
VIRENTRACK:

A HEURISTIC FOR REDUCING CACHE CONTENTION

by

Viren Kumar

B.Sc., Simon Fraser University, 2007

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Viren Kumar 2009

SIMON FRASER UNIVERSITY

Fall 2009

All rights reserved. However, in accordance with the Copyright Act

of Canada, this work may be reproduced, without authorization, under

the conditions for Fair Dealing. Therefore, limited reproduction of this work

for the purposes of private study, research, criticism, review and news reporting

is likely to be in accordance with the law, particularly if cited appropriately.





Last revision: Spring 09 

 

Declaration of 
Partial Copyright Licence 
The author, whose copyright is declared on the title page of this work, has granted 
to Simon Fraser University the right to lend this thesis, project or extended essay 
to users of the Simon Fraser University Library, and to make partial or single 
copies only for such users or in response to a request from the library of any other 
university, or other educational institution, on its own behalf or for one of its users.  

The author has further granted permission to Simon Fraser University to keep or 
make a digital copy for use in its circulating collection (currently available to the 
public at the “Institutional Repository” link of the SFU Library website 
<www.lib.sfu.ca> at: <http://ir.lib.sfu.ca/handle/1892/112>) and, without changing 
the content, to translate the thesis/project or extended essays, if technically 
possible, to any medium or format for the purpose of preservation of the digital 
work. 

The author has further agreed that permission for multiple copying of this work for 
scholarly purposes may be granted by either the author or the Dean of Graduate 
Studies.  

It is understood that copying or publication of this work for financial gain shall not 
be allowed without the author’s written permission. 

Permission for public performance, or limited permission for private scholarly use, 
of any multimedia materials forming part of this work, may have been granted by 
the author.  This information may be found on the separately catalogued 
multimedia material and in the signed Partial Copyright Licence. 

While licensing SFU to permit the above uses, the author retains copyright in the 
thesis, project or extended essays, including the right to change the work for 
subsequent purposes, including editing and publishing the work in whole or in 
part, and licensing other parties, as the author may desire.  

The original Partial Copyright Licence attesting to these terms, and signed by this 
author, may be found in the original bound copy of this work, retained in the 
Simon Fraser University Archive. 

Simon Fraser University Library 
Burnaby, BC, Canada 



Abstract

Multicore processors are the dominant paradigm in mainstream computing for the present

and foreseeable future. Current operating system schedulers on multicore systems co-

schedule applications on cores at random. This often exacerbates issues such as cache

contention, leading to a performance decrease. Optimally scheduling applications to take

advantage of multicore characteristics remains a difficult and open problem.

In this thesis, I advocate a method of optimized scheduling on multicore systems that

takes advantage of the caching attributes of applications. My scheduler is a user-level process

that co-schedules applications based on cache metrics obtained from hardware performance

counters. This phase-aware scheduler is able to effectively co-schedule two pairs of applica-

tions, extracting up to a 100% of all possible improvement in some workloads. Additionally,

individual application performance gains of up to 13% are observed in some applications in

co-schedules of two pairs.

iii



To Chuck, Tom, Jeff, Dave and Kerry

iv



“Ph’nglui mglw’nafh Cthulhu R’lyeh wgah’nagl fhtagn”

— H. P. Lovecraft, 1928

v



Acknowledgments

I would like to thank Sasha Fedorova, without whose help this thesis would never have

materialized.

I would also like to thank Mareija and all my colleagues in the systems lab at SFU.

vi



Contents

Approval ii

Abstract iii

Dedication iv

Quotation v

Acknowledgments vi

Contents vii

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Processor Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Optimal Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Related Work 6

2.1 Cache-conscious Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Software Cache Partitioning . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Other . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.3 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

vii



3 Analysis 11

3.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Animalistic Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2.1 Original Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.2 Identifying Turtles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.3 Identifying Devils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.4 Inconsistencies Revealed . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 New Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Choice of Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.3 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.4 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.4.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3.4.2 Intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Evaluation 28

4.1 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Dual Application Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Quad Application Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Maximum Possible Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Optimal Scheduling with clingo . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.6 Calculating Sensitivity and Intensity . . . . . . . . . . . . . . . . . . . . . . . 34

4.6.1 Pain Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.7 Experimental Subset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Live Scheduler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8.2 Placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.8.3 Greedy Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.8.4 Migration Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8.5 Replacement Decision . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.8.5.1 Dual Application Case . . . . . . . . . . . . . . . . . . . . . 40

4.8.5.2 Quad Application Case . . . . . . . . . . . . . . . . . . . . . 41

viii



5 Results 42

5.1 Non-NUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.1.1 Dual-case Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1.1.1 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.1.1.2 Individual Applications . . . . . . . . . . . . . . . . . . . . . 52

5.2 NUMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 Dual-case Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1.1 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1.2 Individual Applications . . . . . . . . . . . . . . . . . . . . . 60

5.2.2 Quad-case Workload . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.2.2.1 Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2.2 Individual Applications . . . . . . . . . . . . . . . . . . . . . 63

5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Conclusion 66

Bibliography 68

ix



List of Tables

1.1 Co-schedule Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Total Schedule Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3.1 Cache Metrics and Sensitivity Correlation . . . . . . . . . . . . . . . . . . . . 22

3.2 Sensitivity and Correlation between Miss Rate . . . . . . . . . . . . . . . . . 22

3.3 Cache Metrics and Intensity Correlation . . . . . . . . . . . . . . . . . . . . . 24

3.4 Intensity and Correlation between Access Rate and Miss Rate . . . . . . . . . 24

3.5 L2 Cache Miss Rates of SPEC CPU 2006 Benchmarks . . . . . . . . . . . . . 25

3.6 Median-separated Sensitivity Impact . . . . . . . . . . . . . . . . . . . . . . . 26

3.7 L2 Cache Miss and Access Rates of SPEC CPU 2006 Benchmarks . . . . . . 27

3.8 Median-separated Intensity Impact . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Representative Subset of SPEC CPU 2006 Benchmarks . . . . . . . . . . . . 28

4.2 L2 Cache Metrics and Sensitivity Correlation: Dual Case . . . . . . . . . . . 29

4.3 L2 Cache Metrics and Intensity Correlation: Dual Case . . . . . . . . . . . . 30

4.4 L2 Cache Metrics and Sensitivity Correlation: Quad Case . . . . . . . . . . . 31

4.5 L2 Cache Metrics and Intensity Correlation: Quad Case . . . . . . . . . . . . 31

4.6 Total Schedule Degradation over all Combinations . . . . . . . . . . . . . . . 32

4.7 Pain Metric Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.8 Maximum Possible Gain in Experimental Subset: Model . . . . . . . . . . . . 37

5.1 Maximum Possible Gain in Experimental Subset: Measured . . . . . . . . . . 44

5.2 Co-schedule Degradation for One Combination . . . . . . . . . . . . . . . . . 45

5.3 Co-schedule Degradation for All Combinations . . . . . . . . . . . . . . . . . 46

5.4 Number of Devils in each Quartet . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 Quad-case Experimental Subset Combinations . . . . . . . . . . . . . . . . . 62

x



List of Figures

1.1 Intel Quad-core Shared Caches . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Accesses and Misses per Million Cycles . . . . . . . . . . . . . . . . . . . . . . 16

3.2 IPC Reduction of Non-devils . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 IPC Reduction of Devils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4 Miss Rates and Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.5 Miss Rates, Access Rates and Suffering Inflicted . . . . . . . . . . . . . . . . 23

4.1 Co-schedules Sorted by Maximum Possible Gain . . . . . . . . . . . . . . . . 33

4.2 Experimental Subset of Co-schedules . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Maximum Possible Gain of Co-schedules . . . . . . . . . . . . . . . . . . . . . 43

5.2 Comparison of Maximum Achievable Gain and Achieved Gain . . . . . . . . . 44

5.3 Percentage of Time Spent in Each Co-schedule . . . . . . . . . . . . . . . . . 46

5.4 Improvement over Average Gain . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Percentage Increase in IPC: Combination . . . . . . . . . . . . . . . . . . . . 48

5.6 Performance as Number of Devils Varies . . . . . . . . . . . . . . . . . . . . . 50

5.7 IPC Breakdown as Number of Devils Varies . . . . . . . . . . . . . . . . . . . 51

5.8 Comparison of Maximum Achievable Gain, Average Gain and Achieved Gain 53

5.9 Percentage Increase in IPC: Individual . . . . . . . . . . . . . . . . . . . . . . 54

5.10 Percentage Increase in Individual Averages . . . . . . . . . . . . . . . . . . . 55

5.11 Percentage Increase in Animalistic Categories . . . . . . . . . . . . . . . . . . 56

5.12 Standard Deviation of Live and Random Scheduler . . . . . . . . . . . . . . . 57

5.13 NUMA Memory Node Interleaving . . . . . . . . . . . . . . . . . . . . . . . . 58

5.14 Percentage Increase in IPC: Combination . . . . . . . . . . . . . . . . . . . . 59

5.15 Percentage Increase in Individual Averages . . . . . . . . . . . . . . . . . . . 60

xi



5.16 Percentage Increase in Animalistic Categories . . . . . . . . . . . . . . . . . . 61

5.17 Percentage Increase in IPC: Combination . . . . . . . . . . . . . . . . . . . . 63

5.18 Percentage Increase in Individual Averages . . . . . . . . . . . . . . . . . . . 64

5.19 Percentage Increase in Animalistic Categories . . . . . . . . . . . . . . . . . . 65

xii



Chapter 1

Introduction

Multicore processors have established themselves as the de facto standard in computing

today. The problem of optimally scheduling applications on multicore platforms to maximize

performance remains wide open even today, with many possible solutions being proposed

over the last decade. Before we describe scheduling and why optimal scheduling is so hard,

let us examine the foundation of this problem in more detail.

1.1 Processor Composition

Modern processors are comprised of several components, including floating point units

(FPUs), branch predictors, reorder buffers, instruction pipelines and caches. Main memory,

which can be very large, is very slow, often taking hundreds of clock cycles to access, due

to being located off-chip. Exploiting the principle of locality are high-speed memory buffers

called caches, that are much smaller than main memory but many orders of magnitude

faster to access. Caches are organized hierarchically as well, with the L1 cache being very

small but very fast, and the L2 cache being bigger but a bit slower in terms of access time.

Some processors have an L3 cache which is larger than the L2, but again is slower to access.

The last level cache (LLC) of a processor is the lowest cache in the hierarchy before main

memory.

Uniprocessors consist of a single core that runs on these components and uses them

exclusively. Multicore processors, by definition have more than one core residing on a

physical processor. Cores have private resources such as L1 caches, but share some on-chip

resources such as L2 caches, L3 caches and FPUs. Since multiple cores compete for the

1



same resources, this leads to contention for these on-chip resources. This thesis focuses on

cache contention, specifically last-level caches, the caches at the lowest level before accessing

main memory.

1.2 Scheduling

When a user starts an application, the operating system executes that application by creat-

ing a process for it. A process is defined as a unit of activity characterized by the execution

of a sequence of instructions, a current state, and an associated set of system resources[11].

A process can have many lightweight processes or threads, which can execute in parallel. In

this thesis, I focus on single-threaded applications, which have a single thread of execution

on a given core at any given time. When a process executes, the operating system allocates

a core to that process for its execution. Since multicore processors have more than one core

on a chip, more than one application can be co-scheduled at a time on a multicore processor.

These applications end up competing for and sharing the on-chip resources described above.

Applications that share these resources do so in varying amounts and frequencies, leading

to differing access patterns and usage. When an application requests data that is present

in a cache, it is termed a cache hit. If the data is not found in the cache, it is termed a

cache miss and the data is fetched from main memory. To make room for the data fetched

from main memory, some data present in the cache is evicted. If an application evicts data

belonging to another co-scheduled application, it negatively affects the other application,

because the latter application now has to re-fetch its data back into the cache. We shall see

how, when two applications run simultaneously on a multicore processor and share a cache,

their access patterns and usage determine how they impact each other.

1.3 Optimal Scheduling

What makes scheduling applications on a multicore platform so difficult is the impact co-

scheduled applications have on each other, with regards to performance. Applications can

impact each other in a negative fashion, leading to a degradation in performance. Perfor-

mance is usually measured with the Instructions Per Cycle (IPC) metric, which measures

how many instructions a processor can execute per clock cycle. When two or more ap-

plications that could negatively impact each other are co-scheduled on cores on the same

2



 

 
System Memory 

Processor 0 

 
L2 Cache 

Core 0 

L1 Cache 

CPU 

Core 1 

L1 Cache 

CPU 

Processor 1 

 
L2 Cache 

Core 2 

L1 Cache 

CPU 

Core 3 

L1 Cache 

CPU 

System Bus 

Figure 1.1: Intel Quad-core Shared Caches

processor, the performance degradation manifests itself as a reduction in the IPC of the

applications. This is evident from the following example.

We consider four applications from the SPEC CPU 2006 benchmark suite. Our target

system has two dual-core processors; each pair of cores share a last level cache, as seen in

Figure 1.1. Two applications run concurrently on two cores and end up sharing that LLC.

An application’s solo IPC is defined as its IPC when run on a core with no cache-sharing,

i.e., no other applications are co-scheduled to run on the other cores that share a cache

with that application. By measuring the IPC of an application as it runs against another

application, we can compute the decrease in IPC compared to the application’s solo IPC,

caused by cache contention. Doing this for all pairs gives us all possible IPC co-scheduled

degradation data for the set of four benchmarks. In Table 1.1, we see the reduction in

IPC when two applications are co-scheduled, displayed as a percentage decrease from the

application’s solo IPC. For example, the milc row shows the IPC degradation of the milc

benchmark when co-scheduled with omnetpp as 11.79%.

From the set of four applications, three possible pairs of schedules are possible. If we

consider the total degradation of a schedule to be the sum of degradation of its co-schedules,

then an optimal schedule is the schedule with the minimum total IPC degradation. Table

1.2 shows all possible schedules and their total degradation. We calculate pair degradation

of a pair of applications (A,B) as the sum of the IPC degradation when A is co-scheduled

3



Benchmark mcf milc omnetpp lbm
mcf 5.84 9.99 17.41 19.16
milc 4.4 10.13 11.79 18.96
omnetpp 8.73 13.53 17.69 21.95
lbm 9.13 15.05 10.16 24.11

Table 1.1: Co-schedule Degradation

with B, and when B is co-scheduled with A. For example, in Schedule #1, we see the Pair

1 degradation of mcf and milc as 9.99 + 4.4, which is the sum of the degradation of mcf

when co-scheduled with milc (9.99), and the degradation of milc when co-scheduled with

mcf (4.4), from Table 1.1 above.

# Pair 1 Pair 2 Pair 1 Pair 2 Total IPC
degradation degradation degradation

1 mcf + milc omnetpp + lbm 9.99 + 4.4 21.95 + 10.16 55.50
2 mcf + lbm milc + omnetpp 19.16 + 9.13 11.79 + 13.53 53.61
3 mcf + omnetpp milc + lbm 17.41 + 8.73 18.96 + 15.05 60.15

Table 1.2: Total Schedule Degradation

We see that the schedule with the least IPC degradation is schedule #2, with a total

of 53.61. This schedule is the optimal schedule, which delivers the least IPC degradation

out of all the schedules. This defines the problem of optimal scheduling: finding an op-

timal schedule for a multicore processor implies finding a schedule where the performance

degradation between the co-scheduled applications is minimized.

In our dual-core example above, all performance degradations for the applications were

calculated beforehand. Unfortunately, even if all possible combinations of co-scheduled

applications and their deleterious effects were known beforehand, optimal scheduling for

more than 2 cores on a processor is an NP-complete problem.

Both the unrealistic assumption of total oracular application knowledge and the NP-

completeness of the problem make it practically impossible to implement optimal scheduling

in a real-world operating system. However, there are easier and more practical ways to

minimize application performance degradation in a real system. Most modern processors

have hardware performance counters, which can be used to track salient features of a running

application. By accessing and tracking some prominent hardware parameters, such as an

application’s cache access rate and cache miss rate, we can effect more efficient and optimized

4



scheduling policies.

5



Chapter 2

Related Work

Much work has been done in the field of multicore scheduling. Since my thesis focuses on

cache-conscious scheduling on multicore processors, this section focuses on those papers that

are directly related to this subset of multicore scheduling.

2.1 Cache-conscious Scheduling

2.1.1 Software Cache Partitioning

Xie et al.[13] provided the biggest inspiration for this work, with their animalistic classifica-

tion of applications. In their work, the authors classify applications into four classes based

on their cache access rates and miss rates. The classes are named after animals and provide

a straightforward way to distinguish between applications based on their cache access pat-

terns. A dynamic cache partitioning scheme then isolates applications that share a cache

from each other, leading to improved performance for some pairings of application classes.

However, their scheme is meant to be implemented in hardware, while the present approach

is implemented in software and is hardware-independent. This approach doesn’t isolate

applications by partitioning the cache, or restrain certain types by limiting the number of

ways an application can have in the cache1. Rather, it simply checks which applications are

least likely to impact each other when scheduled together and co-schedules them.

In the animalistic paper described above, the authors relied on the Utility Cache Parti-

tioning (UCP) scheme devised by Qureshi and Patt [8]. UCP is a dynamic cache partitioning

1See footnote in Section 3.2

6



algorithm that divides the cache among applications that share it. It too, is implemented

in hardware and works on the premise that the cache should be given to those who benefit

more from it, not those who demand more of it. Unlike their approach, the present scheme

doesn’t rely on cache partitioning to alleviate cache contention, but simply co-schedules

applications that share caches together, based on simple parameters.

Tam et al. [12] attempt to implement cache conscious scheduling by implementing cache

partitioning in software. Their approach partitions the cache between applications using

page allocation, à la the OS page-colouring method. Page-colouring is a cache-friendly

technique of allocating free pages in main memory to an application, such that the newly-

allocated pages map to contiguous sections in the application’s cache. By removing control

of the page allocation process from the OS, the authors guarantee that newly allocated

pages in memory map to the lines allocated to the application in the L2 cache. This enforces

application isolation via partitioning in the L2 cache. Furthermore, they use an application’s

instruction retirement stall rate curve (SRC), gathered from hardware performance counters,

as a predictor of performance as a function of L2 cache size. While this approach gives them

an efficient online method for estimating performance, their technique requires changes to

the virtual memory system, a very complex part of the OS. Additionally, reducing the

size of an L2 cache partition results in expensive memory copying, should the need arise.

The current approach is similar to theirs in that it also relies on observable events from the

hardware performance counters, but differs in that it needs no changes to the virtual memory

system of the OS. Finally, this approach eschews static partitioning, or indeed, partitioning

of any kind and co-schedules applications to share a cache without any partitioning scheme.

In the same vein as Tam above, Zhang et al. also suggest software-based cache parti-

tioning using hot page colouring [14]. By colouring only frequently-accessed or “hot” pages,

the authors hope to avoid some of the drawbacks of page allocation by colouring. How-

ever, they mention that their approach suffers from overhead which can be mitigated by

partial hardware support. The present scheme is different by virtue of sidestepping cache

partitioning altogether.

Soares et al. describe another software partitioning scheme in their paper on reducing

cache pollution with a pollute buffer [10]. Unlike other software partitioning schemes that try

to reduce cache contention between two or more co-scheduled applications, the pollute buffer

attempts to improve cache performance from within a single application. The pollute buffer

is simply a software partition of the cache that is used by pages in the application with a high

7



last level cache miss rate. By correlating the L2 cache miss rate of an application’s pages

with its ability to pollute the cache, the authors implement a dynamic, online monitoring

system that uses hardware performance counters to reduce L2 cache misses and improve

performance. The present approach is superficially similar in that it also uses hardware

performance counters to improve performance, but as noted for all the papers in this section,

cache partitioning is avoided altogether. Additionally, the presented method works for two

or more applications in a chip multiprocessor with shared last-level caches, as opposed to

just one application.

2.1.2 Other

Snavely and Tullsen make a case for symbiotic job scheduling in their paper on scheduling

on a simultaneous multi-threading (SMT) processor [9]. Their approach works at a finer

granularity than mine, focusing on SMT processors, while mine focuses on single-threaded

multicore processors (CMP). The authors’ approach is two-pronged, with an online sampling

phase where all permutations of possible schedules are evaluated, followed by a symbios

phase where the best candidate schedule from the sampling phase is executed. The current

approach differs from theirs in that it does not require all permutations of schedules, but

rather uses hardware counter events to decide on optimal scheduling strategies.

In their paper on the analysis and approximation of optimal co-scheduling [5], Jiang

et al. provide a thorough theoretic grounding for the problem of optimal co-scheduling

on multicore processors. The approach in this thesis mirrors theirs, in aspects such as

measuring co-run degradation between co-scheduled apps and calculating optimal schedules.

The authors first prove that optimal co-scheduling for k processors, where k > 2 is NP-

complete. They provide an implementation of Edmonds’ blossom algorithm [3] to find an

optimal co-schedule for dual-core processors, and then suggest approximation algorithms for

processors with more than two cores. However, their approach relies on a priori knowledge

of all possible co-run degradations to suggest solutions for optimal scheduling. While the

current approach does use a priori co-run degradation knowledge to build a model for co-

scheduling, the live scheduler does not require prior knowledge of co-schedule degradation

to produce a schedule, relying on hardware performance counter-generated events instead.

The work of Blagodurov et al. [1], also in the systems lab at Simon Fraser University, is

closely related to my work in this thesis. The report has the same overall goal of reducing

multicore contention, but the authors pursue several different approaches to reach the same

8



goal. They attempt to optimize multicore scheduling by classifying applications according

to several schemes, including ones based on stack distance profiles and animalistic classes.

One major difference between their work and mine is that they only consider cache miss

rates, while this work considers both cache miss rates and access rates as inputs for its

live scheduler. Their report provides an independent confirmation of the methods used in

this thesis, and correspondingly, the results of this thesis provide independent verification

of some of theirs.

2.1.3 Models

Petoumenos et al. suggest using a cache sharing and management framework called Stat-

Share [7], to model an application’s behaviour in a shared cache. By building a reuse distance

histogram with cache replacements instead of the usual intervening memory accesses, the

authors are able to predict an application’s hits and misses with high accuracy. The model’s

output can then be used to drive co-scheduling decisions. However, their approach would

involve modifying hardware and this precludes any kind of software portability. In contrast,

this thesis proposes a software-based method for making co-scheduling decisions based on

cache access patterns.

Hsu et al. provide a framework for comparing optimal performance targets in CMP

architectures with their paper on communist, utilitarian and capitalist cache sharing [4].

They contend that defining performance itself on multicore processors that share caches

amongst threads is not as simple as it was on uniprocessors, with alternative definitions

such as fairness or IPC throughput. A whole host of metrics present themselves to be used

in analysis, such as IPC, miss rates, misses per access and so on. Furthermore, cache policies

such as Least Recently Used (LRU) can have an effect on the achievement of the overall

goal. The authors define a policy metric as an easily observable metric that can be used

for online scheduling in lieu of a more complex evaluation metric that may be harder to

measure in an online scheduler. To borrow their terminology, in the present work the policy

metrics are hardware counter events and the evaluation metric is the IPC.

In their paper on predicting inter-thread cache contention, Chandra et al. propose three

models that evaluate the impact of cache sharing among co-scheduled threads [2]. However,

their models rely on stack distance profiles, which have to be calculated offline, and thus

are not very practical for live scheduling decisions at runtime. The Frequency of Access

model depends solely on the access frequency of an application and can be inaccurate if

9



the ratios of miss and reuse frequency are different. The second model, the Stack Distance

Competition model can also be inaccurate if the threads being measured differ wildly in their

miss frequency. The third and most accurate model, the Inductive Probability Model is the

most accurate, but is too computationally demanding to be used in realtime scheduling. In

contrast, my approach relies on simpler events that can be easily measured online.

Knauerhase et al, follow a similar approach to mine, in their work on using observable

events in the OS to improve performance in multicore systems [6]. While their method of

co-scheduling applications based on cache events observed online is similar to mine, they do

not provide a rigorous analysis of the justification behind their approach. The experimental

section of their paper omits to mention some details, such as why the hardware events are

measured at every context switch and not every million cycles.

2.1.4 Summary

Thus, we have seen that there are three major approaches one can consider, as a potential

means of alleviating cache contention. Hardware cache partitioning is one of the most

efficient, but unfortunately it requires special hardware, which is not easily available on

most production systems today. Software partitioning of the caches can be effective as well,

but doing so requires non-trivial changes to the virtual memory subsystem of an operating

system, something that cannot be undertaken lightly. Finally, scheduling to mitigate cache

contention makes up the third category and it is this category that this thesis falls into.

Scheduling applications on the basis of their cache attributes can be done without either

complex changes to the OS or exotic underlying hardware. In the rest of the thesis, we shall

see how co-scheduling applications based on their cache access patterns can minimize cache

contention and improve performance.

10



Chapter 3

Analysis

This chapter explains the rationale behind the metrics used in this thesis, including an

overview of the foundation behind the choices. The chapter begins with a brief overview

of the two types of hardware memory architectures used in the experiments in this thesis.

The succeeding sections explain the animalistic classes used in this body of work and their

source. Some anomalies with the animalistic model are described, along with attempts at

explaining some of them. The terms: sensitivity and intensity, are described and used in the

context of co-scheduling. This is followed by a justification for certain cache events as good

predictors for both intensity and sensitivity. Statistical analysis then shows that these cache

events can be used as proxies for sensitivity and intensity in online scheduling. Finally, this

chapter concludes by presenting data showing the differences between scheduling sensitive

and insensitive applications with intensive applications, as well as the differences between

intensive and non-intensive applications.

3.1 Experimental Setup

This thesis uses two different systems in its experimental section. A short note about

memory interleaving on Non-Uniform Memory Access (NUMA) systems is in order. Systems

that implement a NUMA memory design offer faster access to regions of memory for select

cores. A core thus has local and remote memory, where access to local memory is faster

than access to remote memory. When accessing local memory, these cores benefit from

smaller cache penalties, since they are able to access certain areas of memory faster than

the other cores. To reduce this unfairness in memory access, node interleaving distributes

11



or interleaves memory allocation across all the regions of memory equally, for a running

application. However, this also reduces the potential gains from NUMA, since a processor

has to access remote memory as well as local memory for its operations. Additionally,

performance gains from NUMA are hard to predict and measure, being highly dependent

on many factors such as cache sizes, bus latencies, memory sizes and the nature of the actual

workload.

In contrast with NUMA, we have the older, more established Uniform Memory Access

(UMA) which implies that no processor has local or remote memory, with each processor

having the same access speeds for all regions of shared memory. With standardized access

to memory regions from all processors, all processors suffer an equal penalty for a cache

miss. This levels the playing field and makes performance measurement more predictable

and repeatable, by eliminating the varying dependence on local and remote memory speeds.

The first system is a NUMA system with memory interleaving and is based on an AMD

quad-core processor where the last-level cache is an L3 cache, not an L2 cache as in the

previous system. The details of the first system used in the experiments in the rest of this

thesis are presented below:

• Two Quad-Core AMD Opteron(tm) Processor 2350s for a total of 8 cores, all at 2

GHz

• Each core has a 64 KB L1 instruction cache, a 64 KB L1 data cache and a 512 KB L2

cache

• All 4 cores on a chip share a common 2 MB L3 cache

• 8 GB of RAM

• The operating system is Open Solaris 5.11 build 95

The NUMA system is a quad-core system with more RAM than the original system

seen in Section 3.2.1, permitting more interesting experiments to be run. Also, being more

modern, the new system is more representative of future systems.

The second UMA system has no memory interleaving, by definition and is an Intel Xeon-

based machine, with a shared L2 cache as the last level cache. The details of this second

UMA system are similar to the system used in Section 3.2.1, except that it has twice the

number of cores and memory.

12



• Two Quad-Core Intel Xeon Processor 5365 processors for a total of 8 cores, all at 3.00

GHz

• Each core has a 32 KB L1 instruction cache and a 32 KB L1 data cache

• Pairs of cores share two 4 MB L2 caches

• 8 GB of RAM

• The operating system is Open Solaris 5.11 build 86

3.2 Animalistic Classification

This work was inspired by the research done by Xie et al. [13], who classified applications into

animalistic categories, based on some select criteria. In their paper, Xie et al. categorized

applications as either turtles, rabbits, sheep or devils. By monitoring the cache access rate

and miss rate of applications, the authors were able to slot running applications into one

of the four categories based on criteria explained below. The paper defines the following

metrics for use in the classification of applications:

• Accesses – the total number of accesses to the L2 cache, including instruction, data

and prefetch requests

• Missessolo – the total number of L2 misses if the program had sole use of the entire

n ways1 of the cache

• MissRatesolo – the relative L2 miss rate if the program had sole use of the entire n

ways of the cache (Missessolo/Accesses)

• WaysNeededk% – The smallest number of ways needed to achieve a miss rate that is

less than or equal to k% of MissRatesolo.

The above metrics are sampled once every million cycles, with the following conditions

being used to classify an application into one of the four animal classes:

1A cache is divided into lines, with entire lines being fetched at a time from main memory. A group of
lines form a set. A cache with n lines in a set is called n-way set associative. The number of ways in a cache
denotes the cache placement of a line and lies on a continuum, from a direct-mapped cache (one-way set
associative) to a fully associative cache (n-way set associative, where n is the number of lines in the cache).

13



• Turtle – if (Accesses < 1000), i.e. an application is a turtle if its cache access rate is

low. This type of application doesn’t access the cache much at all.

• Rabbit – if (WaysNeeded95% > n
2 ), i.e. an application is a rabbit if it needs many

cache ways to keep its miss rate low. An application that’s a rabbit suffers when its

cache is shared.

• Devil – if ((MissRatesolo > 10%) OR (Missessolo > 4, 000)), i.e. an application is

a devil if its miss rate is high. A devil application hurts the other applications it is

co-scheduled with.

• Sheep – if an application doesn’t match any of the conditions above, i.e. an application

is a sheep if it needs a few cache ways to keep its miss rate low. This type of application

is content with very few cache ways.

Our primary goal to investigate whether these classifications could be leveraged to aid in

co-scheduling applications. When performance is measured with the Instructions per Cycle

(IPC) metric, scheduling a devil with any application should leave the devil’s performance

untouched, while degrading the IPC of the co-scheduled application. Conversely, scheduling

a turtle with any application should leave both the co-scheduled application’s and the turtle’s

IPC unharmed.

3.2.1 Original Experimental Setup

The original goal of Xie et al.[13] was to investigate a method that could be used to classify

applications, in the event that such a classification proved helpful for co-scheduling appli-

cations. By adapting the animalistic scheme to a real operating system running on real

hardware, we could determine whether classifying applications using performance counters

was a viable approach to co-scheduling applications, on a real system. All benchmarks from

the SPEC CPU 2006 suite (both CINT and CFP) were compiled for a 64-bit environment.

Reference inputs were used and the benchmarks were run on a system with the following

characteristics:

• One Quad-Core Intel Xeon Processor 5320 for a total of 4 cores, all at 1.86 GHz

• Each core has a 32 KB L1 instruction cache and a 32 KB L1 data cache

14



• Pairs of cores share two 4 MB L2 caches

• 4 GB of RAM

The above system was chosen because it matched the animalistic model’s system very

closely, in terms of hardware specifications. The animalistic paper’s setup was mimicked as

closely as possible to reduce disparity between their results and the present approach’s.

Measuring the last-level (L2) cache misses and access rates allowed us to sort the data and

enable a preliminary classification of devils and turtles. Recall that devils are applications

with a high cache miss rate, while turtles are applications with a low cache access rate.

This work focused on devils and turtles because they had easily observable characteristics.

Determining if an application is a sheep or rabbit is not possible in a real system, because

there is no easy way to modify the number of ways in a cache while the system is operational.

To determine whether the classification would aid co-scheduling, we decided to first

classify some applications in the SPEC suite as devils and turtles. Having classified some

applications into these two categories, the next step was to run devils with non-devil appli-

cations and measure the IPC degradation of both the devils and non-devils.

Figure 5.8 lists the benchmarks in the SPEC CPU 2006 benchmark suite, sorted by the

number of accesses per million cycles, and misses per million cycles, in parts (a) and (b)

respectively.

3.2.2 Identifying Turtles

From Figure 3.1, we see that we can identify some turtles tentatively. The original paper

states that a turtle is an application with < 1000 accesses per million cycles. Since that

would mean I had no turtles, it’s reasonable to consider some of the lowest applications as

tentative turtles. By that logic sjeng, calculix and gromacs would be candidates for turtles.

3.2.3 Identifying Devils

Similarly, the original work lists devils as applications with > 4000 misses per million cycles.

Using this as the cutoff, the applications with the highest misses were chosen as tentative

devils. This leaves us with omnetpp, mcf, soplex, milc and lbm as potential devils.

15



pre-results

Page 7

0 5000 10000 15000 20000 25000 30000 35000

mcf
lbm

soplex
sphinx3

xalancbmk
zeusmp
leslie3d

GemsFDTD
bwaves

gcc
bzip2
astar

povray
omnetpp

gobmk
dealII

milc
namd
tonto

hmmer
gamess
h264ref

gromacs
calculix

sjeng

Accesses per Million Cycles

Be
nc

hm
ar

ks

0 2000 4000 6000 8000 10000 12000

lbm
milc

soplex
mcf

omnetpp
astar

gcc
GemsFDTD
xalancbmk

sphinx3
zeusmp
bwaves

dealII
leslie3d

sjeng
bzip2

gobmk
tonto

calculix
h264ref

gromacs
namd

hmmer
povray

gamess

Misses per Million Cycles

Be
nc

hm
ar

ks

(a) Accesses

pre-results

Page 7

0 5000 10000 15000 20000 25000 30000 35000

mcf
lbm

soplex
sphinx3

xalancbmk
zeusmp
leslie3d

GemsFDTD
bwaves

gcc
bzip2
astar

povray
omnetpp

gobmk
dealII

milc
namd
tonto

hmmer
gamess
h264ref

gromacs
calculix

sjeng

Accesses per Million Cycles

Be
nc

hm
ar

ks

0 2000 4000 6000 8000 10000 12000

lbm
milc

soplex
mcf

omnetpp
astar

gcc
GemsFDTD
xalancbmk

sphinx3
zeusmp
bwaves

dealII
leslie3d

sjeng
bzip2

gobmk
tonto

calculix
h264ref

gromacs
namd

hmmer
povray

gamess

Misses per Million Cycles

Be
nc

hm
ar

ks
(b) Misses

Figure 3.1: Accesses and Misses per Million Cycles

3.2.4 Inconsistencies Revealed

When devils and non-devils were co-scheduled, the results showed that the devils inflicted

damage on most of the non-devil applications, but some non-devils benefited from being

co-scheduled with devils. Figure 3.2 shows the reduction in IPC of a non-devil application

when co-scheduled with a devil, as a percentage decrease over the non-devil application’s

solo IPC. The devils in this scenario are the five potential devils identified in Section 3.2.3,

while the non-devils are the remaining benchmarks in the SPEC 2006 benchmark suite. A

negative reduction in IPC is an increase in IPC, which is an unexpected result. This increase

in performance when scheduled with a devil is not touched upon in the original paper. As an

extreme example, consider the performance of h264ref when co-scheduled with the devils,

in Figure 3.2. Its negative decrease in IPC, or increase in performance is almost 100%, a

phenomenon that we are at a loss to explain.

Additionally, the devils themselves suffered performance degradation, something that

was unexpected according to the animalistic classification scheme. The devils were run

against a cross-section of other benchmarks from the suite, and the IPC degradation of each

devil was recorded. Figure 3.3 shows us the average degradation in IPC of a devil in its

co-schedules with the other benchmarks, as a percentage of the devil’s solo IPC. All five

devils show a loss in performance, something that is not explained in the original paper.

16



pre-results

Page 8

-120

-100

-80

-60

-40

-20

0

20

40

Pe
rc

en
ta

ge
 D

ec
re

as
e

Non-Devil Benchmarks

Percentage Decrease in IPC

0

2

4

6

8

10

12

14

16

18

20

omnetpp mcf soplex milc lbm

Pe
rc

en
ta

ge
 D

ec
re

as
e

Devil Benchmarks

Average IPC Degradation

-15

-10

-5

0

5

10

15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Se
ns

it
iv

it
y

M
is

se
s 

pe
r 

M
ill

io
n 

In
st

ru
ct

io
ns

Benchmarks

Misses per Million Instructions

Sensitivity

Figure 3.2: IPC Reduction of Non-devils

A technical report done by Blagodurov et al. [1] shows that devils suffer IPC degradation

because of factors apart from just cache contention. Contention for other hardware compo-

nents such as the memory bus and the memory controller serves to negatively impact the

IPC of a devil when co-scheduled with other applications. Pre-fetching lines from memory

into the cache is another approach heavily used by devils, and one prone to cause heavy IPC

degradation when contended for by other co-scheduled applications. These factors explain

some of the anomalous behaviour of devils, as seen by my experiments but not explained in

the original animalistic paper.

3.3 New Method

The experiments in this thesis gave rise to a scheme for co-scheduling applications, based on

the twin parameters of sensitivity and intensity. Sensitivity is a measure of how much an

application is affected when co-scheduled with another application. If an application suffers

a tremendous degradation in its IPC when co-scheduled, as compared to its solo IPC, then

we say that an application is sensitive. On the other hand, if an application suffers little

to no degradation when co-scheduled with another application, the application is deemed

to be insensitive. Intensity is defined as a measure of how much an application affects the

other application it is co-scheduled with. If an application causes significant degradation in

the IPC of the other application it is co-scheduled with, then we say that the application

17



pre-results

Page 8

-120

-100

-80

-60

-40

-20

0

20

40

Pe
rc

en
ta

ge
 D

ec
re

as
e

Non-Devil Benchmarks

Percentage Decrease in IPC

0

2

4

6

8

10

12

14

16

18

20

omnetpp mcf soplex milc lbm

Pe
rc

en
ta

ge
 D

ec
re

as
e

Devil Benchmarks

Average IPC Degradation

-15

-10

-5

0

5

10

15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Se
ns

it
iv

it
y

M
is

se
s 

pe
r 

M
ill

io
n 

In
st

ru
ct

io
ns

Benchmarks

Misses per Million Instructions

Sensitivity

Figure 3.3: IPC Reduction of Devils

is highly intensive. Analogous to the sensitivity definition above, an application is lightly

intensive if when co-scheduled with another application, it induces little to no degradation

in the IPC of the other application.

A further point of importance is that neither sensitivity nor intensity need to be precisely

defined. It is not necessary to decide how much an application’s IPC should suffer, for it to

be classed as sensitive. Similarly, one doesn’t need a precise amount of inflicted IPC damage

to classify an application as intensive. All that is needed is a way to compare the relative

sensitivity and intensity of different applications.

If sensitivity and intensity are to be used for co-scheduling applications in real-time, a

low-overhead method of calculating them is needed. Most modern processors have hardware

performance counters which allow one to gather several statistics about a running applica-

tion, including events such as the number of clock cycles consumed, the number of main

memory accesses and so on. Two straightforward events that could be investigated further

were:

• Cache access rate

• Cache miss rate

To better understand and define sensitivity in terms of easily measurable events, we

measured how much an application’s performance suffered when co-scheduled with another

application. Performance is measured in terms of the IPC metric, and sensitivity is measured

18



as a percentage drop in the IPC of the application in the co-schedule, compared to the IPC

when the application runs by itself. The average sensitivity of an application is the average

sensitivity of the application over many runs with the benchmarks in the SPEC suite.

Similarly, the intensity of an application is measured by calculating the IPC degradation

inflicted on a co-scheduled application. The intensity is measured as a percentage drop in the

IPC of the other co-scheduled application, compared to its solo IPC. The average intensity of

an application is the average of its intensities over many runs with other SPEC benchmarks.

Once the average sensitivities and intensities had been gathered, the next step was

to find a reliable way to predict the sensitivity and intensity of an application during its

runtime. With that in mind, the twelve cache metrics described in the next section were

tested as possible predictors for an application’s sensitivity and intensity. An application’s

cache access rate and miss rate were not gathered live during each run, with the twelve solo

cache metrics described below being used instead.

3.3.1 Choice of Metric

Though the work of Xie et al. [13] focused on the last-level cache, the last-level cache

suffers from cache contention when two or more co-scheduled applications share the cache.

This results in cache access and miss numbers that may differ substantially from solo runs.

However, an application’s cache access and miss rate for its private caches would be expected

to stay relatively constant, whether the application is run solo or co-scheduled with other

applications, due to the opacity of the private caches to other co-running applications.

Measuring an application’s private cache access and miss rates would thus be stabler across

co-scheduling runs. However, a private cache metric might not be a good predictor of

sensitivity or intensity. To determine which cache metric was the best predictor of sensitivity

and intensity, the solo access and miss rates of applications in all three levels of caches in the

experimental system above were measured. By running linear regressions on the solo access

rates and miss rates, and the intensity and sensitivity, we looked for a strong correlation

between these cache metrics and sensitivity and intensity. A strong correlation between a

cache event and sensitivity would mean that the cache event could be used as a predictor

for sensitivity in an online scheduler. The same holds true for intensity as well. Each metric

could be measured in per-cycle or per-instruction terms, leading to twelve possible choices

for the cache metrics.

19



• Per cycle

– L1 cache

1. Accesses

2. Misses

– L2 cache

1. Accesses

2. Misses

– L3 cache

1. Accesses

2. Misses

• Per instruction

– L1 cache

1. Accesses

2. Misses

– L2 cache

1. Accesses

2. Misses

– L3 cache

1. Accesses

2. Misses

3.3.2 Sensitivity

This section describes how sensitivity was correlated to the cache metrics described above.

All the benchmarks in the SPEC CPU 2006 suite were co-scheduled with all the other

benchmarks in the suite to measure performance degradation, for a total of 625 co-schedules

(four would not compile on my system). Figure 3.4 shows the benchmarks from SPEC CPU

20



pre-results

Page 8

-120

-100

-80

-60

-40

-20

0

20

40

Pe
rc

en
ta

ge
 D

ec
re

as
e

Non-Devil Benchmarks

Percentage Decrease in IPC

0

2

4

6

8

10

12

14

16

18

20

omnetpp mcf soplex milc lbm

Pe
rc

en
ta

ge
 D

ec
re

as
e

Devil Benchmarks

Average IPC Degradation

-15

-10

-5

0

5

10

15

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

Se
ns

it
iv

it
y

M
is

se
s 

pe
r 

M
ill

io
n 

In
st

ru
ct

io
ns

Benchmarks

Misses per Million Instructions

Sensitivity

Figure 3.4: Miss Rates and Sensitivity

2006, sorted by their L2 cache miss rate and the average suffering they experienced when

co-scheduled with another application.

This was done for the L1 and L3 cache events as well, to see which cache events would

have the greatest correlation with suffering. We ran regression analyses on the data to

obtain a correlation between suffering and cache access rate, if any. The R-square of the

linear regression correlating the various cache events and IPC suffering is shown in Table

3.1.

Of these, the most promising were the L2 cache metrics, particularly the L2 misses per

million instructions metric, with the highest R-square value of 63.06. Further statistical

detail on this metric is provided below.

From Table 3.2 we see that there exists a correlation of 63% between the application’s

suffering and its cache miss rate, i.e. 63% of the variation in an application’s sensitivity can

be explained by the application’s L2 cache miss rate. At a significance level of 0.001, i.e. α

= 0.001, with 25 data points from the benchmarks, F0.001,1,23 = 14.20.

Since the observed f value, 39.2647 > F0.001,1,23, we can safely reject the null hypothesis

(which states that there is no relationship between the IPC and the L2 cache miss rate) and

assume that there is an approximate linear relationship between the degradation in IPC and

the cache miss rate. Confirming this conclusion is the extremely low P-value of 0.000002,

which strongly contradicts the null hypothesis.

This is intuitive because the more an application is affected by another application

21



Per Million Cycles
Metric R square
L1 accesses 40.30
L1 misses 37.23
L2 accesses 58.01
L2 misses 48.89
L3 accesses 49.34
L3 misses 35.49
Per Million Instructions
Metric R square
L1 accesses 1.91
L1 misses 38.30
L2 accesses 41.69
L2 misses 63.06
L3 accesses 53.31
L3 misses 57.58

Table 3.1: Cache Metrics and Sensitivity Correlation

Statistic Value
R square 63.0609
f 39.2647
P-value 0.000002

Table 3.2: Sensitivity and Correlation between Miss Rate

sharing the same cache, the more misses it incurs. There is another big advantage to using

the cache miss rate as a predictor for suffering: it can be easily obtained live from hardware

performance counters, during the application’s runtime.

Thus, it seems as though the L2 cache miss rate is a good metric for sensitivity.

3.3.3 Intensity

Following the same experimental setup as the one used for sensitivity above, we sought to

correlate an application’s cache miss rate and cache access rate with its intensity.

Figure 3.5 shows the L2 cache access rates and miss rates of an application, combined

with the IPC decrease it causes in other applications. The degradation in IPC is measured

as a percentage decrease in the IPC when compared against the IPC of a solo run.

Similarly, the L1 and L2 cache data was gathered to determine which cache event would

22



pre-results

Page 9

-2

0

2

4

6

8

10

0

5000

10000

15000

20000

25000

30000

In
te

ns
it

y

A
cc

es
se

s a
nd

 M
is

se
s 

pe
r 

M
ill

io
n 

Cy
cl

es

Benchmarks

Misses per Million Cycles

Accesses per Million Cycles

Intensity

0

20

40

60

80

100

120

140

160

180

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Figure 3.5: Miss Rates, Access Rates and Suffering Inflicted

have the highest correlation with intensity. Multiple regression analysis was run on the data

to obtain a correlation between suffering inflicted and the pair of cache access rate and cache

miss rate. This analysis produced the data present in Table 3.3.

Of these, the most promising were the L3 metrics. However, capturing both the L2 and

L3 cache metrics live in a real scheduler would be cumbersome, which is why we decided on

the L2 metric for intensity as well. The L2 metrics, while not as strongly correlated as the

L3 metrics, will already be gathered for sensitivity and are thus a better choice.

Table 3.4 lists the statistical details of the L2 cache metric. In Table 3.4, we see that

there exists a correlation of 32.20% between the application’s intensity and the combination

of its cache access rate and miss rate, i.e. 32% of the variability in an application’s intensity

can be explained by the application’s cache access rate and miss rate. At a significance level

of 0.050, i.e. α = 0.050, with 25 data points from the benchmarks, F0.050,2,22 = 3.44.

Since the observed f value, 5.33 > F0.001,1,23, we can safely reject the null hypothesis,

which states that there is no relationship between the intensity and the combination of

the cache access rate and miss rate. Thus, we can assume that there is an approximate

linear relationship between the degradation in an application’s IPC and its cache access

rate and miss rate. Confirming this conclusion is the low P-value of 0.01390, which strongly

contradicts the null hypothesis.

The intuitive explanation for the access rate is straightforward: the more an application

uses the cache, the more likely it is to occupy the cache and deny other applications a fair

23



Per Million Cycles
Metric R square
L1 accesses and misses 27.90
L1 misses 16.34
L2 accesses and misses 32.20
L2 misses 31.06
L3 accesses and misses 39.76
L3 misses 31.90

Per Million Instructions
Metric R square
L1 accesses and misses 0.60
L1 misses 3.04
L2 accesses and misses 29.21
L2 misses 6.08
L3 accesses and misses 26.90
L3 misses 15.57

Table 3.3: Cache Metrics and Intensity Correlation

Statistic Value
R square 32.2030
f 5.22
P-value 0.01390

Table 3.4: Intensity and Correlation between Access Rate and Miss Rate

share of the cache. Since the miss rate determines how much data the application evicts

from the cache, it is straightforward to see how a higher miss rate might negatively impact

a co-scheduled application by evicting some of its data.

Thus, it seems as though the combination of the last-level cache access rate and miss

rate is a reasonable metric for intensity.

3.3.4 Implications

In this section, we rank applications from the SPEC 2006 suite in terms of their access rates

and miss rates and examine the sensitivity and intensity quotients of these applications.

24



Benchmark Misses per million instructions
povray 7.76
gamess 23.6
namd 112.64
calculix 512.39
sjeng 627.71
gromacs 773.26
gobmk 893.52
h264ref 1530.42
hmmer 2454.6
tonto 3139.75
dealII 3900.72
zeusmp 4895.84
bzip2 5009.23
xalancbmk 6380.35
gcc 8578.31
astar 12765.85
leslie3d 13703.94
omnetpp 14357.79
GemsFDTD 14631.46
bwaves 15718.76
sphinx3 16045.37
milc 20197.31
lbm 25418.42
soplex 29994.88
mcf 41846.09

Table 3.5: L2 Cache Miss Rates of SPEC CPU 2006 Benchmarks

3.3.4.1 Sensitivity

If an application’s cache miss rate determines its sensitivity, then applications with a high

cache miss rate should suffer more when co-run with devils than with non-devils. This is

one case of an extremum with our theory: co-scheduling an application that is most likely

to suffer with an application that is most likely to inflict suffering should show us maximal

suffering. This does turn out to be the case, as evinced by the data in Table 3.6.

Table 3.5 shows us the applications sorted by their cache miss rate. The median value

of this set of data is bzip2, with a miss rate value of 5009.23. Based on the animalistic

classification, we can identify sphinx, milc, lbm, soplex and mcf as potential devils, since

25



they fall at the higher end of misses per million instructions. Calculating the sensitivity of

applications when run with these potential devils gives us the data in Table 3.6

Benchmarks Average sensitivity to devils Average sensitivity to non-devils
Lower half of miss rates 2.379 2.154
Higher half of miss rates 6.241 4.450

Table 3.6: Median-separated Sensitivity Impact

From the table, we can see that applications with high cache miss rates are more sensitive,

suffering at least twice as much as their low miss rate counterparts. Table 3.6 also tells us

that regardless of its miss rate, an application suffers more when co-scheduled with a devil

instead of a non-devil.

3.3.4.2 Intensity

Here, we examine the effects of an application on other applications as a consequence of its

miss rate and access rate. Sorting the applications by their cache miss rates gives us the

data in Table 3.7, with bzip2 as the median value of 4370.28.

Similar to our calculations for sensitivity above, in Table 3.8 we see that applications with

higher miss rates and access rates are more intensive than their lower miss rate counterparts,

with an almost 60% more increase in intensity from the lower miss rate to the higher miss

rate applications.

26



Benchmarks Misses per million cycles Accesses per million cycles Average intensity
povray 8.96 9247.01 4
gamess 30.46 3515.19 4
namd 154.02 4724.84 4
gromacs 498.69 6045.77 2
sjeng 589.46 2828.86 -2
calculix 641.22 3836.45 4
gobmk 772.33 6359.95 3
h264ref 1596.6 3498.31 0
hmmer 2581.85 5986.97 4
zeusmp 3304.89 11175.3 0
tonto 3387.71 10305.94 4
dealII 4004.35 9620.47 4
bzip 4370.28 11358.79 4
astar 4816.75 15890.2 4
gcc 4831.18 12263.34 4
Xalan 5036.77 12776.92 4
omnetpp 6159.94 12374.06 4
mcf 6638.98 19865.33 1
sphinx 9732.63 15118.44 4
GemsFDTD 10398.59 20297.46 6
soplex 11767.45 20222.94 5
milc 12002.13 15103.68 4
leslie3d 12076.39 17709.44 5
lbm 14242.4 24390.37 8
bwaves 14665.58 17171.63 5

Table 3.7: L2 Cache Miss and Access Rates of SPEC CPU 2006 Benchmarks

Benchmarks Average intensity
Lower half of miss rates 2.713
Higher half of miss rates 4.429

Table 3.8: Median-separated Intensity Impact

27



Chapter 4

Evaluation

So far, we have examined the correlation between an application’s solo cache performance

events and its sensitivity and intensity. Since the ultimate goal of the thesis is to build a live

scheduler that can co-schedule applications based on live, runtime characteristics, we need

to identify and examine the relationship between an application’s intensity and sensitivity

and its live cache characteristics when executing in a co-schedule.

4.1 Benchmarks

Since running all the benchmarks in the SPEC CPU 2006 suite against each other to gather

live data would be prohibitively time-consuming, 10 benchmarks were chosen that served as

a representative subset of the entire suite. Borrowing the clustering spanning tree method-

ology from Blagodurov et al. [1] gave me the following 10 benchmarks, which form a

representative set spanning the entire gamut of SPEC benchmarks.

Class Members
Devil lbm, mcf, milc, sphinx, soplex

Turtles povray, gamess, namd
Others gcc, gobmk

Table 4.1: Representative Subset of SPEC CPU 2006 Benchmarks

In Section 3.3.1 we discovered that the metric with the highest correlation to sensitivity

was the L2 cache metric. For this reason, we consider the L2 cache when gathering data for

our live scheduler.

28



4.2 Dual Application Case

In this section, we examine the co-scheduling issues that arise when two co-scheduled appli-

cations share a last-level cache. Each pair of co-scheduled applications shares the L3 cache

on the AMD Barcelona processor used in our experimental system above. The other two

cores on the quad core Barcelona processor are idle, with no applications scheduled on them.

Each benchmark in the above set was run against the other nine and relevant data such

as the L2 cache accesses, L2 cache misses and the Instructions Per Cycle (IPC) were gathered

during a live run. An application’s IPC degradation in a co-schedule was calculated as a

percentage change over its solo IPC. The average IPC degradation of a benchmark was the

average of its individual IPC degradations in all its co-schedules. Similarly, the L2 cache

reads and misses were measured every million cycles as well. The average reads and misses

per million cycles are calculated over all the co-schedules an application participates in.

Analogous to the sensitivity and intensity methodology followed in Section 3.3, this

section seeks to correlate the average degradation in IPC of a benchmark to its average

L2 cache accesses and misses, both per million cycles and per million instructions, when

co-scheduled with another benchmark.

Table 4.2 lists the R-square values of the L2 cache parameters for the dual application

case, correlated to the IPC degradation.

Per Million Cycles
Metric R square
L2 accesses 46.47
L2 misses 50.00
Per Million Instructions
Metric R square
L2 accesses 25.43
L2 misses 46.83

Table 4.2: L2 Cache Metrics and Sensitivity Correlation: Dual Case

In this case, the highest R-square was of the L2 misses per million cycles and IPC

degradation. This value is 50.00, which means that 50% of the variation in the IPC can be

explained by the L2 misses per million cycles figures. However, the L2 misses per million

instructions metric has an R-square value of 46.83, which is the second best metric. Since my

goal was to build a general-purpose scheduler that would work well for different numbers of

29



co-scheduled applications, it made sense to stick with the L2 misses per million instructions

as an indicator of sensitivity here.

Similarly, for intensity, we calculated the R-square value of linear regression of L2 cache

accesses and misses, as well as on misses alone. An application’s average intensity was

calculated as the average of its individual IPC degradations inflicted on its co-scheduled

partners. The L2 accesses and misses were gathered every million cycles and instructions

as well. The results are shown in Table 4.3.

Per Million Cycles
Metric R square
L2 accesses and misses 95.96
L2 misses 95.31

Per Million Instructions
Metric R square
L2 accesses and misses 92.28
L2 misses 85.04

Table 4.3: L2 Cache Metrics and Intensity Correlation: Dual Case

We see that the highest R-square was of the L2 accesses and misses per million cycles

and IPC degradation. This value is 95.96, which means that 95.96% of the variation in the

IPC damage inflicted by an application can be explained by the combination of L2 accesses

and misses per million cycles figures. The correlation here is higher than the correlation

in Section 3.3.3, suggesting that the live numbers provide a more accurate reflection of an

application’s intensity.

4.3 Quad Application Case

This section examines co-scheduling four applications on a quad-core processor. All four

cores on the quad-core Barcelona processor have an application scheduled on them, sharing

the common L3 cache.

Selecting 4 applications at a time to co-schedule, out of 10, gives us a total of
(
10
4

)
or

210 combinations. Each combination was run and each application’s L2 cache reads, misses

and IPC were gathered. An application’s IPC degradation was calculated as before, as a

percentage change over its solo IPC. The average IPC degradation of a benchmark was

the average of its individual IPC degradations in all its co-schedules. The L2 cache reads

30



and misses were measured every million cycles, with the average reads and misses, both

per million cycles and per million instructions being calculated over all the co-schedules an

application participated in.

Table 4.4 lists the R-square values of the L2 cache parameters for the quad application

case, correlated to the IPC degradation.

Per Million Cycles
Metric R square
L2 accesses 49.76
L2 misses 49.11
Per Million Instructions
Metric R square
L2 accesses 43.48
L2 misses 67.50

Table 4.4: L2 Cache Metrics and Sensitivity Correlation: Quad Case

In this case, the highest R-square was of the L2 misses per million instructions and IPC

degradation. This value was 67.50, which means that 67.50% of the variation in the IPC can

be explained by the L2 misses per million instructions figures. This matches the prediction

of the model in Section 3.3.2.

As done for the dual application case above, we determined the correlation between an

application’s intensity and its L2 cache accesses and misses, as well as its misses alone. The

results are shown in Table 4.5.

Per Million Cycles
Metric R square
L2 accesses and misses 35.33
L2 misses 2.12

Per Million Instructions
Metric R square
L2 accesses and misses 49.43
L2 misses 0.21

Table 4.5: L2 Cache Metrics and Intensity Correlation: Quad Case

We see that the highest R-square was of the L2 accesses and misses per million instruc-

tions and IPC degradation. This value is 49.43, which means that 49.43% of the variation

in the IPC damage inflicted by an application can be explained by the combination of L2

31



accesses and misses per million instructions figures. Since our goal is a general-purpose

scheduler that works for both the dual-case and quad-case workloads, we consider the met-

ric of L2 accesses and misses per million cycles, simply because it’s a better match in both

the model in Sections 3.3.2 and 4.2. Using the L2 accesses and misses per million instruc-

tions for the quad-case would defeat the goal of building a general scheduler and tie us

down to specific cases for specific workloads. The L2 access and misses per cycle metric has

an R-square value of 35.33, which implies that 35.33% of the variation in the IPC damage

inflicted by an application can be explained by the combination of L2 accesses and misses

per million cycles figures.

4.4 Maximum Possible Gain

If we reconsider the example in Section 1.3, reproduced below for convenience, we see that

three schedules are possible.

# Pair 1 Pair 2 Pair 1 Pair 2 Total IPC
degradation degradation degradation

over solo over solo over solo
1 mcf + milc omnetpp + lbm 9.99 + 4.4 21.95 + 10.16 55.50
2 mcf + lbm milc + omnetpp 19.16 + 9.13 11.79 + 13.53 53.61
3 mcf + omnetpp milc + lbm 17.41 + 8.73 18.96 + 15.05 60.15

Table 4.6: Total Schedule Degradation over all Combinations

The optimal schedule here is the schedule with the least total IPC degradation, Schedule

2 with a total IPC degradation of 53.61. The worst schedule or the schedule with the highest

IPC degradation is Schedule 3, at 60.15. The difference between the best and worst schedules

in this case is 60.15− 53.61 = 6.54. There are 210 ways to pick 4 applications out of the 10

we chose above, and each of the 210 combinations has 3 possible co-schedules, of the form

shown in Table 4.6.

Section 3.3.1 contains the pair degradation data for this subset of 10 benchmarks. In

order to determine the maximum possible gain of each combination, the optimal schedule for

each triplet was calculated, along with the worst-performing combination from each triplet.

These schedules were calculated with a program created as part of this thesis, and described

in more detail in the next section.

Figure 4.1 shows the 210 combinations, sorted by the difference between the best and

32



the worst possible co-schedule for each combination. At the lower end of the scale, we see

co-schedules where the difference between the optimal and the worst schedule is negligible.

At the higher end of the scale, we see co-schedules where the difference between the optimal

schedule and the worst schedule is substantial, i.e. an optimal schedule can deliver a sub-

stantial IPC improvement over a sub-optimal schedule. The possible gains are calculated

using the following formula:

100 ∗ (MaximumDegradation−MinimumDegradation)/(MaximumDegradation)

pre-results

Page 9

-2

0

2

4

6

8

10

0

5000

10000

15000

20000

25000

30000

In
te

ns
it

y

A
cc

es
se

s a
nd

 M
is

se
s 

pe
r 

M
ill

io
n 

Cy
cl

es

Benchmarks

Misses per Million Cycles

Accesses per Million Cycles

Intensity

0

20

40

60

80

100

120

140

160

180

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

13
3

13
7

14
1

14
5

14
9

15
3

15
7

16
1

16
5

16
9

17
3

17
7

18
1

18
5

18
9

19
3

19
7

20
1

20
5

20
9

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Figure 4.1: Co-schedules Sorted by Maximum Possible Gain

4.5 Optimal Scheduling with clingo

In Table 4.6, we saw that the optimal schedule for four applications, where two can be

co-scheduled together such that they share a cache, is the schedule with the minimum IPC

degradation. Finding this optimal schedule for n applications, as n gets larger, is non-trivial

and results in a combinatorial explosion.

Borrowing some tools from Knowledge Representation, an area of Artificial Intelligence,

I was able to create an application that would give me an optimal schedule for n pairs of

applications in a reasonable amount of time. The language used was clingo, a declarative

language that accepts conditional statements, akin to Prolog, and outputs the answer, if one

exists. Such programs are referred to as Extended Logic Programs, and are used primarily

as a search tool for NP-hard search problems.

33



My clingo application’s input was the IPC degradation between two applications, mod-

eled as a corun. Building on the example above, the IPC degradation between mcf and

milc would be modeled as:

corun(mcf,milc,9.99)

The clingo application is brute force and finds all possible combinations of pairs, such

that no application is left out or counted twice. The total degradation of a combination

is computed as the sum of the IPC degradations of all its constituent pairs. Once all

such possible combinations have been generated, the combination with the minimum total

degradation is chosen as the optimal schedule.

4.6 Calculating Sensitivity and Intensity

We have seen how sensitivity and intensity are correlated to L2 cache accesses and misses.

However, sensitivity and intensity need to be derived from these metrics using formulae that

can be computed efficiently and quickly, in a live scheduler.

Several different methods to derive sensitivity and intensity from L2 cache accesses and

misses were explored, with the two most promising being listed below:

1. Arithmetic Formulae (method A).

(a) Sensitivity = misses, Intensity = accesses + misses

2. Equidistant Step Function (method B). This equidistant step function works by finding

the maximum and minimum accesses, then dividing the interval between them into 10

equidistant intervals. Each application’s sensitivity equals the interval it lies in, from

1 to 10. Similarly, the intensity is calculated based on the sum of accesses and misses.

(a) Sensitivity = misses

(b) Intensity = accesses + misses

4.6.1 Pain Metric

The sensitivity and intensity of each application were factored into a metric known as the

pain metric. The pain metric was coined by Sergey Zhuravlev in Blagodurov et al. [1]. The

pain caused by running two applications, A and B can be defined as:

34



Pain(A,B) = A.sensitivity ∗B.intensity +A.intensity ∗B.sensitivity

This gives us a heuristic of the damage caused by running applications A and B together.

Intuitively, A’s sensitivity is compromised by how intensive B is, and vice versa.

Recall that the clingo application from Section 4.5 took inputs of the form

corun(A,B,n)

where n was the IPC degradation between two applications A and B. This value n can be

replaced by the pain metric to test the efficacy of the methods used to derive sensitivity and

intensity. I tested each method of deriving the sensitivity and intensity of an application

with the following algorithm, explained in pseudocode:

Run the clingo application and get the optimal schedules for all 210

co-schedules with real IPC degradation

Calculate sensitivity and intensity according to each method above,

from method A to E

Calculate the pain metric between two applications as described above,

from the sensitivity and intensity

Create the corun data for each pair of applications

Feed these coruns to the clingo application

Get all 210 optimal co-schedules from these coruns created with the pain

metric

Calculate the percentage of matches with the optimal schedule from real

data, i.e., check how many of these optimal co-schedules are present

in the optimal schedules created with the real data.

The percentage of matches against the L2 metrics that had the highest correlation to

intensity and sensitivity was determined, as shown in Sections 3.3.2 and 3.3.3. The highest

matches from the results of these comparisons are shown in Table 4.7.

From the table, we see that the most accurate method of deriving sensitivity and intensity

is Method B using the L2 cache metrics, on a per million instructions basis. This confirms

the fact that the L2 cache metrics were shown to have higher correlation to IPC degradation

35



Per Million Cycles
Cache Metric Method Percentage of Matches

L2 A 40.65
L2 B 48.05

Per Million Instructions
Cache Metric Method Percentage of Matches

L2 A 44.55
L2 B 49.15

Table 4.7: Pain Metric Accuracy

in Section 3.3.1 as well. Going forward, the L2 cache metrics and method B will be used as

inputs to the live scheduler.

Thus, we now have a formula to derive sensitivity from the L2 cache misses per million

instructions:

Bucket Size = ( Max L2 misses - Min L2 misses) / 10

For all intervals

Sensitivity of application = Floor ( ( L2 Misses ) / Bucket Size )

The maximum and minimum L2 miss values will be obtained from the performance

counters. Measuring the L2 misses of each application will enable us to rank them, thereby

giving us a maximum and a minimum value for the L2 misses.

Similarly, intensity can be derived by summing the number of L2 cache accesses and

misses per million cycles:

EventsSum = L2 accesses + L2 misses

Bucket Size = ( Max EventsSum - Min EventsSum ) / 10

For all intervals

Intensity of application = Floor ( ( EventsSum ) / Bucket Size )

These arithmetic formulae are intuitive to understand and simple to calculate in a live

scheduler.

4.7 Experimental Subset

Since it was not feasible to test all 210 combinations with the live scheduler, an evenly

spaced subset of the combinations was chosen, from the list sorted by maximum possible

36



gain. Figure 4.2 shows the combinations that were tested with the live scheduler, and

includes co-schedules with different amounts of gain.

pre-results

Page 12

0

20

40

60

80

100

120

140

160

180

0 21 42 63 84 105 126 147 168 189 209

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Figure 4.2: Experimental Subset of Co-schedules

Table 4.8 lists the 11 combinations that make up the experimental subset. Each pair

of applications on a processor runs on its own core, with each pair sharing the L3 cache.

Nothing is scheduled on the remaining two unused cores on the processor.

# Maximum Possible Gain Percentage Processor 1 Processor 2
1 171.34 gamess povray gobmk namd
2 59.36 namd soplex povray sphinx
3 51.3 gobmk milc lbm mcf
4 44.84 gamess lbm gcc milc
5 38.86 gcc povray namd sphinx
6 32.81 gamess povray lbm mcf
7 27.69 gobmk namd milc povray
8 23.75 gcc mcf gobmk sphinx
9 19.48 gcc mcf gobmk milc
10 11.57 gobmk soplex lbm sphinx
11 1.41 gamess sphinx gobmk namd

Table 4.8: Maximum Possible Gain in Experimental Subset: Model

As previously stated, the column Maximum Possible Gain Percentage is calculated using

the formula:

100∗(MaximumDegradation−MinimumDegradation)/(MaximumDegradation)

37



4.8 Live Scheduler

The live scheduler is a user-level process that is responsible for the creation, scheduling and

termination of processes. It has a static list of the ten representative benchmarks we chose

in Section 4.1. It creates a new thread for each benchmark and is responsible for restarting

a benchmark when it finishes, as long as the longest-running benchmark is still running.

When all the benchmarks have been restarted at least once, the live-scheduler terminates

all spawned threads and exits. Before exiting, the live scheduler logs all the measured values

to a log file, which is used to produce the results in the next chapter.

While the benchmarks are executing, the live scheduler works in two phases: sampling

and placement.

4.8.1 Sampling

In the sampling phase, the scheduler monitors the hardware performance counters of each

running thread once per millisecond and tracks the following relevant events:

• L2 cache accesses

• L2 cache misses

• Instructions executed

• Cycles elapsed

These values are stored as the program executes and used in the shifting phase below.

All the events are used in the placement phase that follows.

4.8.2 Placement

The placement phase handles the bulk of the scheduling decisions. Each application that is

currently running is stored in a list, along with its four events measured from the performance

counters. The placement phase runs once per second, but this delay is configurable via a

parameter passed in to the live scheduler. During the placement phase, the scheduler wakes

up and sums the values that were gathered during the sampling phase. It calculates the

sensitivity and intensity of each application in the list, according to the formulae defined

in Section 4.6.1. It then creates two lists of running applications and sorts them, one

38



by sensitivity, the other by intensity. Now that we have the lists of sensitive and intensive

applications, we need to schedule them based on a scheduling algorithm. An elegant, greedy

algorithm for scheduling suggests itself and is described in detail below.

Running the placement phase at more frequent intervals causes more overhead in the

scheduler. For this reason, the placement phase cannot be run at intervals lesser than

one second. On the other hand, running the shifting phase at intervals that are too large

prevents the live scheduler from migrating applications that should be co-scheduled sooner,

thereby reducing the potential gains that can be observed.

4.8.3 Greedy Algorithm

Intuitively, a greedy algorithm that schedules the most intensive application with the least

sensitive application should reduce potential IPC degradation. This is because co-scheduling

an intensive application that has a high potential for inducing performance degradation

along with a sensitive application, one that has a low potential of experiencing performance

degradation should reduce the overall potential degradation. The pseudocode for such an

algorithm is as follows:

P <- List of applications sorted by sensitivity in ascending order

Q <- List of applications sorted by intensity in descending order

While P and Q are not empty

A <- Pop first ( P )

B <- Pop first ( Q )

If A != B

and are not already co-scheduled

Create co-schedule with A and B

For each co-schedule

Bind applications in co-schedule to cores that share a cache

As described above, the live scheduler is responsible for creating and maintaining the

lists of applications, sorted by their sensitivity and intensity. Each application’s sensitivity

39



and intensity are calculated using the metrics described in Section 4.6. Each application is

exclusively bound to the core it is scheduled on.

4.8.4 Migration Decision

During the shifting phase, if the live scheduler decides to co-schedule two applications, one

of the applications has to be migrated to share a core with the other. As per our greedy

algorithm, since one of the applications is highly intensive and one is highly insensitive, the

live scheduler has to decide which one to migrate. The live scheduler migrates the highly

insensitive application from the core its running on, to the core the extremely intensive

application is running on. This is because the insensitive application is unlikely to be

affected strongly by the core migration, given its insensitive nature. This holds for both the

dual-case and the quad-case workloads.

4.8.5 Replacement Decision

When a migration decision has been made by the live scheduler, a replacement decision

must soon follow. This scenario is explained in the context of the dual-case and quad-case

workloads below.

4.8.5.1 Dual Application Case

In the dual-case, when an application is switched from one pair to another, deciding which

co-scheduled application from the other pair should take its place is trivial. Consider the

dual-case workload with four applications that make up the two pairs: A, B, C and D.

1. A and B

2. C and D

Applications A and B form one pair, while applications C and D make up the second

pair. During the shifting phase, if the live scheduler decides that C should now be co-

scheduled with A, B must replace C to be end up being paired with D. After the switch,

we end up with the two pairs:

1. A and C

2. B and D

40



4.8.5.2 Quad Application Case

The quad-case is not so straightforward. Since there are eight applications that form the

two quartets, we have to decide which application must replace the newly co-scheduled

applications. Consider the two quartets, co-scheduled as follows:

1. A, B, C and D

2. E, F, G and H

If the live scheduler determines that F is the most insensitive application and A is the

most intensive, then F has to be migrated to the core A is executing on. However, in order

to co-schedule F with A, one of B, C or D must take F ’s place in the second quartet and

at the same time free up a core on A’s processor. In this case, the live scheduler picks the

least intensive application out of B, C and D as the replacement candidate. The rationale

behind picking the least intensive is essentially the one that drives the greedy algorithm.

By moving the least intensive application onto a different core, we leave the most intensive

applications co-scheduled with the least sensitive application. This localizes the damage

caused by the highly intensive applications to the co-scheduled applications on that core,

one of which is now the least sensitive application that was migrated from another core. In

our example, let the least intensive application on the first core be C. After C is swapped

with F, the quartets now look like the following:

1. A, B, F and D

2. E, C, G and H

41



Chapter 5

Results

This chapter discusses the results of running the live scheduler against the näıve default

Solaris scheduler which allocates applications to cores at random. The UMA results are

described first, consisting of the outcome of the dual-case workloads. This is followed by

the results from the NUMA system, which consists of both the dual-case and the quad-case

workloads. In both the UMA and NUMA cases, we examine the results in terms of the

group results from a combination, followed by an individual application’s results. Both the

NUMA and UMA systems were described in Section 3.1.

5.1 Non-NUMA

The results of running the live scheduler on the UMA system show the efficacy of the live

scheduler’s ability to extract performance gains from workloads, where such performance

gains are extractable. When a workload is equally composed of applications that are devils

and non-devils, the live scheduler is able to effect maximal performance gains. By separating

the most sensitive and the most intensive applications, i.e., devils from each other, the live

scheduler prevents the devils from degrading each others’ performance. This is seen in all

combinations with two devils and non-devils, where the live scheduler delivers up to 100%

of the maximum possible gain in some combinations. Additionally, the live scheduler is also

more stable with regards to application IPC, with a lower average standard deviation of

0.01, compared to the random scheduler’s average standard deviation of 0.06.

When more than half the applications in a workload are intensive, the live scheduler

follows its chosen strategy of separating the most intensive devils by co-scheduling them in

42



octavia-dual

Page 1

Results first fig

Combination Maximum Possible Gain
Combo 4 13.0156625
Combo 3 8.28047399
Combo 1 7.9429361
Combo 5 2.12174803
Combo 2 1.43222791

COMBOS

how close achieved gain is to max possible gain

Combination Maximum Pos  Achieved Gain
Combo 4 13.0156625 2.76180889
Combo 3 8.28047399 6.56802245
Combo 1 7.9429361 7.99313743
Combo 5 2.12174803 1.11639682
Combo 2 1.43222791 0.26988619

0

2

4

6

8

10

12

14

Combo 4 Combo 3 Combo 1 Combo 5 Combo 2

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Maximum Possible Gain

0

2

4

6

8

10

12

14

Combo 4 Combo 3 Combo 1 Combo 5 Combo 2

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Maximum Possible Gain

Achieved Gain

Figure 5.1: Maximum Possible Gain of Co-schedules

different co-schedules. This strategy, which is based on a simple heuristic obtained from

the hardware performance counters proves to be too coarse to deliver maximal gains here.

While more detailed heuristics might deliver more promising gains, these remain an avenue

of future research.

In the non-NUMA section, the results are described in terms of co-scheduling four ap-

plications in the dual-case workload. Since applications display different behaviour when

scheduled together on non-NUMA versus NUMA systems, we were unable to use the com-

binations I used on the NUMA system, described in Section 4.7. To avoid replicating the

methodology on non-NUMA systems, I used the combinations used by the authors in Blago-

durov et al. [1]. While their method differs from the method used in this thesis, as described

in Chapter 2, the combinations they chose suit our method perfectly, being a healthy mix

of devils and non-devils.

The maximum possible gain of each quartet was calculated, as seen in Table 4.8. Figure

5.1 shows the five combinations sorted by the maximum possible gain between co-schedules.

The maximum possible gain was calculated using the same formula as in Section 4.4:

MaximumPossibleGain

= 100 ∗ (MaximumDegradation−MinimumDegradation)/(MaximumDegradation)

43



octavia-dual

Page 1

Results first fig

Combination Maximum Possible Gain
Combo 1 13.0156625
Combo 2 8.28047399
Combo 3 7.9429361
Combo 4 2.12174803
Combo 5 1.43222791

COMBOS

how close achieved gain is to max possible gain

Combination Maximum Pos  Achieved Gain
Combo 4 13.0156625 2.76180889
Combo 3 8.28047399 6.56802245
Combo 1 7.9429361 7.99313743
Combo 5 2.12174803 1.11639682
Combo 2 1.43222791 0.26988619

0

2

4

6

8

10

12

14

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Maximum Possible Gain

0

2

4

6

8

10

12

14

Combo 4 Combo 3 Combo 1 Combo 5 Combo 2

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Maximum Possible Gain

Achieved Gain

Figure 5.2: Comparison of Maximum Achievable Gain and Achieved Gain

The applications that comprise the five quartets that were run on the non-NUMA ma-

chine are shown in Table 5.1, also sorted by their maximum possible gain.

# Maximum Possible Gain Percentage Processor 1 Processor 2
4 13.02 lbm milc sphinx gobmk
3 8.28 sphinx gcc namd povray
1 7.94 soplex sphinx povray namd
5 2.12 lbm milc mcf namd
2 1.43 soplex mcf povray gobmk

Table 5.1: Maximum Possible Gain in Experimental Subset: Measured

In the original work by Blagodurov et al. [1], Combinations 1, 2 and 6 used gamess,

while I substituted povray for gamess due to compilation problems on our systems.

5.1.1 Dual-case Workload

This section describes the results of running the dual-case experiments on the non-NUMA

system. For the random case, applications were started and pinned to cores at random,

such that pairs of applications shared an L2 cache. The applications were not migrated

during their runs, and all applications were restarted until the longest-running application

terminated.

44



5.1.1.1 Combinations

We start off by comparing the gain achieved by a combination in a co-schedule, compared

to the maximum possible gain of a co-schedule. Figure 5.2 shows the comparison of the

live scheduler’s performance gains against the random scheduler’s performance gains. The

red bars denote the average performance gains of the live scheduler, while the blue bars

signify the random scheduler’s maximal performance gains from Table 5.1. We see that

in Combinations 3 and 1, the live scheduler nears or equals the maximum possible gain.

Combinations 5 and 2 have very little gain to be extracted, valued at approximately 2%

or less. For these two cases, there isn’t a big margin of gains and the live scheduler does

its best. However, Combination 4 has the highest possible gain and the live scheduler fails

to deliver strongly in this combination. To understand this anomaly better, I decided to

implement tracing in my live scheduler to see which co-schedules the live scheduler actually

co-scheduled, from each combination.

Recall from Section 4.4 that each quartet has three possible co-schedules. One of these

is the best-performing co-schedule with the highest IPC, one is the worst performer with

the lowest IPC and one co-schedule is in between. Consider the third quartet from Table

5.1. Table 5.2 shows us the medium, best and worst performing co-schedules of this quartet

along with their IPCs.

Co-schedule Pair 1 Pair 2 Co-schedule IPC
1 soplex + sphinx povray + namd 0.89
2 soplex + povray sphinx + namd 0.97
3 soplex + namd povray + sphinx 0.97

Table 5.2: Co-schedule Degradation for One Combination

Recall that both soplex and sphinx are devils, according to the taxonomic classification.

We see that the two co-schedules that have the highest IPC are co-schedules where the devils

are not co-scheduled together. Thus, the live scheduler should keep them apart and rarely

co-schedule them on a shared cache, to effect maximal performance gains. Table 5.3 lists

the co-scheduling combinations for each of the five quartets on the non-NUMA experimental

system, sorted by co-schedule IPC. Co-schedule 1 has the lowest IPC, Co-schedule 2 is in

the middle and Co-schedule 3 has the highest IPC for each quartet.

Figure 5.3 shows the percentage of time spent in each co-schedule for all combinations.

45



Name Co-schedule 1 IPC Co-schedule 2 IPC Co-schedule 3 IPC

Combo 1
soplex + sphinx

0.89
soplex + namd

0.97
soplex + povray

0.97
povray + namd povray + sphinx sphinx + namd

Combo 2
soplex + povray

0.62
soplex + gobmk

0.62
soplex + mcf

0.63
mcf + gobmk povray + mcf povray + gobmk

Combo 3
gcc + sphinx

0.96
gcc + povray

1.04
gcc + namd

1.05
povray + namd sphinx + namd povray + sphinx

Combo 4
lbm + gobmk

0.46
lbm + sphinx

0.48
lbm + milc

0.52
milc + sphinx milc + gobmk gobmk + sphinx

Combo 5
milc + namd

0.54
lbm + namd

0.54
lbm + milc

0.55
lbm + mcf milc + mcf mcf + namd

Table 5.3: Co-schedule Degradation for All Combinationsoctavia-indiv

Page 5

Standard Deviation of ResultCOMBO

Random 0.05919948
Live 0.00500335

Standard Deviation of Result Indiv

Random 0.05919948
Live 0.00500335

Applications Random Stand  Live Standard Deviation
namd 0.04128356 0.00474136
povray 0.02961733 0.0025146
soplex 0.05753434 0.00142454
sphinx 0.18895024 0.00158206
gobmk 0.07360492 0.00429273
mcf 0.04191826 0.00742099
povray 0.02333047 0.00106533
soplex 0.0410042 0.00146661
gcc 0.12979679 0.02396158
namd 0.0343861 0.00276554
povray 0.02446991 0.00189751
sphinx 0.11586015 0.0319292
gobmk 0.04673021 0.00374357
lbm 0.02111902 0.0007407
milc 0.01209371 0.00381353
sphinx 0.17768738 0.00385936
lbm 0.02400189 0.00028583
mcf 0.04719357 0.00029569
milc 0.01901023 0.00097172
namd 0.03439735 0.00129454

0

10

20

30

40

50

60

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Pe
rc

en
ta

ge
 o

f T
im

e 
Sp

en
t i

n 
Co

-s
ch

ed
ul

e

Combinations

Percentage of time spent in Worst Co-schedule Percentage of time spent in Medium Co-schedule

Percentage of time spent in Best Co-schedule

Figure 5.3: Percentage of Time Spent in Each Co-schedule

We see that in Combinations 1 and 3, the live scheduler finds the medium and best co-

schedules, completely avoiding the worst. This strategy of separating the devils nets us

performance gains that rival the maximum possible gain. The live scheduler schedules

Combinations 2, 4 and 5 in an equal mix of their worst and medium co-schedules. As stated

above, Combinations 2 and 5 have slight possible performance gains, while Combination 4

has the most possible gain. After a closer look at the applications that comprise Combination

4, we see the reason behind the live scheduler’s sub-par performance. Combination 4 is

composed of three devils: lbm, milc, mcf and one non-devil: namd. From Table 3.7, we

see that lbm and milc are the two most intensive applications in this quartet. However,

46



octavia-dual

Page 2

for sort improvement over average gain

Maximum Pos  Combos Average Gain Achieved Gain
13.0156625 Combo 4 43.9019622 21.2191188
8.28047399 Combo 3 63.1770863 79.319402
7.9429361 Combo 1 66.2789814 100.632025

2.12174803 Combo 5 56.7018451 52.6168426
1.43222791 Combo 2 50.4817491 18.8438021

56.1083248 54.526238

IPC increase in live vs random
Combos Percentage Increase in IPC over Random
Combo 1 4.78042556
Combo 2 2.92405078
Combo 3 2.70345024
Combo 4 -1.35714388
Combo 5 -0.54704082

0

20

40

60

80

100

120

Combo 4 Combo 3 Combo 1 Combo 5 Combo 2

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Average Gain

Achieved Gain

-2

-1

0

1

2

3

4

5

6

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Pe
rc

en
ta

ge
 In

cr
ea

se
 o

ve
r I

PC

Combinations

Percentage Increase in IPC over Random

Figure 5.4: Improvement over Average Gain

from Table 5.3, we see that the highest-performing co-schedule actually has lbm and milc

co-scheduled together. In this case, the live-scheduler’s method works against itself by

separating the most intensive devils. A less coarse-grained heuristic might be able to identify

cases of devils sharing a co-schedule and benefiting each other, but the limitations of current

hardware counter architectures prevent us from using such a fine-grained heuristic in a

lightweight live scheduler such as this. A better heuristic that gives us deeper insight

into this unexplained increase when co-scheduling certain intensive devils together is not

investigated further in this thesis, but marked for future work.

Next, we compare the live scheduler to the average performance gains that the random

scheduler would obtain. The average case is meant to mimic the default random scheduler

in Solaris, which is agnostic of any cache characteristics of the applications it schedules.

The random scheduler in Solaris doesn’t pin applications to cores but occasionally migrates

processes across cores if the need arises. My random case pinned the four applications to

four random cores at startup, but did not migrate them at any point during their execution.

All applications were restarted until the longest-running application ended. If these eleven

quartets were run many times, the average IPC gain over all runs would be 50%, since the

scheduler would randomly schedule either the best, the medium or the worst combination

a third of the time equally. Since we have previously run all three possibilities for each

combination, the best, worst and medium IPC of each combination is known to us. The

medium IPC combination is not 50% for each combination, since in some cases the medium

47



octavia-dual

Page 2

for sort improvement over average gain

Maximum Pos  Combos Average Gain Achieved Gain
13.0156625 Combo 4 43.9019622 21.2191188
8.28047399 Combo 3 63.1770863 79.319402
7.9429361 Combo 1 66.2789814 100.632025

2.12174803 Combo 5 56.7018451 52.6168426
1.43222791 Combo 2 50.4817491 18.8438021

56.1083248 54.526238

IPC increase in live vs random
Combos Percentage Increase in IPC over Random
Combo 1 4.78042556
Combo 2 2.92405078
Combo 3 2.70345024
Combo 4 -1.35714388
Combo 5 -0.54704082

0

20

40

60

80

100

120

Combo 4 Combo 3 Combo 1 Combo 5 Combo 2

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Average Gain

Achieved Gain

-2

-1

0

1

2

3

4

5

6

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Percentage Increase in IPC over Random

Figure 5.5: Percentage Increase in IPC: Combination

IPC is close to the best, and in others it is close to the worst IPC.

A closer look at Table 5.3 reveals that in all combinations except for Combination 3,

the medium combination’s IPC is almost that of the highest. This implies that the random

scheduler will actually do quite well, since it will achieve close to the best IPC 66.67% of the

time. However, the remaining 33.33% of the time is spent in the worst co-schedule. If the

medium IPC was more evenly distributed, we would see a drop in the random IPC, since a

third of its co-schedules would involve a co-schedule with lesser IPC. For these combinations,

when averaged over all eleven quartets, the average gain is 56%, which is used in the equation

below. Since each is equally likely to be scheduled, we get the average IPC gain when run

with the random scheduler as:

Average performance gain over all runs

= 100/3 + 68/3 + 0/3

= 56

Figure 5.4 shows the comparison of the live scheduler’s performance gain compared to

the average performance gain that would be expected with the random scheduler. These

figures mirror the ones in Figure 5.2, showing that the live scheduler exceeds the average

performance in combinations 1 and 3, while failing to do so in combinations 2, 4 and 5. On

average, the random scheduler will achieve 55% of the maximum possible gain, while the

48



live scheduler will average 56% of the maximum possible gain. This shows that on average,

the live scheduler’s performance is just slightly below that of the random scheduler, when

it comes to performance gain.

To see the percentage increase in IPC of a co-schedule when run with the live scheduler

over the random scheduler, we look at Figure 5.5. We see that Combinations 1, 2 and 3

experience an increase in IPC, while Combinations 4 and 5 see a decrease when compared

to the random scheduler. Combination 1 experiences the highest increase in IPC of 4.78%,

while combination 4 faces the largest decline in IPC, approximately -1.26%. As stated above,

this is due to the live scheduler finding the optimal co-schedules in combinations with an

equal number of devils and non-devils. Dual-case workloads with more than two devils

experience a decrease in IPC due to the live schedule’s scheduling heuristic, which is not

fine-grained enough to identify and co-schedule devils which might benefit from sharing a

co-schedule. Globally, the decreases in IPC are fewer and smaller than the increases in IPC.

This results in an overall average increase of 1.7% in IPC when compared to the random

scheduler, which shows that the live scheduler is more effective at co-scheduling applications

than the random scheduler.

Since the number of devils present in a combination plays a part in the performance

improvement of the combination under the live scheduler, we now examine how combinations

fare as they contain an increasing number of devils. We begin by listing the combinations

classified by the number of devils they contain, in Table 5.4.

1 devil 2 devils 3 devils
Combo 3 Combo 1 Combo 4

Combo 2 Combo 5

Table 5.4: Number of Devils in each Quartet

Figure 5.6 shows us that for combinations with one devil, the live scheduler is able to

extract performance gains. The devil is isolated in a co-schedule and affects only the non-

devil it is co-scheduled with. With two devils in a combination, the live scheduler separates

them in two distinct co-schedules, taking care to never co-schedule devils with each other.

Since there are two co-schedules and two devils, the live scheduler is able to keep them

apart, based on the heuristics of sensitivity and intensity. When a combination has three

devils, since there are only two pairs, the pigeonhole principle requires that the live scheduler

is forced to pick a pair of devils to co-schedule. The two combinations with three devils

49



octavia-dual

Page 3

performance of combos with increasing # of devils
Number of devPercentage Increase in IPC over Random

1 2.70345024
2 3.85223817
3 -0.95209235

Number of devPercentage In    Percentage In    Percentage Increase in Non-Devil IPC
1 10.813801 1.53541654 9.27838443
2 15.4089527 20.3105554 -4.9016027
3 -3.8083694 -4.39098137 0.58261197

-2

-1

0

1

2

3

4

5

1 2 3

Pe
rc

en
ta

ge
 In

cr
ea

se

Number of Devils in Combination

Percentage Increase in IPC over Random

-10

-5

0

5

10

15

20

25

1 2 3

Pe
rc

en
ta

ge
 In

cr
ea

se
 o

ve
r R

an
do

m

Number of Devils in Combination

Percentage Increase in Overall 
IPC

Percentage Increase in Devil 
IPC

Percentage Increase in Non-
Devil IPC

Figure 5.6: Performance as Number of Devils Varies

are combinations 4 and 5. As explained above for figure 5.3, these combinations exhibit

performance gains when the most intensive devils are co-scheduled, an anomaly which the

live scheduler’s current heuristic is incapable of optimizing.

To confirm this, we drill down deeper and examine the breakdown of IPC increases

and decreases within a combination as the number of devils varies, in Figure 5.7. When

one devil is present, it experiences an increase in IPC, along with the non-devils which are

co-scheduled such that the least sensitive is co-scheduled with the devil. This is exactly

what happens with combination 3, which has only one devil: sphinx. Since sphinx has to be

co-scheduled with the least-sensitive applications, sphinx should be co-scheduled with either

namd or povray, but never with gcc. Recall from Table 3.5 that both namd and povray are

at the top of the table, making them extremely insensitive applications. Proof that sphinx

spends its co-schedules with only namd and povray but never gcc lies in Figure 5.3, which

shows us that combination 3 spends half its time in the medium and best co-schedules,

completely avoiding the worst co-schedule which pairs sphinx and gcc together. Since the

devil is paired with non-devils, both categories show an IPC increase, leading to an total

IPC increase of roughly 10%.

When two devils are present in a combination, the live scheduler sees to it that the

devils are separated, one per co-schedule and their IPC increases significantly. Since each co-

schedule has a devil now, the non-devils suffer an IPC decrease, but this decrease is of smaller

magnitude than the corresponding increase in the devils’ IPC. This is borne out by the two

50



octavia-dual

Page 3

performance of combos with increasing # of devils
Number of devPercentage Increase in IPC over Random

1 2.70345024
2 3.85223817
3 -0.95209235

Number of devPercentage In    Percentage In    Percentage Increase in Non-Devil IPC
1 10.813801 1.53541654 9.27838443
2 15.4089527 20.3105554 -4.9016027
3 -3.8083694 -4.39098137 0.58261197

-2

-1

0

1

2

3

4

5

1 2 3

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Number of Devils in Combination

Percentage Increase in IPC over Random

-10

-5

0

5

10

15

20

25

1 2 3

Pe
rc

en
ta

ge
 In

cr
ea

se
 o

ve
r R

an
do

m

Number of Devils in Combination

Percentage Increase in Overall 
IPC

Percentage Increase in Devil 
IPC

Percentage Increase in Non-
Devil IPC

Figure 5.7: IPC Breakdown as Number of Devils Varies

combinations with two devils each, combinations 1 and 2. Again, referring to Figure 5.3,

we see that at no time are the two devils co-scheduled together in both these combinations.

In Combination 1, we see that the two devils, soplex and sphinx are never paired together,

instead spending half their time with two non-devils, namd and povray. This story repeats

itself with combination 2, where soplex and mcf are never co-scheduled together. This

strategy pays off handsomely in combination 1, with both soplex and sphinx registering

maximal gains. In Combination 2, by separating mcf and soplex, the live scheduler actually

avoids the optimal co-schedule, but since the difference in IPC between the best co-schedule

and the worst is minuscule, both soplex and mcf end up registering near-maximal gains in

the end. Isolating the devils in this fashion enables them to reap the highest performance

gains seen from the live scheduler. The non-devils that are co-scheduled with the devils end

up experiencing a performance decrease, but this dwarfed by the magnitude of the devils’

increase in IPC, leading to an overall increase of approximately 20%.

When three devils are present in a combination, the shortcomings of the live scheduler’s

heuristic are revealed. Since there are three devils and only two pairs of co-schedules, the

live scheduler must make a decision about which pair of devils to co-schedule. Relying

on its simple but herebefore effective heuristic, it simply separates the two most intensive

applications. It thus falls short of recognizing cases when co-scheduling the two most inten-

sive applications might actually deliver the maximal improvement. As stated above, this

is because of the simplicity inherent in its heuristic, constrained as it is by the hardware

51



performance counter architecture of today.

5.1.1.2 Individual Applications

In this section, we analyze the individual performance gains of the twenty applications that

comprise the five quartets. We start by comparing the performance of individual applications

against the maximum possible gain of each application. The maximum possible gain of

an individual application across all scheduled combinations, is calculated as stated at the

beginning of this chapter:

MaximumPossibleGain

= 100 ∗ (MaximumDegradation−MinimumDegradation)/(MaximumDegradation)

An individual application’s gain is calculated by subtracting the lowest IPC of that

application from its IPC under the live scheduler. Figure 5.8a shows us how each individual

application’s gain under the live scheduler stacks up against the maximum possible gain.

This figure is the individual breakdown of the combinations in figure 5.2, and shows us which

applications contributed to the overall increase or decrease of an co-scheduled combination.

In combination 1, we see that sphinx and soplex achieve the maximum possible gain at

the expense of povray and namd. namd does manage to score a slight percentage of the

maximum possible gain, while povray actually slides in the other direction and registers a

decrease in IPC. Perhaps the most interesting of these is combination 4, where we see sphinx

falling short of the maximum possible gain by a wide margin, due to the inability of the

live scheduler to optimize a combination with three devils. We also see that there are no

steep declines in individual IPC. povray achieves a negative gain in two co-schedules, while

the rest of the applications show a positive increase. Overall, the achieved gain seems to be

close to the midway mark, but this is examined more accurately in the figure beside it.

The average performance gain that would be achieved by the random scheduler for

individual applications is calculated by the following formula, similar to the one used for

the combinations above:

Average performance gain over all runs

= 100/3 + 56/3 + 0/3

= 52

52



-10 0 10 20 30 40 50

namd

milc

mcf

lbm

sphinx

milc

lbm

gobmk

sphinx

povray

namd

gcc

soplex

povray

mcf

gobmk

sphinx

soplex

povray

namd

IPC Gain as Percentage of Best

Be
nc

hm
ar

ks

Achieved Gain

Maximum Possible Gain

(a) Maximum Gain vs. Achieved Gain

-1 0 1 2 3 4

namd

milc

mcf

lbm

sphinx

milc

lbm

gobmk

sphinx

povray

namd

gcc

soplex

povray

mcf

gobmk

sphinx

soplex

povray

namd

IPC Gain as Percentage of Best

Be
nc

hm
ar

ks

Achieved Gain

Average Gain

(b) Average Gain vs. Achieved Gain

Figure 5.8: Comparison of Maximum Achievable Gain, Average Gain and Achieved Gain

Figure 5.8b shows the comparison of the normalized average gain under the random

scheduler against the normalized gain from the live scheduler. An individual application’s

gain is calculated the same way as in Figure 5.8a. In the individual case, we see that

the achieved gain surpasses the average gain in over half the applications. This figure is

the individual counterpart of Figure 5.4, and shows how each application in a combination

does against the average gains procured by the random scheduler. Recall that the average

gain is quite high in all combinations except combination 3, since there is only a minuscule

difference between the medium and the best co-schedules. This makes it easier for the

random scheduler to stumble upon a higher-IPC co-schedule. As a result of that, the

average gain of the live scheduler at 1.88% is close behind the average gain of the random

scheduler at 1.98%. This figure shows that the the live scheduler’s average performance gain

is higher than the average performance gain of the random scheduler in eleven applications

53



out of twenty.

er Random

-15 -10 -5 0 5 10 15

namd

milc

mcf

lbm

sphinx

milc

lbm

gobmk

sphinx

povray

namd

gcc

soplex

povray

mcf

gobmk

sphinx

soplex

povray

namd

Percentage Increase in IPC

Be
nc

hm
ar

ks

Percentage Increase in 
IPC over Random

Figure 5.9: Percentage Increase in IPC: Individual

The percentage increase in the IPC of individual applications over the average IPC of the

random scheduler is seen in Figure 5.9. Here, we see that that povray always suffers an IPC

decrease, while devils in its quartet such as soplex or sphinx experience an IPC increase.

This is a direct result of the greedy scheduling strategy employed by the live scheduler,

which keeps devils apart from each other and co-schedules them with non-devils. In the

bottom quartet we see the largest gainer, sphinx, registering a 13.55% increase, as a direct

result of the live scheduler’s greedy scheduling heuristic. Close to the top, sphinx is also

54



responsible for the largest decrease, at 12.54%. This decrease occurs in Combination 4, due

to the live scheduler’s policy of separating the two most intensive devils. As stated before,

the live scheduler’s simple heuristic doesn’t take into account cases where the most intensive

can be co-scheduled together for mutual benefit, and thus separates the most intensive devils

in Combination 4. By keeping lbm and milc apart, sphinx gets co-scheduled with milc and

lbm, both of which contribute to its decline in IPC.

The IPC percentage increase numbers are summarized on a per-application basis in Fig-

ure 5.10. This figure shows us the increase in an individual application’s IPC, averaged over

all the co-schedules it participated in. The bars are colour-coded, with red bars signifying

turtles, blue bars denoting devils and green bars for “others”. We see that all the devils

except for mcf post positive increases in IPC. All the turtles without exception show a de-

crease in IPC, no doubt due to the live scheduler’s policy of pairing them with devils. The

“others” category is a mixed bag, with gcc showing the highest overall average increase, at

approximately 11%. On the other hand, despite belonging to the same category, gombmk

shows a decrease in average IPC across all quartets. This shows that, across all combina-

tions, the live scheduler favours devils and awards them high performance gains. Overall,

turtles are subjected to a decrease in IPC, being intentionally sacrificed for the benefit of

the devils.

octavia-indiv

Page 4

Class Average Increase in Category
Others 4.81638943
Devils 3.25278558
Turtles -1.2618139

Percentage of time spent in each combo

Combos Percentage of     Percentage of     Percentage of time spent in Best Co-schedule
Combo 1 1 485 488.67
Combo 2 313 315 1
Combo 3 1 465 463
Combo 4 1591.5 1595 1
Combo 5 1492.5 1487.5 1

Combos Percentage of     Percentage of     Percentage of time spent in Best Co-schedule
Combo 1 0.10259883 49.7604317 50.1369694
Combo 2 49.7615262 50.0794913 0.15898251
Combo 3 0.10764263 50.0538213 49.8385361
Combo 4 49.9294118 50.0392157 0.03137255
Combo 5 50.0670916 49.8993626 0.03354579

-2

-1

0

1

2

3

4

5

6

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

-4

-2

0

2

4

6

8

10

12

gcc gobmk mcf milc soplex lbm sphinx namd povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

Others Devils Turtles

Figure 5.10: Percentage Increase in Individual Averages

A more concise representation of the animal classes’ performance is seen in Figure 5.11.

Under the live scheduler on an UMA system, the others and devils experience IPC increases,

55



while the turtles experience IPC decreases. When considering clumped averages in this

fashion, we see that the “others” category prospers under the live scheduler by approximately

5%. The devils experience approximately a 3% gain, while the turtles experience a 1%

decrease. Thus we see that the live scheduler’s scheduling policy benefits most of the animal

classes, with the magnitude of increases outnumbering and exceeding the magnitude of

decreases.

octavia-indiv

Page 4

Class Average Increase in Category
Others 4.81638943
Devils 3.25278558
Turtles -1.2618139

Percentage of time spent in each combo

Combos Percentage of     Percentage of     Percentage of time spent in Best Co-schedule
Combo 1 1 485 488.67
Combo 2 313 315 1
Combo 3 1 465 463
Combo 4 1591.5 1595 1
Combo 5 1492.5 1487.5 1

Combos Percentage of     Percentage of     Percentage of time spent in Best Co-schedule
Combo 1 0.10259883 49.7604317 50.1369694
Combo 2 49.7615262 50.0794913 0.15898251
Combo 3 0.10764263 50.0538213 49.8385361
Combo 4 49.9294118 50.0392157 0.03137255
Combo 5 50.0670916 49.8993626 0.03354579

-2

-1

0

1

2

3

4

5

6

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

-4

-2

0

2

4

6

8

10

12

gcc gobmk mcf milc soplex lbm sphinx namd povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

Figure 5.11: Percentage Increase in Animalistic Categories

We now compare the consistency of the live scheduler when compared to the random

scheduler. In Figure 5.12, we see that the live scheduler has a smaller standard deviation

than the random scheduler, calculated over all runs. This shows that the live scheduler

delivers a more consistent performance. The higher standard deviation shows that in the

long run, the random scheduler’s results vary significantly, with it scheduling the worst-

performing co-schedule a third of the time equally. We have seen that the live scheduler

has a higher average IPC for both co-schedules and individual applications, as compared

to the random scheduler. Coupled with the low standard deviation, the implication is that

on average, the live scheduler will always deliver a consistently superior IPC, compared to

the random scheduler. While the live scheduler may not always schedule the optimal co-

schedule for the entirety of a workload’s execution, it will almost always avoid scheduling

the worst co-schedule for the entire duration of execution.

56



octavia-indiv

Page 6

0 0.05 0.1 0.15 0.2

namd

povray

soplex

sphinx

gobmk

mcf

povray

soplex

gcc

namd

povray

sphinx

gobmk

lbm

milc

sphinx

lbm

mcf

milc

namd

Standard Deviation

Be
nc

hm
ar

ks

Live Standard Deviation

Random Standard 
Deviation

Figure 5.12: Standard Deviation of Live and Random Scheduler

5.2 NUMA

In the NUMA section, the results are described in terms of co-scheduling four applica-

tions together in the dual-case workload, and eight applications together in the quad-case

workload. Recall that the NUMA system has memory node interleaving enabled, which

distributes memory randomly across both local and remote memory bands. This is summed

up in Figure 5.13.

We see that each core has a local and remote memory, the hallmark of a NUMA system.

To access the local memory of a core, another core must go through its memory controller

for that local memory. This makes the memory controller the bottleneck of the system,

57



 

 

Core 0 

Memory 

Core 1 

Memory 

Memory Controller 

Memory Controller 

Core 2 

Memory 

Core 3 

Memory 

Memory Controller 

Memory Controller 

Figure 5.13: NUMA Memory Node Interleaving

with many cores contending for a particular memory controller, more so than the cache or

the bus.

This effect is exacerbated when the live scheduler moves threads between cores during its

placement phase. An application that began executing on core 0 would have local memory

allocated to it on that core. After a subsequent move to core 1, the application would also

have memory allocated to it on core 1. By accessing remote memory and local memory in

a non-deterministic fashion, the application’s performance would be unpredictable. Devils

would be especially vulnerable to this phenomenon, being memory-intensive and cache-

greedy.

With this caveat in mind, this work has not examined the NUMA results in as great

a detail as the UMA results. The NUMA results are described in terms of co-scheduling

four applications together in the dual-case workload, and eight applications together in the

quad-case workload.

58



Dual-combo

Page 2

11.2242354 Combo1 50.0544895 45.1439232
10.3864631 Combo2 53.161417 54.3784398
1.02706877 Combo4 60.7439874 218.307485

IPC increase in live vs random
Combos Percentage Increase in IPC over Random
Combo 1 0.01742291
Combo 2 -2.75864794
Combo 3 -3.4681435
Combo 4 2.1941139
Combo 5 6.93592991
Combo 6 -1.6386205
Combo 7 3.24884025
Combo 8 14.2382874
Combo 9 2.19868013
Combo 10 4.9936313
Combo 11 5.61608514

0

50

100

150

200

250

Combo8 Combo9 Combo7 Combo5 Combo3 Combo6 Combo10 Combo11 Combo1 Combo2 Combo4

IP
C 

G
ai

n 
as

 P
er

ce
nt

ag
e 

of
 B

es
t

Combinations

Average Gain Achieved Gain

-5

0

5

10

15

20

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5 Combo 6 Combo 7 Combo 8 Combo 9 Combo 10 Combo 11

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Percentage Increase in IPC over Random

Figure 5.14: Percentage Increase in IPC: Combination

5.2.1 Dual-case Workload

Recall that in Section 4.7, we chose a subset of 11 workloads, sorted by their maximum

possible gain. This gain was based on the model outlined in Section 4.4, where the sum

of the IPC degradations between two co-scheduled applications became the co-scheduled

degradation. However, this model was based on measuring a single pair of co-scheduled

applications. In the dual-case, when we co-schedule two pairs of applications, for a total

of four applications running concurrently, the model falls a little short since it doesn’t take

into account the system activity of all four applications. Since the model gave us a good

starting point for the eleven quartets of applications with the maximum possible gain, I

used those eleven combinations to test my scheduler.

5.2.1.1 Combinations

We examine the percentage increase in IPC of combinations when run with the live scheduler

against the random scheduler, on the NUMA machine. Figure 5.14 shows that all but three

combinations have an increase in IPC with the live scheduler. A maximum increase of

14.24% is seen in Combination 8. Some combinations experience a minor decrease in IPC,

resulting in an overall average IPC percentage increase of 2.87% across all eleven quartets.

These performance gains are not as reliable as the gains in the UMA section above, because

of the varying degree of memory allocation to local and remote memory on a processor node.

59



5.2.1.2 Individual Applications

We next examine the increase in an application’s IPC, averaged over the combinations it

was co-scheduled in. Figure 5.15 shows us the gains in an application’s IPC, colour-coded by

the class it belongs too. The blue bars are devils, the red bars are turtles and the green bars

denote others. We see that the turtles benefited consistently from the live scheduler, while

the devils experienced decreases in IPC, albeit to a varying degree. In the others category,

gobmk had a healthy increase, while gcc experienced an IPC decrease, despite belonging to

the same category as gobmk.

With the exception of mcf, these results are the opposite of the results in the UMA dual-

case workload. gcc suffers a decrease in IPC and gobmk experiences an increase, whereas

their roles were reversed in the UMA case. All the devils except for mcf experience IPC

increases with the UMA live scheduler, while all the devils suffer an IPC decrease on this

NUMA system. Finally, the turtles too are not immune. All the turtles experience an IPC

decrease with the UMA scheduler, while they experience increases with the live scheduler

on this NUMA platform.

Dual-indiv

Page 2

Class Average Increase in Category
Others 9.63035
Devils -32.938
Turtles 36.9741667

applications Maximum Pos  Achieved Gain
gamess 0.403 0.40257
povray 0.11037 -0.12418
gobmk 0.40183 -0.00775
namd 0.51603 0.49207
namd 1.0214 1.01972
soplex 0.82005 -0.2064
povray 1.02615 0.77033
sphinx 0.79685 0.21789
gobmk 0.37708 0.38895
milc 0.77008 0.42074
lbm 0.77516 0.40636
mcf 0.37825 -0.00089
gamess 0.77286 0.76825
lbm 0.75514 0.00698
gcc 0.75943 0.011
milc 0.02819 0.04991
gcc 0.82035 -0.02829
povray 0.82339 0.5807
namd 0.59985 0.85332
sphinx 0.84446 0.0281
gamess 0.74156 0.74233
povray 1.15179 1.02795
lbm 1.13451 0.40122
mcf 1.00918 -0.00644
gobmk 0.82098 0.31673
namd 0.56753 0.82002
milc 0.48704 -0.33727
povray 0.81823 0.56747
gcc 0.76194 0.41422
mcf 0.34169 -0.4198
gobmk 0.40644 0.77995
sphinx 0.75657 0.42407
gcc 0.758 0.41124
mcf 0.03541 -0.37949
gobmk 0.75856 0.76187
milc 0.77405 0.44134

-80

-60

-40

-20

0

20

40

60

gcc gobmk mcf milc soplex lbm sphinx namd gamess povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

-40

-30

-20

-10

0

10

20

30

40

50

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

gcc

gcc

namd

gamess

lbm

gobmk

milc

gcc

gobmk

gcc

gobmk

gobmk

lbm

gamess

gobmk

Be
nc

hm
ar

ks

Achieved Gain Maximum Possible Gain

Others Devils Turtles

Figure 5.15: Percentage Increase in Individual Averages

A more succinct representation of the averages per category is seen in Figure 5.16.

Here we see that applications in the turtle and “others” category benefited from the live

scheduler, while devils experienced IPC decreases. The probable cause for the decrease in

devils is contention for the NUMA memory controllers on each core. This remains the most

likely hypothesis, although I have not investigated it further in this thesis and earmarked it

60



for future work.

Dual-indiv

Page 2

Class Average Increase in Category
Others 9.63035
Devils -32.938
Turtles 36.9741667

-80

-60

-40

-20

0

20

40

60

gcc gobmk mcf milc soplex lbm sphinx namd gamess povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

-40

-30

-20

-10

0

10

20

30

40

50

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

Figure 5.16: Percentage Increase in Animalistic Categories

Although these results are greater in magnitude than the corresponding dual-case UMA

results, they are not what the live scheduler intended and as such, suffer from the artifacts of

NUMA memory node interleaving. I have included the NUMA results for completeness, but

the live scheduler is meant to effectively manage co-schedules based on cache contention,

not memory-controller contention. By moving devils away from their local memory and

forcing them to contend for both local and remote memory, the live scheduler introduces

side-effects into the system that it is not prepared to deal with.

5.2.2 Quad-case Workload

The quad case problem was a bit more challenging, since measuring the best and worst

performance of each octet was not feasible. Out of the 210 possible quartets from the exper-

imental subset of ten, scheduling eight at a time such that the two sets of four applications

have nothing in common leaves us with 3150 combinations, as calculated below.

The number of ways to schedule 8 applications out of 10 in two unique sets of four

=
(
10
4

)
∗

(
6
4

)
= 3150

Since it was not feasible to run all 3150 combinations and measure the best and worst

61



performance, and thus obtain the maximum possible gain, I chose 10 combinations out of

the 3150 at random. These 10 combinations are listed in Table 5.5 and were run with the

random scheduler and my live scheduler. The random case in this experiment was set up

in a similar fashion to the dual case workload. Eight applications were started and pinned

to all eight cores at random. The applications were not migrated between runs and were

restarted until the longest-running application finished executing. When all the applications

had been restarted at least once, all executing threads were terminated and the results were

written to a log file.

# Combination
1 gcc gamess mcf milc gobmk soplex povray lbm
2 sphinx gcc gamess mcf milc gobmk povray lbm
3 gcc gamess mcf gobmk soplex povray lbm sphinx
4 gcc gamess milc namd gobmk soplex povray sphinx
5 gcc gamess milc gobmk soplex povray lbm sphinx
6 gcc mcf milc namd gobmk soplex lbm sphinx
7 gcc mcf namd gobmk soplex povray lbm sphinx
8 gcc milc namd gobmk soplex povray lbm sphinx
9 gamess mcf milc namd gobmk povray lbm sphinx
10 gamess mcf milc gobmk soplex povray lbm sphinx

Table 5.5: Quad-case Experimental Subset Combinations

5.2.2.1 Combinations

Unlike the dual-case workload where it was easy to obtain the maximum possible gain,

the quad-case workload did not lend itself to an easy measurement of the best and worst

performance. With eight applications in an octet, there are
(
8
4

)
= 70 ways to schedule each

octet. Running all seventy possible combinations and finding the best and worst performers

was not feasible, which is why I chose to compare the performance of the live scheduler

directly against the average. Lacking the maximum possible gain data prevents us from

seeing how much of the possible gain the live scheduler extracted from each scheduled octet.

However, the average data gives us a better overall picture of the performance of the live

scheduler compared to the random, näıve scheduler.

Figure 5.17 shows the average IPC of the octets when run with the random scheduler

versus the live scheduler. In this case, we see that six out of ten of the octets experience an

62



Quad-combo

Page 1

ipc inc in combo

Combos Percentage Increase in IPC over Random
Combo 1 -0.2412373
Combo 2 -0.32434931
Combo 3 -1.20307153
Combo 4 1.15911958
Combo 5 -3.17859486
Combo 6 1.72508337
Combo 7 0.9387368
Combo 8 1.47746517
Combo 9 0.67088297
Combo 10 1.20003119

ipc inc as # of devils goes up

# of devils Percentage Increase in IPC over Random
3 1.15911958
4 -0.26573829
5 1.46255728

-5

-4

-3

-2

-1

0

1

2

3

Combo 1 Combo 2 Combo 3 Combo 4 Combo 5 Combo 6 Combo 7 Combo 8 Combo 9 Combo 10

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Percentage Increase in IPC over Random

Figure 5.17: Percentage Increase in IPC: Combination

increase in IPC, leading to an overall average increase of 0.22% over the random scheduler.

This very slight improvement is lesser than the gain we observed in the dual-case.

5.2.2.2 Individual Applications

In this section, we examine the effects of the live scheduler on the individual performance of

the applications in the ten octets. We start by looking at the IPC increase in applications,

averaged over all runs in all ten octets. Similar to the dual-case, the blue bars denote devils,

the red bars denote turtles and the green bars signify others. The data in Figure 5.18 shows

that no category of applications is consistently aided or inhibited by the live scheduler. In

the devils, mcf and sphinx have positive net results in IPC, while soplex and lbm languish

in the decreased IPC zone. The IPC gains in the turtles hover around the zero mark, with

povray being slightly under zero, and namd and gamess rising above zero. The others

category shows increases in gobmk, but decreases in gcc. This merely confirms that these

results are heterogeneous, with increases and decreases being inconsistent and appearing in

each category.

Averaging the results based on the animalistic classifications gives us Figure 5.19. Unlike

the dual-case, the devils experience an increase in IPC here, along with the turtles. The

others category ends up with a decrease in IPC compared to the random scheduler. These

inconsistencies are precisely what mark the experiments on the NUMA system as being

unpredictable, and not indicative of the real gains possible from the live scheduler.

63



Quad-indiv

Page 1

ipc inc clumped by indiv app Others
Others

Benchmarks Percentage increase in IPC over random Devils
gcc -2.2675 Devils
gobmk 0.539 Devils
mcf 8.06571 Devils
milc -0.32 Devils
soplex -3.9325 Turtles
lbm -4.42 Turtles
sphinx 5.05333
namd 0.17
gamess 0.432857
povray -0.16

Class Average Increase in Category
Others -0.86425
Devils 0.889308
Turtles 0.147619

-6

-4

-2

0

2

4

6

8

10

gcc gobmk mcf milc soplex lbm sphinx namd gamess povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

Others Devils Turtles

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

Figure 5.18: Percentage Increase in Individual Averages

Thus, on the whole we see that, on the NUMA system, factors other than cache con-

tention play a part in the performance of applications. Contention for the memory controller

arguably outweighs cache contention, making the NUMA system infertile ground for reaping

the benefits of the live scheduler.

5.3 Summary

On the whole, we see that the presented approach of greedily scheduling applications such

that the most intensive are paired with the least sensitive benefits certain workloads on

UMA systems in a marked manner. Workloads with equal numbers of devils and non-devils

show the most gain, achieving 100% of the maximal possible gain in some combinations.

Workloads with less non-devils than devils also show gains of up to 79%. It is only in

workloads with multiple intensive devils that the live scheduler delivers suboptimal results.

Overall, devils and other applications benefit the most from the live scheduler, while turtles

see a slight performance decrease, up to 1.26%. The live scheduler is more consistent than

the random scheduler, delivering a higher IPC with a lesser standard deviation.

On NUMA systems, the live scheduler is rendered ineffective by the contention for mem-

ory controllers, which outweighs any benefits cache-contention-aware scheduling might pro-

vide. A better heuristic on NUMA systems that takes into account contention for memory

controllers could be used in conjunction with the approach to produce higher performance

64



Quad-indiv

Page 1

ipc inc clumped by indiv app

Benchmarks Percentage increase in IPC over random
gcc -2.2675
gobmk 0.539
mcf 8.06571
milc -0.32
soplex -3.9325
lbm -4.42
sphinx 5.05333
namd 0.17
gamess 0.432857
povray -0.16

Class Average Increase in Category
Others -0.86425
Devils 0.889308
Turtles 0.147619

-6

-4

-2

0

2

4

6

8

10

gcc gobmk mcf milc soplex lbm sphinx namd gamess povray

Pe
rc

en
ta

ge
 In

cr
ea

se
 in

 IP
C 

ov
er

 R
an

do
m

Benchmarks

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Others Devils Turtles

Pe
rc

en
ta

ge
 In

cr
ea

se

Combinations

Average Increase in Category

Figure 5.19: Percentage Increase in Animalistic Categories

gains. Such a heuristic would be an area of future work in this field.

Thus, we can conclude that when there are performance gains extractable from co-

schedules of applications, the live scheduler will do a competent job of extracting close to

the maximal gain. The only exception is when the optimal schedule consists of the two most

intensive applications co-scheduled together. A finer-grained heuristic that goes beyond the

simple dichotomy of devils and non-devils might be able to do a better job of picking the

optimal schedule in these cases. This is intended as future work.

65



Chapter 6

Conclusion

Optimally scheduling applications on multicore systems to extract maximum performance

while reducing contention for hardware resources remains an interesting and open problem

today. The main contribution of this thesis is a user-level scheduler that demonstrates the

role that cache attributes can play in making scheduling decisions. The default scheduler in

an operating system on a multicore system is usually unaware of the cache characteristics

of an application and co-schedules applications at random. By taking into account certain

cache characteristics of an application, such as its L2 cache miss rate and access rate, the

presented scheduler effects an increase in IPC over the Solaris random scheduler on an UMA

system.

Workloads with equal numbers of intensive and non-intensive applications benefit the

most, extracting up to a 100% of maximum possible gain in some cases, with the live sched-

uler. By keeping sensitive and intensive applications apart, the live scheduler is able to

extract maximal performance gains in workloads of the former type. In other workloads

where the intensive applications are outnumbered by non-intensive applications, the live

scheduler achieves up to a 79% performance gain over the random scheduler. This comes

at the cost of decreasing the IPC of the non-intensive applications by an average of 1.92%.

Better, more granular heuristics that are able to pinpoint exceptions when intensive applica-

tions can be co-scheduled might deliver better performance gains, when used in conjunction

with the live scheduler.

Certain other factors such as memory contention and prefetching place an upper bound

on the amount of IPC increase that can be extracted with my method. These factors can

form the basis of future work that might deliver more substantial gains in performance,

66



when used in conjunction with the presented heuristic.

67



Bibliography

[1] Sergey Blagodurov, Sergey Zhuravlev, Serge Lansiquot, and Alexandra Fedorova. Ad-
dressing Cache Contention in Multicore Processors Via Scheduling. Technical Report
TR 2009-16, July 2009.

[2] Dhruba Chandra, Fei Guo, Seongbeom Kim, and Yan Solihin. Predicting Inter-Thread
Cache Contention on a Chip Multi-Processor Architecture. In HPCA ’05: Proceed-
ings of the 11th International Symposium on High-Performance Computer Architecture,
pages 340–351, Washington, DC, USA, 2005. IEEE Computer Society.

[3] Jack Edmonds. Maximum Matching and a Polyhedron with 0, 1 Vertices. J. of Res.
the Nat. Bureau of Standards, 69 B:125–130, 1965.

[4] Lisa R. Hsu, Steven K. Reinhardt, Ravishankar Iyer, and Srihari Makineni. Communist,
Utilitarian, and Capitalist Cache Policies on CMPs: Caches as a Shared Resource. In
PACT ’06: Proceedings of the 15th International Conference on Parallel Architectures
and Compilation Techniques, pages 13–22, New York, NY, USA, 2006. ACM.

[5] Yunlian Jiang, Xipeng Shen, Jie Chen, and Rahul Tripathi. Analysis and Approxima-
tion of Optimal Co-scheduling on Chip Multiprocessors. In PACT ’08: Proceedings of
the 17th international conference on Parallel architectures and compilation techniques,
pages 220–229, New York, NY, USA, 2008. ACM.

[6] Rob Knauerhase, Paul Brett, Barbara Hohlt, Tong Li, and Scott Hahn. Using OS
Observations to Improve Performance in Multicore Systems. IEEE Micro, 28(3):54–66,
2008.

[7] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and E. Hagersten. Modeling
Cache Sharing on Chip Multiprocessor Architectures. IEEE Workload Characterization
Symposium, 0:160–171, 2006.

[8] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based Cache Partitioning: A Low-
Overhead, High-Performance,Runtime Mechanism to Partition Shared Caches. In Pro-
ceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 423–432. IEEE Computer Society, 2006.

68



[9] Allan Snavely and Dean M. Tullsen. Symbiotic Jobscheduling for a Simultaneous Mul-
tithreading Processor. In Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 234–244. ASPLOS,
2000.

[10] Livio Soares, David Tam, and Michael Stumm. Reducing the Harmful Effects of Last-
level Cache Polluters with an OS-level, Software-only Pollute Buffer. In MICRO ’08:
Proceedings of the 2008 41st IEEE/ACM International Symposium on Microarchitec-
ture, pages 258–269, Washington, DC, USA, 2008. IEEE Computer Society.

[11] William Stallings. Operating Systems (5th Edition). Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2004.

[12] Soares L. Tam D., Azimi R. and M. Stumm. Managing Shared L2 Caches on Multi-
core Systems in Software. In Proceedings of the Workshop on the Interaction between
Operating Systems and Computer Architecture, pages 26–33. WIOSCA, 2007.

[13] Yuejian Xie and Gabriel H. Loh. Dynamic Classification of Program Memory Behaviors
in CMPs. In Proceedings of the 2nd Workshop on Chip Multiprocessor Memory Systems
and Interconnects. (CMP-MSI, held in conjunction with ISCA-35), 2008.

[14] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards Practical Page Coloring-
based Multicore Cache Management. In EuroSys ’09: Proceedings of the Fourth ACM
European Conference on Computer Systems, pages 89–102, New York, NY, USA, 2009.
ACM.

69




