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Abstract

Street-involved youth have a propensity for illicit drug use and trade. There are approxi-

mately one million street-involved youth in the United States and about 150,000 in Canada.

The need for a proper intervention and follow-up strategy seems remarkably clear.

A stochastic cellular automata (CA) model of the influences among current and potential

illegal drug users and traffickers is presented. Simulation and mean field analysis are used to

study the model. The mean field approximation (MFA) and compartmental representation

of the model are also studied. The phase plane of the mean field and possible bifurcations

of the system are explored. MFA typically provides a good picture of a CA model near a

bifurcation. The model allows us to compare the potential effectiveness of different types of

responses to the drug epidemic. Both indirect and direct strategies are found effective on

their own, but combined strategies proved to be most effective.
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Chapter 1

Introduction

Many of the social issues of the 21st century are being studied through collaborations be-

tween social and mathematical scientists [36]. Interdisciplinary research that targets these

issues can have a profound impact on the quality of life for everyone involved by reducing

crime [15], reducing harm and addiction [14], and enhancing safety and security [50], all

while maintaining privacy and improving health and welfare [49].

In the past, much of the quantitative research in criminology, health science, and urban

dynamics focused on applying statistical techniques to determine relationships. Although

these studies provide insight into social issues, they are limited in their ability to model

complicated dynamics, because they are unable to capture the qualitative dynamics and the

effect of relations in the system. This restricts somewhat the applicability to policy analysis.

Mathematical modeling is a tool that can be used for answering many questions brought

up by various disciplines. It provides a better understanding of complicated dynamics that

arise from the overlap between social issues and the dynamic nature of social interactions.

Mathematical models can take many forms, including but not limited to dynamical system

models, statistical models and differential equations models. Different types of models can

be combined to determine the expected response of any social system to social policies.

We have developed a mathematical model to understand the impact of social influence

1
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Articles
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HIV prevalence varied greatly both between and within 
countries (fi gure 3). Country-level midpoint prevalence 
ranged from less than 0·01% (eight countries) to 72·1% 
(Estonia). HIV prevalence was 20–40% in fi ve countries 
and was greater than 40% in another nine. The countries 
with the largest estimated populations of injecting drug 
users—China, Russia, and the USA—all had midpoint 
estimates of HIV prevalence in these populations of 
over 10%. Ranges were reported for 40 countries and were 
considerably wide in most cases, on average about 50% 
around the midpoint prevalence estimates. HIV 
prevalence also varied within countries. In China, HIV 
infection among injecting drug users was reported to be 
concentrated within seven of the country’s provinces.11 In 
Russia, the reported prevalence of HIV infection among 
injecting drug users was noted as 0·3% in Pskov, 12·4% in 
Moscow, 32% in St Petersburg, and 74% in Biysk.12 

Extrapolating to all countries, we estimate that globally 
about 3·0 million (range 0·8–6·6 million) people who 
inject drugs might be HIV positive (table 7); the largest 
populations of HIV-positive injecting drug users were in 
eastern Europe, east and southeast Asia, and Latin America. 
However, the large range of each of these estimates refl ects 
the considerable uncertainty around the estimates resulting 
from varying HIV prevalence among diff erent sub-
populations of injecting drug users; recruitment from 
diff erent settings; and subcountry regional variation. 

Discussion 
We estimate that there are about 16 million (range 
11–21 million) individuals who inject drugs worldwide. 
Extrapolated estimates of HIV prevalence within this 
population are extremely tenuous, but around 3 million 
(range 1–7 million) injectors might be living with HIV. 
Within this population, we found clear geographic 
diff erences in estimated HIV prevalence. Areas of parti-
cular concern are countries in southeast Asia, eastern 
Europe, and Latin America, where the prevalence of HIV 
infection among some subpopulations of people who 
inject drugs has been reported to be over 40%. Indeed, the 
prevalence of HIV infection among injecting drug users 
was reported to be zero in only eight of 148 countries.

A related review from 1998 identifi ed 129 countries 
where drug injecting was reported to occur,13 compared 
with 148 presented here. Similarly, in 1998 HIV infection 
was reported among injecting drug users in 103 countries13 
compared with the 120 countries reported here. These 
diff erences suggest an increase in injecting drug use over 
time, but it is worth noting that the current review used a 
more sophisticated search strategy than did the earlier 
review, and there have probably been improvements in 
the documentation of injecting drug use and HIV 
infection over the past decade. Even so, no verifi able 
estimates of the number of injecting drug users could be 
obtained in most of the countries that reported injecting 

No reports of injecting drug use identified
Injecting drug use reported but no estimate of prevalence
≥1%
≥0·5% to <1%
≥0·25% to <0·5%
>0% to <0·25%

Figure 2: Prevalence of injecting drug use

Figure 1.1: prevalence of drug users world wide [42]

among drug user and traffickers within a community. We seek to answer questions such as:

who are the drug users and traffickers; why do they persist and what are the possibilities for

more effective action to control drug use and drug trade. Can mathematical modeling help

us understand the impact of specific types of intervention on drug trafficking organization?

In 1993, UNICEF estimated that over 100 million youth lived or worked on the street world

wide. This includes 40 million youth in Latin America, 25 to 30 million in Asia, 20 million

in Europe, and over 10 million in Africa [3]. The United Nations Office on Drugs and Crime

(UNODC) reported in 2004 that approximately three percent of the world population, 185

million people, abused drugs during the year 2003 [37]. In Canada illicit drug use increased

substantially in just one year across the country between 1993 and 1994 [38]. Currently

there are approximately 150,000 street-involved youth living in Canada, and 1 million such

youth in the United States ([10, 2]), who are involved in the illicit drug use and trade [4].

Illicit drugs cause harm indirectly as well as directly. The indirect negative effects of drug

use are drug related criminality, loss of productivity, infectious diseases (HIV/AIDS and

hepatitis) and mortality. In fact, indirect negative effects of drug use are amplified dispro-

portionally and far outweigh direct negative effects [38]. The most direct harm occur in

high-risk populations such as injecting drug users, street youth, the inner-city poor, and

aboriginals. There have been a number of studies to explore the risk of a future rise of HIV

prevalence and preventing HIV infection among injection drug users. [40, 41, 43]
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Figure 1.2: Vancouver Downtown east side [45]

1.1 Vancouver Downtown East Side

The Downtown east side of Vancouver is the poorest postal code in Canada [14]. It has the

highest HIV infection rate in North America, affecting 30 per cent of the local population,

most of whom are women. The homeless population continues to grow, with an estimated

2000 homeless people, a population that has doubled since 2002 [45]. Cohort studies under-

taken in Vancouver Downtown east side showed that street-involved youth are frequently

involved in illicit drug use and trade. In addition, they often poor and homeless [4, 21].

The need for a proper intervention and a follow-up strategy as well as evaluating the results

of such strategy seem remarkably clear. However, a good implementation of a strategy

requires an understanding of both the drug problem phenomenon and the effect of the

social interactions in the communities. Mathematical models help us to understand the

problem and implement an intervention.

The major goal of this thesis is to understand the complicated dynamics of the drug trade

and to study the social interactions that are responsible for the drug use spread within drug

users community [14]. We construct a mathematical model to study the impact of social

influence among drug users. We use cellular automata (CA) model to study the interactions

among individuals in drug users community and perform mean field approximation for the

CA model to explore some properties of the CA model.

We consider three types of individuals in the CA model and describe them as follow:
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• Susceptible : Individuals who have a potential to become a drug user by a contact

with dealers. Susceptible can stay susceptible or make a transition and become drug

users.

• Light Users: Individuals who have already initiated some form of drug use. Light

users are at risk of becoming dealers through contacts with a pusher operating in the

black market of drugs. A light user can either stop using drugs or start a drug dealing

career.

• Drug Traffickers (Dealers): Individuals who are involved in the importation, man-

ufacturing, distribution, and/or sale of illicit drugs [39]. Dealers are assumed to con-

stantly employ drug users, who are in need to generate income to pay for their own

drug use. Drug dependency is the main motivation for users to participate in the illicit

drug trade and become drug dealers [4, 44].

1.2 Project Overview

We present a mathematical model of the social influence within the drug users community.

More specifically, we study the impact of social interaction on the spread of drug use in

the community of drug users. This model is motivated by Werb et al [4] and Carla Rossi’s

[5] models (see Chapter 2 for more details). The model shows how individuals can become

drug users and start a drug trading career of their own. Our model is a Stochastic cellular

automata (CA) model which can be used to point out the importance of social influences

in spreading drug use behavior.

The following is an overview for the main chapters of this project:

In this project, we first provide some background information on the bifurcation theory of

differential dynamical systems and a review on the basic concepts of Cellular Automata (see

Chapters 3 and 4).

In Chapter 5, we develop the stochastic cellular automata (CA) model to study the effect

of the social interactions within a drug users community. Cellular automata (CA) can be
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used to study the effects of social interactions at the individual level, on the evolution of

an epidemic at the population level [28]. Due to their flexibility, cellular automata can

serve as virtual laboratories for testing a numerous number of social scenarios. We choose

a Mover-Stayer-type model as the basic framework, since it has been used previously to

represent the spread of drug use as an epidemic [5, 14]. To address individual variation in

behavior we study the phase diagram of the (CA) model using both simulation and mean

field approximation.

Mean field approximation (MFA) for the CA model is the main focus of Chapter 6. We

perform MFA (described in [24]) with different neighborhood sizes of N = 2, and N = 4.

MFA provides an estimation on the density and other properties of the CA model. As the

model is general, we expand the MFA results for N = 2, and N = 4 to suit the case when

N = n. Thus, the mean field approximation for the CA model with total number of N = n

neighbors is also performed (see Section 6.10). Interestingly, the approximation up to second

degree in densities reproduces the scaled constant population equations which correspond

to the compartmental model.

The compartmental representation of the model divides the population in to three compart-

ments: susceptibles, light users and dealers. Once the population has been split into relevant

compartments, we describe the dynamics in terms of system of differential equations (see

Section 6.3). The mean field analysis of the system of differential equations, has unique sta-

ble points and unstable equilibrium solutions. However, the interesting bifurcations happen

as a result of parameter variations (“what if ” analysis). The compartmental model usually

provides a good approximation of the CA model near the bifurcation, thus the appearance

of the phase portrait and the bifurcation curve are as expected. The bulk of Section 6.6

is mainly about changes in social influences affecting the stability of the fixed points and

possible bifurcations.

In Section 6.8, MFA is used as a point of comparison for the CA model. The compari-

son is between the analytical results from MFA and simulation results for the CA model.

The comparison shows how accurate the MFA estimates the CA model behavior near the

bifurcation.
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The model described above, allows us to compare the potential effectiveness of different

types of responses to the drug epidemic. In this model we mostly refer to the “Primary

Prevention Intervention” as advertising, e.g. health promotions towards susceptible. A

“Secondary Prevention Intervention” includes law enforcement towards drug users/dealers,

e.g. police involvement. We find that both prevention interventions are effective on their

own, but combined interventions proved to be most effective, when taking into account the

sensitivity analysis of the parameters in the model.

Next chapter is a brief review on literatures that use ODE’s (compartmental) and CA models

to target the complex social system issues.



Chapter 2

Literature Review of Modeling

Complex Systems

In the past, compartmental models have been used in the area of the spread of “drug use”

and associated diseases. For example, compartmental models were used as a tool for un-

derstanding the drug problem, designing a proper intervention, evaluating the result of the

intervention and making social policies [5, 14]. The majority of approaches have used or-

dinary and partial differential equations (ODE’s and PDE’s) and probabilistic methods to

seek answers to a number of questions concerning drug use.

Recently, cellular automata (CA) models are mostly used to model the complex social sys-

tems in order to target the social issues such as homelessness, crime and drug use problem

[15, 14]. CA is a mathematical method which can effectively be used to model the social

interaction among individuals in a community. CA models allows us to study the impact of

social interaction among individuals in the transmission of infectious disease, drug use and

drug trade behavior.

We examine both theses approaches by developing a Cellular Automata (CA) model which

is based on compartmental framework. In addition, we perform the mean field approxima-

tion followed by the bifurcation analysis for the CA model for drug use problem in DTES

Vancouver.

7
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2.1 Compartmental Representations of Models

In mathematical modeling compartmental models represent a powerful and well-established

mathematical tool. Compartmental models generally help to study the spread of diseases

in a population. As Rossi stated in [5] “ There is evidence that drug use spreads as an

infectious disease, i.e. the rate of new cases depends bilinearly on the number of existing

cases and on the number of susceptibles” [5]. So the spread of drug use can be treated as

an infectious disease in mathematical modeling perspective.

Compartmental models provide a framework in which numbers of people in different com-

partments, the relationships between compartments and the spread of the disease in the

population can be expressed in differential equations [5].

Two main classes of mathematical models commonly used to describe the spread of diseases

are deterministic models and stochastic models. They are described as follow:

• Deterministic Models: Changes in the size of each compartments over time is

expressed in terms of systems of differential or difference equations.

• Stochastic Models: Changes in the size of each compartments over time is expressed

in terms of a stochastic equation which is a differential equation in which one or more

of the terms is a stochastic process.

2.2 Compartmental Models

It is common practice in mathematical modeling to use compartmental models, as Carla

Rossi uses such a model in [5] to understand the epidemic of problematic drug use in Italy.

She performs scenario analyses, for the heroin (by injection) epidemic which has been taken

place in the past 20 years (beginning around 1980, with the epidemic peak in 1990 - 91).

She designs a mathematical model that treats the spread of problematic drug use as an

infectious disease.
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Figure 2.1: The system dynamic model of the epidemic of problematic drug use in [5].

Carla Rossi develops a compartmental Mover-Stayer model for the epidemic of problematic

drug use (see Fig 2.1). She considers the susceptible population as subdivided into two main

groups: the group of stayers, that is, the group of individuals who are considered not at risk

of infection, and the group of movers (divided into sub-groups with different risk behavior)

who are at risk of infection. Due to the interactions between infectious individuals and the

susceptibles, some individuals may pass to the drug user compartments and begin a drug

user career. Rossi uses the mean field analysis which corresponds to the compartmental

model to analyzes the epidemic and evaluates the impact of interventions towards suscep-

tibles and drug users. She shows how primary prevention intervention is the most effective

strategy to control drug use in Italy .

A cohort study by Werb et al in [4] conduct an investigation of the factors associated with

drug use and drug trade involvement among street-based youth in Vancouver, Canada. The

method used to examine those factors among the participants is logistics regression analy-

sis. They find that over half of the street-involved youth participating in the study reported

involvement in illicit drug trade. Among individuals who reported drug dealing, the vast

majority reported doing so in order to pay for their personal drug use. The authors observe

a strong association between homelessness and drug dealing which points out the fact that

street-involved youth who deal drugs are often marked by extreme poverty and drug depen-

dency [4].
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Figure 2.2: Model structure in [14].

2.3 Cellular Automata Models

More recently, there has been an increased interest in modeling interactions between individ-

uals located on networks with a mixture of local and global interactions using CA models.

The following is a brief description of the literature using CA models to target the complex

social system issues.

Dabbaghian et al in [14] construct a cellular automaton model to study the dynamics of

the HIV epidemic in an IDU community, in the presence of social influences (see Fig 2.2).

The authors consider two types of influences in the model. An individual can influence

neighbors by discouraging (α) or encouraging (β ) them to share needles. Each cell has a

social counter link to it which records and accumulates influences from neighboring cells at

each time step. Cells are updated according to the rules which concern the cell’s life spans

and the values of the counters.

The authors investigate the epidemic behaviour of the model without social influences, with

10% initial HIV prevalence, and α and β at 0, interestingly HIV prevalence rises sharply

and crashes within a short period of time. The epidemic becomes self-sustaining once social

influence is included in the model. But the epidemic is not self-sustaining always where
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Figure 2.3: CA model based on compartmental framework in [22].

social influence is in the model. The authors conclude that a threshold value exists at

which the epidemic crashes. Thus complex social context plays a crucial role in deter-

mining HIV risk behaviour among IDU. The authors validate the model for the Downtown

Eastside (DTES) HIV epidemic in Vancouver which is the poorest neighborhood in Canada.

Eslahchi et al in [22] examine the concurrent spread of hard drug consumption and criminal

behavior using cellular automata. The authors describe a stochastic model based on the

compartmental framework (see Fig 2.3) for the spread of HIV infection among IDU’s within

a community. The model is constructed in the presence of influences that promote, α, or

discourage, β, sharing used needles.

The model employs a stochastic (a discrete Markov chain) approach by defining a transition

matrix to represent the effect of social relationships among IDUs.

A =


1− β β 0 0

α(1− p) (1− α)(1− p) p 0

0 0 1− α α

0 0 β 1− β

 (2.1)

As the authors point out, it can be seen from the transition matrix (2.1) that the class

of transient states is T = 1, 2 and the class of recurrent states is R = 3, 4 (see Fig 2.3).

Eslahchi et al. also define fk(α, β) as being the probability that an individual moving from

state 2 to state 3 after k units of times. and they prove that for all α and β the probability

fk(α, β) tends to a fixed value.
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Figure 2.4: The state transition for the SIRS model in [20].

Eslahchi et al. [22], had to rely on simulations to represent the proportion of the popula-

tion that gets infected with HIV at each time step. They show for any fixed β, f1000(α, β)

is a decreasing function of α. This means that increases in the positive social effects, α,

decreases the number of individuals becoming HIV positive. However, it tends to a certain

threshold. In other words, if β > 0 then for every p (probability of HIV transmission) a

certain number of individuals become HIV positive.

Another CA model is introduced by van Ballegooijen and Boerlijst in [19] (vBB). They con-

sider three types of spatial patterns in a spatial susceptible–infected–resistant (SIR) model

for disease dynamics using a cellular automata model. Liu et al in [20] take the framework

proposed by vBB as starting point and use a spatial SIRS model with N individuals cate-

gorized, according to their infection status (see Fig 2.4). They develop a model which can

investigate what enables a disease to persist while others become extinct. Liu et al also use

the model to understand the change of such effect in combination with individuals mobility

within multi patches.

In Fig 2.4, each arrow show a possible transition between two states in Liu et al.’s model.
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Figure 2.5: Typical spatial structured model of the two-patch spread of epidemics in [20].

Transition probabilities are shown for transitions between different states. The third transi-

tion shown is from a susceptible site that has one infected neighbor (local infected occupied

nI = 1
z ; smaller circle, z is the number of the cells neighborhood) to an infected cell.

They performe mean field approximation which corresponds to the SIRS model (2.2), mea-

sure the phase transition between the global extinction and the persistence of the epidemic

and the effect of of individuals movements on the epidemic.

dS

dt
= −βSI + τRR, (2.2)

dI

dt
= −βSI + τII,

They also analyze the relationship of infection rate and infection period for the phase tran-

sition within a single patch and multiple patches, using simulation. Liu et al, in [20] show

that the infection rate is limited by an upper bound.

In Fig 2.5, the two patches i and j are connected by migration processes. Each patch

contains a population of individuals who are characterized with respect to their stage of

the disease. Liu et al, in [20] find that higher migration can promote the persistence of

the spread of epidemics and so they observe a phase transition occurs from the extinction

domain to the persistence domain.
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Another cellular automata model applied to infection diseases is that of Benyoussef et al.

[21]. The authors model the immune cells in the blood by a two-dimensional CA. Then,

consider the group of white blood cells (Lymphocytes T ), which have the protein marker

CD4
+. The model contains both the non-infected (T ) and infected (Ti ) CD4

+ cells, and the

population of plasma virus (V ) is included.

The obtained results show the existence of four different behaviors in the plane of death

rate of virus-death rate of infected T cell. These regions meet at a critical point, where

the virus density and the infected T cell density remain invariant during the evolution of

disease. They also introduce two kinds of treatments in order to study their effects on the

evolution of HIV infection. Other interesting CA models can be also found in [15, 16, 17].

Due to the complexities that arise in analyzing dynamical systems (such as diseases epi-

demics) with multiple interacting compartments, the study of infection diseases has mainly

been done by simulation.

Closely related to ODE and PDE models are those using mean field approximation (MFA)

for the CA models. The MFA ignores space dependence and neglects local correlations in a

CA and estimates the density and other properties of the CA (see Chapter 4).

Kleczkowski et al in [32] proposed an epidemic model using MFA examining the spread of

childhood measles. Noting that MFA neglect localized correlations, it appears meaningless

to compare them with CA models because CA models focus on the contact between indi-

viduals. However, the authors in [32] mentions that MFA and CA models converge when

the MFA mixing parameter tends to infinity that is, when the world contains more disorder

than correlation. This convergence is analogous to the situation where differential equation

and CA models converge when population size tends to infinity [34]. As the size of CA

gets bigger the local effects matters less and less to the overall behavior of the CA. So the

average behavior of the CA becomes dominant.

Many groups [29, 30, 31] have used MFA as a point of comparison with the CA models they

develop particularly models investigating the effect of host (infected cell) motion.
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As can be seen, the increase of cellular automata in modeling the complex social systems is

growing. This is because scientists and policy makers are gaining awareness of the advan-

tages of studying the local and global interactions within communities. However, literature

in which cellular automata used to investigate drug trafficking is rarer due to the complexity

of the system. In such cases, mathematicians often rely on both data simulations and ana-

lytical methods to obtain much more detail about the behavior of the system. We perform

MFA for the CA model and various simulations. We then use mean field approximation

results as a point of comparison for the behavior of the CA model.

In the next chapter, we review the knowledge background for the bifurcation theory of

differential dynamical systems.



Chapter 3

Bifurcation Theory of Differential

Dynamical System

Before delving into the details of the model in the next couple of chapters, it is worth

to review the concepts that are used to analyze the model. The theory in this chapter

is developed systematically for the nonlinear systems starting with definition of a fixed

point, linearization technique, classification of fixed points and their geometric intuitions

and bifurcations. The background given on bifurcation theory of differential dynamical

system, helps to better understand analytical results and visualize the possible outcome of

a dynamical system.

The material explained in this chapter is based on the book “Nonlinear Dynamics and

Chaos” by Steven H. Strogatz.

3.1 Complex System

A complex system is any dynamical system that consist of more than a few-typically

nonlinearly- interacting parts [24]. Perhaps the most familiar example of a complex sys-

tem is the human brain, which, consisting of something on the order of 1010 neurons with

103 − 104 connections per neuron. The human brain is arguably the most complex system

on this planet.

16
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3.2 Fixed Points

In terms of the differential equation, ẋ = f(x), x∗ represents the fixed point and satisfies

f(x∗) = 0. Fixed points are sometimes called equilibrium solutions or steady states since if

x = x∗ initially, then x(t) = x∗ for all t.

3.2.1 Trajectory

As times goes on, a phase point at x0 moves along x-axis according to some function x(t)

which is called the trajectory based at x0. It represents the solution of differential equation

starting from the initial condition x0.

3.3 Phase plane

The general form of a vector field on the phase plane is

ẋ = f(x, y)

ẏ = g(x, y)

where f and g are given functions. This system can be written more generally in vector

notation as

(ẋ, ẏ) = (f(x, y), g(x, y)),

Here (x, y) represents a point in the phase plan, and (ẋ, ẏ) is the velocity vector at that

point. By following along the vector field, a phase point traces out a solution (x(t), y(t)),

corresponding to a trajectory winding through the phase plane. Furthermore, the entire

phase plane is filled with trajectories, since each can play the role of an initial condition.

Phase portrait shows all the qualitatively different trajectories of the system.

3.3.1 Stability Language

We say x∗ = 0 is an attracting fixed point , if all the trajectories that start near x∗ approach

it as t→∞. If x∗ attracts all trajectories in the phase plane, it is called globally attracting.
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We say that a fixed point x∗ is Liapunov stable if all trajectories that start sufficiently

close to x∗ remain close to it for all times. So if the fixed point is both Liapunov stable

and attracting, we will call it stable. Finally x ∗ is unstable if it is neither attracting nor

Liapunov stable.

3.4 Fixed Points and Linearization

Once the fixed points are found, one would like to have a quantitative measure of quan-

tities, such as the rate of decay or growth to a stable or unstable fixed point. This sort

of information can be obtained by linearizing about the fixed points. The hope is that we

can approximate the phase portrait near the fixed points by that of a corresponding linear

system.

3.4.1 Linearization

In this section we focus on the linearization technique for two-dimensional systems. The

hope is that we can approximate the phase portrait near the fixed point.

3.4.2 Linearized System

Consider the system

ẋ = f(x, y)

ẏ = g(x, y)

and suppose that (x∗, y∗) is a fixed point, i.e.,

f(x∗, y∗) = 0, g(x∗, y∗) = 0

Let

u = x− x∗, v = y − y∗

denote the components of a small disturbance from the fixed point . To see whether the

disturbance grows or decays, we need to derive differential equation for u and v. Let us do
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the u-equation first:

u̇ = ẋ (since x∗ is a constant)

= f(x∗ + u, y∗ + v) (by substitution)

= f(x∗, y∗) + u
∂f

∂x
+ v

∂f

∂y
+©(u2, v2, uv) (Taylor series expansion)

= u
∂f

∂x
+ v

∂f

∂y
+©(u2, v2, uv) (since f(x∗, y∗) = 0 is a constant)

To simplify the notation, we have written ∂f
∂x and ∂f

∂y , but remember that these partial deriva-

tives are to be evaluated at the fixed points (x∗, y∗); thus they are numbers, not functions.

Also the shorthand notation ©(u2, v2, uv) is a remainder term, denoting the difference be-

tween the Taylor polynomial of degree n and the original function. The remainder term

©(u2, v2, uv) depends on (x,y) and is small if (x,y) is close enough to (x∗, y∗) under the

hypothesis that f(x, y) is a function which is 1 time continuously differentiable on the closed

interval [(x∗, y∗), (x, y)] and 2 times differentiable on the open interval ((x∗, y∗), (x, y)).

Similarly we find:

v̇ = u
∂g

∂x
+ v

∂f

∂y
+©(u2, v2, uv)

Hence the disturbance (u, v) evolves according to

(
u̇

v̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
·

(
u

v

)
+ quadratic terms, (3.1)

The matrix (
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
(x∗,y∗)

is called the Jacobian matrix at the fixed point (x∗, y∗). It is the multivariable analog of

the derivatives f ′(x∗). Now since the quadratic terms in (3.1) are small, it’s tempting to
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neglect them altogether. if we do that, we obtain the linearized system(
u̇

v̇

)
=

(
∂f
∂x

∂f
∂y

∂g
∂x

∂g
∂y

)
·

(
u

v

)
(3.2)

whose dynamics can be analyzed by the methods explain below:

3.5 Classification of Linear System

We study general case of an arbitrary 2×2 matrix, with the aim of classifying all the possible

phase portraits that can occur. For the general case, we would like to find the trajectories

starting on one of the coordinate axes and exhibit simple exponential growth or decay along

it . That is, we seek trajectories of the form

x(t) = eλtv, (3.3)

where v is some fixed vector to be determined, and λ is a growth rate, also to be determined.

If such solutions exist, they correspond to exponential motion along the line spanned by the

vector v.

To find the condition on v and λ, we substitute x(t) = eλtv in to ẋ = Ax, and obtain

λeλtv = eλtAv. Canceling the nonzero scalar factor eλt yields:

Av = λv, (3.4)

which says that the desired straight line solutions exist if v is an eigenvector of A with cor-

responding eigenvalue λ. In this case we call the solution (3.3) an eigensolution. In general

the eigenvalues of a matrix A are given by the characteristic equation det(A − λI = 0),

where I is the identity matrix. For a 2× 2 matrix

A =

(
a b

c d

)
,

the characteristic equation becomes,

det

(
a− λ b

c d− λ

)
. Expanding the determinant yields:

λ2 − τλ+ ∆ = 0 (3.5)
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where

τ =trac(A) = a+ d,

∆ =det(A) = ad− bc.

Then,

λ1 =
τ +
√
τ2 − 4∆

2
λ2 =

τ −
√
τ2 − 4∆

2

are the solution of the quadratic equation (3.5). In other words, the eigenvalues depend

only on the trace and determinant of the matrix A in Section 3.5.

The generic situation is for the eigenvalues to be distinct : λ1 6= λ2. In this case, a theorem

of linear algebra states that the corresponding eigenvectors v1 and v2 are linearly indepen-

dent, and hence span the entire plane. In particular, any initial condition x0 can be written

as a linear combination of eigenvectors, say x0 = c1v1 + c2v2.

This observation allows us to write the general solution for x(t). It is simply

x(t) = c1e
λ1tv1 + c1e

λ2tv2

This is a general solution because it is a linear combination of solution to ẋ = Ax, and

hence is itself a solution. It satisfies the initial condition x(0) = x0 and so by the existence

and uniqueness theorem, it is the only solution.

3.6 Classification of Fixed Points

The eigenvectors and eigenvalues of the Jacobian matrix A, can roughly predict the type

and stability of the fixed points. In general, the signs of the eigenvalues indicate the growth

or decay and the eigenvectors provide the direction of the solution near the fixed point.

Once we have the information above, we can classify the type and stability of the fixed

point. The following is a classification scheme for types and stabilities of the fixed points.

(see Figure 3.1).
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Figure 3.1: Type and stability of all the different fixed points diagram. [26]

We classify fixed points using the trace τ and the determinant ∆ of the matrix A (Jacobian).

The axes in the diagram 3.1 are the trace τ and the determinant ∆. All of the information

in the diagram is implied by the following formulas for the 2× 2 systems:

λ1 =
τ ±
√
τ2 − 4∆

2
, ∆ = λ1λ2, τ = λ1 + λ2

• If ∆ < 0 the eigenvalues are real and have opposite sign then the fixed point is a

saddle point.

• If ∆ > 0, the eigenvalues are either real with the same sign (nodes), or complex

conjugate (spirals and centers). Thus, nodes satisfy τ2 − 4∆ > 0 and spirals satisfy

τ2 − 4∆ < 0. The parabola τ2 − 4∆ = 0 is the borderline between nodes and spirals;

star nodes and degenerate nodes lie on this parabola.

• The stability of the nodes and spirals is determined by τ .

– When τ < 0, both eigenvalues have negative real parts so the fixed point is stable.

– Unstable spirals and nodes have τ > 0.
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Figure 3.2: typical phase portrait for star node [26]

Figure 3.3: typical phase portrait for degenerate node. [26]

– Neutrally stable center live on the borderline τ , where the eigenvalues are purely

imaginary.

Note that τ2 − 4∆ = 0 if and only if there is only one eigenvalue. Now, if there are two

independent eigenvectors then the fixed point is called a star node (see Figure 3.2). How-

ever, if there is only one eigenvector then the fixed point is called degenerate (see Figure 3.3).

A good way to think about the degenerate node is to imagine it has been created by

deforming an ordinary node. Realize that the degenerate node is on the borderline between

a spiral and a node where trajectories are trying to wind around in a spiral, but they do

not quite make it. The borderline cases such as degenerate node are very delicate and can
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be altered by small nonlinear terms.

The Effect of Small Nonlinear Terms

A linearized system give a quantitively correct picture of the phase portrait near a fixed

point (x∗, y∗) As long as the the fixed point for the linearized system is not one of the border

line cases, mentioned above.

The borderline cases (center,degenerate nodes, stars, or nonisolated fixed points) are much

more delicated. They must be analyzed by looking at higher order terms .

3.7 Bifurcation

If the phase portrait changes its topological structure as a parameter is varied we say that

a bifurcation has occurred. Example includes changes in the number or stability of the

fixed points.

3.7.1 Saddle-node Bifurcation

The saddle-node bifurcation is the basic mechanism by which fixed points are created and

destroyed. As a parameter is varied, two fixed points move toward each other, collide, and

mutually annihilate.

3.7.2 Transcritical Bifurcation

There are certain scientific situations where a fixed point must exist for all values of a pa-

rameter and can never be destroyed. For example, in the logistic equation and other simple

models for the growth of a single species, there is a fixed point at zero population, regard-

less of the value of the growth rate. However, such a fixed point may change its stability as

the parameter is varied. The transcritical bifurcation happens when two fixed points with

different stability approach together, coalesce and finally exchange stabilities as a parameter

is varied.
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This chapter helps to refresh our knowledge about the dynamics of nonlinear systems. We

use this knowledge in Chapter 5 where we develop a Cellular Automata (CA) model and

perform the mean field approximation (MFA) for the model. The mean field approximation

of the model gives a nonlinear system of differential equations. We then find the fixed points

and perform stability analysis, followed by bifurcation analysis for the system (see Chapter

6).



Chapter 4

Cellular Automata & Mean Field

Approximation

4.1 Cellular Automata

Cellular Automata (CA) are the simplest mathematical representations of large complex

systems [24]. Typically, a cellular automaton is a discrete model composed of an array or

grid of cells that evolve over discrete time. This grid can be any finite number of dimensions,

but is usually one or two dimensional. This chapter provides an overview of CA and their

inherently simple nature, given their complex behavior.

The material explained in this chapter is based on the book “Cellular Automata: A Discrete

Universe” by Andrew Ilachinski.

4.2 History

The dynamical behavior of many real complex systems have been described by using CA.

For example physical fluids, neural networks, molecular dynamical system, natural ecolo-

gies, military command and control networks, and the economy, among many others [24].

Three persons had the most contributions to development of this field: Alan Turing, John

von Neumann and Stephen Wolfram. In addition, Stanislaw Ulam and John Conway each

26
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made specific, original contributions as well. In the early 1950s Von Neumann followed a

suggestion by Ulam to use discrete rather than continuous dynamics modeling, and con-

structed a two dimensional automaton capable of self-reproducing. Twenty years later, the

mathematician John Conway introduced his well-known Game of Life [52], which is the

best-known example of a cellular automaton.

CA have intuitively used by researchers from diverse fields. They have used CA to under-

stand the dynamic of the problems in their own fields. For example, CA have been used to

model biological systems from the level of intracellular activity to the levels of clusters of

cells, and population of organisms. CA have been used to model the kinetics of molecular

systems and crystal growth in chemistry [46]. In physics, the applications cover the study

of dynamical systems starting from the interaction of particles to the clustering of galaxies

[47]. In the field of computer science, cellular automata based methods have been employed

to model the von Neumann (self-reproducing) machines as well as the parallel processing

computer architecture. Beyond the domain of science, CA have also been used to study

other diverse fields - as diverse as whether the membership of NATO should be more re-

stricted or not [48].

4.2.1 The Cell

The most basic component in a CA is the cell. Traditionally, all the cells in a CA are

equivalent (Homogeneity). Each cell takes on one a finite number of possible discrete states.

A cell interacts only with cells that are in its local neighborhood. At each discrete unit

time, each cells updates its current state according to transition rule taking into account

the states of cells in it’s neighborhood (discrete dynamics). Generally, the next state of a

cell is a function of its present state and the current states of it’s neighbors as shown in

Figure 4.1.
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CHAPTER 3

Cellular Automata

Cellular automata (CA) are dynamical systems characterized by their discretiza-
tion of time and space [9]. Typically, a cellular automaton comprises an array
or lattice of automata that evolve over discrete time quanta. This lattice can be
n–dimensional, but is usually one or two dimensional. This chapter provides an
overview of CA and its inherently simple nature.

3.1 The Cell

The most basic component in a CA is the cell. Traditionally, each cell is a finite
state automaton (FSA) that evolves according to a pre-defined update rule. The
next state of a cell is a function of its present state and the current inputs as
shown in Figure 3.1. Classically, cells are square and placed side by side to form
a lattice, however, there are no formal restrictions on the size or shape of the
cells, their arrangement in the lattice, or whether all the cells must be identical.

Figure 3.1: A generalized state transition. A cell’s next state depends on the
current states of its neighbours.

8

Figure 4.1: A generalized state transition [34].

Figure 4.2: One Dimensional Cellular Automata

4.3 One Dimensional Cellular Automata

The general form of a one-dimensional CA (4.2) is given by:

σi(t+ 1) = φ(σi−r(t), σi−r+1(t), · · · , σi+r−1(t), σi+r(t)), φ : S2r+1 −→ S.

when σi ∈ {0, 1, · · · , k − 1}, ‘r’ neighborhood radius and ‘k’ is the number of states. The

rule, φ, is explicitly defined by assigning values to each of the k2r+1 possible neighborhood

and S is the state space (see Figure 4.2).

For example, let k = 2 and σi ∈ {0, 1} we define the rule φ : {0, 1}3 → {0, 1} as:

φ(σi−1(t), σi(t), σi+1(t)) = σi−1(t) ⊕2 σi+1(t),

where ‘⊕’ is addition mod 2.
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Figure 4.3: Von Neumann neighborhood

4.4 Two Dimensional Cellular Automata

The von Neumann neighborhood consists of the four cells which are horizontally and ver-

tically adjacent to the center cell of interest (see Figure 4.3), and the Moore neighborhood

consists of all eight cells which are adjacent to the center site (see Figure 4.4). The middle

red represents the target cell and the yellow cells are its neighbors. Their explicit forms are

given as follow:

von−Neumann :σ
(t+1)
i,j = φ(σ

(t)
i,j , σ

(t)
i−1,j , σ

(t)
i+1,j , σ

(t)
i,j−1, σ

(t)
i,j+1)

Moore :σ
(t+1)
i,j = φ(σ

(t)
i−1,j−1, σ

(t)
i,j−1, σ

(t)
i+1,j−1, σ

(t)
i−1,j , σ

(t)
i,j ,

σ
(t)
i+1,j , σ

(t)
i−1,j+1, σ

(t)
i,j+1, σ

(t)
i+1,j+1)

4.4.1 Boundary Condition

Although CA are assumed to live on infinitely large latices, computer simulations must

necessarily be run on finite sets. We let σ~i be the value of the ~ith cell at time t. For a one

dimensional lattice with N cells, it is common to use periodic boundary conditions, in which

σN+1 is identified with σ1. Similarly, in two dimensions, it is usual to have the dynamics
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Figure 4.4: 3× 3 Moore neighborhood

take place on a torus, in which σi,M+1 = σi,1 and σN+1,j = σ1,j (see Figure 4.5). Boundary

conditions often plays an important rule in shaping of the resulting dynamics when the size

of CA is small.

4.5 Dynamical Rule

Individual cells evolve iteratively according to a fixed, either deterministic or stochastic,

function (update rule). The next state of a cell is a function of its current state and its

neighboring cells. One iteration of the dynamical evolution is achieved after the simultaneous

application of the rule φ to each cell in the lattice. Defining N{~i} to be the neighborhood

about cell ~i, the transition rule is most generally written as:

σ~i(t+ 1) = φ(σ~j ∈ N{~i}),

This implies that state transitions are local in both space and time.

4.5.1 Legal and Other Forms of Rules

Because of the rather large total number of kk
2r+1

possible for a given ‘k’ and ‘r’, it is

frequently convenient to deal with some restricted classes, such as:

Legal Rules: Legal rules are those for which the following two properties hold:
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claim that effective use of CA is more likely to be endangered by excessive complexity
than by simplicity. Section 4 concludes and summarises the advantages of a CA
approach.

2.4

A basic feature of CA is the assumption of discrete space or an underlying grid
structure. Figure 1 provides examples of possible lattices for a two-dimensional CA. To
the left we have a finite 9!9 grid. To the right, the corresponding edges of another finite
grid have been "pasted together", resulting in a three-dimensional solid called a torus.

Figure 1: Two-dimensional CA.

Left: without edges pasted. Right: with edges pasted.

2.5

A second decisive feature of a CA is locality. This means that all interactions take place
only within well defined spatial neighbourhoods. Figure 2 illustrates three different
kinds of neighbourhoods in a two-dimensional lattice. Figure 2a shows the so-called
von Neumann neighbourhood. For this type of neighbourhood, cells to the north, south,
east and west of the dark centre cell are defined as neighbours. Since the centre cell is
always part of its own neighbourhood by definition, the centre cell has 5 neighbours in
total. In Figure 2b and 2c, Moore neighbourhoods of different sizes are shown. A Moore
neighbourhood also includes diagonal cells to the north east, north west, south east and
south west. These always form a square pattern. Obviously Moore neighbourhoods of
all sizes are possible, subject only to the dimensions of a given cellular world.

Figure 2: Different neighbourhood templates.

2.6

Von Neumann and Moore neighbourhoods are based on a rectangular grid structure.

Rainer Hegselmann and Andreas Flache: Understanding Compl... http://jasss.soc.surrey.ac.uk/1/3/1.html

3 of 31 6/9/09 1:36 PM

Figure 4.5: Two-Dimensional CA [28] left without edges pasted right with edges pasted

Null state quiescence: φ(0, 0, . . . , 0) = 0

Reflection Symmetry: φ(σi−r, . . . , σi+r) = φ(σi+r, . . . , σi−r)

Totalistic Rules: Totalistic T rules, φtot, are functions of the sums of the values of all

sites in a particular neighborhood: φtot = φtot(
∑r

j=−r σi+j).

Outer-Totalistic Rules: Outer -totalistic (OT ) rules, φout−tot, are function of both the

value of a given site and the sum of values of all remaining sites in the neighborhood of

that site. Therefore, φout−tot = φout−tot(σi,
∑r

j=−r σi+j − σi).

Additive Rules: Rules belonging to the special class of additive rules, ‘φadd’, are linear

function of the sum neighborhood sites:

φadd =

r∑
j=−r

αjσi+j mod k, αj ∈ S.

The eight additive r = 1, k = 2 rules, for example, are of the general form



CHAPTER 4. CELLULAR AUTOMATA & MEAN · · · 32

111 110 101 100 011 010 001 000

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
a b 0 c b a c 0

Where a, b, c ∈ {0, 1} and c = (a+ b) mod 2

4.5.2 Rule Codes

The rules are conventionally identified by a compact code rather than by lengthly explicit

listings of their local actions. For example the bottom eight binary digits (01011010) are

interpreted as the binary representation of a decimal number 90 which is given by base 2

equivalent.

111 110 101 100 011 010 001 000

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 1 0 1 0

R[φ]= 0 · 20 + 1 · 21 + 0 · 22 + 1 · 23 + 1 · 24 + 0 · 25 + 1 · 26 + 0 · 27 = 90.

We refer to this rule in the text as R90.

4.6 Mean Field Approximation

We consider 1-D CA whose site variables take on only one of two values and evolve according

to rules. Rules often depend only on the previous values of a given site and those of its

immediate left and right neighbors.

σi(t+ 1) = φ(σi−1(t), σi(t), σi+1(t)), σ ∈ {0, 1}. (4.1)

For general rules, a first order statistical approximation for limiting densities of the CA,

defined in (4.1), can be obtained by the mean field approximation.
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Definition of the Mean Field Approximation

A many-body system with interactions is generally very difficult to solve exactly, except

for extremely simple cases (Gaussian field theory, 1D Ising model). The Mean Field Ap-

proximation (MFA) replaces an n-body problem with a chosen external field, ignoring space

dependence and neglects local correlations. The external field replaces the interaction of all

the other particles to an arbitrary particle [33].

MFA provides a good approximation near the bifurcation for CA models. This is because

the cells are highly correlated near the bifurcation and the global effects dominate over the

local effects. Thus, MFA can provide a good approximation for the behavior of the system.

MFA estimates the density and other properties of CA. One way to get an estimation is to

make the assumption that the value of a given site at each time step is completely random.

And with this assumption, if the overall density of sites with value ‘1’ at the particular

step is p, then each site at that step should independently have probability p of having

value ‘1’. This means that the probability to find a site with value ‘1’ followed by two zero

sites is p(1− p)2 in 1-D CA. In general, the probabilities for all possible configuration of n

neighborhood are found and in terms of these probabilities, the density at the next step in

the evolution of CA is estimated [25] .

The differences between mean field estimation and exact limiting densities can be expected

because of the presence of correlations in actual CA. The mean field approximation typically

estimates the exact limiting density within 10− 20% error [24].

4.7 Mean Field Approximation

As a first order approximation, we will ignore all correlations between values at different

sites and parametrize configuration purely in terms of the average density at time ‘t’, ρ.

The time evolution of ρ under an arbitrary rule ‘φ’ is then given by the master equation:
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dρ

dt
= f0→1 − f1→0 (4.2)

where f0→1 and f1→0 are the average fraction of sites whose value changed from σ = 0

to σ = 1 and vice versa. An explicit for these fractions is obtained by observing that the

probablity ‘P ’ of having the 3-tuple ~σ = ‘σ1, σ2, σ3’ appear in a neighborhood is:

P (σ1, σ2, σ3) = p#1(~σ)(1− p)3−#1(~σ) (4.3)

where #
1( ~σ)

is the number of times ‘1’ appears in the string ~σ. Thus,

f0→1 =
∑

{~σ|σ2=0}

φ(σ1, σ2, σ3)P (σ1, σ2, σ3), (4.4)

f1→0 =
∑

{~σ|σ2=1}

[1− φ(σ1, σ2, σ3)]P (σ1, σ2, σ3).

The equilibrium, or steady state density ρ(t→∞) is achieved when

dρ

dt
= 0 (4.5)

4.8 MFA for the Two State CA with Elementary Rules

We use MFA to estimate the density of ones in the time evolution of CA with two sate

k = 2, (0 and 1), with the elementary rule R90 (see Section 4.5.2) and neighborhood radius

r = 1. Note that we have k2r+1 = 23 possible neighborhood (see section 4.3 for the possible

number of neighborhood) and the resulting state for the middle site under the rule R90 are

given by:

111 110 101 100 011 010 001 000

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
0 1 0 1 1 0 1 0
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Figure 4.6: The time evolution of the 1-D CA for rule R90 with random initial condition.

Figure 4.7: The time evolution of the 1-D CA for rule R90, an initial state with of a single
nonzero value.
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We let p be the probability of a site with value ‘1’ at time ‘t’ and describe configurations

(using 4.3) in terms of the average density of ones, ρ. Then we calculate the average fraction

of the sites whose value changes from ‘1’ to ‘0’ or vise versa (see equations in 4.4):

f0→1 = P (0, 0, 1) + P (1, 0, 0) = 2(1− p)2p,

f1→0 = P (0, 1, 0) + P (1, 1, 1) = (1− p)2p+ p3.

Thus change in density of ones, under the rule R90, over time is given by differential

equation 4.2:

dρ

dt
= 2(1− p)2p− (1− p)2p+ p3, (4.6)

So dρ
dt becomes:

dρ

dt
= (1− 2p).

So the equilibrium density, ρ1(t→∞), is achieved when: dρ
dt = 0 =⇒ p(1− 2p) = 0

which has a solutions p∗ = 0 (or the null state) and p∗ = 1
2 . Using linear stability analysis

for the fixed points (see Chapter 3) we linearize the system about the fixed points and let

f(p) = p(1 − 2p). Since f ′(p∗) > 0 for p∗ = 0 and f ′(p∗) < 0 thus p∗ = 1
2 we conclude

a nonzero fixed point p∗ = 1
2 is a stable fixed point, which is the most likely state for

the system to be in. The MFA estimates that the half of the sites in CA are ones. The

simulation result is consistent with the mean field approximation as the histogram in Figure

4.8 shows: the exact limiting density is 0.5.

4.8.1 Approximating CA by Differential Dynamical Systems

We performed the mean field approximation for an elementary rule in Section 4.8. We ob-

served that the MFA of the CA yields the system of differential equations in (4.6). This

is because differential dynamical system can approximate the behavior of the CA. Further-

more, changes in densities and other property of the CA can be well expressed in terms

of differential equations. Therefore, the bifurcation theory of differential dynamical system
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Figure 4.8: Simulation result for the exact limiting density of 1s applying R90

(reviewed in chapter 3) can be used to determine the steady state and estimate the time

evolution of average densities of the CA.

We continue with more complicated examples in the next sections. As the MFA works for

the general rules, so we use it to estimate the density and other properties of a three state

CA under an Outer-Totalistic rule in the following section:

4.9 Three State 1-D CA and Outer-Totalistic Rules

We perform the MFA for a three states, k = 3, CA with a neighborhood of radius of

r = 1, (σi−1, σi, σi+1), under an Outer-Totalistic rule (see definition in section 4.5.1). We

would like to understand the changes in densities and approximate the behavior of a CA

under this rule. We also examine the consistency of the MFA and simulation result for an

Outer-Totalistic given as:
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Figure 4.9: The time evolution of the 1-D CA for Outer-totalistic rule 4.7, an initial state
with of a single nonzero value.

σi(t+ 1) =

σi−1(t) + σi+1(t) if σi−1(t) + σi+1(t) ≤ 2,

1 otherwise.
(4.7)

We let q, p and (1− p− q) be the probability of a site being in state 0, 1 and 2, respectively.

We also let the average densities of 0, 1 and 2 at time ‘t’, be µ, ρ, ζ. The time evolution of µ

and ρ under the defined Outer-totalistic rule are given by system of differential equations:

dµ

dt
= (f1→0 + f2→0)− (f0→1 + f0→2), (4.8)

dρ

dt
= (f0→1 + f2→1)− (f1→0 + f1→2).

where, (f1→0 + f2→0) and (f0→1 + f0→2) are:

f1→0 + f2→0 = pq2 + q2(1− p− q), (4.9)

f0→1 + f0→2 = 2pq2 + 2pq(1− p− q) + q(1− p− q)2 + q2(1− p− q)+

p2q + q2(1− p− q).

and (f0→1 + f2→1) and (f1→0 + f1→2) are:
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Figure 4.10: The time evolution of the 1-D CA for outer-totalistic rule 4.7, with random
initial condition.

f0→1 + f2→1 = 2pq2 + 2pq(1− p− q) + q(1− p− q)2 (4.10)

+ 2pq(1− p− q) + 2p(1− p− q)2 + (1− p− q)3,

f1→0 + f1→2 = pq2 + pq(1− p− q) + p3 + pq(1− p− q).

We simplify equations 4.9 and 4.10 and substitute them for (dµdt ,
dρ
dt ) in equations 4.8. So we

have:

dµ

dt
= q2 − q, (4.11)

dρ

dt
= 1− p− 2q + 2pq + q2 − p2.

We solve the system of equation (dµdt = 0, dρdt = 0) for [q, p]. There are two physical solutions

for this system [q = 0, p = 0.618] and [q = 1, p = 0].

We linearize the system around the fixed points (see Section 3.4.2) and let λ1 and λ2 denote

the eigenvalues of the Jacobian (matrix A′), respectively.

A′ =

(
2q − 1 0

−2 + 2p+ 2q −1 + 2q − 2p

)
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Figure 4.11: Phase Portrait of the system of differential equations 4.11 and the stable fixed
point [q = 0, p = 0.618].

There are two eigenvalues: λ1 = 2q − 1 and λ2 = −1 + 2q − 2p. The corresponding

eigenvectors are: (
p

−1+p+q

1

)
,

(
0

1

)

Note that the eigensolutions decay exponentially for [q = 0, p = 0.618] and grow for

[q = 1, p = 0]. So according to stability analysis and classification of the fixed points,

they are stable node and saddle point, respectively (see Figure 4.11). Now that we have the

analytical result we compare it to the simulations result.

The time evolution of the CA in Figure 4.10 shows how the zeros die out in the early steps

and iteration continues with ones and twos. Figure 4.12 shows the simulation result for the

exact limiting density of ones in blue which is around 0.575. Note that this value is very close

to the the value that the mean field calculation estimates for p (density of ons) which is 0.618.
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Figure 4.12: Simulation result for the exact limiting densities of 1s & 2s using the Outer-
totalistic 4.7.

4.10 Three State 1-D CA and Asymmetrical Rules

All the rules we used in the previous examples were the legal rules (symmetric) (see definition

in 4.5.1). For those types of rules, configuration of local sates for the adjacent cells at time

‘t’ makes no difference to the resulting state at time ‘t + 1’. Given that the mean field

approximation neglects the configuration, we would like to examine the accuracy of the

mean field approximation for an asymmetrical rule.

We consider the three states, k = 3 which are 0, 1 and 2, CA with the neighborhood radius

of r = 1, (σi−1, σi, σi+1) . We define the asymmetric rule as follow:

σi(t+ 1) =


0, if σi−1(t) < σi+1(t)

1, if σi−1(t) = σi+1(t)

2, if σi−1(t) > σi+1(t)

(4.12)

We let q, p and 1−p−q be the probability of a site being in state 0, 1 and 2, respectively. We

also let the average densities of 0, 1 and 2 at time ‘t’, be µ, ρ, ζ. We estimate the densities

of ones and zeros using MFA. So we have:
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dµ

dt
= (f1→0 + f2→0)− (f0→1 + f0→2), (4.13)

dρ

dt
= (f0→1 + f2→1)− (f1→0 + f1→2).

where, (f1→0 + f2→0) and (f0→1 + f0→2) are:

f1→0 + f2→0 = qp2 + pq(1− p− q) + p2(1− p− q) + pq(1− p− q)+ (4.14)

q(1− p− q)2 + p(1− p− q)2,

f0→1 + f0→2 = q3 + p2q + q(1− p− q)2 + pq2 + (1− p− q)q2+

(1− p− q)pq.

(4.15)

and (f0→1 + f2→1) and (f1→0 + f1→2) are:

f0→1 + f2→1 = q3 + p2q + q(1− p− q)2 + q2(1− p− q)+ (4.16)

p2(1− p− q) + (1− p− q)3,

f1→0 + f1→2 = qp2 + pq(1− p− q) + p2(1− p− q) + p2q+

(1− p− q)pq + (1− p− q)p2.

(4.17)

We simplify equations 4.14 and 4.16 and substitute them for (dµdt ,
dρ
dt ) in equations 4.13. So

we have:

dµ

dt
= −q2 − pq − p2 + p, (4.18)

dρ

dt
= 1− 2q − 3p+ 2pq + 2p2 + 2q2.

The solution to (dµdt = 0, dρdt = 0) for [q, p] are [q = 0, p = 1] and [q = 0.33, p = 0.33]. The

fixed points are saddle point and stable node respectively (see Figure 4.13).
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Figure 4.13: Phase Portrait of the system of differential equations 4.18 and the stable fixed
point [q = 0.33, p = 0.33].

Figure 4.14: The time evolution of the 1-D CA for the rule 4.12, an initial state with of a
single nonzero value.
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Figure 4.15: The time evolution of the 1-D CA for rule 4.12 with random initial condition.

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

Densities

Fr
eq

ue
nc

ie
s

 

 
density of 1’s
density of 2’s

Figure 4.16: Simulation result for the exact limiting densities of 1s & 2s using the rule 4.12.
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The mean field approximation predicts that the system will most likely be in the state

[q = 0.33, p = 0.33] (stable fixed point). However, the simulation result in Figure 4.16 shows

different limiting densities. It shows that the probability of a random cell being in state ‘1’

is 0.1.

We have found an example for which the mean field approximation can not estimate the

exact limiting densities correctly. This inaccuracy is likely being caused by the fact that

the mean field approximation neglects the configuration of the adjacent cells. If the rule

is asymmetric, then some more information about the CA is lost and this may effect the

ability of the MFA to estimate steady state densities.



Chapter 5

Cellular Automata Model For the

DTES

Cellular automata (CA) can be used to illustrate the effects of social influences on individu-

als located on networks with a mixture of local and global interactions. Furthermore, a CA

model can assist in improving our understanding of the complex social system issues and

related processes tied to the cause of those issues such as disease transmission, drug addic-

tion patterns and behavior modification among the individuals with high - risk behavior [15].

In this chapter, we present both one and two dimensional Probabilistic Cellular Automata

(PCA) model to study the effect of social influence on the spread of drug use/trade in

the drug user community in Vancouver Down Town East Side (DTES). The CA model is

based on an epidemic compartmental framework. Compartmental models employ differential

equations and define groups of individuals of different types (in this models defined as

susceptible, light users and dealers). The model is motivated by a paper by Dabbaghian et

all [14] and has additional functionalities such as probabilistic interaction rules and updating

cells as well as ability to approximate the global behavior of the PCA (see Chapter 6).
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Figure 5.1: Model structure

5.1 Description of the 1-D CA Model

To model the interaction among drug users and the speared of drug use in a community,

we use a three-state cellular automaton. Figure 5.1 shows the two type of interactions

in the model, social influences and transitions, with solid curve and dashed, straight ar-

rows, respectively. Boxes 0, 1 and 2 represents groups of susceptible, light Users and dealer

resperctively.

This probabilistic cellular automata model mimics the spread of drug use in a community.

Our PCA is a discrete model composed of a large grid of cells (the grid can be any finite

dimensions). Each one of cells can be in one of a finite number of states 0, 1 or 2 which

are correspond to the three defined types. The three states that used in the CA model are

defined in the Table 5.1. Each cell represents an individual interacting with its neighbors

and identified as a member of a compartment. The model is run for a certain number of

time steps, with the grid being updated at every time step τ . Each cell “interacts” with

other cells in the neighborhood and is updated according to interaction rules.

We define two things for each cell. First of all, we define each cells neighborhood. A neigh-

borhood is simply a list of cells that a given cell will interact with, and will typically be the
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Table 5.1: Definition of the State of the Cells

0 Susceptible Either a non users or can become a users.
Can make a transition to light users state

1 Light Users A user which can make a transition to dealer state

2 Dealers No transition

cells immediately surrounding the given cell. We define each individuals neighbors to be

those within the individuals 1-D neighborhood (see Figure 4.2) where the number of nearest

neighbors is N = 2.

Secondly, we assign a rule for updating the cells. A rule will consider some or all of the

interactions of a given cell at a time step, and will either change the state of the given cell

or leave the given cell in the same state, depending on these interactions. In most cellular

automata models, the rule does not change over time and is the same for each cell. More-

over, it is usually applied to the entire grid at once.

5.2 Social Influence

Two types of social influence are possible in this model. An individual can influence others

by encouraging drug use through αca and drug dealing through βca.

For the group of Susceptibles, social influence is interpreted slightly differently. Susceptibles

must first become a drug user before they engage in any drug dealing career. Social influ-

ences on susceptible clearly refers to drug user behavior only. Only dealers can influences

their neighbors and all can receive social influence from their neighbors.

This model employs a novel approach to represent the effect of prolonged social relationships

between members of a community where dealing drug is prevalent. In such an environment,

a person is more likely to experiment drug use if in a lengthly relationship with at least

one dealer. In the model, dealers in the neighborhood can act independently with certain

probability to convince a susceptible or a light user to use or deal drugs, respectively.
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The probability of an independent event is obtained by using the binomial distribution.

The binomial distribution function generates random numbers with a parameter αca or βca

is being specified. We use the binomial distribution to model the number of successes in

a sample of size one. Here, success interpreted as convincing an individual to become a

user/dealer under the influence of neighbors. Equations for the independent probabilistic

events of type 0 becoming type 1, and type 1 becoming type 2 are as follow:

C0(t, αca) = binornd
(
#R2, αca

)
(5.1)

C1(t, βca) = binornd
(
#R2, βca

)
#R2 is the number of type 2 neighbors in the neighborhood. Thus, the change in states is

given by a binomial random variable x with number of trail #R2 with probability success

αca or βca. Where C0(t, αca) denotes the change in states for an individual of type 0 at time

t under the influences of a dealer.

C0(t, αca) is given by a random variable x with number of trail #R2 with probability suc-

cess αca. Similarly, C1(t, βca) is given by random variable x with number of trail #R2 with

probability success βca. we let βca be the probability that an individual of type 1 changes

his/her behavior and become a type 2 after a lengthly friendship with a type 2 in one unit of

time. Furthermore, Influences are considered (encouraging using/dealing drugs) with value

in the interval (0,1).

5.3 Transition

Since the spread of the drug use is linked to drug dealing involvement, the model repre-

sents two linked epidemics. An individual makes a transition from type 0 to 1 or from

1 to 2 with the fixed probability either αca or βca at each time step, if and only if there

exists a dealer in the neighborhood. Dealers can act independently with certain probability

either αca or βca to convince an individual to use or deal drugs, respectively (see Section 5.2).
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Table 5.2: Rules for Updating the Cells

0 Suspetible
a). Dies after τ0 time steps.
b). If not dead and C0(t) > 0 then transition Light User

1 Light Users
a). Dies after τ1 time steps.
b). If not dead and C1(t) > 0 then transition to Dealers

2 Dealers
a). Dies after τ2 time steps.

5.4 Rules for Updating Cells

Cells are updated according to the probabilistic rules in (5.1) and the rules described in

Table (5.2). At each time step, all cells in the lattice are updated simultaneously. If the

probability of change is zero then the individual can not be convinced by any of his neighbors

to start using/dealing and the state of that cell remains unchanged. On the other hand, if

it is not zero then the individual is recruited in the drug use or deal career. If it returns

1 then that means one of the neighbors has succeed to convince the individual and so on.

The parameters τi denote the life expectancy of an individual of type i for i = 0 . . . 2. We

have considered the same life expectancy for all three groups. At each time step, a dead

cell of any type gets replaced with a susceptible so the size of population remains unchanged.

5.5 Parameter and Initial Conditions

The model is constructed with inner-city neighborhoods of numerous large urban centers

in mind that currently experience epidemics of drug use. Some parameters were initially

defined based on the estimates in the literature in [14] and then we run the model for all

the values in the range [0, 0.05]. Parameter and initial conditions are listed in Table 5.3.
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Table 5.3: Parameter and Initial Value

Parameter Value

Life Expectancy
Susceptibles 50 years
Light users 50 years
Dealers 50 years

Initial Population
Susceptibles (0) 30%
Light users (1) 35%
Dealers (2) 35%

5.6 Simulation Result for the 1-D PCA Model

To understand the global behavior of the 1-D CA model we constructed a (αca, βca) pa-

rameter space of the ranges (0...0.05). The average prevalence for dealers is determined

by simulating 70 × 70 cell lattices with ten independent runs. The lattice is initially set

with random occupation by 35% drug users. Figure 5.2 which is the phase diagram shows

how the system makes a big leap from one steady state (dark blue), the drug free state,

to another steady state (red) where the mean prevalence of 80% dealers is observed. This

suggests the dependence of average prevalence of dealers on the parameters.

Figure 5.2 consists of all the curves composed of different combinations of (αca, βca) which

result in different mean prevalences for dealers. The curves in which the prevalence fall

between (0-15%) are densely packed and represent the phase transition of the system. The

steady state (flat regions) on two sides of these curves correspond too extinct and endemic

states.

We also construct the projection of the mean prevalences of dealers on the αca and βca plane

(see Figure 5.3). Note that the blue and red region are divided by a curve which is called

the Bifurcation Curve. The points below the curve are the combinations of αca’s and βca’s

that drive the number of dealers to extinction (0%-10%) whereas the points above the curve

correspond to the states in which the prevalence is highest.
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Figure 5.2: Phase diagram of the mean prevalence of dealers for the 2-D CA model
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Figure 5.3: Rotated phase diagram for the 1-D CA model
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Figure 5.4: Contour plots for the phase diagram in 1-D CA model

Figure 5.4 consists of all the curves composed of different combinations of (αca, βca) which

result in different mean prevalences for dealers. We find the (αca, βca) points that corre-

spond to the mean prevalence of dealers in the range (35%-40%) and give a sketch of the

bifurcation curve for 1-D CA in the Figure 5.5.

5.7 The 2-D Cellular Automata Model

We use the model description that was introduced in Section 5.1 to simulate the 2-D CA

model. However, we apply the von Neumann neighborhood (see Figure 4.3) to produce the

results in two dimension. Von Neumann neighborhood is a diamond-shaped neighborhood

on a square grid and the smallest symmetric two dimensional neighborhood. This neigh-

borhood contains the north, south, east and west neighbors. We consider the same social

influence and transitions rules explained in pervious sections (5.2 and 5.3). However, we

use various scenarios to perform further analysis for the 2-D PCA model. Parameters and

initial conditions remain unchanged and cells get updated according to the rules shown in

the Table 5.2.
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Figure 5.5: The bifurcation curve for the 1-D PCA model

The following sections mostly focus on the simulation result with different scenarios for the

2-D PCA mode. Later, we compare the simulation results between the 1-D and 2-D PCA

model for further analysis.

5.8 Scenario and Simulation Results for 2D PCA Model

We begin with investigating a scenario where we fix (αca) and increase the influence on drug

users (β), in small steps (∆β = 0.005) in a 70× 70 grid lattice. We run the model for 3000

iteration and compute the mean prevalence of dealers over the last 1000 runs. The mean

prevalence of dealers where αca = 0.01 for the range of βca = (0.25...0.05) is roughly 30%

(see Figure 5.6).

We then set the social influences of dealers on susceptibles to zero, (αca = 0), to investigate

the scenario when susceptible receive no influence from their neighbors. As expected, the

mean prevalence of Light users (yellow) and eventually drug dealers (red) fall sharply and

the number of Susceptibles (green) rise very fast. Since no new dealer can be recruited with

out the social influences αca, the prevalence of dealers can not sustain itself (see Figure 5.7 ).
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Figure 5.6: Mean prevalence of dealers in the 2-D CA model

We then set βca = 0 which represents no encouragement for drug dealing in the model.

The mean prevalence of drug dealers (red) falls over the time evolution, since there are no

influences from dealers on drug users. Note that the mean prevalence for light users (yellow)

sustains as (αca 6= 0) thus some transitions happen from susceptible to light users through

the social influence αca (see Figure 5.8).

We also investigate a scenario when both the social influences (αca and βca) is included,

where the drug using/dealing encouragement is prevalent. As its been shown in Figure 5.9

the mean prevalences of drug users and dealers are self-sustain. Figure 5.9 shows the time

evolution of the CA model when αca = 0.01 and βca = 0.03.

So far we have found the combination of αca = 0.01 and βca = 0.03 such that the mean

prevalence for dealer has become lowered with respect to the two other prevalence. These

values for αca and βca were obtained through trial and error. In the next Section 5.8.1 we

explore the phase diagram of the 2D CA model which is a systematical way to find all the
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Figure 5.7: Time evolution (month) of the 2-D CA, with no influences from dealer on
susceptibles
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Figure 5.9: Time evolution (month) of the 2-D CA model, when social influences on both
susceptibles and drug users are included

combination of (αca, βca) point which drives the number of dealers to an extinction.

5.8.1 Phase Diagram for 2-D PCA Model

We construct a three dimension phase diagram for the same range value of αca and βca that

was used in the simulation of the 1-D CA model (see Figure 5.10). The projection of the

mean prevalences of dealers on the αca and βca is also presented in Figure 5.11. Note that

the blue and red region are divided by a curve which is the Bifurcation Curve for the 2-D

CA model.

The points below the curve are the combinations of αca’s and βca’s that drive the preva-

lence of dealers to an extinction state (0%-30% ) in which above that the mean prevalence

is highest. This means for those (αca, βca) points below the curve drug problem can be

eliminated. Note that αca and βca are the probability that dealers in the neighborhood act

independently to convince an individual to use or deal drugs respectively, (see Section 5.2).
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Figure 5.10: Phase diagram of the mean prevalence of dealers for the 2-D CA model
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Figure 5.11: Rotated phase diagram for the 2-D CA model
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Figure 5.12: Contour plots for the phase diagram

We find the (αca, βca) points that correspond to the mean prevalence of dealers in the range

(35%-40%) in Figure 5.12 and we sketch the bifurcation curve for the 2-D PCA model (see

Figure 5.13).

5.9 Simulation Result Comparison Between 1-D and 2-D

CA Model

A comparison between the result for 1-D and 2-D case shows the importance role of the

social influences in spreading drug using/ dealing behavior in a community. To show this

we compare the bifurcation curves and the time evaluation of the PCA model to understand

the impact of the social influence on spreading drug use.

We compare the bifurcation curves for 1-D and 2-D CA models which we obtained in per-

vious sections. Figure 5.14 shows both bifurcation curves for 1-D and 2-D models in one

plot for a better visualization. The red and blue curves correspond to the bifurcation curves

for the N = 2 and N = 4 neighborhood sizes. Note that less reduction for αca and βca is

required to reach to the bifurcation curve for the 1-D (red curve) than the 2-D CA model.
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Figure 5.13: The bifurcation curve for the 2-D PCA model

Reduction for αca and βca can be viewed as primary prevention intervention and secondary

prevention intervention, respectively. So, the less social influences in smaller neighborhood

will result in a lower need for intervention.

The simulation result also shows that a person who has more dealers in the neighborhood is

more likely to experiment drug use. Figure 5.15 is the time evolutions of 1-D and 2-D CA

models for the neighborhood sizes of N = 2 and N = 4, respectively. The time evolution of

CA model has obtained for the range of αca = 0 · · · 0.5 and βca = 0 · · · 0.5 and neighborhood

sizes of N = 2 and N = 4. Note that the mean prevalence of dealers (red curves) reaches

to approximately 90% for the neighborhood sizes of N = 2 and to 100% for N = 4.

Its worth mentioning that, the mean prevalence of dealers increases by 10% when the size of

neighborhood becomes larger, N = 4. This means, the mean prevalence of dealers changes

as a function of the neighborhood size.
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Figure 5.14: Phase diagram for the drug use epidemic, for 1-D CA with N = 2 neighbors
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Chapter 6

Mean Field Approximation

The Probabilistic Cellular Automata (PCA) model developed in Chapter 5, was used to

evaluate the impact of social influences in the spread of drug use behavior in down town

east side (DTES) Vancouver. We studied personal interactions among drug users/dealers

at the micro level. The simulation presented in Chapter 5 demonstrated the importance of

social factors in driving the problematic drug users/trade to the various states.

In this chapter we first perform the mean field approximation for the 1-D and 2-D PCA

model. Then we generalize the result for the higher dimension and larger neighborhood

configurations of the same model.

Interestingly, the approximation up to 2nd order in densities reproduces the scaled constant

population equations which corresponds to the compartmental model (6.13).

6.1 MFA for the 1-D PCA Model

Recall the probabilistic CA model for the drug users community in Chapter 5. The model

is a three sates, k = 3, CA where the states 0,1, and 2 refers to susceptibles, light users and

dealers, respectively. Two types of interaction exist in the model such as social influence

and transitions. We let αca and βca to be the probabilities that a susceptible become a users

62
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and a light user become a dealer after a lengthly relationship with a dealer. We also defined

δca be the death rate for all three groups. In the PCA model cells were updated according

to the rules φ (defined in Chapter 5.4).

Here we perform MFA for 1-D (see Section 4.3) PCA model with three states, k = 3 which

are 0, 1 and 2, and radius neighborhood of r = 1 with neighborhood size of N = 2. We let

q, p and (1− p− q) be the probability that of a random given site being in state 0, 1 and 2,

respectively. The goal is to compute the densities and approximate the highest probability

that the system will most likely be in.

First we consider the average prevalence of the three groups. These prevalences are given in

Tabel 5.3. This means we no longer assume that every site is only interacting with the four

nearest neighbors defined in von Neumann neighborhood. We assume that sites in CA are

interacting with the average prevalence in CA. In another words we replace the CA with an

external background field.

Next, we describe the k2r+1 = 33 = 27 ( see Section 4.7) possible neighborhood by the

average densities of 0, 1 and 2’s at time ‘t’ , µ, ρ, ζ. The time evolution of µ and ρ under the

rule ‘φ’ (defined in the Section 5.4) are given by the system of equations:

dµ

dt
= (f1→0 + f2→0)− (f0→1 + f0→2) (6.1)

dρ

dt
= (f0→1 + f2→1)− (f1→0 + f1→2)

Note that the equalities in the system of equations (6.1) hold only when the size of CA is

large. In this case change in densities is equal to change in probability transitions.

fi→j ’s are the probability transitioning of sites from σ = i to σ = j. These probabilities are

obtained by observing the probability ‘P ’ of having the 3-tuple ~σ = ‘σ1, σ2, σ3’ appear in a

neighborhood:

P (~σ) = (p#0(σ))(q#1(σ))(1− p− q)#2(σ))
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where #0(σ),#1(σ),#2(σ) is the number of occurrences of the digit {0, .., 2} in the neigh-

borhood.

fi→j =
∑

{~σ|σ2=i,φ(σ1,σ2,σ3)=j}

P (σ1, σ2, σ3), (6.2)

fj→i =
∑

{~σ|σ2=j,φ(σ1,σ2,σ3)=i}

P (σ1, σ2, σ3).

We obtain average fractions using the equations (6.2) and substitute them in to the system

of equations in (6.1) in order to estimate the changes in densities.

Note that f2→1 = 0 and f0→2 = 0 due to definition of the PCA model in Chapter 5 which

are the probability transition from dealer to light users and susceptible to dealers. So the

equations become:

dµ

dt
= (f1→0 + f2→0)− (f0→1) (6.3)

dρ

dt
= (f0→1)− (f1→0 + f1→2)

Recall that in the PCA model described in Chapter 5 every dead cell is replaced by a

susceptible. So the only way for the cells transition back to be susceptible is by death. Here

we define δca as the probability that a dealer or a light user being in state 0. for example,

f1→0 = δcap, where δca is defined the death rate for each group in the model.

f1→0 = δcap (6.4)

f2→0 = δca(1− p− q) (6.5)

Notice that how the probability transitioning from state 0 to 1 is a multiple of the prob-

abilities. More specifically, this probability is given by the probability that a person is a

susceptible who survives (1 − δca), and has at least a dealer neighbor in the neighborhood

(1− p− q). The same scenario holds for the probability transition from state 1 to 2 as well.

After simplification the probability transitions are given by:
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f0→1 = (1− δca)αcaq(1− p− q)
(
2− αca(1− p− q)

)
(6.6)

f1→2 = (1− δca)βcap(1− p− q)
(
2− βca(1− p− q)

)
So, we substitute the probability transitions in (6.3):

dµ

dt
= δcap+ δca(1− p− q)− (1− δca)αcaq(1− p− q)

(
2− αca(1− p− q)

)
, (6.7)

dρ

dt
= 2(1− δca)αcaq(1− p− q)− δcap− (1− δca)βcap(1− p− q)

(
2− βca(1− p− q)

)
We simplify and expand the equations in (6.7)and we get:

dµ

dt
= δcap+ δca(1− p− q)− 2(1− δca)αcaq(1− p− q) + (1− δca)αca2q(1− p− q)2,

dρ

dt
= −δcap+ 2(1− δca)(αcaq − βcap)(1− p− q) + (1− δca)βca2p(1− p− q)2. (6.8)

The system of equations in (6.14) are the mean field approximation (MFA) for the 1-D PCA

model.

Next, we aim for the compartmental representation of the PCA model which is defined as

a system of differential equations. We perform further analysis on the mean field equations

which include finding the number of equilibriums and performing stability analysis using

the bifurcation theory of differential dynamical system explained in Chapter 3.

6.2 Compartmental Representation of the Model

The presented compartmental model is motivated by Werb et all in [4]. According to their

findings dealers are constantly encouraging street-involved youth to use/trade drugs. Most

of street-involved youth are convinced to do so as they need to generate income to pay for

their own personal drug use. The mathematical model we have developed models how a

susceptible can move from/to a compartment and start a drug user/trade career, after a
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Figure 6.1: Model of the social influences Among Community of Drug Users

lengthly relation with dealers.

In order to write the deterministic equations, we introduce some known and unknown pa-

rameters. First we assume the change in the population is zero and the death rate δ1 is the

same for susceptible and light users. However, dealers are known to have a higher death

rate, δ2. The parameter αcm and βcm is defined as the interaction between dealers with

susceptible and light users, respectively.

6.3 Constant Population Equations

We set the total population to be, N, constant and we assume the rate of change in the

population is zero d
dt(x + y + z) = 0. So the nonlinear system of constant population

equations are as follows:

dX

dt
= I − δ1X − αcmXZ (6.9)

dY

dt
= −βcmY Z + αcmXZ − δ1Y

dZ

dt
= βcmY Z − δ2Z
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So, the unknowns are X, Y and Z which are in order the number of Susceptibles, Light

users and Dealers. Note that demographic input is I = δ1(X + Y ) + δ2Z so we substitute it

in to the equation(6.9).We also let δ1 = δ2 = δ for simplicity and further analysis.

dX

dt
= δY + δZ − αcmXZ (6.10)

dY

dt
= −βcmY Z + αcmXZ − δY

dZ

dt
= βcmY Z − δZ

Then we scale the system of equations (6.10) by dividing it by N (total population) and let

x = X
N , y = Y

N , α̃cm = αcmN , and β̃cm = βcmN . So the system of equations become:

dx

dt
= δy + δz − α̃cmxz

dy

dt
= −β̃cmyz + α̃cmxz − δy

dz

dt
= β̃cmyz − δz

Since d
dt(x + y + z) = 0 we can consider the first two equations only with the constraint

x+ y + z = 1. So the system of equation becomes:

dx

dt
= δy + δz − α̃cmxz (6.11)

dy

dt
= −β̃cmyz + α̃cmxz − δy (6.12)

x+ y + z = 1

We solve for z and substitute z = 1 − x − y in to the equations (6.11) and (6.12). After

simplification we obtain the compartmental model equations:

dx

dt
= δ − (δ + α̃cm)x+ α̃cmxy + α̃cmx

2 (6.13)

dy

dt
= α̃cmx− (β̃cm + δ)y − α̃cmx

2 + β̃cmy
2 + (β̃cm − α̃cm)xy

Note that x, y are densities of susceptibles and light users in the compartmental model.

Consider the mean field approximation (MFA) equations we obtained in Section 6.1 when
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p, q, (1−p−q) are also densities of susceptibles and light users and dealers in the CA model.

dµ

dt
= δcap+ δca(1− p− q)− 2(1− δca)αcaq(1− p− q) + (1− δca)αca2q(1− p− q)2,

dρ

dt
= −δcap+ 2(1− δca)(αcaq − βcap)(1− p− q) + (1− δca)βca2p(1− p− q)2. (6.14)

We neglect the third or higher order terms in densities in the system of equations (6.14)

and we get:

Hence, we have:

dµ

dt
= δcap+ δca(1− p− q)− 2(1− δca)αcaq(1− p− q),

dρ

dt
= −δcap+ 2(1− δca)(αcaq − βcap)(1− p− q). (6.15)

We expand the equations in (6.15):

dµ

dt
= δca(1− q)− 2

(
αca(1− δca)(q − pq − q2)

)
. (6.16)

dρ

dt
= 2
(
αca(1− δca)(q − pq − q2)

)
− δcap− 2

(
βca(1− δca)(p− p2 − pq)

)
So we collect terms in the equations (6.16). Hence, we have:

dµ

dt
= δca −

(
δca + 2(1− δca)αca

)
q +

(
2(1− δca)αca

)
q2 +

(
2(1− δca)αca

)
pq. (6.17)

dρ

dt
=
(
2αca(1− δca)

)
q +

(
− δca − 2βca(1− δca)

)
p−

(
2αca(1− δca)− 2βca(1− δca)

)
pq

−
(
2αca(1− δca)

)
q2 +

(
2βca(1− δca)

)
p2

Now, we let δ̃ca = δca, α̃ca = 2αca(1 − δca) and β̃ca = 2βca(1 − δca). So the system of

equations become:
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dµ

dt
= δ̃ca − (δ̃ca + α̃ca)q + α̃capq + α̃caq

2 (6.18)

dρ

dt
= α̃caq − (δ̃ca + β̃ca)p− α̃caq

2 + β̃cap
2 + (β̃ca − α̃ca)pq

Remark 1. The compartmental model equations in (6.13) are the same as the mean field

approximation equations in (6.18) provided that we drop third or higher order terms in

densities. We then make the following identifications: x ↔ µ, y ↔ ρ, δ = δca, α̃cm =

2αca(1− δca), and β̃cm = 2βca(1− δca).

So, we have proved the following theorems:

Theorem 6.3.1. Compartmental model equations are the same as the mean field approxi-

mation for the 1-D CA provided that we do the followings:

(i) Drop terms of 3nd or higher order in densities.

(ii) Equate the function of the coefficients:

• x↔ µ, y ↔ ρ, and δ = δca,

• α̃cm = 2αca(1− δca) and β̃cm = 2βca(1− δca).

Theorem 6.3.2. Compartmental model equations are the same as the mean field approxi-

mation for the 2-D CA provided that we do the followings:

(i) Drop terms of 3nd or higher order in densities.

(ii) Equate the function of the coefficients:

• x↔ µ, y ↔ ρ, and δ = δca,

• α̃cm = 4αca(1− δca) and β̃cm = 4βca(1− δca).
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6.4 Solutions to the System of Equations

We solve the system of equations in (6.13) where we set [dxdt = 0, dydt = 0]. Note that We

obtained the same equations from the MFA for the 1-D CA model in (6.18). Thus, solutions

for the system of equations (6.13) are also solutions for the equations (6.18). The solutions

for the system of equations (6.13) are as follow:

Clearly, [x1 = 1, y1 = 0] is a trivial solution of the above system. Let a := β̃cmα̃cm− δα̃cm +

β̃cmδ. Then the two other nontrivial solutions are as follows:

[x2 =
a+

√
a2 − 4β̃2cmα̃cmδ

2β̃cmα̃cm

, y2 =
δ

β̃cm
] and [x3 =

a−
√
a2 − 4β̃2cmα̃cmδ

2β̃cmα̃cm

, y3 =
δ

β̃cm
].

(6.19)

Note that the second and third solutions exist if and only if:

α̃2
cm(β̃cm − δ)2 − 2α̃cm(β̃2cmδ − δ2β̃cm) + β̃2cmδ

2 ≥ 0.

Consider the following equation:

α̃2
cm(β̃cm − δ)2 − 2α̃cm(β̃2cmδ − δ2β̃cm) + β̃2cmδ

2 = 0,

which is a parabola in αcm with positive coefficient for quadratic term. Solving the quadratic

equation above for αcm yields:

α̃cm,1 =
(δ + β̃cm + 2

√
β̃cmδ)δβ̃cm

β̃2cm − 2β̃cmδ + δ2
, and α̃cm,2 = −

(−δ − β̃cm + 2

√
β̃cmδ)δβ̃cm

β̃2cm − 2β̃cmδ + δ2
.

Physical Solutions:

Note that in the most logistic equations where we look at the growth of a group in the

population, the fixed point has to be positive real and it can be at most the total population.

If a fixed point has this criteria, we call the fixed point a Physical Solution. Now that we

have found the real solutions for this system, we can discuss the positivity of these solutions.

Since the denominator of the non-triviall solutions (6.19) is positive, we only need to check

the sign of the numerator for these solutions:
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• If a > 0, then a+
√
a2 − 4β̃2cmα̃cmδ > 0 and If a < 0, then a+

√
a2 − 4β̃2cmα̃cmδ < 0.

• If a > 0, then a−
√
a2 − 4β̃2cmα̃cmδ > 0 and If a < 0, then a−

√
a2 − 4β̃2cmα̃cmδ < 0.

So, if a > 0, then x2, x3 > 0 and if a < 0 then x2, x3 < 0.

6.5 Physical Solutions of the System

1. If α̃cm, 1 < α̃cm < α̃cm,2 or if a < 0, then system has only one physical solution which

is the trivial solution [x = 1, y = 0].

2. if α̃cm > α̃cm,1 or α̃cm < α̃cm,2 and if a > 0, then system has three physical solutions:

(a) [x1 = 1, y1 = 0],

(b) [x2 =
a+
√
a2−4β̃2

cmα̃cmδ

2β̃cmα̃cm
, y2 = δ

β̃cm
], and

(c) [x3 =
a−
√
a2−4β̃2

cmα̃cmδ

2β̃cmα̃cm
, y3 = δ

β̃cm
].

3. if α̃cm > α̃cm,1 or α̃cm < α̃cm,2 and if a = 0, then system has one physical solution

[x1 = 1, y1 = 0].

4. if α̃cm = α̃cm,1 or α̃cm = α̃cm,2 and if a > 0 then system have two positive real

solutions:

(a) [x = 1, y = 0],

(b) [x = a
2β̃cmα̃cm

, y = δ
β̃cm

].

6.6 Analyzing the fixed points of the system

Once the fixed points are found, one would like to have a quantitative measure of stabilities,

such as the rate of decay or grow to a stable or unstable fixed point. This sort of informa-

tion can be obtained by linearizing about the fixed points using Jacobian of the system of

equation in (6.13). The hope is that we can approximate the phase portrait near the fixed

points by that of a corresponding linear system.
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We linearize the system using Jacobian around the fixed points (see Section 3.4.2). Let

∆ and τ denote the determinant and trace of the Jacobian evaluated at a fixed point,

respectively.

6.6.1 First Fixed Point

Now we linearize the system in (6.13) around the fixed point [x = 1, y = 0]. The Jacobin at

this point is:

(
−δ + ˜αcm ˜αcm

− ˜αcm − ˜αcm − δ

)
There is one eigenvalue of multiplicity 2: λ1 = λ2 = −δ. The corresponding eigenvector is:(

1

−1

)
.

Note that the eigensolution decays exponentially. So the fixed point is stable. Since there is

only one eigendirection, the fixed point is a degenerate node. (see Figure 3.3.) So to analyze

the nonlinear system we use the numerical method. If αcm < αcm,1 then [x = 1, y = 0] is a

stable node and If αcm > αcm,2 then this fixed point is a stable spiral.

It is easy to see that the fixed point can not be stable spiral just because in order for

trajectories to wind around the fixed point [x = 1, y = 0] they have to pass though negative

plane y < 0 and that can not happen in this model so the fixed point must be a stable node.

6.6.2 Second Fixed Point

We linearize the system using Jacobian around [x2 =
a+
√
a2−4β̃2

cmα̃cmδ

2β̃cmα̃cm
, y2 = δ

β̃cm
]

Let b = β̃cmα̃cm − δα̃cm − β̃cmδ. The determinant of the Jacobin matrix is:

∆ =
−1

2α̃cmβ̃cm

(√
b2 − 4δ2α̃cmβ̃cm(b−

√
b2 − 4δ2α̃cmβ̃cm)

)
.

• If b > 0 then b−
√
b2 − 4δ2α̃cmβ̃cm > 0. So, ∆ < 0. This might suggest that the fixed

point is a saddle.
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• If b < 0 then b −
√
b2 − 4δ2α̃cmβ̃cm < 0. So, ∆ > 0. In this case we need to further

investigate τ , trace of the matrix. We have

τ = −α̃cm+
α̃cmδ

β̃cm
+
a+

√
a2 − 4β̃2cmα̃cmδ

β̃cm
− β̃cm+

1

2
(β̃cm− α̃cm)

a+
√
a2 − 4β̃2cmα̃cmδ

β̃cmα̃cm

.

Let ω =
a+
√
a2−4β̃2

cmα̃cmδ

β̃cm
. Notice that ω

2α̃cm
= x2 and α̃cmδ

β̃cm
= α̃cmy2 in the expression

above. So, τ = −(α̃cm + β̃cm) + α̃cmy2 + ω + (β̃cm − α̃cm)(x2). Since x2 and y2 are

the proportion of the population, they are small numbers. Thus τ < 0. In this case

τ2 − 4∆ > 0 and the fixed point is a stable node (see Figure 3.1).

6.6.3 Third Fixed Point

The analysis of this case is very similar to the previous case. We linearize the system using

Jacobian around [x3 =
a−
√
a2−4β̃2

cmα̃cmδ

2β̃cmα̃cm
, y3 = δ

β̃cm
]. Again, we let b = β̃cmα̃cm−δα̃cm− β̃cmδ.

The determinant of the Jacobin matrix evaluated at this fixed point is:

∆ =
1

2α̃cmβ̃cm

(√
b2 − 4δ2α̃cmβ̃cm(b+

√
b2 − 4δ2α̃cmβ̃cm)

)
.

• If b > 0 then b−
√
b2 − 4δ2α̃cmβ̃cm > 0. So, ∆ > 0. Now, we need to look at the trace

of the matrix evaluated at this fixed point. We have:

τ = −α̃cm+
α̃cmδ̃

β̃cm
−
−a+

√
a2 − 4β̃2cmα̃cmδ

β̃cm
−β̃cm−

1

2
(β̃cm−α̃cm)

−a+
√
a2 − 4β̃2cmα̃cmδ

β̃cmα̃cm

.

Let ω =
a−
√
a2−4β̃2

cmα̃cmδ

β̃cm
. Notice that 1

2α̃cm
(ω) = x3 and α̃cmδ̃

β̃cm
= α̃cmy3 in the ex-

pression above. So, τ = −(α̃cm + β̃cm) + α̃cmy3 + ω + (β̃cm − α̃cm)(x3). Since x3 and

y3 are the proportion of the population, they are small numbers. Thus τ < 0. Also,

τ2 − 4∆ > 0. So the fixed point is a stable node .

• If b < 0 then b −
√
b2 − 4δ2α̃cmβ̃cm < 0. Hence, ∆ < 0. This may suggest that the

fixed point is a Saddle (see Figure 3.1). So there must be a bifurcation happening at

b = 0.
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Figure 6.2: The Phase Portrait of the System

6.6.4 Phase Plane of the System

Sometimes we are interested in quantitative aspect of the fixed points. The fixed points can

be represented numerically using the appropriate parameters. For a better visualization and

representation of the fixed points in Figures (6.2,6.3,6.4), we use equation (6.10) where the

parameter are not scaled.

The parameters estimated for this model were initially selected from Carla Rossi’s paper in

[5], where αcm = 0.00003, βcm = 0.00005, δ = 0.006 and N = 1000. The fixed points evalu-

ated at the values are [x1 = 1000, y1 = 0.], [x2 = 237, y2 = 120], [x3 = 842, y3 = 120]. Recall

that in Section 6.6 the linearization at these points predicts that the three fixed points are:

degenerate node, stable node, and saddle node, respectively. Now because the two last fixed

points are not borderline case, we can be certain that the fixed points for the full nonlinear

system have been predicted correctly. We check our conclusion by deriving the phase plane

portrait for the full nonlinear system:

Putting all this information together, we arrive at the phase portrait shown in Figure 6.2.
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6.7 Bifurcations

The dynamics of vector fields on the line is very limited : all solutions either settle down

to equilibrium or head out to +∞ or +∞. Given the triviality of dynamics sometimes,

what is most interesting about the system is its dependency on the parameters. The quali-

tative structure of the flow can change as parameter are varied. In particular, fixed points

can be created or destroyed, or their stability can change. These qualitative change in the

dynamics are called bifurcation, and the parameter values at which they occur are called

bifurcation points. Bifurcations are important scientifically– in this model as they provide

useful information on the transitions and instabilities of the fixed points as some control

parameter in the model are varied.

6.7.1 Saddle Node Bifurcation when α̃cm Varies

As we discussed in the pervious section, the solution of the system settles down to 3 equi-

librium points (Fixed points). The trivial fixed point [x = 1, y = 0] which characterizes a

drug-free state, exists for all the values of a parameter and can never be destroyed. The

two other fixed points can be created if α̃cm > α̃cm,1 or α̃cm < α̃cm,2 and annihilated if

α̃cm,1 < α̃cm < α̃cm,2. So the Saddle node bifurcations happens when α̃cm,1 < α̃cm < α̃cm,2.

The only fixed point left is the trivial fixed point [x = 1, y = 0] and it is stable (see Figure

6.3).

In this model we vary α̃cm (Influence of dealers on susceptible and light users) where the

other parameters held fixed. As a result the a Saddle Bifurcation occurs at the Bifurcation

range. This means that for the values in α̃cm,1 < α̃cm < α̃cm,2 the drug use problem goes

extinct (eliminate drug use) and for α̃cm > α̃cm,1 or α̃cm < α̃cm,2 becomes epidemic.

6.7.2 Transcritical Bifurcation when δ Varies

For δ > δ0, there is an unstable fixed point at [x3 =
a−
√
a2−4β̃2

cmα̃cmδ

2β̃cmα̃cm
, y3 = δ

β̃cm
] (third

fixed point) and a stable fixed point at [x1 = 1, y1 = 0]. As δ decrease (δ → 0), the unstable

fixed point approaches the trivial fixed point [x1 = 1, y1 = 0] and coalesces with it when
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Figure 6.3: Saddle-node Bifurcation. Trivial fixed point is the only stable fixed point.

δ = δ0. Finally [x1 = 1, y1 = 0] has become unstable, and the nontrivial fixed point is

stable. We arrive to this conclusion that the trivial fixed point has changed its stability and

we numerically find the bifurcation value at δ0 = 0.0000002.

6.7.3 When δ = δ0 = 0

Another interesting observation is when we set δ = 0. The system has two completely

different fixed points [x1 = 1 − y, y1 = y] and [x2 = 0, y2 = 0], where x + y = 1 is the

unstable line of fixed points and [x = 0, y = 0] is the stable fixed point (see Figure 6.4).

6.7.4 When b varies

In Section 6.6 we investigated the stability of the fixed points. We learned that the stability

of the two nontrivial fixed points [x2, y2] and [x3, y3] is very dependent on positivity or

negativity of b = β̃cmα̃cm − δα̃cm − β̃cmδ. According to the classification of fixed points and

our computations in Section 6.6,
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Figure 6.4: The fixed point [x2 = 0, y2 = 0] is stable.

• if b > 0, that is α̃cm(β̃cm − δ) > β̃cmδ, then the second fixed point is saddle and a

stable node, otherwise. So this situation occurs if β̃cm > δ.

• On the other hand, if b < 0, that is α̃cm(β̃cm − δ) < β̃cmδ, then the third fixed point

is saddle and a stable node, So this situation occurs if β̃cm ≤ δ.

Thus, there must be a bifurcation (see definition in Section 3.7.2) at b = 0 (see Figure 6.5

for the bifurcation curve).

We solve for β̃cm in b = 0 and obtain:

β̃cm =
α̃cmδ

−δ + α̃cm
. (6.20)

Note that bifurcation happens only at the points (α̃cm,0, β̃cm,0) on the curve (6.20) and the

points (α̃cm,0, β̃cm,0) below the curve correspond to case when b < 0. Similarly the points

above the curve correspond to b > 0. This means for those (α̃cm,0, β̃cm,0) points below the

curve, drug problem can be eliminated since the trivial fixed point [x1, y1] is stable and
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Figure 6.5: Bifurcation Curve

[x3, y3] is an unstable fixed points.

6.8 Comparison Between Analytical Result and Simulation

Result for the PCA model

We use the results of the Theorems 6.3.1 and 6.3.2 to compare the analytical result (MFA)

and the simulation result for the PCA model.

Recall that the theorem for the 1-D CA stated that the compartmental model equations are

the same as the mean field equations if we drop the 3rd or higher order terms and equate

δ = δ̃ca, α̃cm = 2αca(1 − δca) and β̃cm = 2βca(1 − δca). For the 2-D CA model, δ = δ̃ca,

α̃cm = 4αca(1− δca) and β̃cm = 4βca(1− δca).

Therefore, we substitute δ = δ̃ca, αca = α̃cm
2(1−δca) and βca = β̃cm

2(1−δca) for the 1-D CA and

δ = δ̃ca, αca = α̃cm
4(1−δca) and βca = β̃cm

2(1−δca) for 2-D CA in the bifurcation curve equation

(6.20), we obtained in Section 6.7.4.
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Figure 6.6: Simulation result and the mean field approximation (red dashed line) for 1-D
PCA

The goal is to understand how well the compartmental model approximates the simula-

tion result for different dimensions of the PCA model. Figure 6.6 and 6.7 show that the

compartmental model generally gives a good approximation for the PCA model near the

bifurcation. Note that the red dashed lines in these plots are matched with the curves in

Figure 5.14 in Chapter 5.

6.9 Totalistic PCA

Recall the PCA model for the DTES where each cell can change its state with a given prob-

ability (see (5.1)). The probability of change for each cell is depend on the Total number

of dealers in the neighborhood and the value of αca or βca. In next section we describe

the Totalistic PCA. The plan is to use the totalistic PCA and perform the MFA for the

neighborhood size of N = n for the PCA model.
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Figure 6.7: Simulation result and the mean field approximation (red dashed line) for 2-D
PCA

The definition of the Totalistic PCA is based on the book by ‘Andrew Ilachinski’ in [24].

Consider the set of totalistic PCA, defined by the set of conditional probabilities {P0, · · · , P|N |},
Pk = prob

(
σi(t + 1) = 1|

∑
j∈Ni σj(t) = k

)
is the probability that a given site will have

value ‘a’ at time t+ 1 given that the sum of its neighbors at time t equals k. Using ρσ(t) to

estimate the probability of finding value σ =‘a’ at any site at time t, the probability that a

given site has exactly k neighbors, pk(t), is given by:

pk(t) =

(
|N |
k

)
[ρσ(t)]k(1− ρσ(t))|N |−k,

and , thus,

ρσ(t+ 1) = f [ρσ(t)] =

|N |∑
k=0

(
|N |
k

)
[ρσ(t)]k(1− ρσ(t))|N |−k · (Pk), (6.21)

Where f(x) is the iterative function.



CHAPTER 6. MEAN FIELD APPROXIMATION 81

The possible asymptotic, or equilibrium, value of the density ρσ
∗ ≡ limt−→∞ ρσ(t) are ob-

tained by solving for the stable fixed points of the equation ρσ = f(ρσ). A given solution

ρσ is stable if |f ′(ρσ)| < 1 [24].

6.10 Generalized Mean Field Approximation for the PCA

We performed the mean field approximation for 1-D PCA model for DTES in section 6.1.

Here, we use the totalistic PCA method (described in Section 6.9) to perform the MFA

with neighborhood sizes of N = n for PCA model. We consider the PCA with three states,

k = 3, radius neighborhood of r = 1 and neighborhood size of N = n. Again we let q, p and

(1− p− q) be the probability that of a given site being in state 0, 1 and 2, respectively. The

average densities of zero, ones and twos are given by of µ, ρ and ζ under the PCA transition

rules (see Section 5.4). The time evolution of µ, ρ are:

dµ

dt
= (f1→0 + f2→0)− (f0→1)

dρ

dt
= (f0→1)− (f1→0 + f1→2)

So we seek to find the probability transitions (fi→j) of sites whose values changes from σ = i

to σ = j. Our goal is to approximate the system’s behavior, given the number of dealer

neighbors in the neighborhood.

We let pn(t) be the probability that a given site has exactly n dealer neighbors where |N |
is the neighborhood size. So this probability is given by:

pn =

(
|N |
n

)
[(1− p− q)]n(p+ q))|N |−n,

We define z = |{j ∈ Ni|σj(t) = 2}| be the number of dealers (type ‘2’) in the neighborhood

and let Pn = prob
(
σi(t+ 1) = 1|z = n

)
be the probability that a given site which has value

‘0’ will have value ‘1’ at time t + 1 under the influence of n dealer neighbors. In another

words Pn is the probability transiting from susceptible to light users under the influence of

dealers. So, the probability that a susceptible become a drug users under the influence of

at least one dealer neighbor is given by:
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Pn = 1− (1− αca)
nq.

Thus, ρ(t + 1) is the probability of finding σ =‘1’ at time (t + 1) and is given by (see the

definition (6.21)):

ρ(t+ 1) = f [ρ(t)] =

|N |∑
n=1

(
|N |
n

)
[(1− p− q)]n(p+ q))|N |−n1− (1− αca)

nq.

It follows that ρ(t+ 1) · (1− δca) is the probability transitioning from state ‘0’ to ‘1’, when

there are n dealer neighbors in the neighborhood.

f0−→1 = (1− δca)(
|N |∑
n=1

(
|N |
n

)
[(1− p− q)]n(p+ q))|N |−n1− (1− αca)

nq). (6.22)

This sum can be evaluated using the Binomial theorem:

6.10.1 Binomial Theorem

Recall the binomial Theorem:

(x+ y)n =

n∑
k=0

(
n

k

)
xnyn−k,

for any real numbers x, y and any positive integer n. Here,
(
n
k

)
= n!

k!(n−k)! . Now we have the

following:
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f0→1 = q(1− δca)[
|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q))|N |−n[1− (1− αca)

n]

= q(1− δca)[
|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q)|N |−n−

|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q))|N |−n(1− αca)

n]

= q(1− δca)
((

1− (p+ q)|N |
)
−
((

(1− p− q)(1− αca) + (p+ q)
)|N | − (p+ q)|N |

))
= q(1− δca)

(
1−

(
(1− p− q)(1− αca) + (p+ q)

)|N |)
= q(1− δca)

(
1−

(
1− αca(1− p− q)

)|N |)
(6.23)

Since:

(
1− αca(1− p− q)

)|N |
=

|N |∑
i=0

(
|N |
i

)
(1)|N |−i

(
− αca(1− p− q)

)i
= 1−Nαca(1− p− q) + · · ·

Thus, the equation in (6.23) becomes:

f0→1 = Nqαca(1− δca)(1− p− q)

Similarly, we consider z = |{j ∈ Ni|σj(t) = 2}| be the number of dealers (type ‘2’) in the

neighborhood. We let Pn = prob
(
σi(t+ 1) = 2|z = n

)
be the probability that a given site

which has value ‘1’ will have value ‘2’ at time t+ 1. In another words Pn is the probability

transiting from light users to dealers under the influence of dealers. So, the probability that

a light user becomes a dealer under the influence of at least one dealer neighbor is:

Pn = 1− (1− βca)np.

Thus, ζ(t+ 1) is the probability of finding σ =‘2’ at time (t+ 1) is given by:

ζ(t+ 1) = f [ζ(t)] =

|N |∑
n=1

(
|N |
n

)
[(1− p− q)]n(p+ q))|N |−n1− (1− αca)

nq.
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It follows that ζ(t+ 1) · (1− δca) is the probability transitioning from state ‘1’ to ‘2’ at time

(t+ 1), when there are n dealer neighbors in the neighborhood.

f1−→2 = (1− δca)p
|N |∑
n=1

(
|N |
n

)
[(1− p− q)]n(p+ q))|N |−n1− (1− βca)n.

So, we evaluate this sum using the binomial theorem in 6.10.1:

f1→2 = p(1− δca)[
|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q))|N |−n[1− (1− βca)n]

= p(1− δca)[
|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q)|N |−n−

|N |∑
n=1

(
|N |
n

)
(1− p− q)n(p+ q))|N |−n(1− βca)n]

= p(1− δca)
((

1− (p+ q)|N |
)
−
((

(1− p− q)(1− βca) + (p+ q)
)|N | − (p+ q)|N |

))
= p(1− δca)

(
1−

(
(1− p− q)(1− βca) + (p+ q)

)|N |)
= p(1− δca)

(
1−

(
1− βca(1− p− q)

)|N |)
(6.24)

Since:

(
1− βca(1− p− q)

)|N |
=

|N |∑
i=0

(
|N |
i

)
(1)|N |−i

(
− βca(1− p− q)

)i
= 1−Nβca(1− p− q) + · · ·

Thus the equation in (6.24) becomes:

f1→2 = Npβca(1− δca)(1− p− q)

So we have:

f0→1 = Nqαca(1− δca)(1− p− q), f1→2 = Npβca(1− δca)(1− p− q)
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We have computed the probability transitions f0→1 and f1→2. Note that the probability

transitions of f1→0 and f2→0 are given by the equations (6.4) and (6.5). So we substitute

them in to the following system of equations, which are the time evolution of densities:

dµ

dt
= (f1→0 + f2→0)− (f0→1)

dρ

dt
= (f0→1)− (f1→0 + f1→2)

dµ

dt
= δca(1− q)−Nqαca(1− δca)(1− p− q).

dρ

dt
= N [qαca(1− δca)(1− p− q)]− δcap−N [pβca(1− δca)(1− p− q)] (6.25)

The system of equations in (6.25) are the mean field approximation (MFA) for the n-D PCA

model. We expand the equation and collect the terms:

dµ

dt
= δca(1− q)−N [(1− δca)αcaq(1− p− q)]. (6.26)

dρ

dt
= N [αca(1− δca)(q − pq − q2)]− δcap−N [βca(1− δca)(p− p2 − pq)] (6.27)

We collect the terms with q’s in 6.26 and 6.27 and we obtain the following system of equa-

tions:

dµ

dt
= δca − [δca +N(1− δca)αca]q +N [(1− δca)αca]q

2 +N [(1− δca)αca]pq. (6.28)

dρ

dt
= (−δca −N(βca(1− δca))p+N [αca(1− δca)]q − [Nαca(1− δca)−Nβca(1− δca)]pq

−N [αca(1− δca)]q2 +N [βca(1− δca)]p2

We let δ̃ca = δca, α̃ca = N [αca(1 − δca)] and β̃ca = N [βca(1 − δca)] in the equation (6.28).

Now the system of equation becomes:
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dµ

dt
= δ̃ca − (δ̃ca + α̃ca)q + α̃capq + α̃caq

2 (6.29)

dρ

dt
= α̃caq − (δ̃ca + β̃ca)p− α̃caq

2 + β̃cap
2 + (β̃ca − α̃ca)pq

Remark 2. The compartmental model equations in (6.13) are the same as the mean field

approximation equations in (6.29) provided that we drop third or higher order terms in

densities. We then make the following identifications: x ↔ µ, y ↔ ρ, δ = δca, α̃cm =

Nαca(1− δca), and β̃cm = Nβca(1− δca).

Thus, we have proved the following theorem:

Theorem 6.10.1. Compartmental model equations are corresponding to the mean field

approximation for the CA model with n nearest neighbors if:

(i) Drop terms of 3nd or higher order in densities.

(ii) Equate the forms of the coefficients:

• x↔ µ, y ↔ ρ, and δ = δca,

• α̃cm = nαca(1− δca) and β̃cm = nβca(1− δca).

Remark 3. Notice that the system of equations in (6.29) are the same as system of equa-

tions in (6.18) which we obtained from the MFA for 1-D CA model. So, the bifurcation

theory and stability analysis for the fixed points, which we performed for the ODE model

(6.13) in Section 6.6 works for the system equations in (6.29) as well.

Next chapter is a summery of important findings of this project.



Chapter 7

Conclusion and Discussion

Our observations in this project show that the social influence can dramatically affect the

spread of drug use in the community. We should point out here that our results not only

come from cellular automata (CA) simulations, but also from a deterministic system which

provides a good approximations for predicting drug use epidemic. By modeling the in-

teraction among individuals, we are able to understand the role of social influence in this

dynamics without the need for complex mathematical methods. Whether an individual

can successfully be convinced to begin or persist dug use in the long term depends on the

interactions that exist in the neighborhood. In the following, we identify the main result of

this project.

To summarize, from simulating the interaction among individuals who are randomly dis-

tributed in a lattice, we identify different effects of the parameters in the model. Although

the short term behavior of the model may depend on the lattice size and details of the

spatial distribution, the long term behavior mainly depends on three parameters: the so-

cial influences of dealer on susceptibles (αca), on drug users (βca), and life expectancies (δca).

We change parameters αca and βca, which we believe can affect the spread of drug use in the

community. Reduction for αca can be viewed as the indirect strategy (health promotion)

and reducing βca implies the direct strategy (police involvement). The bifurcation curve in

Figure 7.1 demonstrates that reduction for αca and βca is effective on their own but reducing

87
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Figure 7.1: The effect of combined strategies

both simultaneously results in faster transitions to the drug free state. In other words the

combination of the indirect and direct strategies are shown to be most effective (see Section

5.9 for more details).

The simulation results for 1-D and 2-D cellular automata corresponds to the input neigh-

borhood sizes of N = 2 and N = 4, respectively. The comparison between the two CA

models provide interesting results. It shows that an individual who has more number of

dealers in the neighborhood is more likely to experiment drug use. We also compare the

phase diagram and the time evolution plot of both 1-D and 2-D CA and conclude that the

less social influences in smaller neighborhood will result in a lower need for intervention.

Inexact representation of something that is still close enough to be useful, is called an ap-

proximation [51]. If incomplete information prevents the use of exact representations then

the approximations are used. Social issues are generally too complex to solve analytically.

Thus, an approximation may yield a sufficiently accurate solution while reducing the com-

plexity of the problem significantly.
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Due to the complexity of the interactions among drug users, it is difficult to exactly analyze

the impact of the social influences on drug use spread in the model. So an approximate

solution is obtained by performing the mean field approximation (MFA) for the CA model.

MFA results are used as a point of comparison for the CA model. The comparison is be-

tween the analytical results from the mean field analysis and simulation results for the CA

model. We use the result of the theorems proved in this thesis to show that the MFA up to

second degree in densities gives a good picture of CA model near the bifurcation.

Mean field approximation generally provides a good estimation on limiting densities and

other properties of the cellular automata. The estimation for the limiting density is usually

within 10− 20% error. We found that the mean field approximation estimates the limiting

density of a CA correctly with the general rules 4.5.1 and fails to do so with the asymmetric

rules (see Section 4.10).

7.1 Future work

As mentioned in the introduction, in this project we have only considered three states which

are susceptible, light user and dealer in the model. There are other states such as clients

of the health care services, recidivist drug users and no users (temporary) that need to be

taken in to account in order to accurately determine the prevalences. In addition to including

these states, the transitions between these states also needs to be considered. Moreover,

in this project, we assume that the rate of change in the population is zero to simplify the

complexity. In the next phase of this project, we will consider a non constant population to

make the model more realistic. Finally, we further need to investigate the policy by which

the drug use interventions are applied to the communities and suggest policies based on our

findings to authorities.



Appendix A

Cellular Automata and Elementary

Rules

We have simulated and reproduced some of the one dimensional space-time pattern of a

few elementary legal rules for k = 2 , r = 1 in [24]. Some starting from an initial state

consisting of a single nonzero value at the center site (see Figures A.1, A.2 ) and some with

random initial condition (see Figure (A.3, A.4). By convention, the time axis runs from top

to bottom and sites with value σi = 1 are colored white.
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R90
R150

R13

Figure A.1: Space-time pattern of a few elementary legal rules for k = 2 , r = 1, an initial
state with of a single nonzero value.
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T2 T6

T10

Figure A.2: Space-time pattern of a few totalistic rules for k = 2 , r = 1, an initial state
with of a single nonzero value.
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R110 R62

R150

Figure A.3: Space-time pattern of a few elementary legal rules for k = 2 , r = 1, with
random initial condition.
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T6
T20

T28
T50

T110

Figure A.4: Space-time pattern of a few totalistic rules for k = 2 , r = 2, with random
initial condition.
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