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ABSTRACT 

Colour constancy algorithms differ in their derivation, implementation, 

performance and assumptions. The focus of the research presented in this thesis 

is to discover colour constancy solutions to recover surface colours, or 

equivalently, to estimate the illumination, of single light source in a given scene.  

Several colour constancy models will be proposed. These methods have 

different methodologies and constraints. For example, a method can be 

constrained on a particular model surface material, on blackbody radiation light 

source, on dichromatic model, and on spatial variation of the illumination and the 

reflectance. The methods to be discussed include, for instance, a method of 

identifying achromatic surfaces, which can then be used as known references for 

estimating the scene illumination. A second method examines the colour of 

human skin and its dependence on its hemoglobin content, melanin content, and 

the illuminating light. The corresponding basis of these three factors can be 

represented linearly in logarithm space, where the colour of the light can then be 

estimated. A third method, uses the fact that the colours reflected by an 

inhomogeneous dielectric material lie on a plane spanned by the colour of the 

specular component reflected from the air-surface interface and the colour 

reflected from the body of the material. Once these planes are detected by a 

Hough transform, their intersection line represents the scene illumination. A 

fourth method is based on the independence and difference in the rate of spatial 
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variation of the luminance and the surface reflectance in a given scene, from 

which image features can be separated via non-negative matrix factorization to 

reveal the true surface reflectance. A fifth method is based on learning the 

correspondence between an image’s colour content and its illumination via thin-

plate-spline interpolation so that the chromaticity of the light can be calculated. 

Finally, a quaternion-based curvature measure approach is developed that can 

be used as a complement to colour constancy methods that use information from 

spatial edges.  In this thesis, these various methods are proposed to overcome 

drawbacks in existing approaches for better performance and improved 

robustness and efficiency.  

Keywords:   Colour Constancy, Illumination Estimation, Dichromatic Model, 
Curvature  
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1: INTRODUCTION 

Colour is an important, efficient and useful feature of images that has 

been widely utilized in the computer vision community for machine vision and 

image processing applications, such as segmentation, object recognition and 

object tracking. Although colour is often used together with other image features 

in these tasks, accurate reproduction of the surface colour is critical. 

The response of a colour imaging acquisition device to lights depends on 

three factors: the underlying physical properties of the objects, the nature of the 

illumination incident on the objects, and the characteristics of the sensors of the 

imaging system itself. Problems arise when capturing the same scene under 

changing illuminant conditions. For example, images appear to be reddish if a 

scene is captured under tungsten illumination or a bluish if captured under 

fluorescent lighting.    As a consequence, one must recover surface colour and 

reduce colour variation that appears in different views of the same scene in order 

to extract accurate information from images. Such a process is identified with the 

classical term, colour constancy.  

The focus of the research presented in this thesis is to discover colour 

constancy solutions for recovering surface colours, or equivalently, to estimate 

the colour of the light. The colour constancy algorithms to be studied differ in 

derivation, implementation, performance and assumptions. In Chapter 1, 

background material is given on the basics of colour vision, colour formation and 
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characteristics of common light sources. In the first part of Chapter 2, some 

common existing colour constancy methods will be reviewed. These approaches 

involve separating the illumination from the reflectance and extracting the 

accurate colour of the objects. In the second half of Chapter 2, a list of the topics 

of my research will be briefly introduced, including five novel colour constancy 

models for illumination estimation under a single light source. Detailed discussion 

of these models, their implementation and performance will be covered in 

Chapters 3 to Chapter 6. In Chapter 7, a quaternion-based vessel detection 

method for colour images is provided as a potential aid for colour constancy 

models that use information from spatial edges. 

1.1 Vision Basics 

Colour perception is described as a sensation created in response to 

excitation of our visual system by the visible region of the electromagnetic 

spectrum. James Clerk Maxwell showed that light is essentially a form of 

electromagnetic radiation that contains radio waves, visible light, and X-rays. All 

of these types of radiation can be represented as a spectrum of radiation; the 

electromagnetic radiation that includes radio waves at one end and gamma rays 

at the other.  The visible radiation wavelength range differs across species. For 

humans, the visible spectrum wavelength occupies the portion of the 

electromagnetic spectrum, ranging from approximately 400 nm to 700 nm.  

As the important components of human visual system, eyes detect light by 

photoreceptors in the retina that convert it into electrical signals for the brain to 

process. The retina is an important component of the visual system, where two 



 3 

kinds of photoreceptor cells--- cones and rods--- can be found. Having three 

types of cones, namely, L, M and S, each mostly sensitive to a certain portion of 

the spectrum, we are able to distinguish a great variety of colours. These cones 

are the most sensitive at wavelengths of 580nm (red), 540nm (green), and 

480nm (blue) respectively, but are not activate in a dim environment. The rods 

are, on the other hand, responsible for dark-adapted vision. As mentioned 

before, a colour signal received by the eye depends on three factors: the light 

source that initiates the sensory process of vision; the object that absorbs and 

reflects the light source at the selected wavelengths determined by physical and 

chemical properties; and the human photoreceptors. This implies colour from the 

same objects or scenes may differ due only to illuminant changes. Since the 

intensity and spectral characteristics of natural or artificial lights can make 

significant changes, the colour from a surface with a fixed reflectance may vary 

substantially from one lighting condition to another. Interestingly, this is not true 

for our colour perception. For example, a red apple under different lighting 

conditions (sunlight, the light of a fire, or a harsh electric light) still appears red to 

us, in spite of the fact that the physical spectra are quite different.  

The definition by Foster et al. [28] states that “Colour constancy is the 

constancy of the perceived colours of surfaces under changes in the intensity 

and spectral composition of the illumination.” Also, according to Wandell [58], the 

colour signal is the light arriving at the eye, which is the product of the spectral 

power distribution of the ambient light and the surface reflectance function. 

Theories have been proposed to understand how reflectance information is 
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extracted from colour signals. These theories are sometimes referred as 

“discounting the illuminant” because it separates the contribution of the 

reflectance from that of the illuminant in colour signals. A perfect colour 

constancy algorithm should accurately recover object reflectance under arbitrary 

lighting conditions by completely de-correlating illumination from surface 

reflection characteristics, and therefore be invariant to changes in the surface’s 

location, composition and lighting. However, no colour constancy algorithm is 

likely to be able to perfectly recover object reflectance due to the fact that the 

problem to solve is ill-posed.  Nevertheless, efforts have been made in solving 

colour constancy problems through developing colour constancy models and 

corresponding algorithms that will be discussed in the following chapters. 

1.2 Colour Signals  

The colour signal defines all information received by the eye to understand 

reflectance at different surface locations[58]. The ultimate stage of the imaging 

system is to build a mathematical model embodying the predominant phenomena 

occurring in the formation of colour images. Therefore, all of the light source, the 

object, and the optical system should be quantified. In an imaging system, the 

light source is represented by its spectral power distribution E(λ); a surface by its 

percent surface spectral reflectance function S(λ); and the optical system by the 

spectral sensitivity function Γ(λ) of each sensor. Usually, an optical system 

contains more than one sensor class. The human retina, for example, has three 

types of sensors, known as cones, which are sensitive to light of different 

wavelengths across the visual spectrum represented as different spectral 
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response curves. For this reason, a common imagining system contains three 

sensors, and thereby a colour is specified by a 3-component signal.  

A colour signal, c, is generated as a consequence of the interaction 

between the light and a surface. More specifically, the colour signal is the product 

of spectral power distribution of the light source and the reflectance of the 

surface,  

                                  c(λ) = E(λ)* S(λ). 
1.1 

 

In the second process, the colour signal reflected from object surface is 

captured by the sensors as an integration over all wavelengths across the visible 

spectrum. In a k-sensor imaging system, the colour signal is then represented as 

k-dimensional sensor response, as a result of the summation of the product of 

colour signal and sensors’ response curves at each wavelength, as shown in 

Equation 1.2.  

BGRkdSEp kk ,,)()()( =Γ= ∫ λλλλ
 

1.2 

 

Here pk stands for the camera sensor response. The vector p = <pG, pG, 

pB> is called the image colour. When E(λ) = 1, p represents the surface colour. 

When S(λ) = 1, p represents the illumination colour. These terms will be widely 

used throughout this thesis. When narrowband sensors are used, (i.e., sensor 

sensitivity function, )(λkΓ , is approximately a Dirac delta function centred at 
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wavelength kλ ), Equation 1.2 can be simplified by eliminating the sensor 

sensitivity function and the integral, such that  

},,{)()( BGRkESP kkk =≈ λλ  1.3 

 

In this model, the geometry of the object surface creates merely a scale 

factor in the function E since the surface is assumed to be Lambertian.  Such a 

factor can be removed by normalization of this function. This model is correct 

unless severe specular reflection occurs. This model will be widely used 

throughout this thesis.  

Previously, Finlayson and Schaefer [24] measured spectra of 172 light 

sources, including daylights and fluorescents. They reported that the illuminant 

chromaticities approximately fall on a long thin band that is clustered around the 

locus of chromaticities formed by in the chromaticity plane by a Planckian 

Blackbody radiator of varying temperature. The chromaticities of general purpose 

light sources (e.g., daylight and fluorescent light) have a small deviation from the 

Blackbody radiator of corresponding correlated colour temperature(CCT). A light 

source with a high CCT gives the material a bluish appearance (e.g., skylight) 

whereas a low CCT gives a reddish appearance (e.g., during sunset).  The 

Planckian spectrum power distribution (SPD) is a smooth function that provides a 

good approximation for tungsten/halogen lamps and sunrise/sunset lighting (Hunt 

1987). This fact suggests that commonly used light sources can be 

approximately modelled as blackbody radiators. This assumption is particularly 
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useful as illumination then becomes a function of a single scalar, i.e., 

temperature T. The Wien’s approximation to the Planckian formula can be 

expressed as 

λλλ T

c

eIcTE
2

5
1),(

−−= , 
1.4 

where I is the power of radiation of the illumination, T is the blackbody radiator 

temperature, and c1 and c2  are two constant of value 3.74183*10-16Wm2 and 

1.4388*10-2mK, respectively. Based on Equation 1.2 and Equation 1.4, pixel 

intensity P from a sensor i of diffuse reflectance S as imaged by a linear digital 

colour camera (excluding any subsequent gamma correction) can be described 

[23] by,  

},,{,)()(
2

5
1 BGRkeIcSP k

T

c

k =∂Γ= ∫
−− λλλλ λ

 
1.5 

For the case of narrowband sensors, we have  

},,{,)(
2

5
1 BGRkeIcSP kT

c

kkk =≈
−

− λλλ  
1.6 

 In the rest of this thesis, we will see that Equation 1.3 and Equation 1.6 

will be extensively used since they serve as the foundation to many colour 

constancy models in very simple forms, as they were used by Finlayson  [23][25]. 
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It should be noted that the assumption that the sensors’ spectral sensitivity 

functions are very narrowband, being represented by delta functions, means that 

if the assumption were to hold then there would be significant observer 

metamerism between such cameras and human observers. In other words, the 

“colour vision” of such cameras would be very special, deviating enormously from 

human colour vision.  However, in Finlayson’s methods [23][25] and in those 

introduced here, the narrowbandedness assumption is used only for the 

derivation of the methods--- the methods are then tested using standard, 

commercially available cameras whose spectral sensitivities deviate substantially 

from narrowbandedness.  

The rest of this thesis is organized as follows. First of all, the basics of 

colour vision, colour formation and characteristics of common light sources are 

reviewed. Then, the most common existing colour constancy methods will be 

revisited. A list of the research topics that will be studied in the rest of thesis is 

made, including five novel colour constancy models for illumination estimation. 

These models, their implementation and performance will be covered in detail. 

Finally, a quaternion-based vessel detection method in colour images is provided 

as a potential aid for colour constancy models that use information from spatial 

edges. 
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2: COLOUR CONSTANCY MODELS 

The process of solving colour constancy can be defined as the 

transformation from a source image taken under an unknown illuminant to a 

target image of the same scene as if it would have been obtained by the same 

camera under a known illuminant. The complete procedure involves two steps. 

The first step estimates the scene illumination of the source image. Based on this 

estimate the second step corrects the image colours pixel-by-pixel to the colours 

under the known illuminant. The focus of this thesis is on the first step of such 

colour constancy process.  

Many assumptions have been incorporated into the various colour 

constancy algorithms because colour constancy is generally known to be an ill-

posed problem due to the fact that the surface colour and illumination colour are 

not uniquely separable. According to their assumptions and techniques, colour 

constancy algorithms are mainly divided into two categories. The first is to 

recover object surfaces in canonical condition. In this category, the object image 

can be viewed as a result of objects under a certain canonical condition, normally 

the “white” illumination having equal energy at all wavelengths. Colour constancy 

solutions in this category recover the original object image from a given colour 

image under unknown illumination, removing illumination effects. The second 

category is to estimate the illumination colour based on the colour distribution in 
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the scene. Here illumination values are estimated, either as 2 chromaticity (e.g., 

r,g) or 3 colour values (e.g., R,G,B).  

On the other hand, these algorithms may be divided into two groups 

based on whether prior statistical information is important: unsupervised and 

supervised. Unsupervised algorithms predict the illumination information solely 

based on the content in a single image with certain assumptions about the 

general nature of colour images; while supervised ones always require two 

stages: (1) learn training data by building a statistical model associating the input 

images to the corresponding illuminations, (2) predict the unknown illumination of 

any given image based on this statistical model.   

In the first half of this chapter, a survey of a number of the most common 

colour constancy algorithms will be provided. The second half of this chapter 

briefly introduces the proposed algorithms in this thesis. 

2.1 Unsupervised Illumination Estimation 

In this section, five illumination estimation algorithms requiring no training 

will be reviewed, namely, Retinex, Max-RGB, Gray-World, Shades-of-Gray, and 

the Gray-Edge-Hypothesis. The last four approaches are similar in a way by 

making the assumption that the content of the image has a certain colour. Max-

RGB and Gray-World are the simplest, yet perhaps the most widely used. 

Shades-of-Gray unifies and generalizes the former two, to improve the result, 

while the Gray-Edge-Hypothesis is considered as a more advanced approach by 

emphasizing pixels close to spatial edges.  
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2.1.1 Retinex 

Retinex, as one of the best known colour constancy algorithms, originated 

from Land’s research work on human vision [51]. This method received its name 

“Retinex” from “retinal” and “cortex”, as Land believed that such mechanism is 

due to interaction between both components. Land discussed the fact that colour 

appearance depends on the relative absorption of light by the visual cones and 

its spatial pattern on the eye, rather than the absolute values of photo-pigment 

absorption. As a consequence, colour vision is illumination-independent at 

various locations, but dependent on the path followed by which the light reaches 

the eye.  

The basic idea of Retinex is to separate the illumination from the 

reflectance in colour channel, Ik (k = R,G,B), independently. Using sharp sensors, 

according to Equation 1.3, the intensity value at location (x,y) can be represented 

as a product of illumination and reflectance:  

, ,k k kI E S k R G B= ⋅ =  2.1 

 

Here, Ek and Sk are illumination and reflectance values in the k-th colour 

channel at location (x,y). For simplicity, the Retinex computation is implemented 

in the logarithm domain where multiplicative operations become additive. Retinex 

also assumes spatially smooth in the illumination field (i.e., the illumination 

changes smoothly across the scene), while the reflectance image corresponds to 

abrupt intensity changes in the image.  
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Many variants of Retinex have been proposed. Stockham [81] and 

Faugeeras [21] separated illumination from surface reflectance by applying a 

homomorphic filter on the input image for low- and high-pass results in the 

logarithmic domain. Horn [43] formalized Retinex in terms of differentiation, 

thresholding, and re-integration in the logarithm domain. Multi-resolution versions 

of Retinex were introduced for efficiency [30]. Kimmel [47] proposed a variational 

model for the Retinex problem. This model unifies previous Retinex solutions by 

formulating the illumination problem as a Quadratic Programming problem. Two 

versions of Retinex have been given standardized definitions in terms of Matlab 

code [33]. Parameters, such as path length, number of paths, and how a path is 

calculated, are very important in ‘Retinex.’ A discussion about their tuning can be 

found in [32][33][51]. 

2.1.2 Max-RGB 

The Max-RGB algorithm, also referred as the White-Patch hypothesis, 

assumes that the maximal signal values in each colour channel, assumed to be 

the responses from a white surface, represent the scene illumination [22]:  

)),((max
,

yxIE k
yx

k Ω∈
=  2.2 

 

The Max-RGB solution can be viewed as a special limiting case of 

Retinex. Obviously, this method requires a scene that contains either a single 

surface that is maximally reflective throughout the range of the sensitivity of the 

imaging device (i.e., a white surface) or a number of surfaces that are maximally 
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reflective throughout the range of each of the three imaging sensors individually 

[40]. 

In spite of its simplicity, Max-RGB usually does not provide a satisfactory 

estimate for a real world scene due to violation of the assumptions and the 

limitation of the devices such as overflow duration signal acquisition [26].   

2.1.3 Gray-World 

The Gray-World algorithm assumes that the average colour of surfaces in 

the world is gray.  Given an image with sufficient surface colour variance, or with 

a uniformly gray surface, the average colour of all surfaces tends to be gray. The 

offset from the gray is then due to the effect of lighting. Therefore, the average 

values in each band of the image are taken as the estimate of the illumination 

colour [9]. If we average Equation 1.3 at every pixel location, then 

)()()( λλλ kkk SEc =  2.3 

 

Since the average reflectance is gray, the )(λkS = ζ/1  , which is a 

constant number at all wavelengths λ. Hence, )()( λλζ kk Ec =⋅ , or  

NyxIE
yx kk /),(

,∑∑=  2.4 

 

As the surface colour is random and independent, it is reasonable to say 

that given a sufficiently large number of samples, the average surface colour 

should converge to gray. Therefore, if an image is taken with a camera under 
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yellow lighting, the output image can be expected to have a yellow cast over the 

entire scene. The effect of this yellow cast disturbs the Gray-World average on 

the original image and produces a shift from gray. By enforcing the assumption 

on the camera output image, the yellow cast may be removed to reveal better the 

actual colours of the surfaces. 

2.1.4 Shades-of-Gray 

The Max-RGB and Gray-World algorithms work well only if their 

assumptions are satisfied, that is, the existence of a white patch in the scene and 

the average surface colour in the scene is gray, respectively. Another approach 

named Shades-of Gray has been proposed by Finlayson et al. [26] as a more 

generalized approach for illumination estimation using the Minkowski norm. His 

assumption is that average surface colour in a scene tends to be gray after a 

nonlinear invertible transformation (p-norm function is selected here) of the pixels 

in each channel.  

Without loss of generality, consider a single channel Ik of an N-pixel multi-

channel image. According to Finlayson’s approach, the average colour of the 

scene raised to a power of p tends to be gray so the illumination intensity of the 

kth-channel can be estimated as the following: 

p

p

yx k

k N

yxI
E /1 ,

]),([∑∑
=  2.5 
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Here Ek is the estimated illumination of the kth colour channel. This 

equation is in the form of Minkowski p-norm definition. We can use a similar 

method to find the illumination estimation for other colour channels as well. 

Max-RGB and Gray-World algorithms are two special cases of Shades-of-

Gray. By setting p = ∞ in the Minkowski norm, Equation 2.5 turns into Equation 

2.2 of the Max-RGB approach. On the other hand, by setting p = 1 in the 

Minkowski norm, Equation 2.5 turns into Equation 2.4 of the Gray-World 

approach.  

2.1.5 Gray-Edge-Hypothesis  

The Gray-Edge Hypothesis proposed by J. Weijer and Th. Gevers [89] 

assumes that “the average reflectance difference in a scene is achromatic”. 

Therefore, given that pixel value at location (x,y) of the k-th colour channel is 

Ik(x,y), the illumination intensity at channel Ik can be estimated by 

NyxIE
yx kk /),(

,∑∑ ∇= , 2.6 

 

with the magnitude of derivatives defined as 
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Weijer justified his hypothesis in Opponent Colour Space (OCS), where 

the three axes correspond to the three principle axes extracted from all possible 
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RGB colours in the world via PCA. For a tri-band RGB colour image, the colour 

derivatives can be transformed into Opponent Colour Space by 
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Under canonical illumination, the longest axis from the colour derivative 

value distribution should coincide with OC3 . The solution of Gray-Edge 

hypothesis can be interpreted as skewing the colour derivatives distribution such 

that the average output corresponds to the white light direction in the Opponent 

Colour Space. So the average value of all the colour derivative values from the 

whole image gives the illumination colour. Additionally, this method can also be 

extended by incorporating it into the p-th Minkowski norm, just as Shades-of-

Gray colour constancy does for the Gray-World algorithm, with improved results 

[88][89]. 

2.2 Supervised Illumination Estimation 

In this category of colour constancy methods, the scene illumination is 

estimated by learning training data sets according to statistical models built on 

the input images paired with known illuminations. Three supervised illumination 

estimation methods will be reviewed in this section: Neural Network, Colour-by-

Correlation, and Support Vector Regression. 
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2.2.1 Neural Network (NN) 

In this method, a multi-layer neural network was established to learn the 

relationship between illumination chromaticity and colour distribution in the 

image, and then to predict the unknown illumination from an image [31][10]. The 

training input is a binary histogram of image chromaticities. The (r,b) space is 

divided into cells 0.02 units wide so that it includes 2500 bins as input layer 

nodes. A ‘1’ or ‘0’ in each bin represents the ‘presence’ or ‘absence’ of a given 

chromaticity. The neural net has two hidden layers: one has 400 nodes and the 

other has 30 nodes. Two output nodes with real value are the corresponding 

illumination chromaticities. It is trained with the back-propagation algorithm with a 

sigmoid activation function. 

2.2.2 Colour-by-Correlation (C-by-C)   

 Colour-by-Correlation, proposed by Finlayson et al. [24], builds the 

correlation matrix to correlate the probability of image colours with each possible 

illuminant.  This matrix is built on a large set of colour images and corresponding 

known illuminations. To cancel out the effects of intensity, geometry, and 

shading, these images’ colours are converted into chromaticities and then 

mapped to histograms bins. The rows in the matrix are predefined chromaticities; 

the columns are known illuminants from the training data set. Each entry of the 

matrix indicates the frequency of occurrence of a given chromaticity under a 

given light. Assuming equal likelihood of occurrence of the lights, given the image 

data Cim,  the probability that E was the scene illuminant,  Pr(E|Cim) is estimated 

as follows: 
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where k is some constant and c’ is a chromaticity. In the logarithm domain, the 

multiplication becomes addition. 

In the training stage, three steps are needed in building a correlation 

matrix M: (a) Characterize which image colours (chromaticities) are possible 

under each reference illuminant. (b) Build a probability distribution for each light. 

(c)  Encode these distributions in the columns of the matrix. The result of training 

is an nh x nE correlation matrix M that contains the frequency of each observed 

colour under each different reference illuminant, where nh is the size of the 

histogram, and nE is the number of reference illuminants.  Solving for colour 

constancy also takes three steps: (a) Transfer the image colours into a binary 

vector in which ‘1’ or ‘0’ indicates the presence or absence of the corresponding 

chromaticity in the image. (b) Correlate this histogram h with each column of the 

correlation matrix, by simply applying a dot-product in log space. (c) This 

information is used to find an estimate of the unknown illuminant, for example, 

the illuminant which is most correlated with the image data.  

The other contribution of Finlayson’s work [24] is it proves that this 

framework is general and can be used to describe many other existing 

algorithms. Barnard et al. [4] improved the ‘Colour by Correlation’ method by 

extending it into the 3D colour space, where, in addition to chromaticity, the pixel 

brightness is used as extra information.  
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2.2.3 Support Vector Regression (SVR) 

In this method, Xiong et al. [92] suggested using Support Vector 

Regression(SVR) as a  tool for learning the relationship between illumination 

chromaticity and the colour distribution in the image. SVR estimates a 

continuous-valued function that encodes the fundamental interrelation between a 

given input and its corresponding output in the training data. This function then 

can be used to predict outputs for given inputs that were not included in the 

training set. This is similar to a neural network. However, a neural network’s 

solution is based on empirical risk minimization. In contrast, SVR introduces 

structural risk minimization into the regression and thereby achieves a global 

optimization while a neural network achieves only a local minimum.  

In the training stage, a given colour image is converted into a binary 

histogram h that uniformly covers the chromaticity space. Then the standard 

Support Vector Regression technique is applied to find a mapping function from 

image histograms to illuminant chromaticity. Here is the general form of the 

regression function f(h): 

),()(
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where w’s are the Langrange multipliers that need to be determined in the 

training stage, and hi’s are the binary histograms in the training set containing l 

data points. The function fk(h) is the illuminant chromaticity estimation function for 

k = r or g (two chromaticity values), each associated with its own set of 



 20 

parameters. The kernel function K(hi,hj) measures the non-linear distance 

between two data points hi and hj. The performance of SVR is dependent on the 

choice of kernel functions and the corresponding parameters. Rows 1-4 in Table 

2.1 list a set of common choices of kernel functions for SVR: 

Name Definition  Parameters  

Linear j
T

iji hhhhK ⋅=),(
 None 

Polynomial α)1(),( += j
T

iji hhhhK
 α 

Radial Basis 
Function(RBF) 

ji hh

ji ehhK
−−= α

),(  α 

Sigmoid )tanh(),( α+= j
T

iji hhhhK
 α 

Thin-Plate-Spline 
(TPS) 

)log(),( jijiji hhhhhhK −⋅−=
 None 

Table 2.1 Some common kernel functions for Support Vector Regression. 

2.3 Models Proposed in this Thesis 

Depending on different methodologies, separation of the illumination from 

the reflectance of the objects can be achieved by supervised and non-supervised 

approaches.  In this thesis, the main focus is on the category of non-supervised 

methods that require no training. I will explore non-statistical estimation solutions 

constrained by the characteristics of surface material as well as the 

illumination.  The following characteristics will be studied: surface colour of 

certain materials, such as human skin and achromatic surfaces; illumination 

spectra due to blackbody radiation; the formation of colour imaginary according 

to the dichromatic model of reflection; and the independence of spatial variance 

of illumination and surfaces in a given scene. Additionally, I will discuss one 

supervised approach that uses prior information from a training set. Here is the 

list of topics to be represented:  



 21 

Chapter 3. Gray Surface Identification 

In this chapter, the proposed extension first identifies colours that are 

likely to be from truly gray surfaces, and then averages only those colours. The 

trick is in the identification of gray surfaces in a colour coordinate system that 

encodes illumination and surface reflectance along different axes is used, 

namely, LIS colour coordinates.  

Chapter 4. Use of Skin Colour as a Constraint 

The colour of skin in an image depends strongly on the colour of the 

incident light. To account for the induced shifts in skin colour, I propose a skin-

illumination model in a linear space constrained by both the blackbody radiator 

locus and the skin locus. Based on this model, the range of chromaticities of 

arbitrary skin under all illuminant colour temperatures can be transformed into a 

new coordinate system defined with two independent axes:  an illumination axis 

as a function of colour temperature, and a skin axis as a function of melanin 

content.  

Chapter 5. Solving Dichromatic Model 

In this Chapter I propose a robust method for determining the illumination 

axis. The method detects dichromatic planes while placing few restrictions on the 

image content, such as the number of surfaces, the surface colours, or the 

identification of specular regions. The approach involves two Hough Transforms 

in sequence that result in a histogram representing the likelihood that a candidate 
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intersection line is the image illumination axis.  The final illumination estimate is 

determined by intelligently choosing from amongst the most likely candidates.  

Chapter 6. Reflectance Recovery via Matrix Factoriz ation 

In this chapter, I propose a new approach to illumination estimation for 

colour constancy and automatic white balancing, by separating the image into 

illumination and reflectance components based on the technique of nonnegative 

matrix factorization (NMF) with sparseness constraints (NMFsc).  The image data 

is then organized as a matrix to be factored into two nonnegative components--- 

illumination and reflectance. The approach provides a pixel-wise estimate of the 

illumination chromaticity throughout the entire image.   

Chapter 7. Illumination Estimation via Thin-Plate-S pline Interpolation 

In this Chapter, thin-plate spline interpolation is used to interpolate the 

chromaticity of the incident scene illumination from an image of the scene. Thin-

plate splines interpolate over a non-uniformly sampled input space, which in this 

case is a set of training images and associated illumination chromaticities.  Tests 

of the thin-plate spline method on a large set of real images demonstrate that the 

method estimates the colour of the incident illumination quite accurately.  

Chapter 8. Quaternion Colour Curvature 

Edges have been proven useful in colour constancy algorithms. For better 

detection of edge and curvature structures in colour images, I propose a novel 

approach to measuring curvature in colour or vector-valued images based on 
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quaternion singular value decomposition of a Hessian matrix. Test results show 

the effectiveness of quaternion colour curvature in generating a vesselness map.   

These algorithms are applied on several datasets (described in Appendix 

B) to compare the performance with other existing methods in terms of 

estimation errors (details in Appendix A). 
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3: GRAY SURFACE IDENTIFICATION 

The key to automatic white balancing of digital imagery is to estimate 

accurately the colour of the overall scene illumination. Many methods for 

estimating the illumination’s colour have been proposed [9][10][22][24][26][34]. 

Although not the most accurate, one of the simplest and quite widely used 

methods is the gray world algorithm [9]. Borrowing on some of the strengths and 

simplicity of the gray-world algorithm, this chapter introduces a modification of it 

that significantly improves on its performance while adding little to its complexity. 

3.1 Introduction 

As reviewed in Section 2.1.3, the standard gray world algorithm is based 

on the assumption that the average surface colour in a scene is gray so that 

when an image’s colours are averaged, any departure from gray reflects the 

colour of the scene illumination. In this chapter, the proposed extension first 

identifies colours that are likely to be from truly gray surfaces, and then averages 

only those colours. The trick is in the identification of gray surfaces. Note that one 

must make a distinction between the colour of the surface as it would appear 

under white light and the image colour of that same surface under the unknown 

scene illumination.  Simply averaging of the image colours that are gray would 

not tell us anything other than that gray colours are gray. To find the surfaces 

that are gray, but do not necessarily appear gray in the image because of the 



 25 

effect of the illumination, a colour coordinate system that encodes illumination 

and surface reflectance along different axes is used. 

3.2 LIS Colour Coordinates 

LIS coordinates, used by Finlayson et al [23][91], represent luminance, 

illumination colour and surface reflectance as separate dimensions, hence the 

designation “LIS” coordinates [23][91]. The goal of the coordinate system is to 

represent the three components of a colour in terms of the underlying physical 

components that generated the colour, in particular, luminance/intensity, incident 

illumination colour, and the surface reflectance colour. Of course, this goal 

cannot actually be met without additional information, but it can be approximated 

to a useful extent. Tests with the LIS representation of colours from images 

showed that LIS points having an S coordinate of zero were generally gray. They 

are not just gray in RGB image space, but they represent gray surface colours 

because they are in the reflectance space. To the extent that the S coordinate 

actually does represent reflectance and truly is independent of the illumination, 

this means that one can identify gray surfaces in an image independent of 

whether or not they have R=G=B.   

The strategy for the proposed new gray-surface-identification (GSI) 

method of automatic white balance, therefore, is to use the LIS coordinates to 

identify gray surfaces in the image, and then use these grays to estimate the 

illuminant colour. This final step is done in the RGB colour space, converted back 

from the LIS space, and involves averaging the chromaticities of the surfaces 

that have been identified as gray. The details are described below. 
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 LIS coordinates [23][91] are based on three assumptions (as discussed in 

Section 1.2): (1) that the illuminants are blackbody radiators; (2) that the 

camera’s response functions are narrowband and can be modelled as Dirac delta 

functions; and (3) that no specular reflection occurs. The implication of the first 

assumption is that the illuminants can be modelled as a function of a single 

parameter, namely, the blackbody temperature. The implication of the second 

assumption is that each of the RGB channels is affected by only a single distinct 

wavelength of the incoming spectrum. Under these assumptions, Finlayson and 

Hordley [23] show that for a given camera, [log(R/G), log(B/G)] is an illumination-

invariant colour chromaticity space in which the values of same surface under 

various illuminations tend to fall on a straight line and lines from different 

surfaces are parallel. Similarly, for a fixed surface reflectance, varying the 

intensity and colour temperature of the illumination incident on it causes the 

logarithm of the camera response [log(R), log(G), log(B)] to move within a plane. 

Different surface reflectances yield parallel planes. The S axis, which correlates 

with surface reflectance, of the LIS system is defined perpendicular to these 

planes. The L (luminance) axis and I (illumination ‘colour’) axis are then 

orthogonal to the S axis. An example of the LIS coordinate is shown in Figure 

3.1, where the synthesized colours from three surfaces span three parallel 

planes: cyan, yellow and magenta planes in the 3D log space.  
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Figure 3.1. An example of the LIS coordinate. Synth esized colours from three distinct 
surfaces span three parallel planes: cyan, yellow a nd magenta planes in the 
3D log space. 

Although in theory the logarithm of the camera responses [log(R), log(G), 

log(B)] obtained from a given surface under all possible colours and intensities of 

illumination are predicted to lie in a plane, do they in practice? Clearly, the 

blackbody-radiator and Dirac-delta assumptions are strong ones, and are likely to 

be violated. However, for [log(R), log(G), log(B)] data synthesized based on the 

SONY DXC-930 sensitivity functions, the 102 illuminant spectra from the Simon 

Fraser University database [5] and the surface reflectance of the 24 Macbeth 

colour checker surface patches, PCA (principal component analysis) determines 

the plane and establishes that the first 2 dimensions explain 99.1% percent of the 

variance. These 102 illuminants are not specifically blackbody radiators, but 

common light sources found around a university campus. Similarly, although the 

camera sensitivity functions [5] are relatively sharp with little overlap between 

them, they are taken from a real camera, and certainly violate the Dirac-delta 

assumption. Despite violating the assumptions, the fit of a plane to the data is 

surprisingly good.  
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3.3 GSI Implementation 

The first issue in terms of implementing the GSI colour constancy 

algorithm is that the LIS system is camera dependant and must be determined 

for the camera being used. There are two methods to do this depending on 

whether or not the camera’s spectral sensitivity response functions are known.  If 

they are known, then they can be used to calculate camera responses for 

spectra synthesized as the product of illuminant and reflectance spectra chosen 

from a database of spectra. If the camera’s spectral sensitivity curves are not 

known, then real values can be obtained by using the camera to take images of a 

gray card under several different illuminants. PCA is then applied to the logarithm 

of RGBs from the gray card. The vector corresponding to the maximal eigenvalue 

forms the intensity axis, the next vector forms the illumination axes, and the 

vector corresponding to the least eigenvalue is the surface reflectance axis 

because there is no variation in surface reflectance. 

To estimate the illumination for an image of N pixels [Ri, Gi, Bi], each pixel 

is first classified as to whether or not it belongs to the class of gray pixels. To 

classify a pixel, the logarithm of each channel is taken producing [log(Ri), log(Gi), 

log(Bi)], which is then projected onto the S axis of the LIS coordinate system via 

vector inner product.  If the resulting value is less than a specified threshold 

value then the pixel is classified as gray.  

The GSI method estimates the colour [Re, Ge, Be] of an image’s 

illumination according to 
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where ‘isgray’ is the test that classifies pixels as gray or not. 

An example of the GSI method is shown in Figure 3.2. The isgray test 

identifies as gray those pixels from Figure 3.2(a) that are shown in white in 

Figure 3.2 (b). The true scene illumination measured from a gray card is [0.2476, 

0.2910, 0.4614]. The standard gray-world method averages the RGBs of all 

pixels so that the estimated illumination is found to be [0.4748, 0.2348, 0.2903].  

The GSI method, however, averages only the RGB of pixels that pass the isgray 

test with the result that the illumination is estimated to be [0.2810, 0.3290, 

0.3899].  Clearly, this latter estimate is much closer to the true value. This 

example shows the potential of the GSI method; rigorous tests are presented in 

the next section. 

Figure 3.2 shows an example of the gray-pixel detection results. The 

detected pixels are marked in white in Figure 3.2(b).  The chromaticities of these 

pixels in Figure 3.2(a) can be averaged to obtain the colour of the illuminant for 

AWB. 
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(a) (b) 

Figure 3.2 Gray-pixel Detection Results. (a) Input image; (b) Pixels identified as gray are 
indicated in white. 

3.4 Tests of GSI 

The GSI method was implemented in MATLAB.  To evaluate GSI’s 

illumination estimation and compare it to other methods, the algorithm was tested 

on two datasets of real images. (See Appendix B)  The first one includes the 321 

images of the SFU dataset [5], which are of scenes in a laboratory setting. The 

second set is the much larger and more varied image collection that Ciurea et al. 

[13] built using a digital video camera.  

In evaluating performance, the error measure is based on Euclidean 

distance and angular difference between the estimated and true illumination 

chromaticity values. (See Appendix A)  

The first test uses Barnard’s 321 images [5] captured using a calibrated 

SONY DXC-930 camera. For the synthetic case, RGB values are synthesized for 

the measured percent spectral reflectance of 24 Macbeth colour checker patches 

and the spectral power distributions of 102 illuminants at 15 different intensities 

values. Applying PCA to this data, we find the LIS axes as row vectors:  
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[0.5994    0.5871    0.5441], 

[0.6421    0.0482   -0.7651], 

[0.4729   -0.8132    0.3358]. 

 

To compute the LIS coordinates from real data, the RGB values from the 

gray card under the 11 different illuminants are used. These RGBs are then 

scaled by 15 different factors to create a RGBs that vary in intensity. PCA is 

applied to the logarithms of the resulting 165 RGBs. The LIS axes obtained are: 

[0.6040    0.5807    0.5459], 

[0.6429    0.0499   -0.7643], 

[0.4711    -0.8126   0.3432]. 

 

Clearly, the two methods produce very similar results. The advantage of 

the real data method is that it is generally easier to collect images of a gray card 

under a dozen or so different illuminants than it is to determine a camera’s 

spectral sensitivity functions. 

Having determined the LIS coordinates, the next step is to proceed to test 

the GSI method. Since 321 is a small number of images, it is more reasonable to 

use leave-one-out cross-validation [19] in evaluating its performance and that of 

competing methods. Each method is trained on 320 of the images and tested on 

the one remaining image. This procedure is repeated a total of 321 times so that 

each image can be tested.  In the case of GSI, the training consists of choosing 

the optimal isgray threshold minimizing the median angular error over the training 

set. Table 3.1 compares GSI performance to that of Support Vector Regression 
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[34] both on RGB data (3D) and chromaticity data (2D), to Shades of Grey [26] 

with the optimal choice of norm, to Max-RGB [22] which takes the maximum in 

each of the 3 colour channels as the illumination colour, and to standard 

Grayworld [9]. 

Our second test is based on the Ciurea et al. [13] dataset. Since the 

camera was uncalibrated, we used the real data method to calculate the LIS 

coordinates for it based on RGBs from the gray ball, which can be found at the 

bottom right corner in every image. 

The original image database includes 11,346 images. Here, we test on 

two subsets extracted from the whole dataset: subset A contains 3581 images, 

and subset B 4080 images (See Appendix B). First, subset A is used for training 

and subset B for testing, then vice versa. The errors from both tests are 

combined in the entries in Table 3.2. 

Method SVR Dimension/  
Norm Power 

Angular Distance  L2 Distance x100  
Median  RMS Max Median  RMS Max 

GSI  3.91 10.11 33.79 2.71 7.15 22.65 

SVR 
2D 4.65 10.06 22.99 3.41 7.5 16.41 
3D 2.17 8.069 24.66 3.07 6.3 16.03 

SoG 6 3.97 9.027 28.70 2.83 6.21 19.77 
Max RGB  6.44 12.28 36.24 4.46 8.25 25.01 

GW  7.04 13.58 37.31 5.68 11.12 35.38 

Table 3.1 Comparison of GSI performance to that of 2D and 3D Support Vector Regression, 
Shades of Grey, Max RGB, and Grayworld.  The result s involve real-data 
training and testing on the 321 SONY images. Errors  are based on leave-one-
out cross-validation evaluation and are reported in  terms of both the RMS 
angular chromaticity and distance error measures.  
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Table 3.2 Comparison of GSI error to 3D SVR, SoG, M ax RGB, and Grayworld.  The results 
involve real-data training and testing on disjoint sets of 7,661 images taken 
from the Ciurea data set. 

3.5 Conclusion 

A new colour constancy method, GSI, is proposed that is based on 

detecting pixels corresponding to gray surface reflectance—which is not 

necessarily the same as gray image colour—and using their average image 

colour as an indicator of the colour of the overall scene illumination. The gray 

surfaces are found by first transforming the image RGB values to a new LIS 

coordinate system with axes that roughly correspond to luminance, illumination 

‘colour’ and reflectance. In LIS coordinates, values of S near zero tend to be 

gray. Tests on real images show the GSI method works better than Shades-of-

Gray, Grayworld and Max RGB. This method does not require training, and is 

substantially simpler to implement. 

Method 
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
GSI 5.46 7.95 38.71 4.15 6.23 31.93 

3D SVR 4.91 7.03 24.80 3.62 5.16 18.62 
SoG 6.71 8.93 37.01 4.83 6.59 27.99 

MAX RGB 9.65 12.13 27.42 6.86 8.80 21.72 
GW 6.82 9.66 43.84 5.25 7.82 45.09 
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4: CONSTRAINTS ON SKIN COLOUR  

The colour of facial skin changes significantly with changes in the light 

incident upon it. Is it possible to use human skin, as it is such a special surface 

material, as a reference to detect the incident light, in a way similar to the Max-

RGB methods, where a white patch reflects the scene illumination?  On the other 

hand, is it possible to correct these skin tones to canonical conditions by 

removing the effect of the light?   

By removing the colour of the light from the skin, the revealed true skin 

colour has to look natural. Such a constraint may set an upper bound for 

maximum error in illumination estimation.  Therefore, in this chapter I propose a 

simple and inexpensive model for (1) illumination estimation using the skin 

surface from a human face as a reference, also for (2) normalizing the skin 

tones.  The proposed model is based on two assumptions: (1) The surface 

reflectance of human skin is modelled as a function of the melanin content in the 

epidermis and the hemoglobin content in the dermis; (2) Light source spectra are 

approximated by a Planckian blackbody radiator as a function of temperature. 

4.1 Introduction 

The factors affecting facial skin colour have been previously studied in the 

context of image rendering in computer graphics; face detection and tracking in 

computer vision; diagnosis in dermatology; and makeup and skin care in 
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cosmetics. Skin colour is the most discriminative of skin attributes and depends 

on the skin’s pigmentation, blood microcirculation, roughness, sebum, and 

perspiration, as discussed by Barel et al. [2].  Efforts in correcting skin colours 

under different lighting conditions have been made by Soriano et al. [79] and 

Marguier et al. [59]. In previous human skin models, such as Shimada et al. [78], 

it has been suggested that the colour of human skin is mostly determined by the 

concentration of melanin in the epidermal layer combined with the content of 

hemoglobin in the dermal layer. The change of melanin content in skin (e.g., 

caused by exposure to UV) happens more slowly than the change of blood 

content (e.g., after bathing).  However, even for fixed melanin and hemoglobin 

content, skin colour can change significantly and quickly as the lighting 

conditions change. Results in Section 4.4.1 confirm that the changes in skin 

colour induced by changes in illumination colour are much larger than those due 

to biological factors.   

To analyse the spectral reflectance of human skin from different ethnic 

groups, Shimada et al. [78] and Tsumura et al. [85] have used independent 

component analysis (ICA) to extract two independent colour components of skin-

-- the melanin component and the hemoglobin component--- such that all skin 

chromaticities can be represented as a linear combination of the two components 

in log-chromaticity space. As mentioned above, the colour of skin in an image 

depends strongly on the colour of the incident light. To account for the induced 

shifts in skin colour, I propose a skin-illumination model in a linear space 

constrained by both the skin locus and the blackbody radiator locus. Based on 
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this model, the range of chromaticities of arbitrary skin under all illuminant colour 

temperatures can be transformed into a new coordinate system defined with two 

independent axes:  an illumination axis as a function of colour temperature, and a 

skin axis as a function of melanin content. This linear space will facilitate colour-

based applications such as skin detection and face tracking.   

In these coordinates, it becomes clear that the axis of change in skin 

colour caused by the hemoglobin content is almost the same as that of 

blackbody radiators of varying colour temperature. As a result, it is difficult to 

analyze whether the redness of skin in an image is the result of high hemoglobin 

content versus light of low colour temperature.  On the other hand, the axis of 

skin colour variation caused by changing melanin content is at a very different 

orientation from the axis of illumination change. This suggests that chromaticities 

of skin along the melanin axis will be approximately invariant to illumination 

change.  Therefore, the skin colour appearing in an image captured under a light 

of unknown colour temperature can be normalized to what it would be under a 

standardized light by shifting its chromaticity along the illumination direction to 

the projection point on the melanin axis. Since the projection point is determined 

by the melanin content alone, not the light’s colour temperature, the shifted skin 

chromaticity is illumination insensitive.  

Let’s assume specularity is absent and shading can be normalized by 

pixel intensity. If the skin pixels within an image can be identified, using the Viola-

Jones face detector by Viola and Jones [86], for instance, then the proposed 

colour correction can be applied to the identified skin pixels, as well as the entire 
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image. Furthermore, if an image area has been identified as containing skin, then 

both the chromaticity of the incident illumination and the melanin content of the 

skin can be estimated directly. This possibly provides an upper bound on the 

maximum error in illumination estimation by the model.   Test results are reported 

showing that the proposed skin-illumination model leads to good estimates of the 

chromaticity of the incident illumination. 

4.2 Background on Skin Modelling 

Many skin models [1][37][85] model the reflectance of skin by two layers: a 

thin surface layer (the epidermis) and a thicker layer (the dermis).  As in the 

dichromatic reflectance model [73], interface reflection takes place at the 

epidermis surface and is a constant 5% (wavelength independent). The body 

reflection component is due to light entering the skin being absorbed and 

scattered within the two skin layers. The scattering in the epidermis is considered 

negligible, it mainly absorbs light, hence it has the properties of an optical filter. 

The absorption depends on the melanin content in the epidermis. In the dermis 

layer the light is both scattered and absorbed, where the absorption depends on 

the blood content. The optical properties of the dermis are basically the same for 

all humans. The variations of skin colour are thus determined by transmittance 

properties of the epidermis and dermis. Hiraoka et al. [39] has used a spectrum-

based skin model to describe reflection spectrum, S, of arbitrary skin:  
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( ) exp[ ( ) ( ) ( ) ( ) ( )]m m m h h hS l lλ ρ α λ λ ρ α λ λ ξ λ= − − − , 
4.1 

 

Here, for a compound skin, ,m hρ ρ  and  ( ), ( )m hα λ α λ are the pigment 

densities and spectral cross-sections of absorbance of melanin and hemoglobin 

respectively. The variables ( )ml λ  and ( )hl λ  are the mean path lengths of photons 

in the epidermis and dermis layers. Variable ( )ξ λ  stands for the scattering loss 

and the absorbance of chromophores other than melanin and hemoglobin.  It is 

reasonable to consider ( )ξ λ  as a constant because it is essentially independent 

of mρ and hρ . Using the two spectral absorptions of melanin and hemoglobin, it is 

possible to model the skin spectral reflectance for any melanin content.  

Several researchers have measured the spectral reflectance of skin.  It is 

natural to consider a principal components analysis or independent components 

analysis on these spectra since earlier studies have shown these techniques to 

be very useful for colour constancy (Maloney & Wandell [58]), colour correction 

(Lenz et al. [56]), and segmentation (Hauta-Kasari et al. [37]) . More recently, 

physics-based skin modeling based on basis functions has been proposed 

[78][82][85].  Angelopoulou et al. [1] showed that the spectral reflectance of skin 

can be modelled by a linear basis based on the measured reflectance spectra of 

the back of hands and palm.  Shimada et al. [78] use regression analysis based 

on the modified Beer–Lambert law as a method of measuring melanin and blood 

content in human skin using basis functions.  Tsumura et al. [85] propose a 

technique through which hemoglobin and melanin pigment content are extracted 
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from a single skin colour image by independent component analysis (ICA). In 

their technique, the scattering in the skin is modelled in a simple linear form in 

the optical density domain in which inverse optical scattering is performed by a 

simple inverse matrix operation.   

Colour-based skin modelling and detection methods have been proposed 

for computer vision in unconstrained environments with changing illumination, 

e.g., for real-time tracking of faces [38][45]. In many methods, an area of skin is 

defined as a gamut that contains all possible skin chromaticities observed by a 

colour camera under a certain range of illuminations, where no specific 

distribution is assumed for the skin chromaticities. The melanin content for one 

subject is not constant but has a certain range. The lower and upper limits of the 

blood content are rather constant for all ethnic groups. The skin chromaticity 

distribution is approximated by the area bounded by chromaticities at the lower 

and upper limits of melanin and hemoglobin content modelled with the 

reflectance spectrum. It is possible to model the obtained skin gamut with 

nonlinear functions describing the boundaries, or with a look-up table [61].   

Skin colour modelling also depends on the camera, particularly the 

camera sensor sensitivities functions. Moreover, an important issue in skin colour 

detection is the dependence on the illumination conditions. Usually, the colour 

gamuts for skin modeling are obtained by simulating skin colours under different 

illuminations, and using chromaticity space (e.g., rg chromaticity) to eliminate the 

influence of intensity. None of the colour spaces, however, normalizes for 

changing illumination colour. The problem of changing illumination colour has to 
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be solved by other means, for example, using an automatic white balance 

method. Nevertheless, all automatic white balancing methods are based on 

assumptions that may not be met in practice, and hence are subject to error.  

4.3 The Proposed Skin-Illumination Model 

As reviewed in Section 1.2, previous research by Finlayson and Schaefer 

[25] has shown that, given narrowband sensors, blackbody radiation models not 

only the spectra of direct sunlight and tungsten light bulbs, but also that of 

common daylight conditions. The camera’s response to blackbody illumination by 

Wien’s approximation assuming narrowband sensors can be expressed as in 

Equation 1.4. For simplification, this multiplicative model becomes additive in log 

colour space,  

λ
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T

c
cIE 25

1 )log()log()log()](log[ −++= −

, 4.2 

 

 Similarly, the skin model specified in Equation 4.1 can also be treated 

linearly in log space: 

)()()()()()](log[ λξλλαρλλαρλ −−−= hhhmmm llS  4.3 

 

According to the colour formation in Equation 1.3, with narrow-band 

sensors, combining Equation 4.2 and 4.3 provides us:  
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4.4 

Let Π represent the camera signals from the RGB channels in log space, 

based on Equation 4.4,   

( , , , )m h m m h hb τ bρ ρ τ ρ ρ≈ + + + +Π σ σ ω 1 c , 
4.5 
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and log( )b I= ,  1/Tτ = . 

The observed signal Π  therefore is represented by the weighted linear 

combination of the four vectors , ,m hσ σ ω  and 1 plus a bias term c. These vectors 

correspond to the melanin, hemoglobin, the illumination chromaticity and the 

illumination brightness axis, respectively. The melanin and hemoglobin content, 

the blackbody temperature, and the intensity only vary along these four 



 

directions. The negative signs in Equation 

signs only indicate directions, and the variable can go either direction along an 

axis.  The variable τ  is the inverse of the temperature 

mired (106K-1). The vectors 

constant for a given camera.

set of skin colours in log space are spanned by melanin

Figure 4.1 An illustration of the skin

My proposed skin model 

illumination colour temperature and melanin 

Here, the hemoglobin term in Equation 

hemoglobin axis almost coincides with the illumination axis 

red-white-blue direction. Also, the brightness term is eliminated by intensity 

normalization. Equation 4.

blackbody illumination basis,
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The negative signs in Equation 4.4 are ignored in Equation 

signs only indicate directions, and the variable can go either direction along an 

is the inverse of the temperature T and is measured in 

). The vectors ω and c are sensor dependent and therefore stay 

constant for a given camera. This coordinate is illustrated in Figure 4.1

set of skin colours in log space are spanned by melanin and hemoglobin axes.

 

An illustration of the skin -illumination coordinate in 3D log RGB space.

proposed skin model is based on simplifying Equation 4.5 for varying 

illumination colour temperature and melanin content. The result is 

ωσΠ τmmm +≈ ρτρ ),(  

Here, the hemoglobin term in Equation 4.5 is dropped because the 

hemoglobin axis almost coincides with the illumination axis ω, both varying in the 

blue direction. Also, the brightness term is eliminated by intensity 

.6 suggests that the melanin basis, mσ , and the 

blackbody illumination basis,ω , span the chromaticity space of arbitrary skin 

are ignored in Equation 4.5, since 

signs only indicate directions, and the variable can go either direction along an 

and is measured in 

are sensor dependent and therefore stay 

1, where a 

hemoglobin axes.  

log RGB space.  

for varying 

4.6 

 

is dropped because the 

, both varying in the 

blue direction. Also, the brightness term is eliminated by intensity 

, and the 

, span the chromaticity space of arbitrary skin 
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under different illuminations. It describes the skin-illumination model proposed in 

this chapter. As the blackbody radiator illumination basis, ω ,  can be easily 

calculated mathematically, the melanin basis, mσ ,  is obtained by using 

Independent Component Analysis(ICA)  to separate it from hemoglobin basis 

[85], given a set of skin reflectance data.  

4.4 Tests of Skin-Illumination Model 

4.4.1 Skin Spectrum Analysis for Illumination  

The first test is to analyze the set of 384 skin reflectance spectra of people 

of different ethnicity. A standard Independent Component Analysis tool called 

JADE[11] is used on this normalized skin data in logarithm space with gamma 

equal to one to extract two independent basis spectra – the melanin and 

hemoglobin – as predicted by the skin-illumination model, shown in Equation 4.3.  

Figure 4.2 shows how the gamut (shown as a cloud of dots) of log 

chromaticities of real skin under canonical condition (pure white light) forms an 

area spanned by the hemoglobin and melanin axes, where the spectra were 

converted into standard RGB (sRGB) colour space. In Figure 4.2(b) the 

blackbody locus in log space becomes more or less straight and the hemoglobin 

axis (not shown) is roughly parallel to it. However, varying the melanin content 

leads to skin chromaticities (green dots) lying along a line that makes a sharp 

angle with respect to the blackbody locus.   
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(a) 

 
(b) 

Figure 4.2 Real and synthesized skin reflectance ch romaticities, along with blackbody 
radiator chromaticities plotted in the 2D plane. (a ) Planckian blackbody locus 
and the gamut of 384 skin samples in rg-chromaticit y space. Chromaticities of 
synthetic skin reflectance with only melanin varian ce are plotted with green 
dots. (b)  Planckian blackbody locus and 384 skin s amples in 2D log space. 

As discussed above, skin chromaticities can be modelled as a linear 

combination of two independent components in logarithm space. An important 

consequence of this is that it means that, given a skin chromaticity, one can 

decompose it into one component due to its melanin content, and a second 

component due to the incident illumination. From this decomposition, we thereby 

obtain a reasonable estimate of the colour of the incident illumination. To 

demonstrate that this works in practice, we first identify the boundaries and the 

axes of the skin-illuminant gamut to estimate the illumination for arbitrary skin 

types. Both spectra of real light sources and synthesized blackbody radiator 

illuminants are used. The blue stars in Figure 4.3(a) define a grid in rg-

chromaticity space obtained with synthetic skin reflectances and Planckian 

illuminants. The black dots represent chromaticities from colour signal spectra 

synthesized as the product of 67 real light sources and 384 real skin 
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reflectances.  By inspection, Figure 4.3 (b) shows how this grid is considerably 

straightened out into a more linear form in log space. 

  
(a) (b) 

Figure 4.3 The grid of skin data denoted as blue st ars, and test skin data denoted as black 
dots, plotted in (a)  rg-chromaticity space, and (b) 2D log space. 

The non-linearity of the data in Figure 4.3 (a) makes decomposition into 

illumination and melanin components difficult.  On the other hand, the strongly 

linear nature of Figure 4.3 (b), that is, this 2D space is spanned by two linear 

axes, makes linear projection for the colour temperature possible.  Given this 

linear space, applications such as colour-based skin tracking can be simplified 

since all skin colours fall within a simple quadrilateral. In my test, this 

quadrilateral of skin colour boundaries (the blue dots in Figure 4.3 (b)) is 

transformed into a rectangle, so that the projections of the skin data (black dots) 

on the two axes of the rectangle tell the chromaticities of skin melanin and 

illumination.    

This model assumes that the camera sensitivity functions are very 

narrowband. Given this assumption may be violated in practice, I tested the 
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above procedure to estimate illumination chromaticities with six different sets of 

sensor sensitivity functions: Sony DXC 930, Sony DXC 755p, Sony 828, Kodak 

460, the Vos et al. cone fundamentals [87] and CIE XYZ. The estimation error 

(See Appendix A) between the estimated and real illuminations is shown in Table 

4.1. 

 

Sensor Type 
Angular Error L2 Error 

Median  Mean Max Median  Mean Max 
Sony DXC 930 2.40 2.62 8.16 0.018 0.020 0.066 
Sony DXC 755p 2.13 2.40 7.40 0.017 0.019 0.072 

Sony 828 1.20 1.44 7.03 0.0095 0.012 0.068 
Kodak 460 1.05 1.34 6.01 0.0086 0.011 0.058 
Cone LMS 1.77 2.00 7.49 0.011 0.013 0.045 
CIE XYZ 1.54 1.81 6.43 0.011 0.013 0.040 

Table 4.1 The illumination estimation error for 25, 728 spectra calculated from 384 skin 
samples and 67 real illuminations. The camera respo nses are calculated 
based on four sets of camera sensors, cone LMS sens itivity functions, and 
CIE XYZ sensitivity functions.   

Table 4.1 shows that the model works well on real data. The errors that do 

arise originate from three sources: a) the simplified skin model, which assumes 

all variations in skin colour are due to variations in melanin and hemoglobin 

content, b) non-blackbody light sources, c) and broadband camera sensor 

sensitivities.         

4.4.2 Skin Tone Correction 

In addition to illumination estimation, the same model can also be used for 

skin tone correction. The idea is to shift the entire skin colour gamut of a given 

face image along the direction of the illumination basis until it is in the canonical 

condition (i.e., as it would be under pure white illumination). In this section, 
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testing was done using the University of Oulu Physics-Based(UOPB) Face 

Database provided by Marszalec et al. [60], which contains 357 measured 

spectra of human faces of 119 individuals of different races. In addition, this 

database contains images of 125 different individuals. An image series for one 

 

Figure 4.4 Results based on an individual (no. 96) in the UOPB database. Skin tones are 
corrected based on the proposed model on a series o f 16 face images under 
different camera calibration and illumination condi tions (faces segmented 
from the background). 

 person contains 16 frontal views, each of which is captured under a different 

combined illuminant and camera calibration condition. In my test, skin pixels in 

each linearized image are manually selected. Potentially, a face detector could 

be used for automated selection.  The average of all skin pixels is translated to a 

point on the estimated melanin axis, along the blackbody axis. Then this point is 

shifted along the melanin axis until it is within the melanin value range of this 
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specific database if it is not (e.g., due to non-blackbody radiation illumination, 

camera overflow, etc). The same translation is then applied to all pixels of the 

entire image. As illustrated in Figure 4.4, the corrected images show that the skin 

tones of the face in the image are invariant to illumination change. 

4.5 Conclusion 

I have introduced a model of skin colour under varying illumination that 

allows easy decomposition of a skin chromaticity into two components: one due 

to the illumination, and the second due to the melanin content. As a 

computationally inexpensive model, the proposed method is useful for estimating 

the colour of the light illuminating the skin, and for normalizing skin in images for 

which the colour of the illumination is not known.  This model assumes 

narrowband sensors, blackbody illuminants, and melanin and hemoglobin 

contents as being the dominant factors in skin colour; however, tests show that 

the model succeeds relatively well even when the assumptions are violated.  In 

addition, this model provides a tool to normalize skin tones to be invariant to 

illumination change. The normalization is accomplished by shifting the colour of 

the entire image so that skin pixels lie on the pre-defined melanin axis. 
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5: SOLVING THE DICHROMATIC MODEL 

In this chapter, attention is focused on the problem of estimating the 

colour of the light by exploiting the principles of colour image formation laid down 

by the dichromatic reflection model [73].   A new illumination-estimation method 

is proposed based on this model combined with Hough transform processing.  

Researchers have shown that using the dichromatic reflection model under the 

assumption of neutral interface reflection, the colour of the illuminating light can 

be estimated by intersecting the dichromatic planes created by two or more 

differently coloured regions. The proposed new method employs two Hough 

transforms in sequence in RGB space. The first Hough Transform creates a 

dichromatic plane histogram representing the number of pixels belonging to 

dichromatic planes created by differently coloured scene regions. The second 

Hough Transform creates an illumination axis histogram representing the total 

number of pixels satisfying the dichromatic model for each posited illumination 

axis.   

Many of the existing methods rely on the assumption that there are 

sufficiently large, connected regions of a single, highly specular material in the 

scene. The proposed method should overcome the limitations of previous 

approaches that include requirements such as: that the number of distinct 

surfaces be known in advance, that the image be pre-segmented into regions of 

uniform colour, and that there exist distinct specularities. Comparing the 
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performance of the proposed approach with previous non-training methods on a 

set of real images, the proposed method yields better results, while requiring no 

prior knowledge of the image content. 

5.1 Dichromatic Reflection Model  

Dichromatic reflection model states that, in RGB space, the colours 

reflected by an inhomogeneous dielectric material lie on a plane that is spanned 

by two characteristic colours; namely, the colour of the specular component 

reflected from the air-surface interface, and the colour reflected from the body of 

the material. If neutral interface reflection is assumed [54], then the chromaticity 

of the specular reflection is the same as that of the illuminating light. As a result, 

the colour of the illuminant can be estimated by intersecting the planes that the 

set of RGBs from two or more different materials describe.  

According to the dichromatic reflection model for inhomogeneous 

dielectric objects, the colour signal is composed of two additive components, one 

being associated with the interface reflection and the other describing the body 

reflection part [73], so it can be described as  

)()()()(),( λθλθλθ BBII CmCmC +=  5.1 

where CI(λ) and CB(λ) are the spectral power distributions of the interface and 

the body reflection respectively, and mI and mB are the corresponding weight 
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factors depending on the geometry θ, which includes the incident angle of the 

light, the viewing angle, and the phase angle. 

Suppose R, G, and B are the red, green, and blue pixel value outputs of a 

digital camera, then each colour vector (R,G,B)T is determined by a linear 

combination of a surface reflection component (Ri ,Gi ,Bi)
T and a body reflection 

(Rb,Gb,Bb)
T  component. Equation 5.1 shows that the colour signal can be 

expressed as the weighted sum of these two reflectance components. Thus the 

colour signals for an object are restricted to a plane: 
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5.2 

If we consider two objects within the same scene (and assume that the 

illumination is constant across the scene) then we end up with two RGB planes. 

Both planes, however, contain the same illuminant RGB. This implies that their 

intersection must be the illuminant itself. Although theoretically sound, 

dichromatic colour constancy algorithms do not always perform well on real 

images. For example, image noise may cause the intersection of two dichromatic 

lines planes to change quite drastically. In addition, textured and non-uniform 

surfaces may mean that the distribution of colours does not lie on distinguishable 

dichromatic planes.  

Based on the dichromatic reflection model [73], Lee [53] introduced a 

method for computing the scene illuminant chromaticity by intersecting lines in 

chromaticity space. Although Lee’s method performs sufficiently well on synthetic 
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images of spheres, its application to real-world scenes is sensitive to noise and 

inhomogeneities such as textured surfaces.  Another approach using dichromatic 

regions of different coloured surfaces is called colour line search [52]. It involves 

automatic detection of specular regions, a Hough transform step, and 

consistency check step. However, this approach requires correct detection of 

regions of interest, and can fail when specular highlights are incorrectly identified 

or absent from the scene. The method proposed by Tan et al.[83] describes an 

inverse-intensity chromaticity space in which the correlation between illumination 

chromaticity and image chromaticity can be analyzed. Once again, this method 

relies on correctly identifying the highlight regions, and does not perform any 

better than competing methods.  The proposal to solve for the intersection of the 

dichromatic planes directly as described by Toro et al.[84] assumes that in any 

patch of the given image, a fixed number of different materials coexist. The 

illumination colour can be calculated by solving a set of simultaneous linear 

equations using a Veronese projection of multilinear constraints. However, this 

approach assumes that the number of different surfaces in an image is already 

known. It also does not yield any better results than previous methods when 

applied to real images. The method proposed by Schaefer in [72] achieves 

competitive results, but the approach requires the illumination to be from a set of 

known light sources. 
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5.2 Hough Transform as a Solution  

In the proposed solution, I use a Hough Transform [67] for dichromatic 

plane detection. In the 3D case, a plane is parameterized as:  

)sin()cos())sin()cos(( θθφφρ zyx ++=  5.3 

where ρ is the distance between a plane and the origin, φ  is angle relative to the 

z-axis, θ is angle relative to the y-axis.  In the discrete case, the parameter space 

(ρ,φ,θ) is quantized into bins, so the Hough Transform is represented as a three-

dimensional histogram. 

According to the dichromatic model, all dichromatic planes should pass 

through the origin. This implies that the “distance” ρ in Equation 5.3 is zero, so 

the RGBs reflected from a dichromatic surface satisfy the following parametric 

plane equation 

0)sin()cos()sin()cos()cos( =++ θθφθφ BGR  5.4 

All pixels from the same surface belong to a single plane defined by the 

two angles φ and θ.  Hence a 2D Hough Transform can be used to create a 

dichromatic plane histogram H1. Each bin of the histogram represents the 

number of pixels belonging to a distinct dichromatic plane specified by the pair of 

angles (φ,θ) satisfying Equation 5.4. A high value in the histogram implies the 
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existence of this dichromatic plane in the image, while a lower value implies its 

absence.  

Since the illumination axis is the intersection of all dichromatic planes, it 

must be perpendicular to the normal of each dichromatic plane. Therefore, the 

axis perpendicular to the normals of the largest number of dichromatic planes is 

a good candidate for the illumination axis.   To determine it, we use a second 

Hough Transform to create an illumination histogram H2 based on the data from 

H1. To use the data from H1, we first calculate the normals of the dichromatic 

plane in the dichromatic plane set. The normal of a dichromatic plane described 

by (φ,θ) is n = (u,v,w), where 

θ
φθ
φθ

sin

sincos

coscos

=
=
=

w

v

u

 

5.5 

When an illumination axis is represented in polar form by the two angles α 

and β,  it is perpendicular to the normal n of a dichromatic plane if and only if it 

satisfies the following equation: 

0)sin()cos()sin()cos()cos( =⋅+⋅+⋅ ααβαβ wvu  5.6 

Based on Equation 5.6, a second 2D Hough Transform parameterized by 

(α, β) is used to create an illumination histogram. The count for a bin in the 

illumination histogram is calculated in the following manner. When the normal of  
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Figure 5.1 Two images of the same object under diff erent illuminants. (a) and (d) are the 
original images; (b) and (e) are the dichromatic pl ane histograms of the 
images in (a) and (d) respectively, after the first  Hough Transform, with φφφφ and θθθθ 
ranging from 0 to 179; (c) and (f) are the illumina tion histograms of the images 
in (a) and (d) respectively, after the second Hough  Transform, with α and β 
range from 0 to 89. The arrows in the two figures i ndicate the locations of the 
true illuminants. The correspondence between the tr ue illumination and the 
histogram peaks is evident. 

dichromatic plane (φ, θ)  is perpendicular to illumination axis (α, β), the count 

from the corresponding bin of H1 is added to that of the corresponding bin of H2. 

The bin count of a bin b in the resulting histogram indicates the number of image 

pixels that conform to the dichromatic model under the illumination that b 

represents in that contributing pixels all come from a collection of dichromatic 

planes that share a common intersection, and a common intersection represents 

a shared illumination. Therefore, a high bin count in H2 implies a high probability 

that the bin corresponds to the true scene illumination. Figure 5.1(c) and Figure 

5.1(f) provide two examples of illumination histograms for the same object under 

two different illuminations.   

   
(a) (b) (c) 

   
(d) (e) (f) 
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In principle, the correct illumination can be determined by searching for 

the global maximum in the illumination histogram. However, due to noise and the 

non-dichromatic properties of some surfaces that may be present in the image, 

the global maximum of the illumination histogram does not always correctly 

correspond to the true scene illumination. Although the global maximum may not 

always indicate the correct illumination, generally one of the local maxima will. 

Hence the problem becomes how to select between the local maxima. Our 

strategy is to select the local maximum inside a bounding disc centered at the 

illumination as estimated by another illumination-estimation method. In particular, 

in the tests reported here we use the Shades of Gray (SoG) method [26]. The 

disc radius is based on the average and standard deviation of the error of this 

method.  

The complete estimation consists of the following steps:  

1. Normalize the image I (scale intensities, remove dark pixels, etc) 

2. Transform 3D pixels in I into dichromatic Hough space H1 by Equation 5.4 

3. Transform H1 into illumination Hough Space H2 using Equation 5.5 and 5.6 

4. Estimate image illumination L by SoG 

5. Find the nearest local maximum in H2 inside a bounding disc centered at L 

6. Convert polar coordinate representation of this local maximum into 

chromaticity coordinates 

 

In summary, the two Hough Transforms can be thought of as two voting 

procedures. First, each pixel votes for the candidate dichromatic planes that pass 
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through it. Second, each dichromatic plane in turn casts a weighted vote 

(weighted by the number of pixels on that plane) for each candidate illumination 

axis that passes through it. Finally, the illumination axes that receive the highest 

votes are considered likely candidates for the true illumination. 

5.3 Test  Results 

The proposed method was tested on the Simon Fraser University colour 

image database [5], which contains 321 images of 32 scenes under 11 different 

illuminants (See Appendix B). In this test, an image is resized to 200x200 and 

normalized such that the range of intensity in any image is [0, 255], and then the 

first Hough transform is applied to all pixels (excluding pixels over 250 or under 

10). The space of planes is defined by angles (φ,θ), whose values are integers in 

[0 to 179]. The result of the first Hough transform, H1, is therefore a 180x180 2D 

histogram as shown in Figure 5.1(b) and Figure 5.1(e). The illumination axis 

space is defined by angles α and β with integer values in [0, 89].  Hence, the 

illumination histogram H2 calculated by a Hough transform of H1 is a 90x90 2D 

histogram (Figure 5.1(c) and Figure 5.1(f)). The maximum in H1 is then found in a 

13x13 bounding box centred at the illumination axis estimated by Shades of Grey 

[42].  

 The performance is evaluated in terms of the angular difference in 

degrees between the RGB of the estimated and actual illumination(See Appendix 

A).  In Table 5.1, the proposed approach shows good performance when 

compared to competing illumination-estimation methods [3][42][84] [89][93][94].   
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Methods  Training Required  Median Angular Error  
Grey World no 7.0 
Max-RGB no 6.5 

Multilinear Constraint no 5.8 
Shades of Grey (n=6) no 3.7 

Grey Edge no 3.2 
2nd order Grey Edge no 2.7 

GSI no 3.5 
Colour by Correlation yes 3.2 

Neural Networks yes 7.8 
TPS yes 0.6 

2D SVR yes 4.7 
3D SVR yes 2.2 

3D Hough Transform no 1.7 

Table 5.1 Comparison of performance of the proposed  method with that of other non-
training methods ( Grey World, Max RGB, Multilinear  Constraint, SoG, GSI, 
Grey Edge, 2 nd order Grey Edge) and training methods ( Colour by Correlation, 
TPS, SVR 2D and SVR 3D, Neural Networks) measured i n terms of median 
angular errors based on the SFU  image dataset of 3 21 images. The entries for 
GW, Max RGB, SoG, Gray-Edge, 2nd Gray-Edge, Colour- by-Correlation, and 
NN are reproduced from Table II, page 2211 of  [89] . 

In general, the total complexity of our method is O(NM+MK), where N is 

the number of pixels in an image; M is the cardinality of the candidate 

dichromatic plane set; K is the cardinality of the candidate illumination axis set. In 

the test, the dichromatic planes and illumination axes were searched 

exhaustively with M = 180x180 and K = 90x90.  

5.4 Conclusion 

The presented illumination-estimation method uses the constraints 

provided by the dichromatic model in a new and quite robust way.  The method is 

based on two Hough transform voting procedures. First, each image pixel votes 

for every dichromatic plane it could fall on. This results in a 2D histogram 

representing the likelihood of each plane. Second, each dichromatic plane votes 

for each candidate illumination axis that could pass through that plane. Finally, 
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an illumination axis is chosen from among those receiving the highest number of 

votes based on the resulting illumination being close to that of the SoG 

illumination estimate. This robust method creates a 2D illumination axis 

histogram that represents the likelihood of the possible illuminations. My 

approach makes no assumption about the number of surfaces or the surface 

colours, yet performs well in comparison to the other methods tested.  
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6: REFLECTANCE RECOVERY VIA MATRIX 
FACTORIZATION  

In this chapter, a new approach to illumination estimation for colour 

constancy and automatic white balancing is developed based on the technique of 

Nonnegative Matrix Factorization (NMF) with sparseness constraints (NMFsc).  

In terms of accuracy, the method proposed in this contribution is no better than 

existing methods; however, it is interesting in that it approaches the problem from 

an entirely different mathematical perspective, a perspective in which the input 

colour image is viewed as a matrix to be factored subject to the constraints of 

non-negativity and sparseness. The resulting factors represent the scene’s 

illumination (possibly spatially varying) and its reflectance.  The nonnegative 

constraint on the factorization is important because illumination and reflectance 

are both nonnegative physical quantities.  The sparseness constraints--- the 

reflectance component is sparsely encoded, while the illumination image is non-

sparse--- force the factorization to obtain an illumination component that varies 

only slightly across the scene, while allowing the reflectance component to be 

more varied.  The assumption that the illumination chromaticity remains either 

relatively constant or completely constant across the scene is a common to 

virtually all colour constancy methods to date. 

One feature of the NMFsc-based method is that, like Retinex, it provides 

an estimate of the illumination and reflectance at every pixel.  Although there are 
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still a few parameters to tune for optimal performance, the NMFsc illumination 

estimation method, like a few methods [9][22][26][33],  avoids the major training 

step required by the many other methods that rely on image statistics [10] 

[24][34][70] or finite-dimensional models of spectra [58]. Finally, unlike methods 

where full-sized images are required, NMFsc can be applied to only a subset of 

the image pixels. This be helpful when only thumbnail images are available, or to 

reduce computation time. In the tests section, results are reported for a large set 

of images with the NMFsc method applied to full-sized images, to reduced 8x8 

image thumbnails, and to randomly sampled image pixels.   

6.1 Background on Non-Negative Matrix Factorization  

Non-negative matrix factorization creates a non-negative approximation to 

a given set of non-negative input data that represents the data in terms of a 

linear combination of non-negative basis features. Sparseness constraints can 

be imposed to change the results of the factorization. Hoyer [44] provides an 

excellent introduction to non-negative matrix factorization, and the use of 

sparseness constraints. In the context of this chapter, factorization is used to re-

represent the log image data in terms of a linear combination of log illumination 

and log reflectance. 

Let us divide an image into T sub-windows of N pixels. Following Hoyer 

[44], assume that the data consists of T measurements of N non-negative scalar 

variables represented as N-dimensional measurement vectors vt (t = 1, . . . ,T).  

An M+1-dimensional linear approximation for each data vector is given by 
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where W is an N ×(M+1) matrix  containing the basis vectors w i as its 

columns, and ht is the vector of scalar coefficients hi. Arranging the measurement 

vectors vt as columns of an N×T matrix V, we can write  

WHV ≈ , 6.2 

where each column of H contains the coefficient vector ht corresponding to the 

measurement vector vt. Writing it in this form makes it apparent that this linear 

data representation is simply a factorization of the data matrix. Similarly, principal 

component analysis(PCA) can also be viewed as a matrix factorization method, 

but with a different choice of objective function than will be used in non-negative 

matrix factorization.  NMF forces all entries of W and H to be non-negative. The 

advantage of this is that it means that the measurement data is modeled in terms 

of additive components only.  Since imagery is based on light and there are no 

subtractive lights, non-negativity is a desirable feature of any model of it. 

The idea of sparse coding originates in the neural network literature [27].  

A sparse code is one that is based only a few neurons being active, with the 

majority being inactive.  In the case of the representation defined in Equation 6.1, 

sparseness means that only a few of the elements of each wi are significant, with 

the majority being near zero. The expectation is that a sparse encoding will be 
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based on meaningful, somewhat localized features.  In terms of our goal of 

separating the reflectance component of an image from its illumination 

component, we expect reflectance to be well represented by localized features, 

hence by a sparse coding, and illumination to be represented by global features, 

hence a non-sparse coding. 

Hoyer [44] extended NMF to find non-negative factorizations with a 

specifiable degree of sparseness, and provides the following definition of NMF 

with sparseness constraints (NMFsc). Given a non-negative data matrix V of size 

N×T, find non-negative matrices W of size N×(M +1) and H of size (M+1)×T  

minimizing 

2||||),( WHVHW −=E  6.3 
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where w i is the ith column of W and h i is the ith row of H. The three variables M,  

Sw and Sh are user controlled parameters, with M+1 denoting the number of 

components, and Sw and Sh denoting the desired sparseness of W and H.  

Hoyer [44] uses a sparseness measure based on the relationship between 

the L1 norm and the L2 norm as 
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where N is the dimensionality of x. ∑ ix  is the L1 norm, and ∑
2
ix is the L2 norm. 

This function evaluates to unity if and only if x contains a single non-zero 

component, and takes a value of zero if and only if all components are equal. 

According to the above definition of sparseness, a vector with all components 

almost equal should have a very small sparseness value. This allows us to use 

Equation 6.4 to measure smoothness of a vector and hence to enforce 

smoothness during factorization.  

Figure 6.1. Comparison of basis feature vectors obt ained by NMF without sparseness 
versus NMFsc with sparseness for M+1=2.  (a) Input image; (b-c) the two NMF 
basis features(without sparseness constraints); (d)  NMFsc first basis feature 
constrained to have low sparseness; (e) NMFsc secon d basis feature 
constrained to have high sparseness. 

NMF with and without sparseness constraints has had empirical success 

in learning meaningful features from a diverse collection of real-life data sets [55]. 

For example, in Figure 1 of Hoyer [44], which shows how, when applied to a data 

set of face images, the representation by NMFsc consists of basis vectors 

encoding the intuitive features of faces such as the mouth, nose, and eyes.  

Figure 6.1 (of this thesis) shows an example of the difference in the basis vectors 

     
(a) (b) (c) (d) (e) 
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obtained with and without sparseness constraints for the example of a 2-

dimensional model (i.e., M=1). 

6.2 The Model of Illumination and Reflectance 

For a particular pixel in a colour image, the linear RGB sensor response is 

defined by the model in Equation 1.3. Taking the logarithm on both sides of the 

Equation 1.3 provides us a new equation in terms of addition 

)](log[)](log[)log( kkk SEp λλ += ,    BGRk ,,=  6.5 

This has the advantage that the non-linear multiplicative combination of 

the illumination and reflectance becomes linear. Note also that if, as is common 

in digital cameras, the camera applies a non-linear ‘gamma’ function to the initial 

linear sensor responses such that the final output response becomes γ/1)( kp  with 

typically 2.2≈γ , the consequence is simply that Equation 6.5 becomes scaled by 

the simple multiplicative constant of γ/1 . Since this has no effect on the 

subsequent derivation, it will be dropped. 

Arranging all three channels of the RGB image data as a vector, Equation 

6.5 can be written  
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SEI logloglog += , 6.6 

where I is the entire image, and E and S are the illumination and surface 

reflectance components of the image.  

The reflectance image in log space, log S, can be further represented as a 

weighted linear combination of reflectance “features”.  
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where the Fi are approximately independent reflectance features, and the hi are 

weighting coefficients. The variable M denotes the number of features used in 

modelling the reflectance component of the given image. Combining Equation 

6.6 and Equation 6.7, the log image can be represented in terms of the 

illumination and M surface features as  
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It is apparent that Equation 6.8 and Equation 6.1 are similar in structure, 

and in what follows we will exploit this similarity in separating an image into its 

illumination and reflectance components. 
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6.3 Separating Illumination and Reflectance Using N MFsc 

Consider dividing the input image into subwindows, which can be 

overlapping or non-overlapping. Assuming the illumination is constant throughout 

the scene, then the contents of each subwindow can be modelled, according to 

Equation 6.8, in terms of an illumination component and a linear combination of 

reflectance features. However, what are the actual features making up the 

reflectance feature basis? This is where NMFsc is useful because from the 

collection of subwindows it provides a means of identifying the reflectance basis, 

along with the single illumination component.   

Combining Equation 6.8 and Equation 6.1 yields the imaging model 

written in terms of an NMF approximation: 
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In this case, tv  corresponds to Ilog  from Equation 6.8 and represents the 

data from an image subwindow. Since 00hw takes the role of Elog , the basis 

vector 0w is the “illumination” basis with weighting factor 0h .  The symbol M 

represents the chosen dimensionality of the model.  Since ∑ =

M

i iih1
w  takes the 

role of i

M

i ih∑ =1
F , the basis vectors w i are the feature reflectance basis vectors 

with weighting factors hi.  
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Let there be T (T ≥ M+1) sub-windows extracted from the input image. For 

each subwindow we append its logR, logG, logB data into a column vector, and 

combine the columns of all the subwindows into the data matrix V of as in 

Equation 6.3. By applying NMFsc to solve for the basis matrix W, we obtain the 

illumination basis vector 0w and the feature reflectance basis vectors iw (

Mi ≤≤1 ).  In other words, NMFsc decomposes the V into the illumination and 

reflectance components required for colour constancy and automatic white 

balancing. 

Equation 6.8 is a purely additive model, and hence is appropriate for 

NMFsc since all basis vectors, including the feature reflectance images along 

with the illumination image, are required by the physics of light to be non-

negative. Of course, the input data matrix V must be non-negative too. However, 

the logarithm of the original image data in [0, 255] could include both positive and 

negative values. The NMF input can be made non-negative by first scaling the 

original image data to [1/255, 1] to ensure that all pixel values in log space will be 

finitely negative or zero, and then replacing log with –log.  

NMFsc allows the sparseness for each basis vector to be controlled 

individually. In my model, the illumination basis vector is forced to be non-sparse, 

making its components relatively similar, while the reflectance basis vectors are 

forced to be sparse.  A minor modification of NMFsc allows the sparseness of 

each portion of a single basis vector to be controlled and evaluated separately. 

During each iteration of the original NMFsc method, sparseness is enforced on 

the entire basis vector. This modification is to enforce the same sparseness on 
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each third of the illumination basis separately. In other words, I evenly divided the 

illumination basis into three parts, apply the sparseness constraint to each part 

independently, then append them back into one vector. It is necessary to do this 

for the illumination vector because the R, G and B components of the illumination 

are all packed into a single vector in order to obtain a global solution across the 

three channels. However, when low sparseness is enforced uniformly across this 

vector, it leads to a solutions in which the three components are approximately 

equal, hence a prediction of a pure white illumination. To avoid this problem, the 

sparseness of the illumination basis vector needs is enforced separately for each 

of the R, G, and B segments of the vector. In addition, the sparseness for 

reflectance features is enforced on the rest basis vectors.  

Hence, NMFsc is an approach for solving the illumination-reflectance 

model globally, in that the factorization aims to minimize the objective functions 

based on the data matrix that includes all three channels. This is an advantage 

over those methods that estimate the illumination and reflectance for each colour 

component independently.  

The illumination-estimation algorithm based on using the NMFsc approach 

is summarized as follows: 

1. Scale the input image values to be in the range [1/255,1] 

2. Take T sample subwindows from the image    

3. For each subwindow, concatenate the colour channels into a 
vector. 

4. Take the negative of the logarithm of the elements of the vector 
from (3). 
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5. Choose M representing the total number of different reflectance 
features expected to appear in the T subwindows.   

6. The true value of M is unknown in advance, and could differ from 
image to image.  According to our test, we found that fixing M at 4  
worked well.  

7. Apply NMFsc to find M+1 basis vectors with the sparseness 
constraint of the 1st  basis vector set close to 0 so that it will 
represent the illumination(such constraint is enforced on three 
portions of this basis vector individually), and the sparseness 
constraints of the remaining basis vectors 2,..,(M+1)  set 
significantly larger so they will represent the surface features.  

8. Antilog the negative of the illumination basis  

9. Separately average the R, G, B components of the illumination 
result to yield the estimate of the colour of the scene illumination. 

 

Figure 6.2 and Figure 6.3 show one example of the result the above 

algorithm.  More detailed test results will be described later. 

In the above development, an image was assumed to contain M 

reflectance features. Data was collected from multiple subwindows to form the 

data matrix for NMFsc. However, instead of M reflectance features, suppose that 

we describe the scene as a single, more complex reflectance feature under a 

single illumination, and apply NMFsc to it. In this case, there is only one 

subwindow—the entire image—and there will be one illumination basis vector, 

and only a single reflectance basis vector. 

For Equation 6.1 with M = 1 combined with Equation 6.8, the multiple-

reflectance model can be simplified to be a single-reflectance model as 
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Here again, Ew log00 =h  so the basis vector w0 is the “illumination” basis 

with weighting factor h0. Similarly, Sw log11 =h  so the basis vector w1 is the 

feature reflectance basis vector with weighting factor h1.  It is no longer 

necessary to estimate the parameter M because in this case it always equals 1.  

Equation 6.10 expresses the idea that an input colour image can be 

separated into an illumination image and a reflectance image in log space. How 

NMFsc does the separation depends on the choice of sparseness constraints for 

the two components. Unfortunately, the optimal sparseness values are unknown 

for a given image. However, by setting a relatively low sparseness for one 

component, and a relatively high sparseness for the other, it is expected that the 

result of factorization to be a close representation of the true illumination (non-

sparseness) and reflectance (sparse) components.   

It is interesting to note that for the single-reflectance model the spatial 

location of the pixels becomes irrelevant. This is in contrast to the situation with 

the multiple-reflectance model where location does matter because pixel values 

are compared over multiple subwindows. Since the single-reflectance model 

does not rely on local spatial features, it can be applied to a set of un-ordered 

pixels, or even to a random subset of the input image pixels. 
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6.4 Tests of NMFsc 

The first test is with the multiple-reflectance model. Figure 6.2 shows the 

result. This test is more illustrative of the method than a real test of its 

performance. Statistical results will be provided below. Figure 6.2 (a) is the 

original image of size 128x128. Figure 6.2 (b) shows the result of colour 

correcting the input image according to the actual illumination determined by 

measuring the colour of the gray reference card placed in the scene. Figure 6.2 

(c) shows the colour correction based on NMFsc’s illumination estimate using the 

multiple-reflectance model. The image in Figure 6.2 (a) was divided into 16 

subwindows of size 32x32. NMFsc is applied with M = 4.  Figure 6.3 shows the 

illumination and reflectance basis vectors from NMFsc. Figure 6.3 (a) is the 

illumination component (i.e., the antilog of the logE term from Equation 6.9)), and 

is roughly similar across all subwindows, as it is expected to be. Figure 6.3 (b)-

(e) are the feature reflectance basis vectors (i.e., the anti-log of the w’s in 

Equation 6.9).   

The corresponding results for the single-reflectance model are shown in 

the top row of Figure 6.5. Once again the input image is Figure 6.2 (a).  Figure 

6.5(a) shows the colour-corrected image based on von-Kries scaling using the 

average colour of the illumination image (Figure 6.5 (b)) as the estimated scene 

illumination colour. Figure 6.5 (a) should be compared to the ground truth result 

shown in Figure 6.2 (b). Figure 6.5 (b) and Figure 6.5 (c) are the extracted 

illumination and reflectance images, respectively. The multiplication of Figure 

6.5(b) and Figure 6.5 (c) pixel-by-pixel and channel-by-channel approximates 



 73 

Figure 6.2 (a). For comparison, the corresponding results using McCann99 

Retinex [33] are shown in the bottom row of Figure 6.5, where the R, G and B 

channels are processed independently for 5 iterations each. The purple and 

yellow pixels in Figure 6.5 (e) appear to relate to difficulties Retinex has in 

processing the almost-zero values in the dark shadows.  

Figure 6.2 The colour corrected image based on the multiple-feature reflectance model. (a)  
128x128 input image; (b) Colour correction result b ased on the measured 
illumination; (c) Colour correction result based on  illumination estimated 
using the NMFsc multiple-reflectance model. 

Figure 6.3 The illumination and reflectance basis v ectors (contrast enhanced for 
visualization) for the input image of Figure 6.4 (a ) obtained via the multiple-
feature reflectance model. (a) Illumination basis v ector; (b)-(e) the reflectance 
feature vectors w i. 

The second set of tests provides statistical results about the accuracy of 

NMFsc-based illumination estimation in comparison to some representative 

existing methods. Results are reported on three different image databases, and 

using full images versus thumbnails images as input (See Appendix B). The 

  
(a) (b) (c) 

    
(a) (b) (c) (d) (e) 
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single-reflectance-feature approach is also tested on a set of randomly drawn 

pixels. The first dataset is the Ciurea et al. [13] collection of 11,346 natural 

images representing a variety of indoor and outdoor scenes under different 

lighting conditions. The second test dataset is Cardei’s [10] collection of 900 

images of indoor and outdoor scenes. The third data set is Barnard’s [5] 321 

indoor images under 11 different illuminants. The images in the Barnard data set 

are linear, whereas, those in the Ciurea and Cardei sets have camera gamma 

applied. To make the tests consistent, we applied a gamma of 2.2 to the Barnard 

images. 

For all three data sets, the algorithms tested include Grayworld, Max RGB, 

Shades of Gray (SoG) [26] with Minkowski norm 6, and Edge-Based [88], as well 

as both our multiple-reflectance and single-reflectance NMFsc methods.  The 

Edge-Based method is included as representative of the state of the art since as 

the authors claim about their method,  “…the newly proposed simple colour 

constancy algorithms obtain similar results as more complex state-of-the-art 

colour constancy methods.”  A comparison of the errors for all methods is given 

in Table 6.1, Table 6.2 and Table 6.3. 

In the case of the multiple-reflectance-based estimation, each image is 

resized to be 64x64 pixels, and divided into sixteen 16x16 subwindows. The 

number of reflectance features M is set to 4. The sparseness of the illumination 

and the reflectance bases are set to 0.01 and 0.25 respectively. The average 

computation time for processing one image is 0.8 seconds using Matlab on a 1.6 

gigahertz computer. In the case of the single-reflectance-based estimation, each 
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image is also resized to 64x64. The sparseness of the illumination and the 

reflectance bases are 0.01 and 0.25 respectively. The average computational 

time for processing one 64x64 image is 2.4 seconds.   

Figure 6.5 Results using single-reflectance model o n the input image from Figure 2(a). Top 
row NMFsc results: (a) colour corrected, (b) illumi nation component capturing 
the reddish colour cast in 2(a), (c) reflectance co mponent. Bottom row Retinex 
results: (d) colour corrected, (e) illumination, (f ) reflectance. 

The NMFsc illumination can also be applied to image thumbnails with 

comparable results. In particular, 8x8 thumbnails generated by down-sampling 

the full-sized input images are sufficient.   As can be seen from Table 6.1 and 

Table 6.2, the illumination-estimation accuracy for the full-sized versus thumbnail 

images using the single-reflectance model is quite similar. Although not shown in 

the tables, similar accuracy is achieved on thumbnail images using the multiple-

reflectance model too. One advantage of the 8x8 thumbnails is that they require 

  
(a) (b)   (c) 

  
(d) (e) (f) 
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substantially less computation and storage. For the thumbnails, it takes on 

average 0.20 seconds (instead of 2.4) to process an image using the single-

reflectance method. 

Method 
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
GW 6.07 8.14 39.98 4.44 6.39 36.89 

SoG(p=6) 4.06 6.16 30.37 3.05 4.63 28.57 
MAX RGB 4.61 8.05 27.41 3.33 5.96 21.62 

Edge-Based 4.27 7.89 30.67 3.22 5.81 24.10 
Multi-NMFsc 5.41 7.80 31.80 3.76 5.68 24.34 

Single-NMFsc 4.50 6.68 32.13 3.25 4.93 27.40 
Single-NMFsc (8x8 thumbnails) 4.62 6.73 32.62 3.30 4.95 27.10 

Single-NMFsc 
(1% r.n. samples) 5.01 7.41 37.44 3.66 5.51 36.05 

Table 6.1 Comparison of the NMFsc methods to the So G, Max RGB, Grayworld and Edge-
based methods based on the Ciurea [13] dataset of 1 1,346 images. Errors are 
reported in terms of both the RMS angular and dista nce error measures. 

Method 
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
GW 4.50 6.79 30.06 3.29 5.38 28.87 

SoG(p=6) 2.96 4.85 17.95 2.20 3.71 15.33 
MAX RGB 2.83 5.51 25.37 2.08 4.07 17.53 

Edge-Based 3.16 5.41 29.90 2.37 4.11 26.50 
Multi-NMFsc 3.95 6.27 24.40 2.85 4.63 19.73 

Single-NMFsc 3.43 5.44 22.86 2.59 4.10 19.45 
Single-NMFsc (8x8 thumbnails) 3.54 5.48 24.03 2.55 4.13 19.26 

Single-NMFsc 
(1% r.n. samples) 3.48 5.46 22.57 2.51 4.08 19.53 

Table 6.2.  Comparison of the NMFsc methods to the SoG, Max RGB , Grayworld and Edge-
based methods based on the Cardei [10] dataset of 9 00 images. Errors are 
reported in terms of both the RMS angular and dista nce error measures. 

The sparseness measure is insensitive to the spatial location of pixels in 

the input, so in the case of the single-reflectance model, NMFsc can be used on 

a random subset of the pixels. I have tested the single-reflectance NMFsc 

method using as input a random sampling of only 1% of the pixels from the 
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original input image without a significant change in performance. The errors are 

reported in the last rows of Table 6.1 and Table 6.2. 

Method 
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
GW 5.07 7.89 22.60 4.08 7.06 21.18 

SoG(p=6) 2.57 4.42 13.03 1.99 2.96 8.69 
MAX RGB 2.25 4.61 13.11 1.78 3.68 10.16 

Edge-Based 4.33 5.36 12.87 3.37 4.38 10.93 
Multi-NMFsc  5.46 7.20 17.57 3.96 5.24 12.84 

Single-NMFsc  3.57 6.10 14.77 2.68 5.40 15.10 
Single-NMFsc (8x8 thumbnails) 3.90 5.66 13.01 2.90 4.78 12.48 

Single-NMFsc  
(1% r.n. samples) 4.37 5.86 15.03 3.20 4.47 11.47 

Table 6.3 Comparison of the NMFsc methods to the So G, Max RGB, Grayworld and Edge-
based methods based on the Barnard [5]  dataset of 321 images. Errors are 
reported in terms of both the RMS angular and dista nce error measures.   

The parameter M, the number of reflectance features used in the model, is 

usually chosen to be a number smaller than 10. A larger number increases the 

computational cost, while a smaller number might not represent the correct 

number of features. I also explored how the sparseness settings affect the 

results. The assumption is that the illumination basis is quite uniform relative to 

the reflectance basis. What is important is not the absolute, but rather the relative 

values of the two sparseness settings. Therefore, the sparseness of the 

illumination is fixed at 0.01, varying only the sparseness of reflectance to find a 

good pairing. The relationship of the sparseness of reflectance and the average 

median angular errors are plotted in Figure 6.6 for both the 11,346 and 900 

image datasets. As is evident from this plot the average median angular error 

increases with higher reflectance sparseness, but remains relatively stable below 

0.5. As a result, we set the sparseness of reflectance to be 0.25 for all tests. 
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Figure 6.6 The average median angular errors of bot h 11,346 and 900 image datasets 
plotted as a function of the sparseness of the refl ectance component for the 
single-reflectance NMFsc on full size images. The s parseness of the 
illumination component is held fixed at 0.01.   

6.5 Conclusion 

The problem of separating an image into its illumination and reflectance 

components was expressed in terms non-negative matrix factorization. The 

advantage of a non-negative factorization over other possible factorizations lies 

in the fact that reflectance and illumination are physically constrained to be non-

negative. Since NMF factors a matrix into additive components, the matrix to 

factor is created from the negative of the logarithm of the input image data in (0, 

1] is used.  Sparseness constraints are imposed on the factorization so that it 

finds a component with little variation in its values, and a second component with 

significant variation.  The sparseness constraints encode the assumptions that 

the scene illumination is roughly constant throughout the image, and that the 

surface reflectance is not constant.   
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Tests of the NMFsc approach to illumination estimation show that its 

performance is comparable to that of other methods. In particular, it is roughly 

comparable to the recent edge-based method [88], which is one of the most 

accurate illumination-estimation methods to date.  Although it does not improve 

upon the state-of-the art in terms of accuracy, the NMFsc method is interesting in 

that it approaches the problem from an entirely different mathematical 

perspective and exploits a slightly different set of assumptions.  In particular, the 

low sparseness constraint on the illumination does not directly imply spatially 

smooth illumination since the ordering of the data is irrelevant to the factorization. 

Similarly, there is no explicit assumption that either the average scene 

reflectance or its derivative be gray, nor that the maximal values of R, G and B 

represent the illumination colour in any way. Like Retinex, but unlike most other 

methods, NMFsc also provides a pixel-by-pixel estimate of the illumination 

colour. 
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7: ILLUMINATION ESTIMATION VIA THIN-PLATE SPLINE 
INTERPOLATION  

In this chapter, we introduce a new approach to illumination estimation for 

colour constancy and automatic white balancing developed based on the 

technique of thin-plate spline interpolation. Different from the previous colour 

constancy models, we treat this estimation as a problem of interpolation over a 

set of training images. The illumination is described in terms of its chromaticity 

components r and g, which can be viewed as a functions of the image I; namely,  

r = fr(I) and g = fg(I). The problem of illumination estimation becomes that of 

estimating these two functions. In this case, TPS is used to map image 

information to the r-chromaticity and g-chromaticity values of the illumination. 

7.1 Thin Plate Spline Method 

Interpolation is a common problem and there are many well-established 

interpolation methods [48]. The majority of these methods, such as bilinear or bi-

cubic interpolation, are based on interpolation over training data sampled on a 

uniform grid. However, we cannot uniformly sample the space of images, so 

interpolation over a non-uniformly sampled space is required.  Thin-plate spline 

interpolation is an effective interpolation method under these conditions, and has 

been widely used in the context of deforming one image into registration with 

another. 
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As is typical of interpolation methods in general, thin-plate spline (TPS) 

interpolation constructs a function that matches a given set of data values yi, 

corresponding to a given set of data vectors ],...,[ ,2,1, Diiii XXXX = , in the sense that yi 

= f( iX ). Compared with other methods, TPS has been found to be quite stable 

and accurate in terms of finding a unique solution without having to tune a lot of 

parameters. Here, we apply it to the problem of estimating the chromaticity of a 

scene’s overall incident illumination from an image of that scene. Many previous 

methods [10][34] have used a colour histogram as the input data; instead, for 

TPS we use image thumbnails as input. The thumbnails are 8x8 images created 

by averaging the underlying pixels in the original input image. These thumbnails 

in chromaticity coordinates become input vectors of size 8 x 8 x 2 =  128.  

TPS for illumination estimation requires a “training” set of N images along 

with their corresponding illumination chromaticity values {(Ii,1,Ii,2,…Ii,128), (ri,gi)}. 

TPS determines parameters wi and aj controlling the two mapping functions fr,  fg, 

such that (ri,gi)  = (fr(Ii,1,Ii,2,…Ii,128),  fg(Ii,1,Ii,2,…Ii,128)). 

According to TPS, the mapping function fr, is defined as 
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The function fg is defined similarly. The weights wi control a non-linear 

term, and the aj, control an additional linear term. Each training set pair (an image 
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plus its illumination chromaticity) provides 2 equations. For the ith training image 

we have 
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In addition, a smoothness constraint is imposed by minimizing the bending 

energy. In the original TPS formulation [48], the bending energy function was 

defined in 2D. Here we generalize it to higher dimensions defined as αi (i= 

1..128), the energy will be minimized when 
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For each of fr and fg, we have (N+129) equations in (N+129) linear 

unknowns. Hence, the TPS parameters can be uniquely determined using matrix 

operations. If we define L, w, k, Q and U as follows: 
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W = [w1 , w2 ,…, wN , a0 ,  a1 , a2, …, a128]T 

K = [r1 , r2 , … ,rN ,0 ,0 ,0,….,0]T or [ g1 , g2 , … ,gN ,0 ,0 ,0,….,0]T 
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where Uij = U(||(Ii,1…Ii,128) - (Ij,1…Ij,128)||) and 0 is the 129x129 matrix of zeroes. 

These (N+129) equations system can then be written as K=LW, which can be 

solved as W = L-1K, to get the control parameters for functions fr and fg 

individually. 

7.2 Tests of TPS 

We have implemented the TPS illumination-estimation method in Matlab 

and conducted tests to compare its performance to that of other illumination-

estimations methods.  

Several different error measures are used to evaluate performance (See 

Appendix A for detail). For each image, the distance between the measured 

actual illumination chromaticity and that estimated is calculated as both the 

angular distance and the L2-Euclidean distance. As with the distance measure, 

we also compute the RMS, mean, and median angular error over the test set of 

images. 

The first test is from Barnard’s calibrated 321 SONY images [5]. We 

evaluate the illumination error using the leave-one-out cross-validation procedure 
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[3]. In the leave-one-out procedure, one image is selected for testing, and the 

remaining 320 images are used for training in order to determine the required 

parameters. This is repeated 321 times, with a different image left out each time. 

The results with corresponding results for the Shades of Gray [26], Support 

Vector Regression(SVR)[26], Max RGB[22], and Grayworld [9] methods are 

listed in the Table 7.1.  

We next consider Cardei’s [10] set of 900 uncalibrated images(See 

Appendix B). Leave-one-out tests are used once again. The results are shown in 

Table 7.2.  

The final test is based on the 7661 real images extracted from over 2 

hours of digital video acquired with a SONY VX-2000 as used by Ciurea et 

al.[13]. We used Subset A for training and B for testing and vice versa. The 

results are listed in Table 7.3. The combined errors from both tests are shown in 

Table 7.4.  

Method Dimension/ 
Norm Power  

Angle Distance  L2-Distance(x10 2) 
Median  Max RMS Median  RMS  Max  

TPS  0.64 14.43 2.10 0.53 1.55 10.42 

SVR 
2D 4.65 22.99 10.06 3.41 7.5 16.41 
3D 2.17 24.66 8.069 3.07 6.3 16.03 

SoG 6 3.97 28.70 9.027 2.83 6.21 19.77 
Max RGB  6.44 36.24 12.28 4.46 8.25 25.01 

GW  7.04 37.31 13.58 5.68 11.12 35.38 

Table 7.1  Comparison of TPS to 2D and 3D SVR performance, SoG , Max RGB, Grayworld 
performance.  The results involve real-data trainin g and testing on the 321 
SONY images. Errors are based on leave-one-out cros s-validation, and are 
reported in terms of both the RMS angular chromatic ity and distance error 
measures.  
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Method Dimension/  
Norm 

Angle Di stance  L2-Distance(x10 2) 
Median  RMS Max Median  Mean RMS Max 

TPS(rg) 2 2.26 3.86 22.23 1.72 2.22 2.92 18.29 
SVR (no 

resampling) 
2D 2.40 4.47 20.43 1.74 2.40 3.27 18.40 
3D 2.02 3.94 17.46 1.40 2.09 2.94 15.42 

SVR(with 
resampling) 3D 2.07 3.91 10.57 1.55 2.03 2.72 6.42 

C-by-C 2D - - - - 2.92 3.89 - 
NN 2D - - - - 2.26 2.76 - 
SoG 6 3.02 4.99 19.71 2.19 2.96 3.80 15.96 

Max RGB  2.96 6.39 27.16 2.17 3.36 4.75 22.79 
GW  4.34 6.65 31.44 3.17 4.12 5.26 29.99 

Table 7.2 Comparison of Composition Solution and TP S to that of SVR, Colour by 
Correlation, the Neural Network, SoG, Max RGB, Gray world. The tests are 
based on leave-one-out cross validation on a databa se of 900 uncalibrated 
images.  The entries for C-by-C and NN are from [10 ] (Table 7 page 2385). 

Method Training and Test Sets  
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
TPS 

Train: Subset A 
 

Test: Subset B 

4.52 7.02 34.81 3.37 5.19 25.78 
3D SVR 4.53 6.76 24.55 4.11 5.03 18.62 

SoG 
(norm = 6) 6.71 8.93 37.01 4.83 6.59 27.99 

MAX RGB 10.33 12.81 27.42 6.99 9.14 21.72 
GW 6.83 9.66 43.84 5.25 7.82 45.09 
TPS 

Train: Subset B 
 

Test: Subset A 

4.58 6.83 27.62 3.31 4.99 29.37 
3D SVR 5.33 7.32 24.80 3.91 5.29 16.68 

SoG 
(norm = 6) 6.71 8.92 37.01 4.83 6.59 27.99 

MAX RGB 9.23 11.32 26.76 6.76 8.39 21.55 
GW 7.83 10.66 43.84 6.25 8.81 45.09 

Table 7.3 Comparison of TPS error to 3D SVR, SoG, M ax RGB, and Grayworld. Training is 
based on all the images in the given subset. 

 
 
 
 
 
 
 
 

Table 7.4 Comparison of TPS error to 3D SVR, SoG, M ax RGB, and Grayworld.  The results 
involve real-data training and testing on disjoint sets of 7,661 images from the 
Ciurea data set.  

Method 
Angular Degrees  Distance( x102) 

Median  RMS Max Median  RMS Max 
TPS 4.56 6.93 34.18 3.35 5.09 25.78 

3D SVR 4.91 7.03 24.80 3.62 5.16 18.62 
SoG 6.71 8.93 37.01 4.83 6.59 27.99 

MAX RGB 9.65 12.13 27.42 6.86 8.80 21.72 
GW 6.82 9.66 43.84 5.25 7.82 45.09 
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7.3 Conclusion 

The problem of estimating the chromaticity of the overall scene 

illumination is formulated in terms of interpolation over a non-uniformly sampled 

data set. The chromaticity is viewed as a function of the image and the set of 

training images is non-uniformly spaced. Thin-plate-spline interpolation is an 

excellent interpolation technique for these conditions and has been shown to 

work well for illumination estimation in particular. TPS calculates its result based 

on a weighted combination of the entire set of training data. Hence, for efficiency 

it is important to keep that set as small as possible. Overall, the tests on real 

images show the accuracy of TPS illumination estimation to be very good. 
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8: QUATERNION COLOUR CURVATURE  

Edges have been used in colour constancy algorithms such as the Edge-

based Hypothesis approach reviewed in Section 2.1.5. For better detection of 

edge and curvature structures in colour images, in this Chapter, I propose a 

novel approach to measuring curvature for in colour or vector-valued images 

based on quaternion singular value decomposition of a Hessian matrix. This 

approach generalizes the existing scalar-image curvature approach which makes 

use of the eigenvalues of the Hessian matrix [29]. In the case of vector-valued 

images, the Hessian is no longer a 2D matrix but rather a rank 3 tensor. Here, 

quaternion curvature is used to derive vesselness measure for tubular structures 

in colour or vector-valued images by extending Frangi’s [29] vesselness measure 

for scalar images. Test results show the effectiveness of quaternion colour 

curvature in generating a vesselness map.  

8.1 Introduction 

Hessian-based methods have been widely used from curvature measures 

to feature detection[6][12][14][16][18][29][63][64][66]. The Hessian matrix 

describes the second-order structure of gray-level variations around each pixel of 

the image. There are two main categories where a Hessian matrix is used. First, 

the Hessian and the related second-moment matrix have been applied in several 

operators (e.g., the Harris [36], Harris-affine [65], and Hessian-affine [64] 

detectors) to find “interest” points where the local image geometry changes in 
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more than one direction.  Hessian-based blob detector in colour space is 

proposed in [66].  Second, since the eigenvalues of the Hessian matrix at a pixel 

measure the principal curvatures of the image intensity surface, it can be used to 

detect tubular (linear, vessel-like) structures, which is useful in many applications 

[12][14][15][16][18][29].  By smoothing with Gaussian kernels of various sizes, 

the normalized second-order derivatives indicate the scale and orientation of 

vessels. Vesselness is measured by a large curvature in the cross-sectional 

direction and a small curvature along the vessel. By eigen-analysis of the 

Hessian matrix, elongated objects (i.e., vessels) are detected wherever the first 

eigenvalue is positive (or negative) and prominent. This process generates a 

single response for both lines and edges, producing a clearer sketch of an 

image’s structure than is usually provided by the magnitude of gradient.   

Existing first-derivative point/blob detectors are applied to gray scale 

images. In the case of colour images, the basic approach has been to compute 

the derivatives of each colour channel separately, and then add them to produce 

the final result [66]. However, the first derivatives of a colour edge can be in 

opposing directions, so the summation can lead to cancellation of the derivatives. 

The same situation occurs in second-derivative-based Hessian detectors. 

Existing Hessian-based curvature methods are also based on gray scale images, 

whether the luminance image, or a single colour channel. For example, Hessian-

based multi-scale segmentation or enhancement of vessels in retinal images has 

been extensively studied [12][15][18][29], where only the green channel is used. 
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To make use of the extra information in a colour image, I use the 

quaternion representation of colour to extend Hessian curvature measures to the 

colour domain. In particular, Frangi’s [29] vesselness approach is extended by 

estimating principle curvatures in RGB colour space using quaternion operations. 

Sanqwine [8] introduced the quaternion representation of colour.  Since 

quaternions, which are an extension of the complex numbers, consist of one real 

component and three imaginary components, a colour can be represented by a 

pure quaternion having a real component of zero, and imaginary components R, 

G and B.  With colours encoded in quaternions, the entries of the Hessian matrix 

become quaternions that combine secondary derivatives from all colour channels 

in their imaginary components. Quaternion singular value decomposition (QSVD)  

[8][69] can then be applied to the Hessian matrix in order to find the principle 

curvatures as described by the two non-negative, real-valued singular values. 

These singular values can be used to measure vesselness or other features.  

8.2 Curvature and Vesselness Measure 

Viewing an image as an intensity surface, the local shape characteristics 

of the surface at a particular point can be described by the Hessian matrix. Lines 

(i.e., straight or nearly straight curvilinear features) and edges have high 

curvature in one direction and low curvature in the orthogonal direction, and this 

characteristic can be measured via the Hessian, H.  For a 2D scalar image, H is 

a 2x2 matrix of the second derivatives of image I 
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8.1 

The four entries of H are the second-order partial derivatives of the scalar 

image I evaluated at the pixel p = <x, y>, and σ is the Gaussian scale of the 

partial derivatives.  

The eigenvalues of H are called principal curvatures and are invariant 

under rotation. The eigenvectors of H can be used to define a coordinate system 

that is aligned with the dominant directions of curvature. Given the ordered 

eigenvalues of H such that |λ1|<|λ2| with corresponding eigenvectors (e1, e2), the 

eigenvectors define an orthogonal coordinate system aligned with the direction of 

minimal e1 and maximal e2 curvature.  

In the case of a vessel-like structure, e1 indicates the orientation of the 

vessel. Thus e1 represents the parallel curvature, and e2 the orthogonal 

curvature. As a vesselness measure for 2D images, Frangi [29] uses H to 

describe the curvature at each point in the image. The idea behind eigenvalue 

analysis of the Hessian is to extract the principal directions in which the local 

second-order structure of the image can be decomposed. Since this directly 

gives the direction of least curvature (along the vessel), application of several 

filters in multiple orientations is avoided.  

Both eigenvalues play an important role in the vesselness measure.  In 

particular, for a vessel we expect |λ1|<|λ2|, with  λ2 < 0 for bright vessels against a 
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dark background, and λ2 >0 for the reverse. Finally the overall magnitude of the 

eigenvalues should be larger at vessels than in background regions. The Frangi 

filter combines these observations in the following two quantities 
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Here, RB is the blobness measure in 2D. It is maximized for highly blob-

like structures and decreases as the difference between the parallel and 

orthogonal curvature increases.  S is the norm of the Hessian matrix and 

measures the relative brightness/darkness of the structure. It should become 

large for vessels. In other words, it presents the “unlikelihood” that a pixel is from 

the background. These quantities are combined using exponentiation yielding a 

‘‘vesselness’’ measure (for the bright-vessels-on-dark case) defined as follows: 
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The constants β and c are parameters which control the sensitivity of the 

filter to blobness and backgroundness.  
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8.3 Eigenvalues of the Colour Hessian Matrix 

As mentioned above, when the gradient of a colour image is computed by 

adding up the first derivatives of the separate channels, the channel derivatives 

may point in opposing directions and cancel one another. DiZenzo [17] argues 

that a simple summation of the derivatives ignores the correlation between the 

channels. A similar problem arises in converting a colour image to a luminance 

image. As a solution in the first-derivative case, DiZenzo[17] and Kass[46] 

proposed the colour tensor by colour gradient, but it does not generalize to the 

colour Hessian matrix.  The alternative of solving for the eigenvalues of the 

Hessian matrix separately in each colour channel generates three pairs of 

eigenvalues, but these then do not immediately fit into the schema of Frangi’s 

vesselness measure. Ming [66] used a weighted combination of Hessian 

matrices over HSI colour channels to calculate a colour Hessian.; however, this 

approach does not eliminate the cancellation problem either. Our proposal, which 

uses the eigenvalues and eigenvectors of a colour Hessian matrix based on 

quaternion singular value decomposition [8][18], overcomes the cancellation 

problem. 

In the quaternion representation of a 2D colour image, each pixel p = 

<x,y> is represented by a quaternion number kIjIiIQ ⋅+⋅+⋅= 321 , where In (with 

n = 1,2,3) is the nth channel of the input image, and i, j, and k are three imaginary 

bases. The quaternion-valued Hessian matrix HQ is constructed as  
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QSVD [8][69] can be applied to HQ,  

Q
T

Q UVH
Q

⋅Λ⋅=
, 8.6 

where VQ and UQ are two quaternion matrices of eigenvectors, and Λ is a real-

valued diagonal matrix containing two non-negative singular values ξ1 and ξ2. 

Given the assumption  that quaternion eigenvector corresponding to the smaller 

singular value of the Hessian points along the direction of minimal curvature, and 

that the larger singular value points along the direction of the maximum 

curvature, we can continue using Equation 8.4, but now as a colour vesselness 

measure. It should be noted that the two singular values in Equation 8.6 are 

unsigned magnitudes. To apply the sign test in Equation 8.4, however, we must 

use the sign of eigenvalue λ2 from the corresponding gray-scale image. 

8.4 Tests and Results of Curvature Measure 

The tests are based on a set of colour images consisting of 

photomicrographs [97], nature photos, and satellite imagery [95]. For each such 

image, a vessel map image is generated that can be used for detection and 

segmentation of tubular structures, and vessel segmentation and enhancement. 

The main purpose of the vessel map is to increase the separability of vessel 
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structures from the background. Segmentation can be obtained by thresholding 

the vessel map, and enhancement can be achieved by pixel-wise multiplication 

with the input image. Due to the variability in the scale of vessels, the vessel map 

is constructed using a multi-scale scheme. Five scales of Gaussian are 

employed for each image, with σ = 1,2,3,4 and 5. Gamma-normalized derivatives 

are also used with γ = 0.5 as in [29]. The blobness and backgroundness 

parameters β and c are set to 0.5. The results are combined across the scales by 

the maximum rule [29], which is to use the maximum vesselness response 

across all scales.  

Several results of tests on colour images are shown in Figure 8.1 - Figure 

8.4. The vessel maps are generated based on both the colour-Hessian approach 

and the traditional grayscale-Hessian approach. For ease of comparison, the 

vessel maps are normalized by scaling vesselness intensity to [0,1] and then 

scaled for better visualization.  

As can be seen by comparing Figure 8.1(b)-Figure 8.4(b) with Figure 

8.1(a)-Figure 8.4(a), the colour Hessian achieves better results than the 

grayscale version in term of the vessel map. In the grayscale-derived vessel 

maps, there is low vesselness found for vessels that differ in colour from the 

background, but are nonetheless iso-luminant to it. However, even in the regions 

where luminance of the vessel and background differ, the results of the colour 

Hessian show higher vesselness contrast. Colour is an important discriminative 

property of objects, and the results demonstrate that it provides sufficient extra 
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information to distinguish between background and objects in cases where the 

traditional luminance-based method fails. 

  
(a) (b) 

 
(c) (d) 

Figure 8.1 Result based on a photo of a jellyfish [ 96] (a) Grayscale-based Hessian result in 
which the tentacles are not detected due to approxi mate iso-luminance. (b) 
Colour-based Hessian result in which the tentacles are more clearly 
delineated. (c)-(d) Scaled up version of the top-le ft corners of (a)-(b) 
respectively. 

  
(a) (b) 

Figure 8.2 Result based on a two-photon fluorescenc e microscopy image of villi of the 
mouse small intestine [97]; (a)  Grayscale-based He ssian result in which the 
curvature measure around green contours is low beca use they are similar in 
intensity to the blue background; (b) Colour-based Hessian result in which the 
green tubular structures are clearly delineated. 
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(a) (b) 

Figure 8.3 Result based on a fluorescence and confo cal microscopy photo of rat retina 
astrocytes and blood vessels[97]; (a) Grayscale-bas ed Hessian result where 
the method fails to detect the dominant vessel acro ss the center line of the 
image. (b) Colour-based Hessian result. 

  
(a) (b) 

Figure 8.4 Result based on a satellite image[95]; ( a) Grayscale-based Hessian result in 
which the green vessel-like structure is missed. (b ) Colour-based Hessian 
result in which the green vessel-like structure is identified. 

8.5 Conclusion 

The Hessian matrix can be used to estimate curvature and so provides a 

good foundation for identifying interesting image features such as tubular vessels 

and blobs.  In generalizing the use of the Hessian from grayscale to colour 

images, however, the problem that arises is the possible information loss caused 

by cancellation of derivatives in opposing directions from the separate colour 

channels.  To overcome this problem, I employ the quaternion representation of 

colour, which encodes an RGB colour in a single quaternion number. Information 

loss is avoided by extracting the eigenvalues from the quaternion-valued colour 
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Hessian matrix based via QSVD. The quaternion-based method demonstrates 

improved performance in term of the resulting vessel map, which is important for 

vessel segmentation and enhancement, as well as, for curvature/edge detection 

that can be potentially useful in improving the result of edge-based colour 

constancy algorithms. 
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9: OVERALL CONCLUSION AND CONTRUBITIONS 

I have discussed several colour constancy methods in detail in the 

previous chapters. In this chapter, I will present a final review of these methods 

and enumerate my specific contributions.  

I have explored non-statistical estimation solutions, constrained by the 

characteristics of surface material as well as the illumination.  The following 

characteristics have been studied: surface colour of specific materials, such as 

human skin and achromatic surfaces; illumination spectra limited to blackbody 

radiation; the formation of colour signals according to the dichromatic model of 

reflection; and the independence of spatial variance of illumination and surfaces 

in a given scene.  I also have discussed one supervised approach that uses prior 

information from a training set via thin-plate-spline interpolation. In summary:  

In Chapter Three, a new colour constancy method, GSI, was proposed 

that is based on detecting pixels corresponding to gray surface reflectance—

which is not necessarily the same as gray image colour—and using their average 

image colour as an indicator of the colour of the overall scene illumination. The 

gray surfaces are found by first transforming the image RGB values to the LIS 

coordinate system with axes which roughly correspond to luminance, illumination 

‘colour’ and reflectance. The trick is in the identification of gray surfaces in a 

colour coordinate system that encodes illumination and surface reflectance along 

different axes, where values of S near zero tend to be gray. Tests on real images 
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show the GSI method works better than Shades-of-Gray, Grayworld and Max 

RGB. This method does not require training, and is substantially simpler to 

implement. This work has been published in CIC 2007 [93] as a result of the 

team effort of Weihua Xiong, Brian Funt and I. 

Chapter Four discussed a model of skin colour under varying illumination 

that allows easy decomposition of a skin chromaticity into two components: one 

due to the illumination and the second due to the melanin content. As a 

computationally inexpensive model, the proposed method is useful for estimating 

the colour of the light illuminating the skin, and for normalizing skin in images for 

which the colour of the illumination is not known.  Based on this model, the range 

of chromaticities of arbitrary skin under all illuminant colour temperatures can be 

transformed into a new coordinate system defined with two independent axes:  

an illumination axis as a function of colour temperature, and a skin axis as a 

function of melanin content. Tests show that the model succeeds relatively well 

even when the assumptions (i.e., narrowband sensors, blackbody illuminants, 

and melanin and hemoglobin contents as being the dominant factors in skin 

colour) are violated. The skin tone normalization is accomplished by shifting the 

colour of the entire image so that skin pixels lie on the pre-defined melanin axis. 

The corresponding result has been published in Shi and Funt, AIC 2008 [74]. 

Another robust method for determining the illumination was proposed in 

Chapter Five. The presented illumination estimation method uses the constraints 

provided by the dichromatic model based on two Hough transform voting 

procedures. First, each image pixel votes for every dichromatic plane it could fall 
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on. This results in a 2D histogram representing the likelihood of each plane. 

Second, each dichromatic plane votes for each candidate illumination axis that 

could pass through that plane. The final illumination estimate is determined by 

intelligently choosing from amongst the most likely candidates. This robust 

method creates a 2D illumination axis histogram that represents the likelihood of 

the possible illuminations. Unlike other existing methods trying to solve for 

Dichromatic model, this method makes no assumption about the number of 

surfaces or the surface colours, yet performs well in comparison to the other 

methods tested. The corresponding result has been published in Shi and Funt, 

CGIV 2008[75].  

In Chapter Six, a new approach to illumination estimation for colour 

constancy and automatic white balancing, by separating the image into 

illumination and reflectance components, was proposed based on the technique 

of nonnegative matrix factorization (NMF) with sparseness constraints (NMFsc).  

The problem of separating an image into its illumination and reflectance 

components was expressed in terms non-negative matrix factorization. The 

advantage of a non-negative factorization over other possible factorizations lies 

in the fact that reflectance and illumination are physically constrained to be non-

negative. Sparseness constraints are imposed on the factorization so that it finds 

a component with little variation in its values, and a second component with 

significant variation.  The sparseness constraints encode the assumptions that 

the scene illumination is roughly constant throughout the image, and that the 

surface reflectance is not constant.  Tests of the NMFsc approach to illumination 
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estimation show that its performance is comparable to that of other methods. 

Although it does not improve upon the state-of-the art in terms of accuracy, the 

NMFsc method is interesting in that it approaches the problem from an entirely 

different mathematical perspective and exploits a slightly different set of 

assumptions.  Like Retinex, but unlike most other methods, NMFsc also provides 

a pixel-by-pixel estimate of the illumination colour. The corresponding result has 

been published in Shi et al. AIC 2007[77]. 

In Chapter Seven, I formulated the problem of estimating the chromaticity 

of the overall scene illumination in terms of interpolation over a non-uniformly 

sampled data set. The chromaticity is viewed as a function of the image and the 

set of training images is non-uniformly spaced. Thin-plate-spline interpolation is 

an excellent interpolation technique for these conditions and has been shown to 

work well for illumination estimation in particular. TPS calculates its result based 

on a weighted combination of the entire set of training data. Overall, tests of the 

thin-plate spline method on a large set of real images demonstrate that the 

method estimates the colour of the incident illumination quite accurately. This 

work has been published in CIC 2007 [94] as a result of the team effort of 

Weihua Xiong, myself and Brian Funt. 

Finally, Chapter Eight provided a quaternion-based colour curvature 

measure as an aid to existing methods that use information from spatial edges. 

Here, the Hessian matrix is used to estimate curvature and so provides a good 

foundation for identifying interesting image features such as tubular vessels and 

blobs. I employ the quaternion representation of colour, which encodes an RGB 
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colour in a single quaternion number. Information loss during colour-to-gray 

conversion is avoided by extracting the eigenvalues from the quaternion-valued 

colour Hessian matrix via QSVD. The quaternion-based method demonstrates 

improved performance in terms of the resulting vessel map, which is important 

for vessel segmentation and enhancement. As well it is useful for curvature/edge 

detection that can be potentially helpful in improving the results of edge-based 

colour constancy algorithms. The corresponding result has been published in Shi 

et al. CIC 2008 [76]. 

In Table 9.1 - Table 9.3, I have summarized the performance of the 

existing and the proposed methods based on three datasets: 

Methods Training 
Required  Median Angular Error 

existing 

Grey World 

no 

7.0 
Max-RGB 6.5 

Multilinear Constraint 5.8 
Shades of Grey (n=6) 3.7 

Grey Edge 3.2 
2nd order Grey Edge 2.7 
Colour by Correlation 

yes 

3.2 
Neural Networks 7.8 

2D SVR 4.7 
3D SVR 2.2 

Chapter 3 GSI 

no 

3.9 
Chapter 5 3D Hough Transform 1.7 

Chapter 6 
Multi-NMFsc 5.5 

Single-NMFsc 3.6 
Chapter 7 TPS yes 0.6 

Table 9.1 Comparison of methods proposed in this th esis and existing methods in terms 
of errors based on 321 image dataset. 
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Method Train  
Angle Distance  L2-Distance(x10 2) 

Median  RMS Max Median  Mean RMS Max 

existing 

SVR 2D 
 

yes 

2.40 4.47 20.43 1.74 2.40 3.27 18.40 

SVR 3D 2.02 3.94 17.46 1.40 2.09 2.94 15.42 
C-by-C - - - - 2.92 3.89 - 

NN - - - - 2.26 2.76 - 
SoG(p=6) 

no 

3.02 4.99 19.71 2.19 2.96 3.80 15.96 
Max RGB 2.96 6.39 27.16 2.17 3.36 4.75 22.79 

GW 4.34 6.65 31.44 3.17 4.12 5.26 29.99 
Edge-Based 3.16 5.41 29.90 2.37 4.11 26.50 3.16 

Chapter 6 
Multi-NMFsc 3.95 6.27 24.40 2.85 4.63 19.73 3.95 

Single-NMFsc 3.43 5.44 22.86 2.59 4.10 19.45 3.43 
Chapter 7 TPS yes 2.26 3.86 22.23 1.72 2.22 2.92 18.29 

Table 9.2 Comparison of methods proposed in this th esis and existing methods in terms 
of errors based on 900 image dataset. 

Method Train  
Angular Degrees  Distance(x10 2) 

Median  RMS Max Median  RMS Max 

existing 

GW 

no 

6.07 8.14 39.98 4.44 6.39 36.89 
SoG(p=6) 4.06 6.16 30.37 3.05 4.63 28.57 
MAX RGB 4.61 8.05 27.41 3.33 5.96 21.62 

Edge-Based 4.27 7.89 30.67 3.22 5.81 24.10 
Chapter 3 GSI 5.46 7.95 38.71 4.15 6.23 31.93 

Chapter 6 
Multi-NMFsc 5.41 7.80 31.80 3.76 5.68 24.34 

Single-NMFsc 4.50 6.68 32.13 3.25 4.93 27.40 
Chapter 7 TPS yes 4.56 6.93 34.18 3.35 5.09 25.78 

Table 9.3 Comparison of methods proposed in this th esis and existing methods in terms 
of errors based on 7661 image dataset. 

Which method is to be preferred depends on the situation. For example, 

TPS may be the best option in terms of accuracy when training and memory are 

not concerns. As a non-training approach, GSI achieves good estimation 

accuracy provided the camera sensor responses of the testing images are 

known. The method based on solving the dichromatic model is a good choice 

when the testing images are taken under laboratory conditions and speed is not 

a concern.  The NMFsc method can generate a separate illumination estimate for 

every pixel location, and therefore is preferred when the illumination colour in the 

scene is not constant. Finally, if pixels representing human skin can be detected 
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in the testing image, the skin-illumination model may be used for accurate 

illumination estimation as well as skin tone correction. 

Overall, these novel methods proposed in this thesis aim to overcome 

drawbacks in existing approaches for better performance, increased robustness, 

and improved efficiency.  The corresponding results of tests based on real world 

image data sets have proven their success in the field of Colour Constancy and 

Illumination Estimation. 



 105 

APPENDICES 

Appendix A – Error Measure 

Given and illumination estimate [Re, Ge, Be], its corresponding chromaticity 

values are 
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Given illumination chromaticity r and g, the other component can be 

obtained as b = 1 – r – g . Let [rr gr br] be the true illumination chromaticity.  The 

distance error in 2D chromaticity space and 3D angular space are defined as: 
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Appendix B – Main Datasets 

321 Image Dataset (Barnard 2002) 

Barnard’s 321 images [5] of scenes in a laboratory setting are captured 

using a calibrated SONY DXC-930 camera. These images are from 33 different 

scenes under 11 different lights that represent a cross-section of common lights.  

900 Image Dataset (Cardei 2002) 

Cardei’s [10] set of 900 uncalibrated images are taken using a variety of 

different digital cameras manufactured by Kodak, Olympus, HP, Fuji Polaroid, 

PDC, Canon, Ricoh and Toshiba. The illumination RGB values for these images 

were measured from a gray card placed in each scene. 

11346 Image Dataset (Ciurea 2003) 

Ciurea’s dataset [13] includes a wide variety of indoor and outdoor 

scenes, including many with people in them. He measured the illumination via a 

grayball attached to a digital video camera. This was made to appear at a fixed 

location near the right-bottom corner of each video frame. The average 

chromaticity value of the pixels in the brightest region is assumed to reflect the 

RGB of the true scene illumination. The grayball appears in the lower right-hand 

quadrant of every original image, so for testing the bottom corner or the right half 

of each image should be cropped. As shown in the figure below, one test image 

is cropped to remove the gray ball, which is located at a fixed location in the 

lower right quadrant.  
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(a) (b) 

Figure 9.1 Example image from the dataset. (a) Orig inal image containing gray ball from 
which the colour of the scene illumination is deter mined. (b) Cropped image to 
be used for algorithm testing with gray ball remove d.  

Reduced subset of 11346 Images 

However, many of 11346 images have very good colour balance (i.e., 

RGB of the gray ball is gray) which could bias the testing of the illumination 

estimation methods. Therefore, the majority of the correctly balanced images are 

eliminated from the data set so that the overall distribution of the illumination 

colour is more uniform, as can be seen in the figure below. The resulting data set 

contains 7661 images.  

The reduced database can be further divided into two independent sets 

based on geographical location: Subset A includes 3581 images, and subset B 

includes 4080. Subset A contains images from the Apache Trail, Burnaby 

Mountain, Camelback Mountain, CIC 2002 and Deer Lake. Subset B contains 

images from completely different locations including False Creek, Granville 

Island Market, Marine Drive, Metrotown shopping centre, Scottsdale, Simon 

Fraser University and Whiteclyff Park. 
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Figure 9.2 Illumination distribution of full datase t and selected subset. (a) The original data 
set contains 11,346 images, but the illumination ch romaticities cluster around 
gray (0.33, 0.33). (b) The reduced data set contain s 7661 images with a more 
uniform distribution of illumination chromaticity. 
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