
DATA MINING FOR FEATURE VECTOR NETWORKS

by

Flavia Moser

M.Sc. Ludwig-Maximilians-Universität München, 2006

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the School

of

Computing Science

c© Flavia Moser 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. However, in accordance with the Copyright Act

of Canada, this work may be reproduced, without authorization, under

the conditions for Fair Dealing. Therefore, limited reproduction of this

work for the purposes of private study, research, criticism, review and

news reporting is likely to be in accordance with the law,

particularly if cited appropriately.

Last revision: Spring 09

Declaration of
Partial Copyright Licence
The author, whose copyright is declared on the title page of this work, has granted
to Simon Fraser University the right to lend this thesis, project or extended essay
to users of the Simon Fraser University Library, and to make partial or single
copies only for such users or in response to a request from the library of any other
university, or other educational institution, on its own behalf or for one of its users.

The author has further granted permission to Simon Fraser University to keep or
make a digital copy for use in its circulating collection (currently available to the
public at the “Institutional Repository” link of the SFU Library website
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing
the content, to translate the thesis/project or extended essays, if technically
possible, to any medium or format for the purpose of preservation of the digital
work.

The author has further agreed that permission for multiple copying of this work for
scholarly purposes may be granted by either the author or the Dean of Graduate
Studies.

It is understood that copying or publication of this work for financial gain shall not
be allowed without the author’s written permission.

Permission for public performance, or limited permission for private scholarly use,
of any multimedia materials forming part of this work, may have been granted by
the author. This information may be found on the separately catalogued
multimedia material and in the signed Partial Copyright Licence.

While licensing SFU to permit the above uses, the author retains copyright in the
thesis, project or extended essays, including the right to change the work for
subsequent purposes, including editing and publishing the work in whole or in
part, and licensing other parties, as the author may desire.

The original Partial Copyright Licence attesting to these terms, and signed by this
author, may be found in the original bound copy of this work, retained in the
Simon Fraser University Archive.

Simon Fraser University Library
Burnaby, BC, Canada

Abstract

Network data arise in various contexts. Examples include online friendship networks, email ex-

change networks and genetic interaction networks. In this dissertation, we are particularly interested

in feature vector networks (FVNs). FVNs are networks wherein the nodes contain additional infor-

mation in the form of feature vectors. In the case of social networks, the age or economic status of a

person might be part of the feature vector. We investigate three research problems related to FVNs:

clustering of FVNs, pattern mining in FVNs and simulation model for FVNs.

Clustering of nodes in FVNs is relevant, for example, in advertising on online social networks,

where feature vectors could reflect recent purchases of users. The number of clusters in these net-

works is often unknown. We introduce a new approach for simultaneously identifying the number of

clusters and the clusters themselves. Our objective function takes into account not only the network

structure but also the feature vectors. The outcome of this partitioning clustering algorithm shows

better results than current state-of-the-art methods.

Our pattern mining approach finds the set of all cohesive patterns. A cohesive pattern is defined

as a connected, dense subgraph with similar feature vectors in a sufficiently large subspace. This

definition is based on the needs of small communities in social networks and also on modules in

Protein-Protein interaction networks. Our dense graph mining algorithm is the first to guarantee

a complete result for density thresholds above 1
3 . Additional constraints on feature vectors and

connectivity reduce the number of patterns and add additional meaning.

The lack of both publicly available FVNs and FVN simulation models motivates us to create a

framework for simulating FVNs. We present a framework which is based on the previously intro-

duced Latent Socio-Spatial Process (LSSP) model and on our extension, the n∗LSSP model. The

n∗LSSP model uses two dampening functions in order to deal with effects related to the network

size. Both models can be used to predict links in FVNs, and the model parameters are estimated

using Markov Chain Monte Carlo.

iii

Keywords: Social network analysis, statistical network analysis, graph data, clustering of net-

work data.

iv

To my family

v

“A ship in port is safe, but that’s not what ships are built for.”

Grace Hopper

vi

Acknowledgement

During the work on this dissertation and my stay at SFU, I had the great opportunity to collaborate

with many great people. First, I would like to thank my supervisory committee. I thank Dr. Martin

Ester who supported me through all these years. I am greatly indebted to Dr. Randy Sitter who

introduced me to the Statistics aspect of social networks and who was a great inspiration. I was

very saddened and shocked when I heard the news of his loss. Thanks to Dr. Derek Bingham for his

support and for teaching me to climb higher. My gratitude also goes to Dr. Oliver Schulte with whom

I spent so many hours discussing various multi-relational Data Mining approaches. I appreciate

the support of Dr. Jian Pei and Dr. Hugh Chipman for kindly agreeing to be my internal/external

examiners and providing me with much valuable feedback. Finally, I would like to thank Dr. Crystal

Linkletter for her support.

In the last few years, I had the chance to travel to many conferences, workshops and events. I

am very grateful for this opportunity and for the financial support provided to me by various grant

holders and grants. In particular, I would like to thank Dr. AC Surendran for my exciting internship

in Seattle.

I also worked with many fellow students in the Computing Science, Statistics and other depart-

ments here at SFU. I am very thankful for their support and for sharing their knowledge with me. In

particular, I would like to thank my close collaborators: Recep Colak, Richard Frank, Rong Ge, Fer-

eydoun Hormozdiari, and Mona Vajihollahi. I am also lucky to have had very supportive labmates.

Especially, I would like to thank my labmates for the past two years for their support and helping

me survive the completion of my thesis: Jervyn Ang, Joslin Goh (there is nothing better than a girls

talk when getting stuck in a research problem), Ryan Lekivetz, Chunfang Lin, Matt Pratola.

Finally, I also would like to thank all my friends here in Canada and back in Europe for their

constant support and confidence in me. Very special thanks to my parents, my sister Julia and my

grandmother for their love and support.

vii

Contents

Approval ii

Abstract iii

Acknowledgement vii

Contents viii

List of Figures xi

1 Introduction 1
1.1 Motivation . 2

1.2 Overview . 5

2 Preliminaries 6

3 Related Work 9
3.1 Characteristics of (Feature Vector) Networks . 9

3.2 Clustering . 11

4 Connected X Clusters 15
4.1 Introduction . 15

4.1.1 Motivation . 16

4.1.2 Contributions . 17

4.2 Problem Definition . 18

4.3 Algorithm . 21

4.3.1 JointClust . 22

viii

4.3.2 Runtime Complexity . 24

4.4 Analysis . 25

4.4.1 Influence of the Initialization on k-means 26

4.4.2 Influence of the Initialization on JointClust 26

4.4.3 Determination of the Number of Initial Centroids 27

4.5 Experiments . 29

4.5.1 Social Network Data . 29

4.5.2 Image Data . 31

4.6 Conclusion and Future Work . 33

5 Cohesive Pattern Mining 35
5.1 Introduction . 35

5.1.1 Motivation . 36

5.1.2 Contributions . 38

5.2 Problem Definition . 38

5.3 Algorithm . 43

5.3.1 Baseline Approaches . 43

5.3.2 CoPaM . 44

5.4 Correctness of CoPaM . 48

5.4.1 Monotonicity Properties . 49

5.4.2 Correctness of CoPaM for 1
2 ≤ α . 50

5.4.3 Correctness of CoPaM for 1
3 ≤ α < 1

2 . 51

5.5 Experiments . 60

5.5.1 Social Network Data . 60

5.5.2 Biological Data . 61

5.5.3 Synthetic Data . 64

5.5.4 Comparison to Baseline Approaches . 64

5.6 Extensions of CoPaM . 65

5.6.1 Parallelization of CoPaM . 65

5.6.2 Additional Constraints on Cohesive Patterns 66

5.7 Conclusion and Future Work . 69

ix

6 Simulation of Feature Vector Networks 70
6.1 Introduction . 71

6.1.1 Motivation . 71

6.1.2 Contributions . 72

6.2 Related Work . 72

6.2.1 Preliminaries . 72

6.2.2 Statistical Models for FVNs . 74

6.3 Latent Socio-Spatial Process Model . 76

6.3.1 Model . 76

6.3.2 Application of LSSP Model . 79

6.3.3 simLSSP . 80

6.4 n∗LSSP Model . 85

6.4.1 Flexible Link Probability . 86

6.4.2 Flexible Distance in Social Space . 87

6.4.3 Model . 89

6.4.4 Parameter Estimation . 90

6.4.5 simn∗LSSP . 92

6.5 Experiments . 94

6.5.1 One-Dimensional Covariates . 94

6.5.2 Multi-Dimensional Covariates . 105

6.6 Parameter Sensitivity Analysis . 106

6.7 Conclusion and Future Work . 111

7 Conclusion 113

Bibliography 115

x

List of Figures

1.1 Multi-relational data and its subsets. 2

1.2 Example of social network of computer science students. 3

2.1 Transformation of FVN into weighted graph. 8

4.1 Example of social network partition. 16

4.2 Example of road network. 17

4.3 Various initializations. 26

4.4 Image data results. 33

5.1 Example of a social network of CS students containing two communities. 37

5.2 Example of cohesive pattern containing α-critical node for α = 0.41. 42

5.3 Illustration of expand-by-one phase. 47

5.4 Illustration of Definition 5.10. 52

5.5 Illustration of Lemma 5.2. 53

5.6 Largest cohesive pattern from social network dataset. 61

5.7 Runtime for generating cohesive patterns. 65

5.8 Illustration of paraCoPaM. 66

6.1 Logitistic transformation of η. 74

6.2 Two-dimensional space-filling Latin Hypercube Design. 79

6.3 AddHealth: Grades and their respective LSSP scores. 81

6.4 AddHealth: Sorted posterior mean probabilities. 81

6.5 AddHealth: Simulation of FVNs of various sizes. 83

6.6 Constant LSSP scores. 84

6.7 Dampening functions. 88

xi

6.8 1dim-2: Trace plots of parameters. 96

6.9 1dim-3: Trace plots of parameters. 97

6.10 1dim-4: Trace plots of parameters. 98

6.11 1dim: Trace plots of link probabilities. 99

6.12 1dim: Histograms of posterior means of µ, l and k. 101

6.13 1dim: Boxplots of standard deviations for µ, l and k. 102

6.14 1dim-2: True link probabilities. 102

6.15 1dim-2: Boxplot of posterior mean probabilities. 103

6.16 1dim-3: Boxplot of posterior mean probabilities. 103

6.17 1dim-4: Boxplot of posterior mean probabilities. 104

6.18 3dim: Boxplot of posterior mean probabilities. 105

6.19 5dim: Boxplot of posterior mean probabilities. 106

6.20 Relationship between µ and π. 107

6.21 LSSP scores for α = ~1 and ρ = 0.15. 109

6.22 Impact of various α and ρ on LSSP scores. 109

6.23 Impact of the distance in social space on the link probabilities for various µ’s. . . . 110

xii

Chapter 1

Introduction

In the 1990’s, with the increase of publicly available datasets, the field of Knowledge Discovery in

Databases (KDD) emerged. KDD is the process of (semi-)automatic extraction of knowledge from

databases which is valid, previously unknown and potentially useful [23]. This process consists of

five major steps. The first three steps comprise the selection, preprocessing and transformation of

the data. The transformed data forms the input to the selected Data Mining algorithm which then

outputs the patterns. The interpretation and evaluation of these patterns provide us with knowledge.

In this thesis we focus on the Data Mining process. Data Mining can be structured based on three

dimensions: type of task, type of input data and type of application.

In Fayyad [23] the four main Data Mining tasks are described as: clustering; association rule

and pattern mining; classification; and regression. Clustering refers to the task of grouping similar

objects together. In association rule mining, people are concerned with finding interesting relations

between features in large databases. The goal of classification is to learn a mapping from objects

to specified classes, whereas in regression the mapping goes to real numbers. In this thesis, we

developed a new clustering approach, a new pattern mining approach and a new statistical model.

The type of input data for a Data Mining task ranges from spatial data to web data, from transac-

tion data to multi-relational data and network data. In this thesis, we focus only on multi-relational

data and in particular on the subset of feature vector networks which we introduce later. Typically,

multi-relational data are stored in a relational database consisting of several tables: entity tables

and relationship tables. Entity tables store real world entities, such as people and books, whereas

relationship tables contain information about the relationships between these entities, such as who

has read which book.

1

CHAPTER 1. INTRODUCTION 2

Multi-relational Data

 Multi-modal
 Networks

Feature Vector
Networks

Networks

Figure 1.1: Multi-relational data and its subsets.

In Figure 1.1, a Venn diagram for multi-relational data and its subtypes is shown. In the context

of this thesis, there are three relevant subtypes of multi-relational data: feature vector networks, net-

works and multi-modal networks. If the data consists of multiple entity types and the relationships

between them, this data type is called multi-modal networks (right subset). Networks are modeled by

a single entity table (without any features) and a single relationship table. Examples for network data

include friendship networks and email exchange networks. If the entities have features, such age,

gender or socio-economic status, we call these networks feature vector networks (FVNs) (red set).

In most datasets, the network structure and feature vectors are dependent on each other, and mining

them simultaneously promises to deliver more meaningful results than mining only one data type.

An example of FVNs can be found in Figure 1.2. The entities (students) have a two-dimensional

feature vector comprising of their hobby and research interest. For example, student A likes to play

“soccer” and does research in the area of “logic”. In terms of applications, there is a wide variety of

applications for Data Mining in FVNs. Some of them will be introduced in the following.

1.1 Motivation

In many Data Mining applications, data is provided in the form of FVNs; social networks, such

as Facebook and MySpace; biological networks, such as Protein-Protein interaction networks; road

networks; the Internet, etc. In many social networks, the data contains not only the graph structure

e.g., implied by friendships, but other background information of the users, e.g., their purchasing

behavior or socio-economical features. One very popular Data Mining task is the identification of

communities (clusters) in networks. While most work in this area has previously focused on the

analysis of graph structures, feature vectors offer valuable information about the entities which can

CHAPTER 1. INTRODUCTION 3

soccer
DM

soccer
logic

tennis
ML

squash
art

dancing
logic

squash
logic

tennis
DB

tennis
logic

B

soccer
logic

C

A D

E
F

H I

G

Figure 1.2: Example of social network of computer science students.

be useful in the mining process. One of the applications in this area is user segmentation with the

goal of online advertising. The network structure, by itself, might not be sufficient for identifying

the users’ interests in a certain product or product group. On the other hand, considering solely the

feature vectors (e.g., past purchasing behavior), we would not be able to incorporate the behavior of

a person’s friends (network structure). Since people tend to be impacted by the purchases of their

friends, this information is important.

Another application of clustering algorithms in FVNs is hotspot detection. In computational

criminology, the goal of hotspot analysis is to identify high-crime areas (hotspots) surrounded by

areas of relatively low crime rates (coldspots). Feature vectors could be the frequencies of certain

crime types in a particular area over a given period of time. The road and public transportation

networks constrain the space in which offenders move and also play a major role in the appearance

of crime attractors and generators like pubs or needle sharing places [60]. Thus, two high-crime

areas, which are geographically close, but not directly connected on the network, most likely have

different attractors or generators and should not be merged into a single hotspot.

In computational biology, in Protein-Protein networks, these clustering algorithms can be used

to identify so called functional modules. A functional module is a group of proteins that contributes

jointly to the same cellular function. Modules can serve as the basis of computer-aided drug design.

In this thesis, we examine two related Data Mining tasks for FVNs that can be applied to several

of the aforementioned problems. In particular, both approaches can be used for community iden-

tification, but each focuses on different aspects. In Chapter 4, we introduce a clustering algorithm

for FVNs. This clustering algorithm is applied to both a collaboration network and other real world

CHAPTER 1. INTRODUCTION 4

datasets. The results are better than those obtained using other state-of-the-art methods. The intro-

duced clustering algorithm finds a partitioning of the FVN, i.e., each person/object is assigned to

exactly one cluster. This is desired in a variety of applications including online advertising.

However, in other applications, such as module discovery or finding of small communities (e.g.,

sport clubs or collaboration groups), this might not be desired. Communities can overlap since a

person can be a member of a sports club and a research lab. Furthermore, the number of communities

is often not known in advance. Typically, the members of a community know each other quite well,

i.e., there are many connections between them such that information can be exchanged and flow

within the community. Also, members of a community are expected to have similar feature values

in the subspace on which they are based, e.g., features related to the personal or professional life.

Finally, not every person has to be part of a community. Based on these requirements, in Chapter 5,

we introduce a framework for identifying cohesive patterns. A cohesive pattern, is a subgraph which

is dense, connected and in which the feature vectors are similar in a sufficiently large subspace. We

show the effectiveness of the introduced algorithm by applying it to several real world datasets and

evaluating its performance based on synthetic datasets. To the best of our knowledge, the dense

graph mining algorithm of our approach is the first one which guarantees a complete result for

density thresholds larger than 1
3 .

One of the problems we faced when working on the two afore-mentioned approaches, is the

lack of publicly available datasets. To the best of our knowledge, a graph generator for FVNs

does not exist. Since the network structure and feature vectors are dependent on each other, a

separate generation of each data type is not a very satisfactory solution. This motivated us to work

on a simulation model for FVNs. In Chapter 6, we introduce such a methodology. It is based on

the previously introduced Latent Socio-Spatial Process (LSSP) model [47] and our extension, the

n∗LSSP model.

We would like to emphasize the connection between the three research problems introduced in

this thesis. All three problems deal with the analysis and simulation of FVNs. Furthermore, the first

two research problems are alternative approaches for identifying communities. Depending on the

application one is superior to the other. When working on these approaches, the lack of publicly

available datasets proved challenging. Since none of the existing network generators were able to

generate FVNs in which network structure and feature vectors are dependent on each other, there

was a clear need for such a generator. Our simulation model is able to generate FVNs of various

sizes in which network and feature vectors are dependent on each other.

CHAPTER 1. INTRODUCTION 5

1.2 Overview

In this thesis, we introduce three research problems in the area of Data Mining for FVNs: Connected

X Clusters, Cohesive Pattern Mining and Simulation of Feature Vector Networks. The overview of

this thesis, including the significance of each chapter, is listed below:

Chapter 2: Preliminaries We introduce basic definitions and notations used in this thesis.

Chapter 3: Related Work We review characteristics of (feature vector) networks and the related

work in the area of clustering and graph mining.

Chapter 4: Connected X Clusters One of the major tasks in social network analysis is community

identification. However, in most FVNs, the number of clusters (communities) is unknown.

We propose an algorithm which determines this number and finds the corresponding clusters.

The algorithm outperforms state-of-the-art methods. Parts of this work have been published

in Moser et al. [56].

Chapter 5: Cohesive Pattern Mining Existing graph pattern mining algorithms produce a large

number of patterns and cannot consider node-specific feature vectors. We propose a graph

pattern mining approach which imposes constraints on the features. As a result the number of

produced patterns is reduced and additional meaning is added to the identified patterns.

Existing algorithms for finding dense graphs had to rely on approximation algorithms. Our

dense graph mining algorithm is the first one which guarantees completeness for density

thresholds above 1
3 . Parts of this work have been published in Moser et al. [55] and Colak

et al. [12].

Chapter 6: Simulation of Feature Vector Networks Existing generative graph models can only

simulate networks without feature vectors. We propose a new methodology for simulating

FVNs. Furthermore, we introduce an extension of the LSSP model which takes into account

effects related to the network size.

Chapter 7: Conclusion We conclude this thesis.

Chapter 2

Preliminaries

This thesis is concerned with uni-modal networks. Uni-modal networks model a single type of en-

tity. Social networks containing college students and their friendships are an example of uni-modal

networks. Another example is Protein-Protein Interaction networks which are formal representa-

tions of the interactions between the different proteins contained in a cell. In particular, we are

interested in uni-modal networks with node-specific feature vectors. We define this type of data as

feature vector networks. Before this definition, we define the term graph and feature vector.

Definition 2.1 (Graph, Induced (Subgraph)) A (undirected) graph G is a pair G = (V,E) in

which V = {v1, . . . vn} denotes the node set and E ⊆ {{vi, vj} |vi, vj ∈ V, vi 6= vj} the edge set.

Let G = (V,E) be a graph. The graph G[V ′] = (V ′, E′) is called a “by V ′” induced subgraph (of

G) if V ′ ⊆ V and E′ = {{v1, v2}|v1, v2 ∈ V ′, {v1, v2} ∈ E}.

Based on this definition, the following short notations are used:

• G+ v refers to the graph induced by V ∪ {v}, where v is a single node.

• G+ U refers to the graph induced by V ∪ U , where U is a set of nodes.

• G− v refers to the graph induced by V \{v}.

Next, the term connected graph is defined.

Definition 2.2 (Connected Graph) A graph G = (V,E) is called connected iff for every pair of

nodes vi ∈ V and vj ∈ V , either {vi, vj} ∈ E or there exists a set of nodes, v1, . . . vn, n ≥ 1,

vk ∈ V , 1 ≤ k ≤ n, such that {vi, v1}, {v1, v2}, . . . {vn−1, vn}, {vn, vj} ∈ E.

6

CHAPTER 2. PRELIMINARIES 7

This thesis, if not mentioned otherwise, only deals with undirected graphs. The term graph is

mostly used in the theoretical and mathematical literature. Application-oriented papers tend to make

use of the term network. We use these two terms interchangeably. Furthermore, the term vertex is

used as a synonym for the term node. In some cases, a node is also called data object. We follow

the social science literature and sometimes write link or tie instead of edge.

Next, the very basic definition of a feature vector is introduced.

Definition 2.3 (Feature Vector) A feature vector is a d-dimensional, d ≥ 1, vector f(o) ∈ D1 ×
. . .Dd that represents the properties of an object o.

In the following, we combine the two definitions of a graph and a feature vector, such that the

nodes in a graph have node-specific feature vectors. We call this type of graph a feature vector

network and formally define it as follows.

Definition 2.4 (Feature Vector Network (FVN) (1)) A feature vector network (FVN) is a graph

G = (V, E ,D,F), in which V denotes the node set and E the edge set. The function F : V →
D1 × . . .×Dd is called feature function. The set D = {D1, . . . ,Dd} is called the feature space of

G. A subset D′ ⊆ D is called feature subspace.

Social networks model people, their features and their interactions. An example of a social

network represented as a FVN can be found in Figure 1.2. The nodes in that network have a two-

dimensional feature vector attached. This data can be formally represented as

G = (V, E ,D,F),

where

V = {A, . . . I},
E = {{A,B}{A,D}, . . .},

D = {{soccer, tennis, squash, dancing}, {DM, logic,ML,DB, art}}
and function F , e.g., F(A) = (soccer, logic).

In Statistics literature, a FVN G = (V, E ,D,F) with n = |V| nodes is often represented by an

n× n-dimensional sociomatrix (or adjacency matrix) y with

yi,j =

{
1 if {vi, vj} ∈ E
0 otherwise

CHAPTER 2. PRELIMINARIES 8

The d-dimensional feature vectors of the nodes are stored in a n × d-dimensional covariate

matrix x. This leads to the following alternative definition:

Definition 2.5 (Feature Vector Network (2)) G = (y,x,D) is called feature vector network iff y

is an n × n-dimensional sociomatrix and x an n × d- dimensional covariate matrix. The variable

D = {D1, . . . ,Dd} contains the domains of each of the d rows in x.

Transformation of Feature Vector Networks into Weighted Graphs

When analyzing FVNs, the first thing that often comes to mind is a transformation of the FVN into a

weighted graph. One way of doing this is to calculate the distance between the feature vectors of the

two nodes participating in an edge. After this pre-processing step, existing methods for weighted

graphs can be applied. Indeed, many approaches make use of this strategy and in some cases they

deliver good results. However, the transformation of the feature vectors into distance values results

in loss of information. Consider for example this very simple graph (see also Figure 2.1):

G = ({X,Y, Z}, {{X,Y }, {Y,Z}}, {1, 2}, {F (X) = 1, F (Y) = 2, F (Z) = 1}).

1

X Z

Y 2

1

1

X Z

Y
1

Figure 2.1: Transformation of FVN into weighted graph.

When considering a distance-weighted graph instead of a FVN, the information that the distance

between node X and Y is the same as the distance between node Y and Z is retained. However, the

information that X and Z have identical feature vectors is lost. Therefore, it makes sense to analyze

a FVNs directly instead of its corresponding distance-weighted network.

Chapter 3

Related Work

In this chapter, an overview of characteristics in (feature vector) networks is provided in Section

3.1. Section 3.2 reviews the literature in the area of clustering, particularly network clustering and

clustering of nodes in FVNs.

3.1 Characteristics of (Feature Vector) Networks

The analysis of FVNs is a fairly new research area. Most characteristics are explicitly specific to

the network structure, i.e., they do not take into account the feature vectors. However, since the

characteristics are applicable to the network structure of a FVN, they are considered as well. The

following section first introduces node-specific network measurements and then continues with an

elaboration of global network measurements. At the end of this section, both the violation of the

independence assumption of edges in networks and the characteristics of FVNs are discussed.

Node-Specific Network Measurements

Node-specific measurements can be used to compare the roles of nodes in a network. In the Internet

domain, researchers are often interested in the importance of a single or small group of servers. In

the case of their failure, an interruption of the Internet may ensue. In the following, let G = (V, E)
be a graph and v ∈ V . The following definitions are taken from Wasserman et al. [72].

The neighbors Ni of a node vi are defined as Ni = {vj : {vi, vj} ∈ E}. The degree of node

v, deg(v), is defined as the number of v’s neighbors, i.e., deg(v) := |Ni|. The extended degree
of v corresponds to the number of v’s neighbors’ neighbors excluding v. The minimum geodesic

9

CHAPTER 3. RELATED WORK 10

distance is the length of the shortest path between two vertices. The clustering coefficient of a node

measures the local group cohesiveness. For a node v, it is defined as the ratio of the number of links

between v’s neighbors and the number of possible links between v’s neighbors. The betweenness
of a node v measures the number of shortest paths in the graph which go through v. This is a critical

measurement in any transportation network, since people normally travel on the shortest path. In

these networks, bridges tend to have a high betweenness. The closeness of a node v is the average

distance from v to all other nodes. Intuitively, in a social network the closeness shows how well

people are connected to the rest of the world.

Global Network Measurements

The clustering coefficient and betweenness can also be used as global network measurements by av-

eraging over the corresponding values of all nodes in the network. The global clustering coefficient

can be used as a measure of transitivity in the graph which is discussed below.

The diameter of a graph is the length of the longest shortest path in a network.

Two measurements often used to compare networks are motif count and degree sequence. The

motif count is the histogram of the frequencies of different motifs in G. A motif is a small graph

with a well-defined structure. The degree sequence/distribution is also a histogram reflecting

number/percentage of nodes with specific degrees.

When talking about clusters or communities in networks, the terms assortative and disassortative

mixing are sometimes used, see Newman [59]. In assortative mixing, links between nodes within a

given cluster are more likely to exist than links between nodes of different clusters. Disassortative
mixing implies that links between clusters are more likely than links within a cluster. A dating net-

work is an example for disassortative mixing. In contrast, friendship networks tend to be assortative.

This thesis focuses only on assortative mixing.

Characteristics of Networks - Dependencies of Edges

In the following, characteristics of networks which violate the statistical independence assumption of

the edges are discussed. There are three main characteristics: transitivity, clustering and reciprocity.

If vi is connected to vj , and vj is connected to vk, then it is more likely that vi is also connected

to vk. This is reflected in a network by a larger than expected number of triangles and cliques. This

phenomenon is called transitivity.

Clustering is closely related to transitivity. In the context of networks, the term clustering often

CHAPTER 3. RELATED WORK 11

refers to the phenomenon that a subset of nodes exhibits a large number of within-group edges and

relatively few edges outside of the group.

When analyzing a friendship network, it is expected that the friendship relationships are not

independent. For example, if it is known that person i considers person j as a friend, then j is more

likely to consider i as a friend than a randomly chosen person from the network. Reciprocity implies

that yi,j and yj,i are statistically dependent. However, reciprocity impacts only directed networks

which are not examined in this thesis.

As a result of the dependencies between the edges, most standard Data Mining or Statistical

methods - which assume independent data as input - cannot be applied to FVNs. However, some

existing approaches ignore some of these dependencies due to the complexity of the problem.

Characteristics of Feature Vector Networks

In the literature, there are two more characteristics specific to FVNs, namely heterogeneity in activity

across nodes and homophily by attributes (feature vectors).

Heterogeneity in activity across nodes [45] refers to the observation that nodes with the same

or very similar feature vectors are not required to have the same or a similar number of links. In

a social network a connector [31], i.e., a person who is very well-connected, can have the same

interests or demographic features as a loner. As an example, consider the mayor of a city. Typically,

a mayor knows many people and is very well connected. However, he can still have the same feature

vector, e.g., income and age, as a person who does not have many acquaintances. Some methods

take this heterogeneity into account by using a random effect which models the sociality of a person.

The term homophily by attributes [53] refers to the observation that people tend to make

friends with people who are similar to them in terms of their feature vectors. This phenomenon

is also known as “birds of a feather flock together”. Network models which consider feature vectors

should take this into consideration.

3.2 Clustering

With the goal of identifying groups (clusters) whose members are similar to each other and dis-

similar to the members of all other groups (clusters), clustering is one of the most common Data

Mining tasks. The following section reviews the most popular clustering algorithms (organized by

the type of their input dataset). First, the standard clustering algorithms are summarized. Some clus-

tering algorithms do not consider the complete feature space, but only a subspace. These clustering

CHAPTER 3. RELATED WORK 12

algorithms are called subspace clustering methods and are discussed next. Afterwards, network

clustering is reviewed. Last, the literature for clustering of FVNs is summarized.

Clustering of Feature Vectors

The discovery of the true cluster structure in transactional data has been studied extensively. Three

main approaches, partitioning, hierarchical and density-based methods, are widely used for this

purpose. The most famous representative of partitioning clustering methods is k-means [50]. The

objective of k-means is to partition the input set in k groups, such that the variance of the group

elements is minimized. Hierarchical clustering methods, such as single-link, complete-link, average-

link [40], CURE [32], BIRCH [77] and XMeans [63], achieve this goal by building a hierarchy of

clusters to allow the exploration of clusters at any level of granularity. Density-based methods, such

as DBSCAN [18], are able to find an arbitrary number of clusters based on certain constraints.

Subspace Clustering

Most clustering techniques consider all dimensions of feature vectors (the full space). However, in

some high-dimensional data, many dimensions might be irrelevant, noisy or correlated. The aim of

subspace clustering methods, e.g., Parsons [61], is to identify the relevant dimensions in the clusters

living within these dimensions. As a result, these clusters can overlap and have different relevant

dimensions.

Network Clustering

As mentioned before, there are two different types of network clusters. Assortative mixing is the

standard community structure and has more links within a community than between communities.

However, there are some networks, like dating networks, where there tend to be more links be-

tween the communities (e.g., male and female) than within. This thesis focuses only on assortative

methods. A method which can be used to identify not only the type of mixing but also the clusters

themselves can be found in Newman [59].

Graph Cut Methods

Research on graph partitioning has recently attracted much attention [71, 65, 37, 8]. The goal of

graph partitioning is to divide a graph into several subgraphs by minimizing some objective function,

such as cut-size, i.e., the sum of weights of edges crossing between partitions [28, 26]. Methods

CHAPTER 3. RELATED WORK 13

used for discovering an arbitrary number of graph partitions follow either a top-down or a bottom-

up approach. In a top-down approach, in each round, one cluster is chosen and partitioned into two

sub-clusters until certain conditions are satisfied. Different criteria, such as Ratio Cut [73, 34], Min-

Max Cut [14], Q-function [58, 74], have also been studied for obtaining a natural partitioning of a

graph. On the other hand, bottom-up approaches, such as ROCK [33] and CHAMELEON [43], start

by assigning each node into its own cluster and merging similar clusters based on different criteria.

Shi and Malik [67] propose a global criterion, the normalized cut, as well as a grouping algo-

rithm which recursively segments a graph into subgraphs. The normalized cut is also known as

conductance [11] and is defined as

Ncut =
cut(A,B)
assoc(A, V)

+
cut(A,B)
assoc(B, V)

,

where cut(A,B) is the cut size between cluster A and B and assoc(A, V) is the total connection

size of nodes in A to all nodes in the graph which are denoted by V .

Dense Graph and Graph Pattern Mining

It might seem surprising to find the topic of dense graph mining in a section about clustering. One

reason is that in many cases the goal of network clustering is to identify communities. There are

many definitions of a community in the literature. Intuitively, a community is a group of people

having some level of cohesion. Labs can be interpreted as communities within a department of

a university. Considering a much larger network, e.g., the social network of university students,

departments themselves could be considered as communities. On the city level, the university can

be seen as a community. The bottom line is that the definition and size of a community is dependent

on the scale and application. In this work, we find that dense subgraphs can be considered as small

communities.

Let |V | be the number of nodes and |E| be the number of edges in a graph G = (V,E). There

exist two very well accepted definitions of graph density. The first one is defined as the number of

edges divided by the number of nodes, i.e., |E||V | . In this thesis, the alternative definition is used:

d(G) =
|E|

|V |(|V |−1)
2

.

In this definition, the density is calculated as the fraction of the number of edges and the number

of possible edges. In a graph whose density exceeds a certain threshold, the average degree of a node

increases with the number of nodes. In comparison, in the first definition, the average degree remains

CHAPTER 3. RELATED WORK 14

constant. Even when solving only approximately, the ability to find dense subgraphs in a large graph

is a difficult combinatorial problem, e.g., Feige et al. [24]. In the absence of a minimum support

constraint, such algorithms typically forego the goal of finding all dense subgraphs and resort to

heuristics that efficiently find some subset of these subgraphs. For example, Gibson et al. [30]

present an algorithm based on a recursive application of shingling followed by a final clustering

step.

A more relaxed version requires that the graph patterns are α quasi-cliques, i.e., that every node

has at least a specified percentage α of all possible edges within the pattern. Pei et al. [62] and Zeng

et al. [76] propose new search space pruning strategies for efficiently mining all frequent and all

closed frequent, respectively, α quasi-cliques.

Feature Vector Network Clustering

In the data mining community, clustering of FVNs has not received a lot of attention. This is most

likely due to the lack of publicly available datasets. One of the first approaches is joint cluster

analysis [17] which aims at partitioning a FVN into connected subgraphs. Similar to k-means, the

optimization criterion of this method is to minimize the variance of feature vectors within a cluster.

The Co-Clustering method [36] defines an integrated distance function incorporating both the

similarity of attribute data and the network’s shortest path distance and then applies any distance-

based clustering algorithm. Another integrated method that has been developed in the bioinformatics

community is MATISSE [70], a probabilistic method that determines connected subnetworks in

graphs (such as interaction networks) that exhibit high attribute (e.g., expression) similarity, without

enforcing clusters to be dense.

Chapter 4

Connected X Clusters

In this chapter, we introduce and formalize the Connected X Clusters (CXC) problem, the problem

of discovering an a-priori unspecified number of clusters in FVNs. Clusters are assumed to be

compact and distinct from their neighboring clusters. Furthermore, they form a connected subgraph.

To efficiently solve the CXC problem, we introduce JointClust, an algorithm which adopts a two-

phase approach. In the first phase, we find so-called cluster atoms. We provide a probability analysis

for this phase which gives a probabilistic guarantee that each cluster is represented by at least one of

the initial cluster atoms. In the second phase, these cluster atoms are merged in a bottom-up manner

resulting in a dendrogram. The final clustering is determined by a novel objective function, called

Joint Silhouette Coefficient. We evaluate JointClust on several real world datasets and show that its

accuracy exceeds state-of-the-art comparison partners. Parts of this work have been published by

Moser et al. [56].

4.1 Introduction

Ester et al. [17] proposed a partitioning clustering algorithm for FVNs, called Connected k-Center

(CkC). Its goal is to discover k clusters. While partitioning clustering algorithms typically require

the number of clusters as user input, it is well-known that prior knowledge on the number of clus-

ters is often unavailable in real life applications. Previous research [63, 18, 40, 44] addresses the

aforementioned problem for classical clustering models considering only the feature vectors. In this

chapter, we study the problem of discovering an arbitrary (a-priori unspecified) number of so-called

(joint) clusters in FVNs. Joint clusters are assumed to be compact and distinct from their neigh-

boring clusters in terms of their feature vectors and form a connected subgraph. While in classical

15

CHAPTER 4. CONNECTED X CLUSTERS 16

Figure 4.1: Example of social network partition.

clustering methods the neighborhood of clusters is (and can only be) defined in terms of feature

vectors, in the context of FVNs it makes more sense to define the neighborhood in terms of graph

data. To motivate this assumption, we introduce the following two running examples: community

identification and hotspot analysis.

4.1.1 Motivation

Community Identification

A major task in social network analysis is to identify the underlying community structure of social

networks. In this application, a person can be described by both feature vectors, such as demo-

graphic information or product preferences, and network data, such as social relations. Intuitively,

a community is a connected subgraph of people with similar feature vectors, which are different

from the ones of neighboring communities. The term neighboring communities refers to commu-

nities which have members who are directly connected to each other in the social network. An

example (without feature vectors) can be found in Figure 4.1. Our goal is to identify communities

whose members have similar feature vectors but significantly different values from the ones of the

neighboring communities.

Hotspot analysis

In the context of criminology, the goal of hotspot analysis is to identify high-crime areas (hotspots)

surrounded by areas of relatively low crime rates (coldspots). In this context, feature vectors repre-

sent the frequencies of certain crime types in a particular area over a given period of time. Edges

CHAPTER 4. CONNECTED X CLUSTERS 17

Figure 4.2: Example of road network.
Hotspots are in gray, coldspots in white.

represent connectivity information such as a road network or public transportation network. The

network constrains the space in which offenders move and also plays a major role in the appearance

of crime attractors and generators like pubs or needle sharing places [60]. Thus, two high-crime

areas, which are geographically close, but not directly connected on the network, most likely have

different attractors or generators and should not be merged into a single hotspot.

A simplified example with one-dimensional feature vectors can be found in Figure 4.2. Nodes

are placed equidistantly along the road network, and the attached feature vectors measure the number

of crimes in the surrounding area. In general, the crime rate in the downtown area is much higher

than in other areas. This means that a feature-based clustering algorithm cannot find the crime

hotspot in the suburban area, which has some areas with crime rates that are relatively high compared

to their surrounding neighborhoods, but not especially high from a global point of view. The two

parts of the downtown crime hotspot on the different sides of the river are connected via a bridge.

When considering not only the feature vectors but also the network data, the hotspot can be correctly

identified as one cluster.

4.1.2 Contributions

The discussion of the above applications motivates the need for finding an unknown number of con-

nected subgraphs with feature vectors significantly different from the feature vectors of neighboring

clusters (connected subgraphs). When discovering an a-priori unspecified number of clusters, the

main challenge is to determine a suitable trade-off between model accuracy and model complexity in

an unsupervised fashion using, e.g., using an objective function. This objective function should also

promote clusters which are compact and as distinctive as possible from their neighboring clusters.

CHAPTER 4. CONNECTED X CLUSTERS 18

Since none of the existing objective functions can deal with FVNs, we introduce a novel objec-

tive function called Joint Silhouette Coefficient. We also introduce an efficient clustering algorithm

for FVNs, called JointClust, which detects the number of clusters. In the first phase, it identifies

so-called cluster atoms, basic building components that cannot be split in the second phase. The

number of initial cluster atoms is chosen so that there is a probabilistic guarantee that every joint

cluster is represented by at least one of these initial cluster atoms. These cluster atoms are further

iteratively refined as input for the second phase. In the second phase, in a bottom-up approach,

cluster atoms are iteratively merged. The clustering with the highest objective function value is

returned. The algorithm is evaluated on several real world datasets.

The main contributions of this chapter are:

• We introduce and formalize the problem of discovering an a-priori unspecified number of

clusters in FVNs, called CXC problem.

• To solve the CXC problem, we propose a bottom-up algorithm, called JointClust, producing

cluster atoms in the first phase, which are merged in the second phase.

• We provide probabilistic analysis demonstrating that with high confidence every joint cluster

is represented by at least one of the cluster atoms generated in the first phase of JointClust.

• We experimentally evaluate JointClust on several real datasets.

Outline

First, we define the Connected X Clusters (CXC) problem in Section 4.2. We provide JointClust, a

two-phase algorithm which solves the CXC problem, in Section 4.3. A probability analysis, which

is used in the first phase of JointClust, is given in Section 4.4. JointClust is evaluated on several real

world datasets in Section 4.5. The contributions of this chapter are summarized in Section 4.6.

4.2 Problem Definition

In this section, we introduce the Connected X Clusters problem, a clustering problem for FVNs

which does not require the user to specify the number of clusters. The input of the problem is a

FVN. The output is a cluster graph (defined below) which partitions the node set of the FVN into

connected subgraphs (clusters). We start with some preliminary definitions: G-connected and cluster

CHAPTER 4. CONNECTED X CLUSTERS 19

graph. Afterwards, we discuss model selection criteria and end this section with the introduction of

the problem definition.

Preliminary Definitions

Definition 4.1 (G-connected) Let G1 and G2 be two non-overlapping, connected subgraphs of a

FVN G = (V, E ,D,F). We call G1 and G2 G−connected, denoted as G1 ↔G G2 iff there exists at

least one edge {v1, v2} ∈ E , such that v1 ∈ G1 and v2 ∈ G2.

Intuitively, the cluster graph of a FVN is a graph representing the result of a partitioning clustering

algorithm applied to the FVN. It is formally defined as follows:

Definition 4.2 (Cluster Graph) Let G = (V, E ,D,F) be a FVN. Let {V1, . . . , Vk}, k ≥ 2 be a

partition of V , i.e., V = V1 ∪ . . . ∪ Vk and Vi ∩ Vj = ∅ for all 1 ≤ i < j ≤ k.

A graph CGG is called cluster graph, if CGG = (V ,E), where V = {V1, ...Vk} and E =

{{Vi, Vj}|Vi ↔G Vj} and if Vi, i = 1, . . . k, is a connected component (Connectivity Constraint).

The variable Vi is also called cluster (node).

One important property of a cluster is its center. Depending on whether or not the cluster center is

required to be an observed data object, the following definitions are useful:

Definition 4.3 (Centroid) Let Vi be a cluster. The centroid of Vi is defined as the component-wise

average of the objects in Vi.

Therefore, the centroid is not necessarily an observed data object.

Definition 4.4 (Medoid) Let Vi = {vi,1 . . . vi,n} be a cluster. The medoid of Vi is defined as the

vi,j , 1 ≤ j ≤ n, which minimizes the distance to all other data objects in Vi.

The medoid is an actual data object.

Criteria for Model Selection

The number of possible cluster graphs for a given FVN is very large. In order to compare different

cluster graphs objectively, a model selection criterion is needed. Many existing objective functions

explicitly penalize models with larger numbers of clusters by calculating a tradeoff between clus-

tering accuracy and model size (number of clusters), e.g., Pelleg et al. [63] which uses the Bayesian

CHAPTER 4. CONNECTED X CLUSTERS 20

Information Criterion. Other objective functions implicitly penalize large models, e.g., the Silhou-

ette Coefficient [44] that compares for every data object the distance to the centroid of the assigned

cluster with the distance to the centroid of the second-closest cluster. The Silhouette Coefficient

judges the clustering quality independent of the number of clusters. For every data object i, it com-

pares the distance of i to the centroid of the cluster to which it is assigned with the distance to

the closest centroid (from the set of all centroids excluding the one from the cluster to which it is

assigned). Formally, it is defined as

s =
1
n

n∑
i=1

b(i)− a(i)
max{b(i), a(i)} ,

where a(i) is the distance from data object i to the centroid c of the cluster to which it is assigned,

and b(i) is the distance to closest centroid (not considering c). Therefore, the Silhouette Coefficient

is always between -1 and 1. The higher the value, the better the clustering and vice versa.

In the following, we introduce an adapted version which can be used for FVNs, called Joint Sil-

houette Coefficient. One property of the CXC problem is that the feature vectors of a cluster are not

supposed to be as distinctive as possible from all other clusters, but only from all connected clusters.

For this reason, the Joint Silhouette compares the distance of each data object to the assigned cluster

center with the average distance to the centers of all neighboring clusters.

Definition 4.5 (Joint Silhouette Coefficient) Let G = (V, E ,D,F) be a FVN and CGG = (V ,E)

be a cluster graph. Furthermore, let a be the cluster to which node i is assigned and a(i) the distance

of i to the centroid of a. Let bE(i) be the average distance to the centroids of all G-connected clusters

of a. The Joint Silhouette Coefficient S is defined as

S =
1
|V |

∑
i∈V

bE(i)− a(i)
max{bE(i), a(i)}.

For example, in Figure 4.2, the feature vectors of the two hotspots in the industrial area are quite

similar. However, we do not want to penalize the model for having two clusters (hotspots) with

similar values, if the clusters are not connected. Since the Joint Silhouette Coefficient considers

only the distance to the neighboring clusters, the existence of these two clusters does not negatively

influence the value of the Joint Silhouette Coefficient. Therefore, the Joint Silhouette Coefficient

allows us to take into account only the local neighborhood of a cluster.

CHAPTER 4. CONNECTED X CLUSTERS 21

Connected X Clusters Problem

Clustering is the process of partitioning data objects into groups according to some similarity mea-

sure, such that data objects within one group are similar to each other and dissimilar to data objects

from other groups [54]. This definition is not directly applicable to FVNs, in which not only feature

vectors, but also network data carry important information. We require a cluster to be a connected

subgraph. The data objects of a cluster are still required to be as similar as possible to each other,

but not as dissimilar as possible to all clusters, but only to the connected clusters. Ester et al. [17]

introduced the CkC problem, the problem of identifying such clusters. In their problem definition

the number of clusters had to be specified by the user. However, in many real world applications this

number is not known in advance. The CXC problem does not require this number to be specified

and is formally defined as follows:

Definition 4.6 (Connected X Clusters (CXC) Problem) Given a FVN G = (V, E ,F ,D) and an

integer value m, the minimum cluster size. The Connected X Clusters Problem (CXC) is to find a

cluster graph CGG = (V ,E) such that

1. each cluster (node) v ∈ V contains at least m data objects (minimum size constraint), and

2. CGG maximizes the Joint Silhouette Coefficient.

Intuitively, CXC aims at identifying a partition of the FVN, such that each partition forms a

connected subgraph containing at least m objects. The partition should guarantee that the clusters

are compact and their cluster centers are as distinctive as possible from the ones of all connected

clusters. Our assumption is that the input graph is connected. If it is not connected, the problem

definition is applied separately to every maximum connected component.

In many applications, such as social network analysis, a community is expected to have a min-

imum size, m. For example, a sports club having 10 people might be not very meaningful. The

minimum size constraint ensures that the size of each cluster exceeds this minimum size. However,

if desired, m can be set to 1.

4.3 Algorithm

In Section 4.3.1, we introduce JointClust, a two-phase algorithm solving the CXC Problem. In

Section 4.3.2 we analyze its runtime.

CHAPTER 4. CONNECTED X CLUSTERS 22

4.3.1 JointClust

In the following, we propose JointClust, an algorithm solving the CXC Problem as defined in Def-

inition 4.6. JointClust is based on the idea of adapting X-means and the Silhouette Coefficient to

FVNs.

JointClust is a bottom-up heuristic algorithm, which consists of two phases. In the first phase,

we determine cluster atoms, which are merged bottom-up in the second phase to determine the

final clustering. Each final cluster consists of at least one cluster atom. In the first phase, after

the initialization part, there is a probabilistic guarantee that each cluster is represented by at least

one cluster atom (Theorem 4.2). The refinement part improves the quality of the identified cluster

atoms. The second phase merges bottom-up the so far identified cluster atoms with the goal to

find the clustering which maximizes the Joint Silhouette Coefficient (Definition 4.5). We return the

clustering with the highest Joint Silhouette Coefficient from the generated dendrogram. We discuss

JointClust now in detail; its pseudo code can be found in Algorithm 1.

Algorithm 1 JointClust
1: INPUT: FV N , m, nrIt
2: // FIRST PHASE - Initialization Part
3: reqNum = reqNrCentr(size(FV N)/m)
4: iniCentroids = choose reqNum random nodes from FV N
5: iniClusterAtoms = genClusterAtoms(iniCentroids)
6: iniClusterAtoms = mergeSmallClusters(iniClusterAtoms)
7: // FIRST PHASE - Refinement Part
8: clusterAtoms0 = iniClusterAtoms
9: for (i = 1 to nrIt) do

10: centroidsi = getMedoids(clusterAtomsi−1)
11: clusterAtomsi = genClusterAtoms(centroidsi)
12: clusterAtomsi = mergeSmallClusters(clusterAtomsi)
13: end for
14: // SECOND PHASE
15: return finalClusterGraph = mergeAtoms(clusterGraph(clusterAtomsnrIt))

The input of JointClust is a FVN, FV N , and the minimum cluster size m, which is necessary

to find meaningful clusters. However, this is not a restriction of the generality of JointClust, since

this value can be set to 1. The last parameter is nrIt and determines how often the refinement part

is repeated. This number of iterations is a common parameter in most optimization algorithms; it

can be set to a constant value, e.g., to the value 10.

CHAPTER 4. CONNECTED X CLUSTERS 23

First Phase

The goal of the first phase is to identify cluster atoms. A cluster atom is a basic building com-

ponent consisting of a connected component which cannot be split in the second phase. The first

phase consists of an initialization part and a refinement part. To ensure each cluster is represented

among the cluster atoms, the number of initial centroids is set higher than the maximum number of

possible clusters (which is bound by the total number of data objects divided by the minimum size

of a cluster). First randomly reqNum = reqNrCentroids(dsize(FV N)/minClusterSizee)
initial centroids (iniCentroids) are sampled from the input graph, see Theorem 4.2 in Section

4.4 for a detailed explanation. As confidence a standard value of 0.95 is used. Next, the method

genClusterAtoms() is applied to this set.

At the beginning, each of the initial centroids, iniCentroids, is assigned to its own cluster. We

perform a breadth-first search starting from the nodes that are already assigned to clusters. A node

can only be assigned to a cluster, if it is directly connected to at least one of the nodes contained in

this cluster. Nodes are greedily assigned in the described fashion by always choosing the node that

has the smallest distance (in terms of the feature vectors) to the existing cluster centroids.

After having assigned each node to a cluster, the resulting clusters are guaranteed to be con-

nected components. The cluster graph is constructed as follows: for each cluster, a cluster node is

created. Two cluster nodes are connected, if any two of their contained nodes are connected, see

also Definition 4.2. The generated cluster nodes form the cluster atoms.

Since the input graph was assumed to be connected, we know that the resulting cluster graph is

connected as well. To ensure that the minimum size constraint is fulfilled, too small cluster atoms

are joined with their closest connected cluster atoms. The function mergeSmallClusters()

takes care of this.

The initialization part of the first phase guarantees that there is at least one centroid (and its

corresponding cluster atom) placed within each cluster with a certain probability, see Section 4.4.

To improve the quality of the final cluster atoms used as input for the second phase, the cluster atoms

are iteratively refined.

Similar to k-means, the refinement part of the first phase starts with calculating the medoids

of the previously discovered cluster atoms. These medoids are used as initial centroids in the

genClusterAtoms() function. These refined centroids, centroidsi, are of better quality than

the random ones used in the initialization part of the first phase, since they are centrally located (in

terms of feature vectors and the location within the subgraph) in their cluster atoms. While the initial

CHAPTER 4. CONNECTED X CLUSTERS 24

centroids come with a probabilistic guarantee that at least one of them is chosen from each cluster,

these centroids could be located on the border (in terms of their feature vectors and/or the location

within the subgraph) of a cluster. The refined centroids avoid any of these problems that the initial

- randomly chosen - centroids may have. To further improve the quality of the centroids and their

corresponding cluster atoms, the methods getMedoids() and genClusterAtoms() are run

for nrIt times.

Second Phase

The result of the first phase is a cluster graph. In the current case a set of cluster atoms, which

partitions the node set of the input graph. Each cluster atom is as compact as possible and each true

cluster is represented by at least one cluster atom. The goal of the second phase is to find the final

clustering by bottom-up merging one pair of similar neighboring cluster atoms in every step, using

the Joint Silhouette Coefficient as objective function to choose the best clustering in a particular

step.

The subroutine mergeAtoms() (Algorithm 2) has as input a cluster graph. Each edge in the

cluster graph represents a possible merge, since it preserves the connectivity and minimum cluster

size constraints. At the beginning, the Joint Silhouette Coefficient of the input graph is calculated

(Line 2). We calculate the Joint Silhouette Coefficient for all possible merges (edge e) of a given

cluster graph clusterGraphk and pick the one with the highest value (Line 7). Afterwards, the

chosen cluster graph is updated reflecting the merge; the number of clusters is reduced by one (Lines

9 and 10). We continue with this strategy until only two cluster nodes remain. Like the conventional

Silhouette Coefficient, the Joint Silhouette Coefficient is a non-monotone function. Therefore, the

merging has to continue until only two clusters are left (the Silhouette Coefficient is only defined

for at least two clusters). The cluster graph with the highest Joint Silhouette Coefficient is returned.

4.3.2 Runtime Complexity

In this section, we analyze the runtime of JointClust and compare it with the runtime of a bottom-up

algorithm starting with singleton clusters: clusters containing only a single node.

The runtime of the First Phase depends on the runtime of genClusterAtoms(). Its runtime

is O(reqNum nrIt n2), where n is the number of data objects and reqNum the number of initial

centroids. Merging too small clusters can be computed in O(reqNum2), since there are at most

reqNum clusters and each cluster has at most reqNum − 1 connected neighbors. The parameter

CHAPTER 4. CONNECTED X CLUSTERS 25

Algorithm 2 Sub-routine mergeAtoms()

1: INPUT: clusterGraphk, k (= clusterGraphk.NumberOfNodes)
2: Sk = getJointSilCoeff(clusterGraphk)
3: while (k ≥ 2) do
4: for (each edge e in clusterGraphk) do
5: Sk−1,e = getJointSilCoeff(clusterGraphk.merge(e))
6: end for
7: emax = edge leading to highest Sk−1,e

8: Sk−1 = Sk−1,emax

9: clusterGraphk−1 = clusterGraphk.merge(emax)
10: k = k − 1
11: end while
12: return clusterGraphi with the highest S i

nrIt is a constant. Since n � reqNum, the value reqNum cab be considered as a constant as

well. Therefore the runtime of the first phase is O(n2).

In the Second Phase, the number of cluster nodes of the input graph is bound by l = dn/me.
An undirected graph with l nodes has at most O(l2) edges. In each iteration of the while-loop all

possible merges of two clusters are tried, i.e., O(l2). This implies a decrease of the number of

clusters by 1 in each iteration. Therefore, there are O(l) iterations of the while-loop. The total

runtime of the second phase results hereby in O(l3).

The overall runtime of JointClust is O(n2), since l < reqNum � n and reqNum can be

considered as a constant. A purely bottom-up algorithm takes O(n3). The use of the first phase of

JointClust reduces this cubic runtime to a quadratic one.

4.4 Analysis

The objective of JointClust is to learn the number of clusters and to identify these clusters. Similar

to k-means, JointClust also starts with a set of initial centroids. Next, we analyze the influence of

the initialization on k-means and on JointClust. Similarly to k-means, the result of JointClust is

also dependent on choice of the initial centroids. In JointClust we determine the appropriate number

of initial centroids required for ensuring that at least one initial centroid is placed within each joint

cluster with a user-defined probability. The primary idea is to select more than the required number

of initial centroids such that there is a probabilistic guarantee of having at least one initial centroid

per joint cluster. These centroids, together with their neighborhood serve as cluster atoms.

CHAPTER 4. CONNECTED X CLUSTERS 26

Figure 4.3: Various initializations.
(a) Undesired initialization for 4-means. (b) Desired result of 4-means. (c) Example of

initialization of JointClust. (d) Undesired result of JointClust. (e) Desired result of JointClust.

4.4.1 Influence of the Initialization on k-means

The k-means algorithm [15, 5] is known to converge to a local minimum of its distortion measure-

ment (total squared distance). In each iteration, the average squared distance decreases or remains

the same. It is also well-known that k-means is sensitive to its initialization. Strategies for finding

sophisticated initializations were introduced e.g., by Bradley et al. [7]. They suggest to repeatedly

subsample and smooth to get a better initialization. However, in most cases k-means is initialized

several times with different centroids where the initialization resulting in the smallest distortion

measurement is chosen. Figure 4.3(a) shows an example of an undesired initialization. The desired

solution of 4-means can be found in Figure 4.3(b).

4.4.2 Influence of the Initialization on JointClust

Similar to k-means, JointClust is also dependent on the initialization. In the first phase, Joint-

Clust greedily assigns data objects to the initial centroids under consideration of the connectivity

constraint. Any network clustering algorithm considering the connectivity constraint has a very re-

stricted search space. Therefore, the initialization is critical. As an example, see Figures 4.3(c) to

4.3(e). Figure 4.3(c) shows the FVN with randomly chosen initial centroids and 4.3(d) the result

after convergence. Based on the initialization, the desired clustering of Figure 4.3(e) cannot be

achieved.

CHAPTER 4. CONNECTED X CLUSTERS 27

To overcome the limitation of the constrained search space, we draw a higher number of initial

centroids than the maximal possible number of clusters. Next, we show, how to determine that

number of initial centroids.

4.4.3 Determination of the Number of Initial Centroids

In the following, we prove two theorems. The goal of the first theorem is to calculate the likelihood

for given k clusters and k trials (= flips of coins), that exactly one data object is drawn from each

cluster. The second theorem states how many trials are necessary in order to draw at least one data

object per cluster with a given confidence value (probability).

Theorem 4.1 Given a dataset V , let V1, ...Vk be the clustering (partition) of V and |Vi| the number

of data objects contained in cluster Vi. Let m be the minimum size of a cluster.

The probability that we draw exactly one element of each cluster in k trials is between
(
m
|V |

)k
k!

and k!
kk .

Proof Let Eki denote the event that in k trials we draw at least one data object from cluster Vi. Let

k be the number of clusters. The probability of drawing exactly one data object from each cluster in

k trials is:

p = P (Ek1 ∧ ... ∧ Ekk) = P (∧ki=1(E
1
i))k! =

k∏
i=1

P (E1
i)k! (1)

If we want to draw at least one data object per cluster (having in total k clusters) and we have

only k trials, then this is equivalent to drawing exactly one data object per cluster. Since the order

is irrelevant, the resulting term is multiplied with k!. The probability for choosing a data object

out of an arbitrary cluster is the cluster size divided by the total number of data objects. Therefore

P (E1
i) = |Vi|

|V | . Let m ≤ |V |
k be an arbitrary minimum cluster size. In the following, we calculate

the upper and lower bound of p, using (1).

p = k!
k∏
i=1

|Vi|
|V | ≤

k!
|V |k

(∑k
i=1 |Vi|
k

)k
=
k!
kk

(2)

p = k!
k∏
i=1

|Vi|
|V | ≥ k!

k∏
i=1

m

|V | =
(
m

|V |
)k

k! (3)

(
m

|V |
)k

k! ≤ p ≤ k!
kk

(4)

CHAPTER 4. CONNECTED X CLUSTERS 28

In equation (2) the inequality of the arithmetic and geometric mean [10] is used. This inequality

states the following: √√√√ k∏
1

xi ≤
∑k

1 xi
k

,

for non-negative real number x1, . . . xk. Equation (3) makes use of |Vi| ≥ m. Inequality (4) follows

immediately from (2) and (3). Therefore, the probability for drawing one data object per cluster,

given k clusters, in k trials is between
(
m
|V |

)k
k! and k!

kk .�

To illustrate these probabilities, let us look at the following example. Let |V | = 1000 be the

size of the graph, m = 100 be the minimum size and k = 10 be the number of clusters, then

p = 0.00036. Thus, the chances of placing one of the initial centroids in each cluster is very small.

In order to address this problem, we propose the following strategy: to find at most k clusters, we

use more than k initial centroids. The exact number is determined using the following theorem.

Theorem 4.2 Given a dataset V with n = |V | data objects, let m be the minimum size of a cluster.

Let V1, ...Vl be the clustering (partition) of V and |Vi| be the number of data objects in cluster Vi.

Let k = d nme. In order to choose each cluster at least once with a probability of p, it suffices to draw

reqNum = dk ln k
− ln pe data objects.

Proof As in the previous proof, let Esi denote the event that cluster Vi is chosen at least once within

s trials. Therefore, ¬Esi indicates that Vi has not been chosen in s trials.

P (¬Esi) =
(

1− |Vi|
n

)s
≤
(

1− 1
k

)s
≤ e− s

k

⇐⇒ P (Esi) ≥ 1− e− s
k

Let P (Esall) be the probability that all k clusters were chosen at least once within s trials. We have

P (Esall) = P (∧ki=1E
s
i) =

k∏
i=1

P (Esi) ≥ (1− e− s
k)k ≥ 4−ke

−s
k ,

since ∀x ≤ 1
2 : (1 − x) 1

x ≥ 1
4 . In order to select with probability p each cluster at least once in s

trials,

4−ke
−s
k ≥ p

are required. In order to determine the smallest s satisfying the inequality, this results in reqNum =

s = dk ln k
− ln pe, since reqNum must be an integer.�

CHAPTER 4. CONNECTED X CLUSTERS 29

Confidence 0.900 0.950 0.990 0.999
Nr. of Initial Centroids 61 68 85 108

Table 4.1: Number of initial centroids required for n = 1000 and m = 100

This theorem is similar to the famous coupon collector problem, e.g., Feller et al. [25]. The

values in Table 4.1 refer to the same example as described before (n = |V | = 1000 and m = 100).

JointClust uses Theorem 4.2 in order to determine the required number of initial centroids so that

there is a probabilistic guarantee that each cluster is represented by at least one cluster atom.

4.5 Experiments

JointClust is evaluated on two different types of real world datasets: social network data and image

data. Both types of data can be represented as FVNs. Our first dataset is a co-author network ex-

tracted from DBLP and citeseer. We compare the accuracy of JointClust with that of X-Means [63]

(feature-based clustering) and normalized cut [68] (network-based clustering), see Section 4.5.1. In

Section 4.5.2, we evaluate JointClust on image data.

4.5.1 Social Network Data

The social network dataset consisted of a co-authorship network. Next, its generation is described.

Dataset Generation

The co-authorship network was generated based on the two well-known scientific literature digital

databases: citeseer1 and DBLP2. Newman [57] showed that this type of databases reflect the proper-

ties of general social networks very well. The chosen papers were written between 2000 and 2004.

They belonged to three different research areas: Theory, Machine Learning and Databases & Data

Mining. These papers were written by 1,942 distinctive authors. An author’s class label was deter-

mined by the majority class of the papers they have written. Roughly the same number of authors

belonged to each research area.

The “term frequency inverse-document frequency” (tf-idf) [64] is a state-of-the-art method for

text representation. This method increases the importance of a word proportionally to the number

1http://citeseer.ist.psu.edu/
2http://www.informatik.uni-trier.de/l̃ey/db/

CHAPTER 4. CONNECTED X CLUSTERS 30

of times this word appears in the document (abstract of paper) but downgrades words which occur

frequently. We employed tf-idf to the 603 most important keywords occurring in the abstracts of the

corresponding papers and used them as author-specific feature vectors. The co-authorship of at least

one paper was used to generate an edge between the corresponding authors.

Result

JointClust was used to cluster the authors in the network based on the keywords of their papers and

their co-authorship relationships. As mentioned before, authors were labeled with the majority area

of their papers. Theses labels are considered as true labels. In order to evaluate the clustering, first

the majority of the true labels in each cluster was assigned to each node in the respective cluster.

Then the accuracy was calculated as the fraction of true positives and the total number of nodes.

As comparison partners, we used the implementation3 of Normalized Cut [68] a graph parti-

tioning algorithm, and X-Means [63], a feature-based clustering algorithm, which does not require

the number of clusters as input. We used the Java implementation of X-Means provided by Weka

3.5.54. All clustering algorithms used the Cosine Distance, the standard distance measurement for

text documents. JointClust requires the minimum size of a cluster as input parameter, which was

set to 100. Scientific communities with fewer members do not seem significant enough. We use the

default number of iterations, i.e., 10. X-Means was run with the default parameters. However, X-

Means is not able to consider the co-authorship relations, since it can only deal with feature vectors

and the Normalized Cut is not able to consider the feature vectors.

The results can be found in Table 4.2. JointClust achieved an average accuracy of 76.7%,

whereas X-Means resulted in 61.4% (both methods averaged over 20 repetitions) and the normalized

cut achieved 68.1%. JointClust identified the correct number of clusters in all repetitions, whereas

X-Means always discovered 4 clusters (instead of 3) and was, in each repetition, substantially be-

low the accuracy of JointClust. Our implementation of the normalized cut required the number of

clusters as input parameter; it was set to the expected number, namely 3. These results confirm that

feature vectors and network data indeed contain complementary information which helps to identify

the clusters.

3http://www.seas.upenn.edu/˜timothee/software/ncut multiscale/ncut multiscale.html
4http://sourceforge.net/projects/weka/

CHAPTER 4. CONNECTED X CLUSTERS 31

Identified
Accuracy Number of Clusters

X-Means 61.4% 4
Normalized Cut 68.1% *
JointClust 76.7% 3

Table 4.2: Social Network Dataset - expected number of clusters is 3; our implementation of nor-
malized cut required the number of clusters as input, we set it to the expected number of clusters
(3).

4.5.2 Image Data

The goal of image segmentation is to partition a digital image into multiple regions (sets of pixels)

[66]. In the following, we use JointClust as a basic image segmentation algorithm, to demonstrate

its application to image data, and not to compare ourselves with state-of-the-art approaches in the

image processing community. Our main reason to use image data was its similarity to crime data, to

which we did not have access to.

Similarity of Image Data to Hotspot Data

Privacy concerns make the access to crime databases almost impossible. To compensate for the

unavailability of this type of data, we run JointClust on image data. On a conceptual level, these

two data types are very similar. Most modern North American cities have a grid-like road network.

The resulting graph structure of an image, in which neighboring pixels are connected, is therefore

very similar to the network of these cities. The crime rate corresponds to the extracted feature values

of each pixel. The hotspots and coldspots correspond to image segments. As in hotspot analysis,

in image segmentation it makes sense to assume a segment (cluster) to be compact in terms of its

feature vectors and distinct from its neighboring segments (clusters).

In this experiment, the feature vectors are given by the three-dimensional Lab color space value

(L stands for lightness and a and b for color-opponent dimensions) [39] and three texture features.

To extract these values from the input images, we used the MatLab program blobworld5 provided by

the university of Berkeley. The details of their feature extraction algorithm and their image retrieval

algorithm, blobworld, are described by Carson et al. [9]. Unlike their approach, we did not consider

the coordinates of the pixels as additional feature vectors, but used neighborhood relationships of the

pixels to generate the network data. The edges were generated by connecting all pairs of neighboring

5http://elib.cs.berkeley.edu/src/blobworld

CHAPTER 4. CONNECTED X CLUSTERS 32

(directly adjacent) pixels. The goal of blobworld is image retrieval, which is completely different

from ours, and a comparison against their method was not meaningful. Unfortunately, the images

had no ground truth, so that we could not quantitatively measure the clustering accuracy in this

application. Instead, we qualitatively measured the clustering accuracy of selected images by visual

inspection.

Technical details

The Euclidean distance was used as distance measurement between the feature vectors. The mini-

mum size of a cluster was set to 1,000 pixels, the total number of pixels per image was 19,712. The

number of iterations was set to 10. We evaluated JointClust on several images of the famous Corel

stock photo collection.

Results

Figure 4.4 shows the results of JointClust on three different images. In part (a) of these figures, a

gray-scaled version of the original coloured image is shown. In part (b), we present the cluster atoms

identified in the first phase. The number of cluster atoms still exceeds the number of true clusters.

However, we can see that each true cluster is already represented by at least one cluster atom.

Typically, the second phase succeeds in correctly merging the atoms to detect the true clusters. The

last part (c) depicts the final result of the second phase which merges the cluster atoms in a bottom-

up manner and chooses the final result based on the value of the Joint Silhouette Coefficient. Note

that JointClust considers only connected regions as clusters. (Note, due to gray-scale postprocessing

of the image, we colored different clusters with the same shade in order to make the different clusters

as recognizable as possible.)

In Figure 4.4, the rose is very well discovered by JointClust. It also determines the number of

clusters correctly. As we can see in part (b) of Figure 4.4, the first phase produces many cluster

atoms, which are correctly merged in the second phase. The rose and tiger image in part (c) of

Figure 4.4 show two clusters. The tiger is completely discovered. All cluster atoms are correctly

merged in the second phase. The Joint Silhouette Coefficient, which only compares neighboring

clusters, is able to merge the cluster atoms in the desired way.

The third image depicts a bridge, which is a very challenging image. The shade is responsible

for breaking the bridge into two parts. The connectivity constraint is responsible for connecting the

cables with the bridge and splitting the background into two parts. However, even if human beings

CHAPTER 4. CONNECTED X CLUSTERS 33

Figure 4.4: Image data results.
(a) Original Image. (b) Result after First Phase. (c) Final Result.

were asked to partition this image, the answer would not be unanimous: some might merge the

background with the cables, others might not. Since the land on the left hand has colors very similar

to the bridge, it was falsely merged by JointClust. In order to recognize such challenging objects,

more sophisticated image processing algorithms are necessary, which consider background knowl-

edge such as the shape of certain object types. As mentioned above, the goal of these experiments

was not to compete with these methods, but to show further applications of JointClust to real world

data.

4.6 Conclusion and Future Work

In this chapter, we introduced a new problem definition, called Connected X Centers (CXC). Its goal

is to find a partition of the input graph into clusters. Clusters are connected subgraphs whose feature

vectors are similar to each other and dissimilar to the ones of neighboring clusters. To efficiently

solve the CXC problem, we presented JointClust, an algorithm which adopts a two-phase approach.

JointClust determines cluster atoms in the first phase, which are merged in a bottom-up strategy in

the second phase. Our experimental evaluation on several real life datasets, a social network and

several images, shows that JointClust is able to identify the correct number of clusters and the clus-

ters themselves with high accuracy. The comparison with X-Means, a clustering algorithm, which

cannot consider network data, shows that network data indeed carry important and complementary

information while improving the accuracy significantly.

CHAPTER 4. CONNECTED X CLUSTERS 34

This research suggests several directions for future research. We proposed a distance-based

measure, the Joint Silhouette Coefficient, to quantify the trade-off between model complexity and

accuracy. Probabilistic measures, with their known advantages and disadvantages, deserve further

attention.

The connectivity constraint requires a simple connectedness of the subgraph, that means within a

cluster there exists at least one path between any pair of nodes. This type of connectivity might not be

sufficient in some applications. For example, in biological applications, it is sometimes desirable to

impose a density constraint on the clusters. However, in applications that deal with high-dimensional

feature vectors, it might be worthwhile to investigate a subspace clustering approach for FVNs to

avoid the curse of dimensionality. In the next chapter, we integrate the density requirement and the

subspace idea into a new problem definition. Furthermore, JointClust results in a partition of the

input graph. While this is desirable in certain applications, other applications may want overlapping

clusters. We consider this in the problem definition introduced in the next chapter as well.

Chapter 5

Cohesive Pattern Mining

In this chapter, we introduce the novel problem of mining cohesive patterns from FVNs, which

combines the concepts of dense subgraphs and subspace clusters. A cohesive pattern is a dense

and connected subgraph that has homogeneous values in a sufficiently large feature subspace. We

argue that this problem definition is natural in identifying small communities in social networks

and functional modules in Protein-Protein interaction networks. We present the algorithm CoPaM

(Cohesive Pattern Miner), which exploits various pruning strategies to efficiently mine all maximal

cohesive patterns for density threshold larger than 1
3 . We are the first ones who provide an algorithm

for finding the complete set of all dense subgraphs for the aforementioned density threshold. Our

theoretical analysis proves the correctness of CoPaM. Our experimental evaluation on real life social

network and biological network data demonstrates that CoPaM finds meaningful patterns and is

more accurate than other state-of-the-art methods. Our experiments on synthetic datasets confirm

the scalability of our proposed algorithm.

5.1 Introduction

Graphs provide a natural representation of important real life networks, such as social networks

and biological networks. While earlier analysis methods often focused on graph properties such

as degree distribution, diameter and simple graph patterns, more recent analysis methods aim at

identifying more sophisticated patterns and structures in graphs. Online social network data can

be analyzed, for example, to detect communities that can be used for more targeted delivery of

online advertisements. In systems biology, researchers want to find functional modules in protein

interaction networks which can serve as the basis of computer-aided drug design.

35

CHAPTER 5. COHESIVE PATTERN MINING 36

Most of the existing methods, such as graph partitioning [68] and quasi-clique finding [62], work

on graph data only. However, in many applications the data come in the form of FVNs. In these

FVNs, often feature vectors and edges contain complementary information, i.e., the links cannot be

derived from the feature vectors nor vice versa. In such scenarios the simultaneous use of both data

types promises more meaningful and accurate results. Joint cluster analysis [17] aims at partitioning

a graph with feature vectors into connected components whose nodes have similar feature vectors.

Shiga et al. [69] introduce a spectral clustering method which partitions graphs with feature vectors.

While these approaches can exploit FVNs, they cannot ensure that the discovered clusters are dense

and connected, since they partition the entire graph. As a consequence, the identified clusters cannot

overlap, which is a desired property in many contexts.

Integrating the concepts of dense subgraphs and subspace clusters, we introduce the novel prob-

lem of mining cohesive patterns. We define a cohesive pattern as a connected subgraph whose

density exceeds a given threshold. Furthermore a cohesive pattern has homogeneous feature vectors

in a sufficiently large subspace. Different from graph partitioning methods and similar to frequent-

pattern mining methods, cohesive patterns can overlap and do not have to cover the entire dataset.

Moreover, the number of patterns does not need to be specified in advance. A major criticism of

pattern mining is the large number of patterns produced. In our case, the number of dense and

connected subgraphs can be extremely high. Integrating constraints on the feature vectors reduces

the number of patterns considerably and adds additional meaning to the identified patterns. Our

algorithm CoPaM effectively prunes the search space by simultaneously using the constraints on the

feature vectors, density and connectivity, and has therefore to consider only a small portion of the

large number of possible subgraphs.

5.1.1 Motivation

The following two applications from social network analysis and systems biology are used to moti-

vate our problem definition.

Social Network Analysis

In social network analysis, one of the most important tasks is the identification of communities [71],

i.e., groups of people that have strong social interactions and share some interest. Communities like

sports clubs or research groups have the following characteristic properties: Their members know

each other quite well, i.e., have many edges between them such that information can be exchanged

CHAPTER 5. COHESIVE PATTERN MINING 37

soccer
logic

soccer
DM

soccer
ML
soccer

soccer

soccer

tennis
logic

squash
art

dancing
logic

squash
logic

logic

logic

logic

tennis
DB

tennis
logic logic

Figure 5.1: Example of a social network of CS students containing two communities.

and flow within the community. Members of a community are expected to have similar feature

vectors in the subspace on which they are based, e.g., features related to the personal or professional

life. Communities can overlap, since a person can be a member of a sports club and a research lab.

The number of communities is not known in advance. Finally, not every person has to be part of a

community. Figure 5.1 shows an example of a social network of computer science students, wherein

students are associated with two features, their favourite sports and their study focus. The first

community consists of soccer players, united by their favorite sports, and the second one contains

students who share logic as their study focus. One student belongs to both communities. Other

students are not part of any community, because they do not share any interest (research or sports)

with their friends (connected nodes).

Systems Biology

In systems biology, one application of our problem definition is the identification of functional

modules. Functional modules are groups of genes that are involved in a specific cellular process. In

the literature, initial attempts were restricted to the use of a single data type such as gene expression

or protein interaction data. However, each of these data types describes only one specific aspect

of the cellular system and fails to characterize the system as a whole. Most cellular functions are

carried out by a group of proteins, that highly interact with each other, but loosely interact with

the rest of the proteins. Therefore, a functional module forms a dense and connected component in

the interaction network. Functional modules are also characterized by similar expression patterns

(feature vectors) of their genes (that code the proteins of the module). Similar expression data are

CHAPTER 5. COHESIVE PATTERN MINING 38

not required in all conditions (dimensions) of the feature vectors, but only in a subset, because many

proteins perform different functions in different tissues during different developmental stages. Two

approaches, which successfully combined both data types, can be found in Ulitsky et al. [70] and

Hanisch et al. [36]. We compare our method with these approaches.

5.1.2 Contributions

The main contributions of this chapter are as follows:

• We introduce the novel problem of mining cohesive patterns, which integrates the concepts

of mining dense subgraphs and subspace clustering.

• We develop the algorithm CoPaM that efficiently mines the set of all maximal cohesive pat-

terns for the density threshold α ≥ 1
3 .

• We provide a theoretical analysis giving insights into the difficulty of the problem and prove

the correctness of CoPaM.

• We run experiments on social network, biological and synthetic datasets demonstrating the

meaningfulness of cohesive patterns and show the efficiency and scalability of CoPaM.

Overview

The rest of this chapter is organized as follows. In Section 5.2, the problem definition of mining

cohesive patterns is introduced. The algorithm CoPaM is presented in Section 5.3. A theoretical

analysis of CoPaM can be found in Section 5.4. Section 5.5 reports the results of our experimental

evaluation. Extensions of CoPaM are elaborated in Section 5.6. This chapter is concluded with a

summary and interesting directions for future research in Section 5.7.

5.2 Problem Definition

In this section, we define the problem of mining cohesive patterns in FVNs. In the following, G
denotes the complete input FVN and G denotes a subgraph of G. For an overview of notations used

in this chapter, see Table 5.1. We are interested in mining cohesive patterns, i.e., subgraphs G of G
with certain properties. First, cohesive patterns are required to be connected. Second, their density

d(G) needs to exceed a given threshold. The density is defined as the cliquishness, which is defines

CHAPTER 5. COHESIVE PATTERN MINING 39

Table 5.1: Notations
G Input FVN
G = (V,E,D) By V induced subgraph of G
d(G) = 2|E|

|V |(|V |−1) (density of G)
deg(v) Degree of node v, v ∈ V
s Subspace cohesion function
θs Subspace cohesion threshold
θd Dimensionality threshold
α Density threshold
Gmerge Merging candidate

as the number of edges divided by the number of possible edges. Third, the features of the nodes

of G are required to be cohesive in some feature subspace. In order to formalize this last constraint,

the definition of a subspace cohesion function is necessary.

Definition 5.1 (Subspace cohesion function) Let G = (V, E ,D,F) be a FVN. A subspace cohe-

sion function s is a Boolean function

s : P(V)× P(D)×< → {true, false},

where P denotes the power set. Therefore, the function s has as input a subset V of the node set V,
a subset D of the feature space D, and a real number, θs, such that

[[s(V,D, θs) = true] ∧ [@D′ : D ⊃ D′ ⊃ D : s(V,D′, θs) = true]]⇒

[s(V,D′′, θs) = true⇒ D′′ ⊆ D],

where D is called maximal feature subspace. Based on this definition D is uniquely determined for

any subgraph. Furthermore, s is assumed to be anti-monotone, i.e.,

s(V,D, θs) = true⇒ s(V ′, D′, θs) = true∀V ′ ⊂ V,D′ ⊂ D.

The threshold θs is called subspace cohesion threshold.

In summary, a subspace cohesion function is an anti-monotone function which implies a uniquely

determined maximal feature subspace. Note that CoPaM is also able to handle anti-monotone func-

tions which do not have a uniquely determined maximal feature subspace, such as order-preserving

submatrices [2] as shown at the end of Section 5.3. To illustrate the subspace cohesion function,

consider again the example in Figure 5.1. All nodes in a community have the same value in at least

one dimension. Formally,

s(V,D, θs) = true

CHAPTER 5. COHESIVE PATTERN MINING 40

if

∀v ∈ V, d ∈ D : Fd(v) = c

for some value c. A further example is the one used in Section 5.5.2. There, the function s is elected

as:

s(V,D, 1, 25) = [∀d ∈ D : |max{Fd(v), v ∈ V } −min{Fd(v), v ∈ V }| ≤ θs = 1.25]

The function Fd(v) denotes the value of v’s feature vector in dimension d.

So far, there has not been a restriction on the size of D, i.e., in the worst case D is empty and s

true for any node set V . To prevent such a case and to enforce some stricter cohesion, we constrain

the size of D in the definition of a cohesive pattern. This definition is next and is the most critical

definition of this chapter.

Definition 5.2 (Cohesive pattern) Given a FVN G = (V, E ,D,F) and the following parameters:

• subspace cohesion function s,

• subspace cohesion threshold θs,

• dimensionality threshold θdim and

• density threshold α.

An induced subgraph G = (V,E,D), V ⊂ V, E = {v1, v2|v1, v2 ∈ V, {v1, v2} ∈ E}, D ⊂ D, is

called cohesive pattern if it satisfies the following three constraints:

• Subspace cohesion constraint: G is homogeneous in D ⊆ D, i.e., s(V,D, θs) = true and

|D| ≥ θdim ≥ 1.

• Density constraint: d(G) := 2|E|
|V |(|V |−1) ≥ α. (In this case G is also called α-dense.)

• Connectivity constraint: G is connected.

The density constraint, the subspace cohesion constraint, and the connectivity constraint to-

gether are called cohesive pattern constraint (CP constraint). Furthermore, an edge is called

cohesive if the induced subgraph of its corresponding nodes fulfills the CP constraint, otherwise

non-cohesive.

CHAPTER 5. COHESIVE PATTERN MINING 41

In the following, the terms pattern and subgraph are used interchangeably. We are particularly

interested in mining maximal cohesive patterns which are defined as follows:

Definition 5.3 (Maximal cohesive pattern) Let G = (V, E ,D,F) be a FVN and G = (V,E,D)

be a cohesive pattern. The pattern G is called maximal cohesive pattern, if there does not exists

V ′ : V ⊂ V ′ such that the graph G′ = (V ′, E′, D′) induced by V ′ is also a cohesive pattern.

Furthermore, we require D to be maximal, i.e., there does not exists D′ : D ⊂ D′, such that

G = (V,E,D′) is a cohesive pattern as well.

This definition leads to the following problem definition in which we want to mine maximal

cohesive patterns.

Cohesive pattern mining problem

Let G be a FVN, function s be a subspace cohesion function, threshold θs be a subspace cohesion

threshold, threshold θdim be a dimensionality threshold and threshold α be a density threshold, the

Cohesive Pattern Mining Problem is to mine the set of all maximal cohesive patterns of G wrt. the

aforementioned parameters.

In the following, we define several properties of cohesive patterns and of nodes which are used

by CoPaM.

Definition 5.4 ((Maximally) expanded-by-one cohesive pattern) A cohesive pattern G,

G = ({v1, · · · vn}, E,D) is called expanded-by-one if there exists at least one permutation τ =

(vi1 , . . . vin) over the nodes of G that induces a sequence ({vi1 , vi2}, . . . , G − {vin−1 , vin}, G −
vin , G), such that all graphs in this sequence are cohesive patterns wrt. D. If a cohesive pattern

G cannot be extended by any neighboring node without violating the CP constraint, G is called

maximally expanded-by-one cohesive pattern.

The reasoning behind this definition is the following: a graph G is expanded-by-one if it can

be iteratively generated from a single node by adding one connected node at a time, such that all

resulting patterns are cohesive patterns.

Not all maximally expanded-by-one patterns are maximal cohesive patterns, as the example in

Figure 5.2 demonstrates. For α = 0.41, the white nodes form a maximally expanded-by-one pattern,

since adding one of the black nodes results in a density below α. However the pattern induced

by the white nodes is not maximal: the graph containing all black and white nodes is maximal.

CHAPTER 5. COHESIVE PATTERN MINING 42

Figure 5.2: Example of cohesive pattern containing α-critical node for α = 0.41.
Node c is α-critical. The patterns G1 + c and G2 + c are merging candidates. The subgraph

induced by the white nodes is maximally expanded-by-one, since adding one of the black nodes
results in a density below α.

Furthermore, the complete graph is also not expanded-by-one, since the only node which can be

removed without violation of the density constraint is c. The node c is a bridge node which is

defined in the following:

Definition 5.5 (Bridge node) Let G be a graph, a node c in G is called bridge node if G − c is a

disconnected graph.

Since c is a bridge node, in G − c the connectivity constraint is violated. In Section 5.4, we

show that this case can only occur for α < 1
2 . Cohesive patterns which are not expanded-by-one,

still have a very nice property. They can be decomposed into three subgraphs, namely two merging

candidates and one expand-by-one part. The merging candidates are defined in the following.

Definition 5.6 A cohesive pattern Gmerge1 = (V,E,D) is called merging candidate if it consists

of a 1
2 -dense graph G1, |G1| ≥ 4, and a simple path P , |P | ≥ 1, such that ∃p ∈ P, v ∈ G1,

such that (p, v) ∈ E and ∀p′ ∈ P, p′ 6= p, (p′, v′) 6∈ E,∀v′ ∈ G1. Furthermore, if |P | = 1,

deg(p) < deg(v) + 1∀v ∈ G1 , otherwise deg(p) < deg(v)∀v ∈ G1. The node with the smallest

degree in Gmerge1 is called merging candidate node.

For example, in Figure 5.2, two of the merging candidates are G1 + c and G2 + c. This concept

of merging candidates is needed by CoPaM.

Definition 5.7 (α-removable node, α-critical) Given cohesive pattern G = (V,E,D), c ∈ V .

The node c is called α-removable node if G − c is α-dense. A cohesive pattern G is called α-

critical, if every α-removable node is a bridge node. The α-removable nodes in an α-critical graph

are called α-critical nodes.

CHAPTER 5. COHESIVE PATTERN MINING 43

The graph in Figure 5.2 is α-critical, since the only α-removable node is the bridge node c.

Therefore, the node c is called α-critical node.

Complexity of the Cohesive Pattern Mining Problem

We briefly analyze the complexity of finding all maximal cohesive patterns. It is known that finding

the maximum clique (MAXCLIQUE) in a graph is NP-complete (see Karp [42]). In our case, a

clique is a cohesive pattern if its feature vectors are homogeneous. Having an oracle which provides

a solution for the cohesive pattern mining problem, the solution can be verified in polynomial time.

Thus, our problem is in NP. Since MAXCLIQUE can be reduced to the cohesive pattern mining

problem, the problem is NP-complete. However, we expect the size of the largest clique to be

constant due to the sparseness of the graphs under consideration. Therefore, in practice this part of

the problem is feasible.

In case of a trivial subspace cohesion function, which is true for any input, our problem can be

reduced to the problem of counting all cliques in a graph. This is known to be #P-Complete [27].

Again, this theoretical worst case does not typically occur in real world datasets, and the runtimes

reported in Section 5.5 show the practicality of CoPaM.

5.3 Algorithm

In this section, we introduce the algorithm CoPaM (cohesive pattern miner), which solves the

cohesive pattern mining problem. This two phase algorithm adopts a level-wise bottom-up pattern

enumeration, i.e., the search space of cohesive patterns of size n is based on the cohesive patterns of

size n − 1. In Section 5.3.1, two non-integrated approaches are introduced, whereas Section 5.3.2

discusses the algorithm.

5.3.1 Baseline Approaches

A non-integrated cohesive pattern mining approach first finds all connected and dense patterns and

checks the subspace cohesion constraint afterwards. An alternative algorithm might first find all

subsets of nodes which are cohesive in a sufficiently large subspace and check the density and

connectivity constraints afterwards. In the experimental section, we compare CoPaM with these

two non-integrated baseline pattern mining algorithm, which are explained in the following:

CHAPTER 5. COHESIVE PATTERN MINING 44

Baseline 1

Algorithm: CoPaM-based connected and dense pattern generation.

Postprocessing: Checking against subspace cohesion constraint.

Details: First, all connected and dense patterns are generated using CoPaM, see Section 5.3.2. A

trivial subspace cohesion constraint is used which is true for any pattern. Then CoPaM is run with

this constraint in order to generate all connected and dense patterns. Second, as postprocessing, all

candidate patterns not satisfying the subspace cohesion constraint are filtered out.

Baseline 2

Algorithm: Apriori-based subspace clustering.

Postprocessing: Checking against connectivity and density constraints.

Details: First, all subsets of nodes (clusters) whose feature vectors satisfy the subspace cohesion

constraint are generated. We use an apriori-based approach which exploits the anti-monotonicity of

the subspace cohesion function to do this. Second, from the identified clusters, the ones which do

not fulfill the connectivity and density constraints are filtered out.

Remark

For both baseline methods a maximality check is necessary.

Alternative Strategy

One commonly used strategy which could be considered as a third baseline is the following: A

second graph, called similarity graph, is constructed by thresholding the feature vector similarity.

Both graphs are mined simultaneously. However, similarity on the complete feature space leads to

significant loss of information, as shown in Chapter 2. This is why, in such applications, subspace

clustering methods have been proven to outperform full space clustering methods. However, the

strategy of using a similarity graph cannot be adapted to subspace clustering, since constructing

similarity graphs for all possible subspaces is intractable.

5.3.2 CoPaM

The pseudo code of CoPaM can be found in Algorithm 3; the first phase of the algorithm (expand-
by-one) in Algorithm 4 and the second phase (merge) in Algorithm 5. The input of CoPaM is a

CHAPTER 5. COHESIVE PATTERN MINING 45

Algorithm 3 CoPaM: Cohesive Pattern Miner

1: INPUT: G = (V, E ,D,A), α, s, θs, θdim

2: OUTPUT: maximal cohesive patterns
3: PREPROCESSING: remove non-cohesive edges from G
4: for all (connected components Ci = (Vi, Ei) in G) do
5: // FIRST PHASE: EXPAND-BY-ONE
6: currCohesivePatternsi ← ∅
7: mergingCandi ← ∅
8: for all (edges e = {v1, v2} ∈ Ei) do
9: Ge ← ({v1, v2}, {e}, D)

10: currCohesivePatternsi.add(Ge)
11: end for
12: currCohesivePatternsi,mergingCandi ← Expand-by-one(currCohesivePatternsi)
13: if (α < 1

2) then
14: // SECOND PHASE: MERGE
15: mergedPatternsi ← merge(mergingCandi)
16: currCohesivePatternsi.add(Expand-by-one(mergedPatternsi))
17: end if
18: end for
19: currCohesivePatterns = ∪icurrCohesivePatternsi

20: MAXIMALITY CHECK: remove non-maximal cohesive patterns from currCohesivePatterns
21: return currCohesivePatterns

FVN G and the following parameters: a density threshold α, where 1
3 < α ≤ 1, a subspace cohesion

function s, a subspace cohesion threshold θs and a minimum number of dimensions θdim. The

output is the set of all maximal cohesive patterns.

The algorithm starts with a preprocessing phase, in which non-cohesive edges are removed

from the input graph, since they cannot be part of any cohesive pattern. In this reduced graph,

all connected components are identified. In the following, each of these components is analyzed

separately, applying the first and second phase of CoPaM.

The first phase (expand-by-one) starts off by initializing the variables currCohesivePatternsi
(containing the current cohesive patterns) and mergingCandi (containing the current merging can-

didates). Next, for each edge a cohesive pattern is created. Each pattern contains also its maximal

feature subspace D. Patterns are added to the set of current cohesive patterns. Afterwards, the

Expand-by-one method is applied to this set.

The Expand-by-one method (Algorithm 4) takes as input cohesive patterns of size two and

returns maximally expanded-by-one cohesive patterns. Let level denote the number of nodes of the

current cohesive patterns (initially it is two), see also Figure 5.3. In each level, a cohesive patterns of

size level is expanded by all neighboring nodes (one at a time) obtaining patterns of size level + 1.

CHAPTER 5. COHESIVE PATTERN MINING 46

Algorithm 4 CoPaM (first phase): Expand-by-one
1: INPUT: Queue currCohesivePatterns
2: OUTPUT: maximally expanded-by-one cohesive patterns, merging candidates
3: Queue resultSet← ∅
4: Set mergingCand← ∅
5: while (G← currCohesivePatterns.pop() 6= NULL) do
6: level← size(G)
7: if (α < 1

2) then
8: if (isMergingCandidate(G)) then
9: mergingCand.add(G)

10: end if
11: G.isMaximal← true
12: end if
13: for all (neighboring nodes v of G) do
14: if (G+ v fulfills CP constraint) then
15: if (NOT currCohesivePatterns.contains(G+ v)) then
16: currCohesivePatterns.add(G+ v)
17: G.isMaximal← false
18: end if
19: end if
20: end for
21: if (G.isMaximal) then
22: resultSet.add(G)
23: end if
24: end while
25: return resultSet, mergingCand

For every expanded pattern, the respective maximal cohesive feature subspace is determined. If an

expanded pattern G + v fulfills the CP constraint (Algorithm 4, Line 14), then G is not maximal

and can be replaced by G + v in the candidate set currCohesivePatterns, otherwise G is added

to the result set. If α is smaller than 1
2 , the algorithm also checks whether the current pattern is a

merging candidate and potentially adds it to the set of merging candidates. After having considered

all patterns of a certain level (size), the algorithm moves to the next level until all patterns are

maximally expanded-by-one. The variable currCohesivePatterns which holds the patterns, is

implemented as a queue. Therefore, the expand-by-one method uses a breadth-first search. The

advantage of this search strategy is that at any point in time only cohesive patterns of two levels

have to be kept in memory - this reduces the amount of memory needed substantially.

The expand-by-one phase generates only expanded-by-one cohesive patterns, which follows

directly from its definition. We show in the next section that if α ≥ 1
2 , all cohesive patterns are

indeed expanded-by-one cohesive patterns. Therefore, the first phase finds all cohesive patterns for

α ≥ 1
2 . If α is between 1

3 and 1
2 a second phase, which takes the merging candidates as input,

CHAPTER 5. COHESIVE PATTERN MINING 47

is required. In this second phase, called merge phase, the search space is restricted to merging

candidates which were identified in the first phase. If α < 1
3 then the algorithm is not guaranteed to

be complete. However, in applications such as social network analysis and systems biology typically

α is larger than 1
3 , in most cases even larger than 1

2 .

Algorithm 5 CoPaM (second phase): Merge
1: INPUT: hashtable mergingCand
2: OUTPUT: α-critical graphs
3: result← ∅
4: for all (G1, G2 ∈ mergingCand which have only the merging cand. node in common) do
5: if ((G1 ∪G2) is α-critical) then
6: result.add(G1 ∪G2)
7: end if
8: end for
9: return result

The merge phase (Algorithm 5) takes a set of merging candidates and joins two merging can-

didates if they have the same merging candidate node. This is efficiently supported by using a

hashtable as an index structure, whose keys are the node IDs of the merging candidate node. As

shown in Section 5.4, only graphs which overlap by exactly one node (a merging candidate node)

have to be considered. This phase returns only α-critical cohesive patterns. The expand-by-one

phase has to be applied again to these patterns.

The goal of the final maximality check is to remove cohesive patterns which are not maximal.

This postprocessing step is necessary, since the CP constraint is not anti-monotone, see Section

5.4.1. This is different from frequent itemset mining, where the anti-monotonicity property guaran-

tees that only maximal patterns are found. In order to efficiently filter out the maximal patterns, we

Figure 5.3: Illustration of expand-by-one phase.

CHAPTER 5. COHESIVE PATTERN MINING 48

use the following algorithm: The result set of CoPaM is implemented as a queue, such that any new

element is added at the beginning, and during this maximality check the elements can be retrieved

in reverse order of their insertion in constant time. Furthermore, the maximality check makes use of

a hashtable and an array. The keys of the hashtable are the node IDs. The buckets store all maximal

cohesive patterns which contain this particular node. A second data structure, an array, records the

number of elements in each bucket. All cohesive patterns identified by CoPaM are inserted into the

hashtable in opposite order of their creation, i.e., starting with the largest pattern. A new pattern P

is added as follows:

• Find smallest bucket Bsmallest to which P has to be added, using the array information.

• Test whether P is subset of any of the elements in Bsmallest.

If P is not subset, add P to the hashtable.

If P is subset, then discard it, since P is not maximal.

Not uniquely determined maximal feature subspace

Some applications benefit from a subspace cohesion function that does not uniquely determine the

maximal feature subspace. This is the case for order-preserving submatrices [2] often used in bio-

logical applications. This type of subspace cohesion function can easily be integrated into CoPaM.

The algorithm has to be slightly adapted to store all (instead of one) maximal feature subspaces with

the current pattern.

This concludes the description of CoPaM. In the following section we prove its correctness for

α ≥ 1
3 .

5.4 Correctness of CoPaM

The correctness of the first phase seems intuitive. However, it turns out that it requires several proofs

to show its correctness. We start by analyzing the monotonicity properties of the CP constraint and

show that it is not anti-monotone. This makes it very different from other pattern mining algorithms

which heavily make use of this property. In Section 5.4.2, we show that the CP constraint is loose

anti-monotone (defined in Section 5.4.1) for 1
2 ≤ α and we prove that the expand-by-one phase finds

all cohesive patterns in this case. For 1
3 ≤ α < 1

2 , the CP constraint is not loose anti-monotone,

but it has some nice properties that allow for finding all cohesive patterns by merging the merging

candidates which were identified in the expand-by-one phase, see Section 5.4.3.

CHAPTER 5. COHESIVE PATTERN MINING 49

5.4.1 Monotonicity Properties

In the following, the terms anti-monotone and loose anti-monotone are defined:

Definition 5.8 (Anti-monotone) Let a graphG satisfy constraintC, thenC is called anti-monotone

if all subgraphs of G satisfy C.

Definition 5.9 (Loose anti-monotone) Let G be a graph G of size n satisfying constraint C. We

call C loose anti-monotone [6] if there exists at least one subgraph of G of size n− 1 which fulfills

C as well.

Frequent pattern mining algorithms, such as the frequent item set mining algorithm a-priori [3],

make use of the anti-monotonicity property of the support. Unfortunately, the CP constraint is not
anti-monotone. In other words, for a given cohesive pattern there is no guarantee that each node

can be removed such that the remaining pattern is still connected. A counter example is shown by

the cohesive pattern in Figure 5.2 on page 42, where the removal of c (the only α-removable node)

disconnects the graph.

In the following, we analyze the monotonicity properties of the connectivity and density con-

straint. Note that the subspace cohesion constraint is anti-monotone by definition.

Loose anti-monotonicity of the connectivity constraint

Lemma 5.1 Let G = (V,E) be a connected graph of size at least 2. There exist two distinct nodes

v1, v2 ∈ V such that G− v1 and G− v2 are connected.

Proof We use induction on the number of nodes in G. If G does not contain any bridge node, then

we are done. Otherwise, let v be a bridge node in G. Then G − v consists of l > 1 connected

components G1, . . . Gl. If G1 contains only one node, then this node is not a bridge node in G.

Suppose G1 has more than one node. By induction hypothesis, there are two distinct nodes u and w

in G1 such that they are not bridge nodes in G1. If vu or vw, say vu, is not an edge in E, then u is

not a bridge node in G, therefore G − u is connected. Otherwise uv and wv are edges in G, then

G− u is connected. Thus, there is a node in G1 which is not a bridge node.

A similar argument is used for G2.�

Proposition 5.1 The connectivity constraint is loose anti-monotone.

CHAPTER 5. COHESIVE PATTERN MINING 50

Proof Lemma 5.1 states that in any graph, there exists two nodes, such that their removal does

not disconnect the graph. Therefore, there exists one such node. This implies that the connectivity

constraint is loose anti-monotone. �

Loose anti-monotonicity of the density constraint

Proposition 5.2 The density constraint is loose anti-monotone.

Proof Let G = (V,E) be an α-dense graph, v ∈ V , and G′ = G− v = (V ′, E′). We distinguish:

• ∃v ∈ V : degG(v) < dα(|V | − 1)e.
⇒ |E′| = |E| − dG(v) ≥ α (|V |−1)(|V |−2)

2 = α (|V ′|)(|V ′|−1)
2

• ∀v ∈ V : degG(v) ≥ dα(|V | − 1)e
Let v ∈ V be the node with minimum degree m, m ≥ dα(|V | − 1)e in G.

⇒ |E′| ≥ |V |m2 −m ≥ 1
2(|V | − 2)m ≥ 1

2(|V | − 2)α(|V | − 1) = α |V
′|(|V ′|−1)

2

Therefore, G′ is α-dense.�

Summary:

• The subspace cohesion constraint is anti-monotone. (By Definition 5.1.)

• The density constraint is loose anti-monotone. (By Proposition 5.2.)

• The connectivity constraint is loose anti-monotone. (By Proposition 5.1.)

5.4.2 Correctness of CoPaM for 1
2
≤ α

After having analyzed the monotonicity properties of each of the constraints separately, we analyze

now the simultaneous satisfaction of them for α ≥ 1
2 .

Theorem 5.1 Simultaneous satisfaction of the connectivity and density constraints is loose anti-

monotone for α ≥ 1
2 .

Proof Let G = (V,E,D) be connected and α-dense for α ≥ 1
2 . Assume the only α-removable

nodes in G are bridge nodes. Let b ∈ V be one of them. Then G− b contains at least two connected

componentsG1 andG2. There is at least one node inG1, say v1, whose removal does not disconnect

G (application of Lemma 5.1 to G1 + v). Since v1 was not α-removable, degG(v1) > α(|V | − 1).

CHAPTER 5. COHESIVE PATTERN MINING 51

Therefore, G1 contains more than α(|V |−1)−1+1 ≥ 1
2(|V |−1) nodes. Using a similar argument

for G2 results in G having more than |V | nodes, which is a contradiction. Therefore, there exists a

node v ∈ V , such that G− v is connected and α-dense.�

Algorithmic implication of Theorem 5.1: Let α ≥ 1
2 . We want to find a cohesive pattern G =

(V,E). By Theorem 5.1, there exists a node v ∈ V such that G−v is α-dense and connected. Since

the subspace cohesion constraint is anti-monotone by definition, pattern G− v is a cohesive pattern

as well. If we apply this top-down strategy recursively, we will end up with a cohesive edge. The

set of all cohesive edges is exactly the input to CoPaM. Within the expand-by-one phase, current

cohesive patterns are expanded by neighboring nodes. Therefore, the expand-by-one phase finds all

cohesive patterns for α ≥ 1
2 .

Next, we show that indeed for α < 1
2 a different algorithmic strategy is necessary.

Proposition 5.3 The connectivity and α density constraints together are not loose anti-monotone,

if α < 1
2 .

Proof (by counter example). Figure 5.2 on page 42 shows a cohesive pattern for α = 0.41. The

only 0.41-removable node is c. Since c is a bridge node, its removal disconnects the graph, and

therefore the connectivity constraint is violated. Therefore, the connectivity and density constraint

together are not loose anti-monotone.�

5.4.3 Correctness of CoPaM for 1
3
≤ α < 1

2

In the last section, it was shown that the CP constraint is not loose anti-monotone for 1
2 < α. We still

can guarantee the correctness of CoPaM by applying the second phase (merging phase) as shown in

the following. After introducing on additional definition, several lemmas are provided. This section

is concluded with the proofs of the decomposition and completeness proof.

Definition 5.10 (Core Component, Leaf (Core Component)) Let G = (V,E,D) be a cohesive

pattern and ∅ 6= CN(G) ⊂ V be the set of α-critical nodes in G. The connected components

in G − CN(G) are called core components. A core component which is connected to only one

α-critical node is called leaf core component or leaf for short.

An example of a graph containing leaf core components and core components can be found in

Figure 5.4. The graphs contains four leafs, L1 to L4.

CHAPTER 5. COHESIVE PATTERN MINING 52

L1

L3

C1

L2

L4

Figure 5.4: Illustration of Definition 5.10.
L1, L2, L3 and L4 are leaf core components; C1 is a core component.

Lemmas

An illustration of the following lemma can be found in Figure 5.5.

Lemma 5.2 Let G be a graph and let B be a subset of the bridge nodes in G. If |B| > 0 then G

contains at least two connected components which are each connected to only one node in B.

Proof Induction basis: If B contains only one node, then after the removal of this node, the graph

results in at least two connected components which were connected to exactly one node in B, see

left graph in Figure 5.5.

Induction step: Suppose B contains more than one node. After the removal on arbitrary node

b ∈ B, the remaining graph consists of at least two connected components CC1, . . . CCi, i ≥ 2, see

right graph in Figure 5.4. If CC1 is connected to only one bridge node, then we stop. If CC1, is

connected to several bridge nodes, we apply the induction hypothesis to CC1 + b. This results in at

least two connected components which are connected to exactly one node in B \ {b}. However, one

of these components might be b itself. Since j ≥ 2, we use the same procedure for CC2. Therefore,

in total there are at least two connected components which are connected to exactly one node in B.

�

Lemma 5.3 If G contains at least one α-critical node, then G contains at least two leaf core com-

ponents.

Proof The α-critical nodes inG are a subset of all bridge nodes inG. Using Lemma 5.2,G contains

at least two leaf core components.�

CHAPTER 5. COHESIVE PATTERN MINING 53

L1

L3

L2

L1

L3

C1

L2

L4

CC1

CC2

b

Figure 5.5: Illustration of Lemma 5.2.
The left graph contains only one bridge node. The right graph contains five bridge nodes. When
choosing bridge node b, this results in the two highlighted components, namely CC1 and CC2.

The previous Lemma is very critical for the following proofs. Based on it, we know that any

cohesive pattern contains at least two leaf core components.

Lemma 5.4 The degree of any node in a leaf core component is at least dα(|V | − 1)e.

Proof Let G be a cohesive pattern, which contains a leaf core component L1 = (V1, E1, D1).

Assume there exists a node v ∈ V1, such that deg(v) < dα(|V | − 1)e. In the first part of the proof

of Proposition 5.2, it is shown that every node with degree less than dα(|V | − 1)e is α-removable.

The removal of v either disconnects G or it does not:

• Removal of v disconnects G: This implies v is an α-critical node. Contradiction, core

components cannot contain α-critical nodes.

• Removal of v does not disconnect G: Contradiction to the definition of core component - a

core component cannot contain α-removable nodes.

Therefore, the degree of each node in L1 is at least dα(|V | − 1)e.�

Lemma 5.5 Let G = (V,E,D) be an α-critical cohesive pattern. The size of a leaf is at least

dα(|V | − 1)e.

CHAPTER 5. COHESIVE PATTERN MINING 54

Proof By Lemma 5.4, it is known that each node in a leaf has a degree of at least dα(|V | − 1)e.
However, each node in a leaf core component is connected to at most one α-critical node. In order

to fulfill this degree requirement, the size of the component has to be at least dα(|V | − 1)e.�

Lemma 5.6 Let 1
3 ≤ α < 1

2 andG = (V,E,D) be a cohesive pattern. The removal of an α-critical

node from G disconnects G into exactly two leafs.

Proof Let n be the number of nodes in G. Assume G contains three core components G1, G2 and

G3. By Lemma 5.3, there exist at least two leaf core components, say G1 and G2, and at least one

α-critical node. By Lemma 5.5, both G1 and G2 contain more than α(n− 1) ≥ n−1
3 nodes. In total,

G1 and G2 contain more than 2(n−1
3) nodes.

Thus, the size of G−G1 −G2 is less than n− 2(n−1
3) = n+2

3 . Therefore, less than n+2
3 nodes

need to cover at least one additional core component G3 (and at least one α-critical node). Every

node in G3 must be connected to more than n−1
3 nodes - however, these nodes cannot be in G1 or

G2. Therefore, the size of G3 is at least n+2
3 . However, there remain less than n+2

3 nodes upon

removal G1 and G2 from G.

This is a contradiction, therefore G cannot contain more than two core components. Since by

Lemma 5.3, G contains at least two leaf core components, these two core components are leaf

core components. However, G can contain two leaf core components as the example in Figure 5.2

shows.�

Lemma 5.7 Let L1 = (V1, E1, D) and L2 = (V2, E2, D) be the two leafs in an α-critical cohesive

pattern G = (V,E,D) and let α ≥ 1
3 , then |V1| < 2|V2|.

Proof By Lemma 5.5,

α(|V | − 1) < |V2| (5.1)

Assume, 2|V2| ≤ |V1|. Therefore,

3α(|V | − 1) < |V1|+ |V2|.

We know that |V1|+ |V2| = |V | − |CN(G)|, therefore,

3α(|V | − 1) < |V | − |CN(G)|.

Then α < |V |−|CN(G)|
3(|V |−1) . Now since CN(G) ≥ 1 we get α < 1

3 . This contradicts with α ≥ 1
3 .

Therefore, 2|V2| > |V1|.�

CHAPTER 5. COHESIVE PATTERN MINING 55

Lemma 5.8 Let G1 = (V1, E1, D) and G2 = (V2, E2, D) be the two leafs in an α-critical cohesive

pattern G = (V,E,D) and let α ≥ 1
3 , then G1 and G2 are 1

2 -dense.

Proof Assume G1 is not 1
2 -dense. This means there exists a node v ∈ V1 which is connected to less

than |V1|−1
2 nodes within G1 and to at most one α-critical node. Therefore,

deg(v) <
|V1| − 1

2
+ 1 =

|V1|+ 1
2

.

Since v is not an α-critical node, we also know that deg(v) > α(|V | − 1). Since α ≥ 1
3 and

CN(G) ≥ 1,

deg(v) > α(|V | − 1) ≥ 1
3
(|V1|+ |V2|+ CN(G)− 1) ≥ 1

3
(|V1|+ |V2|).

Combining the two above inequalities results in

1
3
(|V1|+ |V2|) < deg(v) <

|V1|+ 1
2

(5.2)

We distinguish between |V1| being odd and even.

• |V1| is odd: Since degree of v must be integer,

deg(v) <
⌈ |V1|+ 1

2

⌉
⇒ deg(v) ≤ |V1| − 1

2
(5.3)

By Lemma 5.7, we have |V2|
|V1| >

1
2 . Since |V2| is an integer, we get

|V2| ≥ |V1|+ 1
2

.

Combining this result with (5.2) we get

ddeg(v)e ≥
⌈

1
3
(|V1|+ |V2|)

⌉
≥

⌈
1
3

(
|V1|+ |V1|+ 1

2

)⌉
=

⌈ |V1|
2

+
1
6

⌉
=
|V1|+ 1

2
(5.4)

(5.3) and (5.4) are contradicting each other, therefore G1 is 1
2 -dense, if |V1| is odd.

CHAPTER 5. COHESIVE PATTERN MINING 56

• |V1| is even:

deg(v) <
|V1|+ 1

2
⇒ deg(v) ≤ |V1|

2
(5.5)

By Lemma 5.7, we have
|V2|
|V1| >

1
2
.

Thus,

|V2| ≥ |V1|+ 2
2

.

From (5.5) we get,

deg(v) ≥
⌈

1
3
(|V1|+ |V2|)

⌉
≥

⌈
1
3

(
|V1|+ |V1|+ 2

2

)⌉
=
|V1|+ 2

2
(5.6)

Since (5.5) and (5.6) contradict each other, G1 is 1
2 -dense, if |V1| is even.

Thus, G1 is α-dense. Similar proof for G2.�

Lemma 5.9 Let G = (V,E,D) be an α-critical cohesive pattern containing a set of α-critical

nodes CN(G). Let c1 ∈ CN(G) and c2 ∈ CN(G) be the α-critical nodes that the two leaf core

components G1 = (V1, E1) and G2 = (V2, E2) respectively are connected to. Let also G∗1 =

(V ∗1 , E
∗
1) = G1 + c1 and G∗2 = (V ∗2 , E

∗
2) = G2 + c2, then G∗1 and G∗2 are both α-dense.

Proof For every node v ∈ V1, by Lemma 5.4 deg(v) > α(|V | − 1). Therefore,

|E∗1 | >
|V1|α(|V | − 1)

2
.

Calculating the density of G∗1, we get

d(G∗1) =
2|E∗1 |

|V1|(|V1|+ 1)

>
2|V1|α(|V | − 1)
2(|V1|(|V1|+ 1))

=
α(|V1|+ |V2|+ CN(G)− 1)

|V1|+ 1
> α, (5.7)

since |V | = |V1|+ |V2|+ |CN(G)|. Therefore, G∗1 is α-dense. Analogous proof for G∗2.�

CHAPTER 5. COHESIVE PATTERN MINING 57

Decomposition Theorem and Completeness Proof

Theorem 5.2 (Decomposition Theorem - first part) Let G be an α-critical cohesive pattern con-

taining the α-critical nodes CN(G) and two leaf core components G1 and G2. There exists a

non-disjoint partitioning of CN(G) into C1 and C2, such that C1 ∪ C2 = CN(G), |C1 ∩ C2| ≥ 1

and G1 ∪ C1 and G2 ∪ C2 are α-dense and overlap.

Proof Note that CN(G) is a simple path. This is due to the fact that G1 and G2 are leaf core

components. By definition, leaf core components can be connected to only one node in the set of

α-critical nodes. Therefore, CN(G) is a simple path.

By Lemma 5.9, we know G∗1 and G∗2 are α-dense. Let G′1 = (V ′1 , E
′
1) := G1 ∪ C1 and G′2 =

(V ′2 , E
′
2) := G2 ∪ C2 denote the graphs resulting by adding one connected α-critical node at a time

(from CN(G)) to G∗1 and G∗2 until the resulting graphs cannot be expanded any further.

Assume G′1 and G′2 do not overlap, i.e.,

• |E′1|+ 1 < α|V ′1 |(|V ′1 |+1)
2 and

• |E′2|+ 1 < α|V ′2 |(|V ′2 |+1)
2

Furthermore, there are T ≥ 1 α-critical nodes not absorbed by G′1 or G′2.

Note that |E| = |E′1|+|E′2|+T−1, |V | = |V ′1 |+|V ′2 |+T . LetK be defined asK = |V ′1 |+|V ′2 |.
The density of G is calculated as follows:

d(G) =
2|E|

|V ||V − 1|
=

2(|E′1|+ |E′2|+ T − 1)
(K + T)(K + T − 1)

<
2(α|V

′
1 |(|V ′1 |+1)

2 + α|V ′2 |(|V ′2 |+1)
2 + T − 1)

(K + T)(K + T − 1)

= α

[
|V ′1 |(|V ′1 |+ 1) + |V ′2 |(|V ′2 |+ 1) + 2T−2

α

|V ′1 |2 + |V ′2 |2 + 2(|V ′1 ||V ′2 |) + (2T − 1)(|V ′1 |+ |V ′2 |) + T 2 − T

]
(5.8)

Since T ≥ 1, |V ′1 | ≥ 4 and |V ′2 | ≥ 4 (Lemma 5.10), therefore K ≥ 8 which results in

|V ′1 |(|V ′1 |+ 1) < |V ′1 |(K + T − 1)

|V ′2 |(|V ′2 |+ 1) < |V ′2 |(K + T − 1)

(5.9)

CHAPTER 5. COHESIVE PATTERN MINING 58

Note that

2(T − 1)
α

< T (K + T − 1)

because α ≥ 1
3 and

2
3
(T − 1) < T (8 + T − 1)

⇔ 2
3

< T

(
1 +

8
T − 1

)
(5.10)

Since T ≥ 1, inequality (5.10) is fulfilled.

Since the nominator in (5.8) is smaller than the denominator (5.10), the density of G is smaller

than α which is a contradiction. Therefore, G′1 = G1 ∪ C1 and G′2 = G2 ∪ C2 overlap.�

Theorem 5.3 (Decomposition Theorem - second part) Let G, G1 ∪ C1 and G2 ∪ C2 be defined

as in the first part of the Decomposition Theorem.

There exists Gmerge1 and Gmerge2 , Gmerge1 ⊆ (G1 ∪ C1) and Gmerge2 ⊆ (G2 ∪ C2), such that

|Gmerge1 ∩Gmerge2 | = 1. Furthermore, Gmerge1 and Gmerge2 are expanded-by-one cohesive patterns

and merging candidates.

Proof LetG1∪C1 andG2∪C2 be as defined in the first part of the Decomposition Theorem. Clearly,

we can find a connected subgraph Gmerge1 of G1∪C1 such that is overlaps with Gmerge2 := G2∪C2

by exactly one node.

Recall that G1 and G2 are leaf core components. By Lemma 5.8, G1 and G2 are 1
2 -dense. There-

fore, by Theorem 5.1, they are expanded-by-one cohesive patterns. Since Gmerge1 and Gmerge2 are

generated from G1 and G2 by adding one connected node at a time and they are α-dense (by the

first part of the theorem) - they are also expanded-by-one cohesive patterns.

It remains to show thatGmerge1 andGmerge2 are merging candidates. Recall, a merging candidate

is a 1
2 -dense graph together with a simple path P . However, the α-critical nodes form a simple path -

see proof of first part of the Decomposition Theorem. Furthermore,G1 andG2 are 1
2 -dense (Lemma

5.8). Therefore, the definition ofGmerge1 andGmerge2 follows the definition of merging candidates.�

The following lemma is not necessary for the proof of the completeness theorem, but it is neces-

sary to guarantee the correctness of the definition of merging candidates. In the definition of merging

candidates, we state that the size of the 1
2 -dense graph within the merging candidate, is at least 4. In

the following lemma, we show that indeed there cannot exist smaller merging candidates.

CHAPTER 5. COHESIVE PATTERN MINING 59

Lemma 5.10 The size of a merging candidate which can lead to an α-critical graph is at least 5.

Proof The smallest α-critical graph contains a single α-critical node c ∈ CN(G), deg(c) ≥ 2. For

c to be α-critical, its degree is the lowest in the whole graph. Since we want to get the smallest

possible graph, deg(c) = 2. Therefore, the degrees of the nodes in the leaf core components G1

and G2 are at least 3. However, only one node per leaf core component can be connected to c,

therefore, G1 and G2 contain at least 4 nodes. This means that the size of the merging candidates

Gmerge1 = G1 + c and Gmerge2 = G2 + c is at least 5 and the size of G1 and G2 at least 4 - as stated

in the definition.�

Note that node c in the proof above is actually not an α-critical node for any α. However, the

derived lower bounds turn out to be very useful for many proofs, although they are not tight.

In the following, we prove the completeness of CoPaM. We want to show that for α ≥ 1
3 any

cohesive pattern is either expanded-by-one, i.e., it will be found in the expand-by-one phase or it can

be decomposed into two merging candidates and an expand-by-one part. To clarify, what we mean

by expand-by-one part, we refer to Algorithm 3, Line 16. Here, we call the expand by one phase

a second time expanding α-critical cohesive patterns by one neighboring node at a time. These

neighboring nodes, which lead to a cohesive pattern, are called expand-by-one part.

Theorem 5.4 (Completeness Theorem) If 1
3 ≤ α, a cohesive pattern G is either expanded-by-

one or it can be decomposed into an expand-by-one part and two merging candidates which are

expanded-by-one.

Proof Let G be a cohesive pattern of size n. If G is expanded-by-one, we use the same argument

as in Theorem 5.1. Otherwise, let Gn = G be a cohesive pattern which is not expanded-by-one. Let

vn be an α-removable node in Gn which is not a bridge node, i.e., G − vn = Gn−1 is a cohesive

pattern. We apply this strategy recursively untilGj , j ≤ n, contains an α-critical node. This strategy

corresponds to the second call of the expand-by-one phase (Line 16 of Algorithm 3).

By Lemma 5.6, Gj contains exactly two leaf core components G1 and G2 and a set of α-critical

nodesCN(G), i.e.,Gj = G1∪CN(G)∪G2. By the Decomposition Theorem (first and second part),

we know that there exists a non-disjoint partition, C1 and C2, C1∪C2 = CN(G), |C1∩C2| = 1, of

nodes in CN(G) such that G1 +C1 and G2 +C2 overlap and are expanded-by-one. Therefore, they

are found in the expand-by-one phase. The pattern G1 + C1 and G2 + C2 are merging candidates

and are merged into Gj in the merge phase.�

CHAPTER 5. COHESIVE PATTERN MINING 60

Algorithmic implications: The correctness proof is done in a top-down manner, i.e., for any cohe-

sive pattern, we show that it can be decomposed in the described three components, two merging

candidates and an expand-by-one part. However, CoPaM finds in a bottom-up manner all merging

candidates and expands them afterwards. Since CoPaM follows exactly the proof, we have a guaran-

tee that it finds all maximal cohesive patterns. In Figure 5.2, the two merging candidates are G1 + c

and G2 + c. The component CN(G) consists only of node c.

5.5 Experiments

We evaluate CoPaM on three real world datasets, one social network dataset and two biological

datasets. As other graph pattern mining algorithms [62], [76], CoPaM was evaluated in terms of

efficiency and scalability on synthetic datasets. All experiments were performed on a PC running

Linux with a 1.86GHz CPU and 4 GB of main memory.

5.5.1 Social Network Data

One of the applications of CoPaM is the identification of collaboration groups. We used the co-

author dataset from Chapter 4.5. Recall that the feature vectors represented the words occurring

in the abstracts of the respective authors. In this chapter, the feature vectors are transformed into

Boolean values. A one means that the corresponding word occurred at least one time in the abstract

of an author. A zero means it never occurred. We chose the following subspace cohesion function

ssn:

ssn(V,D, true) = ∀v ∈ V, d ∈ D : Fd(v) = true,

where Fd(v) denotes the feature vector of node v in dimension d. This subspace cohesion function

requires that all members of a community have all keywords in subspace D in common. Further-

more, the threshold for the minimum dimensionality was set to 16 and the density α was set to
1
3 . Since there is no gold standard to evaluate the results on social network data, we discuss some

anecdotal evidence of the meaningfulness of the cohesive patterns discovered.

In total, CoPaM identified 59 collaboration groups of size 6 or larger. As anecdotal evidence of

the meaningfulness of cohesive patterns we discuss the following examples:

1. Wei Wang, Philip Yu, Jiawei Han, Beng Ooi, Kian-Lee Tan, Hongjun Lu (density = 0.4)

2. Philip Yu, Jiawei Han, Charu Aggarwal, Laks Laskhamanan, Divesh Srivastava, H. Jagadish

(density = 0.5)

CHAPTER 5. COHESIVE PATTERN MINING 61

Jiawei Han and Philip S. Yu are part of both patterns. Depending on the topic they have collab-

orated with different researchers. According to the first pattern they worked with Wei Wang, Beng

Ooi, Kian-Lee Tan and Hongjun Lu on statistical methods (some of the identified subspace dimen-

sions are skew, mixture and uniform). According to the second pattern, they worked with Charu

Aggarwal, Laks Lakshmanan, Divesh Srivastava and H. Jagadish on hierarchical document min-

ing (document, feature and hierarchical). We also identified the cohesive pattern of size 18 which

can be found in Figure 5.6. This pattern corresponds to the VLDB paper with the title The Propel

Distributed Services Platform.

Figure 5.6: Largest cohesive pattern from social network dataset.

5.5.2 Biological Data

The two datasets under consideration are human and yeast. In both datasets the nodes correspond to

genes, the edges to interactions (protein-protein and genetic interactions) and the feature vectors to

gene expression data. It has been argued, (e.g., [20, 70, 36]) that the combined analysis of these two

data types for the identification of modules is more promising than the individual analysis. Indeed,

the identified maximal cohesive patterns have a specific biological meaning, namely modules, as we

will show in the following.

Human Dataset (H.sapiens): The interaction network (graph data) was extracted from the BioGRID

database [19], which integrates both protein-protein and genetic interactions from multiple publicly

available datasets. For the expression data (feature vectors), the comprehensive human tissue ex-

pression dataset [21] was used. As suggested by the authors, we retained only variably expressed

CHAPTER 5. COHESIVE PATTERN MINING 62

genes which showed at least 2-fold ratio variation from the mean in at least two experiments. The

final dataset contains 3,628 nodes connected by 8,924 edges and 115 dimensions.

Yeast Dataset (S.cerevisiae): The interaction network (graph) was also retrieved from the BioGRID

database [19]. The gene expression data (feature vectors) was acquired from Huges et al. [22], which

contains fold changes of genes in 300 cDNA experiments. The final dataset contains 1,043 genes

with 2,664 interactions and 300 dimensional feature vectors.

Due to the absence of comprehensive module annotations, a common method for evaluating

module inference algorithms is testing for statistically significant over-represented biological pro-

cess gene ontology (GO) terms in the group of interest. The GoMiner tool1 is used for testing

whether the maximal cohesive patterns are enriched with GO terms with P-values below a threshold

of 0.01. The following three metrics are used to evaluate the quality of the results:

1. The enrichment (precision) is computed as the percentage of cohesive patterns that are en-

riched with at least one GO term.

2. The coverage (recall) is defined as the number of GO terms associated with an enriched

cohesive pattern divided by the number of all GO terms in the dataset.

3. The F-Measure captures the trade-off between precision and recall. Given enrichment E and

coverage C, it is computed as F = 2EC
E+C .

The subspace cohesion function, sbio, is defined as

sbio(V,D, θs)

= ∀d ∈ D : |max{Fd(v), v ∈ V } −min{Fd(v), v ∈ V }| ≤ θs.

The function Fd(v) denotes the value of v’s feature vector in dimension d. This cohesion function

requires that the expression values (or fold changes) of all genes (nodes) in a pattern induced by V

are within a range of θs in all experiments (dimensions)D. Note that if Fd(v) refers to missing data,

sbio is false.

To assess the quality of CoPaM of the biological dataset, we compared it to two related state-

of-the-art algorithms that operate on both graph data and feature vectors, MATISSE [70] and Co-

clustering [36]. For the comparison partners, we used the recommended parameter settings. For

1http://discover.nci.nih.gov/gominer/

CHAPTER 5. COHESIVE PATTERN MINING 63

Table 5.2: Quality assessment on the human dataset
Algorithm Coverage Enrichment F-measure
Co-Clustering 0.65 0.79 0.71
MATISSE 0.38 0.93 0.54
CoPaM 0.64 0.96 0.77

Table 5.3: Quality assessment on the yeast dataset
Algorithm Coverage Enrichment F-measure
Co-Clustering 0.42 0.71 0.53
MATISSE 0.17 0.94 0.29
CoPaM 0.59 0.95 0.73

CoPaM, the density threshold was set to 0.65, based on the density distribution of known modules2.

For yeast, the fold-change range threshold (θs) was set to 1.25 and the minimum dimensionality to

140, which is also derived from the true modules. For the human dataset, we used a more relaxed

parameter setting due to the high amount of noise and missing values in the human gene expression

data. We used 1.4 for the fold-change range threshold (θs) and 10 for the minimum dimensionality.

Results

Table 5.2 and Table 5.3 show the results from the human and yeast datasets respectively. The best

score for each metrics is printed in bold font. In both datasets, MATISSE and CoPaM consis-

tently yield enrichment over 90%. However, coverage-wise we see that only Co-Clustering and

CoPaM yield scores over 60% in the human dataset and CoPaM achieves the top coverage by a

large margin in the yeast dataset. MATISSE outputs only the statistically significant patterns, hence

it achieves high enrichment. However, it performs poorly in terms of coverage. On the other hand,

Co-Clustering forces every node into a pattern, hence it yields high coverage at the cost of poor en-

richment. Although CoPaM does not force every node to belong to a pattern, it achieves comparable,

if not better, coverage, due to its completeness. This means that CoPaM is able to find patterns of

a larger range of functionalities without sacrificing quality. This is supported by the F-measure, in

which CoPaM performs the best.

CoPaM finds connected, dense and homogeneous patterns. It allows overlap and does not force

every node into a pattern. None of the comparison partners address all of these issues simultaneously

and we argue this is the main reason for the superiority of CoPaM. The runtime was 8 seconds for

2http://www.yeastgenome.org

CHAPTER 5. COHESIVE PATTERN MINING 64

Table 5.4: Runtime of synthetic datasets.
Number of nodes 746 1,492 2,238 2,984 3,730
Runtime in seconds 50 111 306 421 560
Number of cohesive patterns 667 1,347 2,037 2,723 3,419

the human dataset and 18 seconds for the yeast dataset.

5.5.3 Synthetic Data

In this section, we analyze the runtime of CoPaM on synthetic datasets. The synthetic FVNs are

based on the social network dataset described in Section 5.5.1. We took the largest component

after the removal of non-cohesive edges and made several copies of it, connecting the components

randomly with cohesive edges. These graphs have the property that they are connected after the

preprocessing phase. We chose the following parameter settings: α = 1
3 , s is the same as for the

social network dataset, minimum dimensionality is set to 20.

We generated graphs with the sizes of 746, 1492, 2238, 2984, 3730. The total runtimes and

number of maximal cohesive patterns can be found in Table 5.4. The size of the largest pattern is

19. The runtime ranges from 50 seconds for the graph of size 746 to 560 seconds for the graph of

size 3730. The number of maximal cohesive patterns is between 667 and 3419. Let us now have a

closer look at the different levels of these runtimes. Recall that a level in CoPaM corresponds to the

step of generating cohesive patterns of size n based on the ones of size n-1. For example, on level

7, where the time for generating cohesive patterns of size 7 based on the ones of size 6 is measured,

we recognize a linear trend, see Figure 5.7. The data points in this figure correspond to the runtime

for the different synthetically generated graphs. The runtime for generating 43,978 patterns in the

graph of size 746 is 5 seconds and increases linearly with the number of cohesive patterns, up to 26

seconds for 238,489 patterns in the graph of size 3,730.

5.5.4 Comparison to Baseline Approaches

We compare the number of patterns produced by the baseline algorithms introduced in 5.3.1 (called

Baseline 1 and 2) versus CoPaM. All algorithms are output-sensitive algorithms in each level (=size

of patterns), therefore the runtime is reflected by the number of patterns. That was also shown

experimentally in the previous subsection. The dataset is the same as the one described in Section

5.5.1 with the stated parameters. For the generation of patterns up to a size of 5 (a larger number

caused a memory overflow), Baseline 1 generated 70 times more patterns than CoPaM and Baseline

CHAPTER 5. COHESIVE PATTERN MINING 65

50000 100000 150000 200000

5
10

15
20

25
of Cohesive Patterns

T
im

e
(in

 s
ec

on
ds

)

●

●

●

●

●

Figure 5.7: Runtime for generating cohesive patterns.
Time it takes to generate cohesive patterns of size 7 based on cohesive patterns of size 6.

2 eleven times.

5.6 Extensions of CoPaM

CoPaM can be extended in various ways. In this section, we discuss two extensions: a parallelized

version of CoPaM and additional constraints for cohesive patterns.

5.6.1 Parallelization of CoPaM

In some applications, memory and/or speed of CoPaM might be an issue due to the number of

patterns mined by CoPaM. For these cases, we propose a parallelized version of CoPaM, called

paraCoPaM. In the following, we explain its differences to CoPaM. The pseudo code of paraCoPaM

can be found in Algorithm 6. The algorithm does not require shared memory.

The general idea of paraCoPaM is to divide the input FVN into several partitions and mine the

cohesive patterns in these partitions in parallel, see also Figure 5.8. In this figure, the input FVN is

partitioned into G1 and G2. Concretely, the input to paraCoPaM is the same as to CoPaM with one

additional parameter, k, reflecting the number of desired processes. In line 3 of Algorithm 6, all non-

cohesive edges are removed from G. Our goal is to mine the patterns in G in parallel. However, it has

been previously reported [4] that the size distribution of the connected components in biological (and

social) networks is highly skewed, i.e., these networks often contain one giant connected component

along with many other small ones. Therefore, in order to parallelize the computation for the FVN

and in particular for the large component(s), we partition the nodes of G into k balanced partitions

CHAPTER 5. COHESIVE PATTERN MINING 66

P1, . . . Pk and analyze these partitions independently. The partition is achieved by applying the k-

way normalized cut [75], a graph cut algorithm which guarantees balanced components. Dhillon et

al. [13] propose a very fast approximation algorithm, called graclus, to solve the k-way normalized

cut problem.

Figure 5.8: Illustration of paraCoPaM.
The top figure shows the result of applying the 2-way cut to a graph G. The bottom figure shows

the assignment of the edges to the two processes P1 and P2 in the initialization phase.

These k smaller partitions are independently mined in parallel. In order to still guarantee cor-

rectness, the first phase of CoPaM has to be adapted slightly. When expanding cohesive patterns,

not only all neighboring nodes within the current partition have to be considered, but also connected

nodes from neighboring partitions. After the first phase is finished, the identified cohesive patterns

and merging candidates are combined. If α is less than 1
3 , the second phase has to be applied to the

merging candidates. Finally, as in the case of CoPaM, a maximality check is required.

We explain this extension now based on the following example. As in Figure 5.8, assume k = 2.

Therefore, the normalized cut procedure returns two partitions, namely P1 and P2. Partition P1 is

analyzed by Proc1 and P2 by Proc2. The seeds induced by the edges in the cut (e1 and e2) will

be added to the machine which handles fewer edges (Proc1). For the extension of the nodes in P1,

we need to consider not only the nodes within P1 but also the nodes in P2. This way, no cohesive

pattern will be missed during the first phase of paraCoPaM. The second phase of paraCoPaM stays

the same as in CoPaM.

5.6.2 Additional Constraints on Cohesive Patterns

In some applications, additional constraints on the cohesive patterns are desirable. In the following,

we introduce two constraints: one in which the input graph has edge weights and one in which

CHAPTER 5. COHESIVE PATTERN MINING 67

Algorithm 6 paraCoPaM: Parallelized Cohesive Pattern Miner

1: INPUT: G = (V, E ,D,A), α, s, θs, θdim, k
2: OUTPUT: maximal cohesive patterns
3: PREPROCESSING: remove non-cohesive edges from G
4: P1, . . . Pk :=NormalizedCut(G, k)
5: for all parallel (partition Pi = (Vi, Ei) in G) do
6: // FIRST PHASE: EXPAND-BY-ONE
7: currCohesivePatternsi ← ∅
8: mergingCandi ← ∅
9: for all (edges e = {v1, v2} ∈ Ei) do

10: Ge ← ({v1, v2}, {{v1, v2}}, D)
11: currCohesivePatternsi.add(Ge)
12: end for
13: currCohesivePatternsi,mergingCandi ← Expand-by-one(currCohesivePatternsi)
14: end for
15: // COMBINE RESULTS
16: currCohesivePatterns = ∪icurrCohesivePatternsi

17: mergingCand = ∪imergingCandi

18: if (α < 1
2) then

19: // SECOND PHASE: MERGE
20: mergedPatterns← merge(mergingCand)
21: currCohesivePatterns.add(Expand-by-one(mergedPatterns))
22: end if
23: MAXIMALITY CHECK: remove non-maximal cohesive patterns from currCohesivePatterns
24: return currCohesivePatterns

several input graphs are provided.

Weighted Cohesive Patterns

In the following, we assume that the FVN contains edge weights. In a social network, edge weights

could be values reflecting the trust between two friends or the number of exchanged instant mes-

sages. Formally, a weighted graph is defined as follows:

Definition 5.11 (Edge weight function, weighted FVN) Let G = (V, E ,D,F) be a FVN. Let

w : E → R

be an function, called edge weight function, which assigns to every edge e ∈ E a weight w(e) ∈ R,

then G = (V, E ,D,F ,w) is called weighted FVN.

A user might be interested in mining all cohesive patterns whose weight exceeds a certain thresh-

old. There are several alternative definitions for the weight of a cohesive pattern. Two of them are

introduced in the following:

CHAPTER 5. COHESIVE PATTERN MINING 68

Definition 5.12 (Weight of Cohesive Pattern) Let G = (V, E ,D,F ,w) be a weighted FVN andG =

(V,E,D) be a cohesive pattern.

• The average weight of G is defined as: wavg(G) =
∑

e∈E w(e)

|E| .

• The relative weight of G is defined as: wrel(G) =
∑

e∈E w(e)
|V |(|V |−1)

2

.

Based on this definition, a weighted cohesive pattern is introduced:

Definition 5.13 (Weighted Cohesive Pattern, Weight Constraint) Let 0 ≤ θw ≤ 1 be a weight

threshold. A cohesive pattern G is called weighted cohesive pattern if wavg(G) > θw, respectively

wrel(G) > θw. (Weight Constraint)

Every weighted cohesive pattern is also a cohesive pattern. Therefore, for both weight defi-

nitions, CoPaM is able to find all weighted cohesive patterns efficiently by checking the weight

constraint for cohesive patterns during the mining process. In case of the average weight and

w : E → [0, 1], our loose anti-monotonicity proof for the simultaneous satisfaction of density

and connectivity constraints for α ≥ 1
2 (Theorem 5.1) can be easily extended as follows:

Theorem 5.5 Simultaneous satisfaction of the connectivity and density constraints for weighted

cohesive patterns (average weight) is loose anti-monotone for α ≥ 1
2 .

Proof Let G = (V,E,D) be connected and α-dense for α ≥ 1
2 . Assume the only α-removable

nodes in G are bridge nodes. Let b ∈ V be one of them. Then G− b contains at least two connected

componentsG1 andG2. There is at least one node inG1, say v1, whose removal does not disconnect

G (application of Lemma 5.1 to G1 + v). Since v1 was not α-removable, wG(v1) > α(|V | − 1),

where wG(v1) =
∑
{v1,u}∈E w({v1, u}). Since w({v1, u}) ≤ 1, G1 contains more than α(|V | −

1)− 1 + 1 ≥ 1
2(|V | − 1) nodes. Using a similar argument for G2 results in G having more than |V |

nodes, which is a contradiction. Therefore, there exists a node v ∈ V , such that G− v is connected

and α-dense.�

Cohesive Patterns across Multiple Feature Vector Networks

In social network analysis, we might have not only the friendship relationships between people -

which could be based on their Facebook friends - but also their friends on their instant messenger.

In order to mine several networks simultaneously, the user might be interested in several different

CHAPTER 5. COHESIVE PATTERN MINING 69

scenarios. He might want to examine the commonalities of networks in order to find out, for exam-

ple, the strength of a friendship. In other scenarios, he might be interested in the differences between

(sets of) networks.

5.7 Conclusion and Future Work

While most existing methods for analyzing network data use graph data only, in many applications,

data have the form of FVNs. Recently, methods for mining such FVNs have emerged in several re-

search communities. To mine patterns in such networks, we introduced the novel problem of mining

cohesive patterns, which combines the concepts of dense subgraphs and of subspace clusters into

a problem definition with important real life applications such as social network analysis and sys-

tems biology. The task is to find all maximal cohesive patterns, i.e., dense and connected subgraphs

with feature vectors that are homogeneous in a sufficiently large subspace. The proposed CoPaM

algorithm makes the computationally hard problem tractable by simultaneously pruning the search

space based on the three constraints (density constraint, subspace cohesion constraint and connec-

tivity constraint) imposed by the definition of a cohesive pattern. We prove that CoPaM is complete

for a density threshold above 1
3 . Our experiments on real life datasets show that CoPaM produces

meaningful patterns. Our evaluation on synthetic data demonstrates the scalability of CoPaM.

We conclude by discussing several directions for future research. An interesting research direc-

tion is the simultaneous analysis of several FVNs. These FVNs might be observations of different

time points or different types of relationships, such as friendships, phone call networks and ex-

changed instant messages. A further interesting direction is the tracking of changes in communities

over time.

One problem we faced when evaluating CoPaM was the lack of publicly available social network

datasets. Furthermore, to the best of our knowledge, a generator for FVNs does not exist. To

simulate realistic FVNs is a very hard task, since feature vectors and network structure are dependent

on each other and cannot be generated independently. This inspired our work on a simulator for

FVNs which will be introduced in the next chapter.

Chapter 6

Simulation of Feature Vector Networks

The outbreaks of SARS (Severe Acute Respiratory Syndrome) in 2002 and the Swine flu (H1N1)

in 2009 highlight the importance of epidemiological research. Epidemiologists could be interested

in the simulation of the disease spread in networks. The network structure is particularly impor-

tant, since influenza spreads between human beings through coughing, sneezing and touching [1].

However, not every individual is equally receptive to these viruses, and some people might have

already been vaccinated. The receptiveness and immunity might be modeled by adding features to

the persons in the social network, thus resulting in FVNs. Obtaining such real-world FVNs is very

difficult for several reasons. One of the reason is the cost, another is the concern for privacy. To the

best of our knowledge, existing graph generators can only generate networks, but not FVNs. Since

in most cases feature vectors and network structure are dependent on one another, an independent

generation of both data types does not deliver the desired result. This indicates a clear need for a

simulator for FVNs.

In this chapter, we introduce a new methodology for simulating FVNs. In particular, we are

able to simulate networks which are consistent with an estimated statistical model. The two statisti-

cal models under consideration are the previously introduced Latent Socio-Spatial Process (LSSP)

model [47] and its extension, the n∗LSSP model, introduced in this chapter. The main goal of

these models is to predict links in FVNs. The n∗LSSP model takes into account effects related

to the network size using dampening functions and aids in scaling networks to an arbitrary size.

Our experiments on several datasets show that the parameters in the n∗LSSP mode can indeed be

estimated.

70

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 71

6.1 Introduction

Human-to-human infectious diseases such as Influenza or sexually transmitted diseases (STDs) have

very high death toll. Given limited budget and resources, researchers also need to rely on theoretical

studies, in which they simulate the spread of these diseases in order to identify the subset the people

to vaccinate and/or educate. Observing real social networks is very expensive and often impossible

for privacy reason. Therefore, researchers often make use of simulated networks. Unfortunately,

existing models for simulating networks cannot generate feature vectors. Since an independent

simulation of the network structure and feature vectors does not reflect realistic networks, there is a

need for a simulation model for FVNs. There are several requirements on such a model which we

discuss in the following.

6.1.1 Motivation

In the following, we use two examples, based on which we identify critical questions answered in

this chapter. Consider a village of 20 people. It is very likely that everyone knows everyone, in-

dependent of their socio-economic status. However, in larger cities sociologists find that the socio-

economic status and other features such as age, gender and education level have a high impact on

the choice people make in terms of their friendships [71], [46]. Thus, the way in which friendship

relationships are formed depends on the number of people in the population. The larger the popula-

tion, the more selective people can be when forming friendships. One question, someone might ask

now is, how to integrate the population size into a network model. As a second example, consider

high schools. Further, let’s assume we know the social network of two high schools; one with 500

students and the other with 1000. How can we simulate the social network of a school with 1500

students based on the statistical properties of the smaller networks?

The first contribution of this chapter is the n∗LSSP model, which is, to the best of our knowledge,

the first statistical model for FVNs which tackles the issue of taking into account the population

size. The n∗LSSP model is based on the recently introduced LSSP model and extends this model by

integrating two dampening functions.

The underlying idea of the LSSP and n∗LSSP model is to project the features of people into

a so-called social space, such that two individuals who are close in social space, are more likely

to be connected than others who are not. This social space is modeled by a latent function whose

parameters are estimated using Markov Chain Monte Carlo (MCMC).

We also introduce a framework for simulating FVNs based on the LSSP and n∗LSSP model.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 72

The simulated networks have similar statistical properties to the original FVN/set of original FVNs.

When simulating networks of a significantly different size than the input network, certain issues

which we label as constant link probability and as constant distance in social space arise. The

n∗LSSP model provides solutions for both issues.

6.1.2 Contributions

The main contributions that we present in this chapter are as follows:

• We introduce the first methodology for simulating FVNs.

• We propose the n∗LSSP model, an adaptation of the existing LSSP model. The n∗LSSP model

takes into account effects related to the network size by introducing two dampening functions.

• We evaluate the n∗LSSP model on several synthetic datasets.

• We evaluate the methodology for simulation of FVNs.

• We discuss the impact of the model parameters on the link probabilities.

Overview

In Section 6.2, we discuss the existing literature in the area of statistical network modelling. Next,

we review the LSSP model (Section 6.3), on which the n∗LSSP model, introduced in Section 6.4,

is based. In the aforementioned two sections, we also propose two algorithms for simulating FVNs,

called simLSSP and simn∗LSSP. An evaluation of the n∗LSSP model can be found in Section 6.5.

Section 6.6 provides a parameter sensitivity analysis. This chapter is concluded in Section 6.7.

6.2 Related Work

In this section, first some preliminaries are discussed. Next, state-of-the-art statistical models for

FVNs are reviewed.

6.2.1 Preliminaries

Most of the models in this chapter focus on social networks. Accordingly, the term actor and node

are used interchangeably. Recall, that y denotes an n×n-dimensional symmetrical adjacency matrix

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 73

and x an n× d-dimensional covariate matrix. The domain of x is denoted by D. Capital letters are

used to denote random variables and lower case letters to denote observations. Vectors and matrices

are bolded. Therefore, the observed socio-matrix (denoted by y) is a realization of the random

variable Y . Let Yi,j denote the ijth element of Y . The probability associated with Yi,j is defined as:

Pr(Yi,j = 1) = πi,j ,

where πi,j is called link probability. Analogous, the probability for not having a link between i and

j is defined as:

Pr(Yi,j = 0) = 1− πi,j .
People tend to form friendships with others based on their respective features, such as age,

gender or educational level. Often individuals tend to befriend similar people, which is also know

by the term social selection, e.g., Lazarsfeld et al. [46]. Therefore, most models in this chapter

assume the edges, and therefore also the edge probabilities, to be independent conditional on the

covariates, x, and the model parameters, θ. Based on this, the link probability πi,j is a short form

of the function π(xi,xj ,θ). Furthermore, the probability of an observed network y is:

Pr(Y = y|θ,x) =
∏
i>j

Pr(Yi,j = yi,j |θ,xi,xj) =

∏
i>j

π
yi,j

i,j (1− πi,j)1−yi,j .

Modeling of Link Probabilities

Often, the πi,j’s are not modeled directly. Instead a logistic transformation (inverse logit), ilogit, is

used as link function [51]. The logistic transformation is defined as

πi,j = ilogit(ηi,j) =
exp(ηi,j)

1 + exp(ηi,j)
.

Similar to πi,j , the term ηij is the short form for η(xi,xj ,θ). In the models below, the proba-

bility πi,j is defined as ilogit(ηi,j). This transformation guarantees that the link probability πi,j is

in [0; 1]. The relationship between η and ilogit(η) is depicted in Figure 6.1.

Remark

Some of the models below cannot directly deal with FVNs, but require the (node-specific) features

(e.g., xi and xj) to be transformed into edge-specific features xi,j . A possible transformation

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 74

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

η

il
og

it
(η

)

Figure 6.1: Logitistic transformation of η.

calculates the (component-wise) difference between the feature vectors, i.e., xi,j = |xi - xj |. In the

following, with xi,j we refer to this edge-specific feature vector.

6.2.2 Statistical Models for FVNs

In this thesis, we focus only on discriminative models. Discriminative models can be used to predict

links and are of the form Pr(Y = y|x). We review the three dominant types of discriminative

models. First, the Logistic Regression model is reviewed, afterwards the Latent Space Model and

several of its extensions. The LSSP model will be explained in detail in Section 6.3.

Logistic Regression Model

A straight-forward statistical approach for link prediction in FVNs is the standard logistic regression

model [51]. Logistic regression is a generalized linear model typically used for binary regression

models. As before πi,j = exp(ηi,j)
1+exp(ηi,j)

, where

ηi,j = β′xi,j .

The linear form of this model restricts the types of networks it is able to model. Furthermore, it does

not take into account the xi and xj separately, but only in the form of xi,j .

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 75

Latent Space Models

The general idea of the latent space model is to introduce a latent space, which is called social space.

Actors are projected into this social space, such that the closer two actors are in the social space,

the more likely they are connected with each other. On the other hand, the further apart they are in

social space, the less likely they are connected. The reason for introducing this social space is that

sociologists observed that people tend to befriend similar people more likely than dissimilar people

[46]. In Hoff et al. [38], a latent space model of the following form is introduced:

ηi,j = β0 + β′xi,j − ‖zi − zj‖.

The β0 + β′xi,j part of the equation reflects the impact of the covariates on the link probabilities.

The zi’s are the latent positions of the actors in the social space. We can see, the closer two actors

are, the more likely they are connected via an edge. The further apart they are, they less likely they

are connected.

Handcock et al. [35] introduced an extension of the Latent Space Model for networks contain-

ing communities. In these models, the latent factors zi are generated from a Multivariate Normal

mixture model. More formally,

zi ∼
G∑
g=1

λgMVNd(µg, σ
2
gId),

where λg is the probability of an actor belonging to the g-th group. These groups can be interpreted

as communities. Therefore, this model can be used to identify the communities in networks and,

using a Bayesian framework, it is able to discover the number of communities.

Heterogeneity in activity across nodes is another important feature of networks. In order to take

this feature into account, Krivitsky et al. [45] extended the Latent Space Model by two random

effects, denoted with δi and λj which model the sociality of people. The model looks as follows:

ηi,j = β0 + β′xi,j − ‖zi − zj‖+ δi + λj .

The δi’s and λi’s are sender and receiver specific effects which model the heterogeneity in activity

across nodes.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 76

Discussion of Latent Space Models

If the zi’s are two-dimensional, their values can be used as coordinates. Therefore, the latent space

aids in visualizing the actors in a meaningful way. The drawback of these models is that the number

of parameters is linear in the number of actors. This often leads to overfitting, see Mitchell [54].

Last, these models cannot take into account the node-specific feature vectors, but only the edge-

specific feature vectors.

To the best of our knowledge, all existing models focus on a single network. In this thesis,

we introduce a new model called n∗LSSP model which can deal with effects related to the size

of networks and provide with a single model for several networks (of various sizes). The n∗LSSP

model is based on the LSSP model, which is introduced in the next section.

6.3 Latent Socio-Spatial Process Model

In this section, first the LSSP model is reviewed and afterwards applied to a real-world dataset.

Next, we introduce simLSSP, a novel algorithm for simulating FVNs based on the LSSP model.

6.3.1 Model

In Linkletter [47] the LSSP model was introduced. The LSSP model is central to this chapter, since

our methodology for simulating FVNs is based on it. Furthermore, it is extended in the next section.

Similar to the previously discussed models, the LSSP model is also based on the fact that similar

people are more likely to be connected than dissimilar people. Similarity of people can be defined

in various ways. Often similarity is modeled based on the similarity of the feature vectors of people.

However, sometimes this leads to counter-intuitive cases. For example, consider a high school.

Typically, high school students are friends with students of the same or similar grade. However,

once they start dating, this changes, as can be seen in the real-world example below.

Therefore, the LSSP model determines the similarity of people by their distance in social space.

The social space is modeled by a latent function that takes the covariates as input. The link proba-

bilities are based on the distance between the two respective actors in this latent space. Furthermore,

the LSSP model assumes the edges to be independent random variables given the covariate infor-

mation and model parameters. In order to provide a complete model, some of the aforementioned

probabilities are reviewed again. The LSSP model looks as follows:

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 77

Pr(Y = y|θ,x) =
∏
i>j

Pr(Yi,j = yi,j |θ,xi,xj) =

∏
i>j

π
yi,j

i,j (1− πi,j)1−yi,j ,

where

πi,j = ilogit(ηi,j)

and

ηi,j = µ− |z(xi)− z(xj)|.

This definition of ηi,j is one of the critical ideas in the LSSP model. Recall that ηi,j is the log-

odds that actor i and j are connected with each other. This term consists of a constant µ and the

absolute difference of the values of function z at the covariates xi and xj . The parameter µ is an

upper bound for the probability that any two people are connected. The function z : D → R is latent

and takes as input xi. It is used to project the covariate information of an actor into the latent social

space; the value z(xi) is called LSSP score of xi. This is different from the latent space model,

where zi denoted a latent random variable which was independent of xi.

The term ηi,j fulfills the properties we mentioned before: the larger the absolute distance in

social space, the smaller the probability that two people are connected. The smaller the distance, the

higher the probability that they are connected. Formally, this function z is defined as:

z(xi) =
m∑
r=1

αrk(xi −wr), (6.1)

where k is a kernel function. An independent d-dimensional multivariate Gaussian kernel was cho-

sen, thus:

k(xi −wr) =
d∏
l=1

ρ
(wrl−xil)

2

l , (6.2)

whereW = {w1, . . . ,wm}. Furthermore, wr = (wr1, . . . , wrd), for 1 ≤ r ≤ m, where d is the

number of covariate dimensions. The wr, 1 ≤ r ≤ m, are points generated based on a Latin Hyper

Cube Design (LHD) [52]. They are also called design points, see below for details. The parameter

m = 10d denotes the number of design points.

The ρl’s, l = 1, . . . d, are parameters and need to be estimated. These parameters determine the

impact of each dimension on the link probability. They are between 0 and 1. Values close to 0 show

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 78

a high impact of the dimension, whereas values close to 1 indicate a low impact. The rest of the

parameters are the αr’s, 1 ≤ r ≤ m. An αr is the weight of its respective kernel. The importance

of their corresponding kernel is reflected by the absolute value of αr. Next, we review, how the

parameter estimation is performed. In the following, we use the following short hand notations:

ρ = (ρ1, . . . ρd) and α = (α1, . . . , αm).

Parameter Estimation

Linkletter [47] suggests a Bayesian approach to estimate the parameter µ and the parameters α, ρ,

that are associated with the latent function z. In order to avoid large matrix inversions, they use

a convolution model [49]. Furthermore, they discretize the convolution to substantially reduce the

number of parameters. The previously mentioned setW denotes these discrete design points.

As stated before, the parameters which need to be estimated are: µ, α and ρ which results in

1 + 10d+ d = 1 + 11d parameters. Since a Bayesian approach was chosen, prior distributions need

to be specified. These prior distributions are chosen as follows:

• µ ∼ N(0, ψµ)

• α ∼ N(0, Im)

• ρ, ρl ∼ U [0, 1], l = 1, . . . d

These parameters are estimated using a MCMC [29] approach, namely Metropolis-Hastings,

more specifically a Metropolis within Gibbs; the pseudo code can be found in Algorithm 8 and will

be discussed in the next section. For further details, see Linkletter [47].

Latin Hypercube Design

In 1979, McKay et al. [52] introduced the LHD. The design points generated from a LHD guarantee

that when projected in any dimension, they achieve complete stratification. Furthermore, the used

implementation fulfills the space-filling criterion and ensures minimum distance between the design

points [41]. In Figure 6.2, a two-dimensional example for 10 design points is shown.

Advantages of LSSP Model

The LSSP model is a state-of-the-art model for link prediction in FVN. One of the major improve-

ments over the previous models (with exception of the logistic regression model) is the constant

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 79

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0
0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1.0

Figure 6.2: Two-dimensional space-filling Latin Hypercube Design.

number of parameters. In the LSSP model, the positions of actors are not directly estimated, but

based on their respective feature vectors which avoids overfitting. This implies that this model can

be used to make predictions for actors like this, but not for specific actors. In other words, actors are

reduced to their feature vectors; therefore, actors with the same feature vectors are treated equally.

One further advantage is that the position in social space of a new actor can be determined. This

enables us to predict links for new actors. This is the only state-of-the-art model which has this

capability. Currently, the z function which projects actors into the social space is one-dimensional.

However, as mentioned in Linkletter [47] it is possible to extend this function to a higher dimen-

sional cases.

6.3.2 Application of LSSP Model

The AddHealth dataset is a publicly available dataset1 based on surveys of high school students.

Each student was asked to name up to five friends. We considered a friendship link between two

students if either of them named the other as his friend. Our particular subset contains 205 students

and 203 friendship relationships, where 57 students did not report any friends. The dataset contains

one-dimensional covariates, the grade of a student ranging from 7 to 12.

1http://www.cpc.unc.edu/projects/addhealth/data

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 80

Table 6.1: AddHealth0: parameter values for µ,α and ρ.

µ 0
α [1.61,1.86,1.64,1.38,1.18,1.09,0.72,-0.13,-0.28,-1.12]
ρ 0.16

We applied the LSSP model to this dataset. Since a Bayesian approach was chosen, not a

single value for the parameters was returned, but a posterior distribution. In order to estimate the

z function and the link probabilities, we averaged over samples drawn from this distribution. The

posterior mean z function (LSSP scores) can be found in Figure 6.3. The non-monotone graph

reflects the fact that grade 10 and 12 students tend to be more likely to be friends with each other

than grade 10 and 11 students. Sorting the posterior mean probabilities based on the LSSP scores

of the respective actors results in the heat map of Figure 6.4. In this heat map, high probabilities are

in red colors and low probabilities in blue colors. The sorting is based on the LSSP scores of the

actors. Red and yellow areas reflect a high clustering of actors, i.e., a high probability that people

are connected. Light blue areas reflect a lower clustering of students. This information can be used

to identify clusters in the data.

In the following, we sometimes need a single parameter value. In this case, we use the posterior

mean parameter estimates (instead of the posterior distribution) of the AddHealth dataset. Also,

sometimes we set µ to 0 in order to increase the number of friends to a more realistic number (in

the AddHealth dataset on average each student had only one friend). We refer to this new setting as

AddHealth0. Its parameter values can be found in Table 6.1.

6.3.3 simLSSP

In the following simLSSP, an algorithm for simulating FVNs based on the LSSP model, is intro-

duced. Based on a given FVN the goal is to simulate FVNs which have similar statistical properties

as a given input FVN G. The first step is to estimate the parameters of the LSSP model for G. Since

a Bayesian approach was used, the result of this estimation consists not of single values for µ, α

and ρ, but of samples from the posterior distribution. For example, α = (α(1), . . . , α(nMCMC)),

where nMCMC is the number of MCMC iterations, analogous for ρ and µ. For more details on

the parameter estimation see Linkletter [47] and Section 6.4.4.

The pseudo code of simLSSP can be found in Algorithm 7. The algorithm assumes the following

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 81

7 8 9 10 11 12
2

3

4

5

6

7

8

9

Grade

LS
SP

Sc
or

e(
G

ra
de

)

Figure 6.3: AddHealth: Grades and their respective LSSP scores.

0

0.005

0.01

0.015

0.02

0.025

0.03

Figure 6.4: AddHealth: Sorted posterior mean probabilities.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 82

input parameters: the new covariates xnew, the distribution of the model parametersα, ρ, µ, and the

MCMC parameters nMCMC, burnIn and nGrab. Depending on the desired size and properties

of the simulated FVN there are several options for choosing xnew. The first option is to use the

covariates of G. Another option is to sample from a distribution using the fitted covariates. As a

third option, xnew can also be specified by the user.

Algorithm 7 simLSSP: Simulation of FVNs using LSSP model

1: INPUT: xnew, α, ρ, µ, nMCMC, burnIn, nGrab
2: OUTPUT: simulated FVN newFV N
3: n← size(xnew)
4: step = d(nMCMC − (burnIn+ 1))/nGrabe
5: // Go through MCMC samples
6: for (t = burnIn+ 1; t ≤ nMCMC; t = t+ step) do
7: for (i = 1 to n) do
8: for (j = i+ 1 to n) do
9: z(xi,new)(t) ←∑

r α
(t)
r
∏d

l=1(ρ
(t)
l)(xil−wrl)

2

10: z(xj,new)(t) ←∑
r α

(t)
r
∏d

l=1(ρ
(t)
l)(xjl−wrl)

2

11: π
(t)
i,j ← ilogit(µ(t) − |z(xi,new)(t) − z(xj,new)(t)|)

12: end for
13: end for
14: end for
15: // Simulate edges
16: for i = 1 to n do
17: for j = i+ 1 to n do
18: πi,j ←mean(π(t)

i,j)
19: if (πi,j ≤ random(1)) then
20: newNetwork.addEdge(i, j)
21: newNetwork.addEdge(j, i)
22: end if
23: end for
24: end for
25: return newFV N = (newNetwork,xnew)

The parameter burnIn reflects the number of samples discarded and the parameter nGrab re-

flects the number of samples taken into account. Using α again as an example, the first consid-

ered sample is α(burnIn+1), the next sample is α(burnIn+1+step), where step = d(nMCMC −
(burnIn + 1))/nGrabe. This results in nGrab samples over which the average is calculated, see

line 18 of Algorithm 7.

The algorithm starts with setting n to the number of feature vectors (which corresponds to the

number of actors in the network) and specifying step. Next, going over all samples and all com-

binations of nodes, the LSSP scores for these nodes are calculated. Based on these LSSP scores,

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 83

we are able to estimate the link probabilities. In the second set of “for loops”, the link probabilities

are estimated by averaging over all samples. The edges are simulated based on these probabilities.

The resulting network structure in combination with the given feature vectors provides the simulated

FVN.

Observations of simLSSP

The algorithm simLSSP is able to simulate FVNs of various sizes and arbitrary covariate distribu-

tions. We have now a closer look at the average degree of actors in FVNs simulated by simLSSP,

see Figure 6.5. We use the posterior means of α and ρ from the AddHealth dataset and set µ to 0.

Furthermore, the same number of students from each grade is used. Going back to the high school

example from the introduction, if we apply simLSSP to a high school of 100 students, then the av-

erage number of friends is less than 25. Increasing the number of students to 2,000 this results, on

average, in over 400 friends which is not very realistic. Next, we theoretically analyze the average

degree of FVNs simulated by simLSSP.

500 1000 1500 2000
0

100

200

300

400

500

Number of students

A
ve

ra
ge

nu
m

be
r

of
fr

ie
nd

s

Figure 6.5: AddHealth: Simulation of FVNs of various sizes.
The values on the x-axis reflect the number of students. On the y-axis, the average number of

friends per student in the by simLSSP simulated FVN can be found.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 84

Expected Degree - Bernoulli Graph Model

Given a set of nodes, the Bernoulli graph model [16] is a statistical model which assumes a constant

link probability for having an edge between any two nodes. It can be seen as an extreme case of the

LSSP model in which the LSSP scores are the same for every possible covariate, see also Figure 6.6.

Constant LSSP scores (independent of the covariate information) are a result of setting the α’s to ~0

and/or the ρ’s to ~1. The expected degree in the Bernoulli graph model is nπ, where n is the number

of nodes in the graph and π the link probability. In the LSSP model π = ilogit(η) = ilogit(µ) if

z(xi) = z(xj)∀i, j. Furthermore, µ is constant and not dependent on n. Therefore, the expected

degree in the LSSP model with constant LSSP scores is: n · ilogit(µ).

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

xi1 xi2

z(
x

i)

Figure 6.6: Constant LSSP scores.
Parameter values: α = ~0 and/or ρ = ~1.

Expected Degree - LSSP Model

Recall that πi,j denotes the probability that actor i and j are connected in the LSSP model. Since

the model assumes the links to be independent, the expected degree of node i in a network of size n

is
n∑
k=1

πi,k. Since πi,k is bound by ilogit(µ), the upper bound for the expected degree is

n · ilogit(µ).

However, the absolute distance in the social space |z(xi)− z(xj)| is also independent of n. There-

fore, for a given pair of actors their distance in social space is not affected by the network size. We

call this phenomenon constant distance in social space.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 85

Since µ is constant, the network size has no impact on the πi,j’s. Assuming that the covariates

are generated from the same distribution (and this distribution is independent of the sample size),

we can infer that
n∑
k=1

πi,k is linear in n as well. We call this phenomenon constant link probability.

In summary, we identified the following two undesired phenomena of simLSSP:

• Constant Link Probability
The expected degree of an actor grows linearly with the number of nodes in the network if the

covariates are simulated from the same distribution. We refer again to the example in Figure

6.5.

• Constant Distance in Social Space
The social space is independent of the size of the network. If the number of potential friends

is very low, people do not have a large selection in whom they choose as friends. However,

if the population size is larger, then people have a larger chance to meet individuals who are

similar to them. Given that people have a limit on how many friends they can have, the larger

the “choice” of friends, the more likely people can become friends with similar individuals

[46].

The n∗LSSP model, introduced in the next section, addresses these problems. However, it is

flexible enough to model the constant link probability and constant distance in social space as one

of its special cases.

6.4 n∗LSSP Model

In this section, the n∗LSSP model, an extension of the LSSP model, is introduced. The n∗LSSP

model addresses the constant link probability and the constant distance in social space by introducing

two dampening functions. The new model is shown and its parameter estimation explained. Last,

the algorithm simn∗LSSP, which can simulate FVNs of arbitrary size, is introduced.

Base Network

In the following, we define a base network. A base network has two purposes: first, it helps to

make the parameters of the n∗LSSP model identifiable. Second, it ties the n∗LSSP model back to

the LSSP model. Formally, it is defined as:

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 86

Definition 6.1 (Base Network) A base network, denoted by Gbase, is a network of size nbase =

size(Gbase) such that the n∗LSSP and LSSP model are exactly the same for Gbase.

Typically nbase is set to the size of the smallest conceivable network. We could have chosen

nbase = 1. However, the introduced definition will make more sense, once the n∗LSSP model

is introduced. By choosing this definition, a very intuitive interpretation of the n∗LSSP model is

provided as we will see in Section 6.4.3.

6.4.1 Flexible Link Probability

Recall that in the previous section, we showed that the link probability is independent of the network

size which might cause undesired effects, when simulating networks of larger sizes. The flexible link

probability is introduced as a cure for the constant link probability. The πi,j reflects the probability

that actor i and j are connected with each other. It is independent of the network size, since µ, the

function z and the covariates xi, xj are independent of the network size. In the following, we like

to make πi,j dependent on the network size, which we denote with n∗. We propose to include a

dampening function, d(n∗), to πi,j . The function d can be chosen in many ways, we elect to use

d(n∗) =
(
nbase
n∗

)l. We denote the link probability now with πn
∗
i,j and define it as:

πn
∗
i,j = d(n∗)πi,j =

(nbase
n∗

)l
πi,j .

The variable l is a parameter and can either be estimated or specified by the user. We restrict the

parameter l to be in the interval [0,1]. The reason for this is as follows: we want the term
(
nbase
n∗

)l
to be between 0 and 1. If l was smaller than 0, then the link probability would increase with the

network size. In other words, actor i and j would be more likely to be connected in a larger network

than in a smaller network. However, this is different from our goal, namely the more people in the

network, the less likely people are connected. In case l was larger than 1, the average degree of a

person would be decreasing with the network size. Meaning, if in a network of size 20 on average

a person has four friends, in a network of size 40, this person might have only three. Whereas this

might be desirable in some cases, it is not ours.

The term πn
∗
i,j represents the probability for i and j being connected in a network of size n∗. One

of the requirements is therefore that it is between 0 and 1 which we show in the following:

• The first term,
(
nbase
n∗

)l, is between 0 and 1 for n∗ ≥ nbase and l ≥ 0.

• The second term, πi,j , is between 0 and 1 due to the logistic transformation of ηi,j .

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 87

• The product of two terms between 0 and 1 is between 0 and 1 as well.

This results in:

Pr(Yi,j = 1) = πn
∗
i,j

Pr(Yi,j = 0) = 1− πn∗i,j .

Parameter-Sensitivity of Flexible Link Probability

In order to provide more intuition about the meaning of the new parameter l, in Figure 6.7(a), we

depicted the graphs of the dampening function d(n∗) =
(
nbase
n∗

)l for several values of l (0, 0.25,

0.5 0.75 and 1). The parameter nbase is set to 50 and n∗ is between 50 and 550. The blue graph

represents l = 0. In this case, the function is always 1. This implies that dampening function has no

impact and the link probability is still constant, i.e., the model is equivalent to the LSSP model. On

the other hand in case l = 1 (purple graph), the function decreases with n∗; for n∗ = 50 it equals

to 1, for n∗ = 100 it equals to 1
2 and so on. For l values between 0 and 1, the results are between

the constant link probability and the one for l = 1. Therefore, the term
(
nbase
n∗

)l dampens the link

probability and enables us to control the expected degree in a simulated network as shown in Section

6.4.5.

6.4.2 Flexible Distance in Social Space

In a remote, very small high school of let’s say 20 students, almost everybody knows everybody

- independent of their feature vectors, such as age and gender. However, the larger the choice for

forming friendships, the more likely students are to be friends with similar students. In a high school

of 500 people, it is not very likely that all students know each other.

Therefore, we propose to adjust the LSSP model by adding a dampening function to the distances

in the social space, called distance dampening function and denoted with dd. We chose dd(n∗) =(
n∗

nbase

)k
as distance dampening function. Therefore,

ηn
∗
i,j = µ− dd(n∗)|z(xi)− z(xj)| = µ−

(
n∗

nbase

)k
|z(xi)− z(xj)|.

Again n∗ denotes the network size and k is a parameter. The goal is to increase the distance

in social space when increasing the number of people. For k < 0, the distance in social space

would decrease with increasing number of people. Therefore, we require k ≥ 0. On the other

hand, if k > 1, then - depending on the covariates and the values of α and ρ - the average degree

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 88

50 100 150 200 250 300 350 400 450 500 550
0

0.2

0.4

0.6

0.8

1

n∗

d
(n

∗)
=

(n
b
a

s
e

n
∗

) l

l=1

l=0.75

l=0.5

l=0.25

l=0

k=0

(a) Dampening function d(n∗).

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

n∗

A
ve

ra
ge

D
eg

re
e

l=0

l=0.25

l=0.5

l=0.75

l=1

k=0

(b) Average degree of nodes in a FVN simulated by simn∗LSSP.

50 100 150 200 250 300 350 400 450 500 550
0

2

4

6

8

10

n∗

d
d
(n

∗)
=

(n
∗

n
b
a

s
e

) k

k=0

k=0.25

k=0.5

k=0.75

k=1

l=0

(c) Distance dampening function dd(n∗).

50 100 150 200 250 300 350 400 450 500 550
0

50

100

150

n∗

A
ve

ra
ge

D
eg

re
e

k=0

k=0.25

k=0.5

k=0.75

k=1

l=0

(d) Average degree of nodes in a FVN simulated by simn∗LSSP.

Figure 6.7: n∗LSSP model: nbase = 50.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 89

might indeed decrease with increasing network size which is not desired in our context. Intuitively,

the more people in the social network, the larger their distance in social space, since the capacity

of making friends is limited. If people have a larger choice in terms of friendships, they tend to

befriend more similar people. We model this by multiplying the absolute distance, |z(xi)− z(xj)|,
with the term

(
n∗

nbase

)k
which grows with n∗. Overall, the distance dampening function governs the

distance in social space, whereas the dampening function governs the overall probability.

Parameter-Sensitivity of Flexible Distance in Social Space

Again, we provide some more intuition in form of a figure. In Figure 6.7(c), the graphs of the

function
(

n∗

nbase

)k
are depicted for several values of k (0, 0.25, 0.5 0.75 and 1). The parameter nbase

is set to 50 and n∗ is between 50 and 550. The blue graph represents k = 0. In this case the function

is always 1. This implies that the social space is still constant, since the distance dampening function

has no impact and the model is still equivalent to the LSSP model. On the other hand, in case k = 1

(purple graph), the term increases linearly with n∗; for n∗ = 50 it equals to 1, for n∗ = 100 it equals

to 2 and so on. For k values between 0 and 1, the results are between the constant distance in social

space and the one for k = 1. Therefore, the introduced distance dampening function helps us to

control the distances in social space based on the network size.

6.4.3 Model

We combine the two previously introduced concepts (flexible link probability and flexible distance

in social space) into a single model and call this new model n∗LSSP model. The n∗LSSP model

takes into consideration not only the overall decrease in link probability with increasing network

size, but also the increase in distances in social space. Using a slightly different notation (the link

probability is now denoted with πn
∗
i,j), the overall probability of a socio matrix y is again:

Pr(Y = y|θ,x) =
∏
i>j

Pr(Yi,j = yi,j |θ,xi,xj) =

∏
i>j

(πn
∗
i,j)

yi,j (1− πn∗i,j)1−yi,j

The link probability, πn
∗
i,j , is calculated as follows:

πn
∗
i,j =

(nbase
n∗

)l
pn
∗
i,j ,

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 90

where

pn
∗
i,j = ilogit(ηn

∗
i,j)

and

ηn
∗
i,j = µ−

(
n∗

nbase

)k
|z(xi)− z(xj)|.

Therefore, the model combines the idea of a flexible link probability with the one of the flexible

distance in social space. Next, the parameter estimation of n∗LSSP is discussed.

6.4.4 Parameter Estimation

In addition to the existing parameters of the LSSP model, namelyα, ρ and µ, the parameters l and k

have to be estimated. Therefore, in total, 11d+3 parameters need to be estimated. These parameters

are estimated using MCMC. In order to be able to estimate l and k at least two input networks are

necessary as argued in the following.

Number of Input FVNs Required for the n∗LSSP Model

Recall the definition of the latent function z:

z(xi) =
m∑
r=1

αr

d∏
l=1

ρ
(wrl−xil)

2

l .

The absolute distance in social space is calculated as

|z(xi)− z(xj)| =
∣∣∣∣∣
m∑
r=1

αr

(
d∏
l=1

ρ
(wrl−xil)

2

l −
d∏
l=1

ρ
(wrl−xjl)

2

l

)∣∣∣∣∣ .
This distance multiplied with a constant c > 0 results in

c|z(xi)− z(xj)| =
∣∣∣∣∣
m∑
r=1

cαr

(
d∏
l=1

ρ
(wrl−xil)

2

l −
d∏
l=1

ρ
(wrl−xjl)

2

l

)∣∣∣∣∣ .
It is clear that c and αr are not jointly identifiable. Considering c =

(
n∗

nbase

)k
makes k uniden-

tifiable. A similar argument can be made for l. Therefore, it is necessary to have at least two input

FVNs. The sufficient number of input FVNs is determined experimentally later on in this chapter.

In the following, we assume that the number of input FVNs is larger than one.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 91

Prior distributions of l and k

Based on the constraints on l and k we set the prior distribution to a uniform distribution in the

interval [0,1].

Relationship between LSSP and n∗LSSP Model

The connection between the LSSP and n∗LSSP model is with the base network. The n∗LSSP model

has the following form for n∗ = nbase:

ηn
∗
i,j = µ−

(
n∗

nbase

)k
|z(xi)− z(zj)|

which results for n∗ = nbase in:

ηn
∗
i,j = µ−

(
nbase
nbase

)k
|z(xi)− z(xj)| = µ− |z(xi)− z(xj)| = ηi,j .

The link probability πn
∗
i,j is:

πn
∗
i,j =

(nbase
n∗

)l
pn
∗
i,j =(

nbase
nbase

)l
pn
∗
i,j =

(
nbase
nbase

)l
ilogit(ηi,j) = ilogit(ηi,j) = πi,j .

Thus,

πn
∗
i,j = πi,j .

Therefore, the n∗LSSP model is indeed the same as the LSSP model for n∗ = nbase. In other

words, for the base network, the dampening functions (link dampening and dampening of distance

in social space) are inactive.

Algorithm

The algorithm for the parameter estimation can be found in Algorithm 8. We use Metropolis-within-

Gibbs Sampling [29] for estimating the parameters. As input, it requires numberNetworks > 1

input FVNs; the number of iterations, nMCMC; and the size of the base network, nbase. The

parameter nbase is required to be smaller or equal to the size of the smallest input network. First,

the parameters and loglikelihood are initialized (line 3). Then in each iteration, the parameters are

sequentially updated (based on their proposal distribution) and - depending on the loglikelihood of

the model and the proposal distribution - accepted or rejected.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 92

Algorithm 8 n∗LSSP Parameter Estimation (Metropolis-within-Gibbs Sampling)

1: INPUT: FV N∗ = {FV N1, . . . FV NnrNetworks}, nMCMC, nbase

2: OUTPUT: Θ
3: Initialize Θ(0), L(0)

4: for I = 1 to nMCMC do
5: L(I) = L(I−1)

6: Θ(I) = Θ(I−1)

7: for (θ ∈ {µ, α, ρ, l, k}) do
8: θnew ← draw from proposal of θ given θ(I)

9: for (J = 1 to nrNetworks) do
10: L(J) = likelihood(FV NJ |Θ(I)\{θ(I)} ∪ {θnew}, covariates(FNVJ))
11: end for
12: Lnew =

∑
(L(J))

13: if ((Lnew − L(I) + L(θnew)− L(θI)) < log(rand(1))) then
14: // Accept proposal
15: θ(I+1) = θnew

16: L(I) = Lnew

17: Θ(I) = Θ(I)\{θ(I)} ∪ {θnew}
18: else
19: // Reject proposal
20: θ(I+1) = θ(I)

21: end if
22: end for
23: end for
24: return Θ(1...nMCMC)

We explain this procedure now in more detail using θ = µ. First, a new value for µ is drawn

from its proposal distribution given the value of µ during the previous iteration. For each network its

loglikelihood under consideration of the current parameter setting - replacing the value for µ by the

new value - is calculated. Afterwards, these likelihoods are summed up, resulting in Lnew. The new

value for µ is accepted, respectively rejected, based on the difference between likelihoods for the

networks and the loglikelihoods with which the old and new value of µ are drawn from the proposal

distribution given the old value of µ.

6.4.5 simn∗LSSP

Next, we introduce simn∗LSSP, an algorithm for simulating FVNs of arbitrary sizes. This algorithm

is based on the n∗LSSP model. The pseudo code can be found in Algorithm 9. In addition to the

parameters of the LSSP model, the parameter nbase, l and k are required. The first step is to use the

n∗LSSP model to estimate the model parameters based on several FVNs. The posterior distributions

of the parameters are used as input for the simn∗LSSP model.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 93

Algorithm 9 simn∗LSSP: Simulation of FVNs using n∗LSSP model

1: INPUT: α, ρ, µ, l, k, nbase xnew, nMCMC, burnIn, nGrab
2: OUTPUT: simulated FVN newFV N
3: n∗ ← size(xnew)
4: step = d(nMCMC − burnIn+ 1)/nGrabe
5: // Go through MCMC samples
6: for (t = burnIn+ 1; t ≤ nMCMC; t = t+ step) do
7: for i = 1 to n∗ do
8: for j = i+ 1 to n∗ do
9: // Update position in social space

10: z(xi,new)(t) ←∑
r α

(t)
r
∏d

l=1

(
ρ
(t)
l

)(xil−wrl)
2

11: z(xj,new)(t) ←∑
r α

(t)
r
∏d

l=1

(
ρ
(t)
l

)(xjl−wrl)
2

12: // Update link probabilities

13: η
n∗(t)
i,j ← µ(t) −

(
n∗

nbase

)k

|z(xi,new)(t) − z(xj,new)(t)|
14: π

n∗(t)
i,j ← (

nbase

n∗
)l
ilogit

(
η

n∗(t)
i,j

)
15: end for
16: end for
17: end for
18: // Simulate edges for each combination of nodes
19: for i = 1 to n do
20: for j = i+ 1 to n do
21: πn∗

i,j ←mean(πn∗(t)
i,j)

22: if (πn∗
i,j ≤ random(1)) then

23: newNetwork.addEdge(i, j)
24: newNetwork.addEdge(j, i)
25: end if
26: end for
27: end for
28: return newFV N = (newNetwork,xnew)

Next, we discuss the average degree in a FVN simulated by this new model. We simulated

each 100 graphs of size 50 to 550 using one-dimensional equi-distant covariates. The rest of the

parameters are the ones from AddHealth0. The results can be found in Figure 6.7(b). Keeping

k = 0, for l = 0, the average degree is proportional to the network size; for l = 1 the average degree

is forced to be constant. Therefore, the introduced dampening function helps to control the expected

degree in a simulated FVN. In Figure 6.7(d), l = 0 and k is between 0 and 1. For k = 0 the degree

is proportional to the FVN size. For k = 1 the degree stays almost constant.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 94

6.5 Experiments

The goal of this section is to explore the n∗LSSP model and our methodology for simulating FVNs.

Recall that the number of parameters in the n∗LSSP model is 11d + 3, where d is the number

of dimensions of the covariates. First, we provide some thorough analysis for the case of one-

dimensional covariates. Afterwards, we show that the model and methodology also work for multi-

dimensional cases.

6.5.1 One-Dimensional Covariates

In our preliminary analysis, we run experiments for many combinations of l and k. We observed that

the closer l and k are to their boundaries (0 and 1), the better the results. We show in the following

that even for the worst case performance (l = k = 0.5) the results are still pretty good.

Our experiments are based on synthetic datasets using simn∗LSSP. It is critical to note that the

parameters used for simulating the dataset, are not used during the estimation. In order to simulate

the datasets under consideration, we used the following setup and call the dataset 1dim. A summary

of the parameter values can be found in Table 6.2.

nbase 60
µ,α,ρ see Table 6.1
l, k l = k = 0.5
Network sizes 60, 80, 100, 120
Covariates 1-dim (LHD plus noise)

Table 6.2: 1dim: Parameters for dataset generation.

The size of base network, nbase, was set to 60. Instead of using samples of a posterior distribu-

tion, we used a single value for each parameter. The parameters for µ,α,ρ were chosen as in Table

6.1; the parameters l and k were set to 0.5. The generated networks have size 60, 80, 100 and 120.

Moving on the the covariates, the covariates were generated using a space-filling LHD. Afterwards,

the minimum distance dmin between any two of the generated data points was calculated; we added

uniform noise in the range of [−dmin/2; dmin/2] to the sampled datapoints.

The general goal is to examine how well the parameters can be re-estimated for the set of datasets

1dim. In particular, we are interested, how many FVNs are necessary and of what size they need to

be. In case the dataset consisted of two FVNs (1dim-2), we used one FVN of size 60 and one of size

80. For the datasets containing three FVNs (1dim-3), we added one FVN of size 100 and for four

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 95

FVNs (1dim-4), we add one of size 120. As shown before, for a single network, the parameters l

and k are under-specified. In total, for each type (1dim-2, 1dim-3 and 1dim-4), we generated each

50 datasets. This results in 150 datasets for which we run experiments. Next, some of the trace plots

for these experiments are discussed.

Trace Plots

In order to give some intuition about the convergence of the MCMC, we focus on three randomly

chosen datasets (one from 1dim-2, one from 1dim-3 and one from 1dim-4) and show their parameter

estimations. In Figure 6.8, Figure 6.9 and Figure 6.10, the trace plots for µ, ρ, α, l (blue curve)

and k (green curve) for m = 10 are depicted. The number of MCMC iterations is 100,000. We

observe that the number of FVNs in the dataset has an impact on the variance of the estimates. The

more FVNs, the lower variance of the estimates. Another interesting observation is that for 1dim-2,

the trace plots for l and k seem to be almost uniformly distributed between 0 and 1. However, one

characteristic of MCMC estimates is that even if something like this happens, the overall result can

be still very good. In our case, we mainly care about the link probabilities and not the parameter

estimates. We show next that the link probabilities indeed converge.

In Figure 6.11, the probabilities are depicted. In the first column, the results for 2 FVNs are

depicted, in the second for 3 and in the third one for 4. The first row shows the result for n∗ = 60,

the second for n∗ = 80, third n∗ = 100 and forth n∗ = 120. We can see that the probabilities

converge and an increasing number of networks results in a lower variance of the probabilities.

Variance of Parameter Estimates

Given the 100,000 samples from the posterior distribution, for the following evaluation, we use a

burn-in of 10,000 and use every 9th sample (which results 10,000 samples). For each dataset, we

calculate the posterior mean of µ, l and k. In Figure 6.12, the histograms of these posterior means

are shown. The red graph denotes the prior distribution; the red triangle the true parameter value.

In Figure 6.13, the standard deviations for 1dim are depicted. The variance of the parameters l and

k clearly decreases with the number of FVNs. This is due to the fact that the number of FVNs can

be considered as the number of observations from which these parameters are estimated. As shown

before, they are not identifiable for a single FVNs. The reason, why the variance of µ decreases with

the number of FVNs is very different.

Every observed link has an impact on the estimate of µ. For a dataset from 1dim-2, the number

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 96

0 2 4 6 8 10

x 10
4

−1

−0.5

0

0.5

μ

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

ρ

0 2 4 6 8 10

x 10
4

−5

0

5

α

0 2 4 6 8 10

x 10
4

0

0.5

1

l, k

Figure 6.8: 1dim-2: Trace plots of parameters.
l (blue) and k (green).

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 97

0 2 4 6 8 10

x 10
4

−1

−0.5

0

0.5

μ

0 2 4 6 8 10

x 10
4

0

0.1

0.2

0.3

0.4

ρ

0 2 4 6 8 10

x 10
4

−5

0

5

α

0 2 4 6 8 10

x 10
4

0

0.5

1

l, k

Figure 6.9: 1dim-3: Trace plots of parameters.
l (blue) and k (green).

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 98

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−1

−0.5

0

0.5

μ

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.2

0.4

ρ

0 1 2 3 4 5 6 7 8 9 10

x 10
4

−5

0

5

α

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

0.5

1

l, k

Figure 6.10: 1dim-4: Trace plots of parameters.
l (blue) and k (green).

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 99

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

0

0.2

0.4

Figure 6.11: 1dim: Trace plots of link probabilities.
Each column represents one dataset. The first column contains the results for a dataset from

1dim-2; the second column the results for a dataset from 1dim-3 and the third the results for a
dataset from 1dim-4. The first row depicts the probabilities for the network of size 60, the second

for the network of size 80, the third for size 100 and the forth for network of size 120.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 100

of observations is 60 ∗ 59/2 + 80 ∗ 79/2 = 4930, whereas it increases by 100 ∗ 99/2 = 4950 in

1dim-3. Therefore, the decrease in variance is due to the increase in the number of observations.

Quality of Posterior Mean Link Probabilities

The evaluation of the link probabilities can be restricted to every combination of design points. The

reason for that is that the α’s are design point specific. Since the link probabilities are symmetrical

and there are m = 10 design points, this results in 55 link probabilities. The posterior mean link

probabilities are compared with the true link probabilities based on the true parameter values.

We use two different types of diagrams: stem diagrams and boxplots. In the stem diagrams,

the stems and circles represent the link probability calculated based on the true parameter values.

The red triangle is the average over the posterior mean link probabilities over all datasets. In the

boxplots, each box corresponds to the posterior mean link probability associated with two design

points. The position of a box is determined based on the true link probability. Therefore, the closer

the boxes to the black graph (identity function), the better the estimates.

In Figure 6.14, the stem diagrams for 1dim-2 can be found. We observe that the mean of the

estimated link probabilities is extremely close to the true probabilities. In the left plot, we show the

link probabilities for n∗ = nbase = 60. In the right plot (n∗ = 80) the effect of the dampening

functions can be seen. In general, the probabilities are smaller. However, they are still very well

estimated despite the fact that the trace plots of l and k were not close to the true parameter value,

see Figure 6.8.

To provide more insight into the estimation of the link probabilities, we show their variability by

providing boxplots. On the x-axis the true link probabilities are shown, on the y-axis the estimates.

In Figure 6.15, the boxplots for 1dim-2 are shown, in Figure 6.16 the ones for 1dim-3 and in Figure

6.17 the ones for 1dim-4. The estimates are very close to the true estimates and - as expected - the

higher the number of FVNs in the dataset, the better the estimates. It is interesting to see that the

estimates are better the closer they are to 0. They become worse, the closer they get to 0.5. The

reason for that is the logistic link function which is more sensitive to probabilities around 0.5 than

to probabilities close to 0 or 1.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 101

−0.5 0 0.5
0

5

10

15

μ (2 input graphs)
−0.5 0 0.5
0

5

10

15

μ (3 input graphs)
−0.5 0 0.5
0

5

10

15

μ (4 input graphs)

0 0.5 1
0

5

10

15

l (2 input graphs)
0 0.5 1

0

5

10

15

l (3 input graphs)
0 0.5 1

0

5

10

15

l (4 input graphs)

0 0.5 1
0

5

10

15

k (2 input graphs)
0 0.5 1

0

5

10

15

k (3 input graphs)
0 0.5 1

0

5

10

15

k (4 input graphs)

Figure 6.12: 1dim: Histograms of posterior means of µ, l and k.
Red graph represents prior distributions. Red triangle true parameter value.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 102

2 3 4
0.07

0.08

0.09

2 3 4

0.1

0.15

0.2

2 3 4

0.1

0.15

0.2

μ

l

k

Figure 6.13: 1dim: Boxplots of standard deviations for µ, l and k.
Number of FVNs in each dataset is shown on x-axis.

0
0.5

1
0

0.5
1
0

0.5

xixj

n∗ = 60

π
i,

j

0
0.5

1

0
0.5

1
0

0.5

xixj

n∗ = 80

π
i,

j

Figure 6.14: 1dim-2: True link probabilities.
In black: true link probabilities. In red: mean of posterior mean link probabilities.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 103

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

π
i,

j

n∗ = 60

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

π
i,

j

n∗ = 80

Figure 6.15: 1dim-2: Boxplot of posterior mean probabilities.

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

π
i,

j

n∗ = 60

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

π
i,

j

n∗ = 80

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

π
i,

j

n∗ = 100

Figure 6.16: 1dim-3: Boxplot of posterior mean probabilities.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 104

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 60

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

π
i,

j

n∗ = 80

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 100

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 120

Figure 6.17: 1dim-4: Boxplot of posterior mean probabilities.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 105

6.5.2 Multi-Dimensional Covariates

In the following, we assume again that FVNs are given. We use two examples, one with 3-

dimensional and one with 5-dimensional covariates. The FVNs are simulated using simn∗LSSP.

The following dataset is called 3dim. The critical parameters are again µ and the ρ’s. However,

in order to simulate the dataset, α’s are required as well. In the LSSP model, the prior distributions

for the α’s are white noise. However, we observe that nearby α’s have similar values. Therefore,

we used a smoothing function for generating the α’s:

αr = wr1 ∗ wr2 + wr3,

where as before wr denotes the rth design point. The resulting α’s are between -2 and 2, which is

desired by their prior distribution. We set ρ = [0.2, 0.1, 0.3] and µ = 0. The parameter nbase was

chosen to be 60. 3dim consists of 50 datasets, each containing two FVNs, one of size 60 and one of

size 80.

Next, we estimated the parameters of the n∗LSSP model. The estimated link probabilities can

be found in Figure 6.18. Although the variance is much higher than in the 1-dimensional case, it

is surprising that that mean is still so close to the true probability. In order to get more accurate

estimates, we suggest using a much higher number of networks and/or larger networks which we

will show at the end of this section.

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 60

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 80

Figure 6.18: 3dim: Boxplot of posterior mean probabilities.

In the second dataset (5dim), we calculated αr as follows:

αr = 0.8[2(wr1 − 0.5) + wr2 + wr3 + 0.5(wr4 − 0.3) + wr5 − 2]

Furthermore, we set µ = 0 and ρ = [0.16, 0.16, 0.16, 0.95, 0.5], i.e., the first three dimensions

have a high impact, whereas the 4th dimension has hardly any impact and the 5th dimension has

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 106

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5
π

i,
j

n∗ = 60

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

π
i,

j

n∗ = 80

Figure 6.19: 5dim: Boxplot of posterior mean probabilities.

mediocre impact. Here, we also wanted to show, whether or the n∗LSSP model is able to deal with

dimensions which have a low impact (4th dimension). The boxplots for the posterior mean link

probabilities can be found in Figure 6.19. Again, surprisingly despite only having two, very small

networks as input, the mean estimates are pretty good. Again, for such high-dimensional cases, we

suggest to provide much larger networks and possibly also increase the number of FVNs as shown

based on an example next.

Increased FVN Sizes

We run experiments using the same parameter settings as in 3dim, but increased the network sizes

by a factor of 10, i.e., the resulting networks had size 600 and 800. The estimated link probabilities

were between 0 and 0.1589. Interestingly, the average absolute distance between the estimated

probabilities and the true probabilities resulted in 0.0023 which we deem as a very good result. This

shows that an increased network size can indeed improve the quality of the estimation substantially.

6.6 Parameter Sensitivity Analysis

In this section, we discuss the impact of the various model parameters.

Impact of µ

Based on our simulations, we find that the parameter µ is the parameter with highest impact on the

link probabilities. In general, the larger µ, the larger the link probabilities. Also, µ determines the

upper bound for the link probabilities.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 107

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

μ

π

Figure 6.20: Relationship between µ and π.
Social space is ignored.

In Figure 6.20, the relationship between µ and π is depicted ignoring any impact of the covari-

ates. Recall that

π = ilogit(η) =
exp(η)

1 + exp(η)
.

In Table 6.3 some interesting values for π and its corresponding µ values are listed. A link prob-

ability of π = 0.1 results in µ = −2.2. If over 90% of the people should be connected, µ is 2.2.

Also, µ values below -4.6 result in an almost empty network (the probability of an edge is 0.01) and

µ values above 4.6 result in an edge probability of 0.99. The logistic function is symmetric around

0, i.e., if around 50% of the people are supposed to be friends with each other, µ equals to 0. The

µ value only determines the upper bound for the link probabilities. Therefore, the expected average

degree in a network cannot be estimated only based on the parameter µ, but the impact of the social

space needs to be taken into account. This social space is dependent on the parameters α and ρ as

discussed next.

Impact of α and ρ

The relationship between the social space and α and ρ is very complex, see equation 6.1 and 6.2.

Therefore, we restrict ourselves to some interesting cases. The first interesting case is the one in

which the social space has no impact, i.e., z(xi) = z(xj)∀xi, xj . This case is depicted in Figure 6.6

and is a result of ρ = ~1 and/or α = ~0. In this case covariates are completely ignored.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 108

π µ

0.01 -4.6
0.1 -2.2
0.5 0
0.9 2.2
0.99 4.6

Table 6.3: Interesting cases of π and their corresponding µ values (ignoring the social space).

The next case of interest is the one in which the social space is the same as the covariate space,

this means |z(xi) − z(xj)| = |xi − xj |. The latent function is able to model this case very well.

The parameter estimates for a 100 × 100 dimensional sociomatrix and equi-distant covariates are:

• α = [−1.26,−0.97,−0.62,−0.24,−0.15, 0.28, 0.80, 0.63, 0.98, 1.12]

• ρ = 0.53

This is equivalent to replacing the function z by the identity function.

Interestingly, if α consists of only similar positive, the resulting social space has a u-shape. For

example, in Figure 6.21, the LSSP scores for α = ~1 and two-dimensional covariates are shown.

The impact of multiplying α with a constant, can be seen in Figure 6.22(a), where α is multiplied

with 2, 3, 4, 5 and 6. The original graph is depicted in blue. Note that any distances in social space

larger than 4.6 result in a link probability of almost 0. However, the impact of the distances in social

space is dependent on the µ value, see Figure 6.23. On the x-axis the distance in social space can be

found. On the y-axis, the impact on the link probability for various µ’s is shown. For example for

µ = 1, a distance in space of 0.5 has a much higher impact than for µ = 2 or µ = −2.

In a multi-dimensional case, the impact of α is very complex. Experiments of real-world data

showed that close-by αr’s have similar values. The role of ρ is a very different. In Linkletter [48], it

was shown, how the value of ρ can be used for variable selection. Recall that ρ = (ρ1, . . . , ρd) is a

d-dimensional vector. A ρl value close to 1 implies that the lth dimension of the covariate has little

impact on the response. This can be also seen in Figure 6.22(b), where the purple curve reflects the

impact of ρ = 1. A low value of ρl reflects a high impact of dimension l of the covariates.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 109

0

0.5

1

0

0.5

1
2

4

6

8

x1
x2

L
SS

P
Sc

or
es

Figure 6.21: LSSP scores for α = ~1 and ρ = 0.15.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

x

z(
x)

(a) LSSP scores for various α values. Blue curve: α
values are the same as in Table 6.1; for the rest α is mul-
tiplied by 2, 3, 4, 5 and 6.

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

x

z(
x)

ρ = 0.16

ρ = 0.37

ρ = 0.58

ρ = 0.79

ρ = 1

(b) LSSP scores for various ρ values; α is taken from
Table 6.1.

Figure 6.22: Impact of various α and ρ on LSSP scores.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 110

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

|z(xi)− z(xj)|

π
i,

j
=

lo
gi

t(
μ
−
|z(

x
i)
−

z(
x

j
)|)

μ = −2

μ = −1

μ = 0

μ = 1

μ = 2

Figure 6.23: Impact of the distance in social space on the link probabilities for various µ’s.

Impact of nbase, l and k

The parameter nbase should be set to the size of the smallest conceivable network. We already

provided some intuition for the parameters l and k in Section 6.4.1 and 6.4.2. Recall that l impacts

the overall link probability, whereas k impacts the distance in social space. Both parameters are

between 0 and 1. Setting them to 0, yields the LSSP model. Setting l to 1, guarantees a constant

average degree - given that the distribution of the covariates is the same (and independent of the

samples size).

Impact of the covariates

The selection of covariates is very critical for simulating the desired network. Note that for the

model the covariates have to be normalized to be between 0 and 1. In case the covariates are desired

to be similar to the ones of the original network, we suggest to model the covariates by a Gaussian

mixture model and draw the desired number of samples from this distribution. If the user wants

to include communities in the social network, we suggest sample the covariates in a way, that they

form clusters in social space. Such a cluster refers to an interval/area (or a set of intervals/areas)

with similar LSSP values. For example, in Figure 6.3, grade 10 and 12 students are in the same

cluster, since the have a very similar LSSP score.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 111

How to determine the expected average degree in a simulated FVN

The expected degree in a network of size n∗ is (
∑

i,j Yi,j)/n
∗. The expected degree of a simulated

FVN, G can be determined using the following formula:

1
n∗

∑
i,j

Pr(Yij = 1|x, µ,α,ρ, l, k, nbase) =
1
n∗

∑
i,j

πn
∗
i,j

=
1
n∗

∑
i,j

(nbase
n∗

)l
pn
∗
i,j =

(nbase)l

(n∗)l+1

∑
i,j

pn
∗
i,j

=
(nbase)l

(n∗)l+1

∑
i,j

ilogit

(
µ−

(
n∗

nbase

)k
|z(xi)− z(xj)|

)

To calculate the average degree based on this formula is still very complex. However, by dis-

cretizing the covariates, a fast approximation can be achieved.

6.7 Conclusion and Future Work

In this chapter, we introduced a new methodology for simulating FVNs. This methodology is based

on the LSSP model [47] and the n∗LSSP model. The n∗LSSP model was introduced in this chapter

to accommodate effects related to the network size using two dampening functions. These functions

regulate the link probability and the distance in social space. They also aid in controlling the ex-

pected degree in the simulated networks. Our experiments on simulated data show that the n∗LSSP

model parameter can be estimated very well, even for only two very small networks.

There are several possible directions for future work. First, it might be worthwhile to investigate

into an extension of the n∗LSSP model which integrates a cluster effect directly into the latent

function, e.g., by including a latent indicator function. Second, the µ parameter is constant and

not dependent on the covariates. It would be interesting to see if µ can be made dependent on the

covariates and at the same time avoid overfitting. In many networks, there are a few people with a

very high number of friends. These people have an important role in the network. They are called

connectors. A further extension of n∗LSSP model could include such people. It would be also

interesting to see, if the n∗LSSP model can be used for privacy-preserving publishing of real social

network data. In the current approach, links can be predicted for new people joining the network,

if their covariates are known. When only the links of new people are known, the prediction of the

covariates can be of great interest and would provide further insight into the model.

CHAPTER 6. SIMULATION OF FEATURE VECTOR NETWORKS 112

So far we assumed that all parameters in the n∗LSSP model can be estimated. However, in the

absence of data, it might be interesting to provide recommendations for parameter values. In this

context, we distinguish between two different scenarios: (i) a single FVN is provided as an input (ii)

no FVN is provided as an input. In scenario (i), the parameters µ, α and ρ can be estimated using

the LSSP model. Based on the expected degree and other properties, it might be feasible to estimate

the parameters l and k using MCMC methods. In scenario (ii), where no data is given, a user

might have some intuition about certain network properties. It might be worthwhile to investigate

which properties are necessary such that recommendations of parameter values are feasible. As a

last direction for future research, we would like to extend the n∗LSSP model to deal with directed

graphs.

Chapter 7

Conclusion

Feature vector networks (FVNs) are networks with node-specific feature vectors. An example for a

FVN is an online social network, in which we know not only about the friendships between users,

but also about their purchasing behavior. Data Mining for FVN is a fairly new research area with

many real-world applications. However, there is a lack of publicly available datasets. Applications

include community identification in social networks, module detection in Protein-Protein interaction

networks and hotspot (areas with high criminal activities) detection. In this thesis, we introduced

three research approaches in the area of Data Mining in FVNs which can be applied to the aforemen-

tioned problems: Connected X Clusters, Cohesive Pattern Mining and Simulation of FVNs. Future

work of each of these approaches has been discussed in their respective chapters.

We introduced Connected X Clusters, a partitioning clustering algorithm for FVNs which is

able to determine the number of clusters. Our algorithm outperforms state-of-the-art methods. The

introduced clustering algorithm assumes clusters to be connected, but does not impose any require-

ment on their density. Furthermore, the feature vectors have to be similar in the full space, whereas

in high-dimensional cases a subspace clustering approach might be more meaningful. Based on

these observations, we designed an alternative clustering approach, Cohesive Pattern Mining, which

is useful for applications in which density and subspaces are important.

In the chapter Cohesive Pattern Mining, we introduced the new concept of a cohesive pattern

which combines dense subgraph mining with subspace clustering. Applications of this algorithm

include identification of small communities and mining of modules in Protein-Protein interaction

networks. We discussed several directions for future work, including adjusting our algorithm for

weighted graphs or applying it to several FVNs/sets of FVNs. We also introduced a parallelized

version of our algorithm.

113

CHAPTER 7. CONCLUSION 114

One problem we faced, when working on the two previous research problems, was the lack

of publicly available datasets. This motivated us to work on the Simulation of Feature Vector
Networks. We introduced a new methodology for simulating FVNs. To the best of our knowledge,

this is the first method which simulates FVNs such that feature vectors and network structure are

dependent on each other. It is based on the previously introduced LSSP model and our extension,

the n∗LSSP model. The n∗LSSP model takes into account effects related to the network size.

Summary

In this thesis, we introduced three approaches for Data Mining in FVNs. Our two proposed clus-

tering/pattern mining approaches have been successfully applied to several research problems, in

particular in the domain of social network analysis and computational biology, and show lots of

potential for further applications. We also introduced the first simulation model for FVNs which

promises to be useful in many research problems.

Bibliography

[1] Key facts about swine influenza (swine flu) spread of swine flu. In Centers for Disease Control
and Prevention. (http://www.cdc.gov/swineflu/key facts.htm), 24 April 2009.

[2] R. Karp A. Ben-Dor, B. Chor and Z. Yakhini. Discovering local structure in gene expression
data: The order-preserving submatrix problem. In Journal of Computational Biology, 10(3-4),
pages 373–384, 2003.

[3] R. Agrawal, T. Imielinski, and A. N. Swami. Mining association rules between sets of items
in large databases. In International Conference on Management of Data, 1993.

[4] R. Albert. Scale-free networks in cell biology. In Journal of Cell Science 118, 2005.

[5] C. M. Bishop. Neural Networks for Pattern Recognition. Oxford: Clarendon Press, 1995.

[6] F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern mining. In Pacific-
Asia Conference on Knowledge Discovery and Data Mining, 2005.

[7] P.S. Bradley and U.M. Fayyad. Refining initial points for k-means clustering. In International
Conference on Machine Learning, 1998.

[8] U. Brandes, M. Gaertler, and D. Wagner. Experiments on graph clustering algorithms. In
Algorithms - ESA 2003, 11th Annual European Symposium, Budapest, Hungary, 2003.

[9] C. Carson, M. Thomas, S. Belongie, J.M. Hellerstein, and Jitendra Malik. Blobworld: A
system for region-based image indexing and retrieval. In Visualization. Springer, 1999.

[10] A.-L. Cauchy. In Cours d’analyse de l’École Royale Polytechnique, première partie, Analyse
algébrique, Paris, 1821.

[11] F.R.K. Chung and L. Lu. Spectral graph theory. In CBMS Regional Conferenc eSeries in
Mathematics, 1997.

[12] R. Colak, F. Hormozdiari, F. Moser, A. Schonhuth, J. Holman, M. Ester, and S.C. Sahinalp.
Dense graphlet statistics of protein interaction networks and random networks. In 14th Pacific
Symposium on Biocomputing, 2009.

115

BIBLIOGRAPHY 116

[13] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clustering and
normalized cuts. In ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 551–556, New York, NY, USA, 2004. ACM.

[14] C. Ding, X. He, H. Zha, M. Gu, and H. Simon. A min-max cut algorithm for graph partitioning
and data clustering. IEEE International Conference on Data Mining, 2001.

[15] R.O. Duda and P.E. Hart. Pattern Classification and Scene Analysis. John Wiley and Sons,
1973.

[16] P. Erdós and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hungar. Acad.
Sci., 5:17–61, 1960.

[17] M. Ester, R. Ge, B. J. Gao, Z. Hu, and B. Ben-Moshe. Joint cluster analysis of attribute data
and relationship data: the connected k-center problem. In SIAM International Conference on
Data Mining, 2006.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 1996.

[19] C. Stark et al. Biogrid: a general repository for interaction datasets. Nucleic Acids Research,
(Database issue), 2006.

[20] Grioriev et al. A relationship between gene expression and protein interactions on the proteome
scale: analysis of the bacteriophage t7 and the yeast saccharomyces cerevisiae. Nucleic Acids
Research, 2001.

[21] R. Shyamsundar et al. A dna microarray survey of gene expression in normal human tissues.
Genome Biology, 2005.

[22] T. Hughes et al. Functional discovery via a compendium of expression profiles. Cell, July
2000.

[23] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to knowledge discovery in
databases, Fall 1996.

[24] U. Feige, D. Peleg, and G. Kortsarz. The dense k -subgraph problem. Algorithmica, 2001.

[25] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1. New York:
Wiley, 1968.

[26] P. Fjallstrom. Algorithms for graph partitioning: A survey. Linkoping Electronic Articles in
Computer and Information Science, 1998.

[27] M. Garey and D. Johnson. Computer and Intractability: a Guide to the theory of NP-
Completeness. 1979.

BIBLIOGRAPHY 117

[28] M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified np-complete problems. In
Annual ACM symposium on Theory of computing, 1974.

[29] S. Geman and D. Geman. Stochastic relaxation, gibbs distributions and the bayesian restoration
of images. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984.

[30] D. Gibson, R. Kumar, and A. Tomkins. Discovering large dense subgraphs in massive graphs.
In International Conference on Very Large Data Bases, 2005.

[31] M. Gladwell. The Tipping Point: How Little Things Can Make a Big Difference. Back Bay
Books, January 2002.

[32] S. Guha, R. Rastogi, and K. Shim. Cure: an efficient clustering algorithm for large databases.
In ACM SIGMOD International Conference on Management of Data, 1998.

[33] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algorithm for categorical at-
tributes. In Information Systems, 2000.

[34] L. Hagen and A.B. Kahng. New spectral methods for ratio cut partitioning and clustering.
IEEE Trans. on Computed Aided Desgin, 1992.

[35] M.S. Handcock, A.E. Raftery, and J.M. Tantrum. Model based clustering for social networks.
In Journal of the Royal Statistical Society, A, 170, 2, pages 301–354, 2007.

[36] D. Hanisch, A. Zien, R. Zimmer, and T. Lengauer. Co-clustering of biological networks and
gene expression data. Bioinformatics, 2002.

[37] R.A. Hanneman and M. Riddle. Introduction to social network methods.
http://faculty.ucr.edu/∼hanneman/, 2005.

[38] P.D. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social network anal-
ysis. In Journal of the American Statistical Association, volume 97, pages 1090–1098, 2002.

[39] R.S. Hunter. Photoelectric color-difference meter. In Journal of the Optical Society of America,
Vol. 38, Issue 7, pages 651–651, July 1948.

[40] A. Jain and R. Dubes. Algorithms for clustering data. Prentice Hall, 1988.

[41] M.E. Johnson, L.M. Moore, and D. Ylvisaker. Minimax and maximin distance designs. In
Journal of Statistical Planning and Inference 26, pages 131–148, 1990.

[42] R.M. Karp. Reducibility among combinatorial problems. In Complexity of Computer Compu-
tations, 1972.

[43] G. Karypis, E.-H. Han, and V. Kumar. Chameleon: Hierarchical clustering using dynamic
modeling. In IEEE Computer, 1999.

[44] L. Kaufman and P.J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
New York: Wiley, 1990.

BIBLIOGRAPHY 118

[45] P.N. Krivitsky, M.S. Handcock, J.M. Tantrum, and A.E. Raftery. Representing degree distribu-
tions, clustering, and homophily in social networks with latent cluster random effect models.
Technical report.

[46] P. Lazarsfeld and R. Merton. Friendship as a social process: A substantive and methodological
analysis. Freedom and Control in Modern Society. Van Nostrand, 1954.

[47] C. Linkletter. Spatial Process Models for Social Network Analysis. PhD thesis, Simon Fraser
University, 2007.

[48] C. Linkletter, D. Bingham, N. Hengartner, D. Higdon, and K.Q. Ye. Variable selection for
gaussian process models in computer experiments. In Technometrics, 48, pages 478–490,
2006.

[49] H.J. Thiebaux M.A. and Pedder. Spatial objective analysis with applications in atmospheric
science. London: Academic Press, 1987.

[50] J. MacQueen. Some methods for classification and analysis of multivariate observations. In
5th Berkeley Symposium on Mathematics, Statistics and Probability, pages 281–297, 1967.

[51] P. McCullagh and J.A. Nelder. Generalized linear models. Monographs on Statistics and
Applied Probability, Capman & Hall, London, 1983.

[52] M.D. McKay, R.J. Beckman, and W.J. Conover. A comparison of three methods for selecting
values of input variables in the analysis of output from a computer code. In Technometrics
(American Statistical Association), pages 239–245, 1979.

[53] M. McPherson, L. Smith-Lovin, and J.M. Cook. Birds of a feather: Homophily in social
networks. In American Review of Sociology 27, pages 415–444, 2001.

[54] T. M. Mitchell. Machine Learning. New York; London: McGraw-Hill, 1997.

[55] F. Moser, R. Colak, A. Rafiey, and M. Ester. Mining cohesive patterns from graphs with feature
vectors. In SIAM International Conference on Data Mining, 2009.

[56] F. Moser, R. Ge, and M. Ester. Joint cluster analysis of attribute and relationship data without
a-priori specification of the number of clusters. In ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2007.

[57] M. Newman. The structure of scientific collaboration networks. In Proc. Natl. Acad. Sci. 98,
2001.

[58] M. E. J. Newman and M. Girvan. Finding and evaluating community structure in networks.
Physical Review, 2004.

[59] M.E.J. Newman and E.A. Leicht. Mixture models and exploratory analysis in networks. Proc.
Natl. Acad. Sci. USA, May 2007.

BIBLIOGRAPHY 119

[60] A. Okabe, K.-I. Okunuki, and S. Shino. The sanet toolbox: New methods for network spatial
analysis. In Transactions in GIS. Blackwell Publishing, July 2006.

[61] L. Parsons, E. Haque, and H. Liu. Subspace clustering for high dimensional data: A review.
SIGKDD Explorations Newsletter, 6(1):90, 2004.

[62] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2005.

[63] D. Pelleg and A. Moore. X-means: Extending k-means with efficient estimation of the number
of clusters. In Seventeenth International Conference on Machine Learning, San Francisco,
2000.

[64] G. Salton and M. J. McGill. Introduction to modern information retrieval. McGraw-Hill, 1983.

[65] J. Scott. Social Network Analysis: A handbook. Sage Publications, London, 2000.

[66] L.G. Shapiro and G.C. Stockman. New Jersey, Prentice-Hall, 2001.

[67] J. Shi and J. Malik. Normalized cuts and image segmentation. In IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2000.

[68] J. Shi and J. Malik. Normalized cuts and image segmentation. In Proc. of IEEE TPAMI, 2000.

[69] M. Shiga, I. Takigawa, and K. Mamitsuka. A spectral clustering approach to optimally combin-
ing numberical vectors with a modular network. In ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, 2007.

[70] I. Ulitsky and R. Shamir. Identification of functional modules using network topology and
high-throughput data. BMC Systems Biology, (8), 2005.

[71] S. Wasserman and K. Faust. Social Network Analysis. Cambridge University Press, 1994.

[72] S. Wasserman and P.E. Pattison. Logit models and logistic regressions for social networks: I.
an introduction to markov random graphs and p. In Psychometrika, number 60, pages 401–425,
1986.

[73] Y. Wei and C. Cheng. Towards efficient hierarchical designs by ratio cut partitioning. In IEEE
Conf. on Computer-Aided Design, 1989.

[74] S. White and P. Smyth. A spectral clustering approach to finding communities in graphs. In
SIAM International Conference on Data Mining, 2005.

[75] S. Yu and J. Shi. Multiclass spectral clustering. In International Conference on Computer
Vision, 2003.

[76] Z. Zeng, J. Wang, L. Zhou, and G. Karypis. Coherent closed quasi-clique discovery from large
dense graph databases. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, 2006.

BIBLIOGRAPHY 120

[77] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for very
large databases. In ACM SIGMOD International Conference on Management of Data, 1996.

