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ABSTRACT 

Quaternions have been a subject for research in mathematics, physics, and engineering for 

decades. Using quaternions to represent colours, however, has recently been proposed and 

studied. Colour sensitive filtering can be achieved using a quaternion-valued filter. There are two 

colour edge detection methods defined on quaternions. One is based on the chromaticity 

cancellation that generates a grey colour for non-boundary regions; the other is based on 

estimation of homogeneity of regions. Trilateral filtering is proposed by locally adapting colour 

and changing the shape of the filter to achieve the effect of smoothing colours yet preserving 

edges. Furthermore, quaternion Fourier analysis has been implemented efficiently by 

decomposition into complex Fourier equivalence, which allows convolution and cross-correlation 

on quaternion-valued images in the frequency domain. Finally, based on quaternion singular 

value decomposition, quaternion principle analysis is implemented and applied to several 

applications, such as segmentation of colour images. 



ACKNOWLEDGEMENTS 

I would like to express my gratitude to Brian Funt, who has been greatly supportive throughout 

the duration of this thesis, for his patience, thoughtfulness, and perceptiveness in the field of 

computer vision. I am also indebted to Greg Mori and Ze-Nian Li for their researching insight 

and enthusiastic input. 

I would like to thank my fellow graduate students in the Computational Vision Lab. They 

contribute greatly to the general working environment and more importantly supply support and 

friendship. I would also extend my love and appreciation to my parents, who have been the 

mostly supportive throughout my academic study. 

Finally, I would like to acknowledge Simon Fraser University for their generous financial 

support. 



TABLE OF CONTENTS 

. . 
Approval ............................................................................................................................ 11 

... 
Abstract ............................................................................................................................. 111 

.......................................................................................................... Acknowledgements iv 

Table of Contents .............................................................................................................. v 
.. 

List of Figures .................................................................................................................. vn 
... List of Tables .................................................................................................................. VIM 

1 Introduction to Quaternions .................................................................................... 1 

1.1 A Brief History ......................................................................................................... 1 
........................................................................................... 1.2 Hypercomplex Numbers 1 

................................................ 1.2.1 Non-commutative 4D Hypercomplex Numbers 2 
....................................................... 1.2.2 Commutative 4D Hypercomplex Numbers 3 

................................................................................................................. 1.3 Quaternion 6 
1.3.1 Definition of Quaternion .................................................................................. 6 

....................................................................................... 1.3.2 Quaternion Arithmetic 8 
............................................................... 1.4 Hypercomplex Representation of Colour 10 

................................................................................. . 2 Quaternion-Valued Filtering 13 

2.1 Quaternion Convolution ......................................................................................... 13 
................................................................................................... 2.2 Colour Smoothing 13 

............................................................................................ 2.3 Colour Edge Detection 17 
2.3.1 Quaternion Rotation Edge Detection ............................................................... 17 

..................................................... 2.3.2 Edge Detection by Homogeneous Regions 20 
................................................................................................... 2.4 Trilateral Filtering 22 

............................................................................................. 2.4.1 Bilateral Filtering 22 
.......................................................................... 2.4.2 Quaternion Bilateral Filtering 23 

3 . BQMP Thresholding ............................................................................................... 27 

3.1 Introduction BQMP ................................................................................................ 27 
................................................................. 3.2 Binary Quaternion-Moment-Preserving 27 

3.3 BQMP Based Image Quantization ......................................................................... 28 
......................................................................................................... 3.3.1 Algorithm 29 

.............................................................................................................. 3.3.2 Results 29 

................................................................................. . 4 Quaternion Fourier Analysis 31 

................................................................................ 4.1 Quaternion Fourier Transform 31 
........................................................................... 4.2 Efficient Implementation of QFT 32 

................................................................................................ 4.2.1 Two-Sides QFT 33 



............................................................................... 4.2.2 Left-SideIRight-Side QFT 41 
........................................................................................... 4.3 Quaternion Correlation 42 

4.3.1 Cross-Correlation in Spatial Domain ............................................................... 43 
4.3.2 Cross-Correlation in Frequency Domain ................................................... 45 

4.4 Quaternion Convolution ......................................................................................... 47 
4.4.1 Convolution in Spatial Domain ...................................................................... 47 
4.4.2 Convolution in Frequency Domain .................................................................. 48 

5 . Quaternion Wavelet ................................................................................................ 49 

5.1 Quaternion Harr Wavelet Transform ...................................................................... 49 
............................................................... 5.2 Quaternion Wavelet Based Compression 50 

............................................................................................ 6 . Quaternion SVDIPCA 52 

............................................................ 6.1 Quaternion Singular Value Decomposition 52 
6.2 Comparison of QSVD and SVD ............................................................................. 55 

............................................................. 6.3 QSVD-Based Colour Image Compression 56 
.......................................................... 6.4 QPCA-Based Colour Texture Segmentation 59 

6.4.1 Introduction ...................................................................................................... 59 
.................................................................................................... 6.4.2 Methodology 60 
..................................................................................................... 6.4.3 Experiments 64 

7 . Discussion and Conclusion ..................................................................................... 67 

7.1 Colour Image Analysis ........................................................................................... 67 
7.2 Fourier Analysis ..................................................................................................... 68 

............................................................ 7.3 Quaternion Principle Component Analysis 69 

My Contributions ............................................................................................................ 70 

In Chapter Two ............................................................................................................. 70 
In Chapter Three ........................................................................................................... 70 

............................................................................................................. In Chapter Four 70 

............................................................................................................. In Chapter Five 70 
............................................................................................................... In Chapter Six 70 



LIST OF FIGURES 

Figure 1 : 

Figure 2: 

Figure 3: 

Figure 4: 

Figure 5: 

Figure 6: 

Figure 7: 

Figure 8: 

The result of colour sensitive smoothing with a 3x3 and 7x7 colour . . ................................................................................. sensitive smoothing filter 16 

............................................................. Quaternion edge detection by rotation 19 

......................................................... Edge detection by homogeneous regions 21 

........................................................ Illustration of the adaptive bilateral filter 26 

nlustration of the quantization process ............................................................ 30 

Quaternion cosine waves generated from a quaternion pulse in 
............................................................................................. frequency domain 39 

The result of low-pass filtering based on type 1 QFT ..................................... 40 

.................. Colour template matching by cross-correlation in spatial domain 44 

Figure 9: The template matching based on quaternion cross-correlation in 
............................................................................................ frequency domain -47 

Figure 10: Illustration of the multi-stage quaternion wavelet transform of the colour 
................................................................................................................ image 51 

Figure 11: Plots of the singular value distributions of standard PCA(in red) and 
............................................................................................... QPCA(in black) 56 

..................................................................... Figure 12: QPCA based image compression 58 

Figure 13: Texture segmentation results (colour images reproduced here in 
........................................................................................................ gray scale) -65 

Figure 14: Result of the QPCA based texture segmentation method applied to 
................................................................................................. natural images -66 

vii 



LIST OF TABLES 

Table 1: The multiplication table for quaternions ............................................................ 2 

Table 2: The multiplication rules for quaternion a and b ................................................. 3 

Table 3: The multiplication table for circular complex numbers ..................................... 4 

Table 4: The multiplication table for hyperbolic complex numbers ................................ 4 



INTRODUCTION TO QUATERNIONS 

1.1 A Brief History 

Complex numbers have been a subject for research since the early eighteenth century. Over the 

last century, theories based on complex numbers have been widely applied in mathematics, 

physics and engineering. Since it is so useful in other fields, it is natural to wonder, with a rule for 

multiplying two numbers together, whether it is possible to multiply numbers as a whole unit. 

Even the most famous mathematician of the eighteenth century, Hamilton had been thinking of a 

way for triple number multiplication, and finally invented quaternions [I]. 

Before Hamilton's discovery, Gauss received the credit for first seeing quaternions in one of 

his notebooks. In the early years of this century, Albert Einstein found a use for four dimensions, 

in order to make the speed of light constant for all inertial observers, space and time had to be 

united [15]. Today, quaternions are of great interest to historians of mathematics. For instance, 

vector analysis performs the daily mathematical routine that could be done with quaternions as an 

alternative. In addition, quaternions have been widely used in computer graphics for rotation in 

3D space. Most recently, the use of quaternion to represent colours in image processing has been 

proposed and studied. Sangwine[23]-[30], as a pioneer to quaternion image process, has 

successfully used quaternions for colour image filtering, cross-correlation, and compression. 

1.2 Hypercomplex Numbers 

In Clifford algebra, Clifford algebraists name their higher dimensional numbers hypercomplex, 

even though these kinds of numbers do not share all the properties of complex numbers and no 

classical function theory can be constructed over them. A hypercomplex number is defined as a 

number that has properties departing from those of the real and complex numbers. The most 



common examples of hypercomplex numbers are biquaternions, octonions, and quaternions 

[22,13]. 

For example, one particular type of hypercomplex number defined by Davenport (1996) is 

sometimes called "the" hypercomplex number and is defined according to the multiplication 

tableij= j i = k ,  j k = k j = - i , k i = i k = - j , a n d a l s o s a t i s f i e s  i 2  = j2 = k 2  = - I .  

Note that hypercomplex numbers are not equivalent to quaternions, as the multiplication of 

these hypercomplex numbers is commutative, as opposed to quaternions, which I will be 

discussing in this thesis. Also, unlike real and complex numbers, not all nonzero hypercomplex 

numbers have a multiplicative inverse. More discussion of quaternions and the difference 

between them and hypercomplex numbers will be given in the rest of this thesis. 

1.2.1 Non-commutative 4D Hypercomplex Numbers 

The quaternions of Hamilton are a system of hypercomplex numbers defined in four dimensions, 

with their multiplication being a non-commutative operation. Many other hypercomplex systems 

are possible, but these interesting hypercomplex systems do not have all the required properties of 

regular, two-dimensional complex numbers which make possible the development of the theories 

on functions of complex variables. 

First of all, let us derive the multiplication of two quaternions based on the multiplication 

table and explain why this multiplication is non-commutative. Usually, to define any 

hypercomplex number, we first need to define the bases for the multiplication table. For example, 

Table 1 is the multiplication table for quaternions. 

Table 1: The multiplication table for quaternions 
1 1 1  i 1 j ) k  

i  
j 
k  

l l i  
i 
j 
k  

-1 
-k 
j 

k  
-1 
-i 

j k  
-j 
i  

-1 



As we have noticed that this table is asymmetric. For example, the product of k in row 4 and i 

in column 2 is j, and the product of i in row 2 and k in column 4 is -j. The asymmetry of the 

multiplication table implies the non-commutative property of quaternion multiplication. Suppose 

we have two quaternions a = (t,x,y,z) and b = (t ' ,xJ,y' ,z') ,  the multiplication between each two 

components can be summarized in Table 2. 

multiply 

Table 2: 

quaternion 

The multiplication rules for quaternion a and b 

a and b by every component as two 

of two quaternions can be derived as 

vectors, the multiplication 

When a and b are pure quaternion, then t = t' := 0 , we have 

a x b = ( - n'- yy '-zz' ) + (yzl-zy ' )i + ( - xz'+ a' )j + (xy '- yx' )k 

= [-dot(a, b), cross(a, b)] 

rule 

1.2.2 Commutative 4D Hypercomplex Numbers 

A distinct system of hypercomplex numbers in n dimensions has been described in [17], for 

which the multiplication is associative and commutative, and which are rich enough in properties 

such that exponential and trigonometric forms exist and the concepts of analytic n-complex 

function, contour integration and residue can be defined. Here, two instances of commutative 

hypercomplex numbers are defined in four dimensions - the circular complex number and the 

hyperbolic complex number. 



Circular Complex Number 

First of all, let us derive the multiplication of two circular complex numbers based on the 

multiplication table and explain why this multiplication is commutative. To start, we need to 

define the bases for the multiplication table shown in Table 3. 

Table 3: The multiplication table for circular complex numbers 

As you can see in Table 3, the entries are symmetric. The asymmetry of the multiplication 

table for circular complex numbers implies the commutative property of circular complex number 

multiplication. Suppose we have two circular complex numbers a = (t,x,y,z) and b = (t',x',y',zJ), 

if we multiply a and b component by component as two vectors, the multiplication rule of two 

circular complex numbers can be derived as 

a x b = (tt '-xx'- yy '+zzf ) + (txt+xt '- yz'-zy ' )i + (9'-xz'+ yt'-zxt )j + (tz'+xy1+yx'+zt' )k (3) 

Hyperbolic Complex Number 

Let us derive the multiplication of two hyperbolic complex numbers based on the multiplication 

table and explain why this multiplication is commutative. Firstly, we need to define the bases for 

the multiplication table shown in Table 4. 

Table The multiplication table for hyperbolic 

1 

1 

k k j  i 

complex numbers 



As you can see in Table 4, the entries are symmetric. The symmetry of the multiplication 

table for hyperbolic complex number implies the commutative property of circular complex 

number multiplication. In addition, note that, for this particular example of hypercomplex 

numbers, there is no minus sign in the table. The multiplication should be the in the form of 

summation and the result should be non-negative, given that all its components are positive. 

Suppose we have two hyperbolic complex numbers a = (t,x,y,z) and b = (t ',x',y ',z'), if we 

multiply a and b component by component as two vectors, the multiplication rule of two 

hyperbolic complex numbers can be derived as 

a x b = (tt'+xxl+ yy'+zz0 ) + (txl+xt'+ yzf+zy' )i + (ty '+xz'+ yt l+w' )j + (tz'+xyl+ yx1+zt' )k (5) 

a x  b = (xx'+yy'+zzt ) + (yz'+zyl )i + (xz'+wl )j + (v'+Y~' )k 

= [dot ( a ,  b),(yz'+zyf ),(xzf+ w' ), (xyl+yx' )I 

However, this hypercomplex number is not as mathematically sound as quaternions for two 

reasons. First, the magnitude of a real number, complex number and quaternions can be defined 

as I a l 2  = a X Zi . For quaternions, a x  5 = [dot(a,a), 0 ,  0, 01, which is a scalar number, but for the 

pure hyperbolic number defined above, a x  Zi = [dot(a,a), -2y2, -2x2, -2xy], which is still of 

hyperbolic number instead of a scalar. Hence, the magnitude of a hyperbolic complex number can 

only be defined as I a I= , /(tt  + xx + yy + z z )  . The second reason is that the hyperbolic complex 

number can not be used as a generalization of the complex number because the product of i and i 

yields a positive I rather than -1, based on the multiplication table. Therefore, it does not inherit 

the properties of complex number as quaternions do. 



1.3 Quaternion 

1.3.1 Definition of Quaternion 

Definition: Quaternions are associative but non-commutative, and they are a single example of a 

more general class of hypercomplex numbers discovered by Hamilton. In analogy to the complex 

numbers that are representable as a combination of a real and an imaginary part a .  1 + b - i , a 

quaternion can be written as a linear combination as a = a,  - 1 + a,  - i + a ,  . j + a,  . k . The 

quaternions satisfy the multiplication rules, sometimes known as Hamilton's rules, according to 

multiplication Table 1. 

Conjugation. The quaternion conjugate of a, denoted by ii or a *, is computed as 

Addition. The sum of two quaternions is then 

Multiplication. The product of two quaternions is 

a x b  = (aobo -a,b, -a,b, -a,b,) 

+ (aobl + a,b, + a2b3 - a3b2)i 

+ (aob2 + a,b, + a,bO - a,b,) j 

+ (aob3 + alb, + a,b, -a,b,)k 

Quaternions can also be denoted in a vector form as a combination of a scalar plus a vector by 

writing a = (a,, a, ,  a,, a ,  ) = [S  (a) ,  V ( a ) ]  , where S ( a )  = a, and V ( a )  = (a , ,  a,, a ,  ) . 

In this notation, quaternion multiplication1 has the particularly simple form: 

" 0 " denotes the dot-product operator, and " * " denotes the cross-product operator of two vectors. 

6 



Norm. The quaternion norm is defined as 

and the norm is multiplicative such that norm(a x b) = nomz(a). norm(b) 

Division. Division is uniquely defined (except by zero), so quaternions form a division algebra. 

- 
a 

The inverse of a quaternion is defined by a -' = --- - , given that the norm of a is non-zero. 
a x a  

Rotation. A rotation about the unit vectorp by an angle 8 can be computed using the 

quaternion a = (s,F) = cos(38),p.  sin(*@) [ Arvo 1994, Hearn and Baker 19961. After the 

rotation, a point p is then given by p'= jl x p x p-l = /2 x p x since nomz(,h) = 1 .  A 

concatenation of two rotations, first ,hi and then b 2 ,  can be computed using the identity 

- - 

p, x ( p l  x p x Z ) x Z  = ((p x / 2 , ) x p x ( p 1  = (B, xBJx p W 1  x/2,)1  olds stein 

19801. 

Quaternion to Complex. The quaternions can be represented using its uniquely defined 

equivalent complex 2 x 2 matrices such that 

where z and w are complex numbers, ao, al, a2 and a3 are real numbers, and T and iTi; are the 

complex conjugate of z and w. The operation is particularly useful in many examples of 

quaternion analysis, such as quaternion Singular Value decomposition, which will be discussed in 

a later chapter, where the standard SVD approach can be applied to an equivalent complex matrix 

form to simplify the computation. 



1.3.2 Quaternion Arithmetic 

In this section, some general quaternion algebra operations are listed, including trigonometry, 

exponentials and logarithms. The quaternion algebra is somewhat similar to complex algebra. To 

keep the arithmetic clear and simple, all quaternions are shown in the representation as a pair of a 

scalar t and a 3 dimensional vector V, such that a quaternion q = (t, V)  

Parts 

q = t+V = (t, V) 

scalar(q) = t = (q + •÷*)I2 = (t, 0) 

Simple Algebra 

q+p = (t + t', V + V') 

q-p = (t - t', V - V') 

conj(q) = q* = (t, -V) 

Iql = (q* qy.5 = ((tA2 + V 0 V)".5,0) 

qA(-1) = q*/(q* q) = (t, -V) / lqIA2 

norm(•÷) = (tA2 + V 0 V, 0) 

adj(q) =q* q* q = (t, -V) 

IqlA2det(q) = ((tA2 + V 0 V)"2,0) 

Multiplication 

(t t'+VoVt,O) (0, tV'-Vtl-V*Vt) (t t'+V.V1, tV'-Vt'-V*V1) 

Trigonometry 

sin(q) = (sin(t) cosh(lVI), cos(t) sinh(lV1) VAVI), 



cos(q) = (cos(t) cosh(lVI), - sin(t) sinh(lV1) VIIVI) 

tan(q) = sin(q) I cos(q) 

asin(q) = -V/IVI asinh(q VIIVI) 

sinh(q) = (sinh(t) cos(lVI), cosh(t) sin(lV1) VIIVI) 

cosh(q) = (cosh(t) cos(lVI), sinh(t) sin(lV1) VIIVI) 

atanh(q) = .5 ln((1 + q)/(l - q)) 

Powers 

exp(q) = (exp(t) cos(lVI), exp(t) sin(lV1) VIIVI) 

The logarithm rule of real and complex numbers is define as: log(p*q) = log(p) + log(q). It 

should be noticed that the logarithm rule does not hold anymore for quaternions as it does for real 

and complex numbers, because of the non-commutative properties of the quaternion 

multiplications. Suppose we have two quaternionsp and q, if the logarithm rule holds, then 



log(pq)=log(p)+log(q)=log(q)+log(p)=log(qp) => pq = qp. However, we already know this is not 

generally true for quaternions multiplication. 

1.4 Hypercomplex Representation of Colour 

As we have mentioned previously, quaternions can be considered a generalization of the complex 

numbers with one real part and three imaginary parts. Thus, colour images consisting of three 

colour channels can be represented using pure quaternion-valued pixels. For images in RGB 

colour space, the three imaginary parts can be used to represent the red, green and blue colour 

components, leaving the real part zero [26,27,28,29,30]. 

Using quaternions to represent the RGB colour space, the three colour channels are processed 

equally in operations such as multiplication. The advantage of using quaternion based operations 

to manipulate colour information in an image is that we do not have to process each colour 

channel independently, but rather, treat each colour triple as a whole unit. I believe, by using 

quaternion operations, higher colour information accuracy can be achieved because a colour is 

treated as an entity. In quaternion multiplication, each of the three imaginary components is 

multiplied in a similar manner with other components. For pure quaternion multiplication, the 

real component of the product is the negated dot product of two pure quaternions, and the 

imaginary components are the cross product of the two pure quaternions. 

The colour space adopted for the image processing procedures is essential. The results of the 

procedure vary if pure quaternions are used to represent, for example, colours in Lab space, or 

Luv space, which are nonlinear transformations of the RGB colour space. In the colour sensitive 

filtering discussed in Chapter two, the optimal colour space and colour sensitivity for colour- 

specific boundary detection vary depending on the applications. On the other hand, for colour 

spaces like Luv and Lab, where L represents the brightness while uv and ab are the chromaticity, 



the three channels in Lab or Luv do not represent information in the "same" sense. In this case, it 

is not the best choice to use quaternion presentations. 

In comparison to quaternions, the commutative hypercomplex numbers such as the circular 

complex number and the hyperbolic complex number can also be used for colour representation 

too. Each colour pixel can be manipulated with the operations corresponding to these 

commutative hypercomplex numbers. Using commutative hypercomplex numbers to represent 

colours is especially attractive when the commutative rule needs to hold. Although the 

commutativity does not seem to be that important in simple colour multiplication, the 

commutative rule is essential for the logarithm rule of the hypercomplex numbers. It has been 

shown in the previous section of this chapter that the non-commutative property of quaternion 

makes it impossible for the logarithm rule to hold. The circular complex number and the 

hyperbolic complex number, on the other hand, provide a way for the logarithm based image 

processing such as the homomorphic filtering [4] and Retinex [lo]. Many operations on the 

commutative hypercomplex numbers have been well defined, and their Fourier transform has 

been discussed in [17]. However, one limitation of the commutative hypercomplex number is 

that it may not be a generalization of the complex number and many powerful techniques can not 

be implemented, due to the lack of support from the mathematical theories. Also, not all 

hypercomplex numbers may be a good choice to represent colour. For example, based on 

Equation(4), the multiplication of two circular complex numbers does not treat each colour 

channel equally, which makes it not satisfactory for processing the three "equivalent" colour 

channels. 

In this thesis, due to the soundness and completeness of the theories of quaternions, only the 

quaternion representation of colour will be studied and discussed, so that a variety of colour 

image applications can be developed, namely, filtering, clustering, 2D Fourier transform and 

principle component analysis for colour images. 



Quaternion Multiplication - Matrix point of view 

One of the advantages of quaternion for colour representation is that it allows different colour 

channels to talk to each other rather than each channel being independently manipulated. A more 

detailed explanation will be given on how each component is calculated by showing the 

arithmetic of the multiplication operation. When two quaternions are multiplied, each component 

interacts with others and the effect spreads over all dimensions. I consider it as a good feature of 

quaternion because now each component also contains some information of the others. For 

example, suppose a P  = a.  +a, . i + a2 j + a, . k and xP = xo + x, . i + x2 - j + x, - k , then 

Now, consider two real number a and x.  If x is a variable and a is a coefficient, then there is a 

y = a-x. In the quaternion case, if a and x are both quaternions, the multiplication of the two 

quaternions causes the interaction between any two components of a ,  and x, . By (7, each 

component in the product is the summation of weighted variables xh xl, x2 and x3, with the 

coefficients ao, al, a2, a3. Let x represent a RGB colour triple, every element of the final product 

of x and a is related to all r, g and b channels. Therefore, for y, = a ,  . x, , we can consider a,  as 

a quaternion coefficient to the variable x, 



2. QUATERNION-VALUED FILTERING 

2.1 Quaternion Convolution 

The most widely used approach for image filtering is convolving the image with a mask. In the 

quaternion case, a quaternion-valued mask can be defined instead of a real-valued mask. Since 

quaternion multiplication is non-commutative, convolving on the left, on the right, or on both 

sides will yield different filtering results. Generally, we can define a quaternion-based filtering by 

both left and right masks as below [9,25]: 

where Q'(x,y) is the filtered pixel, and Q(x,y) is a pixel in the original image, hL(s,t) and hR(s,t) 

are the left and right masks respectively, both of them have dimension (2r+l)x(2r+l). The 

operator "X" denotes multiplication of two quaternion numbers. More details of quaternion 

convolution will be discussed in Chapter 3. This this chapter, I will first review the quaternion 

convolution based filters such as the colour sensitive smoothing filter and the colour edge 

detector, based on which more sophisticated adaptive filters are proposed and discussed. 

2.2 Colour Smoothing 

Evans and Sangwine [25] have proposed a colour-sensitive filtering method to smooth a 

particular component of a colour in an image. Suppose we want to only smooth the component of 

colours in an image that are parallel to the direction of a colour C, but preserve the component 

orthogonal to C, given a colour image and C represented by a pure quaternion. Such a smoothing 

operation may be performed on the quaternion-valued image Q with a 3x3 uniformly weighted 

quaternion mask defined as: 



where 2 is the unit pure quaternion on the direction of C. For a pixel q ,  at location p, convolve 

with the mask U, on the left and we have: 

Convolving the quaternion mask U, on the left side of Q is not the same as convolving it with 

the mask on the right, because of the non-commutative property of quaternion multiplication, so 

we should convolve the quaternion mask on either side of the image individually, 

where C3 denotes the "convolution" operator1. For pure quaternions, the imaginary part of 

U 63 Q always equals to the negative imaginary part of Q O U . i.e., 

V[U O Q] = -V[Q C3 U ]  (see footnote2). In addition, the scalar part of U O Q always equals to 

the scalar part of Q O U . i.e., S[U O Q] = S[Q O U ]  . If the left and right convolution results 

are added together, the vector parts will cancel out, leaving only a scalar part, which is the double 

of the scalar resulted from a single convolution on either the left or right side alone. Hence, R, 

on the right side of Equation(l1) should be a scalar resulting from summing two scalar parts and 

cancelling two vector parts. Furthermore, this scalar can be oriented in the 2 direction of RGB 

colour space simply by multiplying it with 2, i.e. R, . t .  In this manner, the quaternion mask of 

' Throughout the rest of the paper, we always use @ to denote the convolution operator. 
2 For pure quaternions p and q, S [ p  X q]  = -dot(p, q)  and V[p X q ]  = cross(p, q )  



colour C can be used to smooth the colour image component in the direction of i? yet preserving 

the colour image components perpendicular to i? , based on the following calculations 

r, = c x q + q x c  (13) 

where R, is defined in Equation( 1 1) and r, can be obtained from Equation(l3), which is two 

times the projection of quaternion q  onto i? . The first term of Equation(l2) is the average of 

neighbouring pixels parallel to colour C, and the second term is the perpendicular component of 

q  to colour C. 

By extending the above colour sensitive smoothing method with a filter defined by a constant 

colour C, I proposed a colour adaptive filter that changes colour while convolving with the image. 

The adapted colour is always the colour under the centre of the mask during convolution; in other 

words, it is the colour of the pixel that is to be smoothed. Then I design the new low pass filter 

by: 

A 

Note that the perpendicular component of 4  in Equation(l4) disappears, as it exists in 

Equation(l2). The reason is that for the adaptive colour sensitive filter, the parallel component of 

q  in the direction 4 is the llqll . 4 ,  and the perpendicular component of q  on 4 is 0. The result 

of the colour sensitive smoothing is illustrated in Figure 1: 

Based on the adaptive filtered defined above, the colour under the centre of the mask is used 

to smooth a pixel. Some edges between two colours are b1urred;while some are persevered, 



depending on the similarity of the two colours across the edges. Suppose there are two colours 

under the filter and this adaptive filtering is based on one of the colours, if these two 

Figure 1: The result of colour sensitive smoothing with a 3x3 and 7x7 colour sensitive smoothing 
filter. 
(a) - original image, (b) - adaptive colour sensitive filtered image with a 3x3 quaternion- 
valued mask, (c) - adaptive colour sensitive filtered image with a 7x7 quaternion-valued 
mask. Some edges that cross two colours are smoothed out, and some edges are preserved 
well, depending on the similarity of the two colours. (Image copyright O CorelGallery 
database by permission) 

colours are more perpendicular than parallel to each other, the edge between them should be well 

preserved, because we only smooth the parallel component while preserving the perpendicular 

component. The result of this filtering is shown above and will be compared with the result of 

bilateral filtering later this section. As illustrated in Figure 1 : , the red colour and the blue 

colour on the wings are more orthogonal than parallel, so the edge between them is better 

preserved. On the other hand, the red and the yellow colours on the wings have more parallel 

components, so the boundaries between them are blurrier. Also, on the head area of the bird, the 

black eye and the white face have only parallel colour component (both parallel to grey), 

therefore this region is smoothed the most. In addition, bigger mask generates a blurrier image 

than small mask yet still preserving edges and even enhancing, as observed in Figure 1 : (b)-(c). 



Additonally, this filter is only sensitive to the change of chromaticity, but much less sensitive to 

the colour difference caused by shadows and illumination, because the colours are normalized to 

the same intensity. Based on the property of the colour sensitive adaptive filter, we can create 

applications so that the edges of similar colours are smoothed, and preserve the edges across two 

colours that are dissimilar, i.e. colours that are perpendicular with each other. One particular filter 

derived from the colour sensitive adaptive filter is the adaptive bilateral filter that will be 

discussed in the following section. 

2.3 Colour Edge Detection 

Edge detection has been an interesting subject since the beginning of image processing. Lots of 

edge detection techniques on grey-scaled images have been proposed in the last decades. Now, it 

would be interesting to try the colour edge detection using quaternion based method. The 

quaternion-valued filters we have discussed above can also be modified to serve as colour edge 

detectors instead of the adaptive colour sensitive low-pass filter in the previous section. There are 

two approaches to achieve this edge detection task: one approach is based on quaternion rotation 

to cancel the chromaticity of two colours in RGB colour space [28,30]; the other approach is 

based on the fact that colour edges only exist in a non-homogenous region [9]. 

2.3.1 Quaternion Rotation Edge Detection 

The following pair of masks defines the new filter for detecting horizontal edges by Sangwine 

[30]Error! Reference source not found.. The vertical edges can be detected in the same manner 

by simply interchanging the rows and columns of the two masks. 



where [I denotes the image space for the pixels to be rotated, R denotes the conjugate of R, and 

R is defined as R = [cos(a 14) + ,if sin(al4)]1& . The quaternion operation R x [I x E defines 

a rotation about the axis y (in RGB colour space) by an angle .n/2 discovered by Hamilton. The 

i+ j+k axis y, represented by a pure unit quaternion such thatp = T ,  has the same R, G and B 

values, so that it defines the grey line. All rotation with respect to y is done in a plane 

perpendicular to the grey line. The top rows of the two masks rotate the pixel values by +.n/2 

angle, and the bottom rows rotate the pixels by 4 2  from their original positions. 

Another simple filter for edge detection in a grey-scale image can be defined such that the top 

row is all ones, and the bottom row is all -1. This filter is introduced by the famous Rewitt filter 

for real valued image as we can see below. When this filter is applied, the pixels covered by the 

top row are unchanged, while the pixels under the bottom row are flipped by 180 degrees. 

In the quaternion case, we can still apply the principle of the Rewitt filter, but in a slightly 

modified version. Since we have defined the quaternion rotation in RGB colour space, that the 

rotation operation R x [I x E rotates a pixel through an angle in a plane normal to the certain axis, 

we can create a quaternion-valued Rewitt filter for colour images. Again, we should convolve the 

mask on both sides of the image space. Therefore, the filter is defined as [28]: 



where [I denotes the space for the pixels to be rotated, R denotes the conjugate of R, and R is 

i + j + k  defined as R = [cos(x 12)  + p sin(n / 2)] / & . where p = 7 is a unit pure quaternion. Since 
3 

the operation R X [I X R rotates a pixel by an angle n, the top rows of the two masks keep the 

pixels as where they are, and the bottom rows rotate the pixel values by 180 degree, on the plane 

perpendicular to the axis p. 

Figure 2: Quaternion edge detection by rotation 
(a) the red flower input image (b) the result of the chromaticity cancellation by colour 
rotation. For regions not covering red edges, the effect of such rotation and cancellation 
causes achromatic pixel values close to the gray line, such as on the green leaves 
background areas. On the other hand, on the boundary of the red flower regions, the 
rotation generates colours other than gray. In this case, cyan and light purple on the left 
side and the right side around the flower boundaries, respectively. (c) the binary image 
representation of the detected edges based on the chromaticity information obtained in (b) 
(Image copyright O CorelGallery database by permission) 

In image areas where the upper and lower row of the masks cover pixels of similar colours, 

the summation of the rotations of the upper and lower rows produces an achromatic pixel value 

on or near to the grey line, due to the "chromaticity cancellation". In contrast, if the pixel values 

under the upper and lower rows are different, i.e. the central pixel is on the edges, the addition of 

the rotations does not cancel in this chromatic sense completely, and hence the resulting pixel 

values are not close to the grey line and appear colourful. Based on Sangwine's method, I have 

tested this edge detection technique on colour images. Figure 2 has shown an example of the 

chromaticity cancellation method based on quaternion Prewitt filter for edge detection in a red 

flower picture. Figure 2 (b) shows the result of the chromaticity cancellation by colour rotation. 



For regions not covering red-green edges, the effect of such rotation and cancellation causes 

achromatic pixel values close to the grey line, such as on the green leaves background areas. On 

the other hand, the colours on the boundary of the red flower regions are not grey, but cyan and 

light purple on the left side and the right side around the flower area. Figure 2 (c) shows the 

detected edges based on the chromaticity information in Figure 2 (b). A pixel is on an edge if its 

chromaticity value is greater than a threshold value. The chromaticity value for a pixel is 

calculated based on the equation c = (r+g+b)/3-min(r,g,b). 

2.3.2 Edge Detection by Homogeneous Regions 

Suppose we want to find the boundary of an object of a colour C in an image. The object 

boundary is made up of a set of 'boundary pixels'. Sangwine [30] has defined the C-coloured 

homogenous region in the following manner. 

Definition: A boundary pixel to a C-coloured region is a pixel that is not centred in a locally 

homogeneous, C- coloured region, but is &connected to a pixel that is centred within a locally 

homogenous, C-coloured region. 

The colour-sensitive smoothing mask can be used to determine if a pixel is centred within 

locally homogenous region, namely, the C-coloured region. Here, the colour sensitive mask 

defined in (9 can be re-used. 

If a pixel q of colour C is centred in a 3x3 homogeneous area, the convolution U 63 Neigh(q) 

yields a result with a negative scalar part and a zero vector part by Equation(l0). In fact, if the 

whole 3x3 area contains quaternions only representing colour C, and by the fact that the dot 

product of C and C yields negative ICI, and the cross product of C and C yields zero, the expected 

result is precisely (-ICI, 0). Therefore, a pixel on the boundary of a C-coloured region can be 

detected based on this convolution result. Note that this operation is only a one-sided convolution, 

either on the left side or the right side. More specifically, to decide whether a pixel is on the 



boundary of an object of colour C, the whole quaternion representation of the colour image is first 

normalized so that the convolution result at a pixel located completely inside a 3x3 homogenous 

C-coloured region should be (-1, 0). In practice, the colour-sensitivity of the edge detection 

procedure should be reduced by relaxing the definition of homogeneity. That is, instead of 

requiring a 3x3 region to contain 9 pixels of some colour that is exactly the colour C, we allow 

only most of the 9 pixels to be similar to colour C, such that the threshold is lowered. In this case, 

we define the threshold t for the detection by t = IVI + ISI. If a pixel is in the homogenous region, 

then IS1 should be close to 1 and IVI should be close to zero. Thus, t, as the summation of IS1 and 

IVI, should be close to 1 as well. The choice of colour C can be either fixed throughout the entire 

image or adaptive based on the current pixel to be smoothed. For mask of a fixed colour C, as 

discussed in [9], it detects all the boundaries, where regions on one side of the boundary of colour 

similar to C. On the other hand, I have proposed an adaptive filter that changes C according to the 

centre pixel under the mask as it convolving on the image, it detects the boundaries of all 

homogenous regions of different colour. 

Figure 3: Edge detection by homogeneous regions 
(a) the input image for edge detection by homogenous regions. (b) the detected colour 
edges in (a). The "adaptive" edge detector is used in this example, so that the colour edges 
caused by two arbitrary colours are identified rather than for edges of certain colour only, 
as proposed in [9] (Image copyright O CorelGallery database by permission) 



Figure 3: illustrates edge detection using the adaptive filtering. The relaxed definition of a 

3x3 homogeneous-coloured region is used here, with the threshold t c 0.95. The white pixels in 

Figure 3: (b) are identified as pixels on the boundary of two different colours, by 

convolving the natural image in Figure 3: (a) with the 3x3 mask U. However, many 

boundaries cannot be identified when strictly based on the definition of homogenous regions. By 

relaxing the definition of homogeneity as discussed above when searching for boundaries pixels, 

more detailed and finer edges can be detected(in Figure 3: (b)). In order to find only the 

edges of the green cross, for example, a filter of a fixed colour can be applied to Figure 3: (a) 

with C = (19; 180; 33) (dark green). However, the edges of the door and the wall cannot be 

identified. Therefore this edge detection works when the edges are caused by a particular colour. 

Similar or better results may be obtained if quaternions are used to represent a colour space other 

than the RGB, or a different level of colour-sensitivity is set. However, our aim in Figure 3: 

is not to obtain optimal results, but just to demonstrate the results of the edge detection by 

homogeneity of regions. 

2.4 Trilateral Filtering 

2.4.1 Bilateral Filtering 

Bilateral filtering was developed by Tomasi and Manduchi to smooth the noise in an image while 

preserving the edge information and is an alternative to anisotropic diffusion [32]. Bilateral 

filtering uses a nonlinear filter whose output is a weighted average of the input. The basis of the 

bilateral filter is a standard Gaussian filter represented by a spatial kernel function f(x,y). 

However, the weight of a pixel is also affected by a function g(x,y), defined in the intensity 

domain. The kernel function g(x,y) lowers the weight of pixels with large intensity difference 

such that "different" neighbouring pixels do not have as much affect on the filtering as the 

"similar" pixels. Hence g is the function that is sensitive to the change of intensities and it 

functions similarly to an edge detection function. The shape of the mask changes according to the 



intensity difference of the central pixel to its neighbours. Note that due to the function g that is 

dependent on the local intensity information, it is not possible to perform the filtering in the 

frequency domain but only in spatial domain. 

2.4.2 Quaternion Bilateral Filtering 

As an adaptive filter, the bilateral filter redefines its shape (the weight of neighbouring pixels) 

based on the pixel intensities. The weight of the neighbouring pixels changes with respect to the 

similarity between each pixel and the central pixel. Based on the properties of the bilateral filter 

and the quaternion colour smoothing filter, a quaternion adaptive bilateral filter(the trilateral 

filter) can be defined. In this case, the output of the quaternion-valued bilateral filter for a 

quaternion representation of pixel ij (see footnote 1) at location p is then: 

where k(p) is a normalization term based on the following equation: 

-vx2 -vd - - 
both f and g are Gaussian functions defined as f (Vx) = e 2uj and g(~d) = e 2ui . (Note that f 

and g can be functions other than Gaussian). Suppose 0, and oB are two control parameters of the 

size and shape of the Gaussian kernels. Suppose qD and q, are the quaternion representation of 

pixel values at position p and s, respectively. Let Ax be the spatial Euclidian distance between 

' q is the quaternion representation of the colour at a pixel p 



pixel s and pixelp, i.e. Ax = s - p = I I  Ax 1 1 2  = Ax.  Ax. Let Ad is the magnitude of difference 

d 

between quaternion q p  and qs , i.e. M = 4, - ps 3 I I  A 2  1 1 2 =  A ~ X  d* . 

In the previous section, I have designed a colour sensitive adaptive filter using quaternions. 

"Adaptive" here refers to adapting to the local colour, rather than adapting the current intensity 

information as with bilateral filtering. Therefore, it seems that the integration of the bilateral filter 

and the proposed adaptive colour smoothing provides a new way for smoothing colour yet 

preserving the edges. The adaptive colour filter can be applied to bilateral smoothing by 

modifying the quaternion mask U,. The intuition is that in addition to the change of the shape of 

the mask while performing the convolution, the "colour" of the whole mask also changes 

depending on the colour of central pixel. By doing this, the filter smooths the component of the 

colours of an area in the direction parallel to the colour in the centre pixel. I design the adaptive 

bilateral filter based on the adaptive filter and bilateral filter by the following steps: 

Firstly, we modify the weights in the mask of Equation(l4) as: 

to be a Gaussian functon. Then, we re-write Equation(l6) as: 

where k(p) is defined in Equation(l7). Combine the above two equations, we have: 

and, then the colour adaptive bilateral filter can be defined based on Equation(20): 



I now demonstrate the trilateral filter, by comparing it with the smoothing results using 

bilateral filter on RGB channels separately, and the adaptive quaternion-valued filter discussed in 

the previous section. The bilateral filter is designed to smooth the pixels with similar colours 

while preserving the boundaries between different colours; the adaptive colour sensitive 

quaternion filter smooths only the parallel component of a particular colour while preserving the 

perpendicular component of that colour. Thus the adaptive bilateral filter, inheriting the property 

of both bilateral filter and colour sensitive filter, is expected to smooth similar pixel colours on 

their parallel components yet preserve the perpendicular colour component and the edges between 

two different colours. In Figure 5,  the images show the result of the convolution with different 

filters. In Figure 5 (b), the bilateral filtering is applied to the RGB channels separately. The 

results show that the edges across different colour regions are clearly preserved, but not so for 

similar colours such as yellow and red, where the boundaries between them are blurred. Figure 5 

(c) is a filtered image after applying the adaptive colour sensitive filter that preserves the edges 

across two colours that are orthogonal, for example, the edges of red and blue pair, and red and 

yellow pair. However, the whole figure of the wings on the black background is blurred because 

there is only the parallel component of the colour grey (black) so that the colour should be blurred 

out to the dark background. The proposed adaptive bilateral is designed to better preserve the 

edges and be less sensitive to shadows, having the properties of the other two filters as we can see 

in Figure 5 (d). Here, the kernel function f(x,y) computes the average of all neighbouring pixels, 

and the function g(x,y) computes the difference between two pixels specified in Equation(l6). 



Figure 4: Illustration of the adaptive bilateral filter 
(a) original image, (b) bilateral filtered image on 3 channels separately with Of = 3 and 

0, = 3 ,  (c) adaptive filtered image with 3x3 quaternion-valued mask, (d) colour 

adaptive bilateral filtered image with filter size 3x3. (Image copyright O CorelGallery 
database by permission) 



3. BQMP THRESHOLDING 

3.1 Introduction BQMP 

In this chapter we discuss the quaternion moment based operators, based on a thresholding 

technique called binary quaternion-moment-preserving (BQMP) thresholding. BQMP 

thresholding generalizes conventional grey-level moment-based operators [19,20] into four- 

dimensions by expressing the input colour space as a quaternion-valued space. Through the 

definition of quaternion moments of input colour data, the moment preserving principle from 1-D 

grey-level data is extended to 3D colour data. An analytic solution for BQMP thresholding is also 

obtained by the use of quaternion arithmetic. The computation time for BQMP thresholding is of 

order N , the data size, so it is quite efficient. Moreover, this quaternion-moment-based technique 

can be applied to problems of colour image processing, such as image compression and image 

quantization and sharpening [19,33]. 

3.2 Binary Quaternion-Moment-Preserving 

The quaternion moments are designated as follows [20]: 

N 
where E[] represents the expectation. E[q] = +x q(n) and q is a set of quaternions. Suppose 

n=l 

m,, m2, m3 are the 1"' 2nd and 3rd order moments of the set of quaternions, respectively. Here we 

only discuss up to the 3rd order moment because even though statistical distribution of a colour 

image can be described by knowing every order of moment, it is known that the higher the order 



of moment, the less important it is, because most energy is concentrated in the lower order 

moments. Preserving moments up to the third order will not severely affect the statistical 

distribution of the image, and will simplify the complexity of the algorithm and computations. 

Suppose we classify a quaternion valued data set into two clusters represented by z, and z, , the 

means of these two clusters, with corresponding portion po and pl, such that all data above 

threshold belong to the cluster represented by z, and all data below threshold belong to the 

cluster represented by z, . Based on Equation(22), we then represent the fust three-quaternion 

moments of the two-level data sets 2, and z, as ' 

Now we have 4 quaternion-valued equations and 4 unknowns z,, 2, , p, , p, . Additionally, the 

momentum ml, m, and mj can be calculated by Equation(22), so this system of equations can be 

uniquely solved [20]. Hence, the two clusters represented by quaternion z, and z, are obtained. 

3.3 BQMP Based Image Quantization 

There are times that it is desirable to quantize the image so that the edges can be enhanced and 

sharpened. In Pei's [19] paper, the new moment-preserving thresholding technique, binary 

quaternion-moment-preserving thresholding, provides a new way to cluster colour image data in 

quaternion space. Based on preserving the quaternion moments of 4-dimensional input data, I 

defined an analytic and unsupervised two-class clustering classifier. In quantization, the input 

colour image is first divided into a number of sequential square blocks. Then for each block, the 

- 

1 m, denotes the kth momentum of a data set 



BQMP thresholding method is used to segment the pixel block into two classes with a 

corresponding colour to represent each class. Since each block is represented by only two colours, 

only the strongest edge between the two colours is preserved or even enhanced; while the weaker 

edges are all flattened. Suppose we shift the position of all blocks and quantize the image this 

way again, each block may be represented by two different colours. If we keep shifting the blocks 

for a few runs and then we average all resulting images from each run, the result image should be 

an edge-enhanced image. 

3.3.1 Algorithm 

In summary, the procedures of the BQMP thresholding can be described as follows. 

1) Divide the image into blocks 

2) For each block, compute ml, m2, and m3 based on Equation(22) 

3) Obtain two representatives, z0 and zl, of each block of data by solving 

the moment-preserving equations in Equation(23) 

4) Make all pixels in clusters represented by z0 and zl to have the mean 

colour of these pixels, correspondingly. 

5 )  Shift the position of all blocks by n pixels on both the horizontal 

direction and the vertical direction, then follow the same step as (2) 

for N runs. 

6) Average the result image from each run. 

3.3.2 Results 

The quantization result based on the binary quaternion-moment-preserving thresholding 

technique is illustrated in Figure 5. Figure 5 (b) shows the quantized image after one run of 

quantization of 16x16 block size. As mentioned in the Algorithm section above, all colours in 

each block are clustered zoand z,. From Figure 5(b) we can tell that in each block, noise is 



smoothed while the edges are preserved and even enhanced. However, if a region of one colour 

covers more than one block, its quantized colour may be different, causing edges between blocks. 

The solution for reducing these unwanted edges across the blocks is to perform BQMP multiple 

times on overlapping blocks and average the result. Figure 5 (c) shows the result after 8 runs 

quantization of 16x16 block size. In each run, the positions of all blocks are shifted by a step = 2 

pixels on both vertical and horizontal directions. Here, the edges between blocks are significantly 

reduced; noise is removed while edges are enhanced. For instance, the edges of the strips on the 

ball, and the edges of the ball with respect to the black background, are enhanced. 

Figure 5: Illustration of the quantization process. 
(a) Original blurred image; (b) the quantized image after one run of quantization with 
16x16 block size; (c) 8 runs quantization with 16x16 block size, with shift step = 2 pixels on 
both vertical and horizontal directions (Image copyright O Computational Vision Lab by 
permission) 

It has been shown that BQMP can be an effective tool for colour clustering. However, the 

number of clusters obtained by this method is limited to two. Suppose we want to have three 

clusters, 20, z l  and z2, then there will be other three unknowns pO,pl, and p2. In order to solve for 

the system similar to Equation(23), we need to compute up to the 5Ih order of moment. Higher 

numbers of clusters are possible with this quaternion moment-preserving threshold method, by 

computing higher order of the momentum. 



4. QUATERNION FOURIER ANALYSIS 

4.1 Quaternion Fourier Transform 

The 2D Fourier Transform is an important image processing tool to decompose a grey-scale 

image into its sine and cosine components. The output of the transformation represents the image 

in the Fourier or frequency domain, given the input image in spatial domain, where each "point" 

represents a particular frequency. The Fourier Transform can be used in a wide range of 

applications, such as image analysis, image filtering, image reconstruction and image 

compression. Fourier analysis on real and complex numbers had been well studied and widely 

used in numerous applications. Therefore, now it would be interesting to study the response of 

quaternion signals in the frequency domain, as many images processing method can perform 

more efficiently implemented in the frequency domain. 

Based on the concept of quaternion multiplication and exponential, the Quaternion Fourier 

Transform (QFT) has been introduced[8]. Due to the non-commutative property of the 

quaternion, there are three different types of QFT defined: the left side QFT, the right side QFT 

and the two sides QFT. The details of the three types of QFT will be discussed in the following 

sections. The earliest definition of QFT is the two-side form as following[8] 

In fact, the QFT defined above can be generalized as [8] 



where p, and p2 are two unit pure quaternions (i.e., the quaternions with unit magnitude and zero 

real part) that are orthogonal to each other. i.e. Ip, 1 = Ip2 ( = 1 and S[p, x & 1 = -4 P2 = 0 ((24 

is a special case of Equation(25) when p1 = i and p2 = j ) 

More recently, the left-side the right-side form of QFT were defined in [27, 291 as 

Left-Side QFT: H ,  (w,v) = I e-k'wxi"' x h(x, y)duly 
m m 

Right-Side QFT H ,  (w, v) = I % h(x, y) w-pl'*'wx"' 
m h d y  

(27) 
Similarly, the Inverse Quaternion Fourier Transforms (IQFT) can be defined for the 

three types of DFT respectively as [27,29]: 

Two-Sides IQFT h(x, y) = 3 I e-'lWx x H,, (w, v) %-p2"dwdv 
m m 

(28) 

Left-Side IQFT h(x, y) = -& $ e - ~ l ' l ' w x + v ~ )  x H ,  (w, v)dwdv 

(29) 

Right-Side IQFT h(x, y) = 5 H ,  (w, v) %-p2'wxivy' dwdv 

In the discrete case, the discrete quaternion Fourier transforms (DQFT) and discrete inverse 

quaternion Fourier transforms are also defined in these three types [29]. Since the discrete and 

continuous QFT and IQFT are basically the same, only the continuous case will be used to 

illustrate the QFT in this chapter. 

4.2 Efficient Implementation of QFT 

QFT and DQFT can be significant for quaternion-valued image processing, such as colour 

smoothing and data compression, because these analyses can be done much more efficiently in 

the frequency domain than in the spatial domain. However, the straight forward way based on the 

definition to compute the quaternion Fourier transforms is not practical, as we can see in the 



arithmetic formulas for quaternion exponential and quaternion multiplications, involving real 

number additions and multiplications that requires a great amount of computations. Fortunately, 

there are algorithms proposed to implement QFT by decomposing it into complex matrices on 

which standard FFT can be applied. In [6] and [8], Pei and Sangwine have discussed the efficient 

algorithms of all types of QFT to decompose the quaternion Fourier transform into several 

complex Fourier transforms, which can be computed individually using existing standard Fourier 

transform algorithms, such as the fast Fourier transform. Then the transforms are joined in a way 

that the desired quaternion Fourier transforms can be obtained. The inverse Fourier transform can 

be obtained in a similar manner with some modifications of this decomposition procedure. This 

decomposition technique solves the high computational cost problem doing the Fourier 

transforms for quaternion-valued matrices. The complexity of the fast quaternion Fourier 

transform will be analyzed in the following sections of this chapter. 

4.2.1 Two-Sides QFT 

First, lets study the two-sides QFT. To simplify the problem, proposed by Pei [18], we first 

discuss the special case when p, = i and p, = j as in Equation(24). Remember, based on 

Equation(25) we have 



where h(x,y) is a quaternion function in spatial domain and HL-R (w, V) is its type 1 QFT. Since 

cos(vy) = (eivy + e-'"' ) 1 2  and i . sin(vy) = (e-'"' - eivY ) 1 2  , substitute cosine and sine terms into 

Equation(3 I), we get 

Suppose we define H <  (w, v) by 

substitute Equation(33) into Equation(32) => 

Thus, we have decomposed the QFT into Hc representations. Furthermore, Hc is exactly the 

standard complex number Fourier transform by definition, and can be calculated by complex 2D 

FT method. The negative v in Hc(w,-v) means the reflection of the function Hc(w,v) with respect 

to w axis. For 2D images, such reflection is the same as flipping the image with respect to the y- 

axis (vertical axis). To compute Hc(w,v), we first need to decompose h(x,y) into a complex pair 

representation: 



Note that ha is parallel to i and hb x j is perpendicular to i.' (see Thm 4.1) 

Therefore, based on Equation(33) and Equation(35), Hc can be decomposed as: 

H ,  (w, v) = jje-" x h(x, y) x e-'"dxdy 

= jje-'" x ha (x, y) x e-ivydxdy + jje-m x (h, (x, y) x j) x e"dxdy 

= jje-'~' x ha (x, y) x e-'"dxdy + jje-" x (h, (x, y) x ( j  x e-jVy ))dxdy 

= jje-'" x ha (x, y) x e-ldxdy + jje-'w x (h, ( x ,  y) x ( j  x cos(-vy) + j x i x sin( 

= jje-iwx x ha (x, y) x e-'vydxdy + jle-'" x (h, (x, y) x (cos(vy) x j + i x sin(vy) x 

= j j e - ' ~ ~  x ha (x, y) x e-'"dxdy + jje-'" x (h, (x, y) x elvy x jdxdy 

= jje-'" x ha (x, y) x e-'vydxdy + [jje-iwx x (h, (x, y) x e-"'-y)dxdy] x j 

= jje-iwxe-ivy ha (x, y)dxdy + [jje-'"e-"h, ( ~ , - ~ ) d x d ~ ]  x j 

= FT(ha ) + FT(~;  ) x j 

(36) 

Then, He can be represented as an integration of FT(ha), and the product of FT(hb9) and j ,  

where hb9 represents the flipped version of hb(x,y) with respect to x-axis. According to 

Equation(36), He can be computed based on two complex 2D FTs, FT(hu) and FT(hb). Once He 

is solved, HE-# (w, V) can be computed by Equation(34). The complicated QFT problem has been 

simplified into much simpler and more efficient one by solving complex FT sub-problems. 

In summary, the algorithm to implement Two-Side Quaternion Fourier Transform can be 

broken down into the following steps [IS]: 

1) D e c o m p o s e  the  input  quaternion-values funct ion  intoh, mdhbbased t o  

2 )  Calcula te  H c  based on ha m d h b  by Equa t ion(36)  

3 )  Calcula te  the r e s u l t  QFT based on H ,  by Equat ion(34)  

1 h, (x, y), h, (x, y), h, ( x ,  y) and h, (x, y) are the real part, i-part, j-part and k-part of the quaternion 
h(x,y), respectively 



Remember the above algorithm only deals with the special case when pl = i and p, = j . 

For the general case when p, and p, are arbitrary pure unit orthogonal quaternions, we need to 

modify the above algorithm. The idea is that, instead of using i, j and k to represent a 3 

dimensional variable, we change the basis to p, , p, and p3 , respectively (given p, , p, and p3 

have unit length and are orthogonal to each other). For example, 

I 

x = xli + x,j + x3k = xl . ,hl + xi . ,h, + xi - ,h3. So the transformed variable is equivalent to the 

original variable, in 4D space, with different bases. The decomposition of h(x,y) in Equation(35) 

should be modified correspondingly. The following theorem is provided by Pei [18]: 

Theorem 4.1. Given apure quatemion u, and a secondpure unit quaternion v, u may be 

decomposed into components parallel and perpendicular to v as 

such that (up,,) II v ,  (up,,) I v and u = up,, + up,, 

Proof. (Omitted) 

According to Theorem 4.1, the parallel and perpendicular decomposition of function 

h(x,y) with respect to pl can be performed as follows: 

such that h(x, y )  = h,, (x ,  y) + hl (x,  y )  x p ?  , given that p, ,p2 and p, are unit, pure and 

orthogonal. The following theorem is provided by Pei [18] 

Theorem 4.2. Given a quaternion function h, and two pure unit orthogonal 

quaternions pl and p, , if we can decompose h into two complex functions h,, and h, , 



suchthat h,,+h, (h,,)IIfi, ( h , x p , ) I p , a n d h = h , ,  + h , x p 2 ,  thenwehave 

epl xh,, = 4, xeplandep' xh, = h, ~ e - ~ '  

Proof.(Omitted) 

Based on Theorem 4.2, we can change the basis to p, , p2 and p, , and ~quation(36) 

becomes 

Now, suppose we have three unit pure quaternions p, , p 2  and p ,  that are orthogonal to each 

other. Then we can implement the general Two-Side QFT as [18]: 

1) Fi rs t ,  decompose funct ion  h(x ,  y) as ha (x, Y) and hL(x, y)using Equation(37) 

2 )  Then calculate  H c  based on Equation(38) 

3 )  Then calculate the transform r e s u l t  of DFT based on Equation(32) by 

HL-, (w7 v) =+CHc (w7 v) + Hc (w,-v)I + [Hc (w7 v) - Hc (w,-v>I x (-P3 ) 

Therefore the Two-Sides QFT can be implemented by two MxN 2D discrete FTs. Since each 

2D discrete FT requires MNlog2(MN) real number multiplications 181, the amount of real number 

multiplications required for implementation is 2MNlog2(MN). Similarly, inverse Two-Sides 

quaternion Fourier transform (IQFT) can be calculated in the same manner, with h(x,y) and 

H(w,v) exchanged and FT(h) replaced with IFT(h). Hence, the computational cost of Two-Side 

IQFT is also 2MNlog2(MN). 

With the fast QFT and IQFT, a colour image can be transformed into frequency space 

efficiently. The easiest way to determine the frequency composition of signals is to inspect them 

in their frequency domain. Now let's study the frequency response of a 2D colour image in the 

Fourier domain. For standard Fourier transform, the frequency domain image shows the 



magnitude of different frequency components. For quaternion Fourier transform, the frequency 

domain is also represented by quaternions of different frequency components. A simple example 

is given below to illustrate the quaternion Fourier transforms by generating cosine waves (Figure 

6: ). Suppose in the frequency domain of a 256x256 image, a pixel q at location (200,200) 

is set to be a particular quaternion value. We would like to study the relationship between the 

frequency response of a single point and its image in spatial domain. Figure 6: illustrates the 

images of different frequency responses by different q values. The images are all cosine waves of 

different colours. The colours in each subfigure are the result of the interaction between each 

component, so there is no obvious correspondence of the frequency q and the colour in spatial 

domain. 

Another example is included to show the effectiveness of the Type 1 QFT by filtering the 

colour image with a low pass filter (see Figure 7). Figure 7 (b) only displays the imagery parts as 

a colour image, even though the entries in Fourier image are not necessarily pure quaternions. 

The low-pass filtered image in Fourier domain is shown in Figure 7(c) where the high frequency 

signals are around the centre and low frequency signals are around the comers. If we take IQFT 

of (c), we obtain a blurred version of the original image. This should have the same effect as 

convolving the image with a low pass filter. I believe using quaternion allows us to have a better 

colour preservation because the three colour channels are processed as a single unit. 



Figure 6: Quaternion cosine waves generated from a quaternion pulse in frequency domain. 
Only imagery components are displayed as a colour image, even though the entries in 
Fourier image are not necessarily pure quaternions. The two axis are the frequencies in 
both x and y directions. 



Figure 7: The result of low-pass filtering based on type 1 QFT. 
(a) the original image (b) the result of Two-Sides QFT, with the axis pl=[l 1 11/43 and 
p2=[0 1 -11142, the real parts of all frequencies are not displayed (c) The low quaternion 
frequencies are cut off by a mask with Radius = 50. (d) the type 1 inverse QFT image, with 
details and noises removed. (e) the result of process RGB three channels separately(1mage 
copyright O CorelGallery) 



4.2.2 Left-Side/Right-Side QFT 

I now review the efficient algorithms for Left-Side and Right-Side QFT. The reason we 

define three types of QFT is the non-commutativity of quaternions. However, 

conceptually, the conclusion cannot be drawn whether one type of QFT is better or more 

useful than the others. The derivations of the algorithms are quite similar to but simpler 

than the Two-Sides QFT. That is, we still use the idea of decomposing the quaternion 

functions into several complex function representations, and then integrate the Fourier 

transform of those complex functions in a specific way. Based on Equation(36) , we need 

to decompose h(x,y) into its parallel and perpendicular components with respect to the 

Fourier axis p: 

For Left-Side QFT: 

For Right-Side QFT: 

The algorithm to implement the Left-Side QFT and Right-Side QFT, can be summarized 

in following steps. 



1) First, decompose h(x, y) as h(x, y) = h,,(x, y) + h,(x, Y)XP, by the same 

method of Two-Side QFT. 

2) Use Equation(39) and Equation(40) to calculate Left-Side QFT and 

Right-Side QFT, respectively. 

Thus, we need two complex 2D FTs for Left-Side QFT, and one 2D FT plus one 2D IFT 

for Right-Side QFT. The amounts of real multiplications required for Two-Sides QFT is 

2MNlog2(MN). Similarly, Left-Side and Right-Side IQFT can also be calculated in the 

same manner, with h(x,y) and H(w,v) exchanged and FT(h) and ZFT(h) switched. Hence, 

the computational cost of Left-Side and Right-Side IQFT is also 2MNlog2(MN). 

4.3 Quaternion Correlation 

Measuring the correlation between two signals is an approach for feature detection, or as a 

component of more sophisticated techniques. Cross-correlation is well-known for its role in 

template matching procedures[3,5]. If the shape of a target is made into a kernel whose values 

are multiplied by the pixel values at every location in the image and then normalized for the 

absolute values of the pixels, the largest response will result when the grey image contains the 

same pattern of grey scale values. Although this operation can be done in spatial domain, it will 

be more efficiently performed in the Fourier domain by multiplying the transforms of the target 

and the image and performing an inverse transformation. Textbook presentations of correlation 

describe the convolution theorem in the frequency domain using the fast Fourier transform. 

Especially if the convolving mask is large, it is more efficient to do the correlation in Fourier 

domain. With either implementation, the locations in the image that match the target are found 

efficiently even in the presence of noise, shading, or partial obscuration of the target. 

The cross-correlation functions have recently been generalized to colour images based on 

quaternions [7,24]. However, direct evaluation of the summation over the whole image for each 



pixel results in a Q(NA4) computational cost. This is not practical for all but only when one of the 

correlating images is fairly small. Therefore, a practical correlation method requires the 

utilization of Fourier transform as we have discussed in the previous section. To have a better 

understanding of the relationship between the cross-correlation and the Fourier transform, we will 

review the Wiener-Khintchine theorem for complex numbers and extend the Wiener-Khintchine 

theorem for quaternions. 

4.3.1 Cross-Correlation in Spatial Domain 

Suppose the cross-correlation c of two complex functionsflm,n) and h(m,n) is defined by 

c = f 0 h = f (x, y) 63 h(-x,- y) 

where denotes the correlation operation and 63 denotes the convolution operation. The 

complex function h(-x,-y) is the conjugated result of reflection of function h(x,y) with respect 

to x-axis and y-axis. The convolution of functionflx,y) and h(x,y) is 

and therefore the correlation is defined as 

Similarly, for two quaternion-valued functionsflx, y) and h(x,y), the quaternion convolution 

con(x,y) is defined as 

Based on the extended Wiener-Khintchine theorem for quaternions, the cross-correlation 

c(x,y) is defined as follows in [8] 

And in discrete case, it is defined in [24] as 



M-I N - l  

~ ( m , n ) =  CCf (p,q)h(p-m,q-n)  
p=o q=o 

One of the remarkable applications of cross-correlation in image processing is in template 

matching, where a signal is searched for the existence of some pattern [5 ] .  Given a test image, we 

are interested in finding the location of the template within this image. Figure 8 illustrates the 

target searching by quaternion cross-correlation according to Equation(43) in the spatial domain. 

The target or model is a coloured capital letter "A", and the test image contains different letters of 

various colours. The task is to detect the location of the pattern, which has the greatest similarity 

to the target in the sense of both structure and colour. Figure 8(c) shows the result of the cross- 

correlation of (a) and (b) represented by the magnitude of the quaternion at each pixel. The 

magnitude represents the likelihood that the target is detected at this location. On row 2 column 6 

of Figure 8(c), the blue letter A corresponds to the highest peak because it is the most similar to 

the template. On row 7 column 8 and row 8 column 2, the cyan letter A and purple letter A have 

the 2nd and 3rd highest peaks, respectively, because both colours have blue component. This 

quaternion cross-correlation algorithm successfully identifies the candidate locations of the model 

in the test image by estimating the pattern and colour information as a whole unit. 

Figure 8: Colour template matching by cross-correlation in spatial domain 
(a) the target navy letter A. (b) the test image containing a number of different letters and 
colours. (c). The cross-correlation of the images in (a) and (b). The peaks indicate the 
possible locations where the patterns and colours are mostly similar to the navy letter A. 



4.3.2 Cross-Correlation in Frequency Domain 

For the conventional convolution operation, if con(t) is the convolution result of real or complex 

functions f ( t )  and g(t), then con(t) can be calculated based on the Equation(44) 

con(t) = IFT(FT( f ( t ) )  . FT(g( t ) ) )  (44) 

Therefore, we can calculate the conventional convolution by the efficient algorithms of the 

complex FT and IFT. The correlation, on the other hand, can also be implemented as [8] 

It is reasonable to seek for simple relations between the QFT and the quaternion correlation, 

so that we can use efficient QFT algorithms to implement correlation in frequency domain rather 

than in spatial domain. 

In the previous section, we have shown that a quaternion can be decomposed into two 

orthogonal components with respect to a pure unit quaternion (axis), one parallel to this axis and 

the other perpendicular to this axis. In addition, the QFT itself can be decomposed into 

components parallel to and perpendicular to this axis. In this section, Wiener-Khintchine theorem 

is extended to quaternion space for colour image correlations[7]. 

Theorem 4.3 Based on the Right-Side QFT/IQFT, a quaternion generalization of the Wiener- 

Khintchine theorem is as follows: 

where 



A generalization of the Wiener-Khintchine theorem to quaternion images requires quaternion 

Fourier transforms that have been discussed and implemented in the previous section. Suppose 

F(u,v) and G(u,v) are the Fourier transform of quaternion functionsflu,~) and g(u,v), respectively. 

Basically, this theorem requires decomposing the Fourier spectrum G(u,v) of quaternion function 

g(u,v) into the parallel and perpendicular components with respect to the Fourier transform axis 

p . Then we combine the inverse Fourier transform of the product of the F(u,v) and the 

conjugation of the parallel component of G(u,v), with the Fourier transform of the product of the 

F(u,v) and the conjugation of the perpendicular component of G(u,v). The result is the cross- 

correlation of two quaternion-valued vectors. 

Although all the three types of QFT/IQFT we have discussed in the previous section can be 

possibly used in correlations, the algorithms that have been studied in [8] to implement the 

generalized Wiener-Khintchine theorem is only defined on Right-Side QFTDQFT. In addition, as 

suggested by Pei [a], the Right-Side QFT based quaternion correlation is simpler and easier to 

analyze. Therefore, in this thesis, the Right-Side QFT is adopted to analyze the quaternion cross- 

correlation. 

The Figure 10 shows the template matching by quaternion cross-correlation in the frequency 

domain based on Theorem 4.3. The target is a dark red coloured capital letter "A", and the 

database image contains different letters of various colours. The task is to detect the location of 

the pattern, which has the greatest similarity to the template in the test image. The letter "A" is is 

flipped 180 degree in both the vertical and horizontal directions. This flipping is made 

corresponding to the efficient cross-correlation when we need to convolve with the function g(-x,- 

y)(suppose g(x,y) represents the letter A). Zeros are appended to function g(x,y) so that the images 

in Figure 10 (a) and Figure 10 (b) have the same size. Figure 10 (c) shows the result of the cross- 

correlation of (a) and (b) represented by the magnitude of the quaternion at each pixel. The 

magnitude represents the likelihood that the target is detected at this location. On row 8 column 5 



Figure 9: The template matching based on quaternion cross-correlation in frequency domain 
(a) the target dark red letter A. (b) the database image containing a number of different 
letters and colours. (c). The cross-correlation of the images in (a) and (b). The peaks 
indicate the possible locations where the patterns and colours are mostly similar to the 
dark red letter A. 

of Figure 10 (c), the red letter A corresponds to the highest peak because it is most similar to the 

target, based on the structural and colour information in combination. This quaternion cross- 

correlation algorithm successfully identifies the candidate locations of the template by estimating 

the pattern and colour information as a whole unit. This cross-correlation in Fourier domain can 

be computed much more efficiently than in the spatial domain, yet generates the same matching 

result. 

4.4 Quaternion Convolution 

Quaternion based image convolution has been introduced in Chapter 2 as a tool for colour image 

filtering (see (8). Here, we will focus on the one-sided quaternion convolution rather than the 

two-sided one, and the theoretical background of quaternion convolution will be discussed in both 

spatial and frequency domains. 

4.4.1 Convolution in Spatial Domain 

The definition of one side quaternion convolution in spatial domain has been given in 

Equation(42). The operations required for convolution are only multiplication, conjugation and 

addition. Furthermore, the multiplication of two pure quaternions involves only dot product and 



cross product. For example, when an image is convolved with a quaternion valued filter, every 

pixel under the filter is multiplied with the corresponding pixel in the image, and then the result is 

summed. More specifically, the average of negative of the dot product for each pixel pair is saved 

in the real part of the convolution result; and the average of the cross product for each pixel pair 

is saved in the three imaginary parts. In this case, the real "layer" of the quaternion convolution 

result contains the summation of the convolution on each RGB channel separately. 

4.4.2 Convolution in Frequency Domain 

Based on the relationship between complex convolution and cross-correlation in Equation(4 I), 

we have f O h = f ( x ,  y )  0 h(-x,-y) , where f and h are two quaternion-valued functions. 

Suppose we want to convolve two colour images f and h. This can be achieved by using the 

quaternion correlation method in Equation(45) with the negated image h flipped on both 

horizontal and vertical directions. With the quaternion convolution in frequency domain, many 

image filtering processes can be done in a much more efficient manner. Moreover, the colour- 

sensitive filtering we have studied in Chapter two can be performed this way by integrating the 

result of the convolution on the left side and on the right side separately. 



QUATERNION WAVELET 

5.1 Quaternion Harr Wavelet Transform 

One of the key features of the Fourier transform is that it allowed us to decompose a signal into a 

range of frequencies and then analyse the signal one frequency at a time. Similarly, wavelets are a 

class of functions used to localize a given function in both translating and scaling. A family of 

wavelets can be constructed from a function, which is sometimes known as a "mother wavelet". 

In this chapter, an introduction to the simple quaternion wavelet transform is given based on the 

Harr function. 

To wavelet transform a vector of real numbers, the first step is to separate the high and low 

frequencies. We can use a lowpass filter 1 and highpass filter h to define a decomposition of a 

signal into a lowpass and highpass components. Suppose we have a vector X of length N, then we 

convolve it with the low pass and high pass filter such that 

X ( r )  - X ( r  - 1 )  
h * X ( r ) = -  mod N 

2 

We call 1 *X the smooth approximation to X and h*X the high resolution details of X. Then if 

we throw away every second component of l*X and h*X , we get two vector Cl and Ch, such that 

the vector X can be reconstructed from Cl and Ch: 

where the operator O is a "shuffle" operator that alternatively takes one element from one of the 

two vectors at a time and appends this element to the end of the result vector. 

Similarly, in the quaternion case, for a quaternion-valued vector Q, we define the lowpass and 

highpass filter so that 



1 x Q(r )  = Q<r)  -+ Q<r - 1 )  mod N 
2 

In the 2D quaternion wavelet transform, we still let 1 and h be the low pass and high pass 

filters and let Q be an MxN quaternion matrix, where we assume both M and N are divisible by 

reasonably large powers of 2. Then we can do the quaternion wavelet transform on columns first 

followed by the rows. The information stored in a quarter of the result after one-stage of the 

wavelet transform is shown in the table 

low high 
= low npprmimation vertical detaik 

high horizontal details diagonal details 

However, the operator + and - for quaternion arithmetic is exactly the same as 

addinghubtracting the real and each imaginary components separately. In addition, scaling by a 

real number %(or by a quaternion s=<1/2,0,0,0>) is equivalent to scaling each component 

separately. Therefore, the quaternion wavelet transform is simply equivalent to the standard 

wavelet transform on each component independently and combining the transformed result. For 

the inverse wavelet transform, the same analysis applies. 

5.2 Quaternion Wavelet Based Compression 

The following images illustrate the multi-stage quaternion wavelet transform of a colour image. 

Figure 1 l(a) is the input 256x256 colour image. Figure 11 (b) shows the wavelet transform of the 

original image according to the Harr transform. Figure 11 (c) is the reconstructed image based on 

only 64x64 pixels on the top-left corner of the wavelet transform. The reconstruction based on 

only 1/16 of the original image illustrates a good approximation because the top-left corner 

contains the most essential low frequency information, while the discarded pixels on the rest of 

the image only contain high frequency information. Although the implementation of quaternion 



Harr wavelet transform produces the same results as wavelet transform of RGB channels 

independently, it introduces a new technique for image processing. The wavelet transform 

contains both colour and structural information, which makes it interesting to develop 

applications to find colour edges from the wavelet transform that contains multi-resolution details 

of the input image [2]. 

Figure 10: Illustration of the multi-stage quaternion wavelet transform of the colour image. 
The image on the left is the input 256x256 image; the one is the middle is a wavelet 
transform of the original image; the image on the right is the compressed image 
constructed based on the most top-left 64x64 pixels corner of the wavelet transform. 
(Image copyright O CorelGallery database by permission) 



6. QUATERNION SVDIPCA 

6.1 Quaternion Singular Value Decomposition 

The singular value decomposition is an importance technique in linear algebra. It plays an 

interesting, fundamental role in many different applications, for instance, in digital image 

processing. Based on the SVD technique, the Principle Components Analysis (PCA), also known 

as Karhunen-Lotwe expansion or Eigen-XY analysis, has found a number of applications in the 

fields of computer vision and pattern recognition. 

The singular value decomposition of a matrix factors an m x n matrix A into the form 

where U is an m x m orthogonal matrix; Van n x n orthogonal matrix, and C an m x n matrix 

containing the singular values of A with O1 2 6, 2 . . . 2 6, 2 0 along its main diagonal. 

The following section reviews the quaternion Principle Component Analysis based on Bihan 

and Pei's work[14] [21). The implementation of QPCA is based on QSVD, the quaternion 

singular value decomposition can be considered as a generalization of real or complex number 

singular value decomposition, and inherits similar properties. Many papers have proposed how to 

compute the eigen-values of a quaternion-valued matrix [7, 14,341. Every quaternion matrix can 

be decomposed into the multiplication of two matrices, Q and R, where Q is a unitary matrix and 

R is an upper triangular matrix [34]. Therefore, a quaternion matrix can be decomposed into its 

singular value form by converting it into complex matrix representation. Simple applications of 

QSVD have been demonstrated in colour image compression in [14] and [21]. 



However, as discussed in [34], only the right eigen-values and eigen-vectors of a quaternion- 

valued matrix are defined. So, in this thesis only the right side singular value decomposition is 

studied. Each quaternion matrix has an equivalent complex matrix. The relations (isomorphism: C 

<=> Q, where Q represents a quaternion number and C represents its complex equivalence) 

between the quaternion matrix and its equivalent complex matrix can be found in [14]. Therefore, 

the existing complex SVD algorithm can be applied to this equivalent complex matrix to obtain 

the eigenvectors and singular values of the corresponding quaternion matrix. 

Theorem: Existence of the SVD of a quaternion matrix [34] 

Let Q, be a n-by-n quaternion valued matrix with rank m, then there exist two unitary 

quaternion matrices U, and V, such that 

where A, = diag{& ,..., Am ) with 1 I rn I n . A's are real positive singular values of Qq . 

Unitary quaternion matrices Uq and Vq have the property that Uq .u: = Vq - V ,  = I ,  , SO the 

multiplication of quaternion matrices actually yields the real identity matrix I,. (ie. all imagery 

components of U, .u: and V, .v: are zero). We can re-write Equation(46) as 

r 0 

nxn 

( represents the Hermitian transpose operator, or conjugate-transposition operator) 

Definition: Equivalent complex matrix of a quaternion matrix 1341 

Each quaternion q = w + x - i + y - j + z k can be decomposed into a form as complex 

numbers, i.e. q = ( w  + x . i )  + ( y + z . i )  - j = a + be j , where a and b are two complex numbers. 



Suppose we have an nxn quaternion valued matrix Qq , with Qq = Ac + Bc - j , where A and B are 

nxn complex matrices, then the equivalent 2nx2n complex matrix Cc of Qq is 

Hence, the classical complex SVD algorithm can be applied to C, to generate the eigen-basis 

(eigenvectors) and corresponding singular values ranked in descending order (all singular values 

are real numbers). 

Theorem: The relations between the SVD of a quaternion matrix and the SVD of its 

equivalent complex matrix 1141. Let the SVD of a quaternion matrix and its equivalent 

complex matrix be Qq = Uq - A . V: and C, = U ,  . A . vCH, respectively, then 

1 )  A = rowo, (col,, ( A ) ) ,  and 

1 u: Ln uq = cola, (u,) + cola, (-rC2) . j 
2 p j u c = [ k l l  ] = [ : ] . t h e n  - 

x2n 2nx2n = col,, (A,  ) + cold (-Be . j 

row, ( M )  and col, ( M )  means the odd rows and odd columns of matrix M, respectively. 

Some of the most significant properties of the QSVD, when applied to colour images, are listed 

below by Sangwine [14]: 

Invariance to spatial rotation(als0 true in the case of greyscale images with SVD) 

Invariance to spatial shift (vectors in U and V are shifted by the same amount) 

Invariance to colour space rotation 



6.2 Comparison of QSVD and SVD 

Since we have both the standard SVD for real number and QSVD, it would be interesting if we 

can compare the performance of them applied to the same data. More specifically, the distribution 

of the singular values implies information distribution of the basis. Here, an experiment is 

demonstrated to compare the distribution of singular values for both methods. However, this 

experiment is only preliminary. More sophisticated experiments may be conducted in future 

work. 

The input data consists of 100 50-by-50 colour patterns randomly selected from the patterns 

database. For QSVD, each image is reshaped to form a 2500x1 quaternion-valued vector. With 

100 images, the input matrix for the QSVD algorithm is 2500x100 dimensional (note that each 

entry is a quaternion with 4 components). For the standard SVD, since each image has three 

channels, by reshaping each channel to a 2500x1 vector of real numbers, the three channels are 

appended to form a 7500x1 vector. With 100 images, the input matrix for standard SVD is then 

7500x100 dimensional. After decomposition, their ranked singular value distributions are 

illustrated in Figure 11. In order to better observe the distribution difference around the first 

several singular values, we take logarithm on both the x and y directions in the two plots . In this 

experiment, it has been shown in the plots that the first several singular values based on QPCA 

decrease faster than those based on standard PCA. This could be an advantage of QPCA over 

PCA because it implies that fewer basis vectors are needed to represent the whole data set in 

some applications such as image compression. However, in this experiment, the memory space 

required for each basis vector of the QPCA is 2500x4 real numbers, while the memory space for 

each basis of standard PCA is only 7500 real numbers. Therefore, in order for QPCA to do a 

better compression, the ratio of the bases required for the two methods has to be smaller than %. 

If we use the first 3 bases of QPCA and first 4 bases of standard PCA, QPCA can do a 2%-5% 

better compression than PCA with the same memory requirement. The measure of the 



compression is based on the total errors in all pixels between the reconstructed image and the 

original image. 

Figure 11: Plots of the singular value distributions of standard PCA(in red) and QPCA(in black). 
x-axis is the rank of each singular value. y-axis is the value. The x-axis and y-axis are the 
log-scaled such that the different between the first a few singular values are more obvious. 
That is, the singular values obtained by QPCA decreases faster than standard PCA. 

6.3 QSVD-Based Colour Image Compression 

Based on SVD of a colour image, many useful image processing methods by SVD can be 

extended to a colour images without separating the colour image into three channels. Here, we 

will introduce some useful colour image processing applications. The beauty of the SVD within 

its digital applications is that it provides a robust method of storing large images as smaller, more 

manageable ones. This is accomplished by reproducing the original image with each succeeding 

nonzero singular value. Furthermore, to reduce storage size even further, one may approximate a 

"good enough" image using even fewer singular values. If we use quaternion-valued matrix Q to 

represent a colour image, where each pixel is represented by a pure quaternion, then by QSVD, 

the image can be can decomposed as 



where U and Vcan be computed by the methods in the previous section. 

Eigen-Images : 

Similar to the SVD of a grey image, the SVD of a colour image Q can be decomposed into the 

summation of vector outer 

where ui and vi are the column vectors of matrix U and V, respectively. Suppose Li's are the 

diagonal terms of real matrix A(i.e. the singular value), and R is the rank of Q. Every product 

ui X V: generates an eigen-image. Hence, the colour image f can be considered as the linear 

combination of R colour eigen-images. Similar to the complex matrix, the preceding eigen- 

images represent the low-frequency components of the original image, and the later ones 

represent the high-frequency components. 

The singular values distribution in Figure 11 shows the same phenomenon as in the 

conventional complex case, that the singular values decay very fast. Hence, an approximate of a 

colour image can be obtained by summing the first k eigen-images: 

The real part of Qapp_ is small and will decrease to zero when K increases to R. In general, 

even small K can provide a good approximation of the original colour image. Consequently, the 

storage requirements for this colour image drop from 3xNxN to K(2*4N+1). (including K real 

singular values; 2K*N quaternion vectors). Figure 12 illustrates four estimated images based on 



QPCA. In Figure 12(a)-(c), the images are reconstructed with K=3, 16,50, 255(the perfect 

reconstruction). Usually, when the image has more high frequency components, greater K is 

necessary to have a good approximation. On the other hand, for images containing mostly low 

frequency signals, the performance of this reconstruction is good with small K. By comparing 

the two approximations in Figure 12(c) and (d), it is clear that a "good enough" representation 

may be found with far fewer singular values. This substantially reduces the amount of 

information necessary to store the exact image. This is a real life example of the power and 

Figure 12: QPCA based image compression. 
(a) -(d) are the reconstructed images with k=3,16,50,255. Note that (d) is the perfect 
reconstruction of the original image (Image copyright 63 CorelGallery) 

efficiency of the singular value decomposition. Let us look at the numbers involved. Because the 

original image before the SVD was 255x255, it requires 255x255~3=195075 entries for storage. 



The image produced by the first 16 singular values requires only 16*255*4 entries; the image 

with the first 50 requires 50*255*4. This drastically reduces the information necessary-to 8.4% 

and 26% of the original image, respectively. 

6.4 QPCA-Based Colour Texture Segmentation 

6.4.1 Introduction 

In the computer vision and image processing literature, a wide variety of approaches to extract 

texture features from image neighbourhoods have been proposed to characterize texture patterns. 

A texture feature extraction method is a process applied to every pixel of a given image to 

generate a feature presentation within the texture pattern to which that pixel and its neighbours 

belong. The performance of different topologies of texture methods depends on the type of 

operations required, the neighbouring pixels involved, and the texture content. 

Due to the large amount of texture features, one of the most difficult problems is how to select 

an appropriate set of texture features that represent the most significant characteristics of the 

patterns for classification. Therefore, finding a feature vector that has the greatest discrimination 

power has been a widely researched topic in the field of pattern analysis and texture 

classification. For colour imagery, Hoang et. a1.[12] have shown that using colour and texture in 

combination results in better discrimination than using the colour and texture features separately. 

The extracted feature that combines both colour and texture information has attracted the most 

interest recently. 

In this chapter, we propose a colour texture segmentation method that makes possible 

encoding the structural and colour feature as a whole unit by using the quaternion represented 

colour. Quaternion colour provides a new way to treat colour and texture in combination. Here 

we use quaternion principal component analysis (QPCA) with colours encoded as quaternions to 



calculate a basis for colour texture, and obtain good experimental results in classifying colour 

textures in real images. 

The quaternion colour texture analysis we propose proceeds in several stages. In the first 

stage (feature extraction stage) of classification, the feature vector is generated by reducing the 

dimensionality of the raw feature, which consists of the colours of all neighbouring pixels around 

the centre pixel to be processed, using quatemion Principle Component Analysis (QPCA). The 

feature vector that represents a texture patch can have high dimensions, resulting in high 

computational cost. The purpose to use PCA is that it can reduce the dimensionality of the feature 

vector such that the classification can be done in an efficient and effective manner, by projecting 

the feature vector onto the most important basis. For colour textures, by the means of QPCA, 

such dimensionality reduction can be done without separating the RGB layers. Instead, each RGB 

triple is treated as a single unit represented by a quaternion. This extracted feature from a colour 

texture patch then contains both texture and colour information. In the second stage (texture 

segmentation stage), the features extracted in the previous stage are used to segment the image 

into regions of pixels that have similar colour texture patterns. It can be shown that the features 

generated by using our method can be used for multi-level segmentation by selecting a certain 

threshold. 

6.4.2 Methodology 

In this section, we propose the algorithm for the estimation of colour texture for segmentation. A 

segmentation algorithm is used to illustrate the performance of the proposed feature estimation. 

Given an MxN colour image, we can construct a quaternion matrix Q that contains in each 

column a quatemion vector composed of spatial neighbours of size W of each pixel. Thus the 

size of Q is (W ) X (MN) . This matrix, on which we can apply the analysis, can be interpreted 

as containing in each column a representation of random variables in a colour image. For a 256 



by 256 colour image, with window size 15 by15, the number of feature vectors is 65536, and the 

size of each original (un-reduced) feature vector is 225. Since each element is represented by a 4- 

dimensional quaternion, the total dimension of the input is 255x65536~4, which is apparently 

infeasible for the QSVD algorithm and is the reason we need to down-sample the input image as 

a training set for the training stage above. 

Feature Extraction 

The first stage is to extract an orthogonal basis for the colour textures in an image. This basis is 

calculated by sampling n-by-n sub-windows from the image and expressing the contents of each 

sub-window as a vector of quaternions of length n2 and arranging these vectors as the columns of 

a matrix. QPCA applied to this matrix yields an orthogonal basis for the contents of the sub- 

windows ordered in terms of the variance accounted for by each basis vector. As with standard 

PCA, the dimensionality of the feature space can then be reduced by selecting just the first few 

bases that account for the majority of the variance. These basis vectors are vectors of quaternions. 

The contents of any image window can then be approximated concisely by projecting them onto 

the reduced basis. The projection can then be used as the color texture feature of the window. 

Due to the computational cost, we first train our classifier on a relatively small amount of 

variables from the input image. Suppose the appropriate size of the texture feature evaluation 

window that is large enough to cover significant features of a kind of texture is W, we subdivide 

the input image into a number of blocks whose size is WxW. These blocks are used to construct 

the training dataT, , a quaternion matrix, with each column representing a single texture that is 

reshaped to a quaternion vector v, of size W ', the so-called feature vector. By applying the 

QSVD algorithm, T, is then decomposed into a product of eigenvectors and singular values in 

decreasing magnitude as in Equation(47). Each column of eigenvectors U, represents a basis 

function of the transformation. To reduce the size of feature vector down to K with K I w 2 ,  we 



first  obtain^: by cropping Uq to the first K vectors, and multiply it to the training matrixT, . h 

this experiment, we choose K=l (ie. the first basis only). Therefore, a quaternion feature 

vector v of size W is reduced down to size 1, a single quaternion number(Note that a quaternion 

has 4 dimensions. A quaternion vector v of size n has 4n dimensions). The whole training set Tq 

is reduced to T' , where T = U . Tq . Generally, a large K allows a more accurate feature 

measure as v f  contains more features. However, a small K value makes the measurement more 

stable, since with large K noise and non-regular textures may cause "outlier" feature elements 

which often cause problems in classification steps. In other words, a less reduced feature vector 

may contain too much information. On the other hand, with a small K, the reduced feature vector 

is smaller and leads to more efficient performance. 

Clustering and Classification 

The second stage of the quaternion colour texture analysis is texture clustering. The features 

obtained for each sub-window are used to cluster the image textures into groups. While the 

texture features could be a vector of quaternions, in practice it turned out that the best texture 

feature was the projection onto only the first QPCA basis vector. As a result, each texture is 

simply represented by a quaternion. The k-means algorithm was used for clustering based on the 

4 components of the quaternion describing each window. K-means generates k centroids 

describing the mean features of k texture clusters. Each image pixel is then classified according to 

its texture by comparing the quaternion resulting from a window centred on it to the k centroids to 

find which it is closest to. 

Suppose T is the reduced feature vector matrix with K equal to 1, the classification 

algorithm is based on clustering the textures in the training set using their associated reduced 



feature vectors T; . These 4 dimensional feature vectors (each column of T: ) are fed into the 

clustering algorithm as input. The k-means algorithm is chosen as the clustering method, and is 

applied to the feature space to generate the initial clusters (they will be merged later), with large 

k. The output of the k-means clustering is k centroids describing the mean features of the texture 

clusters. 

Now we can classify every pixel of the input image based on the set of centroids of the 

clusters derived from the training step. So, for each pixel in the image, we take a WxW window 

centered at this pixel as an input variable. We reshape each window to a vector and project it onto 

the basis U: to reduce this feature vector to v: . Each feature vector is averaged with the 

neighbouring feature vectors to suppress the variation in the local color-texture region. Then we 

identify the cluster to which v'y is closest based on the Euclidean distance to all centroids. This 

texture cluster is hence the class that the pixel belongs to. 

Texture Segmentation 

The final stage is texture segmentation. The initial k-means clustering uses a large k. After 

clustering, regions are segmented based on their texture by iteratively merging statistically similar 

regions. 

Remember we use the k-means clustering with a large number k. After clustering, a merging 

method is required to combine statistically similar adjacent regions to achieve the expected 

number of clusters. At each iteration, the two most similar clusters are merged according to the 

region similarity measure in [ 161: 



where pi and pj are the mean vectors(centroids), and@, , @, are the covariance matrices derived 

from the feature vectors of regions Ri , R, . Smaller Si,, implies greater similarity between two 

clusters. Hence, at each iteration, the two regions with the smallest Si,, are merged until the 

threshold is reached. Finally, due to the fact that the sample window may cover more than one 

region, a post-processing step is necessary to remove these cross-boundary regions. If in a small 

neighbourhood around a pixel includes 3 or more different texture labels then the pixel in the 

middle is assigned to the nearest of the other two regions. 

6.4.3 Experiments 

The results of segmentation using the QPCA based feature extraction method are shown below. 

In Figure 13(a), the input image is composed by five colour textures with different colour or 

patterns. The top-left and bottom-left subimages are chosen to have similar colour and texture but 

different orientations, while the left top and right top subimages have exactly the same pattern but 

different colour. Our method successfully discriminates the five regions. By selecting different 

thresholds(loosen the threshold), more regions are merged. Firstly, the top-left and bottom-left 

textures are merged due to the similarity of colour and pattern. Then the shadow areas in the 

bottom- right subimage can be removed. For comparison, the segmentation done based on 

intensity only does not distinguish the colour difference between the top-left and top-right 

subimages. On the other hand, the segmentation on colour only can not discriminate the left two 

textures either. Further more, our result has been compared with the results in [Hoang] to 

illustrate the natural flexibility of this our feature extraction measure against illumination and 

shadows. More segmentation examples can be seen in Figure 14. 



Figure 13: Texture segmentation results (colour images reproduced here in grayscale) 
(a) synthetic input image with brown regions on the top left and bottom left, a blue region 
in the top right, a pale green region in the bottom right and a grayish circular region in 
the center [25]( Image copyright O J. M. Geusebroek by permission). (b) Segmentation 
result for (a) showing that the QPCA method successfully separates the top left and top 
right regions which differ in colour but have similar (although rotated) grayscale 
structure, and simultaneously separates the top-left and bottom-left regions which differ 
in grayscale structure but have similar colour. The shadow in the lower right region is 
identified. The result in (b) is similar to that in [25] (page 272, figure 3(d)) without shadow 
invariance. (c) Result on a natural image (from the Core1 database) in which regions of 
yellow flowers (lower section), red flowers (middle), a gray barn roof, green grassltrees, 
and blue sky are each segmented. (Parameters used were: image size 192x128, window 
size 17, abutting windows, d=l, initial k-means clusters 15, similarity threshold 5.0, 
Gaussian smoothing 0 4 )  (Images copyright O CorelGallery database by permission) 



Figure 14: Result of the QPCA based texture segmentation method applied to natural images. 
In (d) and (f), regions of similar pattern but different colour are distinguished. In (e), 
areas of similar colour but different textures are segmented. (Images copyright O 
CorelGallery database by permission) 



7. DISCUSSION AND CONCLUSION 

Quaternions have been applied in a new way as a means of representing pixel values in a colour 

image [25,26,28]. When colour images are processed, instead of individually manipulating the 

three real numbers representing the RGB values of the pixel, the triple is considered as a whole 

entity and processed as a pure quaternion number. As a generalization of the image analysis 

techniques on grey images, different quaternion-based analysis have been studied in this thesis 

based on the corresponding mathematical theories. 

7.1 Colour Image Analysis 

Several colour image analysis techniques have been introduced by Sangwine and Pei [19,20,25, 

26,281 based on the quaternion arithmetic, such as the colour sensitive low pass filtering, colour 

edge detection. When an image is filtered with a quaternion-valued mask, dot product and cross 

product between two corresponding pixels are taken as the measure. The colour edge detection is 

based on the chromaticity cancellation by rotating colours by 180 degree angle to cancel with the 

un-rotated colours. Based on Sanwine and Pei's methods, I proposed the adaptive colour image 

smoothing filter, colour edge detection filter and the trilateral filter, The trilateral filtering, 

inspired by the bilateral filtering for grey-scale image, defines a quaternion-values mask whose 

shape and colour changes adaptively depending on the local pixels. The trilateral filter is 

designed to smooth the colour only on the direction parallel to the central pixel, given the 

neighbouring pixels similar to the central pixel, yet persevering edges. BQMP thresholding 

technique has been used to cluster a subwindow in an image into two colour representatives, such 

that the edges between the two regions are enhanced(Suppose the total number of segments in an 

image is greater than two). 



7.2 Fourier Analysis 

In Chapter Four we discussed the quaternion Fourier transform and its applications. Similar to 

grey images, quaternion-valued images can also be transformed into the Fourier domain and can 

be represented as quaternion frequency signals, based on which different image processing 

techniques such as filtering can be performed efficiently on the three colour channels. Three types 

of Fourier transforms were studied - Left-Side QFT, Right-side QFT and Two-sides QFT. Also, 

for each type of QFT, a Fourier axis needs to be specified in order to perform the QFT algorithm 

by decomposition. Therefore, for a given colour image, it will have different Fourier transforms 

according to the type of QFT and the Fourier axis we choose. Filtering in quaternion frequency 

domain has the advantage that the colour triples are processed as a whole unit rather than dealing 

with RGB channels separately. We believe more accurate colour information can be persevered 

this way, since all colour channels are processed as a single unit. 

Based on the efficient implementation QFT, it is possible to implement quaternion 

convolution and cross-correlation in the frequency domain. Pattern matching is an important 

technique in digital image processing. Correlation based solutions predominantly use a cross 

correlation to find the potential locations of the template. As an extension of cross-correlation on 

grey-scale images, quaternion based cross-correlation can be done spatially and it also can be 

done more efficiently in quaternion Fourier domain. The successful template matching 

experiments to match colour letters based on quaternion cross-correlation have been shown in this 

chapter. The experiment result shows all the candidate position of the template in a given image. 

The matching process encodes the structural and colour information as a unit while measuring the 

similarity between the template and each individual region in the test image. Additionally, the 

quaternion filters we have defined in Chapter Two can be transformed into Fourier domain and 

convolution may be efficiently done there. The quaternion Fourier transform and cross- 

correlation have proven useful tools for many colour image processing applications. 



7.3 Quaternion Principle Component Analysis 

QSVD based QPCA has been studied in Chapter Six as an extension of the standard PCA 

technique in quaternion space. By comparing the distribution of singular values of the standard 

PCA and QPCA, the advantage of QPCA has been shown in image compression. Moreover, 

QPCA generates a set of basis vectors where each basis vector is quaternion-valued. Feature 

vectors extracted based on the most representative basis vectors can be used for texture 

segmentation and image indexing, as they encode both structural and colour information. I 

believe that the advantage of using quaternion representation of colour image in texture analysis 

is that each colour is processed as a unit. In quaternion multiplications, each component of a 

quaternion interacts with others, and each component of the product of two quaternions can be 

considered as the weighted sum of all components. Moreover, every element of the feature vector 

is related to all colour channels (every element of the feature vector is the combination of 

contribution from all 4 layers), as opposite to processing RGB colour channels independently. 

Therefore, the feature vector by QPCA is better and more representative for colour texture 

patterns. 

In conclusion, the quaternion number, as a 4D generalization of the complex number, 

demonstrates its power in different approaches of colour image processing. In general, most 

image analysis techniques on real or complex numbers can also be extended to quaternions, such 

as image filtering, Fourier transform and principle component analysis. The value of quaternions 

representation of colour information is significant as its ability to integrate colour and structure 

characteristics as an entity. In this thesis, I have tried to show the importance of quaternions 

concepts as a means to process colour images, which indicates the use of quaternions is non- 

trivial. Moreover, a large number of theories and applications of quaternions are potentially 

waiting to be discovered and applied. 



MY CONTRIBUTIONS 

In Chapter Two 

Design of adaptive colour sensitive smoothing filter, based on Sangwine's colour 
sensitive smoothing filter that smooth image with respect to a certain colour. 

Design of adaptive colour edge detection filter, based on Sangwine's colour edge 
detection filter that detects a certain colour edges. 

Proposal of the trilateral filter, based on the bilateral filter and adaptive colour 
sensitive smoothing filter in combination. 

In Chapter Three 

Design of the algorithm for BQMP based Image sharpening. 

In Chapter Four 

Experiment on quaternion cross-correlation for template matching in both spatial and 
frequency domain, based on QFT. 

In Chapter Five 

Experiment on quaternion wavelet for image compression. 

In Chapter Six 

Design of QPCA-based colour texture segmentation. 
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