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Abstract

This thesis proposes a method to detect objects and patterns in textures on general surfaces. The

approach applies the Chan-Vese variational model for active contours without edges to the problem

of segmentation of scalar surface data. This leads to gradient descent equations which are level

set equations on surfaces. These equations are evolved using the Closest Point Method, which is a

recent technique for solving partial differential equations (PDEs) on surfaces. The final algorithm

has a particularly simple form: it merely alternates a time step of the usual Chan-Vese model in a

small 3D neighborhood of the surface with an interpolation step. The method can treat very general

surfaces since it uses a closest point function to represent the underlying surface.

The original Chan-Vese active contours without edges model is intended for segmentation on

a given 2D image based on curve evolution by minimizing an energy. The stopping term does not

depend on the gradient of the image, as in the classical active contour models, but is instead related

to a particular segmentation of the image [6]. Moreover, the Chan-Vese model is not just applicable

or limited to 2D image segmentation. It can be further extended to 3D region segmentation and

the segmentation of scalar data on surfaces defined in 3D. In order to apply the Chan-Vese model

to the segmentation on surface problem, a PDE defining a flow on the surface in terms of intrinsic

in-surface differential operators [13] must be solved.

There are various ways to solve this PDE, such as parameterization, and embedding methods

using level set surface representation, etc; however, these methods have their own limitations. For

example, some surfaces might be very challenging to parameterize; embedding methods with level

sets can introduce artificial boundary conditions. To avoid these limitations, we use the Closest Point

Method [21] for solving this surface PDE.

Various numerical experiments are presented. These include segmentation on a smooth surface,

a non-smooth surface, an open surface, and a triangulated surface. We also present an efficiency

improvement to accelerate convergence to a steady-state in Closest Point Method calculations.
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Chapter 1

Introduction

1.1 Background

Segmentation of images has been studied extensively by researchers around the world. The seg-

mentation of images is a topic with a great number of applications. For example, segmentation

algorithms might be used to locate tumors in an ultrasonic image (see Figure 1) or to identify a

building within an image (see Figure 2). Segmentation of objects and patterns in textures on curved

surfaces (e.g., Figure 1.3) is a subject of recent and increasing interest. For example, Spira and

Kimmel [22] segment out images painted on parametrically-defined manifolds using the geodesic

active contour model for segmentation. Hara et al. [7] segment images on polar coordinate meshes

using the Chan–Vese model. Applications of their methods arise in the analysis of earth data such

as topography and remote sensing imagery. Bogdanova et al. [3] carry out segmentation via active

contours for omnidirectional images defined on spherical, hyperbolical and parabolical shapes (such

imagery arises using catadioptric cameras). Segmentation on surfaces via geometric active contours

was also considered by Krueger et al. in [12]. Their work considers segmentation by both texture

and surface geometry and leads to methods of interest in 3D human face feature segmentation.

1.2 Analysis of the Problem

A common theme to all these works is that they solve some PDE-based segmentation model on a

surface of interest. The representation of the (static) surface is a central feature of each approach.

For example, a parameterization might be used [22, 7, 3] but this has the deficiency of introducing

distortions and singularities into the method through the parameterization. Indeed, designing a

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Segmentation can be applied to ultrasonic imaging in the medical field [20].
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Figure 1.2: The segmentation on a 2D image of a barn by data driven Markov chain Monte Carlo
[23].
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Figure 1.3: The objective of this thesis is to automatically segment a surface into two regions: in
this case, to separate the blue patches from the rest of the pig.

good parameterization can be a considerable challenge for many surfaces. Alternatively, a level

set representation of the underlying surface may be considered [12]. Algorithms based on level set

representations have their own limitations [21]. Such methods solve a PDE in a 3D neighborhood

of the surface and require the introduction of artificial boundary conditions at the boundary of the

computational band. They also use non-standard PDEs in the embedding space, i.e., degenerate

PDEs involving projection operators. Finally, level set representations do not give an obvious way

to treat open surfaces, or any surface which lacks a clearly defined inside and outside.

For these reasons we are motivated to use the Closest Point Method [21, 14, 15] for solving the

problem of segmentation on surfaces. The Closest Point Method uses a closest point representation

of the surface, and therefore does not require the design of a parameterization nor does it require the

surface to be closed or even have an orientation. The method uses entirely standard methods in a

small 3D neighborhood of the surface in combination with an interpolation step. This is particularly

attractive in practice since it enables us to use existing algorithms for 3D region segmentation to

segment out shapes on 2D surfaces.
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1.3 Thesis Overview

All the segmentation results are obtained using the Chan-Vese active contours without edges model

[6], which we review in Chapter 3. Chapter 4 applies the Closest Point Method, a method which is

discussed in Chapter 2, to the Chan-Vese model.



Chapter 2

The Closest Point Method

2.1 Introduction

The Closest Point Method is a new technique for solving PDEs on surfaces. For example, the Closest

Point Method could be used to compute a numerical solution of a PDE on the surface of a sphere,

square, torus, Mobius strip or some triangulated surface.

2.2 Background

2.2.1 Partial Differential Equations on Surfaces

Partial differential equations play an essential role in the natural sciences and other areas. In many

cases, the problems of interest occur on surfaces rather than in R2 or R3. The solution of PDEs on

surfaces has received growing interest over the past few years. Recent computer science applications

include texture mapping, computer vision and digital image processing. Other applications include

pattern formation on animal coats, conservative shallow water models on the sphere and large-scale

atmospheric flows over topography.

2.2.2 An Example

Let’s suppose we are give some surface S. Without explicitly considering its geometries, we can

define a PDE on the surface over time in terms of intrinsic in-surface differential operators [13]. For

6



CHAPTER 2. THE CLOSEST POINT METHOD 7

example, we might consider

ut = f(u,∇Su,∆Su), (1.01)

where ∇S is the intrinsic gradient. The ∆S operator is the Lapalace − Beltrami operator, the

intrinsic operator defined in the same fashion as the Laplacian. We are interested in propagating

the solution of the PDE (1.01) on the surface over time. Therefore, we need to have a surface

representation.

2.2.3 The Closest Point Representation of Surfaces and Curves

Definition:(Closest point function)
The closest point function is defined locally for any smooth surface. For example, given a 3D sur-

face S, the closest point function cp(x) : R3 → R3 takes a point x and returns a point cp(x) ∈ S,

which is closest in Euclidean distance to x. That is, cp(x) = argminx̂∈S ||x− x̂||2. If x is within a

small range of a smooth surface, the closest point is usually unique (e.g., if we compute on a small

band defined near a smooth surface); however, sometimes multiple closest points may occur. In

that case, for example, the center of a circle or any point on the diagonal of a rectangle, the closest

point can be defined as any one of the arbitrary points among all the closest points. Using a closest

point representation allows us to treat open surfaces, surfaces of arbitrary codimention and have an

explicit mapping from the embedding space to the surface.

The left diagram in Figure 2.1 shows an example of the closest point function for a curve S.

A few points in the embedding space and corresponding closest points cp(x) are indicated by the

marks. The middle diagram in 2.1 [16] is an example of the closest point function for a circle of

radius R. Obviously, all the points on the circle have the same distance to the origin O, so cp(O)

can be chosen arbitrarily to be any point on the curve. The right diagram in 2.1 is an example of the

closest point function for a rectangle. Non-smooth curves (surfaces in 3D) can also be treated using

the Closest Point Method; however, an analysis of the corresponding flow has yet to be carried out.
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Figure 2.1: An illustration of several closest point function on some 2D curves [16],used with per-
mission.

2.2.4 The Closest Point Extension

Suppose we have a function u defined on a 3D surface S. Then we can extend u to a function û

defined on the whole 3D space by the following definition:

Definition:(Closest point extension)
Suppose S is a surface embedded in R3 and let û : S → R be a scalar function defined over S. Then

the closest point extension of û is given by u(x) = û(cp(x)).

Closest point extensions result in functions which are constant in the direction normal to the

surface, at least within a neighborhood of a smooth surface. This fact leads to simplified derivative

calculations in the embedding space [21].

2.2.5 Relationship between intrinsic differential operators and their Cartesian coun-
terparts

Since the PDE is defined on a surface, operators such as the gradient and the divergence are naturally

intrinsic to the surface. Therefore, they depend on the surface itself. However, the closest point

function gives a simple way of relating these surface derivative operators to their standard Cartesian

counterparts.

Gradient operators
Let ∇ denote the standard gradient in R3 and let ∇S denote the gradient intrinsic to the surface S.

For a point x on the surface, we have ∇u(x) = ∇Su(cp(x)). This happens because the function

u(cp(x)) is constant in the normal direction and therefore only varies along the surface, that is, at
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any point x on S, intrinsic surface gradients ∇Su(x) are the same as gradients of u(cp(x)).

Divergence operators
Let ∇s· denote the divergence operator intrinsic to the surface S and let v be any vector field on

R3 that is tangent to S and also tangent at all surfaces displaced by a fixed distance from S (all

surfaces defined as level sets of the distance function to S). Then for any point x on S we have

∇ · v(x) = ∇S · v(x). For the details of the proof, refer to [21].

2.3 The Closest Point Method

The equivalance of gradients, divergence and other differential operators now can be utilized to

deal with surface differential operators by evaluating the corresponding differential operator in the

embedding space R3. With all the operators defined above, we are now in a position to define the

Closest Point Method. As an illustration, suppose we have a surface PDE taking the form

ut(x, t) = f

(
x, t, u(x, t),∇Su(x, t),∇S ·

(
∇Su(x, t)
|∇Su(x, t)|

))
, (1.21a)

ut(x, 0) = u0(x) (1.21b)

for x ∈ S and t ≥ 0. This is a general PDE which involves second-order flows. According the

principles described in the last section, we are able to replace the surface gradients and divergence

operators by the standard Cartesian operators in the embedding 3D space which yields:.

ut(x, t) = f

(
cp(x), t, u(cp(x), t),∇u(cp(x), t),∇ ·

(
∇u(cp(x), t)
|∇u(cp(x), t)|

))
, (1.22a)

u(x, 0) = u0(cp(x)) (1.22b)

for x ∈ R3 and t ≥ 0. The solution of the PDE (1.21) and the PDE (1.22) will be identical on the

surface in the sense that if u1(x, t) is a solution of (1.21) for x ∈ S and u2(x, t) is a solution of

PDE (1.22) for x ∈ R3 then u1(x, t) = u2(x, t) for t ≥ 0 and points on the surface x ∈ S.
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2.3.1 The Explicit Closest Point Method

Now the PDE (1.22) can be discretized directly. To do this, consider the following PDE:

ut(x, t) = f

(
x, t, u(x, t),∇u(x, t),∇ ·

(
∇u(x, t)
|∇u(x, t)|

))
, (1.31a)

u(x, 0) = u0(cp(x)). (1.31b)

At time t = 0, the right-hand-sides of the PDEs (1.22a) and (1.31a) will be equal for all x ∈ R3.

Thus, we could advance (1.22a) by a single forward Euler time step of size ∆t by instead advancing

(1.31a). This idea can be used to construct an algorithm valid for any time tn. To do this, we start

from a closest point extension of the solution un at time tn and then take one forward Euler step to

advance to time ûn+1. After this step, ûn+1 will not be constant in a direction normal to the surface.

Another closest point extension of ûn+1 is therefore carried out, un+1(x) = ûn+1(cp(x)), so that

ûn+1(cp(x)) remains constant in a direction normal to the surface. Notice that the same procedure

can be repeated by alternating the closest point extensions and propagating the solution forward via

forward Euler to any desired time.

Now we can summarize the semi-discrete (discrete in time, continuous in space) explicit Closest

Point Method.

2.3.2 The Explicit Closest Point Method Algorithm

1. Perform a forward Euler time step

ûn+1 = un + ∆tf
(
cp(x), tn, un(x),∇un(x),∇ ·

(
∇un

|∇un|

))
. (1.32a)

2. Perform a closest point extension for each point in R3

un+1(x) = ûn+1(cp(x)). (1.32b)

To solve the PDE, we still need a spatial discretization. In general, various finite difference

schemes can be used. We emphasize that Equation (1.32a) only gives a valid evolution for one

explicit time step, so it is necessary to perform another closest point extension before performing

the next iteration of the algorithm. This ensures that the solution is consistent with the exact solution

on the surface.
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2.4 Interpolations

Although a regular Cartesian grid xijk is used, the closest point cp(x) is usually not a grid point.

Therefore, an interpolation step must be carried out. Specifically, we need an interpolation step to

approximate the value at any point (non-grid point) by the grid points in some neighborhood [8].

2.4.1 1D Interpolation

The most common interpolation is to fit p + 1 grid points with a polynomial of degree p, where

p ∈ N, p ≥ 0. The interpolant for grid points surrounding x is evaluated at x. For example, the sim-

plest linear (p = 1) interpolant is a straight line connecting two neighboring grid points xi and xi+1

with xi ≤ x < xi+1.Assuming the underlying function u is sufficiently smooth, for a degree p poly-

nomial, the error generated by interpolation will be O(∆xp+1) where ∆x is the spacing between

grid points. Degree p interpolation requires p+ 1 grid points around x, and these points are chosen

as close as possible to x to minimize the Runge phenomenon of oscillations at the far ends of the

interpolant. There are many different kinds of techniques that can be used for interpolation, such

as the Newton divided difference Method. One of the most efficient methods is the Barycentric

Lagrange method[2].

Figure 2.2 is an illustration of 1D interpolation. The value of a function u is given at five grid

points. To approximate the function at the interpolation point, a linear and a fourth-order polynomial

are used.

Figure 2.3 shows the choice of the grid points used for interpolating polynomials from degree 0

to 4. The dots are the grid points and � is the point of interpolation. In all cases, the p+1 grid points

closest to the interpolation point are chosen for degree p interpolation [16].

2.4.2 Barycentric Lagrange Interpolation

The Barycentric Lagrange formula is a degree p interpolant through grid points x0, ..., xp (eq-

uispaced in my case). Its evaluation at an interpolation point x is
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Figure 2.2: The figure shows 1D linear (solid blue) and 4th-degree interpolation (dotted red).

Figure 2.3: The pattern of grid points selected for degree p interpolation is illustrated here [16], used
with permission.
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u(x) ≈
∑p

j=0

wbc
j

x−xj
uj∑p

j=0

wbc
j

x−xj

, wbc
j = (−1)j

(
p

j

)

where the wbc
j are the barycentric weights (which in this case are extremely simple due to the equis-

paced grid). Although x− xj appears in the denominators, the barycentric formula is always stable

for x close to xj . A straightforward special case needs to be picked out if x lies exactly on a grid

point [2].

An attractive feature of the barycentric interpolant is that the coefficients of ui are constants,

independent of the values ui to be interpolated. More precisely, the weights depend only on the

grid points, xi, the interpolation point, x, and the degree of the polynomial used for the interpola-

tion. Because the Closest Point Method repeatedly interpolates with different data values, ui, but

with the interpolation points remaining fixed, this form is particularly efficient. All the weights

wj =
wbc

j

x−xj
/
∑p

i=0
wbc

i
x−xi

are pre-calculated allowing the interpolations to be performed as an inner

product of the weights wj with the grid point data ui [2].

2.4.3 Higher Dimensional Interpolation

Higher dimensional interpolations are built in the same fashion as one-dimensional interpolations.

For example, consider carrying out an interpolation on a 2D domain with cubic polynomials. First,

the interpolation is carried out four times in the x−direction to obtain the corresponding values in

a vertical line. Using these values, we can obtain the desired interpolated value using the standard

one-dimensional interpolation [16].

Figure 2.4 shows the interpolation routine in 2D. Suppose we are interested in approximating

the value at �. First of all we use the grid points · to interpolate in the horizontal direction to get all

4 points 4. We use these 4 points to obtain the value at �.
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Figure 2.4: This figure shows that how a 2D interpolation works [16], used with permission. The
four points(4) are interpolated by the dots in the same rows. Then the point at � is interpolated by
the points located at the 4′s

2.4.4 Banding

For the Closest Point Method, there is no need to calculate the evolution step or extension step over

the entire embedding space. The calculation of evolution and extension step will be much more

efficient if we use as few grid points as possible. Although there is absolutely no difference in

the numerical result, a more efficient approach is to perform extension and evolution on a small

narrow band around the surface. The band width depends on both the stencil width and the degree

of the interpolation and is chosen so that all nodal values within the interpolation stencil have been

accurately evolved [16]. Since the extension step will wipe out the values from last time step, all the

grid points outside of the band will have no effect at all. Figure 2.5 shows the minimum bandwidths

in 2D for a Closest Point Method computation for a surface in the vicinity of point � [16].

Assuming a standard five-point Laplacian is used in d-dimension and a polynomial of degree p is

used for the interpolation, the general bandwidth λ is given by [21]

λ =

√
(d− 1)

(
p+ 1

2

)2

+
(

1 +
p+ 1

2

2
)

∆x.
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Figure 2.5: A basic standard bandwidth calculation indicating that the bandwidth depends on both
the interpolation stencil and the evolution stencil [16], used with permission.

2.5 Chapter Summary

In this chapter, we gave a brief introduction to the Closest Point Method. This method will be an

essential tool for solving the PDEs on surfaces appearing in Chapter 4.



Chapter 3

Segmentation on Images

3.1 Introduction

In this chapter, we review a recent technique for the segmentation of 2D images. See Tony F. Chan

and Luminita A. Vese’s paper, Active Contours Without Edges, for details.

The Chan-Vese model is based on techniques of curve evolution via level sets on the Mumford-

Shah functional. The goal is to detect objects in images. The boundaries of the objects are not

necessarily defined by the gradient. The algorithm evolves a level set function to minimize a certain

energy rather than using the classical snake model [4] [5] [11]. The primary difference between this

method and the classic active contour model is that the stopping condition does not depend on the

gradient of the image but is rather related to a particular segmentation of the image. The numerical

algorithm uses finite difference schemes, the initial condition can be arbitrary and interior contours

can also be detected automatically.

3.2 Background of the model

To motivate the method, we consider a simple binary image u0 composed of two distinct regions

with piecewise-constant intensities. The intensities of the two regions are denoted by ui
c and uj

c.

Let the region with intensity ui
c represent the objects in the image. The boundary is denoted by C0.

Then, we have u0 = ui
c inside C0 and u0 = uj

c outside C0. We call the image domain Ω and the

approximation of the boundary of the objects by C. Further, we set ω = inside(C) to be the region

interior to the curve, and ω̄ = outside(C) to be the region exterior to the curve. The goal of segment-

ing the image will be achieved by minimizing an energy. Now consider the following functional [1]

16
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F1(C) + F2(C) =
∫

inside(C)
|u0(x, y)− c1|2dxdy

+
∫

outside(C)
|u0(x, y)− c2|2dxdy,

where C is any variable curve. The scalars c1 and c2 are the constants depending on C which are the

averages of u0 inside curve C and outside of C respectively. In this simple case, if C is the boundary

of the object C0, obviously we have

F1(C0) + F2(C0) = 0 = infC{F1(C) + F2(C)}.

Therefore, if we can find some curve C which minimizes the functional F1(C) + F2(C), then

we have found the desired objects in the image.

Figure 3.1 illustrates all possible positions of the curve.

a.)If curve C is outside the object, then we have F1(C) > 0, F2(C) = 0.

b.)If curve C is inside the object, then we have F1(C) = 0, F2(C) > 0.

c.)If curve C is partly inside and partly outside the object, then we have F1(C) > 0, F2(C) > 0.

d.)If curve C is the boundary of the object, then we have F1(C) = 0, F2(C) = 0.

We see that d.), which corresponds to the case where the curve C is on the boundary of the ob-

ject, the functional F1(C) + F2(C) = 0.

To make the algorithm more robust, we can add some regularizing terms corresponding to the length

of the curve C. This leads us to the energy functional F (c1, c2, C) defined by
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Figure 3.1: All possible configurations of the curve are illustrated here. Each curve separates the
image into two regions.
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Figure 3.2: Level set function representation of a region on a 2D domain. The function φ is negative
inside the curve and positive outside the curve [16], used with permission.

F (c1, c2, C) = µ · (length of C)

+ λ1

∫
inside(C)

|u0(x, y)− c1|2dxdy

+ λ2

∫
outside(C)

|u0(x, y)− c2|2dxdy,

where µ ≥ 0, ν ≥ 0, λ1, λ2 > 0 are fixed parameters. In the numerical experiments, λ1 = λ2 = 1.

3.2.1 Mumford-Shah Functional

It is worth noting that the Mumford-Shah functional for segmentation is [18]

FMS(u,C) = µ · (length of C)

+ λ

∫
Ω
|u0(x, y)− u(x, y)|2dxdy

+ γ

∫
Ω\C

|∇u(x, y)|2dxdy.

As we can see, the Chan-Vese model with λ1 = λ2 = λ is just a reduced form of theMumford−
Shah formulation with the restriction that u is piecewise constant (this is also called the minimal

partition problem) [6]. The Chan-Vese model looks for the best piecewise constant u fitting u0, that



CHAPTER 3. SEGMENTATION ON IMAGES 20

is

u =

{
average(u0) inside C

average(u0) outside C

We now consider solving the Chan-Vese model using the level set method [19].

3.3 Level Set Formulation of the Model

The level set representation introduces a Lipschitz function φ : Ω → R such that

C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0},

inside(C) = ω = {(x, y) ∈ Ω : φ(x, y) > 0},

outside(C) = ω̄ = {(x, y) ∈ Ω : φ(x, y) < 0}.

Having introduced φ, we may define u according to a variational model where the variable C is

replaced by φ [24].

To accomplish this task, we introduce the Heaviside function H , and the one-dimensional Dirac

measure δ0. These are defined by

H(z) =

{
1 if z ≥ 0

0 if z < 0,
δ0(z) =

d

dz
H(z).

We can now express the terms in the energy F as follows:

Length{φ = 0} =
∫

Ω
|∇H(φ(x, y))|dxdy =

∫
Ω
δ0(φ(x, y))|∇φ(x, y)|dxdy

and ∫
φ>0

|u0(x, y)− c1|2dxdy =
∫

Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy,∫

φ<0
|u0(x, y)− c2|2dxdy =

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy.
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Combining these terms we find that the energy F (c1, c2, φ) can be written as

F (c1, c2, φ) = µ

∫
Ω
δ0(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫
Ω
|u0(x, y)− c1|2H(φ(x, y))dxdy

+ λ2

∫
Ω
|u0(x, y)− c2|2(1−H(φ(x, y)))dxdy.

If we keep φ fixed and minimize the energy F (c1, c2, φ) with respect to the constants c1 and c2, the

constants can be written as

c1(φ) =

∫
Ω u0(x, y)H(φ(x, y))dxdy∫

ΩH(φ(x, y))dxdy
,

c2(φ) =

∫
Ω u0(x, y) (1−H(φ(x, y))) dxdy∫

Ω(1−H(φ(x, y)))dxdy
.

Assuming the curve has both interior and exterior area, then c1 and c2 are in fact given by [6]

c1(φ) = average(u0) over {φ ≥ 0},

c2(φ) = average(u0) over {φ < 0}.

3.3.1 Existence of the Minimizer

The Chan-Vese model is one particular case of the minimal partition problem for which the existence

of the solution has been proven [18]. We further note that the existence of the solution for the general

Mumford-Shah segmentation problem has also been proved [17].

3.4 Variational Formulation

Now we can introduce a regularized versions of the functional H and δ0, denoted as Hε and δε to

compute the associated Euler-Lagrange equation for the unknown function φ. The associated regu-

larized functional Fε becomes
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Fε(c1, c2, φ) = µ

∫
Ω
δε(φ(x, y))|∇φ(x, y)|dxdy

+ λ1

∫
Ω
|u0(x, y)− c1|2Hε(φ(x, y))dxdy

+ λ2

∫
Ω
|u0(x, y)− c2|2(1−Hε(φ(x, y)))dxdy.

Keeping c1 and c2 fixed, and minimizing Fε with respect to φ, we get the associated Euler-Lagrange

equation for φ. Introducing an artificial time t ≥ 0 and an initial contour φ0(x, y). We obtain the

corresponding gradient descent equations:

∂φ

∂t
= δε(φ)

[
µ∇ ·

(
∇φ
|∇φ|

)
− λ1(u0(x, y)− c1)2

+ λ2(u0(x, y)− c2)2
]

in (0,∞)× Ω, (3.1)

φ(0, x, y) = φ0(x, y) in Ω,
∂φ

∂n
= 0 on ∂Ω.

There are many choices of regularization functions. In this thesis, the experiments are carried out

with this particular regularization of H and its Dirac delta function [6]

Hε =
1
2

(
1 +

2
π
arctan(

z

ε
)
)
,

δε =
dH

dz
=

ε

π(ε2 + z2)
.

This particular regularization function is chosen because this H has a global support and tends to

compute a global minimizer [6]. If a regularization with a small support is chosen, then the Euler-

Lagrange equation for φ acts only locally on a few level curves around its initial curve. This tends

to give solutions which depend on the initial curve.
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Figure 3.3: A plot of the chosen regularized Heaviside function H (blue) and its Dirac delta function
(red).

3.4.1 Numerical Discretization

A finite difference implicit scheme (Backward Euler) is used to discretize the equation. Let h be the

grid spacing and ∆t be the time step size. We have

φn+1
ij − φn

ij

∆t
= δh(φn

ij)

[
µ

h2
∆x

−
∆x

+φ
n+1
ij√

(∆x
+φn

ij)
2

h2 +
(∆y

cφn
ij)

2

4h2

+
µ

h2
∆y

−
∆y

+φ
n+1
ij√

(∆y
+φn

ij)
2

h2 +
(∆x

c φn
ij)

2

4h2

(3.2)

−λ1

(
u0,ij − u1(φn)

)2 + λ2 (u0,ij − u2(φn))2
]
,
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where

∆x
−φi,j = φi,j − φi−1,j ,∆x

+φi,j = φi+1,j − φi,j

∆y
−φi,j = φi,j − φi,j−1,∆

y
+φi,j = φi,j+1 − φi,j

∆y
cφi,j = φi,j+1 − φi,j−1,∆x

cφi,j = φi+1,j − φi−1,j

This linear system can be solved iteratively [6].

3.4.2 Reinitialization

When working with level sets and Dirac delta functions, a reinitialization procedure is sometimes

necessary to prevent the level set function from becoming too flat or too sharp. Therefore, φ might

need to be reinitialized to the signed distance function. On the other hand, reinitialization also has

side-effects of increasing computational cost and may prevent interior contours from growing. The

evolution equation for reinitialization is given by{
ψτ = sign(φ(t))(1− |∇ψ|)
ψ(0, ·) = φ(t, ·)

In most of the experiments, no reinitialization step is needed.

3.5 Numerical Experiment on a 2D Image

A simple numerical experiment for the segmentation of a synthetic binary image (Figure 3.4) is

presented in Figure 3.5. In this simple experiment, the green curve represents the zero contour of

the level set function at various time steps. Clearly it shows that the zero contour of the function

converges to the right segmentation of this binary image.

3.6 Chapter Summary

In this chapter, a simple segmentation model based on the paperActive ContoursWithout Edges

by Tony F.Chan and Luminita A. Vese is reviewed. The fundamental idea of this algorithm is

to minimize an energy via variational and level set techniques. The approach was applied to 2D
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Figure 3.4: A simple binary image. The object is to use the Chan-Vese method to separate the black
and the white regions.

Figure 3.5: The zero contour of φ is dispayed at various times t.
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images; however, this model is not just limited to 2D images. It can also be applied on 3D. With the

Closest Point Method, an extension to images defined on surfaces is possible. This is the focus of

the next chapter.



Chapter 4

Segmentation on a Surface

4.1 Introduction

With all the tools and background knowledge from the last two chapters, we are now able to move

on to segmentation of objects and patterns on surfaces.

4.2 3D Segmentation Algorithm

As mentioned in the last chapter, the Chan-Vese active contours model is not just limited to 2D

image segmentation. It can be applied to 3D images as well. The evolution of a curve in the 2D case

becomes the evolution of a surface in 3D. There are some slight changes in the energy functional

F (s1, s2, φ). It is now defined by

F (s1, s2, φ) = µ · (Surface Area of φ)

+ λ1

∫
inside(φ)

|u0(x, y, z)− s1|2dxdydz

+ λ2

∫
outside(φ)

|u0(x, y, z)− s2|2dxdydz

If the 3D object boundary is denoted by S, the Active Contour Model will be looking for the best

approximation u of u0 where

u =

{
average(u0) inside S

average(u0) outside S.

A similar variational formulation and discretization scheme can be applied to this 3D algorithm

as was used in the 2D case.

27
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Figure 4.1: Level set representation of a spherical surface. The function φ is positive outside the
ball and negative inside.
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Figure 4.2: Zero contour of the level representation on a sphere separates the surface of the ball into
two parts. The function φ is positive on one side of the area separated by the curve and negative on
the other side [16], used with permission.

4.3 Chan-Vese Model on a Surface

Suppose some surface image data is given by a function u0 : S → R. Assume the level set function

used for the segmentation is φ : S → R. Specifically, the zero contour of the function φ will divide

the surface into two regions: {x ∈ S : φ(x) > 0} is the inside region of the zero contour and

{x ∈ S : φ(x) < 0} is the outside region of the zero contour.

Figure 4.2 gives an illustration. The zero contour of the function φ separates the surface of a ball

into two regions.

4.3.1 Formulation of the Energy Functional

According to the Chan-Vese model, the energy functional is
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F (u1, u2, φ) =µ · (length of φ’s zero contour)

+ λ1

∫
{x:φ(x)>0}

|u0(x)− u1|2dS

+ λ2

∫
{x:φ(x)<0}

|u0(x)− u2|2dS,

where u1 and u2 are unknown scalars and µ ≥ 0, λ1, λ2 > 0 are fixed parameters. The energy can

also be written as an integral over the entire surface by introducing the Heaviside function H(z) and

its Dirac measure δ(z). If we keep φ fixed and minimize the energy F (u1, u2, φ) with respect to the

scalars u1 and u2,

u1(φ) =

∫
{x:φ(x)>0} u0(x)H(φ(x))dS∫

S H(φ(x))dS
,

u2(φ) =

∫
{x:φ(x)<0} u0(x) (1−H(φ(x))) dS∫

S(1−H(φ(x)))dS
.

(4.1)

That is, u1 and u2 are the average values of u0 over the inside and outside, respectively, of the zero

contour of φ.

The regularized Heaviside function we introduce is the same as the one in Chapter 3

Hε(z) =
1
2

(
1 +

2
π

arctan
(z
ε

))
and the associated Dirac measure is once again

δε =
dH

dz
=

ε

π(ε2 + z2)
.

Let Fε(u1, u2, φ) denote the resulting regularized functional. Keeping u1 and u2 fixed, and minimiz-

ing Fε with respect to φ gives the corresponding Euler–Lagrange equation. These will be solved by

evolving the gradient descent equations. The corresponding energy function F (u1, u2, φ) becomes
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Fε(u1, u2, φ) = µ

∫
S
δε(φ)|∇φ|dS

+ λ1

∫
{x:φ(x)>0}

|u0 − u1|2Hε(φ)dS

+ λ2

∫
{x:φ(x)<0}

|u0 − u2|2(1−Hε(φ))dS.

The corresponding gradient descent equations are

∂φ

∂t
= δε(φ)

[
µ∇S ·

(
∇Sφ

|∇Sφ|

)
− λ1(u0(x)− u1)2

+ λ2(u0(x)− u2)2
]

in (0,∞)× S, (4.2)

φ(0, x) = φ0(x) in S,
∂φ

∂n
= 0 on ∂S,

where t is an artificial time. In order to obtain a zero contour which accurately segments out the

objects, the equation needs to be solved to its steady state.

4.4 Transformation of the PDE

Although the surface PDE is well posed, it is very complicated to solve due to the surface derivative

and divergence operators. From Chapter 2, we know that this PDE can be solved by the Closest

Point Method. In Section 2.1.5 the equivalence for the gradient and divergence operator was re-

viewed. These principles indicate that

∇S ·
(
∇Sφ

|∇Sφ|

)
= ∇ ·

(
∇φ(cp)
|∇φ(cp)|

)
,

for all points x on a smooth surface S. Embedding the problem in R3, and using the above to replace

the in-surface curvature term, we can obtain the embedding PDE

∂φ

∂t
= δε(φ(cp))

[
µ∇ ·

(
∇φ(cp)
|∇φ(cp)|

)
− λ1(u0(cp)− u1)2

+ λ2(u0(cp)− u2)2
]

in (0,∞)× Ω. (4.3)
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One thing worth noticing is the disappearance of the homogeneous Neumann boundary conditions.

For the Closest Point Method, the homogeneous Neumann boundary conditions do not need to be

explicitly imposed; they are automatically generated by the method. No artificial boundary con-

ditions at the edge of the computational domain are introduced either, because the computational

domain includes only a narrow band of the surface.

4.4.1 Discretization

To discretize the PDE, we begin by selecting a computational domain Ωc of discrete grid points:

it is not necessary to solve on the whole domain, but just on a certain narrow band enveloping the

surface [21, 14]. Most of the numerical experiments are carried out with cubic interpolation. Hence,

the bandwidth is given by

λ =
√

2 · 22 + 32∆x.

For the detail of the calculation of the bandwidth, please refer to Chapter 2. For each grid point

in Ωc, we need to construct a closest point function cp(x) for the surface S. This will represent the

surface. For simple surfaces such as a sphere, torus or cube, the closest point function has an easy

analytical form. For triangulated surfaces, the closest point function can be computed efficiently by

the algorithm outlined in [14].

To solve the embedding PDE (4.3) we alternate the following two steps:

1. Extend the solution off the surface to the computational domain using the closest point func-

tion. That is, replace φ by φ(cp) for each node on the computational domain. This closest

point extension is an interpolation step, and is carried out using barycentric Lagrange interpo-

lation [2].

2. Compute the solution to the embedding PDE (4.3) using standard finite differences on the

Cartesian mesh for one time step. This step is just a step of the usual Chan–Vese algorithm in

3D for region segmentation.

The second step of the algorithm is discretization by a finite difference scheme which is semi-

implicit in time. Following [6], it is
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φn+1
ijk − φn

ijk

∆t
= δh(φn

ijk)

[
µ

h2
∆x

−
∆x

+φ
n+1
ijk√

(∆x
+φn

ijk)2

h2 +
(∆y

cφn
ijk)2

4h2 +
(∆z

cφn
ijk)2

4h2

+
µ

h2
∆y

−
∆y

+φ
n+1
ijk√

(∆y
+φn

ijk)2

h2 +
(∆x

c φn
ijk)2

4h2 +
(∆z

cφn
ijk)2

4h2

(4.4)

+
µ

h2
∆z

−
∆z

+φ
n+1
ijk√

(∆z
+φn

ijk)2

h2 +
(∆x

c φn
ijk)2

4h2 +
(∆y

cφn
ijk)2

4h2

−λ1

(
u0,ijk − u1(φn)

)2 + λ2 (u0,ijk − u2(φn))2
]
,

where

∆x
−φi,j,k = φi,j,k − φi−1,j,k,∆x

+φi,j,k = φi+1,j,k − φi,j,k

∆y
−φi,j,k = φi,j,k − φi,j−1,k,∆

y
+φi,j,k = φi,j+1,k − φi,j,k

∆z
−φi,j,k = φi,j,k − φi,j,k−1,∆z

+φi,j,k = φi,j,k+1 − φi,j,k

∆y
cφi,j,k = φi,j+1,k − φi,j−1,k,

∆x
cφi,j,k = φi+1,j,k − φi−1,j,k,

∆z
cφi,j,k = φi,j,k+1 − φi,j,k−1

and h is the grid spacing.

The linear system (4.5) is solved by the iterative Gauss–Seidel method [1, 6]. Because we are

interested in the steady state solution to (4.3), it is not necessary to iterate to convergence at each

time step but merely to descend towards the minimum energy. The stopping condition can either

monitored by observation of the zero contour or the criteria defined by the tolerance of the relative

difference between each step of φ.
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4.4.2 Gauss–Seidel iterative method

In order to solve this discretized PDE by the Gauss–Seidel iterative method, we need to rewrite the

PDE as

φn+1
ijk = φn

ijk + ∆tδh(φn
ijk)

[
µ

h2
∆x

−
∆x

+φ
n+1
ijk√

(∆x
+φn

ijk)2

h2 +
(∆y

cφn
ijk)2

4h2 +
(∆z

cφn
ijk)2

4h2

+
µ

h2
∆y

−
∆y

+φ
n+1
ijk√

(∆y
+φn

ijk)2

h2 +
(∆x

c φn
ijk)2

4h2 +
(∆z

cφn
ijk)2

4h2

(4.5)

+
µ

h2
∆z

−
∆z

+φ
n+1
ijk√

(∆z
+φn

ijk)2

h2 +
(∆x

c φn
ijk)2

4h2 +
(∆y

cφn
ijk)2

4h2

−λ1

(
u0,ijk − u1(φn)

)2 + λ2 (u0,ijk − u2(φn))2
]
,

φn+1
i,j,k = φn

i,j,k + ∆t

{
µ

h2

[
C1(φn

i+1,j,k − φn
i,j,k) + C2(φn

i−1,j,k − φn
i,j,k)+

C3(φn
i,j+1,k − φn

i,j,k) + C4(φn
i,j−1,k − φn

i,j,k) + C5(φn
i,j,k+1 − φn

i,j,k)+

C6(φn
i,j,k−1 − φn

i,j,k)
]
− λ1(u0,i,j,k − u1)2 + λ2(u0,i,j,k − u2)2

}
where C1, C2, C3, C4, C5, C6 are the coefficients for each stencil point. Let

C7 = 1− ∆tµδh(φ)
h2

(C1 + C2 + C3 + C4 + C5 + C6).

Now the PDE can be rewritten as:

φn+1
i,j,k = C7φ

n
i,j,k + ∆t

{
µ

h2

[
C1φ

n + C2φ
n
i−1,j,k+

C3φ
n
i,j+1,k + C4φ

n
i,j−1,k + C5φ

n
i,j,k+1+

C6φ
n
i,j,k−1

]
− λ1(u0,i,j,k − u1)2 + λ2(u0,i,j,k − u2)2

}
For each iteration of the Gauss–Seidel method, the φi,j,k node will be updated accordingly, and

the newly updated node point will replace the old value at each step. For example, we update the
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point φn+1
i+1,j+1,k+1 using φn+1

i,j,k instead of φn
i,j,k. The detail of the convergence is covered in [1]. In

the numerical experiments, only a few iterations are needed due to the fast convergence.

4.4.3 Efficiency Improvement

Our ultimate goal is to find the steady state of the gradient descent equations (4.2). To achieve this

objective, it is sometimes helpful to break the computation into two phases. In the first phase, we

are interested in a fast method which gives a qualitatively improved segmentation. In this phase,

enhanced computational speed can be obtained by dropping the interpolation step in the algorithm.

The second phase needs to be consistent with the gradient descent equations (4.2) and therefore

must include the interpolation step. This gives a result which can be used as a starting condition for

the second phase. We can save large amounts of the computational time by skipping the interpola-

tion step, especially for some regular smooth surfaces. In most of the cases, it gives us promising

results close to the final steady state solution; however, in order to get a more accurate and refined

segmentation such as on some irregular triangulated surfaces, we need to include the interpolation

step. This gives us a way to adjust the efficiency and accuracy of the segmentation. If we need fast

coarse segmentation, we can skip the interpolation phase. If we need more accurate and detailed

segmentation, we make use of the interpolation phase.

4.5 Chapter Summary

In this chapter, the algorithm used for segmentation on surfaces is presented. This model is based

on the Chan-Vese active contour model combined with the Closest Point Method. The Closest Point

Method gives a simple way to extend the 3D Chan-Vese model to the problem of segmenting out

objects defined in textures on surfaces.



Chapter 5

Numerical Experiments

5.1 Introduction

In this chapter, different kinds of numerical experiments for segmentation on surfaces are presented.

This includes segmentation on closed and open smooth surfaces such as spheres and hemispheres,

surfaces with corners such as cubes and a particular triangulated surface.

5.2 Numerical Parameters

In the numerical experiments, we take λ1 = λ2 = 1 and h = 1, ∆t = 0.1. The range of the surface

data u0 is [0, 255]. In all instances, the initial contour is given by the intersection of the surface with

that of a cylinder of radius 15 units. The parameters are chosen suggest by the Chan-Vese model.

The closest point extension steps are performed using barycentric Lagrange interpolation [2] with

cubic polynomials. Computations are performed in Matlab and visualizations are done using either

Matlab or Paraview [9].

5.3 Segmentation on Smooth Surfaces

5.3.1 Binary Image on Sphere

In this experiment, a synthetic binary pattern is created on a sphere. The sphere is 36 units in

diameter with µ = 0.02 · 2552. This is just a warm-up test, since the image is binary and the surface

is smooth.

36
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Figure 5.1: A sphere and the initial zero contour of the function.

Figure 5.2: The evolving zero contour at times t = 0.3, t = 0.6.
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Figure 5.3: The evolving zero contour at times t = 1, t = 1.2.
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Figure 5.4: A hemisphere and the initial contour of the function.

5.3.2 Segmentation on an Open Smooth Surface

In this experiment, an open surface is selected and a noisy 2D image is mapped onto the hemisphere.

The hemisphere is 72 units in diameter and µ = 0.04 · 2552. The significance of this experiment

is that the surface is open and that there are some artifacts in the mapped image. We note that the

Closest Point Method experiences no problem in solving the PDE on the open surface. The Chan-

Vese model also ignores the artifacts and picks out the desired objects. See Figure 5.5 and 5.6.

5.4 Segmentation on a Cube

In this experiment, we consider grey-scale data on the surface of a cube. The top of the cube consists

of a bitmap image of a galaxy and the other faces contain geometric shapes. The cube is 80 units on

each side and µ = 0.1 · 2552.

Figures 5.7 to 5.9 show the evolution of the zero contour of φ at various times. With this

choice of µ, the evolution segments out the core of the galaxy, as well as each of the shapes on the

surface. Different µ-values can lead to different segmentations of the galaxy. It is noteworthy that

the underlying surface is non-smooth. The analysis of the Closest Point Method on non-smooth

surfaces is ongoing, but our results here suggest that the method is stable and achieves qualitatively

correct results in the context of image segmentation.
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Figure 5.5: The evolving zero contour at times t = 0.5, t = 1.1.

Figure 5.6: The evolving zero contour at times t = 1.5, t = 2.
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Figure 5.7: A cube and the initial zero contour of the function φ.

5.5 Segmentation on a Triangulated Surface

The algorithm can also be applied to complicated triangulated shapes, such as Annie Hui’s pig [10]

(here smoothed via Loop’s algorithm within ParaView [9]). The surface data u0 consists of various

shapes that were manually generated.

5.5.1 Loop Algorithm

The original data on the pig is very coarse. In order to get better representation of the pig, we refine

the pig by the Loop subdivision algorithm, which can be carried out by Para-View (See Figure 5.10).

Figures 5.11 and 5.12 show the evolution of the zero level set of φ (shown as a white contour) on the

pig at various times. The segmentation automatically finds the boundary between the two colored

regions. It is worth emphasizing that the code for segmenting the triangulated pig is identical to

that for our other examples: segmentation on a pig, cube, hemisphere or any other surface merely

requires the input of the closest point function corresponding to the surface.
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Figure 5.8: The evolving zero contour at times t = 1.2, t = 1.8.
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Figure 5.9: The evolving zero contour at times t = 2.5, t = 4.8.

5.6 Chapter Summary

Our numerical tests indicate that the effectiveness of applying the Closest Point Method to the Chan-

Vese model. The results show that the PDE converges to the desired solution not only for simple

surfaces such as a sphere and a cube, but it also works for more complicated triangulated surfaces.
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Figure 5.10: A triangulated surface of a pig and the initial zero contour of the function are shown.
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Figure 5.11: The evolving zero contour at times t = 0.2, t = 2.8.

Figure 5.12: The evolving zero contour at times t = 4.6, t = 35.8.



Chapter 6

Conclusion

Recently, solving PDEs on surfaces has been gaining widespread interest and popularity. For exam-

ple, surface PDEs arise in the segmentation of images on surfaces in 3D. In this thesis, the Chan-Vese

Active Contour Model and the Closest Point Method are combined and applied to the segmentation

on surfaces. A particularly simple and efficient way to solve surface PDEs is the Closest Point

Method.

Chapter 2 illustrates how the Closest Point Method can be applied to solve PDEs on surfaces.

Of particular relevance to this thesis is that the Closest Point Method provides a simple way to solve

level set equations on surfaces using standard methods in 3D.

Chapter 3 gives a brief introduction of the Chan-Vese model of 2D image segmentation. It uses

a variational model to minimize a simplified energy functional rather than the usual Mumford-Shah

energy.

Chapter 4 combines the knowledge of Chapters 2 and 3. By using the Closest Point Method, the

Chan-Vese model is now no longer limited to 2D or 3D image segmentation. It can now be applied

to segment out images on general surfaces.

Finally, Chapter 5 contains a variety numerical experiments. It considers both open and closed

smooth surfaces, a non-smooth surface and a triangulated surface. The method works well and all

the final steady-state solutions clearly show the desired segmentation of the images.

A variety of topics remain to be explored. One of the most interesting questions in segmentation

is how to utilize both image intensity and surface geometry to obtain improved segmentation on

surfaces. For example, a term involving gradient of the surface could be added when formulating a

new surface PDE to make use of the surface geometry.
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