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Abstract

Multi-state processes provide a convenient framework for analysis of event history
data, which arise in many fields including public health, biomedical and health ser-
vices research, reliability, business, and social sciences. This thesis develops methods
for statistical analyses with various Markov processes in particular, and presents ap-

plications of the methodology.

Starting with the homogeneous semi-Markov (HSM) process, a generalization of the
classical homogeneous Markov processes, we propose an alternative estimation pro-
cedure with right-censored data to the existing approaches to avoid their possible
inconsistency in estimating the transition probabilities. Two simulation based algo-
rithms are implemented to construct confidence bands for the HSM kernel and the
sojourn time distributions. The modulated semi-Markov (MSM) process extends the
HSM process to a Cox regression setting, allowing for general time-dependent co-
variates but invalidating the usual martingale methods to derive asymptotics. We
consider estimation of the regression parameters in the MSM model and establish
the consistency, asymptotic normality and efficiency of the estimators, applying the
modern empirical process theory. As a further generalization, the nonhomogeneous
semi-Markov (NHSM) process assumes its transition intensity involving two time
scales, the individual study time since the onset of the process and the duration time
in the current state. We provide estimation procedures for the parameters in four
model specifications with the NHSM process. The last topic of the thesis is to deal
with dependent censoring in event history data analysis. We focus on a particular
informative censoring scheme with the observation of a NHSM process, and adapt a
copula-based approach for dependent competing risks. Finite sample properties of all
the proposed methods are examined via simulation. In addition, with the proposed
methods, we conduct analyses of two real data sets, the human sleep data presented in
Kneib and Hennerfeind (2008) and the hospitalization data collected by the CAYACS
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Chapter 1

Introduction

1.1 Introduction

Event history data arise in studies where a collection of individuals are followed over
time, and information on the types of certain events and the times of occurrence is
collected. Classical survival analysis focuses on the time to the occurrence of a single
event, and can be too simplistic when multiple events are of interest. Multi-state
processes provide a convenient framework for event history data analysis (Andersen
et al., 1993; Commenges, 1999; Andersen and Keiding, 2002).

Multi-state models are often specified in terms of transition intensities, which may
involve two time scales: the (individual) study time since the origin of the process
and the duration time in the current state. Classical Markov models, in which the
transition intensities depend on the history only through the current state and the
study time since the origin of the process, have been widely used due to the simplicity
of the model interpretation and the ease of computation (Andersen et al., 1993).
However, because of their memoryless property, the classical Markov models can not
deal with duration dependence. They have been found inadequate in many practical
applications (Andersen et al., 2000; Kang and Lagakos, 2007).

The literature of inferences with duration-dependent multi-state models for event
history analysis is still lacking. This thesis attempts to fill in the gap to some extent.
Perhaps the simplest duration-dependent multi-state model is the homogeneous semi-
Markov model (Lagakos et al., 1978; Gill, 1980). It assumes that the transition
intensities depend on the history through the current state and the duration time in

the current state. We develop methods with the homogeneous semi-Markov model and
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its two generalizations. One generalization incorporates time-dependent covariates
through a Cox regression form, and the other allows the dependence of transition
intensities on both the duration and the study time scales. In addition, we propose

an approach to handling a particular type of informative censoring.

1.2 General Formulation

1.2.1 Multi-state Processes

A multi-state process S(-) = {S(t) : t > 0} is a stochastic process with right contin-
uous sample paths which takes values in a finite state space, say, £ = {1,2,...,r}
with 7 < co. With respect to the history of the process, {F; : t > 0}, where F; is the
o-algebra generated by {S(u) : 0 < u < t}, the transition probabilities are defined as

Byj(s,1; Fs) = P{S(t) = jIS(s) = h, Fs}

for h,j € £ and s < t. Denote S(t—) as limg; S(s). The transition intensities are
defined by

. P{S(t+ At) = j|S(t—) = h, F,
o :5) = gy PO = 1810) = Ty

for h # j € £, which we assume exist. A state h € £ is absorbing if pp;(t; F;) = 0 for
all t > 0 and j € £ with j # h. No further transitions can occur from an absorbing
state.

Multi-state processes can be graphically illustrated by diagrams with boxes repre-
senting the states and arrows among the boxes representing the possible transitions.
For example, the survival process can be viewed as a two-state process with one

transient state “alive” and one absorbing state “dead”, as shown in Figure 1.1.

Alive Dead
(State 1) (State 2)

Figure 1.1: A two-state model for survival process

Two practical examples that we consider throughout this thesis are as follows.

Example 1.1 (Hospitalization process). A medical study collected the hospitaliza-

tion information during 1986-2000 for 1374 over five-year cancer survivors who were
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diagnosed in British Columbia between the ages of 0 to 19 years between 1981 and
1995. Details about this study can be found in Ying (2006) and Hu et al. (2008). The
study’s primary goal was to assess long-term resource needs of the childhood cancer
survivors and to develop strategies to improve access and effectiveness of medical care.
As shown in Figure 1.2, we formulate the hospitalization process into a multi-state

process with 3 states: out of hospital, in hospital, and dead.

Out of Hospital | In Hospital
(State 1) D — (State 2)
\ Dead /
(State 3)

Figure 1.2: A three-state model for the hospitalization process

Example 1.2 (Human sleep process). Kneib and Hennerfeind (2008) analyze the
human sleep data collected at the Max-Planck Institute for Psychiatry in Munich,
Germany. The study’s major goal was to obtain a valid description of the dynamics
underlying the sleep process of the 70 participants. The sleep process of each partici-
pant was monitored for one whole night, and was recorded by electroencephalographic
(EEG) measurements which were afterwards classified into three states: Awake, REM
(rapid eye movement), and Non-REM. The three-state model we consider for the data
is shown in Figure 1.3. In addition to EEG measures taken every 30 seconds, the
nocturnal cortisol secretion was measured approximately every 10 minutes for each
participant. It was also of interest to investigate whether the level of cortisol affects

the transition intensities.

Awake _ Non-REM
(State 1) -~ (State 2)

N\ o

(State 3)

Figure 1.3: A three-state model for the human sleep process
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Except for event history with a simple structure such as the survival process, the
transition intensities may depend on the history of the process in complex ways. To
be feasible, it is often assumed that only part of the history information is relevant to
the future evolution of the process. This partial history information often includes,
for example, the current state, the study time since the origin of the process, the
duration time in the current state, and the total number of transitions occurred.

The classical Markov models are widely used because of the simplicity of model
interpretation and the ease of computation. The nonhomogeneous Markov model
assumes that, given the current state and the study time, the coming transition is
independent of the rest of the history. That is, pp;(t; F) = pp,(t) for all h,j € € and
t > 0. The homogeneous Markov model further assumes pp;(t) = py; for all h,j € €
and ¢ > 0. For a nonhomogeneous Markov process, its transition probabilities and
transition intensities are linked by the Kolmogorov backward and forward differential
equations. By solving these equations, the transition probabilities can be expressed as
a function of transition intensities in the form of product integral as a generalization
of the Kaplan-Meier estimator for survival function (cf. Andersen et al., 1993).

In many applications, however, the Markov assumption is not plausible, for the
transition intensities may depend on the duration time in the current state. In the
hospitalization study, for instance, the intensity of the transition from “in hospital”
to “out of hospital” likely depends on the duration of the current hospitalization.
The homogeneous semi-Markov (HSM) model assumes that the transition intensities
depend on the history through the current state and the duration time in the current
state. That is, pn;(t; Fi) = pnj(B(t)) for all h,j € £ and t > 0, where B(t) is the gap
time between time t and time of the last transition before ¢, which is known as the
left continuous version of the backward recurrence time. Note that we have slightly
abused the notation: the functions pp; in the above equation are different on the left
and the right hand sides.

Nonhomogeneous Markov models and HSM models are comparable in terms of
flexibility. To choose between the two models depends on which time scale (study
or duration) is more important in a given application. However, both time scales
can be important in some applications. For example, in the hospitalization study, in
addition to the duration time in the current state, the intensity of the transition from
“in hospital” to “out of hospital” can also depend on the study time, i.e., the total

time since a subject entered the study. The nonhomogeneous semi-Markov (NHSM)
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model allows for the dependence of the transition intensities on both of the study
and duration time scales. It assumes that pp;(t; F;) = pn;(t, B(t)) for all h, j € £ and
t > 0, again with a slight abuse of notation. Note that the NHSM model includes

both the nonhomogeneous Markov model and the HSM model as special cases.

1.2.2 Sojourn Time Formulation

The duration time plays an important role in both homogeneous and nonhomogeneous
semi-Markov processes. To better address the duration dependence, people charac-
terize a multi-state process S(-) as a two-dimensional process (J,T) = {(Jn, Trn) :
m = 0,1,...}, where the sequence {.Jy, Ji,...} gives the consecutive states visited
by the process, and the sequence {75, 77,...} is the set of corresponding transition

times. Let X,, =T,, — T},_1 be the sojourn time of the mth transition.

Definition 1.2.1. The two-dimensional process (J,T) is called a nonhomogeneous
Markov renewal (NHMR) process if it satisfies

P{Jm-l-l = ju Xm+1 S T|(‘]m7Tm> = (h7 t)? sy (‘]07T0>}
= P{Jins1 = J, Xmns1 < 7|(Jin, Trn) = (h, 1)} (1.2.1)
def

= @nj(T3t)

for h,j € €, t,7 > 0, and m € IN, the set of all nonnegative integers. Here Q =
{Qnj(15t) : h,j € E,t,7 > 0} is called the nonhomogeneous semi-Markov (NHSM)
kernel of the process. If the NHSM kernel does not depend on ¢, i.e., Qp;(7;t) =

Qnj(1), (J,T) is a homogeneous Markov renewal (HMR) process. Correspondingly,
Q ={Qni(7) : h,j € E,7 > 0} is the homogeneous semi-Markov (HSM) kernel.

Remark 1.2.1. The NHSM kernel Q is a set of quantities of interest in both of the
study and duration time scales. It, together with the initial law of the process,

completely determines the stochastic behavior of a NHMR process.

Remark 1.2.2. In this thesis, unless stated otherwise, we assume that the conditional
probability in (1.2.1) is free of m, the total number of past transitions. If this as-
sumption is questionable, we may stratify the data based on m, and conduct analyses

with the proposed methods for each stratum separately.

Remark 1.2.3. The usual survival process shown in Figure 1.1 corresponds to (J, T) =
{(Jms Tin) = m = 0,1} with & = {1(alive),2(dead)}, state 2 as an absorbing state,

and Ty = T, the survival time. Thus it is a HMR process, and the only unknown in
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the semi-Markov kernel is Q12(7;0), which is the cumulative distribution function of

the survival time.

Proposition 1.2.1. S() is a nonhomogeneous (homogeneous) semi-Markov process
if and only if its corresponding sojourn time formulation (J,T) is a nonhomogeneous

(homogeneous) Markov renewal process.

The consecutive states of a HMR process, J = {Jo, Ji, ...}, form a homogeneous

Markov chain with transition probability matrix given by P = (F;). ..., where
Phj = P{Jm-i-l - ]|<]m = h} = 7_11_{20 th(7—>’ (122)

for h,j € £. Note that P, is 0 if state h is transient, and 1 if state h is absorbing.
J is called the embedded Markov chain of the HMR process. Given J, the sojourn
times X = {X3, Xy,...} are independent with distributions depending only on the
adjoining states. The distribution function of the sojourn time in state A that finishes

at state j (# h) is given by
Fij(1) = P{ X1 < 7| = B, T = j}- (1.2.3)

We can show that Qp;(7) = PpjFp;(T).

More generally, given the sequence of the transition times T = {T;, T, ...}, the
consecutive states of a NHMR process, J = {Jy, Ji, ...}, form a nonhomogeneous
Markov chain with the transition probability matrix P, = P(T,,) = (Phj (T, m))rw at

the (m + 1)th transition, where

for h,j € £. The distribution function of the sojourn time in state h that starts at

study time ¢ and finishes at state j (# h) is given by
Fij(m5t) = P{Xpmi1 < 7|Jop = h, Jpnia = 5, T = t}. (1.2.5)

Consequently, Qp;(7;t) = Ppj(t)Fpi(T;1).

The homogeneous cause-specific hazard function is defined as

.1 :
ap;(T) = ilrr?o EP{JmH =j, X1 €1, T+AT) Iy =h, Xppi1 =7} (1.2.6)

for a HMR process with h # j € £. Correspondingly, the nonhomogeneous cause-

specific hazard function is defined as

1
ahj(T; t) = ilg?() EP{Jm-I—l = ja Xm—l—l € [7—7 T+ AT)‘Jm - haTm =1, Xm+1 > T}
(1.2.7)
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for a NHMR process with h # j € £. The cause-specific hazard function of a
Markov renewal process and the transition intensity function of the corresponding
semi-Markov process are closely related as follows. In the rest of this thesis, we
will use the terms cause-specific hazard function and transition intensity function

interchangeably.

Proposition 1.2.2. With a NHMR process, we have o (T;t) = pp;(t+7,7T); we have

ap; (T) = ppj(T) in the homogeneous case.

There is a one-to-one correspondence between the semi-Markov kernel and the set

of the cause-specific hazard functions. Denote

P{Xpi1 <7l =h. T =1} =Y Qus(r3t)
j#h
by Hy(7;t). Note that, as a function of 7, Hy,(7;t) is the distribution function of the
sojourn time in state h that starts at study time ¢. Let Sy(7;t) = 1 — Hp(7;t) be the

corresponding survival function. Then,

Sp(T;t) = exp{— /T Zozhj(u; t)du}, (1.2.8)

0 j#h
and

Qnj(T3t) = /0 anj(u; t)Sy(u;t)du (1.2.9)
for all h # j € £. Thus we can estimate the semi-Markov kernel through estimating
the cause-specific hazard functions of the Markov renewal process, or the transition
intensity functions of the semi-Markov process.

On the other hand, provided that Qn;(7;t) is absolutely continuous with respect
to Lebesgue measure as a function of 7, with the partial derivative denoted by

0Qni(T;t
(i) = 2D

forall h # j € &,

(r:1) qn;(T3)/Sp(T5t) if Sp(T;t) > 0,
api(T:t) =
" 0 otherwise.
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1.2.3 Counting Process Formulation

A counting process representation for multi-state processes has been shown very useful
(Andersen et al., 1993). Let

Nty =#{m>1:T, <t,Jp1=h,Jpn=j}

be the total number of h — j transitions in the time interval (0,¢]. With respect to
to the history of the process, F;, the multivariate counting process N, = {]\foj (t) :
h# j € £t > 0} has intensity function {\(t) : h # j € £, > 0} with

NI () = V() pry (6 T),

where Y/ (t) = I{S(t—) = h} is the ‘at risk’ indicator for whether the process has
the potential of experiencing a transition from state h at time ¢, and py;(¢; ) is the
transition intensity function of the multi-state process. Let N,(t) = D hi NT(t) be
the total number of transitions in (0,¢]. The backward recurrence time B(t) equals
t=Tx. -y ]

If the multi-state process S(-) is a NHSM process, the intensity function of N/ (t)
1s

N(t) = V() png (8, B() = V2 (t)euns (B®); Ty )

It is further simplified to
N (t) = Yt pry(B(1)) = Y ()ens (B(1))

when S(-) is a HSM process.

1.2.4 Processes Resulting from Right-Censoring

Event history data are rarely observed completely. In this thesis, we focus on right
censoring, the most common form of incomplete observation. The counting process
formulation is convenient to handle this type of incomplete observation. Let O(t) =
I(C > t) be the indicator that a multi-state process is under observation at time t,

where C' is the censoring time. Let the counting process
t
NP(t) — / O(s)ANM () = N¥ (¢ A ) (1.2.10)
0

be the number of observed h — j transitions in the time interval (0, t], where t A C'is

the minimum of £ and C. Unless otherwise stated, we assume that the censoring time
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C is independent of the multi-state process. Then, conditional on C, the intensity
function of the observed multivariate counting process N = {]\7 hity:h#je&t>
0} is {\V(t): h# j € &t >0} with

NI (t) = Y (t) pny (8 Fr),
where
Yit) = I{S(t—) = h,C >t} (1.2.11)

is the ‘at risk’ indicator, indicating whether the process at time ¢ is under observation
and has the potential of experiencing a transition from state h.
In the following, we introduce another set of processes, which count the number

of observed sojourn times. For each ¢ > 0, define
Nty =#{m>1:Jp 1 =hJn=17Xn <u,T, <t} (1.2.12)

as the number of sojourn times in state h that are less equal than u and followed by

a transition to state j during the study time window (0, ¢], and
Yiut)=#{m>1:Jp 1 =h X >u, T,y +u <t} (1.2.13)

as the number of sojourn times in state h that are large equal than u during the
study time window (0, ¢]. Denote the corresponding resulting processes due to right-

censoring by N (u) and Y"(u), respectively. Then
N"(u) = N"(u; 0), (1.2.14)
and
Y*(u) = Y"(u;0). (1.2.15)

The multivariate counting processes N = {N"(t): h# j € £t >0} on the study
time scale and N = {N"(u) : h # j € £,u > 0} on the duration time scale are linked

as follows.

Lemma 1.2.3. For any bounded measurable function f on [0,00),

/f YANM (4, /f NAN™ (1), (1.2.16)

Proof. Extending the arguments in Gill (1980), we can show that both sides of (1.2.16)

are equal to

> X ) I { T = by T =}

{m:Tm+1 SC}



CHAPTER 1. INTRODUCTION 10

1.2.5 Likelihood Function

If the right-censoring is noninformative, the contribution to the log-likelihood of a

censored multi-state process is given by

>l

h.j

/ " log N (£)d N (1) — / " (t)dt} | (1.2.17)
0 0
up to some constant not related to {\"(-) : h,j € £} (Andersen et al., 1993; Cook
and Lawless, 2007).

This thesis focuses on duration-dependent multi-state models, in which the inten-
sity functions depend on the duration in the current state. To this end, we often use
Lemma 1.2.3 to transform the log-likelihood given by (1.2.17) from the study time

scale to the duration time scale.

1.3 Outline of Thesis

The rest of this thesis is organized as follows. Chapter 2 considers nonparametric
estimation with incompletely observed HSM processes. We propose two simulation
based algorithms to construct confidence bands for the HSM kernel. We show that
the existing estimators for the transition probabilities of the embedded Markov chain
and the sojourn time distributions can be biased when a right-censoring is involved.
A robust estimation procedure is proposed to address the concern.

Time-dependent covariates, such as the study time variable, can be incorporated
in the HSM model through the Cox regression form. The dependence of the base-
line transition intensities on the duration time scale makes the model fall outside
the framework of Aalen’s multiplicative intensity models and invalidates the usual
martingale methods. Dabrowska et al. (1994) consider the Cox regression in the
semi-Markov model with covariates dependent on the duration time in the present
state only, which excludes the study time variable. As a generalization, Chapter 3
allows general time-dependent covariates and proposes estimating equations of the re-
gression parameters. We derive the asymptotic properties of the estimators by using
empirical process theory, and show that the estimators are asymptotically efficient
among regular estimators.

In some situations, the transition intensities may depend on both the study and

the duration times. This naturally leads to a NHSM model. In Chapter 4, we propose
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several estimation procedures for the NHSM model. We start from a piecewise con-
stant approach, where the transition intensities are assumed to be piecewise constant
on the study time scale, and can vary arbitrarily on the duration time scale. We
then propose a nonparametric estimation procedure based on the kernel method. We
show that the nonparametric estimator is a maximum local likelihood estimator. The
asymptotic properties of the estimator are then established. In addition, we consider
a structured nonparametric model, assuming the transition intensities depend on the
study and duration times in a multiplicative form. Finally, the semiparametric ap-
proach in Chapter 3 is adapted by incorporating the study time as a time-dependent
covariate.

Informative censoring problem is challenging in event history data analysis. Many
existing methods assume that the censoring is independent conditional on covariates
or some latent variables. In Chapter 5, we consider a particular type of informative
right censoring scheme for NHSM processes. Motivated by the competing risks for-
mulation of HSM processes (Lagakos et al., 1978), we model the informative censoring
mechanism as another competing risk. Under this model assumption, the censored
process becomes a new NHSM process with the censoring included as a new absorb-
ing state of the original process. Thus the large literature of competing risks can be
adapted to the setting. In particular, we adapt a copula-based modeling proposed by
Zheng and Klein (1995). An advantage of the copula approach is that the marginal
distributions need not to be specified, and can be estimated nonparametrically.

Chapter 6 presents analyses of the two real data sets described in Examples 1.1
and 1.2 with the proposed methods. Finally, we provide a summary of this thesis

project and outline some extensions for future research in Chapter 7.



Chapter 2

Homogeneous Semi-Markov

Process

2.1 Introduction

In this chapter, we consider estimation with homogeneous semi-Markov (HSM) pro-
cesses, of which the observation is subject to independent right censoring. Particu-
larly, we are interested in the semi-Markov kernel, the transition probability matrix
of the embedded Markov chain formed by the consecutive states of the process, and
the sojourn time distributions.

Lagakos et al. (1978) present the nonparametric maximum likelihood estimation
for the semi-Markov kernel. Their approach allows an arbitrary number of states as
well as right censored observations. Matthews (1984) and Dinse and Larson (1986)
express the semi-Markov kernel as cause-specific hazard functions and show advan-
tages of the reformulation: easier calculation and clearer interpretation. Gill (1980)
applies the theory of stochastic integration and counting processes to provide a rigor-
ous derivation of the consistency and weak convergence of the estimator of the semi-
Markov kernel proposed by Lagakos et al. (1978). However, as pointed by Gill (1980),
the asymptotic Gaussian process does not have an independent increment structure,
thus it can not be transformed into the standard Brownian bridge or Brownian mo-
tion to construct confidence bands for the semi-Markov kernel. In Section 2.2, we
propose two simulation based algorithms to construct confidence bands.

To estimate the transition probabilities, Lagakos et al. (1978) propose a plug-in

estimator and its normalized version based on the nonparametric estimator of the

12
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semi-Markov kernel given in (2.3.1) and (2.3.3), which are not necessarily consistent.
Phelan (1990b) estimates the transition probabilities of a class of Markov renewal
processes whose semi-Markov kernel satisfies Fj,;(-) = Fpi(-) for all h, j, and k.
However, all the above estimators can be biased, as will be shown in Sections 2.3 and
2.4. As an alternative, we in Section 2.3 propose a robust approach to estimating the
transition probabilities of the embedded Markov chain and sojourn time distributions
with general right censored semi-Markov processes.

We examine finite sample performance of the proposed methods via simulation in
Section 2.4. Section 2.5 concludes this chapter with a summary and motivates the

next chapters.

2.2 Confidence Bands for Semi-Markov Kernel

Recall the two processes in the time scale of duration defined in (1.2.14) and (1.2.15)
of Section 1.2.4:

NYu)y=#{m>1:Jp1=h,Jp =74, Xm <u, T, <C}, (2.2.1)

and
Vi) =#{m>1:Jp1=h,Xm > u, Ty +u<C}. (2.2.2)

Let {(N(-),Y"(:)) :i=1,...,n} be n independent realizations of (N (-), Y*(-)). In

[k

what follows, we use in subscripts or superscripts to represent summation over the

omitted index. For example, N" (u) = >, N9 (u). Denote AW (t) as W (t) — W (t—).
The nonparametric maximum likelihood estimator of the semi-Markov kernel @Qp;

proposed by Lagakos et al. (1978) can be written as

Ons(7) = /07(1 _ ﬁh(u—))%, (2.2.3)

where

~ h- v
Hy(u)=1-— vau (1 — AYNh—(;U . u>0, (2.2.4)

is the nonparametric maximum likelihood estimator of Hy,(u).
According to Gill (1980), on {7 : Y"(r) > 0 and 1 — Hy,(7—) > 0}, it can be
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shown by integration by parts that

11— Hy(u=) n dZMu
B Q’”“)/o 1 I;E(u)) Y(u) nl/(z L 2

™ 1— Hy(u—=) n dZ"(u)
+4 T W) V)

where

szwwp/%%)mW” (2.2.6)

0 1 — Hy(v—)
The following lemma is from Theorems 1 and 3 of Gill (1980):

Lemma 2.2.1 (Theorems 1 and 3, Gill 1980). Assume that the semi-Markov kernel
Qnj(+) is continuous for all h,j € €. Let

7 =sup{7: P (Y"(r) > 0) > 0}. (2.2.7)
Then as n — oo,
sup [:[h(T) — Hh(T)’ LN 0,
T€[0,71]
and
sup th(T) — th(T)’ 0.
T7€[0,73]

Furthermore, if vy, satisfies
P (Y"(n,) > 0) >0,

then n'/? th(') — th(-)} converges weakly to a Gaussian process on [0,vy]. The

weak convergence is in the space D[0,v}] equipped with the Skorohod metric.

Remark 2.2.1. 15, defined in (2.2.7) can be interpreted as the “largest observable”
sojourn time at state h. When both the semi-Markov kernel and the censoring time
distribution are continuous, P (Yh (1) > 0) is a continuous function of 7. In this case,
P (Y"(1,) > 0) = 0 by the definition of 7,. Thus Lemma 2.2.1 does not yield the
asymptotic distribution of n'/? [th (th) — th(Th)}, although Qy;(7,) is consistent
for Qpn; ().

As pointed out by Gill (1980), the weak limit of n'/? [th() — Qnj(+)| does not
have an independent increment structure, and thus it can not be transformed into

the standard Brownian bridge or Brownian motion, which is often used to construct
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confidence bands for an unknown function. We propose simulation based approaches
to approximate the critical values to construct confidence bands in the following.
Various types of confidence bands for @Qp;(-) can be constructed using the class of

transformed processes

G (1) = 072G\ (7)[6(Qny (7)) — S(Qny (7)),

where ¢ is a known function with non-zero continuous derivative ¢’ and gﬁg) (1) is a
weight function. The weight g,(:;)() determines the shape of the bands, and has a
deterministic limit g;(7) in probability. By the functional delta-method (Andersen

et al., 1993), the process Gj;(7) is asymptotically equivalent to

g (7)) (Qny (7)) 2 [Qng () — Quy (7))

We suggest to choose ¢(z) = log(—log(1l — x)), which is analogous to the log-log
transformation of the Kaplan-Meier estimator that has been widely used in the liter-
ature to construct a confidence band for a survival function. We consider two weight
functions, one leading to the equal precision (EP) bands (Nair, 1984) and the other
leading to the Hall-Wellner (HW) bands (Hall and Wellner, 1980).

The following presents two simulation based algorithms to construct confidence
bands for Qp;(-), the semi-Markov kernel. The first algorithm uses the bootstrap
technique and the second algorithm adapts the resampling technique developed in
Lin et al. (1993).

2.2.1 Bootstrap Approach

We first consider an application of the bootstrap to obtain an approximate (1 — «)

confidence band for Qp,;(-) on [s1, s2] C [0, 1]. The algorithm we propose is as follows.

Step 1. Randomly select a sample M with size n with replacement from {1,...,n},
and then estimate Q;(-) based on the data {(N}”(-),Y*(-)) : i € M}. Replicate
this procedure B times to obtain estimates {Qg})() :b=1,...,B}.

Step 2. Forb=1,..., B, let Gy} (r) = n'/,7)(1)¢/ (Qny(1))[Q};) () — Qny(7)], and
q,(g)(sl, S2) = SUD,¢[s; 5] |G§Lbj) (7)]. Finally, let gs;(s1,s2) be the (1 — a)) quantile

of {qh] (s1,82) :b=1,..., B}.
Step 3. An approximate (1 — «) confidence band for ¢(Q;(7)) on [sy, S is

[D(Qni (1)) — 0™ any(s1, 82) /i) (7), d(Qug (1)) + 0™ ans (51, 52) /g (7)]
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for 7 € [s1, s2], which can be converted to a confidence band for @Q;(7) on

(51, Sa].

2.2.2 Lin-Wei-Ying’s Resampling Approach

We now adapt the resampling technique developed by Lin et al. (1993). By the uni-
form consistency of Hy(-) and Y (-)/n, we can show that n'/2 |Qp, (1) — Qu; (7')] given
in (2.2.5) has the same asymptotic distribution as the sum of a set of independent
and identically distributed terms. Replace Z(u) in (2.2.5) with Z/Y(u)U;, where
{U; :i=1,...,n} are independent standard normal random variables which are also

independent of the data, and

s , u dO, : u AN
2P = NP ) - [ v i - [Py SR
0 1 — Hp(v—) 0 Yi(v)
Also replace Qp; and Hy, in (2.2.5) with th and H n, respectively. Denote the resulting
quantity by W,E;L) (7). The following proposition can be shown by a slight extension
of the arguments in Lin et al. (1993).

Proposition 2.2.2. As n — oo and conditional on the observed data, {W}Ey)(T) :

h,j €& 1€ |0,v)} has the same limiting distribution as

{n1/2 [th(T) —Qui(n)] hje& el uh]} .

Critical values in the construction of confidence bands for Q;(7) can then be
approximated based on simulated realizations of W,g;) (1) using different sets of the
standard normal random variables. It gives an algorithm based on the realizations of
W}gl) (7) to construct confidence bands for Q;(7), similar to the bootstrap approach
in Section 2.2.1.

2.3 Robust Inference Procedure for Transition

Probabilities and Sojourn Time Distributions

We first review the existing estimation procedures of the transition probabilities for
the embedded Markov chain and the conditional distributions of sojourn times from
right censored semi-Markov processes, and point out their limitations. Then we

introduce a robust approach.
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2.3.1 Existing Estimation Procedures and Their Limitations

With {(NY(-),Y*(-)) : i = 1,...,n}, n independent realizations of (N"(-), Y"(-)),
the nonparametric maximum likelihood estimator of (), is given in (2.2.3). Since
Py; = Qnj(00), Lagakos et al. (1978) suggest a plug-in estimator of the transition
probability Py,

Po; = Q;(00), (2.3.1)

and correspondingly estimate the sojourn time distribution with

Fyj(1) = Qus(1)/Qnj(00). (2.3.2)

Since Qp;(00) is the same as Qp;(-) evaluated at the largest observed sojourn time
starting from state h, > ; ﬁ’hj can be less than 1 when the largest sojourn time from
state h is censored. This is not desirable. In such cases, Lagakos et al. (1978) propose

to use the normalized estimator,

Py = Qni(00)/ > Qui(o0), (2.3.3)

k+h

and correspondingly to estimate the sojourn time distribution with
Fiy (1) = Qny(7)/ Pa- (2.3.4)

Phelan (1990b) considers estimation of the transition probabilities P,; under the

assumption that the distributions F,;(.)’s are the same for all j, and thus
th(T) - Pthh<T>7 Vha.] € 5 (235)

Suppose the independent and identically distributed copies (J;, T;,C;), i = 1,...,n,
are observed, where (J;, T;) = {(J/",T/™) : m > 0} and C; is the right censoring time.
For each h,j € &, and for subject i, let

NV = d{m:Jmt=h, J"=4,T" < G}
be the number of observed transitions that are from state h to j, and
V= {m e I = BT < G

be the number of observed transitions that are started from state A. Phelan proposes

an estimator of P; as
Py = NMjyh (2.3.6)
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which is the proportion of observed h — j transitions among observed transitions
starting from state h. Building upon the results in Gill (1980), Phelan establishes
the consistency and asymptotically normality of Phj under the assumption given in
(2.3.5).

However, as can be seen numerically from the simulations in the following sec-
tion, the plug-in, the normalized, and the Phelan estimators only work under certain
conditions. There are situations where they can be inconsistent. In particular, the
plug-in estimator Phj does not work well when the censoring time is small relative to
the sojourn times. Both the normalized estimator ]5hj and the Phelan estimator Phj
need the assumption that Fj;(.) = Fj(-) for all j # h. In fact, as we will see later,
when the censoring time is small relative to the sojourn times, all the three estimators

of P; can be inconsistent.

2.3.2 Robust Estimation Procedure

In this section, we propose a robust approach to estimating the transition probabilities
P; and the sojourn time distributions F},;(-). We assume that the semi-Markov kernel

Qn;(+) is continuous for all h,j € &.

2.3.2.1 Preliminaries

Let {(NY(-),Y*(-)) : i = 1,...,n} be n independent realizations of (N"(-),Y"(.)).

Because Y"(u) is a left continuous function of u, we have
sup {u : Y"(u) > 0} = max {u:Y"(u) >0}, (2.3.7)

which we denote by Vh(n). Note that Vh(n) is the largest fully or partially observed

sojourn time in state h.

Theorem 2.3.1. Let 73, be as defined in (2.2.7). As n — oo, Vh(") — 75, almost

surely.
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Proof. For any 7" < 713,, we have P (Yh(T/) > 0) > 0, by the definition of 75,. Thus

So
PV =) = P (Y1) > 0) =1 (238)

as n — 00.
On the other hand, for any 7 > 7,, we have P (Y"(7”") = 0) = 1 by the definition
of 7,. Thus

Thus
P (vh(m < T”) ~1. (2.3.9)

Combining (2.3.8) and (2.3.9), Vh(n) — 75, almost surely as n — oo. O

By Lemma 2.2.1, Qp;(7) is consistent for Qp;(7). Note that Q;(-) does not
change after Vh(n), and thus th(Vh(n)) = th(oo), the plug-in estimator for F;.
Since Vh(n) — 7, almost surely as n — oo by Theorem 2.3.1, the plug-in estimator

Pyj = Qnj(00) = th(V,f”)) is consistent for Qp;(7,). It is consistent for Pp; only if

Qnj(Th) = Qnj(00) = Py (2.3.10)

The normalized estimator,

phj = th(oo)/ Z Qhk(oo):

kh

is consistent for Qn;j(7s)/ > 4z Qni(7s), which is equal to P if

Fij() = Fu(-), Vi k€& (2.3.11)
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Otherwise, ﬁhj is not necessarily consistent for P;. Correspondingly, the estimators

th(-) in (2.3.2) and F;(-) in (2.3.4) are not necessarily consistent for the sojourn

time distribution F},;(-) without the assumptions (2.3.10) and (2.3.11), respectively.
Denote Py = Qn;() and Pl =1— 3", Qnj (7). Note that

Py € [P, By (2.3.12)

The available data provide information about Pj; through the two limits P and P}

The corresponding bound for Fj;(-) is then
[F (), By ()] (2.3.13)
where F5(-) = Qn;(-)/ Pf; and F}(-) = Qu;(-)/Fyl;. This forms the basis of our robust

inference procedure.

2.3.2.2 Robust Inference for Transition Probabilities

We have shown that PE = Qp;(c0) and PY; =1 — P Qnjr(00) consistently esti-
mate Pth and PhUj respectively. Thus the corresponding estimated bounds for Fj,;(t)
are Qp;(-)/ 13,% and Qp;(+)/ 15,{3 These bounds can be used to construct confidence
intervals for P,; and confidence bands for Fj,;(-).

A confidence interval for P; with level at least 1 — a can be constructed as
[]5}{3 — ¢, Pfg + ¢,
where ¢; and ¢y are chosen such that
P ([P,fj, PUl € [Pl — o1, Pl + c2]> ~1-a (2.3.14)

We can choose ¢; and ¢y such that ¢; + ¢y is minimized to obtain the confidence
interval with the shortest length. The distribution of
(PE, PYY — (PE. PLY (2.3.15)

is needed to determine ¢; and c». Since P (Yh(Th) > O) can be 0, Lemma 2.2.1 does
not in general give us the limiting distribution of (2.3.15) from Remark 2.2.1. We

propose to use the bootstrap to determine ¢; and ¢y in (2.3.14).
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2.3.2.3 Robust Inference for Sojourn Time Distributions

To obtain a set of confidence bands for the sojourn time distributions F;(-), we con-
sider a bootstrap approach. We first randomly select a sample M of size n with
replacement from {1,...,n}, and evaluate Qy,;(-), ]ShL], and ]5,% based on the data
{(NM(.),Y()) : i € M}. This procedure is replicated B times to obtain esti-
mates {Qg;)(), IS,S?)L, P,E?)U :b=1,...,B}. We then have F,E?)L(-), F}E?U(-) by using
Fyj(-) = Qui()/ Py
Define
H,fj(T) = nl/th?(T)[Fth(T) — F,{}(T)], 7> 0,

and
H}(LJJ(T) = nl/Qh%g(T)[F}g(T) — F}Z(T)], 7> 0,

where h%(7) and hj?(7) are weight functions which determine the shape of the
bands, with deterministic limit g;;(7) and g;;(7) in probability, respectively. For
b=1,....B, let

H,) (7) = n' i (n)[B) " (7) = Bl (7).
and

;)" (r) = n' () [ () = B (7).

To obtain an approximate (1—«) confidence band for Fj,;(-) on a prechosen interval
[ let (b)L o H(b)L d ®U — inf H(b)U
s1,82], let gy (s1,82) = SUD7¢[sy,s0] 1 (1) an n; (s1,82) = infrefs, ) hj (7)
for b = 1,...,B. Determine gj;(s1,s2) and gj;(s1,52) such that 100(1 — a)% of

be{l,2,..., B} satisfy

Q}(LI;)L(Slu 89) < %%(51, s3), and Q;(Zb»)U((Sl,Sz) > %%(81,52)-
Note that qﬁj(sl, S9) and qgj(sl, S9) may be chosen to optimize the width of the con-
fidence bands. An approximate (1 — «) confidence band for the attainable bound

(F3%5(-), FL(+)) on [s1, s5], as a robust confidence band of Fj;(-), is then
[FE(T) = n7 20 (51, 80) /Ry (7), FRG(7) + 0 2g) (51, 80) [REH(T)], T € [s1, s0)-

Since Fj;(-) is always within [0, 1], we may need to transform it into a quantity
ranging (—oo, 00), say, g(th(-)), obtain a confidence band, and then transform the
confidence band back to obtain Fj;(-)’s confidence band. This may improve the
coverage of the confidence bands of Fj;(-), and ensure the confidence band lies entirely
within [0, 1].
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2.4 Simulation

2.4.1 Settings

We conducted a simulation with the state space & = {1,2,3}, where state 3 is an
absorbing state. A total of n independent and identically distributed semi-Markov
processes were simulated, each of which started from state 1 or 2 with equal probabil-
ities, and was observed up to a noninformative right censoring time C'. Specifically,

we set the transition probabilities of the embedded Markov chain as
Py =0.7, P13 = 0.3, Po; = P53 =0.5,
and simulated the sojourn time distributions from one of the following three settings:
Setting 2.1. Fip ~ exp(2), Fi3 ~ exp(2), Fo1 ~ exp(1l), Fog ~ exp(1).
Setting 2.2. Fio ~ exp(1l), Fi3 ~ exp(2), Fo; ~ exp(1l), Fog ~ exp(1).
Setting 2.3. Fio ~ exp(1l), Fi3 ~ unif(0,2), Fo; ~ unif(0,2), Fys ~ exp(2).

We designed the simulation settings to study the behaviors of the proposed esti-
mators in various situations. In Setting 2.1, both the pairs (Fia, Fi3) and (Fby, Fbs)
have the same entries. Thus both Lagakos et al.’s normalized and Phelan’s estima-
tors work well for estimating the transition probabilities, but Lagakos et al.’s plug-in
estimator can be biased since (2.3.10) does not hold in this setting. In Setting 2.2,
F5 and Fb3 are the same but I and Fi3 are different. So we anticipate that both
Lagakos et al.’s normalized and Phelan’s estimators will work well for the estimation
of Py; and Psg, but not for P and Py3. Similarly to it in the Setting 2.1, Lagakos
et al.’s plug-in estimator can be biased for the transition probabilities. Neither of the
pairs (Fia, Fi3) and (Fyy, Fbs) has the same entries in Setting 2.3, thus both Lagakos
et al.’s normalized and Phelan’s estimators can be biased for the transition probabil-
ities. Since (2.3.10) holds for the cases of h = 1, j = 3 and h = 2, j = 1, Lagakos
et al.’s plug-in estimator can perform well in the estimation of P35 and Ps.

In each setting, we used sample size n = 50, 100, or 200, and the censoring
time C' = 2 or 5 to have 6 scenarios. In what follows, we summarize the simulation
results based on RP = 1000 repetitions in each scenario for the estimation of the

semi-Markov kernel, the transition probabilities, and the sojourn time distributions.
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2.4.2 Semi-Markov Kernel Estimation

We first evaluated the confidence intervals for the semi-Markov kernel at 5 fixed time
points ¢t = 0.2, 0.6, 1.0, 1.4, and 1.8. The empirical coverage of the 95% confidence
intervals in the three simulation settings are summarized in Tables 2.1 to 2.3. Note
that the coverage of the standard confidence intervals without transformation tends to
be lower than the nominal level, and can be very poor for small £. On the other hand,
the transformed confidence intervals perform well in terms of coverage frequency, even
for small sample size n = 50.

We applied both the bootstrap and the resampling approaches to construct con-
fidence bands for the semi-Markov kernel. The confidence bands are restricted to
[0.5,1.5]. The coverage frequencies of confidence bands with nominal levels 90% and
95% are summarized in Tables 2.4 to 2.6. Note that the coverages of the bands based
on bootstrap and simulation approaches are close. The coverage frequency of the
confidence bands without transformation is lower than the nominal level, while the
coverage frequency of the confidence bands constructed by applying the transforma-
tion are close to the nominal level, especially with small sample size n = 50. The
improvement brought about by the transformation is more substantial with the equal
precision bands than with the Hall-Wellner bands.

In the context of classical survival analysis, the substantial improvement in per-
formance based on transformations has been found for the confidence intervals and
bands for the survival function (Borgan and Liestgl, 1990). Another advantage of

transformed confidence intervals and bands is that they are always between 0 and 1.
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Table 2.1: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.1

Standard CI

Transformed CI

n C t=02 06 10 14 18 t=02 06 10 14 18
Q12(t)
50 2 0.90 0.92 0.93 0.93 0.93 096 095 094 0.95 094
5 0.87 092 094 0.93 0.92 096 094 0.95 0.95 0.95
100 2 091 093 094 0.95 0.95 097 095 0.95 0.95 0.95
5 091 093 094 094 094 095 094 093 094 094
200 2 093 095 094 094 0.94 096 095 0.95 095 094
5 093 094 094 094 094 095 094 0.95 095 094
Q13(t)
50 2 0.69 0.89 0.92 0.92 0.93 097 096 096 0.97 097
5 0.75 0.88 0.92 094 0.94 097 096 0.97 0.95 0.95
100 2 090 092 0.92 094 0.94 097 097 095 0.95 0.95
5 090 094 094 094 0.95 097 097 096 0.96 0.95
200 2 092 093 094 0.95 0.96 097 096 0.95 0.96 0.95
5 091 093 094 0.95 0.94 096 095 094 0.95 0.96
Qa(1)
50 2 0.88 092 094 0.92 0.93 097 096 0.95 0.95 0.95
5 0.90 093 094 094 094 0.96 096 0.96 0.95 0.95
100 2 093 094 095 094 0.95 097 096 0.96 0.96 0.95
5 093 095 094 094 094 096 096 095 095 0.94
200 2 094 095 094 0.95 094 0.96 096 0.95 0.95 0.95
5 094 094 094 094 094 095 094 095 094 0.94
Q23(1)
50 2 0.88 0.92 092 0.92 0.93 096 095 094 094 094
5 092 094 094 0.93 0.94 096 095 0.95 0.95 0.95
100 2 093 093 094 094 0.95 097 095 095 0.95 0.95
5 093 094 095 094 0.94 095 095 0.95 095 094
200 2 094 094 094 094 0.95 095 095 094 0.95 0.95
5 0.95 095 096 0.95 0.95 094 095 096 0.95 0.95
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Table 2.2: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.2

Standard CI

Transformed CI

n C t=02 06 10 14 18 t=02 06 10 14 18
Q12(t)
50 2 090 094 0.92 0.93 094 096 095 094 0.94 0.95
5 090 092 0.93 094 094 095 093 094 094 0.95
100 2 092 094 094 094 0.94 096 095 094 0.95 0.95
5 0.92 093 093 0.93 0.92 094 094 094 0.93 0.92
200 2 095 094 095 094 0.95 096 094 095 094 0.95
5 0.93 0.95 093 0.93 0.92 094 095 0.93 0.93 0.92
Q13(t)
50 2 0.71 0.88 0.91 0.93 0.93 096 097 097 0.96 0.96
5 0.78 090 0.91 0.93 0.92 096 096 0.97 096 0.95
100 2 092 092 092 0.93 094 097 097 095 0.95 0.95
5 0.85 092 093 0.95 0.94 097 096 0.96 0.96 0.96
200 2 0.89 093 094 0.95 0.95 096 095 0.96 0.96 0.96
5 092 093 094 094 0.94 097 096 0.95 0.95 0.95
Qa(1)
50 2 091 093 093 0.92 0.92 095 096 0.95 094 094
5 091 093 093 0.92 0.92 0.97 094 094 0.92 0.93
100 2 093 093 094 094 094 097 094 096 0.94 0.95
5 0.92 093 092 0.93 0.93 095 094 094 093 0.94
200 2 0.93 094 093 0.93 094 096 095 094 094 0.95
5 0.93 093 092 0.92 0.93 094 094 0.92 0.92 0.93
Q23(1)
50 2 0.93 093 0.93 0.93 0.93 097 095 094 093 094
5 092 093 094 094 094 097 095 094 095 094
100 2 095 094 094 094 0.93 096 095 095 094 094
5 095 094 094 094 0.94 096 094 094 094 094
200 2 094 094 094 0.93 0.95 095 095 094 094 0.95
5 095 094 094 0.95 0.95 0.95 095 0.95 0.95 0.95
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Table 2.3: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.3

Standard CI

Transformed CI

n C t=02 0.6 1.0 14 1.8 t=20.2 0.6 1.0 1.4 1.8
Q12(t)
50 2 091 094 094 094 0.92 096 095 095 096 0.94
5 0.92 093 092 0.92 0.93 0.96 095 093 094 094
100 2 093 094 094 094 0.92 094 095 094 095 0.93
5 093 094 094 093 094 094 095 094 094 094
200 2 094 094 095 094 094 095 094 095 094 094
5 0.93 095 095 094 0.95 094 095 095 094 0.95
Qu3(t)
50 2 0.71 0.88 0.90 091 0.93 096 098 096 096 0.95
5 0.79 0.89 091 092 0.93 0.96 097 096 095 0.95
100 2 0.92 092 093 094 0.93 0.97 097 094 095 094
5 0.84 091 094 092 094 096 095 096 094 0.95
200 2 0.89 094 094 094 0.95 0.97 096 095 095 0.95
5 0.89 0.93 093 094 0.92 096 095 094 093 094
Qa1 (1)
50 2 0.89 0.88 091 0.92 0.93 0.96 095 094 095 0.95
5 0.88 0.92 093 0.93 0.92 0.97 095 095 095 094
100 2 091 092 093 094 0.95 095 094 095 095 0.95
5 0.92 094 095 095 094 0.97 096 095 095 094
200 2 094 095 095 094 0.95 0.95 095 095 095 0.96
5 094 093 095 094 0.93 094 095 095 095 094
Qa3(1)
50 2 0.90 092 092 094 094 0.96 096 095 0.95 0.95
5 0.88 0.93 0.92 0.93 0.95 096 096 094 094 0.96
100 2 094 0.92 094 093 0.95 0.97 095 096 095 0.95
5 092 094 095 095 0.95 0.97 096 094 095 0.95
200 2 093 094 095 094 0.95 0.97 095 096 095 0.95
5 092 094 094 095 0.95 095 094 094 095 0.95
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Table 2.4: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.1

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Qua2(")
50 2 0.86 091 092 0091 0.86 091 0.92 0.92
5 0.88 091 092 0.92 0.87 091 0.92 0.92
100 2 090 0.92 093 0.93 0.90 092 0.93 0.93
5 090 091 092 0.92 0.90 091 0.92 0.92
200 2 092 094 094 094 092 093 094 094
5 092 093 094 0.93 091 093 093 094
Qu3(")
50 2 0.82 091 094 092 0.81 090 0.93 0.92
5 081 091 093 0091 0.82 091 094 0.92
100 2 0.86 0.92 094 0.93 0.86 092 094 0.93
5 0.88 093 094 094 0.88 093 094 0.93
200 2 091 094 094 094 0.90 093 094 094
5 090 093 093 0.93 0.90 092 093 0.93
Qa1 (")
50 2 0.88 0.90 0.93 0.93 0.88 091 0.93 0.93
5 0.89 093 093 093 0.88 093 094 093
100 2 091 092 095 0.95 091 092 094 094
5 091 091 093 094 0.90 091 0.93 0.93
200 2 092 093 094 094 092 093 093 0.93
5 091 093 093 094 091 093 093 094
Qas(")
50 2 0.86 091 0.93 0.93 0.86 090 0.92 0.93
5 090 092 092 091 0.90 092 0.92 0091
100 2 090 0.92 094 094 0.90 092 094 094
5 093 093 094 094 093 093 093 0.93
200 2 093 094 092 0.92 092 094 092 0.92
5

095 095 095 094 094 094 095 094
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Table 2.5: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.2

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Qua2(")
50 2 0.88 0.90 0.93 0.93 0.88 090 0.93 0.93
5 0.88 0.89 090 091 0.88 0.89 0.90 0.91
100 2 090 0.92 092 0.93 0.90 092 0.92 0.93
5 090 091 092 0.92 091 091 0.92 0.93
200 2 092 093 093 0.93 092 093 093 094
5 092 092 093 0.92 092 093 093 0.93
Qu3(")
50 2 0.81 089 093 091 0.82 089 093 0.92
5 0.84 090 094 0.92 0.83 090 094 0.92
100 2 085 091 094 0.92 0.85 091 094 0.92
5 087 093 094 0.93 0.87 092 094 0.93
200 2 090 094 095 094 0.90 094 094 093
5 090 092 094 094 091 092 094 0.93
Qa1 (")
50 2 0.87 090 0.93 0.92 0.86 0.90 0.93 0.93
5 087 090 091 091 0.87 091 091 0.91
100 2 0.89 091 093 0.93 0.89 091 0.93 0.93
5 090 090 093 093 0.89 091 0.93 0.92
200 2 091 091 093 0.93 091 091 093 0.93
5 090 091 092 091 0.90 091 092 0.92
Qas(")
50 2 0.89 092 0.92 0.92 0.89 091 0.92 0.92
5 0.88 092 094 0.93 0.88 092 094 0.93
100 2 091 092 094 0.93 092 092 093 0.93
5 092 093 093 0.93 092 094 093 0.93
200 2 092 093 093 0.93 092 092 093 0.93
5

093 094 094 094 092 094 093 094
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Table 2.6: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.3

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Qua2(")
50 2 0.88 0.90 0.93 0.93 0.88 091 0.92 094
5 0.89 090 091 0091 0.89 090 0.92 0.92
100 2 090 0.92 093 0.93 0.90 092 0.93 0.93
5 092 092 093 0.93 091 092 0.92 0.93
200 2 091 093 092 0.93 092 093 0.92 0.93
5 093 093 093 0.93 093 093 093 0.93
Qu3(")
50 2 0.77 089 094 0.92 0.78 090 0.93 0.92
5 0.81 091 093 0.92 0.82 091 0.93 0.92
100 2 085 091 094 0.92 0.85 090 094 0.92
5 085 091 093 0.93 0.85 091 0.93 0.92
200 2 091 092 094 0.93 0.90 093 094 0.93
5 090 093 093 0.92 0.90 092 0.92 0.92
Qa1 (")
50 2 0.80 0.89 0.93 0.92 0.80 0.88 0.93 0.92
5 086 091 093 0.92 0.86 091 0.93 0.92
100 2 0.88 0.92 0.93 0.93 0.88 092 094 0.93
5 091 093 093 093 0.90 093 093 093
200 2 092 093 095 094 092 093 094 094
5 092 093 093 093 092 093 093 094
Qas(")
50 2 0.85 092 0.93 0.92 0.84 091 093 0.92
5 0.88 092 094 0.92 0.88 092 094 0.92
100 2 0.88 0.92 094 094 0.88 092 094 0.93
5 092 095 094 0.93 091 095 094 0.93
200 2 092 094 094 094 092 093 094 0.93
5

092 094 093 094 091 093 093 0.93
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2.4.3 Transition Probabilities and Sojourn Time Distribu-

tions

Lagakos et al.’s plug-in and normalized estimates and Phelan’s estimate for the tran-
sition probabilities of the embedded Markov chain in the three simulation settings are
summarized in Tables 2.7 to 2.9. Note from the sample means associated with the
estimators that the plug-in estimators are biased for the transition probabilities in all
the simulation settings except for Pj3 and Ps; in Setting 2.3, which satisfy (2.3.10).
Both the normalized and Phelan’s estimators are verified to be consistent for all the
transition probabilities in Setting 2.1, and with P, and P,3 in Setting 2.2. This is
due to the same corresponding sojourn time distributions in the situations. They
are biased at other settings. In Setting 2.3, the sample biases of the normalized and
Phelan’s estimators for P; and P,3 are larger than for P and Pi3, since the differ-
ence between exp(2) and unif(0,2) is larger than the difference between exp(1) and
unif(0,2). In all simulation settings, the biases become smaller when the censoring
time C' increases from 2 to 5. With increased sample size n, the standard deviations
decrease, but the biases do not shrink.

We constructed confidence intervals for the transition probabilities F;;’s at each
simulation setting. For each simulated data set, we resampled B = 500 times to get
the bootstrap estimate for the distribution of (2.3.15) to construct confidence intervals
for P;;’s. Tables 2.10 to 2.12 present the coverage frequencies and the sample mean
lengths of the estimated 95% confidence intervals in the three simulation settings for
the transition probabilities based on the three existing methods and the proposed
robust approach. Note that the coverages of the confidence intervals based on the
three existing methods can be rather low when the corresponding point estimates are
biased, especially with the smaller censoring time C' = 2. By contrast, the robust con-
fidence intervals contain the attainable values of the transition probabilities (2.3.12)
at approximately the nominal level, and thus cover the true transition probabilities
at least at the nominal level. However, the confidence intervals constructed by the
robust approach are wider than the other three existing approaches, especially with
small censoring time C' = 2. With the larger censoring time C' = 5, the coverage
becomes close to the nominal level, and the length of the confidence intervals are
comparable with the ones based on the three existing approaches.

We also evaluated the confidence bands for the attainable sojourn time distribu-

tions (2.3.13). The simulation outcomes are summarized in Tables 2.13 to 2.15 for
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the three simulation settings respectively. Note that the coverage frequency of the
confidence bands is lower than the nominal level without transformation, while the
confidence bands constructed by applying transformation have coverage frequency

closer to the nominal level, especially for small sample size n = 50.
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Table 2.7: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.1

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P, =0.7
50 2 0.44 -0.26 0.09 0.70 -0.00 0.10 0.70 -0.00 0.10
5 0.64 -0.06 0.07 0.70 -0.00 o0.07 0.70 -0.00 0.07
100 2 0.44 -0.26 0.06 0.70 -0.00 0.07 0.70 -0.00 0.07
5 0.64 -0.06 0.05 0.70 -0.00 0.05 0.70 -0.00 0.05
200 2 044 -0.26 0.04 0.70 -0.00 0.05 0.70 -0.00 0.05
5 0.64 -0.06 0.04 0.70 -0.00 0.04 0.70 -0.00 0.04
P13 = 03
50 2 0.19 -0.11 0.07 0.30 0.00 0.10 0.30 0.00 0.10
5 0.28 -0.02 0.06 0.30 0.00 o0.07 0.30 0.00 0.07
100 2 0.19 -0.11 0.05 0.30 0.00 0.07 0.30 0.00 0.07
5 0.27 -0.03 0.05 0.30 0.00 0.05 0.30 0.00 0.05
200 2 0.19 -0.11 0.03 0.30 0.00 0.05 0.30 0.00 0.05
5 0.28 -0.02 0.03 0.30 0.00 0.04 0.30 0.00 0.04
P,y =05
50 2 0.43 -0.07 0.09 0.50 -0.00 0.09 0.50 -0.00 0.09
5 0.49 -0.01 o0.07 0.49 -0.01 o0.07 0.49 -0.01 o0.07
100 2 0.43 -0.07 0.06 0.50 -0.00 0.06 0.50 -0.00 0.06
5 0.49 -0.01 0.05 0.50 -0.00 0.05 0.50 -0.00 0.05
200 2 0.43 -0.07 0.04 0.50 -0.00 0.05 0.50 -0.00 0.05
5 0.49 -0.01 0.04 0.50 -0.00 0.04 0.50 -0.00 0.04
P,3 =0.5
50 2 0.44 -0.06 0.09 0.50 0.00 0.09 0.50 0.00 0.09
5 0.50 0.00 o0.07 0.51 0.01 o0.07 0.51 0.01 o0.07
100 2 0.43 -0.07 0.06 0.50 0.00 0.06 0.50 0.00 0.06
5 0.50 0.00 0.05 0.50 0.00 0.05 0.50 0.00 0.05
200 2 0.43 -0.07 0.04 0.50 0.00 0.05 0.50 0.00 0.05
5 0.50 -0.00 0.04 0.50 0.00 0.04 0.50 0.00 0.04
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Table 2.8: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.2

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P, =0.7
50 2 0.60 -0.10 0.08 0.76  0.06 0.08 0.76  0.06 0.08
5 0.69 -0.01 0.07 0.72 0.02 0.07 0.73 0.03 0.07
100 2 0.60 -0.10 0.06 0.76  0.06 0.06 0.77 0.07 0.06
5 0.70 -0.00 0.05 0.72 0.02 0.05 0.73 0.03 0.05
200 2 0.60 -0.10 0.04 0.76 0.06 0.04 0.77 0.07 0.04
5 0.70 -0.00 0.03 0.72 0.02 0.03 0.73 0.03 0.03
P13 = 03
50 2 0.19 -0.11 0.07 0.24 -0.06 0.08 0.24 -0.06 0.08
5 0.27 -0.03 0.07 0.28 -0.02 0.07 0.27 -0.03 0.07
100 2 0.19 -0.11 0.05 0.24 -0.06 0.06 0.23 -0.07 0.06
5 0.27 -0.03 0.05 0.28 -0.02 0.05 0.27 -0.03 0.05
200 2 0.19 -0.11 0.03 0.24 -0.06 0.04 0.23 -0.07 0.04
5 0.27 -0.03 0.03 0.28 -0.02 0.03 0.27 -0.03 0.03
P,y =05
50 2 0.43 -0.07 0.08 0.50 -0.00 0.09 0.50 -0.00 0.09
5 0.49 -0.01 o0.07 0.50 -0.00 0.07 0.50 -0.00 0.07
100 2 0.43 -0.07 0.06 0.50 -0.00 0.06 0.50 -0.00 0.06
5 0.50 -0.00 0.05 0.50 -0.00 0.05 0.50 -0.00 0.05
200 2 0.43 -0.07 0.04 0.50 -0.00 0.04 0.50 -0.00 0.04
5 0.50 -0.00 0.03 0.50 0.00 0.03 0.50 -0.00 0.03
P,3 =0.5
50 2 0.44 -0.06 0.08 0.50 0.00 0.09 0.50 0.00 0.09
5 0.50 -0.00 0.07 0.50 0.00 o0.07 0.50 0.00 0.07
100 2 0.44 -0.06 0.06 0.50 0.00 0.06 0.50 0.00 0.06
5 0.50 -0.00 0.05 0.50 0.00 0.05 0.50 0.00 0.05
200 2 0.43 -0.07 0.04 0.50 0.00 0.04 0.50 0.00 0.04
5 0.50 -0.00 0.03 0.50 -0.00 0.03 0.50 0.00 0.03
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Table 2.9: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.3

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P, =0.7
50 2 0.60 -0.10 0.09 0.67 -0.03 0.09 0.69 -0.01 0.08
5 0.69 -0.01 0.06 0.70 -0.00 0.06 0.70 -0.00 0.06
100 2 0.60 -0.10 0.06 0.67 -0.03 0.06 0.69 -0.01 0.06
5 0.70 -0.00 0.05 0.70 -0.00 0.05 0.70 -0.00 0.05
200 2 0.60 -0.10 0.04 0.67 -0.03 0.04 0.69 -0.01 0.04
5 0.70 -0.00 0.03 0.70 -0.00 0.03 0.70 -0.00 0.03
P13 = 03
50 2 0.30 0.00 0.08 0.33 0.03 0.09 0.31 0.01 0.08
5 0.30 0.00 0.06 0.30 0.00 0.06 0.30 0.00 0.06
100 2 0.30 0.00 0.06 0.33 0.03 0.06 0.31 0.01 0.06
5 0.30 -0.00 0.05 0.30 0.00 0.05 0.30 0.00 0.05
200 2 0.30 0.00 0.04 0.33 0.03 0.04 0.31 0.01 0.04
5 0.30 -0.00 0.03 0.30 0.00 0.03 0.30 0.00 0.03
P,y =05
50 2 0.50 -0.00 0.09 0.61 0.11 0.09 0.60 0.10 0.09
5 0.50 -0.00 o0.07 0.52 0.02 0.07 0.53 0.03 0.07
100 2 0.50 -0.00 0.06 0.61 0.11 0.06 0.60 0.10 0.06
5 0.50 -0.00 0.05 0.52 0.02 0.05 0.53 0.03 0.05
200 2 0.50 -0.00 0.04 0.61 0.11 0.04 0.60 0.10 0.04
5 0.50 -0.00 0.03 0.52 0.02 0.03 054 0.04 0.04
P,3 =0.5
50 2 0.32 -0.18 0.08 0.39 -0.11 0.09 0.40 -0.10 0.09
5 0.46 -0.04 0.07 0.48 -0.02 0.07 0.47 -0.03 0.07
100 2 0.32 -0.18 0.05 0.39 -0.11 0.06 0.40 -0.10 0.06
5 0.46 -0.04 0.05 0.48 -0.02 0.05 0.47 -0.03 0.05
200 2 0.32 -0.18 0.04 0.39 -0.11 0.04 0.40 -0.10 0.04
5 0.46 -0.04 0.03 0.48 -0.02 0.03 0.46 -0.04 0.04
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Table 2.10: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.1

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP1! CP2?> ML

P12 == 07
50 2 0.17 0.33 0.92 0.39 0.93 0.38 1.00 0.95 0.67
5 0.89 0.29 0.95 0.28 0.95 0.28 0.99 0.96 0.36
100 2 0.01 0.24 0.93 0.27 0.94 0.27 1.00 0.96 0.58
5 0.83 0.20 0.95 0.20 0.95 0.20 1.00 0.96 0.28
200 2 0.00 0.17 0.94 0.19 0.94 0.19 1.00 0.95 0.52
5 0.67 0.14 0.95 0.14 0.94 0.14 1.00 0.96 0.22

P13 == 03
50 2 0.59 0.26 0.92 0.39 0.93 0.38 1.00 0.95 0.67
5 091 0.26 0.95 0.28 0.95 0.28 0.99 0.96 0.36
100 2 0.38 0.19 0.93 0.27 0.94 0.27 1.00 0.96 0.58
5 091 0.19 0.95 0.20 0.95 0.20 1.00 0.96 0.28
200 2 0.12 0.13 0.94 0.19 0.94 0.19 1.00 0.95 0.52
5 0.88 0.13 0.95 0.14 0.94 0.14 1.00 0.96 0.22

Py =05
50 2 0.83 0.33 0.93 0.35 0.93 0.35 0.99 0.94 0.46
5 094 0.28 0.94 0.28 0.94 0.28 0.95 0.94 0.29
100 2 0.77 0.23 0.94 0.25 0.94 0.25 1.00 0.95 0.37
5 094 0.20 0.94 0.20 0.94 0.20 0.95 0.94 0.20
200 2 062 0.17 0.95 0.18 0.95 0.18 1.00 0.95 0.30
5 094 0.14 0.94 0.14 0.94 0.14 0.95 094 0.15

P23 == 0 5

0.85 0.33 0.93 0.35 0.93 0.35 099 094 0.46
0.94 0.28 0.94 0.28 0.94 0.28 095 094 0.29

2
)

100 2 0.79 0.23 094 0.25 094 0.25 1.00 095 0.37
5 094 0.20 0.94 0.20 0.94 0.20 095 094 0.20
2

0.64 0.17 0.95 0.18 0.95 0.18 1.00 0.95 0.30
5 094 0.14 0.94 0.14 0.94 0.14 0.95 094 0.15

L CP for the transition probabilities
2 CP for the attainable values of the transition probabilities

200
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Table 2.11: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.2

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP1! CP2?> ML

P12 = 07
50 2 0.78 0.32 0.82 0.31 0.80 0.31 1.00 0.94 0.50
5 094 0.26 0.92 0.26 0.89 0.25 0.96 0.94 0.29
100 2 0.62 0.23 0.77 0.22 0.74 0.22 1.00 0.94 0.41
5 094 0.18 0.92 0.18 0.89 0.18 0.96 094 0.21
200 2 0.38 0.16 0.64 0.16 0.57 0.15 1.00 0.95 0.35
5 094 0.13 0.90 0.13 0.83 0.13 0.97 0.95 0.16

P13 == 03
50 2 0.59 0.26 0.82 0.31 0.80 0.31 1.00 0.94 0.50
5 090 0.25 0.92 0.26 0.89 0.25 0.96 0.94 0.29
100 2 039 0.18 0.77 0.22 0.74 0.22 1.00 0.94 0.41
5 0.89 0.18 0.92 0.18 0.89 0.18 0.96 094 0.21
200 2 0.13 0.13 0.64 0.16 0.57 0.15 1.00 0.95 0.35
5 0.84 0.13 0.90 0.13 0.83 0.13 0.97 0.95 0.16

Py =05
50 2 0.82 0.31 0.92 0.33 0.93 0.32 0.99 094 0.44
5 0.93 0.26 0.93 0.26 0.93 0.26 0.94 0.94 0.27
100 2 0.74 0.22 0.93 0.23 0.94 0.23 1.00 0.95 0.35
5 093 0.18 0.93 0.18 0.94 0.18 0.94 094 0.19
200 2 058 0.15 0.94 0.17 0.93 0.16 1.00 0.95 0.29
5 094 0.13 0.94 0.13 0.93 0.13 0.96 094 0.14

P23 == 0 5

0.82 0.31 0.92 0.33 0.93 0.32 099 094 0.44
0.93 0.26 0.93 0.26 0.93 0.26 094 094 0.27

2
)

100 2 0.78 0.22 0.93 0.23 094 0.23 1.00 0.95 0.35
5 093 0.18 0.93 0.18 0.94 0.18 094 094 0.19
2

0.60 0.15 094 0.17 0.93 0.16 1.00 0.95 0.29
5 094 0.13 094 0.13 0.93 0.13 096 094 0.14

L CP for the transition probabilities
2 CP for the attainable values of the transition probabilities

200
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Table 2.12: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.3

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP1! CP2?> ML

P12 == 07
50 2 0.81 0.33 0.93 0.33 0.94 0.32 0.98 0.95 0.42
5 095 0.25 0.94 0.25 0.94 0.25 0.95 0.94 0.26
100 2 0.65 0.23 0.91 0.24 0.93 0.23 0.97 0.94 0.32
5 095 0.18 0.95 0.18 0.95 0.18 0.95 0.95 0.18
200 2 0.38 0.16 0.89 0.17 0.94 0.16 0.98 0.95 0.26
5 094 0.13 0.94 0.13 0.94 0.13 0.95 094 0.13

P13 == 03
50 2 094 0.31 0.93 0.33 0.94 0.32 0.98 0.95 0.42
5 094 0.25 0.94 0.25 0.94 0.25 0.95 0.94 0.26
100 2 0.93 0.22 091 0.24 0.93 0.23 0.97 094 0.32
5 094 0.18 0.95 0.18 0.95 0.18 0.95 0.95 0.18
200 2 095 0.16 0.89 0.17 0.94 0.16 0.98 0.95 0.26
5 094 0.13 0.94 0.13 0.94 0.13 0.95 094 0.13

Py =05
50 2 093 0.33 0.74 0.35 0.77 0.34 0.97 0.95 0.50
5 094 0.26 0.93 0.27 0.90 0.27 0.97 0.94 0.30
100 2 094 0.23 0.58 0.24 0.63 0.24 0.97 0.95 0.40
5 094 0.18 0.92 0.19 0.88 0.19 0.97 0.94 0.23
200 2 095 0.17 0.30 0.17 0.37 0.17 0.98 0.95 0.34
5 094 0.13 0.89 0.13 0.80 0.14 0.96 0.94 0.17

P23 == 0 5

0.37 0.30 0.74 0.35 0.77 0.34 0.97 0.95 0.50
0.90 0.26 093 0.27 0.90 0.27 097 094 0.30

2
)

100 2 0.10 0.21 0.58 0.24 0.63 0.24 097 0.95 0.40
5 086 0.19 0.92 0.19 0.88 0.19 097 094 0.23
2

0.01 0.15 0.30 0.17 0.37 0.17 098 095 0.34
5 077 0.13 0.89 0.13 0.80 0.14 096 094 0.17

L CP for the transition probabilities
2 CP for the attainable values of the transition probabilities

200
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Table 2.13: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.1

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
Fia(0)
50 2 0.85 0.80 0.89 0.83 0.92 0.87 0.93 0.91
5 0.80 0.82 0.87 0.86 0.87 0.90 0.92 0.91
100 2 0.88 0.85 0.89 0.85 0.94 091 0.95 0.92
5 0.84 085 0.86 0.86 0.90 091 0.92 0.92
200 2 090 0.86 0.88 0.85 0.95 0.93 0.95 0.92
5 0.86 0.86 0.87 0.87 0.91 0.92 0.93 0.93
Fis(-)
50 2 0.83 0.78 0.90 0.83 0.88 0.85 0.95 0.92
5 0.77 0.77 0.90 0.90 0.83 0.85 0.95 0.94
100 2 0.87 0.82 0.92 0.83 0.92 0.89 0.96 0.92
5 0.84 0.83 0.90 0.90 0.89 0.89 0.95 0.94
200 2 0.89 0.85 0.90 0.85 0.94 091 0.95 0.93
5 0.8 0.85 0.89 0.88 0.92 091 0.94 0.94
(o)
50 2 0.84 0.84 0.90 0.89 0.89 0.91 0.96 0.94
5 0.76 0.82 0.85 0.85 0.84 0.89 0.92 0.92
100 2 0.87 0.85 0.89 0.86 0.92 091 0.95 0.94
5 0.82 0.85 0.86 0.87 0.88 0.91 0.91 0.93
200 2 0.89 0.88 0.90 0.87 0.95 094 094 0.94
5 0.84 0.86 0.87 0.87 091 093 093 094
()
50 2 0.82 0.82 0.88 0.87 0.88 0.90 0.95 0.94
5 0.79 0.85 0.88 0.90 0.87 0.92 0.94 0.96
100 2 0.87 0.87 0.90 0.88 0.93 0.92 0.95 0.94
5 0.84 086 0.88 0.89 0.90 0.93 0.94 0.94
200 2 0.88 0.87 0.89 0.87 0.94 093 0.94 0.93
5

0.86 0.88 0.88 0.88 091 093 094 094
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Table 2.14: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.2

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
Fia(0)
50 2 0.85 0.83 0.89 0.84 0.92 0.90 0.95 0.92
5 0.78 0.82 0.82 0.85 0.86 0.89 0.91 0.91
100 2 0.86 0.83 0.87 0.84 0.93 091 0.94 0.91
5 0.84 085 0.87 0.85 0.91 0.92 0.93 0.93
200 2 0.89 0.86 0.87 0.86 0.94 093 0.94 0.92
5 0.85 0.88 0.88 0.88 0.93 093 094 0.94
Fis(-)
50 2 0.81 0.80 0.90 0.88 0.87 0.86 0.95 0.95
5 0.75 0.78 0.88 0.90 0.83 0.86 0.94 0.95
100 2 0.86 0.83 0.89 0.86 0.92 090 0.95 0.93
5 0.80 0.82 0.88 0.89 0.86 0.88 0.94 0.94
200 2 0.89 0.88 0.90 0.87 0.94 094 0.96 0.94
5 0.83 0.85 0.87 0.88 0.90 0.91 0.93 0.94
(o)
50 2 0.84 0.83 0.89 0.87 0.90 0.90 0.95 0.93
5 0.7 0.83 0.86 0.86 0.86 0.90 0.92 0.93
100 2 0.87 0.87 0.88 0.87 0.92 0.92 0.93 0.93
5 0.8 0.86 0.89 0.89 091 091 094 094
200 2 0.88 0.87 0.88 0.87 0.93 0.92 0.93 0.93
5 0.8 0.86 0.87 0.87 0.90 0.91 0.92 0.92
()
50 2 0.84 0.85 0.90 0.90 0.90 0.91 0.95 0.95
5 0.80 0.85 0.88 0.90 0.87 0.92 0.94 0.95
100 2 0.89 0.88 0.90 0.89 0.93 0.93 0.95 0.94
5 0.8 0.88 0.88 0.88 0.92 093 0.94 0.94
200 2 090 0.87 0.90 0.89 0.95 094 0.96 0.94
5

0.87 0.89 0.89 0.90 093 094 095 095
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Table 2.15: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.3

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
Fia(0)
50 2 0.80 0.84 0.88 0.87 0.87 091 0.94 0.94
5 0.79 083 0.84 0.87 0.87 091 0.92 0.93
100 2 0.86 0.85 0.90 0.87 0.92 0.92 0.95 0.93
5 083 0.84 0.86 0.86 0.90 0.92 0.92 0.93
200 2 0.88 0.86 0.88 0.86 094 091 094 0.92
5 087 0.88 0.88 0.89 0.92 094 094 0.94
Fis(-)
50 2 0.71 0.74 0.89 0.90 0.80 0.82 0.95 0.95
5 0.71 0.77 0.88 0.89 0.79 0.85 0.94 0.95
100 2 0.80 0.81 0.90 0.90 0.88 0.88 0.96 0.96
5 0.78 0.81 0.88 0.89 0.85 0.88 0.93 0.95
200 2 0.85 0.85 0.89 0.88 0.91 090 0.95 0.95
5 0.82 0.86 0.87 0.88 0.90 0.92 0.94 0.94
(o)
50 2 0.76 0.75 0.87 0.85 0.83 0.83 0.92 0.91
5 0.79 082 0.86 0.87 0.86 0.89 0.93 0.92
100 2 0.85 0.83 0.88 0.87 0.90 0.89 0.94 0.93
5 0.84 0.86 0.87 0.89 091 092 094 094
200 2 0.87 0.86 0.88 0.86 0.92 0.92 0.93 0.92
5 0.84 0.85 0.86 0.86 0.91 091 093 0.92
()
50 2 0.85 0.83 0.91 0.90 0.90 0.89 0.95 0.95
5 0.82 0.86 0.90 0.90 0.88 0.92 0.95 0.96
100 2 0.86 0.85 0.89 0.87 0.93 091 0.95 0.94
5 0.86 0.88 0.89 0.90 0.93 094 094 0.95
200 2 0.87 0.85 0.89 0.86 0.93 0.92 0.94 0.93
5

0.86 0.87 0.88 0.88 093 094 094 095
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2.5 Summary

In this chapter, we consider estimation with right censored HSM processes, of which
the transition intensities only depend on the present state and the duration time in the
present state. We propose two simulation based algorithms to overcome the difficulty
in constructing confidence bands for the semi-Markov kernel. Moreover, we show
that the existing estimators for the transition probabilities of the embedded Markov
chain can be inconsistent. We propose robust confidence intervals for the transition
probabilities, and robust confidence bands for the sojourn time distributions.

The homogeneity assumption may not hold in many practical situations. In the
human sleep process, for instance, the level of cortisol has been found to affect the
transition intensities between Non-REM and REM sleep phases (Kneib and Henner-
feind, 2008). In the next chapter, we consider an extension of the HSM model, the
modulated semi-Markov model, which handles the nonhomogeneity by incorporating

covariates in the Cox regression form.



Chapter 3

Modulated Semi-Markov Process

3.1 Introduction

In practice, the subjects in a study often have different covariate patterns which makes
the homogeneous assumption questionable. For instance, the hospitalization processes
of cancer survivors diagnosed in different time periods can be rather different. One
explanation for this is that treatments for cancer have been evolving over time.

In this chapter, we consider the modulated semi-Markov model (Cox, 1973) which
incorporates covariates in the homogeneous semi-Markov model through the Cox
regression form. This model differs from the well-studied classical Markov based
regression model. It uses the duration time in the current state as the basic time
scale in the baseline transition intensity function, instead of the study time since the
beginning of the process. The dependence of the baseline transition intensity on the
duration time makes the model fall outside the framework of Aalen’s multiplicative
intensity models and invalidates the usual martingale methods (Gill, 1980; Voelkel
and Crowley, 1984; Andersen et al., 1993; Oakes and Cui, 1993; Dabrowska et al.,
1994; Dabrowska, 1995).

When the underlying process is unidirectional (i.e., if state j can be reached from
state h, state h can not be reached from state j), Voelkel and Crowley (1984) pro-
pose a random time change to transform the modulated semi-Markov model into
the multiplicative intensity model. However, this trick does not work for bidirec-
tional processes due to the renewal nature of the semi-Markov process. Dabrowska
et al. (1994) and Dabrowska (1995) consider bidirectional modulated semi-Markov

processes through the Cox regression form with possible time-dependent covariates.
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They allow only the covariates to depend on the duration time in the current state,
which excludes the covariates that depend on the study time scale. The study time
scale can be very useful both practically and theoretically. For example, by including
the study time as a covariate in the modulated semi-Markov model and conducting
the hypothesis test on the corresponding regression parameter, we can check whether
the time-homogeneity assumption of the homogeneous semi-Markov model is appro-
priate. In this chapter, we consider the modulated semi-Markov models with general
time-dependent covariates.

The rest of this chapter is organized as follows. Section 3.2 describes the mod-
ulated semi-Markov models in the Cox regression form with general time-dependent
covariates, and the corresponding estimation procedures for the regression parame-
ters and the baseline transition intensities. In Section 3.3, we derive the asymptotic
properties of the proposed estimators by using empirical process theory. We examine
the methodology by simulation in Section 3.4. Section 3.5 concludes this chapter with

some remarks.

3.2 Models and Estimation Procedures

We introduce the modulated semi-Markov models in the counting process formula-
tion. Let N (t) be the total number of h — j transitions in the time interval (0, ]
without censoring, and A, = {\(t) : h,j € £} be the set of intensity functions of
the multivariate counting process N, (t) = {N"(t) : h,j € £} with respect to its self-
exciting filtration F;, the o-algebra generated by {N/(s): h,j € £,0 < s < t}. Let
N.(t) = > oh N (t) be the total number of transitions occurred in (0,]. Suppose
there are transition specific time-dependent covariates Z(t) = {Z"(t) : h,j € £},
whose association with the transition intensities is of interest. We consider the fol-

lowing two different specifications for A (t).
Model 3.1. (The modulated renewal model; Cox 1973). Assume that
NI () = Y (t)aon; (B(1)) exp(6/ 2" (1)), (3.2.1)

where Y/*(t) = I{S(t—) = h} is the ‘at risk’ indicator for whether the process has the
potential of experiencing a transition from state h at time ¢, and B(t) =t — TN*(t—)

is a left continuous version of the backward-recurrence time.
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Model 3.2. Assume that
NI (1) = Y () aon; (B(1); N(t=)) exp(0' 2" (1)), (3.2.2)
where Y*(t) and B(t) are as in Model 3.1.

Remark 3.2.1. Dabrowska et al. (1994) and Dabrowska (1995) consider a special case
of Model 3.1 with covariates depending on the time through the backward recurrence

time only. That is,
NE (1) = Y1) aons (B(1)) exp (0 2 (B(1))).

Remark 3.2.2. The dependence of the transition intensities on the backward recur-
rence time B(t) makes both Model 3.1 and Model 3.2 fall outside of the multiplicative
intensity model framework. The transition intensities can not be written as the prod-

uct of a predictable process times a deterministic function, which is of interest.

Remark 3.2.3. As a more general model than Model 3.1, Model 3.2 allows the baseline
transition intensity function to vary after the occurrence of each transition, with the

effect of covariates remaining the same.

Due to the dependence of the baseline transition intensities on the backward re-
currence time B(t), our proposed estimation procedures with both Model 3.1 and
Model 3.2 involve the change of time scale from the study time to the duration time.

Recall the two processes in the time scale of duration defined in (2.2.1) and (2.2.2):
NM(w)=#{m>1:Jpy=h,Jp =7, X <u,T,, <C},

and
Vi) =#{m>1:Jp1=h,Xm > u, T +u<C}

Since Z" (t) can vary from transition to transition after converting to the time scale of
duration (unless Z"(t) depends only on the time through the duration at the current
state, as in Dabrowska et al. 1994), we work with processes which count the number

of sojourn times for each transition. Specifically, we define
NY(u;m) = Yyt = h, Jop = §, Xpn < u, T, < CY, (3.2.3)

which indicates whether the mth transition is from A to j with duration < w and

occurs before the censoring,

Y*(u;m) = Tt = hy X > 0, Ty +u < O}, (3.2.4)
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which indicates whether the mth transition is observed to be from state h and takes
time > u. Let

ZM (uzm) = ZM (T 1 + u). (3.2.5)

Suppose we have n ii.d. replicates of {N"(u;m),Y"(u;m), Z" (u;m) : h,j €

E,ue0,T),m > 1}, say {NM(u;m), Y (u;m), Z¥ (u;m) : h,j € E,u € [0,Tg],m >

1} for i =1,...,n. Here 7y is the time of the end of the study. For a vector z, denote

2% as 1, z and 22 for [ =0, 1, and 2, respectively. Let
Shj (6, u;m) ZYh w;m) exp(6' Z1 (u;m)) ZM (u; m)®

and

hj9u ZS (0,u;m)

for [ = 0,1,2. We consider the followmg estimating functions for § with Model 3.1
and Model 3.2, respectively:

(1) 0, u
U0,7,) = ZZZ/ ZM (u;m) ?8)29 u;] AN (u;m) (3.2.6)
and
(1)
hj j O wm) |
2(0,79) = Z (u;m) 5 dN;"” (u;m). (3.2.7)
ZZ%:/ S;wa u;m>]

Remark 3.2.4. Estimating function (3.2.6) for Model 3.1 reduces to the one proposed
by Dabrowska et al. (1994) if the covariates depend on the time only through the
backward recurrence time. Estimating function (3.2.7) can also be used with Model
3.1, but it is less efficient than (3.2.6) under Model 3.1. On the other hand, estimating
function (3.2.7) is unbiased under the more general Model 3.2, and thus is more robust
than (3.2.6).

Denote the estimators based on the estimating functions U(6,7;) in (3.2.6) and
Uy(0,T5) in (3.2.7) by 6 and 6, respectively. We can then estimate the cumulative

baseline transition intensity function

Ao (7) = /0 " o () (3.2.8)

f Model 3.1 b
S ' 2 " AN (u;m)
Aopj(T) = Z/ — (3.2.9)
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for h,j € £ and 7 € [0,7g]. Under Model 3.2, we can estimate the cumulative baseline

transition intensity function

Ao (T;m) = / aong (u; m)du (3.2.10)
0
with
AN (u; m)
Aonj(1;m) / 3.2.11)
Ohj Z 0 ns}(l]) 92,’& m) (

for h,j € £, m € N, and 7 € [0, 7).
Estimating functions U (6, 7y) in (3.2.6) and Uy(0,7p) in (3.2.7) can be justified as

follows:

Proposition 3.2.1. Estimating functions (3.2.6) and (3.2.7) are the the score func-
tions of the profile likelihoods with Model 3.1 and Model 3.2, respectively.

Proof. The log-likelihood function for the observed data is given by

log L(6, @) ZZ U log A ( )dNihj(t)—/(]% )\?j(t)dt].

Under Model 3.1, the log-hkehhood function is specified as

log (6, ) ZZ [ / log aan (BN () + [ 020 (0)av (o)

- [0 O (B0
:ZZ [/Oﬁ)logaohj( )AN (u —i—Z/ 0' Z! (w; m)dN (u; m)

i hy ;
_Z/ Yhum G’Z]umdAOh]( )]

by changing the time scale from the study time to the duration time. To maximize
the log-likelihood function, Agp;(.) should be a step function which changes only when
N (.) jumps, i.e., at the observed sojourn times of the transitions from state h to
state 5. With fixed 6, this gives us

/ AN (v; m)
AOhJ ' ZhT ()
Z Yh U m) 0'Z;" (v;m)

Replacing Agpj(uw) with AOhj(u), we obtain the profile log-likelihood, log ﬂ(@), as

%o ; ) hi ;
Z Z Z/ 0' 2! (u; m) — log <Z Y (u;m)e? z Wm))] AN (u;m).
i hj m YO im
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Estimating function (3.2.6) is log L(6) /6.

Under Model 3.2, the log-likelihood function simplifies to

To - L To , .
log La(6.0) = 3 3~ [ [ logamy(Bu(t): M=) ) + [ 02D (an
- 0 0
To ~ 1 7hj ~

= [ RO O (Bi); Nt

0

T

- Z Z Z [/0 log agn; (u; m)dN; (u; m)

To : ,
+ 0' ZM (u;m)dN (u; m)
0

To )
= / Y;h(u; m)eelzzh](“;m)dAOhj(u; m)|,
0

by changing the time scale from the study time to the duration time. To maximize
the log-likelihood function, Agp;(.;m) should be a step function which changes only
when N™(-;m) jumps, i.e., at the observed sojourn times of the mth transitions that

are from state h to state j. For fixed 6, this gives us

devm
AOhgum Z/ /)J
Zthm GZ (vsm)

Replacing Agp,j(u; m) with thj (u;m), we get the profile log-likelihood, log Ly (6), as

%o i 1 7hj i
Z Z Z/ 0' 2! (u; m) — log <Z Y (u;m)e? z; Wm))] AN (u;m).
i hj m YO im

Estimating function (3.2.7) is 0log Lo (6)/06.

3.3 Asymptotic Properties

3.3.1 Preliminaries

The usual derivation of asymptotic properties with multiplicative intensity models,
in which the baseline intensity function is a deterministic function of the study time,
relies on the counting process martingales with respect to filtrations on the study time
scale. However, as indicated in Section 3.2, due to the dependence of the baseline

transition intensities on the backward recurrence time B(t), our estimation procedures
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with both Model 3.1 and Model 3.2 involve the change of time scale from the study
time to the duration time. Thus the usual counting process martingale theory can
not be applied directly.

In what follows, we transform Model 3.2 to a multiplicative intensity model by
random time changes according to each transition (Voelkel and Crowley, 1984; Chang
and Hsiung, 1994). The counting process martingales, with random time changes, can
then be used to derive the asymptotic properties of the estimator based on estimating
function (3.2.7). However, this trick can not be used for the estimator based on
estimating function (3.2.6) with Model 3.1, because of the common baseline intensity
function shared by all transitions. Instead, we use empirical process theory to derive
its asymptotic properties.

Let N (t) = NM(t A C) be the total number of observed h — j transitions in
the time interval (0,¢] in the presence of censoring. Then the intensity function of
the observed multivariate counting process N() = {Nhj(t) ch#j€&,t>0}, with
respect to its self-exciting filtration F, is given by {\"(¢) : h # j € £,t > 0} with

NI(t) = Y (t)aon; (B(1)) exp(6' 2" (t))
under Model 3.1, and
N9(t) = Y"(t)aon; (B(£); N(t=)) exp(6'Z" (1))
under Model 3.2, where
Yi(t) = I{S(t—) = h,C >t}

indicates whether the process S(-) is under observation and in state h just before time
t.
Define .
MM (t) = NN () — / M (s)ds,

0
which is a counting process martingale with respect to ;. Then M" (T, + u) is an

Fr,,+u martingale. This together with the fact that X,,11 = T},41 — 10, 1s an Fr, 14

stopping time ensures that
MM (w;m) = MM (T, +u A Xppyy) — MM(T),)
is also an Fr, ., martingale. By some algebra and Lemma 1.2.3,

M (aim) = N (i) [ Y oim)et? O gy (),
0
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under Model 3.1, and
MW m) = N (i m) = [P )2 g v
0

under Model 3.2, where N (u;m) and Y"(u;m) are defined in (3.2.3) and (3.2.4),
respectively. Thus for each m € IN, the intensity of the multivariate counting process
{NM(u;m) : h,j € & u > 0}, with respect to the filtration Fr, ;,, has a multi-
plicative form. The integrand in estimating function (3.2.7) is a predictable process
relative to the filtration F7, .,. Thus the counting process martingale theory can
be applied to derive the asymptotic properties of the estimator based on estimat-
ing function (3.2.7). However, this approach does not work for estimating function
(3.2.6) under Model 3.1, since the integrand in estimating function (3.2.6) is not a

predictable process relative to the filtration Fr, 1.

3.3.2 Consistency and Asymptotic Normality

We first introduce some new notation. Let

sgj).(@,u;m) =F (S}(L?(Q,u;m)) , (3.3.1)
and
sh] Zshj (6, u;m) (3.3.2)
Let also
®2
e (510 0. )
(00, 75) =Y / 82 (60, u) — ~—0 o (1), (3.3.3)
hj 0 Shj (0o, u
and

(000, )™

sy (B, u; m)

aonj(u; m)du.

Y9(00,7y) = ZZ/ shj (0o, u;m) —

(3.3.4)
We assume the following regularity conditions:
(a) There exists a constant K such that the total variation | Z (0)|+ f |dZM (u
K for all h,j € £ and 1 < ¢ < n, where the two |.|’s denote the Li-norm for a p-
dimensional vector and Li-type total variation for a p—dimensional vector function

respectively.
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(b) E{[N"(Ty)]?} < oo for all h,j € &;

c) fOTO aonj(u)du < oo and P(Y"(7y) > 0) > 0 for all h, j € &;

(d) (00, 7o) and 35(6y, 7o) are positive definite.

The asymptotic properties of the estimator derived from estimating function
(3.2.7) under Model 3.2 can be established by the counting process martingale theory,
following the lines of Chang and Hsiung (1994). We omit the details and simply state

the results in the following.

Theorem 3.3.1. The estimator 05 of Oy from estimating function (3.2.7) under Model
3.2 is asymptotically efficient, and n'/ 2<é2 — by) is asymptotically normal with mean

0 and variance ($9(60, o))~ in the limiting distribution.

Remark 3.3.1. Estimating function (3.2.7) can also be used for Model 3.1, the asymp-
totic normality of 0y still holds. However, it is not asymptotically efficient under
Model 3.1.

In what follows, we show the asymptotic properties of the estimator derived from
estimating function (3.2.6) with Model 3.1.

Theorem 3.3.2. Under the regularity conditions (a)-(d), the estimator 0 from esti-

mating function (8.2.6) is strongly consistent.

Proof. Let

S (6 w)

X100, Ty) = ZZZ/ [9 00)' ZM (u;m) — 1og5(0) ]dzvfj(u;m).

(6o, u)

We first show X;(6,7p) has the same limit as

s, (0,u ,
X5(0,7) = ZZZ/ [9 00)' Z1 (u;m) — log (}SJ)( )]dNZ.hJ(u;m).

Sh] (007 )

In a neighborhood © of 6y, we have, by the uniform strong law of large numbers
(Pollard, 1990, Theorem 8.3, page 41),

sup 22,0, forfe0O.

u€0,70)

S0, u) — s (0, u)

According to condition (c), s (9 u) is bounded away from 0 on © x [0, 7p]. Thus

220.

sup |log{ S\ (6, u)} — log{s\ (6, u)}

u€[0,70]
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Denote pupj(u) = E{N"(u)} for u € [0,7p]. Then py;(u) is nondecreasing and
bounded on [0, 75| by condition (b). Applying the uniform strong law of large numbers
(Pollard, 1990, Theorem 8.3, page 41), we have

ZNJ — ()

By Lemma 1 of Lin et al. (2000), page 724,

a.s.

sup — 0.

u€[0,70]

a.s. O

T
/ [log{S,(lg)(Q,u)} log{sfg)ﬁu] Zth]
0

Thus we have shown that | X (0, 7o) — X2(0, Zo)| == 0.

Now denote

353)(9 u)

7o
0 ,ZE) Z/ [ 0 90 hj (907 ) log{ (0)

Sh;j (0o, w)

} S,(g) (0o, u)] aopj(uw)du.

Then

X2(0,To) — An(0, 7o)

= —ZZZ/ [9 00)' Z (u;m) — log Sh] (9 u)] dMM (u; m),

Shj (907 )

which converges to 0 almost surely by strong law of large numbers. By condition
(¢) and uniform convergence of S}(Llj) to sﬁll])., we know that A, (6, 7)) converges almost

surely to

Shj (00a )

We can see from their second derivatives that both X(6,7y) and A(6,7,) are con-
cave functions of 6 . In addition, A(6y, 7y)/00 = 0 and 9% A(6,, Ty)/06? = —% (00, To),
which is strictly negative definite. Thus A(6, 7g) has a unique maximizer 6y, and 0 is

strongly consistent with ¢, (Andersen and Gill, 1982). O

Under Model 3.1, we have

To , _ A
00T =SS [ [ m - Zaso ] M, 335)
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where
hin,. 96Zhj(u;m) hjc . (1)
= sz}/z (u7m)€ ¢ ZZ (u7m> Shj (907u)
Zhj(907u> = ’ TR = 0) . (336)
Zi,m Y (u; m)efoZi (wm) Shj (6o, u)
Let
Wé?)(ﬁ, u) = n"l/? Z MM (u;m),
and .
W,E;)(G,u) — 12 Z/ ZM (v;m)dMM (v; m).
im “0
Then

V20 (0 w) = S WD O, u) — 3 / Zn (B0, )W (60, ). (3.3.7)
h.j hj 70

Lemma 3.3.3. Under the regularity conditions (a)-(d), {W,E?)(Qg,u),W}S)(Ho,u) ;
h,j € Eu € [0,7p]} converges weakly to {W,(lg)(ﬁo,u),W,%)(Hmu) th,j € &u e
0,70}, which is a mean 0 Gaussian process with continuous sample paths and co-

variance functions

w1 AU
cov (Wi(z(;)(60>ul)7ngz(l))(60>u2)> —/ s3] (B0, w)on; (w)du,
0

w1 AU
cov <Wi(z(;)(‘907ul)7ngll)(‘g()?u?)) :/ 51 (80, w)on; (w)du,
0

and
u1 AU
Cov (W}S) (‘90, U1)7 W]E,ll) (‘90, UQ)) = / 822]) (607 u)oz()hj(u)du.
0

Proof. Since W,Eg) can be viewed as a component of W,S) when the corresponding com-
ponent of the covariate Z" is 1, we only need to show the convergence for W}S)(é’o, ).

Let
fi(0o, ) —nl/QZ/ ZM (v;m)dMM (v;m),
— Jo

then W}E;)(HO, ) = >k fi(bo,.). Without loss of generality, we assume the dimension
of Z" is 1. To apply the functional central limit theorem (Pollard, 1990, Theorem
10.6, page 53) to show the weak convergence, we verify conditions (i) — (v) of the

theorem first.



CHAPTER 3. MODULATED SEMI-MARKOV PROCESS 53

To verify condition (i), note that
o) =Y [ 2 wim)aN wsm)
—Jo

—n 12 Z/ 20 (0;m) Y (0m) 7 0 g (0) .
0

If Z!(v;m) > 0, then fi(Ay,u) is the difference of two monotone functions in u and
thus manageable (Bilias et al., 1997, Lemma A.1 and A.2, page 679). This is true for
general Z" by writing Z (v;m) = Z/? (v;m)* — Z (v;m)".

By assumptions (a) and (c), we can use envelopes F; = n~/2(K N (Ty) + K,),
where K, and K, are positive constants. Conditions (iii) and (iv) are satisfied by as-
sumption (b). Since f;’s are i.i.d., condition (v) is trivially satisfied. Finally, condition
(ii) follows by the multivariate central limit theorem.

[

The following Lemma is adopted from Lemma A.3 of Bilias et al. (1997), page
679.

Lemma 3.3.4. Let f,, and g,, be two sequences of bounded functions such that, for

some constant tg > 0,

lim sup {[f(7) = F(T)| + [gm(7) = 9(7)[} = 0,

M=% r¢[0,t0]

where f is continuous on [0,ty], and g, has total variation bounded by a constant K,

independent of m. Then

W{igg)oégrzo / fm (1) dgym (u /f )dg(u (3.3.8)
Jim s /D o (1)l 11) — /0 g(u)df (u)) = (3.3.9)

Proof. Since {g,, : m > 1} converges uniformly to g, and the total variation of g, is

bounded by K for all m, the total variation of g must be also bounded by K. Write

[ tntdante) = [ swdgt) = [ 1) = f@ldgatw

[ s o]
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since { f,, : m > 1} converges uniformly to f and g,, has bounded variation, we have

lim sup
M0 r€[0,t0]

/0 o) — £()]dgun(w)| = 0. (3.3.10)

Because f is continuous on [0, %], for any € > 0, we can find a partition 0 = 75 <

T1 < +++ < Ty = to such that

sup ’f€<7> - f<7-)’ <6,

T7€[0,t0]

where fo(7) = >0 f(T0) Ire(n, 7 for 7 € (0,t0] and fc(0) = f(0). Note that

f )d G (u /f )dg(u
| 1) = fwldgno
/0 [F(u) — fu(w)ldg(u)

<

u)[dgm(u) — dg(u)]

+

< 2Ke+22\f )| sup | gm(7) — g(7)|

he1 T€[0,t0]

— 2Ke as m — oo.

Since € can be arbitrarily small, we have

/fdgm /fdg

From (3.3.10) and (3.3.11) we have (3.3.8). Finally, (3.3.9) follows from (3.3.8) after
applying integration by parts. O

lim sup (3.3.11)

M—=00 r<[0,t0]

Theorem 3.3.5. Under the reqularity conditions (a)—(d), {n="2U(6p,v) : u € [0, Ty]}
converges in distribution to a mean 0 Gaussian process U(+) with continuous sample

paths and the covariance function
e o) 0 N0
cov (U(uy), U (us)) Z/ [shj (0o, u) — <shj (Qo,u)) /81 (Go,u)} agpj(u)du.

Proof. We have n™'2U (6p,u) = _, . W, h] Y (6o, u) i lo Zhj(HO,U)W,E?)(QO,dv) from
(3.3.7). Define
822)(00720

Zni(0o,u) = ——.
’ 529 (60, u)
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We shall show that n=/2U (6, u) converges weakly to
> Wl (0o, u) = > /0 215 (0o, VYW, (6o, dv).
h7j h7-]

By the uniform strong law of large numbers (Pollard, 1990, Theorem 8.3, page 41),

sup S}(fj)(é’o,u) - s,&?(&o,u)‘ —0

u€[0,70]
almost surely for [ = 0,1. Thus
sup | Zn;(0o,u) — Zn;(6o, u)| — 0.
u€[0,7o]
By Lemma 1 and the almost sure representation theorem (Pollard, 1990, Theorem

9.4, page 45), there is a new probability space such that
{W,E;?)(eo, ) WD (Bo,.), Ziny (B0, .)} . {w,§9>(90, D WD (00, 20 (60, .)}

almost surely. By condition (b), Z;(6p,.) has bounded total variation. Applying

Lemma 3.3.4, we have

/ Zn (60, )W (B, dv) — / 205 (00, YW (6, dv)
0 0

sup — 0

u€0,70]

for all h,j € £. Thus n=/2U (6, u) converges uniformly to
SO (G0, u) = 3 /0 s (O OV (B, ).
h,j h,j

almost surely in the new probability space and thus weakly in the original probability

space. The covariance function calculation follows from Lemma 3.3.3. O]
Theorem 3.3.6. Under the regularity conditions (a)-(d),
V(0 = 60) = N (0,27 (60, To))
where X(0y, 7o) is given in (3.3.3).
Proof. By Taylor’s theorem,
n~2U (00, To) = [—n~'OU (6%, o) /06)n*/*(6 — o),

where 6* is on the line segment between 6 and 6. By the law of large numbers,

consistency of 6 and continuity of (0, 7y) in a neighborhood of 6,
—n U (0%, 75) /00 - S(6y, T).

So /(0 — 6) - N(0,%71(y, Ty)) by weak convergence of n=Y/2U (6, Tp). O
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Theorem 3.3.7. Under the regularity conditions (a)(d), /n(Aen;(-) — Aonj(+)) con-

verges weakly to a mean 0 Gaussian process on [0, 7o].

Proof. Recall that we estimate Aop;(7) = [ cvonj(u)du by

th] (u;m)
th] Z/

We can decompose /n |:A0hj(7'> — Aopj (7')} into
Z/th’um Z/th]um
nShg) 6, u) 0 nSh] (B, u)
AN (u;m) T
Z/ / aopj(u)du | .
nSh] (6o, u) 0

The second term of (3.3.12) can be written as

B th
1/22/ 9 n1/2/ e th
0, U

Applying Taylor’s theorem, the first term of (3.3.12) equals to —H (6%, 7)'n*/2(6 — 6,),

where 0* is on the line segment between 6 and 6,, and

(3.3.12)
+vn

th(g,T):/ Wd]\[hj(u)’
0 nS,; (0,u)

which converges almost surely to
hy; (6, 7) = / Zn; (6, w)oop; (u)du.
0
Thus /n [thj (1) — AOhj(T)} is equivalent to

/T W (8o, du)
0

() 0 - hhj<907 7)1271<607 %)uhj(007 76)7
Shy ( 0> u)

where

To
Z/{h](GOJ% ZW;U 90776 Z/ Zhj 90, )Wh] (907du)

h,j
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3.3.3 Asymptotic Efficiency

Here we show our estimator for § derived from estimating function (3.2.6) is asymp-
totically efficient under Model 3.1. For simplicity, we focus on a scalar regression
parameter 6. We adapt the results of Begun et al. (1983) and Chang and Hsiung
(1994). Their methods involve (i) the notation of a “Hellinger-differentiable (root-)
density” to obtain appropriate scores for the regression parameter 6, and (ii) calcula-
tion of the “effective score” for #. Thus the asymptotic lower bounds for estimation
of 6 in the presence of nuisance parameter are determined by the geometry of the
scores.

The data we have, on the study time scale, are

Let H be the parameter space for the baseline transition rate functions ac = {agp;(+) :
h,j € £}. Note that H is the nuisance parameter space for the estimation of 6.
Let P2 denote the probability measure specified by § € © and o € H. For
convenience and without lost of generality, assume 0 € © and H include the case
that all {aopi(t) : h,j € £} are constant function 1’s. Then by the Radon-Nikodym
derivative theorem for point processes (cf. Brémaud, 1981, pages 166 and 187),

dP)0, ] i
d’])(O,l)[O’ t] - Ln(tv 07 a) - H 1}} LZ (t, 6, a),

where L?j (t;0, ) is such that

(40, ) = log LY (0, )

_ /0 log aon; (Bi(s)) AN (s) + /0 0 2" (5) AN (s) (3.3.14)

t . 5
T / (1= cons(Bi(s)e" %) (s)ds.
0

We use 0y and a to denote the true value of the regression parameter 6, and the
baseline transition rate functions a, respectively. To introduce the concept of regular

estimator, let {6, },>1 and {a, },>1 be such that

lim |v/7(6, — 6)) — 6] =0,

and
Jim [|v/n{er, — ag) — ]| = 0.

where § € ©, B8 € H, and ||.|| is the supremum norm.
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Definition 3.3.1. Let # be an estimator for #y based on data (3.3.13). Then 0 is
called a regular estimator at (6p, ag) if for every sequence of (6, a,) given above,
vn(0 — 6,), under (6, ), converges weakly to a distribution which depends on

(6o, ap), but not on any particular sequence (6, a,,).

Proposition 3.3.8. The estimator 0 based on estimating function (3.2.6) is a regular
estimator of 8y under Model 3.1.

The following lemma gives the Hellinger-differential of Ly, (t;0, ) at (0y, atg) for

any fixed sample size ng:

Lemma 3.3.9. Let ng be a fized integer. As n goes to infinity, \/ﬁ(L%Z(t; O, 0ty) —

Ll/Q(t o, ) converges almost surely in Lo to

where MM (t) = N (t) — f(f ffih(s)aohj(B(s)) exp(0' 21 (s))ds.

Proof. By (3.3.14), we have

L2 (t:0,, o)
vn (M 1
1/2(t 007 )

nexp{ ZZ {/ [log avpjin(Bi(s)) — log aon;(Bi(s))] AN (s)

i=1 h,j

+ [ 0= 2 a8
[ (canBUDE A — g B D) T )] }

Then (3.3.15) follows by Taylor’s theorem.

According to Begun et al. (1983), the appropriate scores for 6 have the form

;LW t; 0o, o) {ZZ/ {Zh] %] dMihj(S)}’

i=1 h,j

where 8% = {;,(-) : h,j € £} is in H. The effective score of § has the minimal norm.

Thus the asymptotic information for estimation of § in the presence of « is given by

I, = inf {E(gmao)(%(%,ﬁ))%ﬁ € H} )
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where

b L Pui(Bi(8) | i
i Z/ KGR v oyl K

Proposition 3.3.10. In Model 3.1, the asymptotic information for 6y is given by
I, = 2](007 76)

Proof. In this proof, all the expectations are taken with respect to (6p, ). Note

that, under (6y, ),

To i, _ S}%)(eo,u> hj/ .
XYY | |7 ) ey s
and
90= Bnj(u) hig,
;Z;/ h] (B, u) aow(ﬂ)] AM;™ (wim)

are uncorrelated and both have mean 0. So
1 %o (007 ) ’
_E w;m
" (2112,]%/0 h] (007U)] Z ( )>
1 o 6h] (u) hj i
<l (ZZ; [ s + 2280 v >)

B 1 ghj( ) o ? (3.3.16)
— <Z;/ {Z w;m) 040h (u)] dM; (u,m))
T , (Bi(s - ?
- (Z/ 20+ 2] dMlj(S))
=B (m(T,8))".
Let n — oo in (3.3.16), we obtain that
(1(7o, B))

7o [ D g, . 2

= (ZhZZ / 2} (u; m) — g&éeﬂ u)] AM; (u m))
T [ W (g u . 2

= Jm D E (Z;Z | |7 - Sgé)(eo u;] AM;(u m>>
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where equality holds when

i) = —avns o) 5
Thus we have

I, = inf { Egy.a0) (11 (70, B))18 € H} = (60, To).
O

The following proposition is the convolution representation theorem for regular
estimators (Begun et al., 1983, Theorem 3.1).

Proposition 3.3.11. Let 0 be a reqular estimator of 0y in Model 3.1. Then the
limiting distribution of \/n(0—0,) can be represented as the convolution of a N(0,1/1,)

distribution with another distribution which depends only on (0y, ).

Remark 3.3.2. By the above two propositions, a regular estimator of # under model 3.1
has variance at least as large as 1/I,, where I, = %(6, 7p). The estimator 6 is regular
and has asymptotic normal distribution N(0,1/%(6y,7y)). Thus it is asymptotically

efficient among the regular estimators.

3.4 Simulation

We simulated n realizations from a three-state modulated semi-Markov process with
state 3 absorbing. Associated with each realization, there is an internal time-dependent
covariate Z(t) = t — B(t), where B(t) is the back recurrence time. The values for the

regression parameters in the two models considered above were
012 = —0.5,013 = —0.5,05; = 0.5,053 = 1.

We simulated the following two settings:

Setting 3.1. agia(u) = 1.5u, agiz(u) = u, ago1(u) = 2, apes(u) = 1.

Setting 3.2. agia(u;m) = 1L.bum, agiz(u;m) = um, ager(u;m) = 2m, agaz(u;m) =

m.
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In each of the two settings, each realization is observed until censoring time C' = 5.
The sample size n varies from 50, 100, to 200. For each of the scenarios, we obtained
1000 replicates.

We used the two estimating functions in Section 3.2 to estimate the regression
parameter 6 in each of the two settings. Note that Model 3.1 is correctly specified in
Setting 3.1, but fails in Setting 3.2. Model 3.2 is correctly specified in both settings.
The regression parameter estimates are summarized in Table 3.1 and Table 3.2 in the
two settings, respectively.

In Setting 3.1, the sample biases and standard errors of the estimators based on
both estimating functions (3.2.6) and (3.2.7) are decreasing while increasing sample
size n. The coverage of the 95% confidence intervals for the regression parameters
is close to the nominal level, even with a sample size as small as 50. The estimator
based on estimating function (3.2.6) is more efficient than the one based on estimating
function (3.2.7), as Model 3.1 is correctly specified.

The estimator based on (3.2.7) continues to perform well in Setting 3.2. However,
when Model 3.1 fails, the estimator based on estimating function (3.2.6) is biased,

and the coverage of the 95% confidence intervals for the regression parameters is poor.

3.5 Summary

This chapter has considered an extension of the HSM model by incorporating covari-
ates in a Cox regression form. The inclusion of the study time as a time-dependent
covariate allows us to test whether the HSM model is plausible with the data. The
simulation study suggests that the asymptotic approximation is adequate for rela-
tively small sample size.

We consider a NHSM model in the next chapter, as a further extension of the
HSM model. It assumes the transition intensities depend on the study time and the

duration time in an unspecified way.
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Chapter 4

Nonhomogeneous Semi-Markov

Process

4.1 Introduction

The time-homogeneity assumption of homogeneous semi-Markov models is often too
restrictive in practice. For instance, empirical data have demonstrated that human
sleep patterns vary during a night. Differences between the first and last thirds of
the night are especially noticeable. Welcomed are more flexible models, such as non-
homogeneous semi-Markov models, which allow the transition intensities to depend
on both the study and duration times.

Nonhomogeneous semi-Markov (NHSM) processes were introduced by losifescu
Manu (1972). Janssen and De Dominicis (1984) consider the discrete time case.
Lucas et al. (2006) propose estimation procedures based on the assumption that the
transition rate functions are piecewise constant on both study and duration time
scales. Mathieu et al. (2007) consider a parametric approach.

In this chapter, we consider several different estimation procedures with NHSM
processes. We start with a piecewise constant approach based on the idea of stratify-
ing the population according to the study time scale in Section 4.2. Particularly, we
assume the nonhomogeneous cause-specific hazard functions oy, j(7;t) are piecewise
constant with respect to the study time ¢ and can vary arbitrarily with the duration
time 7. We then propose a nonparametric estimation procedure based on a kernel
method in Section 4.3. In some situations, more parsimonious models, which can lead

to more efficient and interpretable inference procedures, are desirable. In Section 4.4,

64
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we consider estimation procedures based on a nonparametric multiplicative model
where the transition intensities depend on the study and duration times multiplica-
tively, but their functional forms are left unspecified. Section 4.5 further specifies the
effect of one of the two times in a parametric form, ending up to a semiparametric
model such as the modulated semi-Markov model studied in Chapter 3.

We study finite sample properties of the proposed methods via simulated data in

Section 4.6. Section 4.7 summarizes this chapter with some extensions.

4.2 Piecewise Constant Approach

Assume that ay;(7;t) is piecewise constant with respect to t, and varies arbitrarily
on 7. Specifically, we assume
Lpj—1
ani(Tit) = D ang(TID) Ly s (1),
1=0

where 0 = tgj < t}fj < e < t}L”}'Lj = 7, is a prefixed or data-dependent partition of
time interval [0, 7o) of interest. Note that the homogeneous SMP can be viewed as a
special case with ay,;(7]l) independent of [.

For ease of presentation, we focus on the case with the partition 0 = tgj < t]fj <
cee < tﬁj = 7, being the same for all h and j, denoted by 0 =ty < t; < --- <ty = Tp.
Partition the data into L strata, with the [th stratum including transitions that start
within [t;_1,%;) in the study time scale. Note that the data of the [th stratum are
from a HSM process with the transition rate function ay,;(7|l). We can then apply the
nonparametric estimation procedures proposed by Lagakos et al (1978) as follows.

First we introduce processes in the time scale of duration as follows. Let
Nh]<u|l) = #{m Z 1: Jmfl = h7 Jm = Jva S u7Tm S 07 Tmfl c [tlfbtl)}a

the number of observed transitions from h to j with duration < u and starting within
[tl—la tl), and

Yh(u”) = #{m Z 1: Jm—l = h> Xm Z uva—l +u S C, Tm—l € [tl—latl)}v

the number of transitions from state h observed to take time > u and start within
[ti-1,t1). Denote N™ (ull) = 3= N™ (ull).
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Suppose that {(Nihj(-\l), Yzh(]l)> ci=1,... ,n}, n independent and identically
distributed copies of (N"(-|1),Y"(-|l)), are available. We can estimate the semi-
Markov kernal Qp;(7;t) for t € [t;_1,t;) by using the data in the /th stratum. Specifi-

cally, we can estimate the cumulative transition rate function with the Nelson-Aalan

A " AN (1)
Api(rety = [ S e
h](T ) A Yh(u‘l> [l 1 l)

and estimate the semi-Markov kernel with

type estimator

Qni(T:t) = /OT (1 _ ﬁ[h(u—;t)> % teftit),

where

]:Ih(u;t)zl—H (1—%) , L€ [tl_l,tl).

v<u

We can also estimate the transition rate functions by kernel smoothing;:
Gp(T5t) = / Ky(1 — ) Ay (dus t),

where Kj(-) = b~'K(-/b), K(-) is a kernel function and b is a bandwidth. Table 4.1

lists some commonly used kernel functions adapted from Hérdle et al. (2004), page 41.

Table 4.1: Some commonly used kernel functions

Kernel K(u)
Uniform +I(Jul <1)
Triangle (1 —|uI(Ju] <1)
Epanechnikov S(1—u?)I(Jul <1)
Biweight (Quartic) 22(1 —u?)?I(|u] <1)
Triweight (Tricube) 32(1 —u?)3I(Ju| < 1)
Gaussian %e%ﬂ

Cosine Zcos (Zu) I(Jul < 1)
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4.3 Nonparametric Estimation

4.3.1 Estimation Procedure

Recall the processes on the duration time scale introduced in (3.2.3) and (3.2.4):
Nhj(u;m) = 1{Jm—1 = h7 Jm = j) Xm < uva < C},

and
Y*uym) = Yoy = h, X > u, Ty +u < C}.

Suppose we have n ii.d. replicates of {N"(:;m),Y"(-;m),Z"(;m) : h,j €
E,m > 1}, denoted by {Nlhj(-;m),Y;h(-;m),Zihj(-;m) chyje&m>1}i=1,...,n.
Define u

Nty = 3 / Kot — Ty 1) N (dvs m)
—Jo

and
V(s t) = 37 Kult = Ty )V 05 m)

where K, (-) = w™ K (-/w) with a kernel function K (-) and a bandwidth w.

Remark 4.3.1. Note that N (u;t) is a weighted sum of numbers of observed transi-
tions from h to j with duration < u and starting around study time ¢, and Y,"(u;t)
is a weighted sum of numbers of observed transitions from state h to take time > u

and starting around study time t.

We consider the kernel estimator
. T NN (dug;t)
Api(T3t) = R T 4.3.1
o) = [ S 3y
for the cumulative transition rate function Ay;(7;t), and estimate the NHSM kernel

Qnj(T3t) by Vhi )
A T . N (du;t
i) = [ (1= o) Sy

ﬁh(u;t):l—H(l—%>.

v<u

where

Proposition 4.3.1. The estimator Ay;(1;t) in (4.3.1) can be viewed as a local maz-
imum likelihood estimator with the local constant assumption on the study time scale

t.
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Proof. Recall that the log-likelihood is
"2 [ | roenrwa - [ A?f'(t)dt} ,

where A (1) = Y/ (t)an; (Bi(t); Ui(t)) with Ui(t) = t — Bi(t) as the last transition
time before the study time ¢.
We define the local likelihood for ay,;(7;t) at to with the local constant assumption

on the chronological time scale t as

) =3 [ Kulto — U0 g e, (Bi(0)510)] 50

/ Koulto — U0V (e (Bi(t)s o) dt.

To proceed, we change the counting processes from the study time scale to the dura-

tion time scale. After some algebra, we have

(a;to, T) ZZ / Ko (to — Ton_1.5) log [oun; (u; to)] AN (u; m)

i,m h,j
/ K, Trn1.3) Y (us m) o (u; to)dv}
So the local maximum likelihood estimator for Ap;(7;t0) = [ an;(u; to)du is
- AN (u;m)
A t m 17,)
h]T 0 Z/ ZmzK to— m— 1Z>}/ih(u7m)’

which is the one given by (4.3.1).

O

Remark 4.3.2. Working in the context of a nonparametric hazard model for survival
data with time-dependent covariates, McKeague and Utikal (1990b) study Beran’s
(1981) estimator of the conditional cumulative hazard function, which has a functional
form similar to our estimator. Their estimator can be viewed as a local likelihood
estimator with the local constant assumption on the duration time scale 7, which can

not be easily used to estimate the semi-Markov kernel in our context.

We can then estimate the transition rate function ay,;(7;t9) by

Gy (T3t0) = /Kb(T —u)Apj(du; ty),

) A
_ * Ky(to — Tpe1,3) Ko (T — U)thj(u m) (4.3.2)
B Z / Zm,i K'LU (tO - Tm—l,z)Y;h(U, m) ’
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where b is another bandwidth.
For the sole purpose of estimating the transition rate function ay;(7;t), we can
construct a local maximum likelihood estimator with the local constant assumption

on the both time scales. Specifically, we define the local likelihood at (tg, 79) to be
Hosto, o) =) Y [ / Ky (10 — Bi(t), to — Us(t)) log [on; (By(t); U(t))] dNM (t)
i hyj 0
- / Kya(10 = Bi(t), to — Us(£)) Y (t) oy (By(t); Ui(t)) dt |,
0

where K ,(.,.) is a bivariate smoothing kernel. Assuming a;(7;t) to be locally

constant around (%o, 7p), we have
Uasto,m0) = > D | log fany (roi o) / " Koulro — Bilt) o — U(t)dN (1)
i hy
— g (o) /0 " Kyl — B(t).to — V)T ()],
It is easy to show that I(«;tg, 70) is maximized at

Giny (7o o) = > fo: Ky (10 — Bi(t), to — Ui(t))C{Nihj(t). (13.3)
i o Kow(mo — Bi(t), to — Ui(t)) Y, (t)dt

This estimator has also been studied by Nielsen and Linton (1995), in the context of

a nonparametric hazard model for survival data with time-dependent covariates.

4.3.2 Asymptotic Properties

Let
En(t,usm) = P{T_1; < t,Y"(u;m) =1} (4.3.4)

and fp,(t,u;m) be the corresponding density with respect to Lebesgue measure. De-
note fp(t,u) =,  fu(t,u;m), which we assume to be finite.
We assume that the kernel function K(-) is continuous with support [—1, 1], and

is symmetric about 0. Define the kernel moments

1

Ky = / | PE(Q)dg, and Ky = / (K(q))? dg. (4.3.5)

1 1

In what follows, we work with interior points so that we do not need to worry about

boundary effects.
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Lemma 4.3.2. Suppose apj(u;t) is twice, and fi(t,u;m) and f(t,u) is once contin-

wously differentiable in t. Then for each fixed t, as w — 0 and nw — o0,

—ZK Tr10) Y (u;m) L, fn(t,u), (4.3.6)

- Z Tpne1))” Y (wsm) on (s Trs ) -z, Koap;(u;t) fu(t,u),  (4.3.7)
and

w2 ZK (t = D10 Y{" (s m0) e (w5 Trn1,0) — cung(us t)]
(4.3.8)

P 80[@‘ ) % fh(t, U) 82ahj .
_>IC1{ Y (u;t) By (t,u) + 5 BTE (u;t) |,

uniformly in u, as n — oo.

Proof. We first show (4.3.6). Note that

(ZK mlz ) Z/K (t = 5) fu(s, u;m)ds
— Z/K(q)fh(t — wq, u; m)dq,

by a change of variable ¢ = (t — s)/w. By continuity of f, (¢, u;m) and Lebesgue’s

dominated convergence theorem,
Z/K(q)fh(t — wq,u;m)dqg — th(t,u;m) = fu(t,u).

Then (4.3.6) follows by the uniform law of large numbers (Pollard, 1990, Theorem
8.2, page 39).

Similarly,

E (E D (Kt = Ton1,0))* Y (u m) cun (w3 Tm—l,i))

=2 w / (Kt = ) ) s, s m)ds
- Z/ )? g (us t — wq) fu(t — wq, u;m)dq

— Koo (u;t) fn(t, u),
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by continuity of ay;(u;t) and f,(t, u; m), and Lebesgue’s dominated convergence the-
orem. Then (4.3.7) follows by the uniform law of large numbers (Pollard, 1990,
Theorem 8.2, page 39).

It remains to show (4.3.8). After a change of variable ¢ = (t — s)/w,

( ZK (t — T 1Z)Y (w;m) [anj(u; Ton—1) — ahj(u;t)])
= Z / Ky(t — s) [an;(u; 8) — anj(u; t)] fu(s, u;m)ds
-y / K(q) o (13 £ — w0q) — cuny (s )] falt — wq, ws m)ds

= /K(q) [ap;(u;t —wq) — apj(u;t)] fult —wq, u)ds

By Taylor’s theorem,

a . 2.2 82 .
Sty + =

ot 2 ot

0
Falt = wa,u) = Fult,u) — wg (1, w),

(u; %),

ap;(ust —wq) — ag;(ust) = —wgq

where t* and t** are between ¢ and ¢ — wq. Since f—1 K(q)dg = 0 by symmetry of
K(-) about 0, we have

/K [an;(u; t — wq) — ap;(ust)] fu(t —wg, u)ds
= w’k, szj (u; t)%(t,u) + @aaj‘f( )| [1+o(1)],

by continuity and Lebesgue’s dominated convergence theorem. Now by the uniform

law of large numbers (Pollard, 1990, Theorem 8.2, page 39),

anZK (t —The 1Z)Y (w;m) [an (u; Trno14) — anj(u;t)]

P Oahj ) % fh<t, u) 82ahj .
K [ Y (u;t) 5 (t,u) + 5 BTE (u;t) ],

uniformly in w.

Let

szK (t — Tre1.) Y (w;m) i (w; Tr1 i) du
Ap (131) / .

J sz ( Tm 1Z)Yh(u m) (439)
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Then
. T NM(du;t)
EA N A F 10T
™3 Kot — Tpue1,0)ANTY (u;m)
0 D Kult = Ton13)Y (u;m)
’ sz K, (t - Tmfl,i)sz‘hj(US m)

- Aj (T3 ).
0 Zi,m Kll)(t - Tmfl,i)}/;h(u; m) + hj (7—7 )

So we can write
Apj(r5t) — Apy(r3t) = (Ahj(T; t) — Ay, (75 t)) + (A5 (13 8) — Anj(T31))
where

T i Kt — Ty1.0)dM (u;m)
0 i Kult— T1,) Y (u;m)

Apg (i) = Ajy(rit) = (4.3.10)

and

A (T3 ) = Ay (73 1) = / s Kot = T ) Y7 (w5 ) [ (05 T ) — g (us t)] du
(=Mt = | > o Kot — Ton1,) Y7 (1) '

(4.3.11)

Theorem 4.3.3. Suppose apj(u;t) is twice, and fi,(t,u;m) and fy(t,u) is once con-

tinuously differentiable in t. Then for each fixed t, as w — 0 and nw — oo,

(i) v/nw (Ahj(~;t) - A;‘U(';t)> converges weakly to a mean zero Gaussian process
A(+;t), which has independent increments and variance function
T apj(ust)du

) (4.3.12)

var (A(7;t)) = Ko

(i)

w2 (A;‘Lj(T;t) — Ahj(T;t)) 2, /T K1

0

oo j .
3: (U, t)%(t u) + 182ahj
fh(t,u) 2 Ot?

(u;t)] du.
(413.13)
Proof. By (4.3.10) and Lemma 4.3.2,
Var [viw (An (1) = 435050
i (Kot = Tin1,0)) Y (s m) gy (w5 T ) du
: (X Koalt = Ty )Y ()|

P T ap;(us t)du

—> ]C2 0 fh<t7u)

= nw
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Using empirical process theory similar to Chapter 3, we can show that, as a function
of 7 for fixed t, \/nwVy;(t, T) converges weakly to a zero mean Gaussian process with
independent increment and the above variance function. (ii) follows immediately by
(4.3.11) and Lemma 4.3.2. O

Remark 4.3.3. Theorem 4.3.3 can be used to construct confidence intervals and con-
fidence bands of Ay;(7;t). The optimal bandwidth has order w ~ n=1/5.

Remark 4.3.4. From (1.2.9), we can estimate the semi-Markov kernel ();(7;t) by

@hj(T; t) = /OT exp [— ZAhk(u; t)

kh

Apj(dus t).

The asymptotic property can be derived by the functional delta method.

We now consider the asymptotic properties of Gy,;(7;t), the transition rate esti-
mator defined in (4.3.2). Write

apj(T;t) = /Kb(T — u)/lhj(du;t)

_ / Ko(m =) 3 Kot = Ths AN (u;m)
- D in Kt = Ty DY (u;m) ’

So
ééhj(T;t) — Oéhj(T; t) = th(t, 7') + th(t, T),
where
Kyt —u) Y, Kyt — Ty dM] (u;m)
(t,T) = : 4.3.14
R N (= 31
and
Bj(t,T) (/ Ky(1 — w)ap;(u; t)du — api(7;t) (4.3.15)

Kb(T - u) Zz’m (t — Tn z) ( )[ahj (u T Z) Qhj (U; t)]du
“f S Kol — Ty )Y ()
(4.3.16)

(4.3.17)

Theorem 4.3.4. Suppose apj(u;t) is twice, and fy(t,u;m) and fi(t,u) is once con-

tinuously differentiable in t. For fized (t,7), if b ~ w and nw? — oo, then
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(i)

VinwVy(t, 1) 25 N (0, %) ; (4.3.18)

(i)

)%(t, ’7') 1 82ahj . 1 02ahj )
t,7) NN (7: )+§ o2 (7:1)
(4.3.19)

Proof. We have
Var <\/ nw?Vy;(t, T))
2 Zi,m(Kw(t - Tmfl,i))%/;h(w m)@hj (Ué Tmfl,i)du

2
| Kot = T )Y ()

P ) o o Koo (u; t)du
—— nw /(Kb(T ) —nwfh(t,U) ;
W ; o Koy, (T — bu; t)dv o= (r—u
_ b/(K( )y =W
p Kiap(t;t)

fh<t77_)

by continuity and Lebesgue’s dominated convergence theorem. Using empirical pro-

_nw2/<Kb(T—u))

(by Lemma 4.3.2)

cess theory similarly to Chapter 3, we can show that vVnw?Vy;(t, 7) converges weakly
to a zero mean Gaussian random variable with the above variance.

By a change of variable and Taylor’s theorem, we have
/Kb(T — w)api(u;t)du — api(T5t) = /K(v) [ap; (T — bust) — ap;(T3t)]

62282ah .
- [ K05

IClaoth
=P ) [+ o(1)],

by continuity and Lebesgue’s dominated convergence theorem. By Lemma 4.3.2 and

Lebesgue’s dominated convergence theorem,

/ Ky(1 — ) Zi,m Kyt — Trne1.0) Y (w; m) oo (w; Tr1i) — g (u; t)]du
Zi,m Ky(t — T 11)Yh(u m)

Ju(t, 7) 2 o

Oanj (. 1\ Ofn
(u;t) 9 (t,u)  10%ap;
ot [ Kol s | R S )|
8ah] L 2 '
L ik, (T:0)5t(t.7) | 19, (T;t)]
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Thus

Remark 4.3.5. Theorem 4.3.4 can be used to construct confidence intervals and con-

fidence bands of ay;(7;t). The optimal bandwidth has order w ~ n=/°.

4.4 Nonparametric Multiplicative Model

4.4.1 Model

In this section, we consider a structured nonparametric model for the transition in-

tensity functions, a nonparametric multiplicative model:

ani(T3t) = Yui(t + )i (7).

Under the nonparametric multiplicative model, the log-likelihood reduces to

ZZ[ / log s (H)ANT (¢) + /0 " log g (Bi()) AN (1
- [T s 0B

Note that 1;(.) and 75;(.) are not simultaneously identifiable. One may multiply
one component by an arbitrary constant and divide the other component by the same
component to obtain the same ay;(+;-). To avoid this nonidentifiability and without
loss of generality, we impose the normalization that 7,;(0) = 1.

If y;(.) is known, we can estimate the cumulative version of ip;(.), Wp;(t) =
fo Yni(uw)du, by a Nelson-Aalen type estimator \Ifhj( ), and then estimate v;(.) by
kernel smoothlng of Wy;(t). If b, (.) is known, we can estimate the cumulative version
of v (L), Thy(T fo ;i (v)dv, by a Nelson-Aalen type estimator after changing the
time scale of countmg processes from the study time to the duration time, and then
estimate 7,,(.) by kernel smoothing of its estimated cumulative version. A detailed

estimation procedure is presented in the following.
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4.4.2 Algorithm

We propose an algorithm for estimating a;(7;¢). Starting from an estimate 4y;(.) of

Yri(.), it iteratively estimates 1,,;(.) and then 7;;(.) until convergence. Specifically,

Step 1. Estimate 1,;(.) based on

}:}:L/ log s (AN (0) = [ V0003 (B 0|

which gives

(t — u)dNM (u)
ni(®) Z/zj @)’

’Yh](

Step 2. Estimate ~,,(.) based on

ZX}{/ log Yr; (Bi(t))dN; (t) / Y () hn () (Bi(t))dt | |

which leads to

Ky(T — w)dN (u)
(7 Z/ D mi Y (u; m)@bhj( - 1Z+u)

Step 3. Iterative between Step 1 and Step 2 until both 13,;(.) and ~,,(.) converge.

Remark 4.4.1. The algorithm we propose is a backfitting algorithm. Convergence
of the algorithm warrants further investigation. We use the nonparametric estimate
obtained from Section 4.3 as the initial value, and have not encountered convergence

difficulty in our applications.

The estimation in Step 1 can be implemented using kernel smoothing of

AN (u)
T 1) Z/EY Wi (Bu(w)

a Nelson-Aalen type estimator of Wy;(t) fo Yp;(u)du. Step 2 can be implemented

as follows. Change the time scale of the counting processes in ly(y) from study time

to duration time. After some algebra, we have

ZZ [/ log v (T)AN] (7) — /wzyzh(ﬂm)?ﬁhj(Tm—l,i +7) g (T)dT

0

We can then estimate I'y; (7 fo ;i (v)dv by a Nelson-Aalen type estimator

Ftr Z/z deu

U m)wm( m— 11+u)

Finally, 45,;(.) is obtained by kernel smoothing of T; ().
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4.5 Semiparametric Estimation

In this section, we consider semiparametric estimation with NHSM processes by spec-
ifying the effect of the study time or the duration time in a parametric form. Specif-

ically, we consider the following two semiparametric models:
an; (T5t) = aon; (T) exp(0' Zp;(t)), (4.5.1)

and
anj(T3t) = aon;(t + 7) exp(0' Zp; (1)), (4.5.2)

where Z,;(-) is a deterministic vector function. Note that Model (4.5.2) has a multi-
plicative intensity form, and has been well studied (Andersen and Gill, 1982; Andersen
et al., 1993). Model (4.5.1) is a special modulated semi-Markov model we studied in
Chapter 3. In what follows, we focus on estimation with Model (4.5.1), which use the
duration time as the basic time scale in the baseline transition rate function.

For simplicity of notation and without loss of generality, we work on the univariate
function Z,;(t) = t. Thus Model (4.5.1) simplifies to

apj(T;t) = aon,(7) exp(6t).
Applying the methods in Chapter 3, we can get estimators 0 of 0, and AOhj(~) of
Aonj(+), where
Aon; (T) :/ aon;(u)du
0

is the cumulative baseline transition rate function. We can then estimate agp;(-) by

kernel smoothing;:
OACOhj(T) = /Kb(T - ’LL)dAth(u).
Thus an estimator for the transition rate function ay;(7;t) is

~

(T3 1) = dony () exp(01).

From (1.2.9), we can then estimate the semi-Markov kernel Q;(7;t) by

Qnj(T5t) = /OT exp [— > Ane(ust)

kh

Ahj (dust),

where

Apj(ust) = Agn;(u) exp(0t).
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4.6 Simulation

We simulated N = 300 realizations of a three-state process with state 3 absorbing.
Each path starts from state 1 or 2 equally likely and being observed until censoring

time C' = 5. The true transition rate functions are

a1a(75t) = 1.67e % qyy(7;t) = 27 (1 — 0.8€_t/§0> ,
Qo1 (T35t) = 1.27e /%, ags(T5t) = 27 (1 — 0.6€_t/§0) .

Here the transition probabilities are given by Pio(t) = 0.8e=/¢ and Py (t) = 0.6e7/%.
The conditional sojourn time distribution Fj;(7;t) is Weibull with shape parameter
2 and scale parameter 1, for all A # j and ¢.

We estimated the cumulative transition rates, semi-Markov Kernel, and transition
rates. The semiparametric, piecewise constant, multiplicative nonparametric, and
nonparametric estimation procedures were implemented and compared. Model (4.5.1)
with Zp,;(t) = t was used in the semiparametric estimation. Four equally spaced
partitions on the study time scale were used in the piecewise constant approach. The
sample means of the estimates based on 100 replicates were calculated. We consider

two different simulation settings:
Setting 4.1. £ = oo, which leads to a homogeneous semi-Markov model.
Setting 4.2. £ = 3, which gives a nonhomogeneous semi-Markov model.

In the first setting, all the model assumptions required by the above four approaches
are satisfied. Thus we can compare the efficiency of the different approaches. In
the second setting, the semiparametric and the nonparametric multiplicative model
assumptions are violated. Thus we can study robustness of the approaches against
model misspecification. We used the Epanechnikov kernel function given in Table
4.1. The bandwidths w for the study time scale and b for the duration time scale
were chosen as 0.4 in both settings.

The results of Setting 4.1 are shown in Figures 4.1 to 4.8. Figures 4.1 to 4.4 present
the 3-dimensional surface plots of the sample means of the estimated transition rate
functions in the two times. Figures 4.5 and 4.6 show the associated profiles of the
sample means and standard deviations of the estimated transition rate functions. The
profile functions of the estimated semi-Markov kernels are given in Figures 4.7 and

4.8. All the approaches gave approximately unbiased estimates. Approaches with
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more structured models, such as the semiparametric model, have smaller standard
deviations and thus lead to more efficient inferences.

The results of Setting 4.2 are shown in Figures 4.9 to 4.16. In this setting, the
estimation procedures based on the semiparametric model produced obviously biased
estimates due to the model misspecification. The piecewise constant approach and the
nonparametric estimation procedure performed well under the setting as expected.
The estimation with the multiplicative nonparametric model, which is not correctly

specified, showed certain robustness of the approach to the model misspecification.
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Figure 4.5: Truth and sample mean of estimated transition rate functions for fixed ¢ in simulation setting 4.1 (Thinner lines:

sample means; Thicker lines: sample standard deviations)
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Figure 4.7: Truth and sample mean of estimated semi-Markov kernel for fixed ¢ in simulation setting 4.1 (Thinner lines: sample

means; Thicker lines: sample standard deviations)
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Figure 4.8: Truth and sample mean of estimated semi-Markov kernel for fixed 7 in simulation setting 4.1 (Thinner lines: sample

means; Thicker lines: sample standard deviations)
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Figure 4.15: Truth and sample mean of estimated semi-Markov kernel for fixed ¢ in simulation setting 4.2 (Thinner lines: sample

means; Thicker lines: sample standard deviations)
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Figure 4.16: Truth and sample mean of estimated semi-Markov kernel for fixed 7 in simulation setting 4.2 (Thinner lines: sample

means; Thicker lines: sample standard deviations)
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4.7 Extensions

In this chapter, we consider estimation procedures with NHSM processes under dif-
ferent model assumptions. The models are nested, which can be utilized to conduct
model checking. For instance, if the multiplicative nonparametric model fit the data
adequately, the estimated cumulative transition rate functions under the multiplica-
tive nonparametric model should be close to the one based on the fully nonparametric
approach. If the multiplicative nonparametric model is appropriate, the difference
should be fluctuate around zero without any pattern.

In Section 4.4, we consider a particular nonparametric structured model: the
nonparametric multiplicative model. Another nonparametric structured model for
future research is the nonparametric additive model, in which the transition intensities
depend on the study time and the duration time additively, and the functional forms
are left unspecified. The iterative algorithm developed in Section 4.4 can be adapted.
Theoretical justification for convergence of the algorithms is left for future research.

Kernel smoothing methods are used in both the nonparametric and structured
nonparametric estimation procedures for the NHSM model. Thus bandwidth selection
is an issue. The asymptotic distribution of the estimators may be too complicated to
be used in selecting the bandwidth by the plug-in method. Bandwidth selection has
been well studied in the context of hazard rate estimation with survival data. Patil
(1993) proposes the least squares cross-validation method. Gonzédlez-Manteiga et al.
(1996) introduce a bootstrap approach. These methods can be potentially adapted

to the current setting.



Chapter 5

Semi-Markov Process with

Informative Censoring

5.1 Introduction

Event history data are often incompletely observed. Up to the last chapter, we have
worked on the observation scheme that the event process is continuously observed
subject to right censoring at time C, which is assumed to be independent of the
process itself. Although the independent censoring assumption may be plausible in
some situations such as with administrative censoring, it is often questionable in many
other situations where censoring is due to dropout or competing risks.

With survival data, the simplest structure of event history data, the well-known
Kaplan-Meier (1958) estimator is inconsistent for the survival function when the
censoring is dependent on the survival time. In fact, the survival function is not iden-
tifiable from the observable data (Tsiatis, 1975). Without additional assumptions
about the dependence, it is only possible to determine the bounds for the survival
function (Peterson, 1976). However, such bounds are often too wide to be of prac-
tical use. Two alternative approaches have been proposed in the literature, both
of which require assumptions that can not be verified with the observed data. The
first approach assumes that the survival time and the censoring time are indepen-
dent, conditional on some available covariates (Robins, 1987; Robins and Rotnitzky,
1992; Robins, 1993; Satten et al., 2001), or some latent variables (Link, 1989; Oakes,
1989; Huang and Wolfe, 2002). The second approach imposes assumptions about the

dependence between survival time and censoring time (Fisher and Kanareck, 1974;

97



CHAPTER 5. SMP WITH INFORMATIVE CENSORING 98

Williams and Lagakos, 1977; Slud and Rubinstein, 1983; Klein and Moeschberger,
1988; Carriere, 1995; Zheng and Klein, 1995; Rivest and Wells, 2001; Braekers and
Veraverbeke, 2005). Based on some some prior knowledge or subjective information
about the range of possible strengths of the association between the survival time and
the censoring time, one can then conduct sensitivity analysis and provide plausible
bounds on the survival function (Zheng and Klein, 1995; Huang and Zhang, 2008).

In this chapter, we consider a particular type of informative right censoring in-
volved in semi-Markov process observation. Motivated by the competing risks for-
mulation of HSM processes (Lagakos et al., 1978), we model the possible informative
censoring mechanism as another competing risk. We assume that the resulting pro-
cess becomes a new semi-Markov process if censoring is viewed as a new absorbing
state in addition to the original process. Thus the large literature on dependent com-
peting risks can be adapted in the setting. In particular, we adapt a copula-based
approach proposed by Zheng and Klein (1995). The advantage of a copula approach
is that the marginal distributions need not to be specified, and can be estimated
nonparametrically.

The rest of this chapter is organized as follows. In Section 5.2 and Section 5.3,
we present a model for informative censoring and the associated estimation proce-
dure, respectively. We examine the approach with a simulation study in Section 5.4.

Section 5.5 concludes this chapter with some remarks.

5.2 Modeling Informative Censoring

5.2.1 Assumptions

Consider a multi-state process, formulated by the two-dimensional process (J,T) =
{(Jm,Tmm) : m = 0,1,...}, where the process {J,, : m = 0,1,2,...}, taking values in
the set £ = {1,2,...,r}, gives the sequence of states visited by the system, and the
sequence {71, : m = 0,1,...} is the set of the corresponding transition times.
Suppose the original event process is observed up to a censoring time D. We view
the censoring as a new absorbing state, denoted by r + 1. Then we end up with a
new multi-state process which can be presented by a new two-dimensional process
(J*,T*) = {(J:, 1) : m=0,1,...}, where the process {J},,m = 0,1,2,...}, taking
values in the set & = {1,2,...,r,7 + 1}, gives the sequence of states visited by the

new multi-state process, and {7 : m = 0,1,...} are the corresponding transition
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times.

To see the relationship between (J*, T*) and (J,T), let M be the random variable
such that Ty < D < Thyry1. In the case that the original multi-state process has
absorbing states and the original process enters an absorbing state before censored
by D, such M does not exist, and we define M = oco. Otherwise, we can easily see
that (J3, 1) = (Jm, Tin) form =0,.... M, Jy; ., =r+1,and Ty, = D.

We first make the following assumptions about the informative censoring mecha-

nism:
Assumption 5.A1. Given D > T,,, the joint distribution of (D — T},,, Jym+1, Xini1)
depends on the past history {Jy, 1o, ..., Jm, T;n} only through (J,,, T),), i.e.,
[D = T, Jins1, Xons1 |D = Ty I, Ty - - -, Jo, Tt (5.2.1)
~ [D = T, Jins1, X1 | D > Ty T, T

which is free of m.

Assumption 5.A2. In addition to Assumption 5.A1, the conditional distribution in
(5.2.1) is also free of T),.

Proposition 5.2.1. Under Assumption 5.A1 (5.A2), the resulting process (J*, T")
forms a NHMR (HMR) process.

Proof. For any h < r, we have

_p D_TmSXm—&-lyD_TmST‘
D Z T’m;J’m - h’aTm :ta Jm—laTm—lv"'

=P{D - T, < Xpns1,D =Ty, <7|D > T, Joy = b, T, = t}

=P{Ji o =r+1, X, <7|J5 =hT)=t},

where the first and the third equalities follow from the relationship between (J*, T*)
and (J,T), and the second equality holds by Assumption 5.A1.
Similarly, for any h,j € &€,

P{J:zﬂ =7, X:;H—l ST ‘];z = th;z =1, J;—hT:m—h o }
_p D_Tm>Xm+1aJm+1:jaXm+1 ST’
D Z Tma Jm - h7Tm = t: Jm—hTm—la te }

=P{D — Tp, > Xini1, Jms1 = J, Xops1 < 7|D > Ty, Jo = b, Ty = t}

:P{J:nJrl = j? X:nJrl <7 J:;L = h,, T:;L = t}
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Thus the resulting process (J*, T*) is a NHMR process under Assumption 5.A1.
Similarly (J*, T*) is a HMR process under Assumption 5.A2.
O

Remark 5.2.1. The simple survival process can be represented by {Jo = 0,7y =
0,J; = 1,7y = T}, where T is the survival time, 0 represents the state ‘alive’, and
1 for ‘death’. If we view the informative censoring as a new absorbing state 2, then
Assumptions 5.A1 and 5.A2 are both trivially satisfied. The resulting process is a

dependent competing risks process (and a semi-Markov process, of course).

Remark 5.2.2. Assumption 5.A1 implies that the censoring mechanism has a certain
renewal property with the original semi-Markov process: given D > T,,, the remaining
time to censoring D — T,, depends on the past history (Jy,Tp),- .., (Jm, ;) only
through (J;,, Trn), the state and time of the mth transition of the original multi-state
process. Furthermore, Assumption 5.A2 implies that given D > T,,, the remaining
time to censoring D — T,, depends on the past history (Jy,Tp),- .., (Jm,T)n) only
through J,,.

Remark 5.2.3. Assumption 5.A1 also implies that
[Jm+17 Xm—l—l‘D Z Tm7 Jm; va e vy J07 T0:| ~ [Jm—l-l; Xm+1 -D 2 Tm7 Jm7 Tm] )

free of m. It reduces to the semi-Markov kernel of the original semi-Markov process

if “D >1T,,” is removed. We thus make the assumption as follows.

Assumption 5.B. Assume that for all m, (J,,11, X;me1) and I{D > T,,} are
independent conditional on {J,,, T, - .., Jo, To}-

Remark 5.2.4. Assumption 5.B is weaker than the assumption that (J,, 11, X;n11) and
D are independent conditional on {J,,, Tr,, . .., Jo, To}. For instance, Assumption 5.B
is automatically satisfied for the survival process subject to informative censoring at
time D. But (J,11, X;ns1) and D are independent conditional on {J,,,, Ty, - . ., Jo, To}
implies that T" and D are independent.

For the survival process subject to informative censoring at time D, the intensities
of the resulting 3-state process are simply the cause-specific hazards of the competing

risks:

P{T € [t,t + At)|T > t,D > t}
At !
P{D € ft,t+ AT >t,D >t}
At ‘

hOl (t) = hmAth

h02 (t) = hmAth
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The cause-specific hazards are estimable. However, if we are interested in the original
survival process, i.e., the survival distribution of T', we need to remove the ‘censoring

cause’ from the process to estimate

P{T € [t,t+ At)|T > t}

hT(t) = hmAth At

The nonidentifiability issue then arises as discussed in Section 5.1. An assumption
concerning the dependence between the survival time T and the censoring time D is
needed.

Thus to make inference about the original semi-Markov process, which is more
general than the survival process, we need to further model the relationship between
(Jms1, Xma1) and the remaining time to censoring D — T,,, given D > T,, and
(Jm, Trn), the state and time of the mth transition of the original multi-state process.
If there are only two states in the original multi-state process, i.e., &€ = {1,2}, then
Jma1 18 known given J,,. In this case, we only need to specify the dependence of
Xmy1 and D — T, given (J,,, Tp,). In what follows, we focus on this simple case and
model the dependence by copulas. Extensions to deal with the case that £ has more

than two states is discussed in Section 5.5.

5.2.2 Copula Models

The copula models provide a flexible way to specify the dependence structure between
two random variables. A good introduction to copula functions is given by Nelsen
(1999). A two-dimensional copula is a bivariate distribution function H(y;, y2) defined
on the square [0, 1] x [0, 1] with uniform one-dimensional marginal distributions. The
simplest copula function is the independence copula H (31, y2) = 1192. In this chapter,

we focus on the class of the Archimedean copulas, which have the form

H(yr,y2) = 67 [6(S1(31)) + (S2(32))] (5.2.2)

where S1(-) and Ss(-) are two survival functions, and ¢(-) is a twice differentiable,
decreasing convex function defined on (0,1] satisfying ¢(0) = oo and ¢(1) = 0. As a
measure of association, the Kendall’s 7 for the Archimedean copulas can be conve-

niently computed by

[
T—1—|—4/0 gb’(u)d'
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As an example, the independence copula is a member of the Archimedean copulas. It
has ¢(u) = log(1/u) and Kendall’s 7 = 0. More Archimedean copulas are described
in Section 5.4.

As indicated in the previous section, we focus on the case that € = {1,2}. The

model we consider is
P{Xp1>u,D—=T, >v,Jpy1 =3—h|D>Tp, Jp=h,T,, =t}
= Ot [Oni(Shs—n(u; 1)) + da(Shs(vit))],

where ¢p,.(-) is a known Archimedean copula function for A = 1,2 and for each ¢,

(5.2.3)

Shjg_h(u;t) = P{Xm+1 > u, Jm—i—l =3 - h|D 2 Tm, Jm = h, Tm = t},

and
Sh3(’0;t) = P{D —T,, > ’U|D > Tm, Iy = h,Tm = If}

According to Assumption 5.B,
S}Lg_h(u; t) = P{Xm—H > u, Jm—i—l =3 - h|Jm = h, T, = t},

which equals 1 — Qp3-p(u;t), where Qps_pn(u;t) is the semi-Markov kernel of the
original semi-Markov process. If the corresponding processes are HSM processes, we

can simply drop ‘t” in Model (5.2.3).

5.3 Estimation Procedure

We consider estimation for the semi-Markov kernel of the original two-state semi-
Markov process based on observations subject to the informative right censoring under
Assumptions 5.A1 (5.A2) and 5.B, and Model (5.2.3). In addition to the informative
censoring time D, we also allow the observation subject to another censoring time C,
which is assumed independent of the original multi-state process and D. We consider
estimation procedures based on n i.i.d. resulting processes subject to the two types
of censoring.

We first consider estimation procedure for the new NHSM process. Viewing cen-
soring due to D as a new absorbing state 3, the resulting three-state process is a
NHSM process, which is observed subject to noninformative right censoring time C'.

The semi-Markov kernel of the new NHSM process is given by

QT?(Tﬂt) = P{Xm+1 S TaD - Tm Z Xm+1|D Z Tma Jm - 17Tm - t})
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QTI&(T;t) = P{D_Tm <7,D-T,< Xm+1|D > T, Jm =11, :t}a
Q;1<7_,t) = P{X"H‘l <7.D-T,> Xm+1|D > Ty Im =2, T = t}7

and
Q53(m3t) =P{D—-T,, <7,D—-T,, < Xpp1|D >Tp, Jn =2,T,, = t}.

These kernel functions can be estimated by the methods developed in Chapter 4.
Denote the estimators by Q%,(7;t), Qt5(7;t), Q%,(7;t), and Qs(7;t), respectively.

We are interested in the semi-Markov kernel of the original NHSM process, Q12(; )
and @Qa1(+;t). For a fixed t = ty, let w = v in Model (5.2.3),

¢1,to (Sl (’LL; tO)) = ¢1,to(sl2(u; Z50)) + ¢17t0(513(U; to)), (531)

where Sy (u;to) = 1 — Qty(u; to) — Qts(us ty), which can be estimated by Sy (u;ty) =
1— Q% (us to) — Q4 (us ty). We assume that the semi-Markov kernel and the censoring
time distribution are continuous so that no tied observations occur. In this case,
Qt, (-1 to) and Q%s(-;to) do not jump together.

Our estimator for the survival function Sja(-;%o) is a right continuous decreasing
step function Siy(-;to) with S15(0;%9) = 1 and only changes when Q%,(-;t,) does.
Define

QB(AU; to) = Qﬁ(“‘ﬁo) - QTQ(UQ to)

as the jump size of Q%,(-;to) at time u. Since Q% (- to) and Q4(-;to) do not jump
together, according to (5.3.1), for each u such that Q%,(Au:tg) > 0,

D110 (S12(u—;t0)) — D140 (Si2(Usto)) = P14 (S1(u—3t0)) — P10 (S1(ws t)).  (5.3.2)

Summing (5.3.2) over all u’s less equal than 7 for which Q*,(Au;ty) > 0, we obtain

a closed form expression

Sumt) =ity |- > (dralSilu—it) = 614051 (wit0)))
uST,Q’{Q(Au;to)>O
The semi-Markov kernel Q15(7; ) can then be estimated by Q1o(7;t0) = 1—S1a(7; t).
Similarly we can get a closed form estimator for the semi-Markov kernel Qa1 (7; ).
Estimation procedure with a HSM process is a special case, in which we drop ¢

and ty everywhere in the above procedure.
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5.4 Simulation

We simulated 300 subjects entering the study with staggered entry times generated
from unif(0,3). The administrative end of study censoring time was a constant C' =
4. The exponential distribution with mean 1.5 exp(—t/&,) are used as the distributions
1—Si5(+;t) and 1—Sa3(+; t), and the exponential distribution with mean exp(—t/&,) as
the distributions 1 —S13(+;¢) and 1 — S9;(+;t). We considered two different simulation

settings:
Setting 5.1. £, = oo, the original two-state process is a HSM process,
Setting 5.2. £, = 5, the original two-state process is a NHSM process.

The true copula used in the simulation for Model (5.2.3) belongs to Clayton’s
family (Clayton, 1978):

H(y,y0) = [yr * + 3% — 177, a >0,

It is a class of the Archimedean copulas with ¢(z) = (z7* —1) /a and ¢ () =
(1 + az)~Ve. It has Kendall’s 7 = a/(a + 2). It reduces to the independence copula
when @ — 0. In this simulation, we took o = 1 so that Kendall’'s 7 = 1/3 for all
t. Note that this copula specification also results from a proportional frailty model,
where X1 and D — T,,, provided D > T,, and (J,,, T,n) = (1,t), are assumed to
be independent conditional on a gamma distributed latent variable with mean 1 and
variance 1/a.

To examine the performance of the estimation procedures, we estimated the so-
journ time distributions of the original two-state process based on the true copula
function. We also evaluated the estimators based on the correct copula function but
with wrongly specified association parameter o = 3 which gives Kendall’s 7 = 0.6.
In addition, as a comparison, we estimated the sojourn time distribution by ignoring
the dependent censoring.

To study the robustness of our estimator, we evaluated the estimators based on the
misspecified copula functions with Kendall’s 7’s equal to the true value, i.e., 1/3. We
used two copula families. The first family is the Gumbel-Hougaard copulas (Gumbel,
1961; Hougaard, 1986):

H(yr,yai 0) = exp [~ {(~log )/ + (~log )/}, a € (0,1),
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which is a class of the Archimedean copulas with ¢(z) = (—logz)"* and ¢~'(z) =
e~ . It has Kendall’s 7 = 1 — a, and the independence copula corresponds to o — 1.
The second family is Frank’s copulas (Frank, 1979):

1 (Y2 — 1
@ DYy,
a—1

H(yhyQ;a) = loga {1 +

1—a®

11—«

which is another class of the Archimedean copulas with ¢(z) = —log (
¢ Hx) =log, {1 — (1 — a)e *}. It has Kendall’s 7 given by

4 1 [l ¢
1 dt+1).
+10ga (loga/o et —1 * )

An important property of this family is that the association can be either positive

) and

(when a < 1) or negative (when o > 1). The independence copula corresponds to
a— 1.

The sample mean and sample standard deviations of the estimates based on 1000
replicates were calculated. The results of Settings 5.1 and 5.2 are summarized in
Figures 5.1 and 5.3, respectively. Note that the estimated semi-Markov kernel based
on the true copula function is approximately unbiased. The estimates based on the
wrong copula function but the correct Kendall’s 7 are less biased than the estimates
with the correct copula function but the wrong Kendall’s 7. The estimates of the semi-
Markov kernel from state 1 to state 2 are more sensitive to the correct specification

of the association, Kendall’s 7, than that from state 2 to state 1.
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Figure 5.1: Truth and sample mean of estimated semi-Markov kernels in simulation
setting 5.1 (Solid: truth; Dotted: Clayton copula and Kendall’s 7 = 1/3; Short
Dashed: Gumbel-Hougaard copula and Kendall’'s 7 = 1/3; Long dashed: Frank
copula and Kendall’s 7 = 1/3; Short dotted dash: Clayton copula and Kendall’s
7 = 0.6; Long dotted dash: estimates ignoring informative censoring)
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Figure 5.2: Sample standard deviation of estimated semi-Markov kernels in simulation
setting 5.1 (Dotted: Clayton copula and Kendall’s 7 = 1/3; Short Dashed: Gumbel-
Hougaard copula and Kendall’s 7 = 1/3; Long dashed: Frank copula and Kendall’s
7 = 1/3; Short dotted dash: Clayton copula and Kendall’s 7 = 0.6; Long dotted
dash: estimates ignoring informative censoring)
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Figure 5.3: Truth and sample mean of estimated semi-Markov kernels in simulation

setting 5.2 (Solid: truth; Dotted: Clayton copula and Kendall’s 7 =
Dashed: Gumbel-Hougaard copula and Kendall's 7 =

1/3; Short
1/3; Long dashed: Frank

copula and Kendall’s 7 = 1/3; Short dotted dash: Clayton copula and Kendall’s
7 = 0.6; Long dotted dash: estimates ignoring informative censoring)
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Figure 5.4: Sample standard deviation of estimated semi-Markov kernels in simulation
setting 5.2 (Dotted: Clayton copula and Kendall’s 7 = 1/3; Short Dashed: Gumbel-
Hougaard copula and Kendall’s 7 = 1/3; Long dashed: Frank copula and Kendall’s
7 = 1/3; Short dotted dash: Clayton copula and Kendall’s 7 = 0.6; Long dotted
dash: estimates ignoring informative censoring)
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5.5 Remarks

In this chapter, we proposed a model and corresponding estimation procedure for
a type of informative right censored multi-state processes, specifically, semi-Markov
processes. We assume that the censoring scheme has certain “renewal” property with
respect to the semi-Markov processes. Under this assumption, the resulting process
can be broken into pieces of competing risks according to every transition. The
literature on dependent competing risks can then be adapted. We adapted the copula-
graphic approach proposed by Zheng and Klein (1995). Simulation studies suggest
that the inference procedure works well when the copula is correctly specified. When
the prior knowledge about the copula is not available, our approach can be used in a
sensitivity analysis for the assumption of noninformative censoring.

We focused on semi-Markov processes with two states. It is of interest to extend
the approach to the situations with more states. There is some extra difficulty to
specify the dependence between censoring and the semi-Markov processes, because
the next state to be visited by the original process can not be determined by the
current state occupied.

In the presence of continuous covariates, Heckman and Honore (1989) show that
the nonidentifiability problem of competing risks can be solved under a quite general
model structure (includes both proportional hazards and accelerated failure time
models), given the covariates satisfy a quite strong assumption (eg, the range is the
entire real line). Fermanian (2003) develops a nonparametric kernel estimator under
the model of Heckman and Honore (1989). This method may potentially be adapted

in the setting we consider.



Chapter 6
Applications

This chapter presents the applications of the proposed methods to the two real data
sets described in Chapter 1.

6.1 Human Sleep Data

6.1.1 Description

Zung et al. (1965) model human sleep patterns with a Markov chain. Yang and
Hursch (1973) test the Markov chain model with more data and find it likely inad-
equate in describing sleep stage sequences. They show that a semi-Markov model,
which takes into account the duration in the current state, represents the underlying
process better. By dividing the whole night into hourly intervals, they also find the
time heterogeneity of the human sleep process.

We analyzed the human sleep data introduced in Example 1.2 applying the meth-
ods developed in this thesis. Two realizations of the sleep processes are shown in
Figure 6.2. The frequency of all the observed transitions from the study, and median
and mean of the sojourn times are shown in Table 6.1. Note that the number of direct
Awake to REM transitions is small. More than half of the sojourn times in the state

Awake are less equal than 30 seconds.

111
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Table 6.1: Frequency of the observed transitions, and median and mean of the sojourn
times

Transition Number Median! Mean!
Awake to Non-REM 1660 0.5 2.1
Awake to REM 55 0.5 0.6
Awake to Censoring 30 6.5 11.9
Non-REM to Awake 1368 3.5 10.6
Non-REM to REM 756 2.5 10.3
Non-REM to Censoring 27 13.0 131
REM to Awake 377 5.5 7.3
REM to Non-REM 421 4.5 6.8
REM to Non-Censoring 13 3.5 5.8
L'in minutes

6.1.2 Analyses of Human Sleep Data
6.1.2.1 Analysis with Homogeneous Semi-Markov Model

We first modeled the sleep process with the HSM model. Note from Table 6.1 that the
proportion of censoring is low from every state so that the transition probabilities can
be well estimated. The estimated transition probabilities of the embedding Markov
chain are summarized in Table 6.2 and Figure 6.1. All approaches, including the
robust approach, give similar estimates and confidence intervals for the transition
probabilities because of the negligible censoring. This indicates that the efficiency
of the robust approach is comparable with other approaches in the application. The
probability of the direct transition from Awake to REM is small (0.032 with 95% CI
0.021 to 0.042). The probability of the direct transition from Non-REM to REM is
estimated as 0.356 with 95% CI 0.313 to 0.399. About half of REM sleep transits to
Awake directly (0.473 with 95% CI 0.421 to 0.524).

The confidence bands of the semi-Markov kernel is presented in Figures 6.3. The
plot of estimated Q12(+) in Figure 6.3 indicates that, starting from Awake, about 90%
of subjects stay at non-REM sleep within 30 minutes. From the plots of estimated
Q21(+) and Q93() in Figure 6.3, we see that about 50% of subjects starting from non-
REM sleep turn to Awake in 30 minutes, about 30% of them move to REM sleep,
and about 20% of them remain in non-REM sleep in 30 minutes. Figure 6.4 shows

the confidence bands for the sojourn time distributions based on the robust approach.
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Table 6.2: Estimates and 95% confidence intervals of the transition probabilities for
the human sleep data (1: Awake, 2: Non-REM, 3: REM)

Plug-in Normalized Phelan Robust approach
P Estmate 0.968 0.968 0.968 0.968-0.968
12 CI (0.958, 0.979) (0.958, 0.979) (0.957, 0.979) (0.958, 0.979)
P Estmate 0.032 0.032 0.032 0.032-0.032
13 CI (0.021, 0.042) (0.021, 0.042) (0.021, 0.043) (0.021, 0.042)
P Estmate 0.644 0.644 0.644 0.644-0.644
2 CI (0.601, 0.687) (0.601, 0.687) (0.601, 0.687) (0.601, 0.687)
P Estmate 0.356 0.356 0.356 0.356-0.356
23 CI (0.313, 0.399) (0.313, 0.399) (0.313, 0.399) (0.313, 0.399)
P Estmate 0.473 0.473 0.472 0.473-0.473
31 CI (0.421, 0.524) (0.421, 0.524) (0.421, 0.524) (0.421, 0.524)
P Estmate 0.527 0.527 0.528 0.527-0.527
32 CI (0.476, 0.579)  (0.476, 0.579) (0.476, 0.579) (0.476, 0.579)

Awake
(State 1)

0.968

—_—
.

0.644

&3
0.4?&

32

(State 3)

Non-REM
(State 2)

0.?
REM ﬁgz?

Figure 6.1: Estimated transition probabilities for human sleep process
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The plot of estimated Fis(-) indicates that 90% of the sojourn times from Awake to

non-REM sleep are less than 15 minutes.

6.1.2.2 Analysis with Modulated Semi-Markov Model

We then modeled the sleep process as a three-state modulated semi-Markov process.
We incorporated the study time since the onset of sleep as a time-dependent covariate,
denoted by Z(t), and allowed this covariate to have different regression effect on

different transitions. The specific model we used is given by
ns (t1Fs, Zng (1)) = aon (B(E)) 70, (6.1.1)

for h # j € {1,2,3}. We used hour as the metric of time.

The estimated regression parameter @p;’s are summarized in Table 6.3. Note
that none of the 95% confidence intervals of the regression parameters contains 0,
which indicates that all the transitions are nonhomogeneous in the study time scale.
Specifically, the transition rates from Awake to Non-REM sleep and REM to Non-
REM are decreasing during the night, while the transition rates from Awake to REM,
Non-REM to Awake, Non-REM to REM, and REM to Awake are increasing during
the night.

Table 6.3: Point estimate, standard error and confidence interval of the regression
parameters for the human sleep data

Transition Estimate SE CI

Awake to Non-REM -0.023 0.010 (-0.043, -0.002)
Awake to REM 0.164 0.062 (0.042, 0.286)
Non-REM to Awake 0.038 0.012 (0.014, 0.062)
Non-REM to REM 0.154 0.017 (0.121, 0.187)
REM to Awake 0.096 0.028 (0.042, 0.150)
REM to Non-REM -0.057 0.025 (-0.107, -0.008)

6.1.2.3 Analysis with Nonhomogeneous Semi-Markov Model

In the analysis with the modulated semi-Markov model, we have found evidence that

the sleep process is not homogeneous in study time. Thus the NHSM model is likely
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a better model for the process.

We modeled the sleep process as a NHSM process with three states: Awake, Non-
REM and REM. We considered four different specifications: the fully nonparametric,
the piecewise constant, the nonparametric multiplicative, and the semiparametric
models. Eight equally spaced partitions on the study time scale were used in the
piecewise constant approach. The semiparametric model is just (6.1.1) considered in
Section 6.1.2.2. The bandwidths were w = 1.5 hours in the study time scale, and
b = 0.5 hour in the duration time scale.

Figures 6.5 to 6.10 present the 3-dimensional plots of the estimated transition rate
functions in the two time scales. It appears that the transition rate functions vary
with cyclic patterns in the study time since the onset of sleep, which indicates the
time non-homogeneity in the sleep process. The semiparametric estimates, however,
can not capture the cyclic patterns of the transition rates in the study time scale due
to the model specification. For instance, Figures 6.5 and 6.6 show that the estimates
based on the first three approaches suggest that the transition rates from Awake to
Non-REM and REM be cyclic with a peak at about 3 hours after onset of sleep, but
the semiparametric estimate fails to capture the peak. In Figures 6.7 and 6.9, the
transition rates from Non-REM and REM to Awake are higher at the end of the
night (about 7 hours after onset of sleep). This finding is consistent with Kneib and
Hennerfeind (2008).

The transition rate functions also depend on the duration in the current state.
From Figure 6.5, we see that the transition rate function from Awake to Non-REM is
increasing to the peak after about 15 minutes in the state Awake, and then starts to
decrease. From Figure 6.9 and 6.10, we find the transition rates from REM to Awake
and Non-REM are maximized after about half an hour in the present state. Figure
6.8 shows that the peak for transition from Non-REM to REM lies between 1 and 1.5
hours in the present state.

Figures 6.11 and 6.12 present the estimated semi-Markov kernels. From Figure
6.11, we find that starting from Awake, the sleep process will very likely transit to
Non-REM other than REM directly. It takes longer to wake up from Non-REM at
the beginning of the night than at the end of the night.
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6.1.2.4 Model Checking

To check whether the study time and the duration time have multiplicative effects
on the transition intensities, we plot the positive and negative parts of the differ-
ence between the estimated cumulative transition rate functions associated with the
nonparametric model and the nonparametric multiplicative model in Figures 6.13
and 6.14. Note that for the transition from Awake to Non-REM, we can see the
pattern that the positive residuals are concentrated at small and large study times,
while the negative residuals have intermediate study times. This suggests that the

multiplicative model assumption is questionable in this application.

6.1.3 Concluding Remarks

We applied the methods developed in this thesis to the human sleep data. The analy-
sis outcomes suggest that the intensities of transitions among the sleep patterns vary
in both the study and duration time scales. Thus NHSM model is likely a plausible
model for the process. The semiparametric specification, which assumes a Cox re-
gression form for the study time, can not capture the cyclic pattern of the transition
rate functions in the study time scale. The preliminary model checking shows that

the two time scales may not affect the transition rate functions multiplicatively.
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Figure 6.2: Realizations of two individual sleep processes and corresponding nocturnal
cortisol secretion, cited from Kneib and Hennerfeind (2008)
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Figure 6.13: The positive parts of the difference between the estimated cumulative
transition rate functions associated with the nonparametric model and the nonpara-

metric multiplicative model
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6.2 Hospitalization Data

6.2.1 Description

We applied the proposed methods to the hospitalization data introduced in Example
1.1. We formulated the hospitalization process as a multi-state process with 3 states
(see Figure 1.2): 1 for “out of hospital”, 2 for “in hospital”, and 3 for “dead”. Each
of the multi-state process starts at 5 years after the diagnosis date from state 1,
i.e., “out of hospital”. It then transits between state 2 and 1 (i.e., being admitted
to and discharged from hospital) before entering the absorbing state 3 (i.e., dead),
or being censored on Dec 31, 2000. The frequency of hospital admissions accross
different diagnosis year windows is presented in Table 6.4. Among the 1374 subjects,
810 subjects were censored without a hospital admission. The frequency of all the
observed transitions from the study, and median and mean of the sojourn times are
shown in Table 6.5. In total there were 60 deaths observed, 29 of which were in

hospital. All the censorings occurred in state 1.

Table 6.4: Frequency of the number of hospital admissions

Number of hospital admissions

Diagnosis Year 0 1 2 35 > 6 Total
1981-1989 313 170 62 102 95 742
1990-1995 497 79 37 12 7 632
1981-1995 810 249 99 114 102 1374

Table 6.5: Frequency of the observed transitions, and median and mean of the sojourn
times (1: out of hospital, 2: in hospital, 3: dead)

Transition Number Median® Mean!
1—2 2148 126.0  461.2
1—3 31 72.0 221.7
1 — censoring 1314 1436.5 1751.7
2 —1 2119 1.0 4.6
2 —3 29 8.0 16.8
2 — censoring 0 - -

Lin days
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6.2.2 Analyses of Hospitalization Data
6.2.2.1 Analysis with Homogeneous Semi-Markov Model

We fitted the HSM model with the data first. The estimated transition probabilities
of the embedding Markov chain are presented in Table 6.6 and Figure 6.15. All
approaches give similar estimates and confidence intervals for P»; and Ps3 because

that no transition was censored at state 2, i.e., “in hospital”. Note that the probability
of death at hospital is small (0.014 with 95% CI 0.009 to 0.018).

Table 6.6: Estimates and 95% confidence intervals of the transition probabilities for
the hospitalization data (1: out of hospital, 2: in hospital, 3: dead)

Plug-in Normalized Phelan Robust approach
p Estmate 0.775 0.988 0.986 0.775-0.991
12 CI (0.738, 0.813) (0.984, 0.992) (0.981, 0.991) (0.738, 0.994)
p Estmate 0.009 0.012 0.014 0.009-0.225
1 CI (0.006, 0.013) (0.008, 0.016) (0.009, 0.019) (0.006, 0.262)
P Estmate 0.986 0.986 0.986 0.986-0.986
2 CI (0.982, 0.991) (0.982, 0.991) (0.982, 0.991) (0.982, 0.991)
Py Estmate 0.014 0.014 0.014 0.014-0.014

CI  (0.009, 0.018) (0.009, 0.018) (0.009, 0.018)  (0.009, 0.018)

Out of Hospital _0.775-0.991 In Hospital
(State 1) DT — (State 2)
0.009-0.22 Dead 0.014
(State 3)

Figure 6.15: Estimated transition probabilities for the hospitalization process

However, the estimates for P and P;3 are quite different with different ap-
proaches. From Tables 6.4, 810 subjects were censored directly from state 1, i.e.,
“out of hospital”, without a hospital admission. This may due to the long tail of
the sojourn time distribution in state 1. Thus the condition (2.3.10) required for the
consistency of the plug-in estimator is questionable. On the other hand, Table 6.5
shows that the mean and median of the sojourn times in state 1 are quite different

with respect to the next state to be visited. Figure 6.16 presents the estimates and
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confidence bands for the sojourn time distributions starting from state 1 using the
normalized estimator. It shows that the two distributions Fis(-) and Fi3(-) are quite
different. This indicates that the inferences on the transition probabilities based on
the normalized and Phelan’s estimators can be biased. Thus safe conclusion concern-
ing Pj» and P;3 should be drawn based on the robust approach.

Confidence bands for the semi-Markov kernel is presented in Figures 6.17. The
transformed Hall-Wellner (HW) bands are wider than the transformed equal precision
(EP) bands at the beginning, and then becomes narrower. It appears that about 90%
of patients in hospital survive and are discharged from hospital within 15 days (see
the plot of estimated (Q21(-)), and about 1% of patients admitted to hospital die at the
hospital within a month (see the plot of Q23(+)). From the plots of estimated Q1a(-)
and Qi3(-), we see that about 50% of patients survive beyond 2.5 years without
hospitalization, and less than 1% of patients die out of hospital within 2 years of
discharge without further hospitalization.

Figure 6.18 shows the confidence bands for the sojourn time distributions based
on the robust approach. The confidence band for Fis(+) is wide compared with Fy ()
as a result of the uncertainty in estimating Pjs. The curve of estimated Fy(-) in
Figure 6.18 shows that about 95% of the hospitalization duration (i.e., the sojourn

time from in hospital to out of hospital) is less than 15 days.

6.2.2.2 Analysis with Modulated Semi-Markov Model

We then applied the modulated semi-Markov model to the hospitalization data. We
incorporated the study time since the entrance of the study as a time-dependent
covariate Z(t), and allow this covariate to have different regression effect on different

transitions. The specific model we used is
g (1 F Zny (1) = atony (B(1)) 70, (6.2.1)

for h # j € {1,2,3} and j # 3. We transform the metric of time to year.

The estimates of the regression parameters are presented in Table 6.7. Note that
neither of the 95% confidence intervals of the regression parameters between “in
hospital” and “out of hospital” contains 0, which indicates the time nonhomogeneity
of the hospitalization process. Specifically, the transition rate from “out of hospital”
to “in hospital” is decreasing while the transition rate from “in hospital” to “out of

hospital” is increasing with study time scale. The standard errors of the regression
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parameters of “out of hospital” or “in hospital” to death are large compared to the

point estimates due to the small number of deaths occurred.

Table 6.7: Point estimate, standard error and confidence interval of the regression
parameters for the hospitalization data (1: out of hospital, 2: in hospital, 3: dead)

Transition Estimate SE CI

1—2 -0.033 0.006 (-0.044, -0.021)
1—3 0.036  0.049 (-0.060, 0.132)
2—1 0.022 0.006 (0.010, 0.034)
2—3 0.048 0.055 (-0.060, 0.156)

6.2.2.3 Analysis with Nonhomogeneous Semi-Markov Model

In the analysis with the modulated semi-Markov model, we have found evidence that
the hospitalization process is not homogeneous in the study time. We modeled the
hospitalization data with a NHSM process. We considered four different specifica-
tions: the fully nonparametric, the piecewise constant, the nonparametric multiplica-
tive, and the semiparametric models. The piecewise constant approach used ten
equally spaced partitions on the study time scale. The semiparametric model is just
(6.2.1) considered in Section 6.2.2.2. We used the bandwidth w = 5 years in the
study time scale. In the duration time scale, we used bandwidth b, = 2 years when
the patient is out of hospital, and by = 4 months when the patient is in hospital.
Figures 6.19 to 6.22 show the 3-dimensional plots of the estimated transition rate
functions among different states, based on the four different estimation procedures.
Note that all the four approaches give qualitatively the same pattern. As shown in
Figure 6.19, the estimated transition rate function from “out of hospital” to “in hospi-
tal” as a function of duration 7 increases until about 7 = 1 year and then decreases.
It also has a decreasing trend in study time ¢. This indicates that this transition
rate function depends on both time scales. Figures 6.23 and 6.24 show the estimated
semi-Markov kernel by projecting it onto the two time scales. The decreasing trend
of Q12(7;t) as a function of ¢ with fixed 7 indicates that less hospitalization resources

are needed over time.
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6.2.3 Sensitivity Analysis for Informative Censoring

We focused our interest in the two-state process alternating between “out of hospital”
and “in hospital”. We applied the method developed in Chapter 5 to conduct sen-
sitivity analysis for checking about the possible informative censoring due to death.
We worked with a subpopulation with 120 patients for illustration purpose. This
subpopulation consists of 60 patients who are observed to death during the study,
and other 60 patients who have similar cancer diagnosis dates.

Our estimation is based on Assumptions 5.A1 (5.A2) and 5.B, and Model (5.2.3).
We estimated the semi-Markov kernel of the two-state process based on the assumed

copulas from Frank’s family

v 1) (a¥2 — 1
H(y1, yo; ) :loga{l—l— (a )(041 )}, a >0,
a{_

with a plausible range of Kendall’s 7 in [—0.8,0.8]. We also estimate the semi-Markov
kernel by ignoring the possible dependent censoring due to death. The results are
summarized in Figures 6.25 and 6.26, under HSM and NHSM model assumptions,
respectively. Note that the estimated bounds of the semi-Markov kernel based on the
plausible range of Kendall’s 7 are wider with the “out of hospital” to “in hospital”
transition than with the “in hospital” to “out of hospital” transition. Thus the
transition from “out of hospital” to “in hospital” is more sensitive to this type of

¢

dependent censoring than the transition from “in hospital” to “out of hospital”.

6.2.4 Concluding Remarks

In this section, we analyzed the hospitalization data by the methods developed in
this thesis. Under the HSM model, our estimates of the transition probabilities of
the embedded Markov chain are quite different from the existing approaches. We
find that the transition intensities of the hospitalization process vary in both the
study and duration time scales. Thus the NHSM model appears more appropriate to
the process. The four different specifications: the fully nonparametric, the piecewise
constant, the nonparametric multiplicative, and the semiparametric models, lead to

similar estimates of the transition intensities.



CHAPTER 6. APPLICATIONS 135

Estimated sojourn time distributions
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Figure 6.16: Estimated sojourn time distributions for hospitalization data based on
normalized estimate (Solid: point estimate for Fjy; Dashed: 95% confidence bands
for Fio; Dotted: point estimate for Fi3; Shaded: 95% confidence bands for Fi3)
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Figure 6.18: Estimated distribution of sojourn times for hospitalization data (Solid:
normalized estimate; Dotted: estimated bound; Dashed: 95% transformed EP band)
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Figure 6.20: Estimated transition rate functions from “out of hospital” to “death”
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Figure 6.25: Estimated semi-Markov kernel of the two-state HSM process (Solid:
estimates ignoring the possible dependent censoring; Dashed: plausible bounds based
on the assumed copulas from Frank’s family)
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Figure 6.26: Estimated semi-Markov kernel of the two-state NHSM process (Solid:
estimates ignoring the possible dependent censoring; Dashed: plausible bounds based
on the assumed copulas from Frank’s family)



Chapter 7

Discussion

7.1 Summary

Markov models have been widely used for multi-state processes because of (i) the
simplicity of model specification and interpretation, (ii) the availability of counting
process martingale theory to derive asymptotics, and (iii) the product integration
to link the transition intensities with transition probabilities. However, due to their
memoryless property, strict Markov models can not deal with duration dependence,
and have been found inadequate in many practical applications. In this thesis, we
have developed statistical methods for multi-state processes with duration-dependent
transition intensities.

We start from the homogeneous semi-Markov (HSM) process, as a generalization
of the classical homogeneous Markov processes, which assumes that the transition
intensities depend on the history only through the current state and the duration
time. Gill (1980) derives the consistency and weak convergence of the estimator of
the semi-Markov kernel proposed by Lagakos et al. (1978). However, the asymptotic
Gaussian process does not have an independent increment structure, thus it can not
be transformed into the standard Brownian bridge or Brownian motion to construct
confidence bands for the semi-Markov kernel. We propose two simulation based al-
gorithms for this purpose. In addition, we show that the existing estimators for the
transition probabilities of the embedded Markov chain and the sojourn time distribu-
tions can be biased when right censoring is involved. A robust estimation procedure is
proposed to address the concern. Simulation studies show that the proposed methods

perform well with finite sample size. The efficiency of the robust approach can be

146



CHAPTER 7. DISCUSSION 147

comparable with the existing approaches.

We then study the modulated semi-Markov (MSM) process, which extends the
HSM process to a Cox regression setting. The dependence of the baseline transition
intensities on the duration time scale makes the model fall outside the framework of
Aalen’s multiplicative intensity models and invalidates the usual martingale meth-
ods. Dabrowska et al. (1994) consider MSM processes with covariates depend on the
duration time in the present state only, which precludes the study time variable. As
a generalization, Chapter 3 allows general time-dependent covariates and proposes
estimating equations for the regression parameters. Using empirical process theory,
we establish the consistency, asymptotic normality and efficiency of the estimators for
the regression parameter. The large sample approximation of the limiting distribution
is adequate with sample size as small as 50, as shown in the simulation.

As a further generalization, the nonhomogeneous semi-Markov (NHSM) process
assumes its transition intensity can involve both the study and the duration time
scales. We consider statistical inferences for the NHSM processes with four different
model specifications. The first one is a MSM model, in which the the study time is
included as a time-dependent covariate. The second model assumes that the transition
intensities are piecewise constant in the study time scale, and can vary arbitrarily in
the duration time scale. The third model is structured nonparametric, where the
transition intensities depend on the two time scales in a multiplicative form. The
last model is fully nonparametric in that the transition intensities can depend freely
on the two time scales. Simulation studies show that the more structured models
are more efficient if they are correctly specified. However, they can lead to biased
inferences when the model assumptions are violated. The four models are nested,
which can be utilized to select the most parsimonious model.

Dependent censoring problem is challenging in event history data analysis. We
consider a particular type of informative right censoring scheme with the observation
of a NHSM process. Motivated by the competing risks formulation of the HSM
processes, we model the informative censoring mechanism as another competing risk.
Under this model assumption, the censored process becomes a new NHSM process
with the censoring included as a new absorbing state of the original process. We then
adapt a copula based approach for dependent competing risks to the setting. An
advantage of the copula approach is that the marginal distributions need not to be

specified, and can be estimated nonparametrically.
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We applied the proposed methods to the two real data sets described in Chapter
1. The analysis outcomes suggest that the transition intensities of both the human
sleep and the hospitalization processes vary in both the study and the duration time
scales. Thus the NHSM model is a plausible model for the two data sets.

7.2 Further Investigations

In what follows, we outline some directions for future research.

7.2.1 Interval Transition Probabilities

An easily interpretable quantity of a multi-state process, which is often of interest in

practice, is the interval transition probability
Pyj(s,t; Fs) = P{S(t) = j|S(s) = h, F,_}. (7.2.1)
With nonhomogeneous Markov processes, (7.2.1) reduces to
Pyj(s,t) = P{S(t) = j|S(s) = h},

which is linked with the transition intensities through product integration. The in-
ference procedures have been well studied (Aalen and Johansen, 1978; Andersen et
al., 1993). Dabrowska et al. (1994) and Dabrowska (1995) consider estimation pro-
cedures for the interval transition probabilities with HSM processes and modulated
semi-Markov processes with time-independent covariates.

It can be of practical interest to estimate the interval transition probabilities with
NHSM processes. Based on the stochastic feature of NHSM processes, it is equivalent

to estimate the following interval transition probabilities:
Pyi(t;70,7) = P[S({t+ 1) =j|S(t+10) = h,B(t+ 1) = 70], (7.2.2)

which is the probability of the process being in state j at time ¢+ 7, given the process
enters state h at time ¢t and remains in state h by time ¢ + 75. Let Py;(t;7) =
Py;(t; 0+, 7) be the probability that the process in state j at time ¢ + 7 given it enters
state h at time ¢.

Applying a conditional argument, we can show that Py ;(¢; 7)’s satisfy the following

system of Volterra integral equations:

Pyi(t;7) = OpjSn(T5t) + Z/ Qi (s t) Py (t + w; 7 — u)du (7.2.3)
k=10



CHAPTER 7. DISCUSSION 149

for all h and j, where 0,; = 1 if h = j and 0 otherwise, and Sj,(7;t) = 1 — Hp(7;1).
These equations are the direct counterpart of Kolmogorov equations for the Markov

processes. Let

o Quy(Tit) — Qny(Tost)
Qnj (10,75 1) = Jl — th(TOZt) 7

and g (7o, 7;t) be the partial derivative of Qp;(7o, 7;t) with respect to 7. Then
Pyj(t; 70, T) = 0Sh (70, T3 1) + Z/ Qni(To, w3 t) Prj(t + u; 7 — u)du (7.2.4)
k=1vT0

where Sy(70, 75t) =1 — >, Quni(70, 75 1).

Lucas et al. (2006) approximate numerically the solution Py;(t;7) of (7.2.3) by
means of a finite system of algebra equations. Here we consider an alternative method
based on Monte Carlo simulation to estimate P;(t; 70, 7). We first apply the methods
in Chapter 4 to obtain estimates dp,;(7;t) and Q;(7;t) of ay;(7;t) and Qu;(7;1),
respectively, for h,j € £ and t,7 > 0. Denote Z#h th(T;t) by f{h(T;t). Then an

algorithm to estimate P;(t; 79, 7) is as follows.
Step 1. Let (Jy, Tp) = (h,t) and m = 0.

Step 2. Generate X,, 1 from H g (3 Tn), and then generate J,,11 from state j with
probability &, ;(Xm+1;Tm)/ Zj &, i (Xmt1; Tin). Record (Jpy1, Thnt1), where
Tm+1 =Tn+ Xm+1-

Step 3. Repeat Step 2 for each m = 1,2,.. ., until either J,,,; is an absorbing state
or Tpyy1 >t+7.

Step 4. Repeat Step 1 to Step 3 to obtain M sample paths.

We can then estimate P,;(t; 79, 7) by the proportion of sample paths with X; > 7
and being in state j at time ¢ + 7, denoted by Phj (t; 79, 7). The standard deviation
of ﬁhj (t; 70, 7) can be obtained by the bootstrap approach.

7.2.2 Goodness-of-fit Tests

We have considered several nested models for NHSM processes: semiparametric,
structured nonparametric, and fully nonparametric. They can be applied to con-
duct goodness-of-fit tests to select the most parsimonious model. In the context of a

nonparametric hazard model for survival data, McKeague and Utikal (1991) consider
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some goodness-of-fit tests based on the differences between estimates of the doubly
cumulative hazard function. The idea can be used here by comparing the cumulative

transition rate function .
Apj(T3t) = / apj(u; t)du,
0

or the doubly cumulative transition rate function

t T
Ap;(T5t) = / / ap;(u; s)dsdu.
0 Jo

For instance, to test whether the multiplicative nonparametric model fit the data
adequately, we may plot the differences of the estimated cumulative transition rate
function under the multiplicative nonparametric model and the fully nonparametric
model. If the multiplicative nonparametric model is appropriate, the difference should
be fluctuate around zero without any pattern.

We can also conduct formal hypothesis tests based on the standardized difference
of the estimated cumulative transition rate functions under the nested models, which
can be shown to converge to a Gaussian random field. The limiting process with
possibly complex covariance structure may be approximated via bootstrap. The hy-
pothesis tests can be based on Kolmogorov-Smirnov type or Cramér-von Mises type

statistics.

7.2.3 General Modulated Semi-Markov Models

In Chapter 3, we considered estimation procedures based on the modulated semi-

Markov models where the transition intensities are assumed to have the form
or
Ozhj(ﬂﬂ, Zhj(t)) = Qo <B(t), N(t—)) ee’zhj(t)‘

The possible dependence of the transition intensities on the study time is modeled
parametrically.
More flexible models, where the baseline transition rate function can depend on

both the study and duration time scales freely, are

ap; (t|Fy, Znj(t)) = aon; (B(t); 1) ¥ Zni (),
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and

i (U Fy, Znj (1)) = von; <B(t); t, N(t—)) e Zni ()

With a fixed 0, we can apply the methodology in Chapter 4 to obtain an estimate of
the baseline transition rate function. We can then consider some profile estimator for

the regression parameter 6.

7.2.4 Alternative Observation Schemes

In this thesis, we have focused on the right censoring observation scheme. In practice,
the data may be collected periodically, leading to panel data. Kalbfleisch and Lawless
(1985) fit Markov models with panel data. The difficulty to fit semi-Markov models
with panel data, as shown in Kang and Lagakos (2007), is that the likelihood function
is very complicated to work with. Kang and Lagakos (2007) consider a simplified
situation where the transition intensity from at least one of the states of the underlying
process is time homogeneous, in which case they show that the likelihood function is
tractable.

Another problem is the possible unknown duration time in the initial state, when
the subjects are already in certain state before they enter the study. In this thesis,
we have assumed that the subjects start a new state when enter the study, or the
duration time in the current state prior to the entrance into the study is known.
Otherwise, the methods need to be modified to account for the duration of time in
the initial state prior to the entrance of the study. Methods similar to those in the
work by Satten and Sternberg (1999) and Cai et al. (2008) might be adopted to

address the issue.

7.2.5 Other Further Investigations

Listed below are other research topics closely related to the thesis project.

7.2.5.1 Robustness of the Semiparametric Approach

As shown in the literature, approaches associated with Cox regression may have
certain robustness properties against model misspecification in Markov models. We
will examine the performances of the approaches in Chapter 3 when the model is

misspecified with the semi-Markov model.
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7.2.5.2 Nonparametric Additive Model

In Chapter 4, we consider a particular nonparametric structured model, the nonpara-
metric multiplicative model, with NHSM processes. Another nonparametric struc-
tured model for future research is the nonparametric additive model, in which the
transition intensities depend on the study time and the duration time additively, and
the functional forms are left unspecified. The iterative algorithm developed in Sec-
tion 4.4 can be adapted. Theoretical justification for convergence of the algorithms

warrants further investigation.

7.2.5.3 Bandwidth Selection

Kernel smoothing methods are used in the estimation procedures with NHSM pro-
cesses. It is not clear, however, how to choose the optimal bandwidth. The asymp-
totic distribution of the estimators may be too complicated to be used in selecting
the bandwidth by the plug-in method. Bandwidth selection has been well studied in
the context of hazard rate estimation with survival data. Patil (1993) proposes the
least squares cross-validation method. Gonzalez-Manteiga et al. (1996) introduce a

bootstrap approach. These methods can be potentially adapted to the setting.

7.2.5.4 Estimation of Marginal Quantities

This thesis focuses on intensity-based models with the counting process formulation
of multi-state processes. For the special case of recurrent events, robust inference
procedures based on marginal rate functions have been proposed (Lin et al., 2000;
Cook and Lawless, 2007). Datta and Satten (2001, 2002) consider estimation of the
state occupation probabilities with multi-state processes based on marginal transition
rate functions. More generally, we will study estimation of marginal transition prob-
abilities. Meira-Machado et al. (2006) propose estimators with a special illness-death

process without recovery.
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