-stability. 

0 An appropriate matrix norm for companion matrices A, or At  must be chosen 

in order to  apply the Definition 3.1 and Theorem 3.2. As we shall show in Sec- 

tions 3.2.3 and 3.2.4, theoretical restrictions on the stepsize ratios for third- and 

fourth-order VSIMEX schemes vary according to which matrix norm is adopted. 

This implies that the allowable step-size variations should be computed with re- 

spect to some suitably chosen matrix norms. 

In the following sections, we will use the Definition 3.1 and Theorem 3.2 to  derive 

the zero-stability restrictions on step-size ratios for order-s, s-step VSIMEX schemes 

(s = 1 ,2 ,3  and 4). 
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3.2.1 First-Order VSIMEX Schemes 

To test the zero-stability property, apply (2.5) to u = 0. This yields 

and the companion matrix An defined in Section 3.2 is simply 

for all n. 

Thus Definition 3.1 is satisfied for schemes (2.5) and first-order VSIMEX schemes (2.5) 

are zero-stable for any step-size sequence. 

3.2.2 Second-Order VSIMEX Schemes 

Applying second-order, two-step VSIMEX schemes (2.10) to u = 0 and rearranging so 

that the coefficients of Un+2 equals 1 yields 

where 

Rewriting (3.54) in matrix-vector form by introducing vector Un+l = (Un+', Un+l)T, 

Thus, we have 

Un+l = AnUn, 

where the companion matrix is 
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Also, the companion matrix A: for the divided polynomial p i  of degree one is just 

In this case Theorem 3.2 takes a simple form, which is presented in Theorem 3.3 (Grig- 

orieff [5]) .  

Theorem 3.3. The second-order, two-step VSIMEX scheme (2.10) is zero-stable if and 

only if the following two conditions are satisfied for all n and m >_ 0 ,  

We observe that if IXo,il < 1 for all i = n, n + 1, .  . . , n + m then conditions ( a )  and 

(b)  in Theorem 3.3 will be satisfied and imply zero-stability. 

Recall 

Solving for lXo,i l  < 1, we have the following results: 

1. For 0 I y < i, if 0 < wi+l 5 &, then IXo,il 5 1, and conditions ( a )  and (b)  will 

be satisfied. 

1 In this case, if all i = n, n + 1, . . . , n + m take the upper bound value m, 
then Xo,i = -1, and condition (b)  in Theorem 3.3 will still be satisfied. This can 

be easily verified from (3.50) and (3.58), since 

where 12x2 is an identity matrix. 

-,+d-,2+2-,-1 2. For < y < 1, if 0 < wi+l < 2y-1 , then / X o , i l  < 1, and conditions ( a )  and 

(b) will be satisfied. 

In this case, to ensure zero-stability, w i + ~  can not take the upper bound value for 

all i ,  otherwise Xo,i = 1 and condition (b)  in Theorem 3.2 will be violated. 
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3. For y = i ,  VSIMEX is zero-stable for any step-size sequence. 

In this case, since Xo,i = 0 for all i ,  there is no restriction on wi+l 

In summary, we present the following Corollary 3.4, 

Corollary 3.4. Consider the family of second-order, two-step VSIMEX schemes (2.10) 

with two parameters (y, c )  . Suppose 

for all i > 0. Then  the underlying VSIMEX scheme is  zero-stable. I n  particular, 

VSIMEX schemes with y = i are zero-stable for any step-size sequence. 

We plot the ratios of step-size w versus the parameter y in Figure 3.15 based on 

Corollary 3.4. Figure 3.16 shows magnified views of the maximum ratios for small and 

large y. 

In summary, we make two comments on the step-size ratio restrictions for ensuring 

zero-stability for second-order, two-step VSIMEX schemes. First, these are analytical 

results. Second, the results are independent of the choice of matrix norms for the 

companion matrix A, in Definition 3.1. As shown in the Sections 3.2.3 and 3.2.4, zero- 

stability results for third- and fourth-order VSIMEX schemes are quite different. Those 

results will be numerical and will depend on the choice of matrix norm. 
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Figure 3.15: Maximum step-size ratio w vs parameter y for second-order, two-step 
VSIMEX schemes (2.10). 

(a) Small y case (b) Large y case 

Figure 3.16: Maximum step-size ratio w vs small and large parameter y for second-order, 
two-step VSIMEX schemes (2.10). 
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3.2.3 Third-Order VSIMEX Schemes 

Similar to the zero-stability analysis in the second-order, two-step VSIMEX case, we 

apply our third-order, three-step VSIMEX schemes (2.24) to u = 0, and rearrange so 

that the coefficient of Un+3 equals 1, which results in 

where 
aj,n X .  =-, j = 0 , 1 , 2 ,  n = 0 , 1 , 2  , . . . ,  N - 3 ,  3 7' (3.61) 
Q3,n 

N is the number of total nodes in time interval [0, TI and aj,n, a 3 ,  are defined in (2.25). 

From (3.43), the companion matrix A: corresponding to the reduced characteristic 

polynomial & ( z )  for the nth-step of (3.60) is 

where 

To apply Theorem 3.2, a suitable matrix norm for A: has to be chosen. It is clear 

that if 

A 1 for j = n , n + l ; . .  (3.64) 

then Theorem 3.2 implies that the underlying third-order VSIMEX scheme is zero- 

stable. Thus, the allowable zero-stable step-size ratios will be dependent on the chosen 

matrix norm. Also, because there are two stepsize ratios w n + ~ ,  wn+2 involved in the 

computation of Un+3 in (2.24), it is difficult to derive analytically a sufficient condition 

for the restrictions on the step-size ratios. Thus, we numerically derive restrictions on 

the step-size ratios. 

In the following, we choose some matrix norms for A: and calculate the corresponding 

zero-stable step-size ratios based on I I A ; I I  5 1 for all j .  
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m-norm 

If the m-norm is used, then lIAillrn I. 1 implies 

for all j. 

By solving this inequality, we can find permissible step-size ratios for the different 

third-order, three-step VSIMEX schemes. These are shown in Table 3.1. We also 

compute the largest values R such that for constant step-size ratios w E [0, R) the 

magnitudes of all eigenvalues of matrix A:, (which is independent of n in this case) 

are less than one. See Table 3.1. The significances of R are as follows: 

- Third-order, three-step VSIMEX schemes satisfy the root conditions (de- 

scribed in Section 3.1) whenever stepsize ratios w E [0, R). 

- R is an upper bound for the zero-stable step-size ratios computed by using 

different matrix norms in this thesis. 

We cannot choose the 2-norm for A;, since in the constant step-size case wj = 1 

for all j ,  and the characteristic polynomial p,(z) of degree three for VSSBDF3 

scheme is given by 
18 , 9 2 

,o&) = Z3 - -Z + -Z - - 
11 11 11 

From (3.40), the companion matrix is 

which has 2-norm 1)A*(12 = 1.1894 > 1. Because SBDF3 is zero-stable, it follows 

that the 2-norm is not useful for generating the stepsize ratio variations. 

Grigorieff matrix norm [5] 

The Grigorieff matrix norm for is defined and denoted by 

2This matrix norm was originally designed in the stability analysis of BDFs methods on variable 
grids in [5]. 
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Table 3.1: Ranges of zero-stable step-size ratios [q, Q] for various third-order, three-step 
VSIMEX schemes using oo-norm. t refers to the results in Grigorieff [5]. 

where A: is defined in (3.62), and the 2x2  matrix Q2 is chosen so that its columns 

form a basis of eigenvectors for A: for equispaced grids. 

Let rj3, j = 1 ,2  denote the roots of p:(z) for the equispaced grid case. Then 
T 

the vector uj3 = [ rj3, 1 ] is the corresponding eigenvector, a fact which can be 

easily verified by the definition of eigenvalues and eigenvectors of matrices3. Thus 

and 

Also direct calculation yields 

Defining 

nk3=(q3-7k3)-1, k , 1 = 1 , 2  and k f 1 ,  (3.72) 

3The second subscript 3 in 7j3 and uja is used to indicate that the arguments in this section are 
associated with the third-order, three-step VSIMEX schemes. In fact, the same arguments also work 
for the other order-m, m-step VSIMEX schemes. 
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and making use of (3.71), we derive 

Imposing llAillG 5 1 yields the range of zero-stable step-size ratios. Numerical 

results are shown in Table 3.2 for various third-order, three-step VSIMEX schemes. 

In [ 5 ] ,  two upper bounds K;,, Kn3 for IIALIIG are also given and used as two 

criteria to generate step-size ratio restrictions. In this thesis, we derive these two 

upper bounds, and calculate the ranges of zero-stable stepsize ratios by imposing 

K,t3 5 1 and Kn3 5 1. Our numerical results show that the largest range of zero- 

stable step-size ratios is generated by carrying out the analysis using IIALll, The 

next largest range is occurred for K:, and the smallest one for K n 3  See Table 3.2. 

The derivation of the upper bound Ki3 for IIA;llG proceeds as follows: 

Let p* denote the characteristic polynomial p; for the equispaced grids, 

it follows that 
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using pn = ( z  - l )& ,  we can easily obtain the other upper bound Kn3 for IIAi 1 1 :  
Recall 

Thus 

and 

Hence, from (3.80)' we derive 

This verifies the formulas 5.(16) and 5.(18) for m = 3 appearing in Grigorieff [5 ] .  

We conclude by calculating the restrictions required to  achieve zero-stable step- 

size ratios wn+l and wn+2 based on the Grigorieff matrix norm and its two upper 

bounds. To proceed we use (3.78)' (3.80) and (3.84) to  calculate IIAi l l G ,  K,t3 and 

Kn3, and plot the contours of these quantities with respect to the stepsize ratios 

for different third-order, three-step VSIMEX schemes. The ranges of step-size 

ratios which ensure zero-stability can be obtained by these contour plots. 

Stability contours for various third-order VSIMEX schemes are given in Fig- 

ures 3.17 to 3.22 to  visualize the stability regions for general variable step-size 

ratios. 

We remark that our study confirms the numerical stability ranges of step-size 

ratios for the three-step BDFs method in Grigorieff [5]; see Table 3.2. 
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Table 3.2: Ranges of zero-stable step-size ratios [q, Q] for various third-order, three-step 
VSIMEX schemes using Grigorieff matrix norm and its two upperbounds. t refers to 
the results in Grigorieff [5] .  

In summary, we remark that for third-order, three-step VSIMEX schemes 

0 Analytical results are difficult to  obtain due to  the fact that two step-size ratios 

are involved at each step. This leads us to derive numerical results using Theorem 

3.2. 

Numerical results are dependent on the (suitably chosen) matrix norm. 

The third-order, three-step VSIMEX with parameters (y,8, c) = (0, -2.036, -0.876) 

possesses the largest (zero-stable) range of stepsize ratios of all schemes consid- 

ered in Table 3.1 and Table 3.2. The constant step-size version of this scheme also 

has good linear stability as shown in Figure 3.12. 
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Figure 3.17: Stability contours based on llAtfLllG (3.78) for the third-order VSIMEX 
scheme with (y, 0, c) = (0, -2.036, -0.876). 

Figure 3.18: Stability contours based on K& (3.80) with (y, 0, c) = (0, -2.036, -0.876). 
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Figure 3.19: Stability contours based on Kn3 (3.84) with (y,13, c) = (0, -2.036, -0.876). 

Figure 3.20: Stability contours based on IIAillG (3.78) for VSSBDFS (y,8, c) = (1,0,0). 



CHAPTER 3. STABILITY ANALYSES OF IMEX AND VSIMEX SCHEMES 46 

2.5 - 

2 - 

0 0.5 1 1.5 2 2.5 3 
(""+I 

Figure 3.21: Stability contours based on K;, (3.80) for VSSBDF3 (y, 6, c) = (1,0,0). 

Figure 3.22: Stability contours based on K,g (3.84) for VSSBDF3 (y, 6, c) = (1,0,0). 
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3.2.4 The VSSBDF4 Scheme 

To study the zero-stability of VSSBDF4 scheme, we adopt the ideas developed in Section 

3.2.3. Applying our VSSBDF4 scheme (2.29) to u = 0 , and rearranging to make the 

coefficient of Un+4 equal to 1, yields 

where 

N is the number of total nodes in time interval [O, TI and aj,,, ~ 3 4 , ~  are defined in (2.30). 

According to (3.36), the characteristic polynomial pn(z) of degree four for the n-th 

step of (3.85) is given by 

For constant step-sizes, 

Also 

By long division, we have 

It is clear that the co-norm cannot be used to calculate the step-size ratio constraints, 
3 - 39 since IIA811, = 2 + + 25 - 25 > 1 for the (constant step-size) SBDF4 scheme. Here, 

we adopt Grigorieff matrix norm defined in [5]. 

Let 7i4,  i = 1,2,3 denote the roots of p8(z). A short calculation shows that ri4 are all 

different. Similar to the matrix Q2 in Section 3.2.3, we choose the 3 x 3 matrix Q3 such 

that its columns form a basis of eigenvectors of the companion matrix corresponding to 

p*, i.e. 
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Also, G-norm for A; is defined by ( [ 5 ] )  

IIA;llc 11Q31AiQ311~ 

A straightforward calculation leads to 

where 

and Xo,,, XI,,, and X3,n are defined in (3.86). 

Because there are three step-size ratios involved in the computation of ((A:(\ in 

(3.93), we plot the 3-D isosurface of IIA;ll = 1 with respect to  three step-size ratios 

w,+~, i = 1,2,3.  See Figure 3.23. Here, it is more challenging to  concisely describe the 

range of zerestable stepsize ratios than it is for the second-order, two-step VSIMEX 

case described in Section 3.2.2. However, it is straightforward to plot the numerical step- 

size ratio constraints [q, Q] = [0.8016,1.0818] for the case of constant stepsize ratios. 

See Figure 3.24 for the corresponding plot. 





Chapter 4 

Numerical Experiments 

In the previous two chapters, we presented second-, third- and fourth-order VSIMEX 

schemes, and studied the stability properties of these schemes and their corresponding 

IMEX schemes. In this chapter, we carry out numerical experiments which verify the 

expected orders of convergence of our various VSIMEX schemes. Our test problems are 

the constant coefficient advection-diffusion equation and Burgers' equation. 

To calculate the starting values associated with the different VSIMEX schemes, we 

use the following methods: 

For second-order, two-step VSIMEX schemes, we use the first-order SBDFl method 

with a very small temporal step-size. 

For the third-order, three-step VSIMEX case, we use the third-order implicit-explicit 

Runge-Kutta method IMEX RK(3,4,3) presented in Ascher, Ruuth and Spiteri [2]. 

This method applies a third-order, three-stage diagonally-implicit Runge-Kutta (DIRK) 

method for the stiff term, and a third-order, four-stage explicit Runge-Kutta (ERK) 

method for the nonstiff term. 

For the fourth-order, four-step VSIMEX case, we use the fourth-order implicit- 

explicit Additive Runge-Kutta method ARK4(3)6L[2] presented in Kennedy and Car- 

penter [7]. This method applies a fourth-order, six-stage stiffly-accurate, explicit, singly 

diagonally implicit Runge-Kutta (ESDIRK) method for the stiff term, and a fourth- 

order, six-stage ERK method for the nonstiff term. 

In the following experiments, we test various second-order, two-step VSIMEX schemes. 

For third- and fourth-order, we mainly focus on the third-order, three-step VSSBDF3 

and fourth-order, four-step VSSBDF4 schemes. 
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For the advection-diffusion equation, numerical results show that some VSIMEX 

schemes possess better stability properties than their corresponding IMEX methods. 

Furthermore, our results demonstrate the superiority of VSIMEX schemes over the 

classical IMEX schemes in solving Burgers' equation. 

4.1 Advection-Diffusion Equation 

Our first test problem is the one-dimensional constant coefficient advection-diffusion 

equation, 

ut + CU, = Xu,,, (4.1) 

subject to periodic boundary conditions on the interval [0, 11 and initial conditions 

where c, X are constant coefficients. 

The analytical solution of this initial-boundary value problem is 

u(x, t) = exp(-4n2Xt) sin[2n(x - ct)]. (4.3) 

In the following sections, we present computational results for various VSIMEX 

schemes applied to this test problem. 

4.1.1 Second-Order VSIMEX Schemes 

Consider the test problem (4.1) and (4.2) with c = 1, X = &. 
In the following computations, we carry out the spatial discretization using central 

finite difference schemes to approximate u, and u,,: 

Notice, in theory, second-order accuracy in space is obtained. Here, we take step- 

size Ax = & in space and compute the value u at t = 1. To measure the error, 

the maximum norm of the absolute error is evaluated, i.e., 1 1  U y  - u(xj, 1) 11, or simply 
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written as IJU - uell,, where u,(x) = u(x, 1). From (4.3), the exact solution ue at t = 1 

is given by 

u, (x) = exp(-0.04.rr2) sin[2.rr(x - I)] .  

To choose the constant temporal step-size, we simply divide the interval [0, 11 by 

100, i.e., At = A. To approximate the evolution, we compute the value U at time 

ti = & , j  = 1 ,2 , . . .  ,100. 

To illustrate the stability and convergence properties of VSIMEX schemes, we gen- 

erate variable temporal step-sizes by taking ti = (&)2. It is clear that tloo = 1 and 

Ati = - t .  = = 
3 10000' 

We summarize the computational results for different second-order VSIMEX schemes 

in Table 4.1 and Table 4.2. Furthermore, the absolute errors for different IMEX and 

VSIMEX schemes are plotted in Figure 4.1 for Ax = A. 

1 0' 
Number of total nodes 

Figure 4.1: Absolute errors for different second-order VSIMEX and IMEX schemes 
in solving the advection-diffusion equation. The slopes are very close to -2.0 (using 
logarithmic scales), indicating second-order convergence. 

We make the following observations: 

0 Second-order in time is observed for all the VSIMEX schemes tested. 

Using this particular choice of variable step-size, some VSIMEX schemes have 

better stability properties than their corresponding IMEX schemes. For example, 
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Table 4.1: Numerical results for the advection-diffusion equation using various second- 
order IMEX and VSIMEX schemes (Ax = &) 

Scheme 
CNAB 

1 
Y = z  
c = o  

Modified 
CNAB 

1 
Y = T  
c = -  

CNLF 
y = O  
c = l  

SBDF 
y = l  
c = o  

y d  8 

c = l  

Second-Order VSIMEX 
Nodes 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 

IIU-u,Il, Ratio Order 
Second-Order IMEX 

IJU - uelloo Ratio Order 
Unstable 
1.71e-3 
4.08e-4 4.191 2.07 
8.10e-5 5.037 2.33 
7.04e-3 
1.71e-3 4.117 2.04 
4.08e-4 4.191 2.07 
8.10e-5 5.037 2.33 
Unstable 
Unstable 
Unstable 
1.55e-4 
l . l le-2 
2.76e-3 4.022 2.01 
6.69e-4 4.126 2.04 
1.46e-4 4.582 2.20 
5.96e-2 
9.38e-4 
2.13e-4 4.404 2.14 
3.24e-5 6.574 2.72 
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Table 4.2: Numerical results for the advection-diffusion equation using various second- 
order IMEX and VSIMEX schemes (Ax = &). 

Scheme 
CNAB 
y = l  

2 
c = o  

Modified 
CNAB 

1 
y = 7  
c = -  
CNLF 
y = 0 
c = l  

SBDF 
y = l  
c = O  

7'1 8 

c = l  

Second-Order IMEX I Second-Order VSIMEX 
Nodes 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 
100 
200 
400 
800 

((U - ueII, Ratio Order 
Unstable 

U - u 1 ,  Ratio Order 
1.41e-2 

1.73e-3 
4.29e-4 4.033 2.01 
1.02e-4 4.206 2.07 
7.1Oe-3 
1.73e-3 4.104 2.04 
4.29e-4 4.033 2.01 
1.02e-4 4.206 2.07 
Unstable 
Unstable 
Unstable 
Unstable 
l.lle-2 
2.78e-3 3.993 2.00 
6.90e-4 4.029 2.01 
1.67e-4 4.132 2.05 
6.92e-2 
9.60e-4 
2.34e-4 4.103 2.04 
5.33e-5 4.390 2.13 

3.49e-3 4.040 2.01 
8.66e-4 4.030 2.01 
2.11e-4 4.104 2.04 
1.40e-2 
3.49e-3 4.012 2.00 
8.67e-4 4.025 2.01 
2.11e-4 4.109 2.04 
2.97e-2 
4.11e-3 7.226 2.85 
4.44e-4 9.257 3.21 
9.09e-5 4.885 2.29 
2.23e-2 
5.57e-3 4.004 2.00 
1.39e-3 4.007 2.00 
3.42e-4 4.064 2.02 
7.78e-3 
1.93e-3 4.031 2.01 
4.77e-4 4.046 2.02 
1.14e-4 4.184 2.06 
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when A t  = &, CNLF scheme is unstable while VSCNLF is stable, and when 

A t  = A, CNAB is unstable while VSCNAB is stable. 

This particular variable temporal stepsize choice does not give optimal accuracy 

since the IMEX schemes have better accuracy than the VSIMEX schemes for this 

test problem. 

4.1.2 Third- and Fourt h-Order VSIMEX Schemes 

Consider the test problem 

ut + 21, = 0.121,,, (4.7) 

subject to the periodic boundary conditions on the interval [-I, 11 and initial condition 

Here, we focus on the third-order, three-step VSSBDF3 and fourth-order, four-step 

VSSBDF4 schemes. For the spatial discretization, we fix A x  = and apply fourth- 

order accurate finite difference approximations of u, and u,,, i.e. we use the 5-point 

formulas 

Here, we compute the solution u at time t = 2. To choose the variable temporal 

step-size, we first break the interval [O, 21 into 5 subintervals with equal length of 0.4, 

then split each subinterval into smaller subintervals with different sizes, say subinterval 

[O, 0.41 is divided by 6, [0.4, 0.81 by 4 etc. See partitioning scheme no. 2 in Table 4.3. 

Initially, we take 25 nodes over the time interval [O, 2.01, as shown in Table 4.3. We 

then double the nodes, while keeping the ratios of nodes between consecutive subinter- 

vals unchanged, and continue this partition pattern until we take 400 nodes in time. 

E.g. for 50 nodes, we partition the time interval [O, 2.01 as shown in Table 4.4. 
As mentioned in Section 4.1.1, we use the maximum norm IlUjN - u , ( j A x ,  2)  11, to 

measure the computational error. 
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Table 4.3: Different partitioning schemes for the time interval [O, 21 (total nodes=25) 

Table 4.4: Different partitioning schemes for the time interval [O, 21 (total nodes=50) 

Scheme No. [O, 0.41 [O.4,0.8] [0.8,1.2] [1.2,1.6] [l.6,2.O] 
1 16 14 6 6 8 

We summarize the computational results for VSSBDF3 in Table 4.5 and for VSSBDF4 

in Table 4.6. The corresponding rates of convergence for VSSBDF3 and VSSBDF4 are 

plotted in Figures 4.2 and 4.3 respectively. 
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Table 4.5: Numerical results for the advection-diffusion equation using the VSSBDF3 
scheme. 

Scheme No. 
Const ant 
step-size 

1 

2 

3 

4 

5 

Nodes in time I IIU - u,ll, Ratio Order 
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Table 4.6: Numerical results for the advection-diffusion equation using the VSSBDF4 
scheme. 

IIU - uell, Ratio Order 
3.389e-3 
2.132e-4 15.90 3.99 
1.329e-5 16.04 4.00 
8.431e-7 15.76 3.98 
1.222e-2 
7.922e-4 15.43 3.95 
4.911e-5 16.13 4.01 
3.060e-6 16.05 4.00 
7.172e-3 
4.882e-4 14.69 3.88 
3.111e-5 15.69 3.97 
1.971e-6 15.78 3.98 
9.269e-3 
6.979e-4 13.28 3.73 
4.631e-5 15.07 3.91 
2.975e-6 15.57 3.96 
2.761e-3 
9.677e-3 
2.316e-3 4.18 2.06 
1.796e-4 12.90 3.69 
1.021e-2 
1.337e-3 7.64 2.93 
1 .079e-4 12.39 3.63 
7.409e-6 14.56 3.86 

Scheme No. 
Constant 
step-size 

1 

2 

3 

4 

5 

Nodes in time 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 



CHAPTER 4. NUMERICAL EXPERIMENTS 
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Figure 4.2: Absolute errors for the third-order VSSBDF3 scheme with different par- 
titions in solving the advection-diffusion equation. The slopes are approximately -3.0 
(using logarithmic scales), which indicates third-order convergence. 

1 
10' 1 02 1 o3 

Number of total nodes 

Figure 4.3: Absolute errors for the fourth-order VSSBDF4 scheme with different par- 
titions in solving the advection-diffusion equation. The slopes are approximately -4.0 
(using logarithmic scales), which indicates fourth-order convergence. 
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4.2 Burgers' Equation 

Our second test problem is the one-dimensional Burgers' equation 

subject to periodic boundary conditions on the interval [-I, 11 and initial conditions 

where X is a constant coefficient. 

In the following subsections, we present the computational results from applying 

different orders of VSIMEX schemes to this test problem. 

4.2.1 Second-Order VSIMEX Schemes 

Consider the test problem (4.11) and (4.12) with X = &. 
For the spatial discretization, as in Section 4.1 .l, we apply the second-order accurate 

finite difference approximations of u, and u,,. See equations (4.4) and (4.5). 

In the following experiments, we compute the solution u a t  time t = 2 and fix 

Ax = &. To approximate the exact solution, u,, we use SBDF2 scheme with a very 

small temporal step-size At = &, i.e. 50,000 nodes in the time interval [O, 21. 

To choose the variable temporal step-size, we use the methods given in Section 4.1.2. 

Specifically, we divide the time interval 10, 2.01 into 5 equal subintervals of length 0.4 

with equal step-sizes in each subinterval. This leaves the number of nodes distributed 

in each subinterval unequal to give a variable step-size computation. 

For 100 nodes in the time interval [O, 2.01, the distribution of these nodes is as shown 

in Table 4.7. We double the nodes, while keeping the ratio of nodes between consecutive 

subintervals unchanged and continue this partition pattern until we have 1,600 nodes in 

time. E.g. for 200 nodes, we have the node distribution shown in Table 4.8. 

Table 4.7: Nodes distribution in time interval [O, 21 (total nodes=100) 

Subinterval 1 [O, 0.41 [0.4,0.8] [0.8,1.2] [1.2,1.6] [1.6,2.0] 
Nodes 1 18 28 22 17 15 

We summarize the computational results for different second-order, two-step VSIMEX 

schemes in Table 4.9. 
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Table 4.8: Nodes distribution in time interval [O, 21 (total nodes=200) 

4.2.2 Third- and Fourth-Order VSIMEX Schemes 

Subinterval 
Nodes 

Consider the test problem (4.11) and (4.12) with X = &. We compute the solution 

u at time t = 2. For the spatial discretization, we apply fourth-order accurate finite 

difference approximations of u, and u,,. See equations (4.9) and (4.10) of Section 4.1.2. 

Our approximations using the VSSBDF3 scheme consider a fixed Ax = &. A high 

resolution solution is used to approximate the exact solution u,. This is obtained using 

the SBDF3 scheme with At = &, i.e. 1000 nodes in the time interval [O, 21. 

For the VSSBDF4 scheme, we choose Ax = &. The approximation to the exact 

solution is computed using the SBDF4 scheme with At = &. 
To choose the variable temporal step-sizes, we adopt the partition methods intro- 

duced in Section 4.1.2. See Table 4.3 and Table 4.4. 

We summarize the computational results for VSSBDF3 in Table 4.10 and for VSS- 

[O, 0.41 [0.4,0.8] [0.8,1.2] [1.2,1.6] [l.6,2.O] 
36 56 44 34 30 

BDF4 in Table 4.11. The corresponding absolute errors for VSSBDF3 and VSSBDF4 

are plotted in Figures 4.4 and 4.5 respectively. 
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Table 4.9: Numerical results for Burgers' equation using various second-order IMEX 
and VSIMEX schemes. 

Scheme 
CNAB 
y = l  2 

c = o  

Modified 
CNAB 

1 Y = l  
c = -  

8 

CNLF 
y = 0 
c = l  

SBDF 
y = l  
c = o  

AMAB 
7'1 2 

c = -1 
6 

Nodes in time 
100 
200 
400 
800 

1,600 
100 
200 
400 
800 

1,600 
100 
200 
400 
800 

1,600 
3,200 
100 
200 
400 
800 

1,600 
100 
200 
400 
800 

1.600 

Second-Order IMEX 
U - u Ratio Order 
1.477e-4 
3.740e-5 3.949 1.98 
9.399e-6 3.979 1.99 
2.355e-6 3.991 2.00 
5.890e-7 3.998 2.00 
1.440e-4 
3.648e-5 3.947 1.98 
9.170e-6 3.978 1.99 
2.298e-6 3.990 2.00 
5.746e-7 3.999 2.00 
Unstable 
1.946e-3 
6.634e-6 
1.659e-6 3.999 2.00 
4.148e-7 4.000 2.00 
1.038e-7 3.996 2.00 
2.339e-4 
6.004e-5 3.896 1.96 
1.517e-5 3.958 1.98 
3.811e-6 3.981 1.99 
9.540e-7 3.995 2.00 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 

Second-Order VSIMEX 
IIU-uellm Ratio Order 
1.256e-4 
3.218e-5 3.903 1.96 
8.142e-6 3.952 1.98 
2.047e-6 3.978 1.99 
5.127e-7 3.993 2.00 
1.218e-4 
3.125e-5 3.898 1.96 
7.909e-6 3.951 1.98 
1.989e-6 3.976 1.99 
4.983e-7 3.992 2.00 
Unstable 
Unstable 
2.213e-5 
3.603e-6 6.142 2.62 
9.086e-7 3.965 1.99 
3.437e-7 2.644 1.40 
1.965e-4 
5.176e-5 3.796 1.92 
1.325e-5 3.906 1.97 
3.349e-6 3.956 1.98 
8.414e-7 3.980 1.99 
Unstable 
Unstable 
Unstable 
Unstable 
Unstable 
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Table 4.10: Numerical results for Burgers' equation using the VSSBDF3 scheme. 

Scheme No. 
Const ant 
step-size 

1 

2 

3 

4 

5 

Nodes in time 
25 
50 
100 
200 
400 
25 
50 
100 
200 
400 
25 
50 
100 
200 
400 
25 
50 
100 
200 
400 
25 
50 
100 
200 
400 
25 
50 
100 
200 
400 

IIU - u,llm Ratio Order 
7.418e-4 
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Table 4.11: Numerical results for Burgers' equation using the VSSBDF4 scheme. 

Partition No. 
Constant 
step-size 

1 

2 

3 

4 

5 

Nodes in time 
25 

IIU - u& Ratio Order 
5.112e-4 

50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 
25 
50 
100 
200 

4.209e-5 12.14 3.60 
3.160e-6 13.32 3.74 
2.196e-7 14.39 3.85 
7.461e-5 
3.556e-6 20.98 4.39 
2.469e-7 14.40 3.85 
1.667e-8 14.81 3.89 
5.221e-4 
2.972e-5 17.57 4.14 
1.898e-6 15.66 3.97 
1.230e-7 15.43 3.95 
3.152e-3 
2.739e-4 11.51 3.52 
2.188e-5 12.52 3.65 
1.601e-6 13.67 3.77 
1.075e-4 
4.415e-3 
1.084e-3 4.07 2.03 
9.731e-5 11.14 3.48 
6.783e-5 
1.900e-4 
1.806e-5 10.52 3.40 
1.403e-6 12.87 3.69 
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loi  1 o2 10' 

Number of total nodes 

Figure 4.4: Absolute errors for the VSSBDF3 scheme in solving the Burgers' equation. 
The slopes are approximately -3.0 (using logarithmic scales), which indicates third-order 
convergence. 
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Figure 4.5: Absolute errors for the VSSBDF4 scheme in solving the Burgers' equation. 
The slopes are approximately -4.0 (using logarithmic scales), which indicates fourth- 
order convergence. 
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Chapter 5 

Conclusions 

5.1 Summary 

In this thesis, we have successfully constructed a variety of new variable step-size IMEX 

linear multistep schemes up to fourth-order. All our VSIMEX schemes are order-s, 

s-step linear multistep methods. 

First-order, one-step IMEX schemes are also VSIMEX schemes. A family of such 

schemes with one free parameter is given. The family of second-order, two-step VSIMEX 

schemes with two free parameters is derived. Included in this family of schemes are 

VSCNLF (2.17), VSCNAB (2.13), Modified VSCNAB (2.20) and VSSBDF2 (2. Is) ,  

whose corresponding IMEX schemes are popular in practice. 

A particular parameterization of third-order, three-step VSIMEX schemes is also 

provided, which admits three free parameters. In particular, we recommend VSSBDF3 

(2.27) because of its superiority in solving stiff problems. A fourth-order, four-step 

VSIMEX scheme, VSSBDF4 (2.29) is also given. 

The linear stability analysis of IMEX schemes is reviewed, and stability contours for 

different order IMEX schemes are plotted. 

The zero-stability of VSIMEX schemes is systematically analyzed. This imposes 

restrictions on the step-size variations required to ensure VSIMEX schemes are stable as 

step-sizes approach zero. Based on this analysis, analytical results on restrictions of the 

step-size ratios for general second-order VSIMEX schemes are obtained and presented 

(see Corollary 3.4). In particular, VSIMEX schemes with y = i, e.g. VSCNAB and 

Modified VSCNAB are zero-stable for any step-size sequences. 
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Zerestability is also used to determine step-size ratios for third- and fourth-order 

VSIMEX schemes. These ratios are numerical results and dependent on the (suitably 

chosen) matrix norm. 

Numerical experiments for the linear advection-diffusion equation and Burgers' equa- 

tion are carried out using various IMEX and VSIMEX schemes. In our tests, the ex- 

pected orders of convergence for VSIMEX schemes are achieved and accurate approxi- 

mate solutions are obtained. 

For a linear advection-diffusion problem, some stability improvements were observed 

using VSIMEX schemes. For a Burgers' equation example, it is demonstrated that 

VSIMEX schemes give improved accuracy over classical IMEX schemes when variable 

step-sizes are suitably chosen. In particular, when the time-stepping partitioning scheme 

No.1 is chosen in Table 4.3 and Table 4.4, the error declines by 90% when VSSBDF4 is 

used instead of its IMEX counterpart, SBDF4. 

5.2 Future Work 

There are several promising research opportunities related to VSIMEX schemes. 

A study of the truncation error constants for VSIMEX schemes will be interesting, 

since it can help to determine which VSIMEX scheme is more accurate, especially for 

the second-order, twestep VSIMEX schemes. 

In this thesis, we only consider the zero-stability analysis of VSIMEX schemes. This 

analysis measures how computational errors propagate as the computation proceeds 

and as the temporal step-size approaches zero. To better understand the behaviour of 

our schemes for large time-steps, it would be interesting to carry out a linear stability 

analysis of our VSIMEX schemes. We remark, however, that the freedom introduced 

by the step-size variations makes this a challenging problem. 

This thesis provides some useful order-s, s-step VSIMEX schemes. We have not 

considered error control strategies. A natural continuation of our work is to design and 

implement an automatic time-stepping strategy for our VSIMEX schemes. 
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