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Abstract

Multi-state processes provide a convenient framework for analysis of event history

data, which arise in many fields including public health, biomedical and health ser-

vices research, reliability, business, and social sciences. This thesis develops methods

for statistical analyses with various Markov processes in particular, and presents ap-

plications of the methodology.

Starting with the homogeneous semi-Markov (HSM) process, a generalization of the

classical homogeneous Markov processes, we propose an alternative estimation pro-

cedure with right-censored data to the existing approaches to avoid their possible

inconsistency in estimating the transition probabilities. Two simulation based algo-

rithms are implemented to construct confidence bands for the HSM kernel and the

sojourn time distributions. The modulated semi-Markov (MSM) process extends the

HSM process to a Cox regression setting, allowing for general time-dependent co-

variates but invalidating the usual martingale methods to derive asymptotics. We

consider estimation of the regression parameters in the MSM model and establish

the consistency, asymptotic normality and efficiency of the estimators, applying the

modern empirical process theory. As a further generalization, the nonhomogeneous

semi-Markov (NHSM) process assumes its transition intensity involving two time

scales, the individual study time since the onset of the process and the duration time

in the current state. We provide estimation procedures for the parameters in four

model specifications with the NHSM process. The last topic of the thesis is to deal

with dependent censoring in event history data analysis. We focus on a particular

informative censoring scheme with the observation of a NHSM process, and adapt a

copula-based approach for dependent competing risks. Finite sample properties of all

the proposed methods are examined via simulation. In addition, with the proposed

methods, we conduct analyses of two real data sets, the human sleep data presented in

Kneib and Hennerfeind (2008) and the hospitalization data collected by the CAYACS

iii



program (PI: M. McBride) with BC Cancer Centre.

Keywords: Estimation, Event History Information, Likelihood, Markov Process,

Right-Censoring

iv



Acknowledgments

I would like to express my sincere gratitude to my supervisor, Professor X. Joan Hu,

for her guidance and patience throughout my study at SFU, particularly during the

time of conducting this thesis project. This thesis would not have been completed

without her.

My special thanks go to my thesis committee members, Professors John Braun,

Jiguo Cao, Charmaine Dean, Richard Lockhart, and Carl Schwarz, for their insightful

comments and suggestions about the thesis.

I am grateful to the Canadian Cancer Society Research Institute (formerly Na-

tional Cancer Institute of Canada) and the Canadian Institute of Health Research for

the fundings and the BC Cancer Registry, the BC Ministry of Health, the BC Cancer

Agency and the BC Children’s Hospital Health Records for the databases.

I want to voice my appreciation to the faculty and staff of the Department of

Statistics and Actuarial Science for providing such a great place to study. I also thank

my fellow graduate students for their support and friendship. Particular mention goes

to: Yunfeng Dai, Celes Ying, Chunfang Lin, Wilson Lu, Zhijian Chen, Xin Feng, Na

Lei, Lucy Liu, Suli Ma, Simon Bonner, Jean Shin, Elizabeth Juarez-Colunga, Carolyn

Huston, Darby Thompson, and Saman Muthukumarana.

Finally, I thank my family for their support, understanding, and love. I would like

to particularly thank my mother and my mother-in-law for taking care of my children

when mostly needed.

v



Contents

Approval ii

Abstract iii

Acknowledgments v

Contents vi

List of Tables x

List of Figures xii

Notation Index xvi

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Multi-state Processes . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Sojourn Time Formulation . . . . . . . . . . . . . . . . . . . . 5

1.2.3 Counting Process Formulation . . . . . . . . . . . . . . . . . . 8

1.2.4 Processes Resulting from Right-Censoring . . . . . . . . . . . 8

1.2.5 Likelihood Function . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Outline of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Homogeneous Semi-Markov Process 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Confidence Bands for Semi-Markov Kernel . . . . . . . . . . . . . . . 13

2.2.1 Bootstrap Approach . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2 Lin-Wei-Ying’s Resampling Approach . . . . . . . . . . . . . . 16

vi



2.3 Robust Inference Procedure for Transition

Probabilities and Sojourn Time Distributions . . . . . . . . . . . . . 16

2.3.1 Existing Estimation Procedures and Their Limitations . . . . 17

2.3.2 Robust Estimation Procedure . . . . . . . . . . . . . . . . . . 18

2.3.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.2 Robust Inference for Transition Probabilities . . . . . 20

2.3.2.3 Robust Inference for Sojourn Time Distributions . . 21

2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.2 Semi-Markov Kernel Estimation . . . . . . . . . . . . . . . . . 23

2.4.3 Transition Probabilities and Sojourn Time Distributions . . . 30

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Modulated Semi-Markov Process 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Models and Estimation Procedures . . . . . . . . . . . . . . . . . . . 43

3.3 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.2 Consistency and Asymptotic Normality . . . . . . . . . . . . . 49

3.3.3 Asymptotic Efficiency . . . . . . . . . . . . . . . . . . . . . . 57

3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Nonhomogeneous Semi-Markov Process 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Piecewise Constant Approach . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Nonparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3.1 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . 67

4.3.2 Asymptotic Properties . . . . . . . . . . . . . . . . . . . . . . 69

4.4 Nonparametric Multiplicative Model . . . . . . . . . . . . . . . . . . 75

4.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Semiparametric Estimation . . . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

vii



5 Semi-Markov Process with Informative Censoring 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Modeling Informative Censoring . . . . . . . . . . . . . . . . . . . . . 98

5.2.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.2 Copula Models . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Estimation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Applications 111

6.1 Human Sleep Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.1.2 Analyses of Human Sleep Data . . . . . . . . . . . . . . . . . 112

6.1.2.1 Analysis with Homogeneous Semi-Markov Model . . 112

6.1.2.2 Analysis with Modulated Semi-Markov Model . . . . 114

6.1.2.3 Analysis with Nonhomogeneous Semi-Markov Model 114

6.1.2.4 Model Checking . . . . . . . . . . . . . . . . . . . . 116

6.1.3 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 116

6.2 Hospitalization Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2.2 Analyses of Hospitalization Data . . . . . . . . . . . . . . . . 131

6.2.2.1 Analysis with Homogeneous Semi-Markov Model . . 131

6.2.2.2 Analysis with Modulated Semi-Markov Model . . . . 132

6.2.2.3 Analysis with Nonhomogeneous Semi-Markov Model 133

6.2.3 Sensitivity Analysis for Informative Censoring . . . . . . . . . 134

6.2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . 134

7 Discussion 146

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2 Further Investigations . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.2.1 Interval Transition Probabilities . . . . . . . . . . . . . . . . . 148

7.2.2 Goodness-of-fit Tests . . . . . . . . . . . . . . . . . . . . . . . 149

7.2.3 General Modulated Semi-Markov Models . . . . . . . . . . . . 150

7.2.4 Alternative Observation Schemes . . . . . . . . . . . . . . . . 151

7.2.5 Other Further Investigations . . . . . . . . . . . . . . . . . . . 151

viii



7.2.5.1 Robustness of the Semiparametric Approach . . . . . 151

7.2.5.2 Nonparametric Additive Model . . . . . . . . . . . . 152

7.2.5.3 Bandwidth Selection . . . . . . . . . . . . . . . . . . 152

7.2.5.4 Estimation of Marginal Quantities . . . . . . . . . . 152

Bibliography 153

ix



List of Tables

2.1 Empirical coverage probabilities of the 95% confidence intervals for the

semi-Markov kernel in simulation setting 2.1 . . . . . . . . . . . . . . 24

2.2 Empirical coverage probabilities of the 95% confidence intervals for the

semi-Markov kernel in simulation setting 2.2 . . . . . . . . . . . . . . 25

2.3 Empirical coverage probabilities of the 95% confidence intervals for the

semi-Markov kernel in simulation setting 2.3 . . . . . . . . . . . . . . 26

2.4 Empirical coverage probabilities of the 95% confidence bands for the

semi-Markov kernel in simulation setting 2.1 . . . . . . . . . . . . . . 27

2.5 Empirical coverage probabilities of the 95% confidence bands for the

semi-Markov kernel in simulation setting 2.2 . . . . . . . . . . . . . . 28

2.6 Empirical coverage probabilities of the 95% confidence bands for the

semi-Markov kernel in simulation setting 2.3 . . . . . . . . . . . . . . 29

2.7 Sample mean, bias, and standard deviation of the estimated transition

probabilities of the embedded Markov chain in simulation setting 2.1 32

2.8 Sample mean, bias, and standard deviation of the estimated transition

probabilities of the embedded Markov chain in simulation setting 2.2 33

2.9 Sample mean, bias, and standard deviation of the estimated transition

probabilities of the embedded Markov chain in simulation setting 2.3 34

2.10 Empirical coverage probabilities and sample mean lengths of the 95%

confidence intervals for the transition probabilities of the embedded

Markov chain in simulation setting 2.1 . . . . . . . . . . . . . . . . . 35

2.11 Empirical coverage probabilities and sample mean lengths of the 95%

confidence intervals for the transition probabilities of the embedded

Markov chain in simulation setting 2.2 . . . . . . . . . . . . . . . . . 36

2.12 Empirical coverage probabilities and sample mean lengths of the 95%

confidence intervals for the transition probabilities of the embedded

Markov chain in simulation setting 2.3 . . . . . . . . . . . . . . . . . 37

x



2.13 Empirical coverage probabilities of the 90% and 95% confidence bands

for the attainable sojourn time distributions in simulation setting 2.1 38

2.14 Empirical coverage probabilities of the 90% and 95% confidence bands

for the attainable sojourn time distributions in simulation setting 2.2 39

2.15 Empirical coverage probabilities of the 90% and 95% confidence bands

for the attainable sojourn time distributions in simulation setting 2.3 40

3.1 Estimated regression parameters in simulation setting 3.1 . . . . . . . 62

3.2 Estimated regression parameters in simulation setting 3.2 . . . . . . . 63

4.1 Some commonly used kernel functions . . . . . . . . . . . . . . . . . . 66

6.1 Frequency of the observed transitions, and median and mean of the

sojourn times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Estimates and 95% confidence intervals of the transition probabilities

for the human sleep data (1: Awake, 2: Non-REM, 3: REM) . . . . . 113

6.3 Point estimate, standard error and confidence interval of the regression

parameters for the human sleep data . . . . . . . . . . . . . . . . . . 114

6.4 Frequency of the number of hospital admissions . . . . . . . . . . . . 130

6.5 Frequency of the observed transitions, and median and mean of the

sojourn times (1: out of hospital, 2: in hospital, 3: dead) . . . . . . . 130

6.6 Estimates and 95% confidence intervals of the transition probabilities

for the hospitalization data (1: out of hospital, 2: in hospital, 3: dead) 131

6.7 Point estimate, standard error and confidence interval of the regres-

sion parameters for the hospitalization data (1: out of hospital, 2: in

hospital, 3: dead) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

xi



List of Figures

1.1 A two-state model for survival process . . . . . . . . . . . . . . . . . 2

1.2 A three-state model for the hospitalization process . . . . . . . . . . . 3

1.3 A three-state model for the human sleep process . . . . . . . . . . . . 3

4.1 Truth and sample means of estimated transition rate functions from

state 1 to state 2 in simulation setting 4.1 . . . . . . . . . . . . . . . 80

4.2 Truth and sample means of estimated transition rate functions from

state 1 to state 3 in simulation setting 4.1 . . . . . . . . . . . . . . . 81

4.3 Truth and sample means of estimated transition rate functions from

state 2 to state 1 in simulation setting 4.1 . . . . . . . . . . . . . . . 82

4.4 Truth and sample means of estimated transition rate functions from

state 2 to state 3 in simulation setting 4.1 . . . . . . . . . . . . . . . 83

4.5 Truth and sample mean of estimated transition rate functions for fixed

t in simulation setting 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 84

4.6 Truth and sample mean of estimated transition rate functions for fixed

τ in simulation setting 4.1 . . . . . . . . . . . . . . . . . . . . . . . . 85

4.7 Truth and sample mean of estimated semi-Markov kernel for fixed t in

simulation setting 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.8 Truth and sample mean of estimated semi-Markov kernel for fixed τ in

simulation setting 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.9 Truth and sample means of estimated transition rate functions from

state 1 to state 2 in simulation setting 4.2 . . . . . . . . . . . . . . . 88

4.10 Truth and sample means of estimated transition rate functions from

state 1 to state 3 in simulation setting 4.2 . . . . . . . . . . . . . . . 89

4.11 Truth and sample means of estimated transition rate functions from

state 2 to state 1 in simulation setting 4.2 . . . . . . . . . . . . . . . 90

xii



4.12 Truth and sample means of estimated transition rate functions from

state 2 to state 3 in simulation setting 4.2 . . . . . . . . . . . . . . . 91

4.13 Truth and sample mean of estimated transition rate functions for fixed

t in simulation setting 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 92

4.14 Truth and sample mean of estimated transition rate functions for fixed

τ in simulation setting 4.2 . . . . . . . . . . . . . . . . . . . . . . . . 93

4.15 Truth and sample mean of estimated semi-Markov kernel for fixed t in

simulation setting 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.16 Truth and sample mean of estimated semi-Markov kernel for fixed τ in

simulation setting 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.1 Truth and sample mean of estimated semi-Markov kernels in simulation

setting 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.2 Sample standard deviation of estimated semi-Markov kernels in simu-

lation setting 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Truth and sample mean of estimated semi-Markov kernels in simulation

setting 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.4 Sample standard deviation of estimated semi-Markov kernels in simu-

lation setting 5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.1 Estimated transition probabilities for human sleep process . . . . . . 113

6.2 Realizations of two individual sleep processes and corresponding noc-

turnal cortisol secretion . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Estimated semi-Markov kernel for human sleep data . . . . . . . . . . 118

6.4 Estimated distribution of sojourn times for human sleep data . . . . . 119

6.5 Estimated transition rate functions from Awake to Non-REM . . . . 120

6.6 Estimated transition rate functions from Awake to REM . . . . . . . 121

6.7 Estimated transition rate functions from Non-REM to Awake . . . . 122

6.8 Estimated transition rate functions from Non-REM to REM . . . . . 123

6.9 Estimated transition rate functions from REM to Awake . . . . . . . 124

6.10 Estimated transition rate functions from REM to Non-REM . . . . . 125

6.11 Estimated semi-Markov kernel for fixed t . . . . . . . . . . . . . . . . 126

6.12 Estimated semi-Markov kernel for fixed τ . . . . . . . . . . . . . . . . 127

xiii



6.13 The positive parts of the difference between the estimated cumulative

transition rate functions associated with the nonparametric model and

the nonparametric multiplicative model . . . . . . . . . . . . . . . . . 128

6.14 The negative parts of the difference between the estimated cumulative

transition rate functions associated with the nonparametric model and

the nonparametric multiplicative model . . . . . . . . . . . . . . . . . 129

6.15 Estimated transition probabilities for the hospitalization process . . . 131

6.16 Estimated sojourn time distributions for hospitalization data based on

normalized estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.17 Estimated semi-Markov kernel for hospitalization data . . . . . . . . 136

6.18 Estimated distribution of sojourn times for hospitalization data . . . 137

6.19 Estimated transition rate functions from “out of hospital” to “in hospital”138

6.20 Estimated transition rate functions from “out of hospital” to “death” 139

6.21 Estimated transition rate functions from “in hospital” to “out of hospital”140

6.22 Estimated transition rate functions from “in hospital” to “death” . . 141

6.23 Estimated semi-Markov kernel for fixed t . . . . . . . . . . . . . . . . 142

6.24 Estimated semi-Markov kernel for fixed τ . . . . . . . . . . . . . . . . 143

6.25 Estimated semi-Markov kernel of the two-state HSM process . . . . . 144

6.26 Estimated semi-Markov kernel of the two-state NHSM process . . . . 145

xiv



Notation Index

Notation Description Page

S(·) a multi-state process 2

E state space of a multi-state process 2

X(t−) lims↑tX(s) 2

ρhj(t) transition intensity of a multi-state process 2

B(t) time since the last transition time before t 4, 8

Jm the mth state visited by a multi-state process 5

Tm the mth transition time of a multi-state process 5

Xm the mth sojourn time of a multi-state process 5

Qhj(τ), Qhj(τ ; t) semi-Markov kernel of a semi-Markov process 5

Fhj(τ), Fhj(τ ; t) distribution function of the sojourn time in state h that

starts at study time t and finishes at state j

6

Hh(τ), Hh(τ ; t) distribution function of the sojourn time in state h that

starts at study time t

7

Sh(τ), Sh(τ ; t) survival function of the sojourn time in state h that starts

at study time t

7

Phj, Phj(t) transition probability of the embedded Markov chain of

a semi-Markov process

6

αhj(τ), αhj(τ ; t) cause specific hazard function of a semi-Markov process 6
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Chapter 1

Introduction

1.1 Introduction

Event history data arise in studies where a collection of individuals are followed over

time, and information on the types of certain events and the times of occurrence is

collected. Classical survival analysis focuses on the time to the occurrence of a single

event, and can be too simplistic when multiple events are of interest. Multi-state

processes provide a convenient framework for event history data analysis (Andersen

et al., 1993; Commenges, 1999; Andersen and Keiding, 2002).

Multi-state models are often specified in terms of transition intensities, which may

involve two time scales: the (individual) study time since the origin of the process

and the duration time in the current state. Classical Markov models, in which the

transition intensities depend on the history only through the current state and the

study time since the origin of the process, have been widely used due to the simplicity

of the model interpretation and the ease of computation (Andersen et al., 1993).

However, because of their memoryless property, the classical Markov models can not

deal with duration dependence. They have been found inadequate in many practical

applications (Andersen et al., 2000; Kang and Lagakos, 2007).

The literature of inferences with duration-dependent multi-state models for event

history analysis is still lacking. This thesis attempts to fill in the gap to some extent.

Perhaps the simplest duration-dependent multi-state model is the homogeneous semi-

Markov model (Lagakos et al., 1978; Gill, 1980). It assumes that the transition

intensities depend on the history through the current state and the duration time in

the current state. We develop methods with the homogeneous semi-Markov model and

1



CHAPTER 1. INTRODUCTION 2

its two generalizations. One generalization incorporates time-dependent covariates

through a Cox regression form, and the other allows the dependence of transition

intensities on both the duration and the study time scales. In addition, we propose

an approach to handling a particular type of informative censoring.

1.2 General Formulation

1.2.1 Multi-state Processes

A multi-state process S(·) = {S(t) : t ≥ 0} is a stochastic process with right contin-

uous sample paths which takes values in a finite state space, say, E = {1, 2, . . . , r}
with r <∞. With respect to the history of the process, {Ft : t ≥ 0}, where Ft is the

σ-algebra generated by {S(u) : 0 ≤ u < t}, the transition probabilities are defined as

Phj(s, t;Fs) = P{S(t) = j|S(s) = h,Fs}

for h, j ∈ E and s ≤ t. Denote S(t−) as lims↑t S(s). The transition intensities are

defined by

ρhj(t;Ft) = lim
∆t↓0

P{S(t+ ∆t) = j|S(t−) = h,Ft}
∆t

for h 6= j ∈ E , which we assume exist. A state h ∈ E is absorbing if ρhj(t;Ft) = 0 for

all t ≥ 0 and j ∈ E with j 6= h. No further transitions can occur from an absorbing

state.

Multi-state processes can be graphically illustrated by diagrams with boxes repre-

senting the states and arrows among the boxes representing the possible transitions.

For example, the survival process can be viewed as a two-state process with one

transient state “alive” and one absorbing state “dead”, as shown in Figure 1.1.

Alive
(State 1)

Dead
(State 2)

-

Figure 1.1: A two-state model for survival process

Two practical examples that we consider throughout this thesis are as follows.

Example 1.1 (Hospitalization process). A medical study collected the hospitaliza-

tion information during 1986-2000 for 1374 over five-year cancer survivors who were



CHAPTER 1. INTRODUCTION 3

diagnosed in British Columbia between the ages of 0 to 19 years between 1981 and

1995. Details about this study can be found in Ying (2006) and Hu et al. (2008). The

study’s primary goal was to assess long-term resource needs of the childhood cancer

survivors and to develop strategies to improve access and effectiveness of medical care.

As shown in Figure 1.2, we formulate the hospitalization process into a multi-state

process with 3 states: out of hospital, in hospital, and dead.

Out of Hospital
(State 1)

In Hospital
(State 2)

Dead
(State 3)

�
-

�
��	

@
@@R

Figure 1.2: A three-state model for the hospitalization process

Example 1.2 (Human sleep process). Kneib and Hennerfeind (2008) analyze the

human sleep data collected at the Max-Planck Institute for Psychiatry in Munich,

Germany. The study’s major goal was to obtain a valid description of the dynamics

underlying the sleep process of the 70 participants. The sleep process of each partici-

pant was monitored for one whole night, and was recorded by electroencephalographic

(EEG) measurements which were afterwards classified into three states: Awake, REM

(rapid eye movement), and Non-REM. The three-state model we consider for the data

is shown in Figure 1.3. In addition to EEG measures taken every 30 seconds, the

nocturnal cortisol secretion was measured approximately every 10 minutes for each

participant. It was also of interest to investigate whether the level of cortisol affects

the transition intensities.

Awake
(State 1)

Non-REM
(State 2)

REM
(State 3)

�
-

�
���

�
��	

@
@@I

@
@@R

Figure 1.3: A three-state model for the human sleep process
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Except for event history with a simple structure such as the survival process, the

transition intensities may depend on the history of the process in complex ways. To

be feasible, it is often assumed that only part of the history information is relevant to

the future evolution of the process. This partial history information often includes,

for example, the current state, the study time since the origin of the process, the

duration time in the current state, and the total number of transitions occurred.

The classical Markov models are widely used because of the simplicity of model

interpretation and the ease of computation. The nonhomogeneous Markov model

assumes that, given the current state and the study time, the coming transition is

independent of the rest of the history. That is, ρhj(t;Ft) ≡ ρhj(t) for all h, j ∈ E and

t ≥ 0. The homogeneous Markov model further assumes ρhj(t) ≡ ρhj for all h, j ∈ E
and t ≥ 0. For a nonhomogeneous Markov process, its transition probabilities and

transition intensities are linked by the Kolmogorov backward and forward differential

equations. By solving these equations, the transition probabilities can be expressed as

a function of transition intensities in the form of product integral as a generalization

of the Kaplan-Meier estimator for survival function (cf. Andersen et al., 1993).

In many applications, however, the Markov assumption is not plausible, for the

transition intensities may depend on the duration time in the current state. In the

hospitalization study, for instance, the intensity of the transition from “in hospital”

to “out of hospital” likely depends on the duration of the current hospitalization.

The homogeneous semi-Markov (HSM) model assumes that the transition intensities

depend on the history through the current state and the duration time in the current

state. That is, ρhj(t;Ft) ≡ ρhj(B(t)) for all h, j ∈ E and t ≥ 0, where B(t) is the gap

time between time t and time of the last transition before t, which is known as the

left continuous version of the backward recurrence time. Note that we have slightly

abused the notation: the functions ρhj in the above equation are different on the left

and the right hand sides.

Nonhomogeneous Markov models and HSM models are comparable in terms of

flexibility. To choose between the two models depends on which time scale (study

or duration) is more important in a given application. However, both time scales

can be important in some applications. For example, in the hospitalization study, in

addition to the duration time in the current state, the intensity of the transition from

“in hospital” to “out of hospital” can also depend on the study time, i.e., the total

time since a subject entered the study. The nonhomogeneous semi-Markov (NHSM)
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model allows for the dependence of the transition intensities on both of the study

and duration time scales. It assumes that ρhj(t;Ft) ≡ ρhj(t, B(t)) for all h, j ∈ E and

t ≥ 0, again with a slight abuse of notation. Note that the NHSM model includes

both the nonhomogeneous Markov model and the HSM model as special cases.

1.2.2 Sojourn Time Formulation

The duration time plays an important role in both homogeneous and nonhomogeneous

semi-Markov processes. To better address the duration dependence, people charac-

terize a multi-state process S(·) as a two-dimensional process (J,T) = {(Jm, Tm) :

m = 0, 1, . . .}, where the sequence {J0, J1, . . .} gives the consecutive states visited

by the process, and the sequence {T0, T1, . . .} is the set of corresponding transition

times. Let Xm = Tm − Tm−1 be the sojourn time of the mth transition.

Definition 1.2.1. The two-dimensional process (J,T) is called a nonhomogeneous

Markov renewal (NHMR) process if it satisfies

P{Jm+1 = j,Xm+1 ≤ τ
∣∣(Jm, Tm) = (h, t), . . . , (J0, T0)}

= P{Jm+1 = j,Xm+1 ≤ τ
∣∣(Jm, Tm) = (h, t)}

def
= Qhj(τ ; t)

(1.2.1)

for h, j ∈ E , t, τ ≥ 0, and m ∈ N, the set of all nonnegative integers. Here Q =

{Qhj(τ ; t) : h, j ∈ E , t, τ ≥ 0} is called the nonhomogeneous semi-Markov (NHSM)

kernel of the process. If the NHSM kernel does not depend on t, i.e., Qhj(τ ; t) ≡
Qhj(τ), (J,T) is a homogeneous Markov renewal (HMR) process. Correspondingly,

Q = {Qhj(τ) : h, j ∈ E , τ ≥ 0} is the homogeneous semi-Markov (HSM) kernel.

Remark 1.2.1. The NHSM kernel Q is a set of quantities of interest in both of the

study and duration time scales. It, together with the initial law of the process,

completely determines the stochastic behavior of a NHMR process.

Remark 1.2.2. In this thesis, unless stated otherwise, we assume that the conditional

probability in (1.2.1) is free of m, the total number of past transitions. If this as-

sumption is questionable, we may stratify the data based on m, and conduct analyses

with the proposed methods for each stratum separately.

Remark 1.2.3. The usual survival process shown in Figure 1.1 corresponds to (J,T) =

{(Jm, Tm) : m = 0, 1} with E = {1(alive), 2(dead)}, state 2 as an absorbing state,

and T1 = T , the survival time. Thus it is a HMR process, and the only unknown in
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the semi-Markov kernel is Q12(τ ; 0), which is the cumulative distribution function of

the survival time.

Proposition 1.2.1. S(·) is a nonhomogeneous (homogeneous) semi-Markov process

if and only if its corresponding sojourn time formulation (J,T) is a nonhomogeneous

(homogeneous) Markov renewal process.

The consecutive states of a HMR process, J = {J0, J1, . . .}, form a homogeneous

Markov chain with transition probability matrix given by P = (Phj)r×r, where

Phj = P{Jm+1 = j|Jm = h} = lim
τ→∞

Qhj(τ), (1.2.2)

for h, j ∈ E . Note that Phh is 0 if state h is transient, and 1 if state h is absorbing.

J is called the embedded Markov chain of the HMR process. Given J, the sojourn

times X = {X1, X2, . . .} are independent with distributions depending only on the

adjoining states. The distribution function of the sojourn time in state h that finishes

at state j (6= h) is given by

Fhj(τ) = P{Xm+1 ≤ τ
∣∣Jm = h, Jm+1 = j}. (1.2.3)

We can show that Qhj(τ) = PhjFhj(τ).

More generally, given the sequence of the transition times T = {T0, T1, . . .}, the

consecutive states of a NHMR process, J = {J0, J1, . . .}, form a nonhomogeneous

Markov chain with the transition probability matrix Pm ≡ P(Tm) =
(
Phj(Tm)

)
r×r

at

the (m+ 1)th transition, where

Phj(t) = P{Jm+1 = j|Jm = h, Tm = t} = lim
τ→∞

Qhj(τ ; t) (1.2.4)

for h, j ∈ E . The distribution function of the sojourn time in state h that starts at

study time t and finishes at state j (6= h) is given by

Fhj(τ ; t) = P{Xm+1 ≤ τ
∣∣Jm = h, Jm+1 = j, Tm = t}. (1.2.5)

Consequently, Qhj(τ ; t) = Phj(t)Fhj(τ ; t).

The homogeneous cause-specific hazard function is defined as

αhj(τ) = lim
∆τ↓0

1

∆τ
P{Jm+1 = j,Xm+1 ∈ [τ, τ + ∆τ)

∣∣Jm = h,Xm+1 ≥ τ} (1.2.6)

for a HMR process with h 6= j ∈ E . Correspondingly, the nonhomogeneous cause-

specific hazard function is defined as

αhj(τ ; t) = lim
∆τ↓0

1

∆τ
P{Jm+1 = j,Xm+1 ∈ [τ, τ + ∆τ)

∣∣Jm = h, Tm = t,Xm+1 ≥ τ}
(1.2.7)
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for a NHMR process with h 6= j ∈ E . The cause-specific hazard function of a

Markov renewal process and the transition intensity function of the corresponding

semi-Markov process are closely related as follows. In the rest of this thesis, we

will use the terms cause-specific hazard function and transition intensity function

interchangeably.

Proposition 1.2.2. With a NHMR process, we have αhj(τ ; t) = ρhj(t+τ, τ); we have

αhj(τ) = ρhj(τ) in the homogeneous case.

There is a one-to-one correspondence between the semi-Markov kernel and the set

of the cause-specific hazard functions. Denote

P{Xm+1 ≤ τ |Jm = h, Tm = t} =
∑
j 6=h

Qhj(τ ; t)

by Hh(τ ; t). Note that, as a function of τ , Hh(τ ; t) is the distribution function of the

sojourn time in state h that starts at study time t. Let Sh(τ ; t) = 1−Hh(τ ; t) be the

corresponding survival function. Then,

Sh(τ ; t) = exp{−
∫ τ

0

∑
j 6=h

αhj(u; t)du}, (1.2.8)

and

Qhj(τ ; t) =

∫ τ

0

αhj(u; t)Sh(u; t)du (1.2.9)

for all h 6= j ∈ E . Thus we can estimate the semi-Markov kernel through estimating

the cause-specific hazard functions of the Markov renewal process, or the transition

intensity functions of the semi-Markov process.

On the other hand, provided that Qhj(τ ; t) is absolutely continuous with respect

to Lebesgue measure as a function of τ , with the partial derivative denoted by

qhj(τ ; t) =
∂Qhj(τ ; t)

∂τ
,

for all h 6= j ∈ E ,

αhj(τ ; t) =

{
qhj(τ ; t)/Sh(τ ; t) if Sh(τ ; t) > 0,

0 otherwise.
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1.2.3 Counting Process Formulation

A counting process representation for multi-state processes has been shown very useful

(Andersen et al., 1993). Let

Ñhj
∗ (t) = #{m ≥ 1 : Tm ≤ t, Jm−1 = h, Jm = j}

be the total number of h → j transitions in the time interval (0, t]. With respect to

to the history of the process, Ft, the multivariate counting process Ñ∗ = {Ñhj
∗ (t) :

h 6= j ∈ E , t ≥ 0} has intensity function {λhj
∗ (t) : h 6= j ∈ E , t ≥ 0} with

λhj
∗ (t) = Ỹ h

∗ (t)ρhj(t;Ft),

where Ỹ h
∗ (t) = I{S(t−) = h} is the ‘at risk’ indicator for whether the process has

the potential of experiencing a transition from state h at time t, and ρhj(t;Ft) is the

transition intensity function of the multi-state process. Let Ñ∗(t) =
∑

h,j Ñ
hj
∗ (t) be

the total number of transitions in (0, t]. The backward recurrence time B(t) equals

t− TÑ∗(t−).

If the multi-state process S(·) is a NHSM process, the intensity function of Ñhj
∗ (t)

is

λhj
∗ (t) = Ỹ h

∗ (t)ρhj(t, B(t)) = Ỹ h
∗ (t)αhj(B(t);TÑ∗(t−)).

It is further simplified to

λhj
∗ (t) = Ỹ h

∗ (t)ρhj(B(t)) = Ỹ h
∗ (t)αhj(B(t))

when S(·) is a HSM process.

1.2.4 Processes Resulting from Right-Censoring

Event history data are rarely observed completely. In this thesis, we focus on right

censoring, the most common form of incomplete observation. The counting process

formulation is convenient to handle this type of incomplete observation. Let O(t) =

I(C ≥ t) be the indicator that a multi-state process is under observation at time t,

where C is the censoring time. Let the counting process

Ñhj(t) =

∫ t

0

O(s)dÑhj
∗ (s) = Ñhj

∗ (t ∧ C) (1.2.10)

be the number of observed h→ j transitions in the time interval (0, t], where t∧C is

the minimum of t and C. Unless otherwise stated, we assume that the censoring time
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C is independent of the multi-state process. Then, conditional on C, the intensity

function of the observed multivariate counting process Ñ = {Ñhj(t) : h 6= j ∈ E , t ≥
0} is {λhj(t) : h 6= j ∈ E , t ≥ 0} with

λhj(t) = Ỹ h(t)ρhj(t;Ft),

where

Ỹ h(t) = I{S(t−) = h,C ≥ t} (1.2.11)

is the ‘at risk’ indicator, indicating whether the process at time t is under observation

and has the potential of experiencing a transition from state h.

In the following, we introduce another set of processes, which count the number

of observed sojourn times. For each t > 0, define

Nhj(u; t) = #{m ≥ 1 : Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ t} (1.2.12)

as the number of sojourn times in state h that are less equal than u and followed by

a transition to state j during the study time window (0, t], and

Y h(u; t) = #{m ≥ 1 : Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ t} (1.2.13)

as the number of sojourn times in state h that are large equal than u during the

study time window (0, t]. Denote the corresponding resulting processes due to right-

censoring by Nhj(u) and Y h(u), respectively. Then

Nhj(u) = Nhj(u;C), (1.2.14)

and

Y h(u) = Y h(u;C). (1.2.15)

The multivariate counting processes Ñ = {Ñhj(t) : h 6= j ∈ E , t ≥ 0} on the study

time scale and N = {Nhj(u) : h 6= j ∈ E , u ≥ 0} on the duration time scale are linked

as follows.

Lemma 1.2.3. For any bounded measurable function f on [0,∞),∫ ∞

0

f(u)dNhj(u) =

∫ ∞

0

f(B(t))dÑhj(t). (1.2.16)

Proof. Extending the arguments in Gill (1980), we can show that both sides of (1.2.16)

are equal to ∑
{m:Tm+1≤C}

f(Xm+1)I{Jm = h, Jm+1 = j}.



CHAPTER 1. INTRODUCTION 10

1.2.5 Likelihood Function

If the right-censoring is noninformative, the contribution to the log-likelihood of a

censored multi-state process is given by∑
h,j

[∫ ∞

0

log λhj(t)dÑhj(t)−
∫ ∞

0

λhj(t)dt

]
, (1.2.17)

up to some constant not related to {λhj(·) : h, j ∈ E} (Andersen et al., 1993; Cook

and Lawless, 2007).

This thesis focuses on duration-dependent multi-state models, in which the inten-

sity functions depend on the duration in the current state. To this end, we often use

Lemma 1.2.3 to transform the log-likelihood given by (1.2.17) from the study time

scale to the duration time scale.

1.3 Outline of Thesis

The rest of this thesis is organized as follows. Chapter 2 considers nonparametric

estimation with incompletely observed HSM processes. We propose two simulation

based algorithms to construct confidence bands for the HSM kernel. We show that

the existing estimators for the transition probabilities of the embedded Markov chain

and the sojourn time distributions can be biased when a right-censoring is involved.

A robust estimation procedure is proposed to address the concern.

Time-dependent covariates, such as the study time variable, can be incorporated

in the HSM model through the Cox regression form. The dependence of the base-

line transition intensities on the duration time scale makes the model fall outside

the framework of Aalen’s multiplicative intensity models and invalidates the usual

martingale methods. Dabrowska et al. (1994) consider the Cox regression in the

semi-Markov model with covariates dependent on the duration time in the present

state only, which excludes the study time variable. As a generalization, Chapter 3

allows general time-dependent covariates and proposes estimating equations of the re-

gression parameters. We derive the asymptotic properties of the estimators by using

empirical process theory, and show that the estimators are asymptotically efficient

among regular estimators.

In some situations, the transition intensities may depend on both the study and

the duration times. This naturally leads to a NHSM model. In Chapter 4, we propose
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several estimation procedures for the NHSM model. We start from a piecewise con-

stant approach, where the transition intensities are assumed to be piecewise constant

on the study time scale, and can vary arbitrarily on the duration time scale. We

then propose a nonparametric estimation procedure based on the kernel method. We

show that the nonparametric estimator is a maximum local likelihood estimator. The

asymptotic properties of the estimator are then established. In addition, we consider

a structured nonparametric model, assuming the transition intensities depend on the

study and duration times in a multiplicative form. Finally, the semiparametric ap-

proach in Chapter 3 is adapted by incorporating the study time as a time-dependent

covariate.

Informative censoring problem is challenging in event history data analysis. Many

existing methods assume that the censoring is independent conditional on covariates

or some latent variables. In Chapter 5, we consider a particular type of informative

right censoring scheme for NHSM processes. Motivated by the competing risks for-

mulation of HSM processes (Lagakos et al., 1978), we model the informative censoring

mechanism as another competing risk. Under this model assumption, the censored

process becomes a new NHSM process with the censoring included as a new absorb-

ing state of the original process. Thus the large literature of competing risks can be

adapted to the setting. In particular, we adapt a copula-based modeling proposed by

Zheng and Klein (1995). An advantage of the copula approach is that the marginal

distributions need not to be specified, and can be estimated nonparametrically.

Chapter 6 presents analyses of the two real data sets described in Examples 1.1

and 1.2 with the proposed methods. Finally, we provide a summary of this thesis

project and outline some extensions for future research in Chapter 7.



Chapter 2

Homogeneous Semi-Markov

Process

2.1 Introduction

In this chapter, we consider estimation with homogeneous semi-Markov (HSM) pro-

cesses, of which the observation is subject to independent right censoring. Particu-

larly, we are interested in the semi-Markov kernel, the transition probability matrix

of the embedded Markov chain formed by the consecutive states of the process, and

the sojourn time distributions.

Lagakos et al. (1978) present the nonparametric maximum likelihood estimation

for the semi-Markov kernel. Their approach allows an arbitrary number of states as

well as right censored observations. Matthews (1984) and Dinse and Larson (1986)

express the semi-Markov kernel as cause-specific hazard functions and show advan-

tages of the reformulation: easier calculation and clearer interpretation. Gill (1980)

applies the theory of stochastic integration and counting processes to provide a rigor-

ous derivation of the consistency and weak convergence of the estimator of the semi-

Markov kernel proposed by Lagakos et al. (1978). However, as pointed by Gill (1980),

the asymptotic Gaussian process does not have an independent increment structure,

thus it can not be transformed into the standard Brownian bridge or Brownian mo-

tion to construct confidence bands for the semi-Markov kernel. In Section 2.2, we

propose two simulation based algorithms to construct confidence bands.

To estimate the transition probabilities, Lagakos et al. (1978) propose a plug-in

estimator and its normalized version based on the nonparametric estimator of the

12
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semi-Markov kernel given in (2.3.1) and (2.3.3), which are not necessarily consistent.

Phelan (1990b) estimates the transition probabilities of a class of Markov renewal

processes whose semi-Markov kernel satisfies Fhj(·) ≡ Fhk(·) for all h, j, and k.

However, all the above estimators can be biased, as will be shown in Sections 2.3 and

2.4. As an alternative, we in Section 2.3 propose a robust approach to estimating the

transition probabilities of the embedded Markov chain and sojourn time distributions

with general right censored semi-Markov processes.

We examine finite sample performance of the proposed methods via simulation in

Section 2.4. Section 2.5 concludes this chapter with a summary and motivates the

next chapters.

2.2 Confidence Bands for Semi-Markov Kernel

Recall the two processes in the time scale of duration defined in (1.2.14) and (1.2.15)

of Section 1.2.4:

Nhj(u) = #{m ≥ 1 : Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ C}, (2.2.1)

and

Y h(u) = #{m ≥ 1 : Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ C}. (2.2.2)

Let {(Nhj
i (·), Y h

i (·)) : i = 1, . . . , n} be n independent realizations of (Nhj(·), Y h(·)). In

what follows, we use “·” in subscripts or superscripts to represent summation over the

omitted index. For example, Nhj
· (u) ≡

∑
iN

hj
i (u). Denote ∆W (t) as W (t)−W (t−).

The nonparametric maximum likelihood estimator of the semi-Markov kernel Qhj

proposed by Lagakos et al. (1978) can be written as

Q̂hj(τ) =

∫ τ

0

(1− Ĥh(u−))
dNhj

· (u)

Y h
· (u)

, (2.2.3)

where

Ĥh(u) = 1−
∏

v≤u

(
1− ∆Nh·

· (v)

Y h
· (v)

)
, u > 0, (2.2.4)

is the nonparametric maximum likelihood estimator of Hh(u).

According to Gill (1980), on {τ : Y h
· (τ) > 0 and 1 − Hh(τ−) > 0}, it can be
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shown by integration by parts that

n1/2
[
Q̂hj(τ)−Qhj(τ)

]
=

∫ τ

0

(1− Ĥh(u−))
n

Y h
· (u)

dZhj
· (u)

n1/2

−Qhj(τ)

∫ τ−

0

1− Ĥh(u−)

1−Hh(u)

n

Y h
· (u)

dZh·
· (u)

n1/2
(2.2.5)

+

∫ τ−

0

Qhj(u)
1− Ĥh(u−)

1−Hh(u)

n

Y h
· (u)

dZh·
· (u)

n1/2
,

where

Zhj
i (u) = Nhj

i (u)−
∫ u

0

Y h
i (v)

dQhj(v)

1−Hh(v−)
. (2.2.6)

The following lemma is from Theorems 1 and 3 of Gill (1980):

Lemma 2.2.1 (Theorems 1 and 3, Gill 1980). Assume that the semi-Markov kernel

Qhj(·) is continuous for all h, j ∈ E. Let

τh = sup
{
τ : P

(
Y h(τ) > 0

)
> 0
}
. (2.2.7)

Then as n→∞,

sup
τ∈[0,τh]

∣∣∣Ĥh(τ)−Hh(τ)
∣∣∣ P−→ 0,

and

sup
τ∈[0,τh]

∣∣∣Q̂hj(τ)−Qhj(τ)
∣∣∣ P−→ 0.

Furthermore, if νh satisfies

P
(
Y h(νh) > 0

)
> 0,

then n1/2
[
Q̂hj(·)−Qhj(·)

]
converges weakly to a Gaussian process on [0, νh]. The

weak convergence is in the space D[0, νh] equipped with the Skorohod metric.

Remark 2.2.1. τh defined in (2.2.7) can be interpreted as the “largest observable”

sojourn time at state h. When both the semi-Markov kernel and the censoring time

distribution are continuous, P
(
Y h(τ) > 0

)
is a continuous function of τ . In this case,

P
(
Y h(τh) > 0

)
= 0 by the definition of τh. Thus Lemma 2.2.1 does not yield the

asymptotic distribution of n1/2
[
Q̂hj(τh)−Qhj(τh)

]
, although Q̂hj(τh) is consistent

for Qhj(τh).

As pointed out by Gill (1980), the weak limit of n1/2
[
Q̂hj(·)−Qhj(·)

]
does not

have an independent increment structure, and thus it can not be transformed into

the standard Brownian bridge or Brownian motion, which is often used to construct
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confidence bands for an unknown function. We propose simulation based approaches

to approximate the critical values to construct confidence bands in the following.

Various types of confidence bands for Qhj(·) can be constructed using the class of

transformed processes

Ghj(τ) = n1/2g
(n)
hj (τ)[φ(Q̂hj(τ))− φ(Qhj(τ))],

where φ is a known function with non-zero continuous derivative φ′ and g
(n)
hj (τ) is a

weight function. The weight g
(n)
hj (·) determines the shape of the bands, and has a

deterministic limit ghj(τ) in probability. By the functional delta-method (Andersen

et al., 1993), the process Ghj(τ) is asymptotically equivalent to

g
(n)
hj (τ)φ′(Q̂hj(τ))n

1/2[Q̂hj(τ)−Qhj(τ)].

We suggest to choose φ(x) = log(− log(1 − x)), which is analogous to the log-log

transformation of the Kaplan-Meier estimator that has been widely used in the liter-

ature to construct a confidence band for a survival function. We consider two weight

functions, one leading to the equal precision (EP) bands (Nair, 1984) and the other

leading to the Hall-Wellner (HW) bands (Hall and Wellner, 1980).

The following presents two simulation based algorithms to construct confidence

bands for Qhj(·), the semi-Markov kernel. The first algorithm uses the bootstrap

technique and the second algorithm adapts the resampling technique developed in

Lin et al. (1993).

2.2.1 Bootstrap Approach

We first consider an application of the bootstrap to obtain an approximate (1 − α)

confidence band for Qhj(·) on [s1, s2] ⊆ [0, νh]. The algorithm we propose is as follows.

Step 1. Randomly select a sample M with size n with replacement from {1, . . . , n},
and then estimate Qhj(·) based on the data {(Nhj

i (·), Y h
i (·)) : i ∈M}. Replicate

this procedure B times to obtain estimates {Q̂(b)
hj (·) : b = 1, . . . , B}.

Step 2. For b = 1, . . . , B, let G
(b)
hj (τ) = n1/2g

(n)
hj (τ)φ′(Q̂hj(τ))[Q̂

(b)
hj (τ) − Q̂hj(τ)], and

q
(b)
hj (s1, s2) = supτ∈[s1,s2] |G

(b)
hj (τ)|. Finally, let qhj(s1, s2) be the (1− α) quantile

of
{
q
(b)
hj (s1, s2) : b = 1, . . . , B

}
.

Step 3. An approximate (1− α) confidence band for φ(Qhj(τ)) on [s1, s2] is

[φ(Q̂hj(τ))− n−1/2qhj(s1, s2)/g
(n)
hj (τ), φ(Q̂hj(τ)) + n−1/2qhj(s1, s2)/g

(n)
hj (τ)]
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for τ ∈ [s1, s2], which can be converted to a confidence band for Qhj(τ) on

[s1, s2].

2.2.2 Lin-Wei-Ying’s Resampling Approach

We now adapt the resampling technique developed by Lin et al. (1993). By the uni-

form consistency of Ĥh(·) and Y h
· (·)/n, we can show that n1/2

[
Q̂hj(τ)−Qhj(τ)

]
given

in (2.2.5) has the same asymptotic distribution as the sum of a set of independent

and identically distributed terms. Replace Zhj
i (u) in (2.2.5) with Ẑhj

i (u)Ui, where

{Ui : i = 1, . . . , n} are independent standard normal random variables which are also

independent of the data, and

Ẑhj
i (u) = Nhj

i (u)−
∫ u

0

Y h
i (v)

dQ̂hj(v)

1− Ĥh(v−)
= Nhj

i (u)−
∫ u

0

Y h
i (v)

dNhj
· (v)

Y h
· (v)

.

Also replaceQhj andHh in (2.2.5) with Q̂hj and Ĥh, respectively. Denote the resulting

quantity by W
(n)
hj (τ). The following proposition can be shown by a slight extension

of the arguments in Lin et al. (1993).

Proposition 2.2.2. As n → ∞ and conditional on the observed data, {W (n)
hj (τ) :

h, j ∈ E , τ ∈ [0, νh]} has the same limiting distribution as{
n1/2

[
Q̂hj(τ)−Qhj(τ)

]
: h, j ∈ E , τ ∈ [0, νh]

}
.

Critical values in the construction of confidence bands for Qhj(τ) can then be

approximated based on simulated realizations of W
(n)
hj (τ) using different sets of the

standard normal random variables. It gives an algorithm based on the realizations of

W
(n)
hj (τ) to construct confidence bands for Qhj(τ), similar to the bootstrap approach

in Section 2.2.1.

2.3 Robust Inference Procedure for Transition

Probabilities and Sojourn Time Distributions

We first review the existing estimation procedures of the transition probabilities for

the embedded Markov chain and the conditional distributions of sojourn times from

right censored semi-Markov processes, and point out their limitations. Then we

introduce a robust approach.
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2.3.1 Existing Estimation Procedures and Their Limitations

With {(Nhj
i (·), Y h

i (·)) : i = 1, . . . , n}, n independent realizations of (Nhj(·), Y h(·)),
the nonparametric maximum likelihood estimator of Qhj is given in (2.2.3). Since

Phj = Qhj(∞), Lagakos et al. (1978) suggest a plug-in estimator of the transition

probability Phj,

P̂hj = Q̂hj(∞), (2.3.1)

and correspondingly estimate the sojourn time distribution with

F̂hj(τ) = Q̂hj(τ)/Q̂hj(∞). (2.3.2)

Since Q̂hj(∞) is the same as Q̂hj(·) evaluated at the largest observed sojourn time

starting from state h,
∑

j P̂hj can be less than 1 when the largest sojourn time from

state h is censored. This is not desirable. In such cases, Lagakos et al. (1978) propose

to use the normalized estimator,

P̃hj = Q̂hj(∞)
/∑

k 6=h

Q̂hk(∞), (2.3.3)

and correspondingly to estimate the sojourn time distribution with

F̃hj(τ) = Q̂hj(τ)/P̃hj. (2.3.4)

Phelan (1990b) considers estimation of the transition probabilities Phj under the

assumption that the distributions Fhj(.)’s are the same for all j, and thus

Qhj(τ) = PhjFh(τ), ∀h, j ∈ E . (2.3.5)

Suppose the independent and identically distributed copies (Ji,Ti, Ci), i = 1, . . . , n,

are observed, where (Ji,Ti) = {(Jm
i , T

m
i ) : m ≥ 0} and Ci is the right censoring time.

For each h, j ∈ E , and for subject i, let

Ňhj
i = #{m : Jm−1

i = h, Jm
i = j, Tm

i ≤ Ci}

be the number of observed transitions that are from state h to j, and

Y̌ h
i = #{m : Jm−1

i = h, Tm
i ≤ Ci}

be the number of observed transitions that are started from state h. Phelan proposes

an estimator of Phj as

P̌hj = Ňhj
· /Y̌

h
· , (2.3.6)
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which is the proportion of observed h → j transitions among observed transitions

starting from state h. Building upon the results in Gill (1980), Phelan establishes

the consistency and asymptotically normality of P̌hj under the assumption given in

(2.3.5).

However, as can be seen numerically from the simulations in the following sec-

tion, the plug-in, the normalized, and the Phelan estimators only work under certain

conditions. There are situations where they can be inconsistent. In particular, the

plug-in estimator P̂hj does not work well when the censoring time is small relative to

the sojourn times. Both the normalized estimator P̃hj and the Phelan estimator P̌hj

need the assumption that Fhj(.) = Fh(·) for all j 6= h. In fact, as we will see later,

when the censoring time is small relative to the sojourn times, all the three estimators

of Phj can be inconsistent.

2.3.2 Robust Estimation Procedure

In this section, we propose a robust approach to estimating the transition probabilities

Phj and the sojourn time distributions Fhj(·). We assume that the semi-Markov kernel

Qhj(·) is continuous for all h, j ∈ E .

2.3.2.1 Preliminaries

Let {(Nhj
i (·), Y h

i (·)) : i = 1, . . . , n} be n independent realizations of (Nhj(·), Y h(·)).
Because Y h

· (u) is a left continuous function of u, we have

sup
{
u : Y h

· (u) > 0
}

= max
{
u : Y h

· (u) > 0
}
, (2.3.7)

which we denote by V
(n)
h . Note that V

(n)
h is the largest fully or partially observed

sojourn time in state h.

Theorem 2.3.1. Let τh be as defined in (2.2.7). As n → ∞, V
(n)
h → τh almost

surely.



CHAPTER 2. HOMOGENEOUS SEMI-MARKOV PROCESS 19

Proof. For any τ ′ < τh, we have P
(
Y h(τ ′) > 0

)
> 0, by the definition of τh. Thus

P
(
Y h
· (τ ′) = 0

)
=

n∏
i=1

P
(
Y h

i (τ ′) = 0
)

=
n∏

i=1

[
1− P

(
Y h

i (τ ′) > 0
)]

=
[
1− P

(
Y h(τ ′) > 0

)]n
−→ 0, as n→∞.

So

P
(
V

(n)
h ≥ τ ′

)
= P

(
Y h
· (τ ′) > 0

)
→ 1 (2.3.8)

as n→∞.

On the other hand, for any τ ′′ > τh, we have P
(
Y h(τ ′′) = 0

)
= 1 by the definition

of τh. Thus

P
(
Y h
· (τ ′′) = 0

)
=

n∏
i=1

P
(
Y h

i (τ ′′) = 0
)

= 1.

By the definition of V
(n)
h ,

P
(
V

(n)
h ≤ τ ′′

)
≥ P

(
Y h
· (τ ′′) = 0

)
.

Thus

P
(
V

(n)
h ≤ τ ′′

)
= 1. (2.3.9)

Combining (2.3.8) and (2.3.9), V
(n)
h → τh almost surely as n→∞.

By Lemma 2.2.1, Q̂hj(τh) is consistent for Qhj(τh). Note that Q̂hj(·) does not

change after V
(n)
h , and thus Q̂hj(V

(n)
h ) = Q̂hj(∞), the plug-in estimator for Phj.

Since V
(n)
h → τh almost surely as n → ∞ by Theorem 2.3.1, the plug-in estimator

P̂hj = Q̂hj(∞) = Q̂hj(V
(n)
h ) is consistent for Qhj(τh). It is consistent for Phj only if

Qhj(τh) = Qhj(∞) = Phj. (2.3.10)

The normalized estimator,

P̃hj = Q̂hj(∞)
/∑

k 6=h

Q̂hk(∞),

is consistent for Qhj(τh)/
∑

k 6=hQhk(τh), which is equal to Phj if

Fhj(·) = Fhk(·), ∀j, k ∈ E . (2.3.11)
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Otherwise, P̃hj is not necessarily consistent for Phj. Correspondingly, the estimators

F̂hj(·) in (2.3.2) and F̃hj(·) in (2.3.4) are not necessarily consistent for the sojourn

time distribution Fhj(·) without the assumptions (2.3.10) and (2.3.11), respectively.

Denote PL
hj = Qhj(τh) and PU

hj = 1−
∑

j′ 6=j Qhj′(τh). Note that

Phj ∈ [PL
hj, P

U
hj]. (2.3.12)

The available data provide information about Phj through the two limits PL
hj and PU

hj.

The corresponding bound for Fhj(·) is then[
FL

hj(·), FU
hj(·)

]
, (2.3.13)

where FL
hj(·) = Qhj(·)/PU

hj and FU
hj(·) = Qhj(·)/PL

hj. This forms the basis of our robust

inference procedure.

2.3.2.2 Robust Inference for Transition Probabilities

We have shown that P̂L
hj = Q̂hj(∞) and P̂U

hj = 1 −
∑

j′ 6=j Q̂hj′(∞) consistently esti-

mate PL
hj and PU

hj respectively. Thus the corresponding estimated bounds for Fhj(t)

are Q̂hj(·)/P̂U
hj and Q̂hj(·)/P̂L

hj. These bounds can be used to construct confidence

intervals for Phj and confidence bands for Fhj(·).
A confidence interval for Phj with level at least 1− α can be constructed as

[P̂L
hj − c1, P̂

U
hj + c2],

where c1 and c2 are chosen such that

P
(
[PL

hj, P
U
hj] ∈ [P̂L

hj − c1, P̂
U
hj + c2]

)
= 1− α. (2.3.14)

We can choose c1 and c2 such that c1 + c2 is minimized to obtain the confidence

interval with the shortest length. The distribution of

(P̂L
hj, P̂

U
hj)

′ − (PL
hj, P

U
hj)

′ (2.3.15)

is needed to determine c1 and c2. Since P
(
Y h(τh) > 0

)
can be 0, Lemma 2.2.1 does

not in general give us the limiting distribution of (2.3.15) from Remark 2.2.1. We

propose to use the bootstrap to determine c1 and c2 in (2.3.14).
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2.3.2.3 Robust Inference for Sojourn Time Distributions

To obtain a set of confidence bands for the sojourn time distributions Fhj(·), we con-

sider a bootstrap approach. We first randomly select a sample M of size n with

replacement from {1, . . . , n}, and evaluate Q̂hj(·), P̂L
hj, and P̂U

hj based on the data

{(Nhj
i (·), Y h

i (·)) : i ∈ M}. This procedure is replicated B times to obtain esti-

mates {Q̂(b)
hj (·), P̂ (b)L

hj , P̂
(b)U
hj : b = 1, . . . , B}. We then have

[
F̂

(b)L
hj (·), F̂ (b)U

hj (·)
]

by using

F̂hj(·) = Q̂hj(·)/P̂hj.

Define

HL
hj(τ) = n1/2h1n

hj (τ)[F̂
L
hj(τ)− FL

hj(τ)], τ > 0,

and

HU
hj(τ) = n1/2h2n

hj (τ)[F̂
U
hj(τ)− FU

hj(τ)], τ > 0,

where h1n
hj (τ) and h2n

hj (τ) are weight functions which determine the shape of the

bands, with deterministic limit g1
hj(τ) and g2

hj(τ) in probability, respectively. For

b = 1, . . . , B, let

H
(b)L
hj (τ) = n1/2h1n

hj (τ)[F̂
(b)L
hj (τ)− F̂L

hj(τ)],

and

H
(b)U
hj (τ) = n1/2h2n

hj (τ)[F̂
(b)U
hj (τ)− F̂U

hj(τ)].

To obtain an approximate (1−α) confidence band for Fhj(·) on a prechosen interval

[s1, s2], let q
(b)L
hj (s1, s2) = supτ∈[s1,s2]H

(b)L
hj (τ) and q

(b)U
hj (s1, s2) = infτ∈[s1,s2]H

(b)U
hj (τ)

for b = 1, . . . , B. Determine qL
hj(s1, s2) and qU

hj(s1, s2) such that 100(1 − α)% of

b ∈ {1, 2, . . . , B} satisfy

q
(b)L
hj (s1, s2) < qL

hj(s1, s2), and q
(b)U
hj (s1, s2) > qU

hj(s1, s2).

Note that qL
hj(s1, s2) and qU

hj(s1, s2) may be chosen to optimize the width of the con-

fidence bands. An approximate (1 − α) confidence band for the attainable bound

(FL
hj(·), FU

hj(·)) on [s1, s2], as a robust confidence band of Fhj(·), is then

[F̂L
hj(τ)− n−1/2qL

hj(s1, s2)/h
1n
hj (τ), F̂

U
hj(τ) + n−1/2qU

hj(s1, s2)/h
2n
hj (τ)], τ ∈ [s1, s2].

Since Fhj(·) is always within [0, 1], we may need to transform it into a quantity

ranging (−∞,∞), say, g
(
Fhj(·)

)
, obtain a confidence band, and then transform the

confidence band back to obtain Fhj(·)’s confidence band. This may improve the

coverage of the confidence bands of Fhj(·), and ensure the confidence band lies entirely

within [0, 1].
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2.4 Simulation

2.4.1 Settings

We conducted a simulation with the state space E = {1, 2, 3}, where state 3 is an

absorbing state. A total of n independent and identically distributed semi-Markov

processes were simulated, each of which started from state 1 or 2 with equal probabil-

ities, and was observed up to a noninformative right censoring time C. Specifically,

we set the transition probabilities of the embedded Markov chain as

P12 = 0.7, P13 = 0.3, P21 = P23 = 0.5,

and simulated the sojourn time distributions from one of the following three settings:

Setting 2.1. F12 ∼ exp(2), F13 ∼ exp(2), F21 ∼ exp(1), F23 ∼ exp(1).

Setting 2.2. F12 ∼ exp(1), F13 ∼ exp(2), F21 ∼ exp(1), F23 ∼ exp(1).

Setting 2.3. F12 ∼ exp(1), F13 ∼ unif(0, 2), F21 ∼ unif(0, 2), F23 ∼ exp(2).

We designed the simulation settings to study the behaviors of the proposed esti-

mators in various situations. In Setting 2.1, both the pairs (F12, F13) and (F21, F23)

have the same entries. Thus both Lagakos et al.’s normalized and Phelan’s estima-

tors work well for estimating the transition probabilities, but Lagakos et al.’s plug-in

estimator can be biased since (2.3.10) does not hold in this setting. In Setting 2.2,

F21 and F23 are the same but F12 and F13 are different. So we anticipate that both

Lagakos et al.’s normalized and Phelan’s estimators will work well for the estimation

of P21 and P23, but not for P12 and P13. Similarly to it in the Setting 2.1, Lagakos

et al.’s plug-in estimator can be biased for the transition probabilities. Neither of the

pairs (F12, F13) and (F21, F23) has the same entries in Setting 2.3, thus both Lagakos

et al.’s normalized and Phelan’s estimators can be biased for the transition probabil-

ities. Since (2.3.10) holds for the cases of h = 1, j = 3 and h = 2, j = 1, Lagakos

et al.’s plug-in estimator can perform well in the estimation of P13 and P21.

In each setting, we used sample size n = 50, 100, or 200, and the censoring

time C = 2 or 5 to have 6 scenarios. In what follows, we summarize the simulation

results based on RP = 1000 repetitions in each scenario for the estimation of the

semi-Markov kernel, the transition probabilities, and the sojourn time distributions.
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2.4.2 Semi-Markov Kernel Estimation

We first evaluated the confidence intervals for the semi-Markov kernel at 5 fixed time

points t = 0.2, 0.6, 1.0, 1.4, and 1.8. The empirical coverage of the 95% confidence

intervals in the three simulation settings are summarized in Tables 2.1 to 2.3. Note

that the coverage of the standard confidence intervals without transformation tends to

be lower than the nominal level, and can be very poor for small t. On the other hand,

the transformed confidence intervals perform well in terms of coverage frequency, even

for small sample size n = 50.

We applied both the bootstrap and the resampling approaches to construct con-

fidence bands for the semi-Markov kernel. The confidence bands are restricted to

[0.5,1.5]. The coverage frequencies of confidence bands with nominal levels 90% and

95% are summarized in Tables 2.4 to 2.6. Note that the coverages of the bands based

on bootstrap and simulation approaches are close. The coverage frequency of the

confidence bands without transformation is lower than the nominal level, while the

coverage frequency of the confidence bands constructed by applying the transforma-

tion are close to the nominal level, especially with small sample size n = 50. The

improvement brought about by the transformation is more substantial with the equal

precision bands than with the Hall-Wellner bands.

In the context of classical survival analysis, the substantial improvement in per-

formance based on transformations has been found for the confidence intervals and

bands for the survival function (Borgan and Liestøl, 1990). Another advantage of

transformed confidence intervals and bands is that they are always between 0 and 1.
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Table 2.1: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.1

Standard CI Transformed CI
n C t = 0.2 0.6 1.0 1.4 1.8 t = 0.2 0.6 1.0 1.4 1.8
Q12(t)

50 2 0.90 0.92 0.93 0.93 0.93 0.96 0.95 0.94 0.95 0.94
5 0.87 0.92 0.94 0.93 0.92 0.96 0.94 0.95 0.95 0.95

100 2 0.91 0.93 0.94 0.95 0.95 0.97 0.95 0.95 0.95 0.95
5 0.91 0.93 0.94 0.94 0.94 0.95 0.94 0.93 0.94 0.94

200 2 0.93 0.95 0.94 0.94 0.94 0.96 0.95 0.95 0.95 0.94
5 0.93 0.94 0.94 0.94 0.94 0.95 0.94 0.95 0.95 0.94

Q13(t)

50 2 0.69 0.89 0.92 0.92 0.93 0.97 0.96 0.96 0.97 0.97
5 0.75 0.88 0.92 0.94 0.94 0.97 0.96 0.97 0.95 0.95

100 2 0.90 0.92 0.92 0.94 0.94 0.97 0.97 0.95 0.95 0.95
5 0.90 0.94 0.94 0.94 0.95 0.97 0.97 0.96 0.96 0.95

200 2 0.92 0.93 0.94 0.95 0.96 0.97 0.96 0.95 0.96 0.95
5 0.91 0.93 0.94 0.95 0.94 0.96 0.95 0.94 0.95 0.96

Q21(t)

50 2 0.88 0.92 0.94 0.92 0.93 0.97 0.96 0.95 0.95 0.95
5 0.90 0.93 0.94 0.94 0.94 0.96 0.96 0.96 0.95 0.95

100 2 0.93 0.94 0.95 0.94 0.95 0.97 0.96 0.96 0.96 0.95
5 0.93 0.95 0.94 0.94 0.94 0.96 0.96 0.95 0.95 0.94

200 2 0.94 0.95 0.94 0.95 0.94 0.96 0.96 0.95 0.95 0.95
5 0.94 0.94 0.94 0.94 0.94 0.95 0.94 0.95 0.94 0.94

Q23(t)

50 2 0.88 0.92 0.92 0.92 0.93 0.96 0.95 0.94 0.94 0.94
5 0.92 0.94 0.94 0.93 0.94 0.96 0.95 0.95 0.95 0.95

100 2 0.93 0.93 0.94 0.94 0.95 0.97 0.95 0.95 0.95 0.95
5 0.93 0.94 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.94

200 2 0.94 0.94 0.94 0.94 0.95 0.95 0.95 0.94 0.95 0.95
5 0.95 0.95 0.96 0.95 0.95 0.94 0.95 0.96 0.95 0.95
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Table 2.2: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.2

Standard CI Transformed CI
n C t = 0.2 0.6 1.0 1.4 1.8 t = 0.2 0.6 1.0 1.4 1.8
Q12(t)

50 2 0.90 0.94 0.92 0.93 0.94 0.96 0.95 0.94 0.94 0.95
5 0.90 0.92 0.93 0.94 0.94 0.95 0.93 0.94 0.94 0.95

100 2 0.92 0.94 0.94 0.94 0.94 0.96 0.95 0.94 0.95 0.95
5 0.92 0.93 0.93 0.93 0.92 0.94 0.94 0.94 0.93 0.92

200 2 0.95 0.94 0.95 0.94 0.95 0.96 0.94 0.95 0.94 0.95
5 0.93 0.95 0.93 0.93 0.92 0.94 0.95 0.93 0.93 0.92

Q13(t)

50 2 0.71 0.88 0.91 0.93 0.93 0.96 0.97 0.97 0.96 0.96
5 0.78 0.90 0.91 0.93 0.92 0.96 0.96 0.97 0.96 0.95

100 2 0.92 0.92 0.92 0.93 0.94 0.97 0.97 0.95 0.95 0.95
5 0.85 0.92 0.93 0.95 0.94 0.97 0.96 0.96 0.96 0.96

200 2 0.89 0.93 0.94 0.95 0.95 0.96 0.95 0.96 0.96 0.96
5 0.92 0.93 0.94 0.94 0.94 0.97 0.96 0.95 0.95 0.95

Q21(t)

50 2 0.91 0.93 0.93 0.92 0.92 0.95 0.96 0.95 0.94 0.94
5 0.91 0.93 0.93 0.92 0.92 0.97 0.94 0.94 0.92 0.93

100 2 0.93 0.93 0.94 0.94 0.94 0.97 0.94 0.96 0.94 0.95
5 0.92 0.93 0.92 0.93 0.93 0.95 0.94 0.94 0.93 0.94

200 2 0.93 0.94 0.93 0.93 0.94 0.96 0.95 0.94 0.94 0.95
5 0.93 0.93 0.92 0.92 0.93 0.94 0.94 0.92 0.92 0.93

Q23(t)

50 2 0.93 0.93 0.93 0.93 0.93 0.97 0.95 0.94 0.93 0.94
5 0.92 0.93 0.94 0.94 0.94 0.97 0.95 0.94 0.95 0.94

100 2 0.95 0.94 0.94 0.94 0.93 0.96 0.95 0.95 0.94 0.94
5 0.95 0.94 0.94 0.94 0.94 0.96 0.94 0.94 0.94 0.94

200 2 0.94 0.94 0.94 0.93 0.95 0.95 0.95 0.94 0.94 0.95
5 0.95 0.94 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.95
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Table 2.3: Empirical coverage probabilities of the 95% confidence intervals for the
semi-Markov kernel at different time points based on 1000 simulations in setting 2.3

Standard CI Transformed CI
n C t = 0.2 0.6 1.0 1.4 1.8 t = 0.2 0.6 1.0 1.4 1.8
Q12(t)

50 2 0.91 0.94 0.94 0.94 0.92 0.96 0.95 0.95 0.96 0.94
5 0.92 0.93 0.92 0.92 0.93 0.96 0.95 0.93 0.94 0.94

100 2 0.93 0.94 0.94 0.94 0.92 0.94 0.95 0.94 0.95 0.93
5 0.93 0.94 0.94 0.93 0.94 0.94 0.95 0.94 0.94 0.94

200 2 0.94 0.94 0.95 0.94 0.94 0.95 0.94 0.95 0.94 0.94
5 0.93 0.95 0.95 0.94 0.95 0.94 0.95 0.95 0.94 0.95

Q13(t)

50 2 0.71 0.88 0.90 0.91 0.93 0.96 0.98 0.96 0.96 0.95
5 0.79 0.89 0.91 0.92 0.93 0.96 0.97 0.96 0.95 0.95

100 2 0.92 0.92 0.93 0.94 0.93 0.97 0.97 0.94 0.95 0.94
5 0.84 0.91 0.94 0.92 0.94 0.96 0.95 0.96 0.94 0.95

200 2 0.89 0.94 0.94 0.94 0.95 0.97 0.96 0.95 0.95 0.95
5 0.89 0.93 0.93 0.94 0.92 0.96 0.95 0.94 0.93 0.94

Q21(t)

50 2 0.89 0.88 0.91 0.92 0.93 0.96 0.95 0.94 0.95 0.95
5 0.88 0.92 0.93 0.93 0.92 0.97 0.95 0.95 0.95 0.94

100 2 0.91 0.92 0.93 0.94 0.95 0.95 0.94 0.95 0.95 0.95
5 0.92 0.94 0.95 0.95 0.94 0.97 0.96 0.95 0.95 0.94

200 2 0.94 0.95 0.95 0.94 0.95 0.95 0.95 0.95 0.95 0.96
5 0.94 0.93 0.95 0.94 0.93 0.94 0.95 0.95 0.95 0.94

Q23(t)

50 2 0.90 0.92 0.92 0.94 0.94 0.96 0.96 0.95 0.95 0.95
5 0.88 0.93 0.92 0.93 0.95 0.96 0.96 0.94 0.94 0.96

100 2 0.94 0.92 0.94 0.93 0.95 0.97 0.95 0.96 0.95 0.95
5 0.92 0.94 0.95 0.95 0.95 0.97 0.96 0.94 0.95 0.95

200 2 0.93 0.94 0.95 0.94 0.95 0.97 0.95 0.96 0.95 0.95
5 0.92 0.94 0.94 0.95 0.95 0.95 0.94 0.94 0.95 0.95
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Table 2.4: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.1

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Q12(·)
50 2 0.86 0.91 0.92 0.91 0.86 0.91 0.92 0.92

5 0.88 0.91 0.92 0.92 0.87 0.91 0.92 0.92

100 2 0.90 0.92 0.93 0.93 0.90 0.92 0.93 0.93
5 0.90 0.91 0.92 0.92 0.90 0.91 0.92 0.92

200 2 0.92 0.94 0.94 0.94 0.92 0.93 0.94 0.94
5 0.92 0.93 0.94 0.93 0.91 0.93 0.93 0.94

Q13(·)
50 2 0.82 0.91 0.94 0.92 0.81 0.90 0.93 0.92

5 0.81 0.91 0.93 0.91 0.82 0.91 0.94 0.92

100 2 0.86 0.92 0.94 0.93 0.86 0.92 0.94 0.93
5 0.88 0.93 0.94 0.94 0.88 0.93 0.94 0.93

200 2 0.91 0.94 0.94 0.94 0.90 0.93 0.94 0.94
5 0.90 0.93 0.93 0.93 0.90 0.92 0.93 0.93

Q21(·)
50 2 0.88 0.90 0.93 0.93 0.88 0.91 0.93 0.93

5 0.89 0.93 0.93 0.93 0.88 0.93 0.94 0.93

100 2 0.91 0.92 0.95 0.95 0.91 0.92 0.94 0.94
5 0.91 0.91 0.93 0.94 0.90 0.91 0.93 0.93

200 2 0.92 0.93 0.94 0.94 0.92 0.93 0.93 0.93
5 0.91 0.93 0.93 0.94 0.91 0.93 0.93 0.94

Q23(·)
50 2 0.86 0.91 0.93 0.93 0.86 0.90 0.92 0.93

5 0.90 0.92 0.92 0.91 0.90 0.92 0.92 0.91

100 2 0.90 0.92 0.94 0.94 0.90 0.92 0.94 0.94
5 0.93 0.93 0.94 0.94 0.93 0.93 0.93 0.93

200 2 0.93 0.94 0.92 0.92 0.92 0.94 0.92 0.92
5 0.95 0.95 0.95 0.94 0.94 0.94 0.95 0.94
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Table 2.5: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.2

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Q12(·)
50 2 0.88 0.90 0.93 0.93 0.88 0.90 0.93 0.93

5 0.88 0.89 0.90 0.91 0.88 0.89 0.90 0.91

100 2 0.90 0.92 0.92 0.93 0.90 0.92 0.92 0.93
5 0.90 0.91 0.92 0.92 0.91 0.91 0.92 0.93

200 2 0.92 0.93 0.93 0.93 0.92 0.93 0.93 0.94
5 0.92 0.92 0.93 0.92 0.92 0.93 0.93 0.93

Q13(·)
50 2 0.81 0.89 0.93 0.91 0.82 0.89 0.93 0.92

5 0.84 0.90 0.94 0.92 0.83 0.90 0.94 0.92

100 2 0.85 0.91 0.94 0.92 0.85 0.91 0.94 0.92
5 0.87 0.93 0.94 0.93 0.87 0.92 0.94 0.93

200 2 0.90 0.94 0.95 0.94 0.90 0.94 0.94 0.93
5 0.90 0.92 0.94 0.94 0.91 0.92 0.94 0.93

Q21(·)
50 2 0.87 0.90 0.93 0.92 0.86 0.90 0.93 0.93

5 0.87 0.90 0.91 0.91 0.87 0.91 0.91 0.91

100 2 0.89 0.91 0.93 0.93 0.89 0.91 0.93 0.93
5 0.90 0.90 0.93 0.93 0.89 0.91 0.93 0.92

200 2 0.91 0.91 0.93 0.93 0.91 0.91 0.93 0.93
5 0.90 0.91 0.92 0.91 0.90 0.91 0.92 0.92

Q23(·)
50 2 0.89 0.92 0.92 0.92 0.89 0.91 0.92 0.92

5 0.88 0.92 0.94 0.93 0.88 0.92 0.94 0.93

100 2 0.91 0.92 0.94 0.93 0.92 0.92 0.93 0.93
5 0.92 0.93 0.93 0.93 0.92 0.94 0.93 0.93

200 2 0.92 0.93 0.93 0.93 0.92 0.92 0.93 0.93
5 0.93 0.94 0.94 0.94 0.92 0.94 0.93 0.94
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Table 2.6: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 95%
confidence bands for the semi-Markov kernel based on 1000 simulations in setting 2.3

L-W-Y Resampling Bootstrap
n C EP HW TEP THW EP HW TEP THW
Q12(·)
50 2 0.88 0.90 0.93 0.93 0.88 0.91 0.92 0.94

5 0.89 0.90 0.91 0.91 0.89 0.90 0.92 0.92

100 2 0.90 0.92 0.93 0.93 0.90 0.92 0.93 0.93
5 0.92 0.92 0.93 0.93 0.91 0.92 0.92 0.93

200 2 0.91 0.93 0.92 0.93 0.92 0.93 0.92 0.93
5 0.93 0.93 0.93 0.93 0.93 0.93 0.93 0.93

Q13(·)
50 2 0.77 0.89 0.94 0.92 0.78 0.90 0.93 0.92

5 0.81 0.91 0.93 0.92 0.82 0.91 0.93 0.92

100 2 0.85 0.91 0.94 0.92 0.85 0.90 0.94 0.92
5 0.85 0.91 0.93 0.93 0.85 0.91 0.93 0.92

200 2 0.91 0.92 0.94 0.93 0.90 0.93 0.94 0.93
5 0.90 0.93 0.93 0.92 0.90 0.92 0.92 0.92

Q21(·)
50 2 0.80 0.89 0.93 0.92 0.80 0.88 0.93 0.92

5 0.86 0.91 0.93 0.92 0.86 0.91 0.93 0.92

100 2 0.88 0.92 0.93 0.93 0.88 0.92 0.94 0.93
5 0.91 0.93 0.93 0.93 0.90 0.93 0.93 0.93

200 2 0.92 0.93 0.95 0.94 0.92 0.93 0.94 0.94
5 0.92 0.93 0.93 0.93 0.92 0.93 0.93 0.94

Q23(·)
50 2 0.85 0.92 0.93 0.92 0.84 0.91 0.93 0.92

5 0.88 0.92 0.94 0.92 0.88 0.92 0.94 0.92

100 2 0.88 0.92 0.94 0.94 0.88 0.92 0.94 0.93
5 0.92 0.95 0.94 0.93 0.91 0.95 0.94 0.93

200 2 0.92 0.94 0.94 0.94 0.92 0.93 0.94 0.93
5 0.92 0.94 0.93 0.94 0.91 0.93 0.93 0.93
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2.4.3 Transition Probabilities and Sojourn Time Distribu-

tions

Lagakos et al.’s plug-in and normalized estimates and Phelan’s estimate for the tran-

sition probabilities of the embedded Markov chain in the three simulation settings are

summarized in Tables 2.7 to 2.9. Note from the sample means associated with the

estimators that the plug-in estimators are biased for the transition probabilities in all

the simulation settings except for P13 and P21 in Setting 2.3, which satisfy (2.3.10).

Both the normalized and Phelan’s estimators are verified to be consistent for all the

transition probabilities in Setting 2.1, and with P21 and P23 in Setting 2.2. This is

due to the same corresponding sojourn time distributions in the situations. They

are biased at other settings. In Setting 2.3, the sample biases of the normalized and

Phelan’s estimators for P21 and P23 are larger than for P12 and P13, since the differ-

ence between exp(2) and unif(0, 2) is larger than the difference between exp(1) and

unif(0, 2). In all simulation settings, the biases become smaller when the censoring

time C increases from 2 to 5. With increased sample size n, the standard deviations

decrease, but the biases do not shrink.

We constructed confidence intervals for the transition probabilities Pij’s at each

simulation setting. For each simulated data set, we resampled B = 500 times to get

the bootstrap estimate for the distribution of (2.3.15) to construct confidence intervals

for Pij’s. Tables 2.10 to 2.12 present the coverage frequencies and the sample mean

lengths of the estimated 95% confidence intervals in the three simulation settings for

the transition probabilities based on the three existing methods and the proposed

robust approach. Note that the coverages of the confidence intervals based on the

three existing methods can be rather low when the corresponding point estimates are

biased, especially with the smaller censoring time C = 2. By contrast, the robust con-

fidence intervals contain the attainable values of the transition probabilities (2.3.12)

at approximately the nominal level, and thus cover the true transition probabilities

at least at the nominal level. However, the confidence intervals constructed by the

robust approach are wider than the other three existing approaches, especially with

small censoring time C = 2. With the larger censoring time C = 5, the coverage

becomes close to the nominal level, and the length of the confidence intervals are

comparable with the ones based on the three existing approaches.

We also evaluated the confidence bands for the attainable sojourn time distribu-

tions (2.3.13). The simulation outcomes are summarized in Tables 2.13 to 2.15 for
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the three simulation settings respectively. Note that the coverage frequency of the

confidence bands is lower than the nominal level without transformation, while the

confidence bands constructed by applying transformation have coverage frequency

closer to the nominal level, especially for small sample size n = 50.
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Table 2.7: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.1

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P12 = 0.7
50 2 0.44 -0.26 0.09 0.70 -0.00 0.10 0.70 -0.00 0.10

5 0.64 -0.06 0.07 0.70 -0.00 0.07 0.70 -0.00 0.07

100 2 0.44 -0.26 0.06 0.70 -0.00 0.07 0.70 -0.00 0.07
5 0.64 -0.06 0.05 0.70 -0.00 0.05 0.70 -0.00 0.05

200 2 0.44 -0.26 0.04 0.70 -0.00 0.05 0.70 -0.00 0.05
5 0.64 -0.06 0.04 0.70 -0.00 0.04 0.70 -0.00 0.04

P13 = 0.3
50 2 0.19 -0.11 0.07 0.30 0.00 0.10 0.30 0.00 0.10

5 0.28 -0.02 0.06 0.30 0.00 0.07 0.30 0.00 0.07

100 2 0.19 -0.11 0.05 0.30 0.00 0.07 0.30 0.00 0.07
5 0.27 -0.03 0.05 0.30 0.00 0.05 0.30 0.00 0.05

200 2 0.19 -0.11 0.03 0.30 0.00 0.05 0.30 0.00 0.05
5 0.28 -0.02 0.03 0.30 0.00 0.04 0.30 0.00 0.04

P21 = 0.5
50 2 0.43 -0.07 0.09 0.50 -0.00 0.09 0.50 -0.00 0.09

5 0.49 -0.01 0.07 0.49 -0.01 0.07 0.49 -0.01 0.07

100 2 0.43 -0.07 0.06 0.50 -0.00 0.06 0.50 -0.00 0.06
5 0.49 -0.01 0.05 0.50 -0.00 0.05 0.50 -0.00 0.05

200 2 0.43 -0.07 0.04 0.50 -0.00 0.05 0.50 -0.00 0.05
5 0.49 -0.01 0.04 0.50 -0.00 0.04 0.50 -0.00 0.04

P23 = 0.5
50 2 0.44 -0.06 0.09 0.50 0.00 0.09 0.50 0.00 0.09

5 0.50 0.00 0.07 0.51 0.01 0.07 0.51 0.01 0.07

100 2 0.43 -0.07 0.06 0.50 0.00 0.06 0.50 0.00 0.06
5 0.50 0.00 0.05 0.50 0.00 0.05 0.50 0.00 0.05

200 2 0.43 -0.07 0.04 0.50 0.00 0.05 0.50 0.00 0.05
5 0.50 -0.00 0.04 0.50 0.00 0.04 0.50 0.00 0.04
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Table 2.8: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.2

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P12 = 0.7
50 2 0.60 -0.10 0.08 0.76 0.06 0.08 0.76 0.06 0.08

5 0.69 -0.01 0.07 0.72 0.02 0.07 0.73 0.03 0.07

100 2 0.60 -0.10 0.06 0.76 0.06 0.06 0.77 0.07 0.06
5 0.70 -0.00 0.05 0.72 0.02 0.05 0.73 0.03 0.05

200 2 0.60 -0.10 0.04 0.76 0.06 0.04 0.77 0.07 0.04
5 0.70 -0.00 0.03 0.72 0.02 0.03 0.73 0.03 0.03

P13 = 0.3
50 2 0.19 -0.11 0.07 0.24 -0.06 0.08 0.24 -0.06 0.08

5 0.27 -0.03 0.07 0.28 -0.02 0.07 0.27 -0.03 0.07

100 2 0.19 -0.11 0.05 0.24 -0.06 0.06 0.23 -0.07 0.06
5 0.27 -0.03 0.05 0.28 -0.02 0.05 0.27 -0.03 0.05

200 2 0.19 -0.11 0.03 0.24 -0.06 0.04 0.23 -0.07 0.04
5 0.27 -0.03 0.03 0.28 -0.02 0.03 0.27 -0.03 0.03

P21 = 0.5
50 2 0.43 -0.07 0.08 0.50 -0.00 0.09 0.50 -0.00 0.09

5 0.49 -0.01 0.07 0.50 -0.00 0.07 0.50 -0.00 0.07

100 2 0.43 -0.07 0.06 0.50 -0.00 0.06 0.50 -0.00 0.06
5 0.50 -0.00 0.05 0.50 -0.00 0.05 0.50 -0.00 0.05

200 2 0.43 -0.07 0.04 0.50 -0.00 0.04 0.50 -0.00 0.04
5 0.50 -0.00 0.03 0.50 0.00 0.03 0.50 -0.00 0.03

P23 = 0.5
50 2 0.44 -0.06 0.08 0.50 0.00 0.09 0.50 0.00 0.09

5 0.50 -0.00 0.07 0.50 0.00 0.07 0.50 0.00 0.07

100 2 0.44 -0.06 0.06 0.50 0.00 0.06 0.50 0.00 0.06
5 0.50 -0.00 0.05 0.50 0.00 0.05 0.50 0.00 0.05

200 2 0.43 -0.07 0.04 0.50 0.00 0.04 0.50 0.00 0.04
5 0.50 -0.00 0.03 0.50 -0.00 0.03 0.50 0.00 0.03
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Table 2.9: Sample mean, bias, and standard deviation (SD) of the estimated transition
probabilities of the embedded Markov chain based on 1000 simulations in setting 2.3

Plug-in Normalized Phelan
n C Mean Bias SD Mean Bias SD Mean Bias SD
P12 = 0.7
50 2 0.60 -0.10 0.09 0.67 -0.03 0.09 0.69 -0.01 0.08

5 0.69 -0.01 0.06 0.70 -0.00 0.06 0.70 -0.00 0.06

100 2 0.60 -0.10 0.06 0.67 -0.03 0.06 0.69 -0.01 0.06
5 0.70 -0.00 0.05 0.70 -0.00 0.05 0.70 -0.00 0.05

200 2 0.60 -0.10 0.04 0.67 -0.03 0.04 0.69 -0.01 0.04
5 0.70 -0.00 0.03 0.70 -0.00 0.03 0.70 -0.00 0.03

P13 = 0.3
50 2 0.30 0.00 0.08 0.33 0.03 0.09 0.31 0.01 0.08

5 0.30 0.00 0.06 0.30 0.00 0.06 0.30 0.00 0.06

100 2 0.30 0.00 0.06 0.33 0.03 0.06 0.31 0.01 0.06
5 0.30 -0.00 0.05 0.30 0.00 0.05 0.30 0.00 0.05

200 2 0.30 0.00 0.04 0.33 0.03 0.04 0.31 0.01 0.04
5 0.30 -0.00 0.03 0.30 0.00 0.03 0.30 0.00 0.03

P21 = 0.5
50 2 0.50 -0.00 0.09 0.61 0.11 0.09 0.60 0.10 0.09

5 0.50 -0.00 0.07 0.52 0.02 0.07 0.53 0.03 0.07

100 2 0.50 -0.00 0.06 0.61 0.11 0.06 0.60 0.10 0.06
5 0.50 -0.00 0.05 0.52 0.02 0.05 0.53 0.03 0.05

200 2 0.50 -0.00 0.04 0.61 0.11 0.04 0.60 0.10 0.04
5 0.50 -0.00 0.03 0.52 0.02 0.03 0.54 0.04 0.04

P23 = 0.5
50 2 0.32 -0.18 0.08 0.39 -0.11 0.09 0.40 -0.10 0.09

5 0.46 -0.04 0.07 0.48 -0.02 0.07 0.47 -0.03 0.07

100 2 0.32 -0.18 0.05 0.39 -0.11 0.06 0.40 -0.10 0.06
5 0.46 -0.04 0.05 0.48 -0.02 0.05 0.47 -0.03 0.05

200 2 0.32 -0.18 0.04 0.39 -0.11 0.04 0.40 -0.10 0.04
5 0.46 -0.04 0.03 0.48 -0.02 0.03 0.46 -0.04 0.04
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Table 2.10: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.1

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP11 CP22 ML
P12 = 0.7
50 2 0.17 0.33 0.92 0.39 0.93 0.38 1.00 0.95 0.67

5 0.89 0.29 0.95 0.28 0.95 0.28 0.99 0.96 0.36

100 2 0.01 0.24 0.93 0.27 0.94 0.27 1.00 0.96 0.58
5 0.83 0.20 0.95 0.20 0.95 0.20 1.00 0.96 0.28

200 2 0.00 0.17 0.94 0.19 0.94 0.19 1.00 0.95 0.52
5 0.67 0.14 0.95 0.14 0.94 0.14 1.00 0.96 0.22

P13 = 0.3
50 2 0.59 0.26 0.92 0.39 0.93 0.38 1.00 0.95 0.67

5 0.91 0.26 0.95 0.28 0.95 0.28 0.99 0.96 0.36

100 2 0.38 0.19 0.93 0.27 0.94 0.27 1.00 0.96 0.58
5 0.91 0.19 0.95 0.20 0.95 0.20 1.00 0.96 0.28

200 2 0.12 0.13 0.94 0.19 0.94 0.19 1.00 0.95 0.52
5 0.88 0.13 0.95 0.14 0.94 0.14 1.00 0.96 0.22

P21 = 0.5
50 2 0.83 0.33 0.93 0.35 0.93 0.35 0.99 0.94 0.46

5 0.94 0.28 0.94 0.28 0.94 0.28 0.95 0.94 0.29

100 2 0.77 0.23 0.94 0.25 0.94 0.25 1.00 0.95 0.37
5 0.94 0.20 0.94 0.20 0.94 0.20 0.95 0.94 0.20

200 2 0.62 0.17 0.95 0.18 0.95 0.18 1.00 0.95 0.30
5 0.94 0.14 0.94 0.14 0.94 0.14 0.95 0.94 0.15

P23 = 0.5
50 2 0.85 0.33 0.93 0.35 0.93 0.35 0.99 0.94 0.46

5 0.94 0.28 0.94 0.28 0.94 0.28 0.95 0.94 0.29

100 2 0.79 0.23 0.94 0.25 0.94 0.25 1.00 0.95 0.37
5 0.94 0.20 0.94 0.20 0.94 0.20 0.95 0.94 0.20

200 2 0.64 0.17 0.95 0.18 0.95 0.18 1.00 0.95 0.30
5 0.94 0.14 0.94 0.14 0.94 0.14 0.95 0.94 0.15

1 CP for the transition probabilities
2 CP for the attainable values of the transition probabilities
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Table 2.11: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.2

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP11 CP22 ML
P12 = 0.7
50 2 0.78 0.32 0.82 0.31 0.80 0.31 1.00 0.94 0.50

5 0.94 0.26 0.92 0.26 0.89 0.25 0.96 0.94 0.29

100 2 0.62 0.23 0.77 0.22 0.74 0.22 1.00 0.94 0.41
5 0.94 0.18 0.92 0.18 0.89 0.18 0.96 0.94 0.21

200 2 0.38 0.16 0.64 0.16 0.57 0.15 1.00 0.95 0.35
5 0.94 0.13 0.90 0.13 0.83 0.13 0.97 0.95 0.16

P13 = 0.3
50 2 0.59 0.26 0.82 0.31 0.80 0.31 1.00 0.94 0.50

5 0.90 0.25 0.92 0.26 0.89 0.25 0.96 0.94 0.29

100 2 0.39 0.18 0.77 0.22 0.74 0.22 1.00 0.94 0.41
5 0.89 0.18 0.92 0.18 0.89 0.18 0.96 0.94 0.21

200 2 0.13 0.13 0.64 0.16 0.57 0.15 1.00 0.95 0.35
5 0.84 0.13 0.90 0.13 0.83 0.13 0.97 0.95 0.16

P21 = 0.5
50 2 0.82 0.31 0.92 0.33 0.93 0.32 0.99 0.94 0.44

5 0.93 0.26 0.93 0.26 0.93 0.26 0.94 0.94 0.27

100 2 0.74 0.22 0.93 0.23 0.94 0.23 1.00 0.95 0.35
5 0.93 0.18 0.93 0.18 0.94 0.18 0.94 0.94 0.19

200 2 0.58 0.15 0.94 0.17 0.93 0.16 1.00 0.95 0.29
5 0.94 0.13 0.94 0.13 0.93 0.13 0.96 0.94 0.14

P23 = 0.5
50 2 0.82 0.31 0.92 0.33 0.93 0.32 0.99 0.94 0.44

5 0.93 0.26 0.93 0.26 0.93 0.26 0.94 0.94 0.27

100 2 0.78 0.22 0.93 0.23 0.94 0.23 1.00 0.95 0.35
5 0.93 0.18 0.93 0.18 0.94 0.18 0.94 0.94 0.19

200 2 0.60 0.15 0.94 0.17 0.93 0.16 1.00 0.95 0.29
5 0.94 0.13 0.94 0.13 0.93 0.13 0.96 0.94 0.14

1 CP for the transition probabilities
2 CP for the attainable values of the transition probabilities
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Table 2.12: Empirical coverage probabilities (CP) and sample mean lengths (ML) of
the 95% confidence intervals for the transition probabilities of the embedded Markov
chain based on 1000 simulations in setting 2.3

Plug-in Normalized Phelan Robust Approach
n C CP ML CP ML CP ML CP11 CP22 ML
P12 = 0.7
50 2 0.81 0.33 0.93 0.33 0.94 0.32 0.98 0.95 0.42

5 0.95 0.25 0.94 0.25 0.94 0.25 0.95 0.94 0.26

100 2 0.65 0.23 0.91 0.24 0.93 0.23 0.97 0.94 0.32
5 0.95 0.18 0.95 0.18 0.95 0.18 0.95 0.95 0.18

200 2 0.38 0.16 0.89 0.17 0.94 0.16 0.98 0.95 0.26
5 0.94 0.13 0.94 0.13 0.94 0.13 0.95 0.94 0.13

P13 = 0.3
50 2 0.94 0.31 0.93 0.33 0.94 0.32 0.98 0.95 0.42

5 0.94 0.25 0.94 0.25 0.94 0.25 0.95 0.94 0.26

100 2 0.93 0.22 0.91 0.24 0.93 0.23 0.97 0.94 0.32
5 0.94 0.18 0.95 0.18 0.95 0.18 0.95 0.95 0.18

200 2 0.95 0.16 0.89 0.17 0.94 0.16 0.98 0.95 0.26
5 0.94 0.13 0.94 0.13 0.94 0.13 0.95 0.94 0.13

P21 = 0.5
50 2 0.93 0.33 0.74 0.35 0.77 0.34 0.97 0.95 0.50

5 0.94 0.26 0.93 0.27 0.90 0.27 0.97 0.94 0.30

100 2 0.94 0.23 0.58 0.24 0.63 0.24 0.97 0.95 0.40
5 0.94 0.18 0.92 0.19 0.88 0.19 0.97 0.94 0.23

200 2 0.95 0.17 0.30 0.17 0.37 0.17 0.98 0.95 0.34
5 0.94 0.13 0.89 0.13 0.80 0.14 0.96 0.94 0.17

P23 = 0.5
50 2 0.37 0.30 0.74 0.35 0.77 0.34 0.97 0.95 0.50

5 0.90 0.26 0.93 0.27 0.90 0.27 0.97 0.94 0.30

100 2 0.10 0.21 0.58 0.24 0.63 0.24 0.97 0.95 0.40
5 0.86 0.19 0.92 0.19 0.88 0.19 0.97 0.94 0.23

200 2 0.01 0.15 0.30 0.17 0.37 0.17 0.98 0.95 0.34
5 0.77 0.13 0.89 0.13 0.80 0.14 0.96 0.94 0.17

1 CP for the transition probabilities
2 CP for the attainable values of the transition probabilities
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Table 2.13: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.1

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
F12(·)
50 2 0.85 0.80 0.89 0.83 0.92 0.87 0.93 0.91

5 0.80 0.82 0.87 0.86 0.87 0.90 0.92 0.91

100 2 0.88 0.85 0.89 0.85 0.94 0.91 0.95 0.92
5 0.84 0.85 0.86 0.86 0.90 0.91 0.92 0.92

200 2 0.90 0.86 0.88 0.85 0.95 0.93 0.95 0.92
5 0.86 0.86 0.87 0.87 0.91 0.92 0.93 0.93

F13(·)
50 2 0.83 0.78 0.90 0.83 0.88 0.85 0.95 0.92

5 0.77 0.77 0.90 0.90 0.83 0.85 0.95 0.94

100 2 0.87 0.82 0.92 0.83 0.92 0.89 0.96 0.92
5 0.84 0.83 0.90 0.90 0.89 0.89 0.95 0.94

200 2 0.89 0.85 0.90 0.85 0.94 0.91 0.95 0.93
5 0.85 0.85 0.89 0.88 0.92 0.91 0.94 0.94

F21(·)
50 2 0.84 0.84 0.90 0.89 0.89 0.91 0.96 0.94

5 0.76 0.82 0.85 0.85 0.84 0.89 0.92 0.92

100 2 0.87 0.85 0.89 0.86 0.92 0.91 0.95 0.94
5 0.82 0.85 0.86 0.87 0.88 0.91 0.91 0.93

200 2 0.89 0.88 0.90 0.87 0.95 0.94 0.94 0.94
5 0.84 0.86 0.87 0.87 0.91 0.93 0.93 0.94

F23(·)
50 2 0.82 0.82 0.88 0.87 0.88 0.90 0.95 0.94

5 0.79 0.85 0.88 0.90 0.87 0.92 0.94 0.96

100 2 0.87 0.87 0.90 0.88 0.93 0.92 0.95 0.94
5 0.84 0.86 0.88 0.89 0.90 0.93 0.94 0.94

200 2 0.88 0.87 0.89 0.87 0.94 0.93 0.94 0.93
5 0.86 0.88 0.88 0.88 0.91 0.93 0.94 0.94



CHAPTER 2. HOMOGENEOUS SEMI-MARKOV PROCESS 39

Table 2.14: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.2

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
F12(·)
50 2 0.85 0.83 0.89 0.84 0.92 0.90 0.95 0.92

5 0.78 0.82 0.82 0.85 0.86 0.89 0.91 0.91

100 2 0.86 0.83 0.87 0.84 0.93 0.91 0.94 0.91
5 0.84 0.85 0.87 0.85 0.91 0.92 0.93 0.93

200 2 0.89 0.86 0.87 0.86 0.94 0.93 0.94 0.92
5 0.85 0.88 0.88 0.88 0.93 0.93 0.94 0.94

F13(·)
50 2 0.81 0.80 0.90 0.88 0.87 0.86 0.95 0.95

5 0.75 0.78 0.88 0.90 0.83 0.86 0.94 0.95

100 2 0.86 0.83 0.89 0.86 0.92 0.90 0.95 0.93
5 0.80 0.82 0.88 0.89 0.86 0.88 0.94 0.94

200 2 0.89 0.88 0.90 0.87 0.94 0.94 0.96 0.94
5 0.83 0.85 0.87 0.88 0.90 0.91 0.93 0.94

F21(·)
50 2 0.84 0.83 0.89 0.87 0.90 0.90 0.95 0.93

5 0.78 0.83 0.86 0.86 0.86 0.90 0.92 0.93

100 2 0.87 0.87 0.88 0.87 0.92 0.92 0.93 0.93
5 0.85 0.86 0.89 0.89 0.91 0.91 0.94 0.94

200 2 0.88 0.87 0.88 0.87 0.93 0.92 0.93 0.93
5 0.85 0.86 0.87 0.87 0.90 0.91 0.92 0.92

F23(·)
50 2 0.84 0.85 0.90 0.90 0.90 0.91 0.95 0.95

5 0.80 0.85 0.88 0.90 0.87 0.92 0.94 0.95

100 2 0.89 0.88 0.90 0.89 0.93 0.93 0.95 0.94
5 0.85 0.88 0.88 0.88 0.92 0.93 0.94 0.94

200 2 0.90 0.87 0.90 0.89 0.95 0.94 0.96 0.94
5 0.87 0.89 0.89 0.90 0.93 0.94 0.95 0.95
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Table 2.15: Empirical coverage probabilities of the equal precision (EP), Hall-Wellner
(HW), transformed equal precision (TEP), and transformed Hall-Wellner (THW) 90%
and 95% confidence bands for the attainable sojourn time distributions based on 1000
simulations in setting 2.3

Nominal level 90% Nominal level 95%
n C EP HW TEP THW EP HW TEP THW
F12(·)
50 2 0.80 0.84 0.88 0.87 0.87 0.91 0.94 0.94

5 0.79 0.83 0.84 0.87 0.87 0.91 0.92 0.93

100 2 0.86 0.85 0.90 0.87 0.92 0.92 0.95 0.93
5 0.83 0.84 0.86 0.86 0.90 0.92 0.92 0.93

200 2 0.88 0.86 0.88 0.86 0.94 0.91 0.94 0.92
5 0.87 0.88 0.88 0.89 0.92 0.94 0.94 0.94

F13(·)
50 2 0.71 0.74 0.89 0.90 0.80 0.82 0.95 0.95

5 0.71 0.77 0.88 0.89 0.79 0.85 0.94 0.95

100 2 0.80 0.81 0.90 0.90 0.88 0.88 0.96 0.96
5 0.78 0.81 0.88 0.89 0.85 0.88 0.93 0.95

200 2 0.85 0.85 0.89 0.88 0.91 0.90 0.95 0.95
5 0.82 0.86 0.87 0.88 0.90 0.92 0.94 0.94

F21(·)
50 2 0.76 0.75 0.87 0.85 0.83 0.83 0.92 0.91

5 0.79 0.82 0.86 0.87 0.86 0.89 0.93 0.92

100 2 0.85 0.83 0.88 0.87 0.90 0.89 0.94 0.93
5 0.84 0.86 0.87 0.89 0.91 0.92 0.94 0.94

200 2 0.87 0.86 0.88 0.86 0.92 0.92 0.93 0.92
5 0.84 0.85 0.86 0.86 0.91 0.91 0.93 0.92

F23(·)
50 2 0.85 0.83 0.91 0.90 0.90 0.89 0.95 0.95

5 0.82 0.86 0.90 0.90 0.88 0.92 0.95 0.96

100 2 0.86 0.85 0.89 0.87 0.93 0.91 0.95 0.94
5 0.86 0.88 0.89 0.90 0.93 0.94 0.94 0.95

200 2 0.87 0.85 0.89 0.86 0.93 0.92 0.94 0.93
5 0.86 0.87 0.88 0.88 0.93 0.94 0.94 0.95
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2.5 Summary

In this chapter, we consider estimation with right censored HSM processes, of which

the transition intensities only depend on the present state and the duration time in the

present state. We propose two simulation based algorithms to overcome the difficulty

in constructing confidence bands for the semi-Markov kernel. Moreover, we show

that the existing estimators for the transition probabilities of the embedded Markov

chain can be inconsistent. We propose robust confidence intervals for the transition

probabilities, and robust confidence bands for the sojourn time distributions.

The homogeneity assumption may not hold in many practical situations. In the

human sleep process, for instance, the level of cortisol has been found to affect the

transition intensities between Non-REM and REM sleep phases (Kneib and Henner-

feind, 2008). In the next chapter, we consider an extension of the HSM model, the

modulated semi-Markov model, which handles the nonhomogeneity by incorporating

covariates in the Cox regression form.



Chapter 3

Modulated Semi-Markov Process

3.1 Introduction

In practice, the subjects in a study often have different covariate patterns which makes

the homogeneous assumption questionable. For instance, the hospitalization processes

of cancer survivors diagnosed in different time periods can be rather different. One

explanation for this is that treatments for cancer have been evolving over time.

In this chapter, we consider the modulated semi-Markov model (Cox, 1973) which

incorporates covariates in the homogeneous semi-Markov model through the Cox

regression form. This model differs from the well-studied classical Markov based

regression model. It uses the duration time in the current state as the basic time

scale in the baseline transition intensity function, instead of the study time since the

beginning of the process. The dependence of the baseline transition intensity on the

duration time makes the model fall outside the framework of Aalen’s multiplicative

intensity models and invalidates the usual martingale methods (Gill, 1980; Voelkel

and Crowley, 1984; Andersen et al., 1993; Oakes and Cui, 1993; Dabrowska et al.,

1994; Dabrowska, 1995).

When the underlying process is unidirectional (i.e., if state j can be reached from

state h, state h can not be reached from state j), Voelkel and Crowley (1984) pro-

pose a random time change to transform the modulated semi-Markov model into

the multiplicative intensity model. However, this trick does not work for bidirec-

tional processes due to the renewal nature of the semi-Markov process. Dabrowska

et al. (1994) and Dabrowska (1995) consider bidirectional modulated semi-Markov

processes through the Cox regression form with possible time-dependent covariates.

42
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They allow only the covariates to depend on the duration time in the current state,

which excludes the covariates that depend on the study time scale. The study time

scale can be very useful both practically and theoretically. For example, by including

the study time as a covariate in the modulated semi-Markov model and conducting

the hypothesis test on the corresponding regression parameter, we can check whether

the time-homogeneity assumption of the homogeneous semi-Markov model is appro-

priate. In this chapter, we consider the modulated semi-Markov models with general

time-dependent covariates.

The rest of this chapter is organized as follows. Section 3.2 describes the mod-

ulated semi-Markov models in the Cox regression form with general time-dependent

covariates, and the corresponding estimation procedures for the regression parame-

ters and the baseline transition intensities. In Section 3.3, we derive the asymptotic

properties of the proposed estimators by using empirical process theory. We examine

the methodology by simulation in Section 3.4. Section 3.5 concludes this chapter with

some remarks.

3.2 Models and Estimation Procedures

We introduce the modulated semi-Markov models in the counting process formula-

tion. Let Ñhj
∗ (t) be the total number of h → j transitions in the time interval (0, t]

without censoring, and λ∗ = {λhj
∗ (t) : h, j ∈ E} be the set of intensity functions of

the multivariate counting process Ñ∗(t) = {Ñhj
∗ (t) : h, j ∈ E} with respect to its self-

exciting filtration Ft, the σ-algebra generated by {Ñhj
∗ (s) : h, j ∈ E , 0 ≤ s ≤ t}. Let

Ñ∗(t) =
∑

h,j Ñ
hj
∗ (t) be the total number of transitions occurred in (0, t]. Suppose

there are transition specific time-dependent covariates Z(t) = {Zhj(t) : h, j ∈ E},
whose association with the transition intensities is of interest. We consider the fol-

lowing two different specifications for λhj
∗ (t).

Model 3.1. (The modulated renewal model; Cox 1973). Assume that

λhj
∗ (t) = Ỹ h

∗ (t)α0hj(B(t)) exp(θ′Zhj(t)), (3.2.1)

where Ỹ h
∗ (t) = I{S(t−) = h} is the ‘at risk’ indicator for whether the process has the

potential of experiencing a transition from state h at time t, and B(t) = t − TÑ∗(t−)

is a left continuous version of the backward-recurrence time.
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Model 3.2. Assume that

λhj
∗ (t) = Ỹ h

∗ (t)α0hj(B(t); Ñ(t−)) exp(θ′Zhj(t)), (3.2.2)

where Ỹ h
∗ (t) and B(t) are as in Model 3.1.

Remark 3.2.1. Dabrowska et al. (1994) and Dabrowska (1995) consider a special case

of Model 3.1 with covariates depending on the time through the backward recurrence

time only. That is,

λhj
∗ (t) = Ỹ h

∗ (t)α0hj(B(t)) exp(θ′Zhj
∗ (B(t))).

Remark 3.2.2. The dependence of the transition intensities on the backward recur-

rence time B(t) makes both Model 3.1 and Model 3.2 fall outside of the multiplicative

intensity model framework. The transition intensities can not be written as the prod-

uct of a predictable process times a deterministic function, which is of interest.

Remark 3.2.3. As a more general model than Model 3.1, Model 3.2 allows the baseline

transition intensity function to vary after the occurrence of each transition, with the

effect of covariates remaining the same.

Due to the dependence of the baseline transition intensities on the backward re-

currence time B(t), our proposed estimation procedures with both Model 3.1 and

Model 3.2 involve the change of time scale from the study time to the duration time.

Recall the two processes in the time scale of duration defined in (2.2.1) and (2.2.2):

Nhj(u) = #{m ≥ 1 : Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ C},

and

Y h(u) = #{m ≥ 1 : Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ C}.

Since Zhj(t) can vary from transition to transition after converting to the time scale of

duration (unless Zhj(t) depends only on the time through the duration at the current

state, as in Dabrowska et al. 1994), we work with processes which count the number

of sojourn times for each transition. Specifically, we define

Nhj(u;m) = 1{Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ C}, (3.2.3)

which indicates whether the mth transition is from h to j with duration ≤ u and

occurs before the censoring,

Y h(u;m) = 1{Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ C}, (3.2.4)
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which indicates whether the mth transition is observed to be from state h and takes

time ≥ u. Let

Zhj(u;m) = Zhj(Tm−1 + u). (3.2.5)

Suppose we have n i.i.d. replicates of {Nhj(u;m), Y h(u;m), Zhj(u;m) : h, j ∈
E , u ∈ [0, T0],m ≥ 1}, say {Nhj

i (u;m), Y h
i (u;m), Zhj

i (u;m) : h, j ∈ E , u ∈ [0, T0],m ≥
1} for i = 1, . . . , n. Here T0 is the time of the end of the study. For a vector z, denote

z⊗l as 1, z and zz′ for l = 0, 1, and 2, respectively. Let

S
(l)
hj (θ, u;m) =

1

n

∑
i

Y h
i (u;m) exp(θ′Zhj

i (u;m))Zhj
i (u;m)⊗l

and

S
(l)
hj (θ, u) =

∑
m

S
(l)
hj (θ, u;m)

for l = 0, 1, 2. We consider the following estimating functions for θ with Model 3.1

and Model 3.2, respectively:

U(θ, T0) =
∑

i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
S

(1)
hj (θ, u)

S
(0)
hj (θ, u)

]
dNhj

i (u;m) (3.2.6)

and

U2(θ, T0) =
∑

i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
S

(1)
hj (θ, u;m)

S
(0)
hj (θ, u;m)

]
dNhj

i (u;m). (3.2.7)

Remark 3.2.4. Estimating function (3.2.6) for Model 3.1 reduces to the one proposed

by Dabrowska et al. (1994) if the covariates depend on the time only through the

backward recurrence time. Estimating function (3.2.7) can also be used with Model

3.1, but it is less efficient than (3.2.6) under Model 3.1. On the other hand, estimating

function (3.2.7) is unbiased under the more general Model 3.2, and thus is more robust

than (3.2.6).

Denote the estimators based on the estimating functions U(θ, T0) in (3.2.6) and

U2(θ, T0) in (3.2.7) by θ̂ and θ̂2 respectively. We can then estimate the cumulative

baseline transition intensity function

A0hj(τ) =

∫ τ

0

α0hj(u)du (3.2.8)

of Model 3.1 by

Â0hj(τ) =
∑
i,m

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ̂, u)

(3.2.9)
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for h, j ∈ E and τ ∈ [0, T0]. Under Model 3.2, we can estimate the cumulative baseline

transition intensity function

A0hj(τ ;m) =

∫ τ

0

α0hj(u;m)du (3.2.10)

with

Â0hj(τ ;m) =
∑

i

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ̂2, u;m)

(3.2.11)

for h, j ∈ E , m ∈ N, and τ ∈ [0, T0].

Estimating functions U(θ, T0) in (3.2.6) and U2(θ, T0) in (3.2.7) can be justified as

follows:

Proposition 3.2.1. Estimating functions (3.2.6) and (3.2.7) are the the score func-

tions of the profile likelihoods with Model 3.1 and Model 3.2, respectively.

Proof. The log-likelihood function for the observed data is given by

logL(θ, α) =
∑

i

∑
h,j

[∫ T0

0

log λhj
i (t)dÑhj

i (t)−
∫ T0

0

λhj
i (t)dt

]
.

Under Model 3.1, the log-likelihood function is specified as

logL(θ, α) =
∑

i

∑
h,j

[ ∫ T0

0

logα0hj(Bi(t))dÑ
hj
i (t) +

∫ T0

0

θ′Zhj
i (t)dÑhj

i (t)

−
∫ T0

0

Ỹ h
i (t)eθ′Zhj

i (t)α0hj(Bi(t))dt
]

=
∑

i

∑
h,j

[ ∫ T0

0

logα0hj(u)dN
hj
i (u) +

∑
m

∫ T0

0

θ′Zhj
i (u;m)dNhj

i (u;m)

−
∑
m

∫ T0

0

Y h
i (u;m)eθ′Zhj

i (u;m)dA0hj(u)
]
,

by changing the time scale from the study time to the duration time. To maximize

the log-likelihood function, A0hj(.) should be a step function which changes only when

Nhj
· (·) jumps, i.e., at the observed sojourn times of the transitions from state h to

state j. With fixed θ, this gives us

Â0hj(u) =
∑
i,m

∫ u

0

dNhj
i (v;m)∑

i,m Y
h
i (v;m)eθ′Zhj

i (v;m)
.

Replacing A0hj(u) with Â0hj(u), we obtain the profile log-likelihood, log L̃(θ), as∑
i

∑
h,j

∑
m

∫ T0

0

[
θ′Zhj

i (u;m)− log

(∑
i,m

Y h
i (u;m)eθ′Zhj

i (u;m)

)]
dNhj

i (u;m).
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Estimating function (3.2.6) is ∂ log L̃(θ)/∂θ.

Under Model 3.2, the log-likelihood function simplifies to

logL2(θ, α) =
∑

i

∑
h,j

[ ∫ T0

0

logα0hj(Bi(t); Ñ(t−))dÑhj
i (t) +

∫ T0

0

θ′Zhj
i (t)dÑhj

i (t)

−
∫ T0

0

Ỹ h
i (t)eθ′Zhj

i (t)α0hj(Bi(t); Ñ(t−))dt
]

=
∑

i

∑
h,j

∑
m

[ ∫ T0

0

logα0hj(u;m)dNhj
i (u;m)

+

∫ T0

0

θ′Zhj
i (u;m)dNhj

i (u;m)

−
∫ T0

0

Y h
i (u;m)eθ′Zhj

i (u;m)dA0hj(u;m)
]
,

by changing the time scale from the study time to the duration time. To maximize

the log-likelihood function, A0hj(.;m) should be a step function which changes only

when Nhj
· (·;m) jumps, i.e., at the observed sojourn times of the mth transitions that

are from state h to state j. For fixed θ, this gives us

Â0hj(u;m) =
∑

i

∫ u

0

dNhj
i (v;m)∑

i Y
h
i (v;m)eθ′Zhj

i (v;m)
.

Replacing A0hj(u;m) with Â0hj(u;m), we get the profile log-likelihood, log L̃2(θ), as

∑
i

∑
h,j

∑
m

∫ T0

0

[
θ′Zhj

i (u;m)− log

(∑
i,m

Y h
i (u;m)eθ′Zhj

i (u;m)

)]
dNhj

i (u;m).

Estimating function (3.2.7) is ∂ log L̃2(θ)/∂θ.

3.3 Asymptotic Properties

3.3.1 Preliminaries

The usual derivation of asymptotic properties with multiplicative intensity models,

in which the baseline intensity function is a deterministic function of the study time,

relies on the counting process martingales with respect to filtrations on the study time

scale. However, as indicated in Section 3.2, due to the dependence of the baseline

transition intensities on the backward recurrence time B(t), our estimation procedures
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with both Model 3.1 and Model 3.2 involve the change of time scale from the study

time to the duration time. Thus the usual counting process martingale theory can

not be applied directly.

In what follows, we transform Model 3.2 to a multiplicative intensity model by

random time changes according to each transition (Voelkel and Crowley, 1984; Chang

and Hsiung, 1994). The counting process martingales, with random time changes, can

then be used to derive the asymptotic properties of the estimator based on estimating

function (3.2.7). However, this trick can not be used for the estimator based on

estimating function (3.2.6) with Model 3.1, because of the common baseline intensity

function shared by all transitions. Instead, we use empirical process theory to derive

its asymptotic properties.

Let Ñhj(t) = Ñhj
∗ (t ∧ C) be the total number of observed h → j transitions in

the time interval (0, t] in the presence of censoring. Then the intensity function of

the observed multivariate counting process Ñ(·) = {Ñhj(t) : h 6= j ∈ E , t ≥ 0}, with

respect to its self-exciting filtration Ft, is given by {λhj(t) : h 6= j ∈ E , t ≥ 0} with

λhj(t) = Ỹ h(t)α0hj(B(t)) exp(θ′Zhj(t))

under Model 3.1, and

λhj(t) = Ỹ h(t)α0hj(B(t); Ñ(t−)) exp(θ′Zhj(t))

under Model 3.2, where

Ỹ h(t) = I{S(t−) = h,C ≥ t}

indicates whether the process S(·) is under observation and in state h just before time

t.

Define

M̃hj(t) = Ñhj(t)−
∫ t

0

λhj(s)ds,

which is a counting process martingale with respect to Ft. Then M̃hj(Tm + u) is an

FTm+u martingale. This together with the fact that Xm+1 = Tm+1 − Tm is an FTm+u

stopping time ensures that

Mhj(u;m) = M̃hj(Tm + u ∧Xm+1)− M̃hj(Tm)

is also an FTm+u martingale. By some algebra and Lemma 1.2.3,

Mhj(u;m) = Nhj(u;m)−
∫ u

0

Y h(v;m)eθ′0Zhj(v;m)α0hj(v)dv,
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under Model 3.1, and

Mhj(u;m) = Nhj(u;m)−
∫ u

0

Y h(v;m)eθ′0Zhj(v;m)α0hj(v;m)dv,

under Model 3.2, where Nhj(u;m) and Y h(u;m) are defined in (3.2.3) and (3.2.4),

respectively. Thus for each m ∈ N, the intensity of the multivariate counting process

{Nhj(u;m) : h, j ∈ E , u ≥ 0}, with respect to the filtration FTm+u, has a multi-

plicative form. The integrand in estimating function (3.2.7) is a predictable process

relative to the filtration FTm+u. Thus the counting process martingale theory can

be applied to derive the asymptotic properties of the estimator based on estimat-

ing function (3.2.7). However, this approach does not work for estimating function

(3.2.6) under Model 3.1, since the integrand in estimating function (3.2.6) is not a

predictable process relative to the filtration FTm+u.

3.3.2 Consistency and Asymptotic Normality

We first introduce some new notation. Let

s
(l)
hj (θ, u;m) = E

(
S

(l)
hj (θ, u;m)

)
, (3.3.1)

and

s
(l)
hj (θ, u) =

∑
m

s
(l)
hj (θ, u;m). (3.3.2)

Let also

Σ(θ0, T0) =
∑
h,j

∫ T0

0

s(2)
hj (θ0, u)−

(
s
(1)
hj (θ0, u)

)⊗2

s
(0)
hj (θ0, u)

α0hj(u)du, (3.3.3)

and

Σ2(θ0, T0) =
∑
h,j

∑
m

∫ T0

0

s(2)
hj (θ0, u;m)−

(
s
(1)
hj (θ0, u;m)

)⊗2

s
(0)
hj (θ0, u;m)

α0hj(u;m)du.

(3.3.4)

We assume the following regularity conditions:

(a) There exists a constantK such that the total variation |Zhj
i (0)|+

∫ T0

0
|dZhj

i (u)| ≤
K for all h, j ∈ E and 1 ≤ i ≤ n, where the two |.|’s denote the L1-norm for a p-

dimensional vector and L1-type total variation for a p–dimensional vector function

respectively.
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(b) E{[Nhj(T0)]
3} <∞ for all h, j ∈ E ;

(c)
∫ T0

0
α0hj(u)du <∞ and P (Y h(T0) > 0) > 0 for all h, j ∈ E ;

(d) Σ(θ0, T0) and Σ2(θ0, T0) are positive definite.

The asymptotic properties of the estimator derived from estimating function

(3.2.7) under Model 3.2 can be established by the counting process martingale theory,

following the lines of Chang and Hsiung (1994). We omit the details and simply state

the results in the following.

Theorem 3.3.1. The estimator θ̂2 of θ0 from estimating function (3.2.7) under Model

3.2 is asymptotically efficient, and n1/2(θ̂2 − θ0) is asymptotically normal with mean

0 and variance (Σ2(θ0, T0))
−1 in the limiting distribution.

Remark 3.3.1. Estimating function (3.2.7) can also be used for Model 3.1, the asymp-

totic normality of θ̂2 still holds. However, it is not asymptotically efficient under

Model 3.1.

In what follows, we show the asymptotic properties of the estimator derived from

estimating function (3.2.6) with Model 3.1.

Theorem 3.3.2. Under the regularity conditions (a)–(d), the estimator θ̂ from esti-

mating function (3.2.6) is strongly consistent.

Proof. Let

X1(θ, T0) =
1

n

∑
i

∑
h,j

∑
m

∫ T0

0

[
(θ − θ0)

′Zhj
i (u;m)− log

S
(0)
hj (θ, u)

S
(0)
hj (θ0, u)

]
dNhj

i (u;m).

We first show X1(θ, T0) has the same limit as

X2(θ, T0) =
1

n

∑
i

∑
h,j

∑
m

∫ T0

0

[
(θ − θ0)

′Zhj
i (u;m)− log

s
(0)
hj (θ, u)

s
(0)
hj (θ0, u)

]
dNhj

i (u;m).

In a neighborhood Θ of θ0, we have, by the uniform strong law of large numbers

(Pollard, 1990, Theorem 8.3, page 41),

sup
u∈[0,T0]

∣∣∣S(0)
hj (θ, u)− s

(0)
hj (θ, u)

∣∣∣ a.s.−→ 0, for θ ∈ Θ.

According to condition (c), s
(0)
hj (θ, u) is bounded away from 0 on Θ× [0, T0]. Thus

sup
u∈[0,T0]

∣∣∣log{S(0)
hj (θ, u)} − log{s(0)

hj (θ, u)}
∣∣∣ a.s.−→ 0.
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Denote µhj(u) = E{Nhj(u)} for u ∈ [0, T0]. Then µhj(u) is nondecreasing and

bounded on [0, T0] by condition (b). Applying the uniform strong law of large numbers

(Pollard, 1990, Theorem 8.3, page 41), we have

sup
u∈[0,T0]

∣∣∣∣∣ 1n∑
i

Nhj
i (u)− µhj(u)

∣∣∣∣∣ a.s.−→ 0.

By Lemma 1 of Lin et al. (2000), page 724,∣∣∣∣∣
∫ T0

0

[
log{S(0)

hj (θ, u)} − log{s(0)
hj (θ, u)}

] 1

n

∑
i

dNhj
i (u)

∣∣∣∣∣ a.s.−→ 0.

Thus we have shown that |X1(θ, T0)−X2(θ, T0)|
a.s.−→ 0.

Now denote

An(θ, T0) =
1

n

∑
h,j

∫ T0

0

[
(θ − θ0)

′S
(1)
hj (θ0, u)− log

{
s
(0)
hj (θ, u)

s
(0)
hj (θ0, u)

}
S

(0)
hj (θ0, u)

]
α0hj(u)du.

Then

X2(θ, T0)− An(θ, T0)

=
1

n

∑
i

∑
h,j

∑
m

∫ T0

0

[
(θ − θ0)

′Zhj
i (u;m)− log

s
(0)
hj (θ, u)

s
(0)
hj (θ0, u)

]
dMhj

i (u;m),

which converges to 0 almost surely by strong law of large numbers. By condition

(c) and uniform convergence of S
(l)
hj to s

(l)
hj , we know that An(θ, T0) converges almost

surely to

A(θ, T0) =
1

n

∑
h,j

∫ T0

0

[
(θ − θ0)

′s
(1)
hj (θ0, u)− log

{
s
(0)
hj (θ, u)

s
(0)
hj (θ0, u)

}
s
(0)
hj (θ0, u)

]
α0hj(u)du.

We can see from their second derivatives that both X1(θ, T0) and A(θ, T0) are con-

cave functions of θ . In addition, ∂A(θ0, T0)/∂θ = 0 and ∂2A(θ0, T0)/∂θ
2 = −Σ(θ0, T0),

which is strictly negative definite. Thus A(θ, T0) has a unique maximizer θ0, and θ̂ is

strongly consistent with θ0 (Andersen and Gill, 1982).

Under Model 3.1, we have

U(θ0, T0) =
∑

i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)− Z̄hj(θ0, u)
]
dMhj

i (u;m), (3.3.5)
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where

Z̄hj(θ0, u) =

∑
i,m Y

h
i (u;m)eθ′0Zhj

i (u;m)Zhj
i (u;m)∑

i,m Y
h
i (u;m)eθ′0Zhj

i (u;m)
=
S

(1)
hj (θ0, u)

S
(0)
hj (θ0, u)

. (3.3.6)

Let

W
(0)
hj (θ, u) = n−1/2

∑
i,m

Mhj
i (u;m),

and

W
(1)
hj (θ, u) = n−1/2

∑
i,m

∫ t

0

Zhj
i (v;m)dMhj

i (v;m).

Then

n−1/2U(θ0, u) =
∑
h,j

W
(1)
hj (θ0, u)−

∑
h,j

∫ u

0

Z̄hj(θ0, v)W
(0)
hj (θ0, dv). (3.3.7)

Lemma 3.3.3. Under the regularity conditions (a)–(d), {W (0)
hj (θ0, u),W

(1)
hj (θ0, u) :

h, j ∈ E , u ∈ [0, T0]} converges weakly to {W(0)
hj (θ0, u),W(1)

hj (θ0, u) : h, j ∈ E , u ∈
[0, T0]}, which is a mean 0 Gaussian process with continuous sample paths and co-

variance functions

cov
(
W(0)

hj (θ0, u1),W(0)
kl (θ0, u2)

)
=

∫ u1∧u2

0

s
(0)
hj (θ0, u)α0hj(u)du,

cov
(
W(0)

hj (θ0, u1),W(1)
kl (θ0, u2)

)
=

∫ u1∧u2

0

s
(1)
hj (θ0, u)α0hj(u)du,

and

cov
(
W(1)

hj (θ0, u1),W(1)
kl (θ0, u2)

)
=

∫ u1∧u2

0

s
(2)
hj (θ0, u)α0hj(u)du.

Proof. SinceW
(0)
hj can be viewed as a component ofW

(1)
hj when the corresponding com-

ponent of the covariate Zhj is 1, we only need to show the convergence for W
(1)
hj (θ0, .).

Let

fi(θ0, u) = n−1/2
∑
m

∫ u

0

Zhj
i (v;m)dMhj

i (v;m),

then W
(1)
hj (θ0, .) =

∑
k fi(θ0, .). Without loss of generality, we assume the dimension

of Zhj is 1. To apply the functional central limit theorem (Pollard, 1990, Theorem

10.6, page 53) to show the weak convergence, we verify conditions (i) − (v) of the

theorem first.
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To verify condition (i), note that

fi(θ0, u) =n−1/2
∑
m

∫ u

0

Zhj
i (v;m)dNhj

i (v;m)

− n−1/2
∑
m

∫ u

0

Zhj
i (v;m)Y h

i (v;m)eθ′0Zhj
i (v;m)α0hj(v)dv.

If Zhj
i (v;m) ≥ 0, then fi(θ0, u) is the difference of two monotone functions in u and

thus manageable (Bilias et al., 1997, Lemma A.1 and A.2, page 679). This is true for

general Zhj by writing Zhj
i (v;m) = Zhj

i (v;m)+ − Zhj
i (v;m)−.

By assumptions (a) and (c), we can use envelopes Fi = n−1/2(K1N
hj
i (T0) + K2),

where K1 and K2 are positive constants. Conditions (iii) and (iv) are satisfied by as-

sumption (b). Since fi’s are i.i.d., condition (v) is trivially satisfied. Finally, condition

(ii) follows by the multivariate central limit theorem.

The following Lemma is adopted from Lemma A.3 of Bilias et al. (1997), page

679.

Lemma 3.3.4. Let fm and gm be two sequences of bounded functions such that, for

some constant t0 > 0,

lim
m→∞

sup
τ∈[0,t0]

{|fm(τ)− f(τ)|+ |gm(τ)− g(τ)|} = 0,

where f is continuous on [0, t0], and gm has total variation bounded by a constant K,

independent of m. Then

lim
m→∞

sup
τ∈[0,t0]

∣∣∣∣∫ τ

0

fm(u)dgm(u)−
∫ τ

0

f(u)dg(u)

∣∣∣∣ = 0, (3.3.8)

lim
m→∞

sup
τ∈[0,t0]

∣∣∣∣∫ τ

0

gm(u)dfm(u)−
∫ τ

0

g(u)df(u)

∣∣∣∣ = 0. (3.3.9)

Proof. Since {gm : m ≥ 1} converges uniformly to g, and the total variation of gm is

bounded by K for all m, the total variation of g must be also bounded by K. Write∫ τ

0

fm(u)dgm(u)−
∫ τ

0

f(u)dg(u) =

∫ τ

0

[fm(u)− f(u)]dgm(u)

+

[∫ τ

0

f(u)dgm(u)−
∫ τ

0

f(u)dg(u)

]
,
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since {fm : m ≥ 1} converges uniformly to f and gm has bounded variation, we have

lim
m→∞

sup
τ∈[0,t0]

∣∣∣∣∫ τ

0

[fm(u)− f(u)]dgm(u)

∣∣∣∣ = 0. (3.3.10)

Because f is continuous on [0, t0], for any ε > 0, we can find a partition 0 = τ0 <

τ1 < · · · < τm0 = t0 such that

sup
τ∈[0,t0]

|fε(τ)− f(τ)| < ε,

where fε(τ) =
∑m0

h=1 f(τh)Iτ∈(τh−1,τh] for τ ∈ (0, t0] and fε(0) = f(0). Note that∣∣∣∣∫ τ

0

f(u)dgm(u)−
∫ τ

0

f(u)dg(u)

∣∣∣∣
≤
∣∣∣∣∫ τ

0

[f(u)− fε(u)]dgm(u)

∣∣∣∣+ ∣∣∣∣∫ τ

0

fε(u)[dgm(u)− dg(u)]

∣∣∣∣
+

∣∣∣∣∫ τ

0

[f(u)− fε(u)]dg(u)

∣∣∣∣
≤ 2Kε+ 2

m0∑
h=1

|f(τh)| sup
τ∈[0,t0]

|gm(τ)− g(τ)|

−→ 2Kε as m→∞.

Since ε can be arbitrarily small, we have

lim
m→∞

sup
τ∈[0,t0]

∣∣∣∣∫ τ

0

f(u)dgm(u)−
∫ τ

0

f(u)dg(u)

∣∣∣∣ = 0 (3.3.11)

From (3.3.10) and (3.3.11) we have (3.3.8). Finally, (3.3.9) follows from (3.3.8) after

applying integration by parts.

Theorem 3.3.5. Under the regularity conditions (a)–(d),
{
n−1/2U(θ0, u) : u ∈ [0, T0]

}
converges in distribution to a mean 0 Gaussian process U(·) with continuous sample

paths and the covariance function

cov (U(u1),U(u2)) =
∑
h,j

∫ u1∧u2

0

[
s
(2)
hj (θ0, u)−

(
s
(1)
hj (θ0, u)

)⊗2

/s
(0)
hj (θ0, u)

]
α0hj(u)du.

Proof. We have n−1/2U(θ0, u) =
∑

h,j W
(1)
hj (θ0, u)−

∑
h,j

∫ u

0
Z̄hj(θ0, v)W

(0)
hj (θ0, dv) from

(3.3.7). Define

z̄hj(θ0, u) =
s
(1)
hj (θ0, u)

s
(0)
hj (θ0, u)

.
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We shall show that n−1/2U(θ0, u) converges weakly to∑
h,j

W(1)
hj (θ0, u)−

∑
h,j

∫ u

0

z̄hj(θ0, v)W(0)
hj (θ0, dv).

By the uniform strong law of large numbers (Pollard, 1990, Theorem 8.3, page 41),

sup
u∈[0,T0]

∣∣∣S(l)
hj (θ0, u)− s

(l)
hj (θ0, u)

∣∣∣→ 0

almost surely for l = 0, 1. Thus

sup
u∈[0,T0]

∣∣Z̄hj(θ0, u)− z̄hj(θ0, u)
∣∣→ 0.

By Lemma 1 and the almost sure representation theorem (Pollard, 1990, Theorem

9.4, page 45), there is a new probability space such that{
W

(0)
hj (θ0, .),W

(1)
hj (θ0, .), Z̄hj(θ0, .)

}
−→

{
W(0)

hj (θ0, .),W(1)
hj (θ0, .), z̄hj(θ0, .)

}
almost surely. By condition (b), Z̄hj(θ0, .) has bounded total variation. Applying

Lemma 3.3.4, we have

sup
u∈[0,T0]

∣∣∣∣∫ u

0

Z̄hj(θ0, v)W
(0)
hj (θ0, dv)−

∫ u

0

z̄hj(θ0, v)W(0)
hj (θ0, dv)

∣∣∣∣→ 0

for all h, j ∈ E . Thus n−1/2U(θ0, u) converges uniformly to∑
h,j

W(1)
hj (θ0, u)−

∑
h,j

∫ u

0

z̄hj(θ0, v)W(0)
hj (θ0, dv).

almost surely in the new probability space and thus weakly in the original probability

space. The covariance function calculation follows from Lemma 3.3.3.

Theorem 3.3.6. Under the regularity conditions (a)–(d),

√
n(θ̂ − θ0)

D−→ N
(
0,Σ−1(θ0, T0)

)
,

where Σ(θ0, T0) is given in (3.3.3).

Proof. By Taylor’s theorem,

n−1/2U(θ0, T0) = [−n−1∂U(θ∗, T0)/∂θ]n
1/2(θ̂ − θ0),

where θ∗ is on the line segment between θ̂ and θ0. By the law of large numbers,

consistency of θ̂ and continuity of Σ(θ, T0) in a neighborhood of θ0,

−n−1∂U(θ∗, T0)/∂θ
P−→ Σ(θ0, T0).

So
√
n(θ̂ − θ0)

D−→ N(0,Σ−1(θ0, T0)) by weak convergence of n−1/2U(θ0, T0).
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Theorem 3.3.7. Under the regularity conditions (a)–(d),
√
n(Â0hj(·)−A0hj(·)) con-

verges weakly to a mean 0 Gaussian process on [0, T0].

Proof. Recall that we estimate A0hj(τ) =
∫ τ

0
α0hj(u)du by

Â0hj(τ) =
∑
i,m

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ̂, u)

.

We can decompose
√
n
[
Â0hj(τ)− A0hj(τ)

]
into

√
n

[∑
i,m

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ̂, u)

−
∑
i,m

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ0, u)

]

+
√
n

[∑
i,m

∫ τ

0

dNhj
i (u;m)

nS
(0)
hj (θ0, u)

−
∫ τ

0

α0hj(u)du

]
.

(3.3.12)

The second term of (3.3.12) can be written as

n−1/2
∑
i,m

∫ τ

0

dMhj
i (u;m)

S
(0)
hj (θ0, u)

− n1/2

∫ τ

0

α0hj(u)I

{∑
i

Y h
i (u) = 0

}
du.

Applying Taylor’s theorem, the first term of (3.3.12) equals to −H(θ∗, τ)′n1/2(θ̂−θ0),

where θ∗ is on the line segment between θ̂ and θ0, and

Hhj(θ, τ) =

∫ τ

0

Z̄hj(θ, u)

nS
(0)
hj (θ, u)

dNhj(u),

which converges almost surely to

hhj(θ, τ) =

∫ τ

0

z̄hj(θ, u)α0hj(u)du.

Thus
√
n
[
Â0hj(τ)− A0hj(τ)

]
is equivalent to

∫ τ

0

W(0)
hj (θ0, du)

s
(0)
hj (θ0, u)

− hhj(θ0, τ)
′Σ−1(θ0, T0)Uhj(θ0, T0),

where

Uhj(θ0, T0) =
∑
h,j

W(1)
hj (θ0, T0)−

∑
h,j

∫ T0

0

z̄hj(θ0, u)W(0)
hj (θ0, du).
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3.3.3 Asymptotic Efficiency

Here we show our estimator for θ derived from estimating function (3.2.6) is asymp-

totically efficient under Model 3.1. For simplicity, we focus on a scalar regression

parameter θ. We adapt the results of Begun et al. (1983) and Chang and Hsiung

(1994). Their methods involve (i) the notation of a “Hellinger-differentiable (root-)

density” to obtain appropriate scores for the regression parameter θ, and (ii) calcula-

tion of the “effective score” for θ. Thus the asymptotic lower bounds for estimation

of θ in the presence of nuisance parameter are determined by the geometry of the

scores.

The data we have, on the study time scale, are

{Ñhj
i (·), Ỹ h

i (·), Zhj
i (·) : h, j ∈ E ; 1 ≤ i ≤ n}. (3.3.13)

Let H be the parameter space for the baseline transition rate functions α = {α0hj(·) :

h, j ∈ E}. Note that H is the nuisance parameter space for the estimation of θ.

Let P(θ,α) denote the probability measure specified by θ ∈ Θ and α ∈ H. For

convenience and without lost of generality, assume 0 ∈ Θ and H include the case

that all {α0hj(t) : h, j ∈ E} are constant function 1’s. Then by the Radon-Nikodym

derivative theorem for point processes (cf. Brémaud, 1981, pages 166 and 187),

dP(θ,α)[0, t]

dP(0,1)[0, t]
= Ln(t; θ,α) =

∏
i

∏
h,j

Lhj
i (t; θ,α),

where Lhj
i (t; θ,α) is such that

lhj
i (t; θ,α) ≡ logLhj

i (t; θ,α)

=

∫ t

0

logα0hj(Bi(s))dÑ
hj
i (s) +

∫ t

0

θ′Zhj
i (s)dÑhj

i (s) (3.3.14)

+

∫ t

0

(
1− α0hj(Bi(s))e

θ′Zhj
i (s)

)
Ỹ h

i (s)ds.

We use θ0 and α0 to denote the true value of the regression parameter θ, and the

baseline transition rate functions α, respectively. To introduce the concept of regular

estimator, let {θn}n≥1 and {αn}n≥1 be such that

lim
n→∞

|
√
n(θn − θ0)− δ| = 0,

and

lim
n→∞

||
√
n(αn −α0)− β|| = 0,

where δ ∈ Θ, β ∈ H, and ||.|| is the supremum norm.
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Definition 3.3.1. Let θ̌ be an estimator for θ0 based on data (3.3.13). Then θ̌ is

called a regular estimator at (θ0,α0) if for every sequence of (θn,αn) given above,
√
n(θ̌ − θn), under (θn,αn), converges weakly to a distribution which depends on

(θ0,α0), but not on any particular sequence (θn,αn).

Proposition 3.3.8. The estimator θ̂ based on estimating function (3.2.6) is a regular

estimator of θ0 under Model 3.1.

The following lemma gives the Hellinger-differential of L
1/2
n0 (t; θ,α) at (θ0,α0) for

any fixed sample size n0:

Lemma 3.3.9. Let n0 be a fixed integer. As n goes to infinity,
√
n(L

1/2
n0 (t; θn,αn)−

L
1/2
n0 (t; θ0,α0)) converges almost surely in L2 to

1

2
L1/2

n0
(t; θ0,α0)

{
n0∑
i=1

∑
h,j

∫ t

0

[
δZhj

i (s) +
βhj(Bi(s))

α0hj(Bi(s))

]
dM̃hj

i (s)

}
, (3.3.15)

where M̃hj
i (t) = Ñhj

i (t)−
∫ t

0
Ỹ h

i (s)α0hj(B(s)) exp(θ′Zhj
i (s))ds.

Proof. By (3.3.14), we have

√
n

(
L

1/2
n0 (t; θn,αn)

L
1/2
n0 (t; θ0,α0)

− 1

)

=
√
n exp

{
1

2

n0∑
i=1

∑
h,j

[ ∫ t

0

[logαhj;n(Bi(s))− logα0hj(Bi(s))] dÑ
hj
i (s)

+

∫ t

0

(θn − θ0)
′Zhj

i (s)dÑhj
i (s)

+

∫ t

0

(
α0hj(Bi(s))e

θ′Zhj
i (s) − αhj;n(Bi(s))e

θ′nZhj
i (s)

)
Ỹ h

i (s)ds

]}
.

Then (3.3.15) follows by Taylor’s theorem.

According to Begun et al. (1983), the appropriate scores for θ have the form

1

2
L1/2

n0
(t; θ0,α0)

{
n0∑
i=1

∑
h,j

∫ t

0

[
Zhj

i (s)−
β∗hj(Bi(s))

α0hj(Bi(s))

]
dM̃hj

i (s)

}
,

where β∗ = {β∗hj(·) : h, j ∈ E} is in H. The effective score of θ has the minimal norm.

Thus the asymptotic information for estimation of θ in the presence of α is given by

I∗ = inf
{
E(θ0,α0)(γ1(T0,β))2|β ∈ H

}
,
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where

γ1(T0,β) ≡
∑
h,j

∫ T0

0

[
Zhj

1 (s) +
βhj(B1(s))

α0hj(B1(s))

]
dM̃hj

1 (s).

Proposition 3.3.10. In Model 3.1, the asymptotic information for θ0 is given by

I∗ = Σ(θ0, T0).

Proof. In this proof, all the expectations are taken with respect to (θ0,α0). Note

that, under (θ0,α0),

∑
i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
S

(1)
hj (θ0, u)

S
(0)
hj (θ0, u)

]
dMhj

i (u;m)

and ∑
i

∑
h,j

∑
m

∫ T0

0

[
S

(1)
hj (θ0, u)

S
(0)
hj (θ0, u)

+
βhj(u)

α0hj(u)

]
dMhj

i (u;m)

are uncorrelated and both have mean 0. So

1

n
E

(∑
i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
S

(1)
hj (θ0, u)

S
(0)
hj (θ0, u)

]
dMhj

i (u;m)

)2

≤ 1

n
E

(∑
i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m) +
βhj(u)

α0hj(u)

]
dMhj

i (u;m)

)2

= E

(∑
h,j

∑
m

∫ T0

0

[
Zhj

1 (u;m) +
βhj(u)

α0hj(u)

]
dMhj

1 (u;m)

)2

= E

(∑
h,j

∫ T0

0

[
Zhj

1 (s) +
βhj(B1(s))

α0hj(B1(s))

]
dM̃hj

1 (s)

)2

= E (γ1(T0,β))2 .

(3.3.16)

Let n→∞ in (3.3.16), we obtain that

E (γ1(T0,β))2

≥ lim
n→∞

1

n
E

(∑
i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
S

(1)
hj (θ0, u)

S
(0)
hj (θ0, u)

]
dMhj

i (u;m)

)2

= lim
n→∞

1

n
E

(∑
i

∑
h,j

∑
m

∫ T0

0

[
Zhj

i (u;m)−
s
(1)
hj (θ0, u)

s
(0)
hj (θ0, u)

]
dMhj

i (u;m)

)2

= Σ(θ0, T0),
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where equality holds when

βhj(u) = −α0hj(u)
s
(1)
hj (θ0, u)

s
(0)
hj (θ0, u)

.

Thus we have

I∗ = inf
{
E(θ0,α0)(γ1(T0,β))2|β ∈ H

}
= Σ(θ0, T0).

The following proposition is the convolution representation theorem for regular

estimators (Begun et al., 1983, Theorem 3.1).

Proposition 3.3.11. Let θ̌ be a regular estimator of θ0 in Model 3.1. Then the

limiting distribution of
√
n(θ̌−θn) can be represented as the convolution of a N(0, 1/I∗)

distribution with another distribution which depends only on (θ0,α0).

Remark 3.3.2. By the above two propositions, a regular estimator of θ under model 3.1

has variance at least as large as 1/I∗, where I∗ = Σ(θ0, T0). The estimator θ̂ is regular

and has asymptotic normal distribution N(0, 1/Σ(θ0, T0)). Thus it is asymptotically

efficient among the regular estimators.

3.4 Simulation

We simulated n realizations from a three-state modulated semi-Markov process with

state 3 absorbing. Associated with each realization, there is an internal time-dependent

covariate Z(t) = t−B(t), where B(t) is the back recurrence time. The values for the

regression parameters in the two models considered above were

θ12 = −0.5, θ13 = −0.5, θ21 = 0.5, θ23 = 1.

We simulated the following two settings:

Setting 3.1. α012(u) = 1.5u, α013(u) = u, α021(u) = 2, α023(u) = 1.

Setting 3.2. α012(u;m) = 1.5um,α013(u;m) = um,α021(u;m) = 2m,α023(u;m) =

m.
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In each of the two settings, each realization is observed until censoring time C = 5.

The sample size n varies from 50, 100, to 200. For each of the scenarios, we obtained

1000 replicates.

We used the two estimating functions in Section 3.2 to estimate the regression

parameter θ in each of the two settings. Note that Model 3.1 is correctly specified in

Setting 3.1, but fails in Setting 3.2. Model 3.2 is correctly specified in both settings.

The regression parameter estimates are summarized in Table 3.1 and Table 3.2 in the

two settings, respectively.

In Setting 3.1, the sample biases and standard errors of the estimators based on

both estimating functions (3.2.6) and (3.2.7) are decreasing while increasing sample

size n. The coverage of the 95% confidence intervals for the regression parameters

is close to the nominal level, even with a sample size as small as 50. The estimator

based on estimating function (3.2.6) is more efficient than the one based on estimating

function (3.2.7), as Model 3.1 is correctly specified.

The estimator based on (3.2.7) continues to perform well in Setting 3.2. However,

when Model 3.1 fails, the estimator based on estimating function (3.2.6) is biased,

and the coverage of the 95% confidence intervals for the regression parameters is poor.

3.5 Summary

This chapter has considered an extension of the HSM model by incorporating covari-

ates in a Cox regression form. The inclusion of the study time as a time-dependent

covariate allows us to test whether the HSM model is plausible with the data. The

simulation study suggests that the asymptotic approximation is adequate for rela-

tively small sample size.

We consider a NHSM model in the next chapter, as a further extension of the

HSM model. It assumes the transition intensities depend on the study time and the

duration time in an unspecified way.
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Chapter 4

Nonhomogeneous Semi-Markov

Process

4.1 Introduction

The time-homogeneity assumption of homogeneous semi-Markov models is often too

restrictive in practice. For instance, empirical data have demonstrated that human

sleep patterns vary during a night. Differences between the first and last thirds of

the night are especially noticeable. Welcomed are more flexible models, such as non-

homogeneous semi-Markov models, which allow the transition intensities to depend

on both the study and duration times.

Nonhomogeneous semi-Markov (NHSM) processes were introduced by Iosifescu

Manu (1972). Janssen and De Dominicis (1984) consider the discrete time case.

Lucas et al. (2006) propose estimation procedures based on the assumption that the

transition rate functions are piecewise constant on both study and duration time

scales. Mathieu et al. (2007) consider a parametric approach.

In this chapter, we consider several different estimation procedures with NHSM

processes. We start with a piecewise constant approach based on the idea of stratify-

ing the population according to the study time scale in Section 4.2. Particularly, we

assume the nonhomogeneous cause-specific hazard functions αhj(τ ; t) are piecewise

constant with respect to the study time t and can vary arbitrarily with the duration

time τ . We then propose a nonparametric estimation procedure based on a kernel

method in Section 4.3. In some situations, more parsimonious models, which can lead

to more efficient and interpretable inference procedures, are desirable. In Section 4.4,

64
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we consider estimation procedures based on a nonparametric multiplicative model

where the transition intensities depend on the study and duration times multiplica-

tively, but their functional forms are left unspecified. Section 4.5 further specifies the

effect of one of the two times in a parametric form, ending up to a semiparametric

model such as the modulated semi-Markov model studied in Chapter 3.

We study finite sample properties of the proposed methods via simulated data in

Section 4.6. Section 4.7 summarizes this chapter with some extensions.

4.2 Piecewise Constant Approach

Assume that αhj(τ ; t) is piecewise constant with respect to t, and varies arbitrarily

on τ . Specifically, we assume

αhj(τ ; t) =

Lhj−1∑
l=0

αhj(τ |l)1[thj
l ,thj

l+1)(t),

where 0 = thj
0 < thj

1 < · · · < thj
Lhj

= T0 is a prefixed or data-dependent partition of

time interval [0, T0] of interest. Note that the homogeneous SMP can be viewed as a

special case with αhj(τ |l) independent of l.

For ease of presentation, we focus on the case with the partition 0 = thj
0 < thj

1 <

· · · < thj
Lhj

= T0 being the same for all h and j, denoted by 0 = t0 < t1 < · · · < tL = T0.

Partition the data into L strata, with the lth stratum including transitions that start

within [tl−1, tl) in the study time scale. Note that the data of the lth stratum are

from a HSM process with the transition rate function αhj(τ |l). We can then apply the

nonparametric estimation procedures proposed by Lagakos et al (1978) as follows.

First we introduce processes in the time scale of duration as follows. Let

Nhj(u|l) = #{m ≥ 1 : Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ C, Tm−1 ∈ [tl−1, tl)},

the number of observed transitions from h to j with duration ≤ u and starting within

[tl−1, tl), and

Y h(u|l) = #{m ≥ 1 : Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ C, Tm−1 ∈ [tl−1, tl)},

the number of transitions from state h observed to take time ≥ u and start within

[tl−1, tl). Denote Nh·(u|l) =
∑

j N
hj(u|l).
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Suppose that
{(
Nhj

i (·|l), Y h
i (·|l)

)
: i = 1, . . . , n

}
, n independent and identically

distributed copies of
(
Nhj(·|l), Y h(·|l)

)
, are available. We can estimate the semi-

Markov kernal Qhj(τ ; t) for t ∈ [tl−1, tl) by using the data in the lth stratum. Specifi-

cally, we can estimate the cumulative transition rate function with the Nelson-Aalan

type estimator

Âhj(τ ; t) =

∫ τ

0

dNhj
· (u|l)

Y h
· (u|l)

, t ∈ [tl−1, tl)

and estimate the semi-Markov kernel with

Q̂hj(τ ; t) =

∫ τ

0

(
1− Ĥh(u−; t)

) dNhj
· (u|l)

Y h
· (u|l)

, t ∈ [tl−1, tl),

where

Ĥh(u; t) = 1−
∏
v≤u

(
1− 4Nh·

· (v|l)
Y h
· (v|l)

)
, t ∈ [tl−1, tl).

We can also estimate the transition rate functions by kernel smoothing:

α̂hj(τ ; t) =

∫
Kb(τ − u)Âhj(du; t),

where Kb(·) = b−1K(·/b), K(·) is a kernel function and b is a bandwidth. Table 4.1

lists some commonly used kernel functions adapted from Härdle et al. (2004), page 41.

Table 4.1: Some commonly used kernel functions

Kernel K(u)

Uniform 1
2
I(|u| ≤ 1)

Triangle (1− |u|)I(|u| ≤ 1)

Epanechnikov 3
4
(1− u2)I(|u| ≤ 1)

Biweight (Quartic) 15
16

(1− u2)2I(|u| ≤ 1)

Triweight (Tricube) 35
32

(1− u2)3I(|u| ≤ 1)

Gaussian 1√
2π
e
−u2

2

Cosine π
4

cos
(

π
2
u
)
I(|u| ≤ 1)



CHAPTER 4. NONHOMOGENEOUS SEMI-MARKOV PROCESS 67

4.3 Nonparametric Estimation

4.3.1 Estimation Procedure

Recall the processes on the duration time scale introduced in (3.2.3) and (3.2.4):

Nhj(u;m) = 1{Jm−1 = h, Jm = j,Xm ≤ u, Tm ≤ C},

and

Y h(u;m) = 1{Jm−1 = h,Xm ≥ u, Tm−1 + u ≤ C}.

Suppose we have n i.i.d. replicates of {Nhj(·;m), Y h(·;m), Zhj(·;m) : h, j ∈
E ,m ≥ 1}, denoted by {Nhj

i (·;m), Y h
i (·;m), Zhj

i (·;m) : h, j ∈ E ,m ≥ 1}, i = 1, . . . , n.

Define

N̄hj
w (u; t) =

∑
i,m

∫ u

0

Kw(t− Tm−1,i)N
hj
i (dv;m)

and

Ȳ h
w (u; t) =

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m),

where Kw(·) = w−1K(·/w) with a kernel function K(·) and a bandwidth w.

Remark 4.3.1. Note that N̄hj
w (u; t) is a weighted sum of numbers of observed transi-

tions from h to j with duration ≤ u and starting around study time t, and Ȳ h
w (u; t)

is a weighted sum of numbers of observed transitions from state h to take time ≥ u

and starting around study time t.

We consider the kernel estimator

Âhj(τ ; t) =

∫ τ

0

N̄hj
w (du; t)

Ȳ h
w (u; t)

(4.3.1)

for the cumulative transition rate function Ahj(τ ; t), and estimate the NHSM kernel

Qhj(τ ; t) by

Q̂hj(τ ; t) =

∫ τ

0

(
1− Ĥh(u−; t)

) N̄hj
w (du; t)

Ȳ h
w (u; t)

,

where

Ĥh(u; t) = 1−
∏
v≤u

(
1− 4N̄h·

w (dv; t)

Ȳ h
w (v; t)

)
.

Proposition 4.3.1. The estimator Âhj(τ ; t) in (4.3.1) can be viewed as a local max-

imum likelihood estimator with the local constant assumption on the study time scale

t.
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Proof. Recall that the log-likelihood is

l(α) =
∑

i

∑
h,j

[∫ ∞

0

log λhj
i (t)dÑhj

i (t)−
∫ ∞

0

λhj
i (t)dt

]
,

where λhj
i (t) = Ỹ h

i (t)αhj (Bi(t);Ui(t)) with Ui(t) = t − Bi(t) as the last transition

time before the study time t.

We define the local likelihood for αhj(τ ; t) at t0 with the local constant assumption

on the chronological time scale t as

l(α; t0, τ) =
∑

i

∑
h,j

[ ∫ ∞

0

Kw(t0 − Ui(t)) log [αhj (Bi(t); t0)] dÑ
hj
i (t)

−
∫ ∞

0

Kw(t0 − Ui(t))Ỹ
h
i (t)αhj (Bi(t); t0) dt

]
.

To proceed, we change the counting processes from the study time scale to the dura-

tion time scale. After some algebra, we have

l(α; t0, τ) =
∑
i,m

∑
h,j

[ ∫ ∞

0

Kw(t0 − Tm−1,i) log [αhj(u; t0)] dN
hj
i (u;m)

−
∫ ∞

0

Kw(t0 − Tm−1,i)Y
h
i (u;m)αhj(u; t0)dv

]
.

So the local maximum likelihood estimator for Ahj(τ ; t0) =
∫ τ

0
αhj(u; t0)du is

Âhj(τ ; t0) =
∑
i,m

∫ τ

0

Kw(t0 − Tm−1,i)dN
hj
i (u;m)∑

m,iKw(t0 − Tm−1,i)Y h
i (u;m)

,

which is the one given by (4.3.1).

Remark 4.3.2. Working in the context of a nonparametric hazard model for survival

data with time-dependent covariates, McKeague and Utikal (1990b) study Beran’s

(1981) estimator of the conditional cumulative hazard function, which has a functional

form similar to our estimator. Their estimator can be viewed as a local likelihood

estimator with the local constant assumption on the duration time scale τ , which can

not be easily used to estimate the semi-Markov kernel in our context.

We can then estimate the transition rate function αhj(τ ; t0) by

α̂hj(τ ; t0) =

∫
Kb(τ − u)Âhj(du; t0),

=
∑
i,m

∫ ∞

0

Kw(t0 − Tm−1,i)Kb(τ − u)dNhj
i (u;m)∑

m,iKw(t0 − Tm−1,i)Y h
i (u;m)

,
(4.3.2)
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where b is another bandwidth.

For the sole purpose of estimating the transition rate function αhj(τ ; t), we can

construct a local maximum likelihood estimator with the local constant assumption

on the both time scales. Specifically, we define the local likelihood at (t0, τ0) to be

l(α; t0, τ0) =
∑

i

∑
h,j

[ ∫ ∞

0

Kb,w(τ0 −Bi(t), t0 − Ui(t)) log [αhj (Bi(t);Ui(t))] dÑ
hj
i (t)

−
∫ ∞

0

Kb,w(τ0 −Bi(t), t0 − Ui(t))Ỹ
h
i (t)αhj (Bi(t);Ui(t)) dt

]
,

where Kb,w(., .) is a bivariate smoothing kernel. Assuming αhj(τ ; t) to be locally

constant around (t0, τ0), we have

l(α; t0, τ0) =
∑

i

∑
h,j

[
log [αhj(τ0; t0)]

∫ ∞

0

Kb,w(τ0 −Bi(t), t0 − Ui(t))dÑ
hj
i (t)

− αhj(τ0; t0)

∫ ∞

0

Kb,w(τ0 −Bi(t), t0 − Ui(t))Ỹ
h
i (t)dt

]
.

It is easy to show that l(α; t0, τ0) is maximized at

α̃hj(τ0; t0) =

∑
i

∫∞
0
Kb,w(τ0 −Bi(t), t0 − Ui(t))dÑ

hj
i (t)∑

i

∫∞
0
Kb,w(τ0 −Bi(t), t0 − Ui(t))Ỹ h

i (t)dt
. (4.3.3)

This estimator has also been studied by Nielsen and Linton (1995), in the context of

a nonparametric hazard model for survival data with time-dependent covariates.

4.3.2 Asymptotic Properties

Let

Fh(t, u;m) = P{Tm−1,i ≤ t, Y h
i (u;m) = 1} (4.3.4)

and fh(t, u;m) be the corresponding density with respect to Lebesgue measure. De-

note fh(t, u) =
∑

m fh(t, u;m), which we assume to be finite.

We assume that the kernel function K(·) is continuous with support [−1, 1], and

is symmetric about 0. Define the kernel moments

K1 =

∫ 1

−1

q2K(q)dq, and K2 =

∫ 1

−1

(K(q))2 dq. (4.3.5)

In what follows, we work with interior points so that we do not need to worry about

boundary effects.
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Lemma 4.3.2. Suppose αhj(u; t) is twice, and fh(t, u;m) and fh(t, u) is once contin-

uously differentiable in t. Then for each fixed t, as w → 0 and nw →∞,

1

n

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m)

P−→ fh(t, u), (4.3.6)

w

n

∑
i,m

(Kw(t− Tm−1,i))
2 Y h

i (u;m)αhj(u;Tm−1,i)
P−→ K2αhj(u; t)fh(t, u), (4.3.7)

and

1

nw2

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m) [αhj(u;Tm−1,i)− αhj(u; t)]

P−→ K1

[
∂αhj

∂t
(u; t)

∂fh

∂t
(t, u) +

fh(t, u)

2

∂2αhj

∂t2
(u; t)

]
,

(4.3.8)

uniformly in u, as n→∞.

Proof. We first show (4.3.6). Note that

E

(
1

n

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m)

)
=
∑
m

∫
Kw(t− s)fh(s, u;m)ds

=
∑
m

∫
K(q)fh(t− wq, u;m)dq,

by a change of variable q = (t − s)/w. By continuity of fh(t, u;m) and Lebesgue’s

dominated convergence theorem,∑
m

∫
K(q)fh(t− wq, u;m)dq −→

∑
m

fh(t, u;m) = fh(t, u).

Then (4.3.6) follows by the uniform law of large numbers (Pollard, 1990, Theorem

8.2, page 39).

Similarly,

E

(
w

n

∑
i,m

(Kw(t− Tm−1,i))
2 Y h

i (u;m)αhj(u;Tm−1,i)

)

=
∑
m

w

∫
(Kw(t− s))2 αhj(u; s)fh(s, u;m)ds

=
∑
m

∫
(K(q))2 αhj(u; t− wq)fh(t− wq, u;m)dq

−→ K2αhj(u; t)fh(t, u),
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by continuity of αhj(u; t) and fh(t, u;m), and Lebesgue’s dominated convergence the-

orem. Then (4.3.7) follows by the uniform law of large numbers (Pollard, 1990,

Theorem 8.2, page 39).

It remains to show (4.3.8). After a change of variable q = (t− s)/w,

E

(
1

n

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m) [αhj(u;Tm−1,i)− αhj(u; t)]

)

=
∑
m

∫
Kw(t− s) [αhj(u; s)− αhj(u; t)] fh(s, u;m)ds

=
∑
m

∫
K(q) [αhj(u; t− wq)− αhj(u; t)] fh(t− wq, u;m)ds

=

∫
K(q) [αhj(u; t− wq)− αhj(u; t)] fh(t− wq, u)ds

By Taylor’s theorem,

αhj(u; t− wq)− αhj(u; t) = −wq∂αhj

∂t
(u; t) +

w2q2

2

∂2αhj

∂t2
(u; t∗),

fh(t− wq, u) = fh(t, u)− wq
∂fh

∂t
(t∗∗, u),

where t∗ and t∗∗ are between t and t − wq. Since
∫ 1

−1
K(q)dq = 0 by symmetry of

K(·) about 0, we have∫
K(q) [αhj(u; t− wq)− αhj(u; t)] fh(t− wq, u)ds

= w2K1

[
∂αhj

∂t
(u; t)

∂fh

∂t
(t, u) +

fh(t, u)

2

∂2αhj

∂t2
(u; t)

]
[1 + o(1)] ,

by continuity and Lebesgue’s dominated convergence theorem. Now by the uniform

law of large numbers (Pollard, 1990, Theorem 8.2, page 39),

1

nw2

∑
i,m

Kw(t− Tm−1,i)Y
h
i (u;m) [αhj(u;Tm−1,i)− αhj(u; t)]

P−→ K1

[
∂αhj

∂t
(u; t)

∂fh

∂t
(t, u) +

fh(t, u)

2

∂2αhj

∂t2
(u; t)

]
,

uniformly in u.

Let

A∗hj(τ ; t) =

∫ τ

0

∑
i,mKw(t− Tm−1,i)Y

h
i (u;m)αhj(u;Tm−1,i)du∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

. (4.3.9)
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Then

Âhj(τ ; t) =

∫ τ

0

N̄hj
w (du; t)

Ȳ h
w (u; t)

=

∫ τ

0

∑
i,mKw(t− Tm−1,i)dN

hj
i (u;m)∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

=

∫ τ

0

∑
i,mKw(t− Tm−1,i)dM

hj
i (u;m)∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

+ A∗hj(τ ; t).

So we can write

Âhj(τ ; t)− Ahj(τ ; t) =
(
Âhj(τ ; t)− A∗hj(τ ; t)

)
+
(
A∗hj(τ ; t)− Ahj(τ ; t)

)
,

where

Âhj(τ ; t)− A∗hj(τ ; t) =

∫ τ

0

∑
i,mKw(t− Tm−1,i)dM

hj
i (u;m)∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

(4.3.10)

and

A∗hj(τ ; t)−Ahj(τ ; t) =

∫ τ

0

∑
i,mKw(t− Tm−1,i)Y

h
i (u;m) [αhj(u;Tm−1,i)− αhj(u; t)] du∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

.

(4.3.11)

Theorem 4.3.3. Suppose αhj(u; t) is twice, and fh(t, u;m) and fh(t, u) is once con-

tinuously differentiable in t. Then for each fixed t, as w → 0 and nw →∞,

(i)
√
nw
(
Âhj(·; t)− A∗hj(·; t)

)
converges weakly to a mean zero Gaussian process

A(·; t), which has independent increments and variance function

var (A(τ ; t)) = K2

∫ τ

0

αhj(u; t)du

fh(t, u)
; (4.3.12)

(ii)

w−2
(
A∗hj(τ ; t)− Ahj(τ ; t)

) P−→
∫ τ

0

K1

[
∂αhj

∂t
(u; t)∂fh

∂t
(t, u)

fh(t, u)
+

1

2

∂2αhj

∂t2
(u; t)

]
du.

(4.3.13)

Proof. By (4.3.10) and Lemma 4.3.2,

Var
[√

nw
(
Âhj(·; t)− A∗hj(·; t)

)]
= nw

∫ τ

0

∑
i,m(Kw(t− Tm−1,i))

2Y h
i (u;m)αhj(u;Tm−1,i)du[∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

]2
P−→ K2

∫ τ

0

αhj(u; t)du

fh(t, u)
.
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Using empirical process theory similar to Chapter 3, we can show that, as a function

of τ for fixed t,
√
nwVhj(t, τ) converges weakly to a zero mean Gaussian process with

independent increment and the above variance function. (ii) follows immediately by

(4.3.11) and Lemma 4.3.2.

Remark 4.3.3. Theorem 4.3.3 can be used to construct confidence intervals and con-

fidence bands of Ahj(τ ; t). The optimal bandwidth has order w ∼ n−1/5.

Remark 4.3.4. From (1.2.9), we can estimate the semi-Markov kernel Qhj(τ ; t) by

Q̂hj(τ ; t) =

∫ τ

0

exp

[
−
∑
k 6=h

Âhk(u; t)

]
Âhj(du; t).

The asymptotic property can be derived by the functional delta method.

We now consider the asymptotic properties of α̂hj(τ ; t), the transition rate esti-

mator defined in (4.3.2). Write

α̂hj(τ ; t) =

∫
Kb(τ − u)Âhj(du; t)

=

∫
Kb(τ − u)

∑
i,mKw(t− Tm−1,i)dN

hj
i (u;m)∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

.

So

α̂hj(τ ; t)− αhj(τ ; t) = Vhj(t, τ) + Bhj(t, τ),

where

Vhj(t, τ) =

∫
Kb(τ − u)

∑
i,mKw(t− Tm−1,i)dM

hj
i (u;m)∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

(4.3.14)

and

Bhj(t, τ) =

(∫
Kb(τ − u)αhj(u; t)du− αhj(τ ; t)

)
(4.3.15)

+

∫
Kb(τ − u)

∑
i,mKw(t− Tm−1,i)Y

h
i (u;m)[αhj(u;Tm−1,i)− αhj(u; t)]du∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

(4.3.16)

(4.3.17)

Theorem 4.3.4. Suppose αhj(u; t) is twice, and fh(t, u;m) and fh(t, u) is once con-

tinuously differentiable in t. For fixed (t, τ), if b ∼ w and nw2 →∞, then
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(i)
√
nw2Vhj(t, τ)

D−→ N

(
0,
K2

2αhj(τ ; t)

fh(t, τ)

)
; (4.3.18)

(ii)

w−2Bhj(t, τ)
P−→ K1

[
∂αhj

∂t
(τ ; t)∂fh

∂t
(t, τ)

fh(t, τ)
+

1

2

∂2αhj

∂t2
(τ ; t) +

1

2

∂2αhj

∂τ 2
(τ ; t)

]
.

(4.3.19)

Proof. We have

Var
(√

nw2Vhj(t, τ)
)

= nw2

∫
(Kb(τ − u))2

∑
i,m(Kw(t− Tm−1,i))

2Y h
i (u;m)αhj(u;Tm−1,i)du[∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

]2
P−→ nw2

∫
(Kb(τ − u))2 K2αhj(u; t)du

nwfh(t, u)
, (by Lemma 4.3.2)

=
w

b

∫
(K(v))2 K2αhj(τ − bv; t)dv

fh(t, τ − bv)
, (v = (τ − u)/b)

P−→ K2
2αhj(τ ; t)

fh(t, τ)
,

by continuity and Lebesgue’s dominated convergence theorem. Using empirical pro-

cess theory similarly to Chapter 3, we can show that
√
nw2Vhj(t, τ) converges weakly

to a zero mean Gaussian random variable with the above variance.

By a change of variable and Taylor’s theorem, we have∫
Kb(τ − u)αhj(u; t)du− αhj(τ ; t) =

∫
K(v) [αhj(τ − bv; t)− αhj(τ ; t)]

=

∫
K(v)

b2v2

2

∂2αhj

∂τ 2
(τ ∗; t)

= b2
K1

2

∂2αhj

∂τ 2
(τ ; t) [1 + o(1)] ,

by continuity and Lebesgue’s dominated convergence theorem. By Lemma 4.3.2 and

Lebesgue’s dominated convergence theorem,∫
Kb(τ − u)

∑
i,mKw(t− Tm−1,i)Y

h
i (u;m)[αhj(u;Tm−1,i)− αhj(u; t)]du∑

i,mKw(t− Tm−1,i)Y h
i (u;m)

P−→ w2

∫
Kb(τ − u)K1

[
∂αhj

∂t
(u; t)∂fh

∂t
(t, u)

fh(t, u)
+

1

2

∂2αhj

∂t2
(u; t)

]
du

P−→ w2K1

[
∂αhj

∂t
(τ ; t)∂fh

∂t
(t, τ)

fh(t, τ)
+

1

2

∂2αhj

∂t2
(τ ; t)

]
.
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Thus

w−2Bhj(t, τ)
P−→ K1

[
∂αhj

∂t
(τ ; t)∂fh

∂t
(t, τ)

fh(t, τ)
+

1

2

∂2αhj

∂t2
(τ ; t) +

1

2

∂2αhj

∂τ 2
(τ ; t)

]

Remark 4.3.5. Theorem 4.3.4 can be used to construct confidence intervals and con-

fidence bands of αhj(τ ; t). The optimal bandwidth has order w ∼ n−1/6.

4.4 Nonparametric Multiplicative Model

4.4.1 Model

In this section, we consider a structured nonparametric model for the transition in-

tensity functions, a nonparametric multiplicative model:

αhj(τ ; t) = ψhj(t+ τ)γhj(τ).

Under the nonparametric multiplicative model, the log-likelihood reduces to

l(ψ, γ) =
∑

i

∑
h,j

[ ∫ ∞

0

logψhj(t)dÑ
hj
i (t) +

∫ ∞

0

log γhj(Bi(t))dÑ
hj
i (t)

−
∫ ∞

0

Ỹ h
i (t)ψhj(t)γhj(Bi(t))dt

]
.

Note that ψhj(.) and γhj(.) are not simultaneously identifiable. One may multiply

one component by an arbitrary constant and divide the other component by the same

component to obtain the same αhj(·; ·). To avoid this nonidentifiability and without

loss of generality, we impose the normalization that γhj(0) = 1.

If γhj(.) is known, we can estimate the cumulative version of ψhj(.), Ψhj(t) =∫ t

0
ψhj(u)du, by a Nelson-Aalen type estimator Ψ̂hj(t), and then estimate ψhj(.) by

kernel smoothing of Ψ̂hj(t). If ψhj(.) is known, we can estimate the cumulative version

of γhj(.), Γhj(τ) =
∫ τ

0
γhj(v)dv, by a Nelson-Aalen type estimator after changing the

time scale of counting processes from the study time to the duration time, and then

estimate γhj(.) by kernel smoothing of its estimated cumulative version. A detailed

estimation procedure is presented in the following.
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4.4.2 Algorithm

We propose an algorithm for estimating αhj(τ ; t). Starting from an estimate γ̂hj(.) of

γhj(.), it iteratively estimates ψhj(.) and then γhj(.) until convergence. Specifically,

Step 1. Estimate ψhj(.) based on

l1(ψ) =
∑
h,j

∑
i

[∫ ∞

0

logψhj(t)dÑ
hj
i (t)−

∫ ∞

0

Ỹ h
i (t)ψhj(t)γ̂hj(Bi(t))dt

]
,

which gives

ψ̂hj(t) =
∑

i

∫ ∞

0

Kw(t− u)dÑhj
i (u)∑

i Ỹ
h
i (u)γ̂hj(Bi(u))

.

Step 2. Estimate γhj(.) based on

l2(γ) =
∑
h,j

∑
i

[∫ ∞

0

log γhj(Bi(t))dÑ
hj
i (t)−

∫ ∞

0

Ỹ h
i (t)ψ̂hj(t)γhj(Bi(t))dt

]
,

which leads to

γ̂hj(τ) =
∑

i

∫ ∞

0

Kb(τ − u)dNhj
i (u)∑

m,i Y
h
i (u;m)ψ̂hj(Tm−1,i + u)

.

Step 3. Iterative between Step 1 and Step 2 until both ψhj(.) and γhj(.) converge.

Remark 4.4.1. The algorithm we propose is a backfitting algorithm. Convergence

of the algorithm warrants further investigation. We use the nonparametric estimate

obtained from Section 4.3 as the initial value, and have not encountered convergence

difficulty in our applications.

The estimation in Step 1 can be implemented using kernel smoothing of

Ψ̂hj(t) =
∑

i

∫ t

0

dÑhj
i (u)∑

i Ỹ
h
i (u)γ̂hj(Bi(u))

,

a Nelson-Aalen type estimator of Ψhj(t) =
∫ t

0
ψhj(u)du. Step 2 can be implemented

as follows. Change the time scale of the counting processes in l2(γ) from study time

to duration time. After some algebra, we have

l2(γ) =
∑
h,j

∑
i

[∫ ∞

0

log γhj(τ)dN
hj
i (τ)−

∫ ∞

0

∑
m

Y h
i (τ ;m)ψ̂hj(Tm−1,i + τ)γhj(τ)dτ

]
.

We can then estimate Γhj(τ) =
∫ τ

0
γhj(v)dv by a Nelson-Aalen type estimator

Γ̂hj(τ) =
∑

i

∫ τ

0

dNhj
i (u)∑

m,i Y
h
i (u;m)ψ̂hj(Tm−1,i + u)

.

Finally, γ̂hj(.) is obtained by kernel smoothing of Γ̂hj(.).
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4.5 Semiparametric Estimation

In this section, we consider semiparametric estimation with NHSM processes by spec-

ifying the effect of the study time or the duration time in a parametric form. Specif-

ically, we consider the following two semiparametric models:

αhj(τ ; t) = α0hj(τ) exp(θ′Zhj(t)), (4.5.1)

and

αhj(τ ; t) = α0hj(t+ τ) exp(θ′Zhj(τ)), (4.5.2)

where Zhj(·) is a deterministic vector function. Note that Model (4.5.2) has a multi-

plicative intensity form, and has been well studied (Andersen and Gill, 1982; Andersen

et al., 1993). Model (4.5.1) is a special modulated semi-Markov model we studied in

Chapter 3. In what follows, we focus on estimation with Model (4.5.1), which use the

duration time as the basic time scale in the baseline transition rate function.

For simplicity of notation and without loss of generality, we work on the univariate

function Zhj(t) ≡ t. Thus Model (4.5.1) simplifies to

αhj(τ ; t) = α0hj(τ) exp(θt).

Applying the methods in Chapter 3, we can get estimators θ̂ of θ, and Â0hj(·) of

A0hj(·), where

A0hj(τ) =

∫ τ

0

α0hj(u)du

is the cumulative baseline transition rate function. We can then estimate α0hj(·) by

kernel smoothing:

α̂0hj(τ) =

∫
Kb(τ − u)dÂ0hj(u).

Thus an estimator for the transition rate function αhj(τ ; t) is

α̂hj(τ ; t) = α̂0hj(τ) exp(θ̂t).

From (1.2.9), we can then estimate the semi-Markov kernel Qhj(τ ; t) by

Q̂hj(τ ; t) =

∫ τ

0

exp

[
−
∑
k 6=h

Âhk(u; t)

]
Âhj(du; t),

where

Âhj(u; t) = Â0hj(u) exp(θ̂t).
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4.6 Simulation

We simulated N = 300 realizations of a three-state process with state 3 absorbing.

Each path starts from state 1 or 2 equally likely and being observed until censoring

time C = 5. The true transition rate functions are

α12(τ ; t) = 1.6τe−t/ξ0 , α13(τ ; t) = 2τ
(
1− 0.8e−t/ξ0

)
,

α21(τ ; t) = 1.2τe−t/ξ0 , α23(τ ; t) = 2τ
(
1− 0.6e−t/ξ0

)
.

Here the transition probabilities are given by P12(t) = 0.8e−t/ξ0 and P21(t) = 0.6e−t/ξ0 .

The conditional sojourn time distribution Fhj(τ ; t) is Weibull with shape parameter

2 and scale parameter 1, for all h 6= j and t.

We estimated the cumulative transition rates, semi-Markov Kernel, and transition

rates. The semiparametric, piecewise constant, multiplicative nonparametric, and

nonparametric estimation procedures were implemented and compared. Model (4.5.1)

with Zhj(t) ≡ t was used in the semiparametric estimation. Four equally spaced

partitions on the study time scale were used in the piecewise constant approach. The

sample means of the estimates based on 100 replicates were calculated. We consider

two different simulation settings:

Setting 4.1. ξ0 = ∞, which leads to a homogeneous semi-Markov model.

Setting 4.2. ξ0 = 3, which gives a nonhomogeneous semi-Markov model.

In the first setting, all the model assumptions required by the above four approaches

are satisfied. Thus we can compare the efficiency of the different approaches. In

the second setting, the semiparametric and the nonparametric multiplicative model

assumptions are violated. Thus we can study robustness of the approaches against

model misspecification. We used the Epanechnikov kernel function given in Table

4.1. The bandwidths w for the study time scale and b for the duration time scale

were chosen as 0.4 in both settings.

The results of Setting 4.1 are shown in Figures 4.1 to 4.8. Figures 4.1 to 4.4 present

the 3-dimensional surface plots of the sample means of the estimated transition rate

functions in the two times. Figures 4.5 and 4.6 show the associated profiles of the

sample means and standard deviations of the estimated transition rate functions. The

profile functions of the estimated semi-Markov kernels are given in Figures 4.7 and

4.8. All the approaches gave approximately unbiased estimates. Approaches with
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more structured models, such as the semiparametric model, have smaller standard

deviations and thus lead to more efficient inferences.

The results of Setting 4.2 are shown in Figures 4.9 to 4.16. In this setting, the

estimation procedures based on the semiparametric model produced obviously biased

estimates due to the model misspecification. The piecewise constant approach and the

nonparametric estimation procedure performed well under the setting as expected.

The estimation with the multiplicative nonparametric model, which is not correctly

specified, showed certain robustness of the approach to the model misspecification.
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4.7 Extensions

In this chapter, we consider estimation procedures with NHSM processes under dif-

ferent model assumptions. The models are nested, which can be utilized to conduct

model checking. For instance, if the multiplicative nonparametric model fit the data

adequately, the estimated cumulative transition rate functions under the multiplica-

tive nonparametric model should be close to the one based on the fully nonparametric

approach. If the multiplicative nonparametric model is appropriate, the difference

should be fluctuate around zero without any pattern.

In Section 4.4, we consider a particular nonparametric structured model: the

nonparametric multiplicative model. Another nonparametric structured model for

future research is the nonparametric additive model, in which the transition intensities

depend on the study time and the duration time additively, and the functional forms

are left unspecified. The iterative algorithm developed in Section 4.4 can be adapted.

Theoretical justification for convergence of the algorithms is left for future research.

Kernel smoothing methods are used in both the nonparametric and structured

nonparametric estimation procedures for the NHSM model. Thus bandwidth selection

is an issue. The asymptotic distribution of the estimators may be too complicated to

be used in selecting the bandwidth by the plug-in method. Bandwidth selection has

been well studied in the context of hazard rate estimation with survival data. Patil

(1993) proposes the least squares cross-validation method. González-Manteiga et al.

(1996) introduce a bootstrap approach. These methods can be potentially adapted

to the current setting.



Chapter 5

Semi-Markov Process with

Informative Censoring

5.1 Introduction

Event history data are often incompletely observed. Up to the last chapter, we have

worked on the observation scheme that the event process is continuously observed

subject to right censoring at time C, which is assumed to be independent of the

process itself. Although the independent censoring assumption may be plausible in

some situations such as with administrative censoring, it is often questionable in many

other situations where censoring is due to dropout or competing risks.

With survival data, the simplest structure of event history data, the well-known

Kaplan-Meier (1958) estimator is inconsistent for the survival function when the

censoring is dependent on the survival time. In fact, the survival function is not iden-

tifiable from the observable data (Tsiatis, 1975). Without additional assumptions

about the dependence, it is only possible to determine the bounds for the survival

function (Peterson, 1976). However, such bounds are often too wide to be of prac-

tical use. Two alternative approaches have been proposed in the literature, both

of which require assumptions that can not be verified with the observed data. The

first approach assumes that the survival time and the censoring time are indepen-

dent, conditional on some available covariates (Robins, 1987; Robins and Rotnitzky,

1992; Robins, 1993; Satten et al., 2001), or some latent variables (Link, 1989; Oakes,

1989; Huang and Wolfe, 2002). The second approach imposes assumptions about the

dependence between survival time and censoring time (Fisher and Kanareck, 1974;

97
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Williams and Lagakos, 1977; Slud and Rubinstein, 1983; Klein and Moeschberger,

1988; Carrière, 1995; Zheng and Klein, 1995; Rivest and Wells, 2001; Braekers and

Veraverbeke, 2005). Based on some some prior knowledge or subjective information

about the range of possible strengths of the association between the survival time and

the censoring time, one can then conduct sensitivity analysis and provide plausible

bounds on the survival function (Zheng and Klein, 1995; Huang and Zhang, 2008).

In this chapter, we consider a particular type of informative right censoring in-

volved in semi-Markov process observation. Motivated by the competing risks for-

mulation of HSM processes (Lagakos et al., 1978), we model the possible informative

censoring mechanism as another competing risk. We assume that the resulting pro-

cess becomes a new semi-Markov process if censoring is viewed as a new absorbing

state in addition to the original process. Thus the large literature on dependent com-

peting risks can be adapted in the setting. In particular, we adapt a copula-based

approach proposed by Zheng and Klein (1995). The advantage of a copula approach

is that the marginal distributions need not to be specified, and can be estimated

nonparametrically.

The rest of this chapter is organized as follows. In Section 5.2 and Section 5.3,

we present a model for informative censoring and the associated estimation proce-

dure, respectively. We examine the approach with a simulation study in Section 5.4.

Section 5.5 concludes this chapter with some remarks.

5.2 Modeling Informative Censoring

5.2.1 Assumptions

Consider a multi-state process, formulated by the two-dimensional process (J,T) =

{(Jm, Tm) : m = 0, 1, . . .}, where the process {Jm : m = 0, 1, 2, . . .}, taking values in

the set E = {1, 2, . . . , r}, gives the sequence of states visited by the system, and the

sequence {Tm : m = 0, 1, . . .} is the set of the corresponding transition times.

Suppose the original event process is observed up to a censoring time D. We view

the censoring as a new absorbing state, denoted by r + 1. Then we end up with a

new multi-state process which can be presented by a new two-dimensional process

(J∗,T∗) = {(J∗m, T ∗m) : m = 0, 1, . . .}, where the process {J∗m,m = 0, 1, 2, . . .}, taking

values in the set E∗ = {1, 2, . . . , r, r + 1}, gives the sequence of states visited by the

new multi-state process, and {T ∗m : m = 0, 1, . . .} are the corresponding transition
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times.

To see the relationship between (J∗,T∗) and (J,T), let M be the random variable

such that TM < D ≤ TM+1. In the case that the original multi-state process has

absorbing states and the original process enters an absorbing state before censored

by D, such M does not exist, and we define M = ∞. Otherwise, we can easily see

that (J∗m, T
∗
m) = (Jm, Tm) for m = 0, . . . ,M , J∗M+1 = r + 1, and T ∗M+1 = D.

We first make the following assumptions about the informative censoring mecha-

nism:

Assumption 5.A1. Given D ≥ Tm, the joint distribution of (D − Tm, Jm+1, Xm+1)

depends on the past history {J0, T0, . . . , Jm, Tm} only through (Jm, Tm), i.e.,[
D − Tm, Jm+1, Xm+1

∣∣D ≥ Tm, Jm, Tm, . . . , J0, T0

]
∼
[
D − Tm, Jm+1, Xm+1

∣∣D ≥ Tm, Jm, Tm

]
,

(5.2.1)

which is free of m.

Assumption 5.A2. In addition to Assumption 5.A1, the conditional distribution in

(5.2.1) is also free of Tm.

Proposition 5.2.1. Under Assumption 5.A1 (5.A2), the resulting process (J∗,T∗)

forms a NHMR (HMR) process.

Proof. For any h ≤ r, we have

P
{
J∗m+1 = r + 1, X∗

m+1 ≤ τ
∣∣J∗m = h, T ∗m = t, J∗m−1, T

∗
m−1, · · ·

}
=P

{
D − Tm ≤ Xm+1, D − Tm ≤ τ

∣∣
D ≥ Tm, Jm = h, Tm = t, Jm−1, Tm−1, · · ·

}
=P

{
D − Tm ≤ Xm+1, D − Tm ≤ τ

∣∣D ≥ Tm, Jm = h, Tm = t
}

=P
{
J∗m+1 = r + 1, X∗

m+1 ≤ τ
∣∣J∗m = h, T ∗m = t

}
,

where the first and the third equalities follow from the relationship between (J∗,T∗)

and (J,T), and the second equality holds by Assumption 5.A1.

Similarly, for any h, j ∈ E ,

P{J∗m+1 = j,X∗
m+1 ≤ τ

∣∣J∗m = h, T ∗m = t, J∗m−1, T
∗
m−1, · · · }

=P

{
D − Tm > Xm+1, Jm+1 = j,Xm+1 ≤ τ

∣∣
D ≥ Tm, Jm = h, Tm = t, Jm−1, Tm−1, · · · }

}
=P{D − Tm > Xm+1, Jm+1 = j,Xm+1 ≤ τ

∣∣D ≥ Tm, Jm = h, Tm = t}

=P{J∗m+1 = j,X∗
m+1 ≤ τ

∣∣J∗m = h, T ∗m = t}.
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Thus the resulting process (J∗,T∗) is a NHMR process under Assumption 5.A1.

Similarly (J∗,T∗) is a HMR process under Assumption 5.A2.

Remark 5.2.1. The simple survival process can be represented by {J0 = 0, T0 =

0, J1 = 1, T1 = T}, where T is the survival time, 0 represents the state ‘alive’, and

1 for ‘death’. If we view the informative censoring as a new absorbing state 2, then

Assumptions 5.A1 and 5.A2 are both trivially satisfied. The resulting process is a

dependent competing risks process (and a semi-Markov process, of course).

Remark 5.2.2. Assumption 5.A1 implies that the censoring mechanism has a certain

renewal property with the original semi-Markov process: givenD ≥ Tm, the remaining

time to censoring D − Tm depends on the past history (J0, T0), . . . , (Jm, Tm) only

through (Jm, Tm), the state and time of the mth transition of the original multi-state

process. Furthermore, Assumption 5.A2 implies that given D ≥ Tm, the remaining

time to censoring D − Tm depends on the past history (J0, T0), . . . , (Jm, Tm) only

through Jm.

Remark 5.2.3. Assumption 5.A1 also implies that[
Jm+1, Xm+1

∣∣D ≥ Tm, Jm, Tm, . . . , J0, T0

]
∼
[
Jm+1, Xm+1

∣∣D ≥ Tm, Jm, Tm

]
,

free of m. It reduces to the semi-Markov kernel of the original semi-Markov process

if “D ≥ Tm” is removed. We thus make the assumption as follows.

Assumption 5.B. Assume that for all m, (Jm+1, Xm+1) and I{D ≥ Tm} are

independent conditional on {Jm, Tm, . . . , J0, T0}.

Remark 5.2.4. Assumption 5.B is weaker than the assumption that (Jm+1, Xm+1) and

D are independent conditional on {Jm, Tm, . . . , J0, T0}. For instance, Assumption 5.B

is automatically satisfied for the survival process subject to informative censoring at

time D. But (Jm+1, Xm+1) and D are independent conditional on {Jm, Tm, . . . , J0, T0}
implies that T and D are independent.

For the survival process subject to informative censoring at time D, the intensities

of the resulting 3-state process are simply the cause-specific hazards of the competing

risks:

h01(t) = lim4t↓0
P{T ∈ [t, t+4t)|T ≥ t,D ≥ t}

4t
,

h02(t) = lim4t↓0
P{D ∈ [t, t+4t)|T ≥ t,D ≥ t}

4t
.
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The cause-specific hazards are estimable. However, if we are interested in the original

survival process, i.e., the survival distribution of T , we need to remove the ‘censoring

cause’ from the process to estimate

hT (t) = lim4t↓0
P{T ∈ [t, t+4t)|T ≥ t}

4t
.

The nonidentifiability issue then arises as discussed in Section 5.1. An assumption

concerning the dependence between the survival time T and the censoring time D is

needed.

Thus to make inference about the original semi-Markov process, which is more

general than the survival process, we need to further model the relationship between

(Jm+1, Xm+1) and the remaining time to censoring D − Tm, given D ≥ Tm and

(Jm, Tm), the state and time of the mth transition of the original multi-state process.

If there are only two states in the original multi-state process, i.e., E = {1, 2}, then

Jm+1 is known given Jm. In this case, we only need to specify the dependence of

Xm+1 and D − Tm given (Jm, Tm). In what follows, we focus on this simple case and

model the dependence by copulas. Extensions to deal with the case that E has more

than two states is discussed in Section 5.5.

5.2.2 Copula Models

The copula models provide a flexible way to specify the dependence structure between

two random variables. A good introduction to copula functions is given by Nelsen

(1999). A two-dimensional copula is a bivariate distribution functionH(y1, y2) defined

on the square [0, 1]× [0, 1] with uniform one-dimensional marginal distributions. The

simplest copula function is the independence copula H(y1, y2) = y1y2. In this chapter,

we focus on the class of the Archimedean copulas, which have the form

H(y1, y2) = φ−1 [φ(S1(y1)) + φ(S2(y2))] (5.2.2)

where S1(·) and S2(·) are two survival functions, and φ(·) is a twice differentiable,

decreasing convex function defined on (0,1] satisfying φ(0) = ∞ and φ(1) = 0. As a

measure of association, the Kendall’s τ for the Archimedean copulas can be conve-

niently computed by

τ = 1 + 4

∫ 1

0

φ(u)

φ′(u)
du.
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As an example, the independence copula is a member of the Archimedean copulas. It

has φ(u) = log(1/u) and Kendall’s τ = 0. More Archimedean copulas are described

in Section 5.4.

As indicated in the previous section, we focus on the case that E = {1, 2}. The

model we consider is

P{Xm+1 > u,D − Tm > v, Jm+1 = 3− h|D ≥ Tm, Jm = h, Tm = t}

= φ−1
h,t [φh,t(Sh,3−h(u; t)) + φh,t(Sh3(v; t))],

(5.2.3)

where φh,t(·) is a known Archimedean copula function for h = 1, 2 and for each t,

Sh,3−h(u; t) = P{Xm+1 > u, Jm+1 = 3− h|D ≥ Tm, Jm = h, Tm = t},

and

Sh3(v; t) = P{D − Tm > v|D ≥ Tm, Jm = h, Tm = t}.

According to Assumption 5.B,

Sh,3−h(u; t) = P{Xm+1 > u, Jm+1 = 3− h|Jm = h, Tm = t},

which equals 1 − Qh,3−h(u; t), where Qh,3−h(u; t) is the semi-Markov kernel of the

original semi-Markov process. If the corresponding processes are HSM processes, we

can simply drop ‘t’ in Model (5.2.3).

5.3 Estimation Procedure

We consider estimation for the semi-Markov kernel of the original two-state semi-

Markov process based on observations subject to the informative right censoring under

Assumptions 5.A1 (5.A2) and 5.B, and Model (5.2.3). In addition to the informative

censoring time D, we also allow the observation subject to another censoring time C,

which is assumed independent of the original multi-state process and D. We consider

estimation procedures based on n i.i.d. resulting processes subject to the two types

of censoring.

We first consider estimation procedure for the new NHSM process. Viewing cen-

soring due to D as a new absorbing state 3, the resulting three-state process is a

NHSM process, which is observed subject to noninformative right censoring time C.

The semi-Markov kernel of the new NHSM process is given by

Q∗
12(τ ; t) = P{Xm+1 ≤ τ,D − Tm ≥ Xm+1|D ≥ Tm, Jm = 1, Tm = t},
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Q∗
13(τ ; t) = P{D − Tm ≤ τ,D − Tm < Xm+1|D ≥ Tm, Jm = 1, Tm = t},

Q∗
21(τ ; t) = P{Xm+1 ≤ τ,D − Tm ≥ Xm+1|D ≥ Tm, Jm = 2, Tm = t},

and

Q∗
23(τ ; t) = P{D − Tm ≤ τ,D − Tm < Xm+1|D ≥ Tm, Jm = 2, Tm = t}.

These kernel functions can be estimated by the methods developed in Chapter 4.

Denote the estimators by Q̂∗
12(τ ; t), Q̂

∗
13(τ ; t), Q̂

∗
21(τ ; t), and Q̂∗

23(τ ; t), respectively.

We are interested in the semi-Markov kernel of the original NHSM process, Q12(·; t)
and Q21(·; t). For a fixed t = t0, let u = v in Model (5.2.3),

φ1,t0(S1(u; t0)) = φ1,t0(S12(u; t0)) + φ1,t0(S13(u; t0)), (5.3.1)

where S1(u; t0) = 1 − Q∗
12(u; t0) − Q∗

13(u; t0), which can be estimated by Ŝ1(u; t0) =

1− Q̂∗
12(u; t0)− Q̂∗

13(u; t0). We assume that the semi-Markov kernel and the censoring

time distribution are continuous so that no tied observations occur. In this case,

Q̂∗
12(·; t0) and Q̂∗

13(·; t0) do not jump together.

Our estimator for the survival function S12(·; t0) is a right continuous decreasing

step function Ŝ12(·; t0) with Ŝ12(0; t0) = 1 and only changes when Q̂∗
12(·; t0) does.

Define

Q̂∗
12(∆u; t0) = Q̂∗

12(u−; t0)− Q̂∗
12(u; t0)

as the jump size of Q̂∗
12(·; t0) at time u. Since Q̂∗

12(·; t0) and Q̂∗
13(·; t0) do not jump

together, according to (5.3.1), for each u such that Q̂∗
12(∆u; t0) > 0,

φ1,t0(Ŝ12(u−; t0))− φ1,t0(Ŝ12(u; t0)) = φ1,t0(Ŝ1(u−; t0))− φ1,t0(Ŝ1(u; t0)). (5.3.2)

Summing (5.3.2) over all u’s less equal than τ for which Q̂∗
12(∆u; t0) > 0, we obtain

a closed form expression

Ŝ12(τ ; t0) = φ−1
1,t0

− ∑
u≤τ,Q̂∗

12(∆u;t0)>0

(
φ1,t0(Ŝ1(u−; t0))− φ1,t0(Ŝ1(u; t0))

) .
The semi-Markov kernelQ12(τ ; t0) can then be estimated by Q̂12(τ ; t0) = 1−Ŝ12(τ ; t0).

Similarly we can get a closed form estimator for the semi-Markov kernel Q21(τ ; t0).

Estimation procedure with a HSM process is a special case, in which we drop t

and t0 everywhere in the above procedure.
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5.4 Simulation

We simulated 300 subjects entering the study with staggered entry times generated

from unif(0, 3). The administrative end of study censoring time was a constant C =

4. The exponential distribution with mean 1.5 exp(−t/ξ0) are used as the distributions

1−S12(·; t) and 1−S23(·; t), and the exponential distribution with mean exp(−t/ξ0) as

the distributions 1−S13(·; t) and 1−S21(·; t). We considered two different simulation

settings:

Setting 5.1. ξ0 = ∞, the original two-state process is a HSM process,

Setting 5.2. ξ0 = 5, the original two-state process is a NHSM process.

The true copula used in the simulation for Model (5.2.3) belongs to Clayton’s

family (Clayton, 1978):

H(y1, y2;α) = [y−α
1 + y−α

2 − 1]−1/α, α > 0.

It is a class of the Archimedean copulas with φ(x) = (x−α − 1) /α and φ−1(x) =

(1 + αx)−1/α. It has Kendall’s τ = α/(α+ 2). It reduces to the independence copula

when α → 0. In this simulation, we took α = 1 so that Kendall’s τ = 1/3 for all

t. Note that this copula specification also results from a proportional frailty model,

where Xm+1 and D − Tm, provided D > Tm and (Jm, Tm) = (1, t), are assumed to

be independent conditional on a gamma distributed latent variable with mean 1 and

variance 1/α.

To examine the performance of the estimation procedures, we estimated the so-

journ time distributions of the original two-state process based on the true copula

function. We also evaluated the estimators based on the correct copula function but

with wrongly specified association parameter α = 3 which gives Kendall’s τ = 0.6.

In addition, as a comparison, we estimated the sojourn time distribution by ignoring

the dependent censoring.

To study the robustness of our estimator, we evaluated the estimators based on the

misspecified copula functions with Kendall’s τ ’s equal to the true value, i.e., 1/3. We

used two copula families. The first family is the Gumbel-Hougaard copulas (Gumbel,

1961; Hougaard, 1986):

H(y1, y2;α) = exp
[
−
{
(− log y1)

1/α + (− log y2)
1/α
}α
]
, α ∈ (0, 1),
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which is a class of the Archimedean copulas with φ(x) = (− log x)1/α and φ−1(x) =

e−xα
. It has Kendall’s τ = 1−α, and the independence copula corresponds to α→ 1.

The second family is Frank’s copulas (Frank, 1979):

H(y1, y2;α) = logα

{
1 +

(αy1 − 1)(αy2 − 1)

α− 1

}
, α > 0,

which is another class of the Archimedean copulas with φ(x) = − log
(

1−αx

1−α

)
and

φ−1(x) = logα {1− (1− α)e−x}. It has Kendall’s τ given by

1 +
4

logα

(
1

logα

∫ − log α

0

t

et − 1
dt+ 1

)
.

An important property of this family is that the association can be either positive

(when α < 1) or negative (when α > 1). The independence copula corresponds to

α→ 1.

The sample mean and sample standard deviations of the estimates based on 1000

replicates were calculated. The results of Settings 5.1 and 5.2 are summarized in

Figures 5.1 and 5.3, respectively. Note that the estimated semi-Markov kernel based

on the true copula function is approximately unbiased. The estimates based on the

wrong copula function but the correct Kendall’s τ are less biased than the estimates

with the correct copula function but the wrong Kendall’s τ . The estimates of the semi-

Markov kernel from state 1 to state 2 are more sensitive to the correct specification

of the association, Kendall’s τ , than that from state 2 to state 1.
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Figure 5.1: Truth and sample mean of estimated semi-Markov kernels in simulation
setting 5.1 (Solid: truth; Dotted: Clayton copula and Kendall’s τ = 1/3; Short
Dashed: Gumbel-Hougaard copula and Kendall’s τ = 1/3; Long dashed: Frank
copula and Kendall’s τ = 1/3; Short dotted dash: Clayton copula and Kendall’s
τ = 0.6; Long dotted dash: estimates ignoring informative censoring)
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Figure 5.2: Sample standard deviation of estimated semi-Markov kernels in simulation
setting 5.1 (Dotted: Clayton copula and Kendall’s τ = 1/3; Short Dashed: Gumbel-
Hougaard copula and Kendall’s τ = 1/3; Long dashed: Frank copula and Kendall’s
τ = 1/3; Short dotted dash: Clayton copula and Kendall’s τ = 0.6; Long dotted
dash: estimates ignoring informative censoring)
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Figure 5.3: Truth and sample mean of estimated semi-Markov kernels in simulation
setting 5.2 (Solid: truth; Dotted: Clayton copula and Kendall’s τ = 1/3; Short
Dashed: Gumbel-Hougaard copula and Kendall’s τ = 1/3; Long dashed: Frank
copula and Kendall’s τ = 1/3; Short dotted dash: Clayton copula and Kendall’s
τ = 0.6; Long dotted dash: estimates ignoring informative censoring)
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Figure 5.4: Sample standard deviation of estimated semi-Markov kernels in simulation
setting 5.2 (Dotted: Clayton copula and Kendall’s τ = 1/3; Short Dashed: Gumbel-
Hougaard copula and Kendall’s τ = 1/3; Long dashed: Frank copula and Kendall’s
τ = 1/3; Short dotted dash: Clayton copula and Kendall’s τ = 0.6; Long dotted
dash: estimates ignoring informative censoring)
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5.5 Remarks

In this chapter, we proposed a model and corresponding estimation procedure for

a type of informative right censored multi-state processes, specifically, semi-Markov

processes. We assume that the censoring scheme has certain “renewal” property with

respect to the semi-Markov processes. Under this assumption, the resulting process

can be broken into pieces of competing risks according to every transition. The

literature on dependent competing risks can then be adapted. We adapted the copula-

graphic approach proposed by Zheng and Klein (1995). Simulation studies suggest

that the inference procedure works well when the copula is correctly specified. When

the prior knowledge about the copula is not available, our approach can be used in a

sensitivity analysis for the assumption of noninformative censoring.

We focused on semi-Markov processes with two states. It is of interest to extend

the approach to the situations with more states. There is some extra difficulty to

specify the dependence between censoring and the semi-Markov processes, because

the next state to be visited by the original process can not be determined by the

current state occupied.

In the presence of continuous covariates, Heckman and Honore (1989) show that

the nonidentifiability problem of competing risks can be solved under a quite general

model structure (includes both proportional hazards and accelerated failure time

models), given the covariates satisfy a quite strong assumption (eg, the range is the

entire real line). Fermanian (2003) develops a nonparametric kernel estimator under

the model of Heckman and Honore (1989). This method may potentially be adapted

in the setting we consider.



Chapter 6

Applications

This chapter presents the applications of the proposed methods to the two real data

sets described in Chapter 1.

6.1 Human Sleep Data

6.1.1 Description

Zung et al. (1965) model human sleep patterns with a Markov chain. Yang and

Hursch (1973) test the Markov chain model with more data and find it likely inad-

equate in describing sleep stage sequences. They show that a semi-Markov model,

which takes into account the duration in the current state, represents the underlying

process better. By dividing the whole night into hourly intervals, they also find the

time heterogeneity of the human sleep process.

We analyzed the human sleep data introduced in Example 1.2 applying the meth-

ods developed in this thesis. Two realizations of the sleep processes are shown in

Figure 6.2. The frequency of all the observed transitions from the study, and median

and mean of the sojourn times are shown in Table 6.1. Note that the number of direct

Awake to REM transitions is small. More than half of the sojourn times in the state

Awake are less equal than 30 seconds.

111
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Table 6.1: Frequency of the observed transitions, and median and mean of the sojourn
times

Transition Number Median1 Mean1

Awake to Non-REM 1660 0.5 2.1
Awake to REM 55 0.5 0.6
Awake to Censoring 30 6.5 11.9

Non-REM to Awake 1368 3.5 10.6
Non-REM to REM 756 2.5 10.3
Non-REM to Censoring 27 13.0 13.1

REM to Awake 377 5.5 7.3
REM to Non-REM 421 4.5 6.8
REM to Non-Censoring 13 3.5 5.8
1 in minutes

6.1.2 Analyses of Human Sleep Data

6.1.2.1 Analysis with Homogeneous Semi-Markov Model

We first modeled the sleep process with the HSM model. Note from Table 6.1 that the

proportion of censoring is low from every state so that the transition probabilities can

be well estimated. The estimated transition probabilities of the embedding Markov

chain are summarized in Table 6.2 and Figure 6.1. All approaches, including the

robust approach, give similar estimates and confidence intervals for the transition

probabilities because of the negligible censoring. This indicates that the efficiency

of the robust approach is comparable with other approaches in the application. The

probability of the direct transition from Awake to REM is small (0.032 with 95% CI

0.021 to 0.042). The probability of the direct transition from Non-REM to REM is

estimated as 0.356 with 95% CI 0.313 to 0.399. About half of REM sleep transits to

Awake directly (0.473 with 95% CI 0.421 to 0.524).

The confidence bands of the semi-Markov kernel is presented in Figures 6.3. The

plot of estimated Q12(·) in Figure 6.3 indicates that, starting from Awake, about 90%

of subjects stay at non-REM sleep within 30 minutes. From the plots of estimated

Q21(·) and Q23(·) in Figure 6.3, we see that about 50% of subjects starting from non-

REM sleep turn to Awake in 30 minutes, about 30% of them move to REM sleep,

and about 20% of them remain in non-REM sleep in 30 minutes. Figure 6.4 shows

the confidence bands for the sojourn time distributions based on the robust approach.
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Table 6.2: Estimates and 95% confidence intervals of the transition probabilities for
the human sleep data (1: Awake, 2: Non-REM, 3: REM)

Plug-in Normalized Phelan Robust approach

P12
Estmate 0.968 0.968 0.968 0.968–0.968

CI (0.958, 0.979) (0.958, 0.979) (0.957, 0.979) (0.958, 0.979)

P13
Estmate 0.032 0.032 0.032 0.032–0.032

CI (0.021, 0.042) (0.021, 0.042) (0.021, 0.043) (0.021, 0.042)

P21
Estmate 0.644 0.644 0.644 0.644–0.644

CI (0.601, 0.687) (0.601, 0.687) (0.601, 0.687) (0.601, 0.687)

P23
Estmate 0.356 0.356 0.356 0.356–0.356

CI (0.313, 0.399) (0.313, 0.399) (0.313, 0.399) (0.313, 0.399)

P31
Estmate 0.473 0.473 0.472 0.473–0.473

CI (0.421, 0.524) (0.421, 0.524) (0.421, 0.524) (0.421, 0.524)

P32
Estmate 0.527 0.527 0.528 0.527–0.527

CI (0.476, 0.579) (0.476, 0.579) (0.476, 0.579) (0.476, 0.579)

Awake
(State 1)

Non-REM
(State 2)

REM
(State 3)
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Figure 6.1: Estimated transition probabilities for human sleep process
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The plot of estimated F12(·) indicates that 90% of the sojourn times from Awake to

non-REM sleep are less than 15 minutes.

6.1.2.2 Analysis with Modulated Semi-Markov Model

We then modeled the sleep process as a three-state modulated semi-Markov process.

We incorporated the study time since the onset of sleep as a time-dependent covariate,

denoted by Z(t), and allowed this covariate to have different regression effect on

different transitions. The specific model we used is given by

αhj(t|Ft, Zhj(t)) = α0hj (B(t)) eθhjZ(t), (6.1.1)

for h 6= j ∈ {1, 2, 3}. We used hour as the metric of time.

The estimated regression parameter θhj’s are summarized in Table 6.3. Note

that none of the 95% confidence intervals of the regression parameters contains 0,

which indicates that all the transitions are nonhomogeneous in the study time scale.

Specifically, the transition rates from Awake to Non-REM sleep and REM to Non-

REM are decreasing during the night, while the transition rates from Awake to REM,

Non-REM to Awake, Non-REM to REM, and REM to Awake are increasing during

the night.

Table 6.3: Point estimate, standard error and confidence interval of the regression
parameters for the human sleep data

Transition Estimate SE CI
Awake to Non-REM -0.023 0.010 (-0.043, -0.002)

Awake to REM 0.164 0.062 (0.042, 0.286)

Non-REM to Awake 0.038 0.012 (0.014, 0.062)

Non-REM to REM 0.154 0.017 (0.121, 0.187)

REM to Awake 0.096 0.028 (0.042, 0.150)

REM to Non-REM -0.057 0.025 (-0.107, -0.008)

6.1.2.3 Analysis with Nonhomogeneous Semi-Markov Model

In the analysis with the modulated semi-Markov model, we have found evidence that

the sleep process is not homogeneous in study time. Thus the NHSM model is likely
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a better model for the process.

We modeled the sleep process as a NHSM process with three states: Awake, Non-

REM and REM. We considered four different specifications: the fully nonparametric,

the piecewise constant, the nonparametric multiplicative, and the semiparametric

models. Eight equally spaced partitions on the study time scale were used in the

piecewise constant approach. The semiparametric model is just (6.1.1) considered in

Section 6.1.2.2. The bandwidths were w = 1.5 hours in the study time scale, and

b = 0.5 hour in the duration time scale.

Figures 6.5 to 6.10 present the 3-dimensional plots of the estimated transition rate

functions in the two time scales. It appears that the transition rate functions vary

with cyclic patterns in the study time since the onset of sleep, which indicates the

time non-homogeneity in the sleep process. The semiparametric estimates, however,

can not capture the cyclic patterns of the transition rates in the study time scale due

to the model specification. For instance, Figures 6.5 and 6.6 show that the estimates

based on the first three approaches suggest that the transition rates from Awake to

Non-REM and REM be cyclic with a peak at about 3 hours after onset of sleep, but

the semiparametric estimate fails to capture the peak. In Figures 6.7 and 6.9, the

transition rates from Non-REM and REM to Awake are higher at the end of the

night (about 7 hours after onset of sleep). This finding is consistent with Kneib and

Hennerfeind (2008).

The transition rate functions also depend on the duration in the current state.

From Figure 6.5, we see that the transition rate function from Awake to Non-REM is

increasing to the peak after about 15 minutes in the state Awake, and then starts to

decrease. From Figure 6.9 and 6.10, we find the transition rates from REM to Awake

and Non-REM are maximized after about half an hour in the present state. Figure

6.8 shows that the peak for transition from Non-REM to REM lies between 1 and 1.5

hours in the present state.

Figures 6.11 and 6.12 present the estimated semi-Markov kernels. From Figure

6.11, we find that starting from Awake, the sleep process will very likely transit to

Non-REM other than REM directly. It takes longer to wake up from Non-REM at

the beginning of the night than at the end of the night.
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6.1.2.4 Model Checking

To check whether the study time and the duration time have multiplicative effects

on the transition intensities, we plot the positive and negative parts of the differ-

ence between the estimated cumulative transition rate functions associated with the

nonparametric model and the nonparametric multiplicative model in Figures 6.13

and 6.14. Note that for the transition from Awake to Non-REM, we can see the

pattern that the positive residuals are concentrated at small and large study times,

while the negative residuals have intermediate study times. This suggests that the

multiplicative model assumption is questionable in this application.

6.1.3 Concluding Remarks

We applied the methods developed in this thesis to the human sleep data. The analy-

sis outcomes suggest that the intensities of transitions among the sleep patterns vary

in both the study and duration time scales. Thus NHSM model is likely a plausible

model for the process. The semiparametric specification, which assumes a Cox re-

gression form for the study time, can not capture the cyclic pattern of the transition

rate functions in the study time scale. The preliminary model checking shows that

the two time scales may not affect the transition rate functions multiplicatively.
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Figure 6.2: Realizations of two individual sleep processes and corresponding nocturnal
cortisol secretion, cited from Kneib and Hennerfeind (2008)
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Figure 6.3: Estimated semi-Markov kernel for human sleep data (Dotted: point esti-
mate; Dashed: 95% confidence bands)
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Figure 6.4: Estimated distribution of sojourn times for human sleep data (Dotted:
bound estimate; Dashed: 95% confidence bands)
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Figure 6.13: The positive parts of the difference between the estimated cumulative
transition rate functions associated with the nonparametric model and the nonpara-
metric multiplicative model



CHAPTER 6. APPLICATIONS 129

Figure 6.14: The negative parts of the difference between the estimated cumulative
transition rate functions associated with the nonparametric model and the nonpara-
metric multiplicative model
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6.2 Hospitalization Data

6.2.1 Description

We applied the proposed methods to the hospitalization data introduced in Example

1.1. We formulated the hospitalization process as a multi-state process with 3 states

(see Figure 1.2): 1 for “out of hospital”, 2 for “in hospital”, and 3 for “dead”. Each

of the multi-state process starts at 5 years after the diagnosis date from state 1,

i.e., “out of hospital”. It then transits between state 2 and 1 (i.e., being admitted

to and discharged from hospital) before entering the absorbing state 3 (i.e., dead),

or being censored on Dec 31, 2000. The frequency of hospital admissions accross

different diagnosis year windows is presented in Table 6.4. Among the 1374 subjects,

810 subjects were censored without a hospital admission. The frequency of all the

observed transitions from the study, and median and mean of the sojourn times are

shown in Table 6.5. In total there were 60 deaths observed, 29 of which were in

hospital. All the censorings occurred in state 1.

Table 6.4: Frequency of the number of hospital admissions

Number of hospital admissions
Diagnosis Year 0 1 2 3–5 ≥ 6 Total

1981–1989 313 170 62 102 95 742
1990–1995 497 79 37 12 7 632
1981–1995 810 249 99 114 102 1374

Table 6.5: Frequency of the observed transitions, and median and mean of the sojourn
times (1: out of hospital, 2: in hospital, 3: dead)

Transition Number Median1 Mean1

1 → 2 2148 126.0 461.2
1 → 3 31 72.0 221.7
1 → censoring 1314 1436.5 1751.7

2 → 1 2119 1.0 4.6
2 → 3 29 8.0 16.8
2 → censoring 0 - -
1 in days
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6.2.2 Analyses of Hospitalization Data

6.2.2.1 Analysis with Homogeneous Semi-Markov Model

We fitted the HSM model with the data first. The estimated transition probabilities

of the embedding Markov chain are presented in Table 6.6 and Figure 6.15. All

approaches give similar estimates and confidence intervals for P21 and P23 because

that no transition was censored at state 2, i.e., “in hospital”. Note that the probability

of death at hospital is small (0.014 with 95% CI 0.009 to 0.018).

Table 6.6: Estimates and 95% confidence intervals of the transition probabilities for
the hospitalization data (1: out of hospital, 2: in hospital, 3: dead)

Plug-in Normalized Phelan Robust approach

P12
Estmate 0.775 0.988 0.986 0.775–0.991

CI (0.738, 0.813) (0.984, 0.992) (0.981, 0.991) (0.738, 0.994)

P13
Estmate 0.009 0.012 0.014 0.009–0.225

CI (0.006, 0.013) (0.008, 0.016) (0.009, 0.019) (0.006, 0.262)

P21
Estmate 0.986 0.986 0.986 0.986–0.986

CI (0.982, 0.991) (0.982, 0.991) (0.982, 0.991) (0.982, 0.991)

P23
Estmate 0.014 0.014 0.014 0.014–0.014

CI (0.009, 0.018) (0.009, 0.018) (0.009, 0.018) (0.009, 0.018)

Out of Hospital
(State 1)

In Hospital
(State 2)

Dead
(State 3)

�
-

��
���

��

HH
HHH

Hj

0.775-0.991

0.986

0.009-0.225 0.014

Figure 6.15: Estimated transition probabilities for the hospitalization process

However, the estimates for P12 and P13 are quite different with different ap-

proaches. From Tables 6.4, 810 subjects were censored directly from state 1, i.e.,

“out of hospital”, without a hospital admission. This may due to the long tail of

the sojourn time distribution in state 1. Thus the condition (2.3.10) required for the

consistency of the plug-in estimator is questionable. On the other hand, Table 6.5

shows that the mean and median of the sojourn times in state 1 are quite different

with respect to the next state to be visited. Figure 6.16 presents the estimates and
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confidence bands for the sojourn time distributions starting from state 1 using the

normalized estimator. It shows that the two distributions F12(·) and F13(·) are quite

different. This indicates that the inferences on the transition probabilities based on

the normalized and Phelan’s estimators can be biased. Thus safe conclusion concern-

ing P12 and P13 should be drawn based on the robust approach.

Confidence bands for the semi-Markov kernel is presented in Figures 6.17. The

transformed Hall-Wellner (HW) bands are wider than the transformed equal precision

(EP) bands at the beginning, and then becomes narrower. It appears that about 90%

of patients in hospital survive and are discharged from hospital within 15 days (see

the plot of estimated Q21(·)), and about 1% of patients admitted to hospital die at the

hospital within a month (see the plot of Q23(·)). From the plots of estimated Q12(·)
and Q13(·), we see that about 50% of patients survive beyond 2.5 years without

hospitalization, and less than 1% of patients die out of hospital within 2 years of

discharge without further hospitalization.

Figure 6.18 shows the confidence bands for the sojourn time distributions based

on the robust approach. The confidence band for F12(·) is wide compared with F21(·)
as a result of the uncertainty in estimating P12. The curve of estimated F21(·) in

Figure 6.18 shows that about 95% of the hospitalization duration (i.e., the sojourn

time from in hospital to out of hospital) is less than 15 days.

6.2.2.2 Analysis with Modulated Semi-Markov Model

We then applied the modulated semi-Markov model to the hospitalization data. We

incorporated the study time since the entrance of the study as a time-dependent

covariate Z(t), and allow this covariate to have different regression effect on different

transitions. The specific model we used is

αhj(t|Ft, Zhj(t)) = α0hj (B(t)) eθhjZ(t), (6.2.1)

for h 6= j ∈ {1, 2, 3} and j 6= 3. We transform the metric of time to year.

The estimates of the regression parameters are presented in Table 6.7. Note that

neither of the 95% confidence intervals of the regression parameters between “in

hospital” and “out of hospital” contains 0, which indicates the time nonhomogeneity

of the hospitalization process. Specifically, the transition rate from “out of hospital”

to “in hospital” is decreasing while the transition rate from “in hospital” to “out of

hospital” is increasing with study time scale. The standard errors of the regression
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parameters of “out of hospital” or “in hospital” to death are large compared to the

point estimates due to the small number of deaths occurred.

Table 6.7: Point estimate, standard error and confidence interval of the regression
parameters for the hospitalization data (1: out of hospital, 2: in hospital, 3: dead)

Transition Estimate SE CI
1 → 2 -0.033 0.006 (-0.044, -0.021)

1 → 3 0.036 0.049 (-0.060, 0.132)

2 → 1 0.022 0.006 (0.010, 0.034)

2 → 3 0.048 0.055 (-0.060, 0.156)

6.2.2.3 Analysis with Nonhomogeneous Semi-Markov Model

In the analysis with the modulated semi-Markov model, we have found evidence that

the hospitalization process is not homogeneous in the study time. We modeled the

hospitalization data with a NHSM process. We considered four different specifica-

tions: the fully nonparametric, the piecewise constant, the nonparametric multiplica-

tive, and the semiparametric models. The piecewise constant approach used ten

equally spaced partitions on the study time scale. The semiparametric model is just

(6.2.1) considered in Section 6.2.2.2. We used the bandwidth w = 5 years in the

study time scale. In the duration time scale, we used bandwidth b1 = 2 years when

the patient is out of hospital, and b2 = 4 months when the patient is in hospital.

Figures 6.19 to 6.22 show the 3-dimensional plots of the estimated transition rate

functions among different states, based on the four different estimation procedures.

Note that all the four approaches give qualitatively the same pattern. As shown in

Figure 6.19, the estimated transition rate function from “out of hospital” to “in hospi-

tal” as a function of duration τ increases until about τ = 1 year and then decreases.

It also has a decreasing trend in study time t. This indicates that this transition

rate function depends on both time scales. Figures 6.23 and 6.24 show the estimated

semi-Markov kernel by projecting it onto the two time scales. The decreasing trend

of Q12(τ ; t) as a function of t with fixed τ indicates that less hospitalization resources

are needed over time.
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6.2.3 Sensitivity Analysis for Informative Censoring

We focused our interest in the two-state process alternating between “out of hospital”

and “in hospital”. We applied the method developed in Chapter 5 to conduct sen-

sitivity analysis for checking about the possible informative censoring due to death.

We worked with a subpopulation with 120 patients for illustration purpose. This

subpopulation consists of 60 patients who are observed to death during the study,

and other 60 patients who have similar cancer diagnosis dates.

Our estimation is based on Assumptions 5.A1 (5.A2) and 5.B, and Model (5.2.3).

We estimated the semi-Markov kernel of the two-state process based on the assumed

copulas from Frank’s family

H(y1, y2;α) = logα

{
1 +

(αy1 − 1)(αy2 − 1)

α− 1

}
, α > 0,

with a plausible range of Kendall’s τ in [−0.8, 0.8]. We also estimate the semi-Markov

kernel by ignoring the possible dependent censoring due to death. The results are

summarized in Figures 6.25 and 6.26, under HSM and NHSM model assumptions,

respectively. Note that the estimated bounds of the semi-Markov kernel based on the

plausible range of Kendall’s τ are wider with the “out of hospital” to “in hospital”

transition than with the “in hospital” to “out of hospital” transition. Thus the

transition from “out of hospital” to “in hospital” is more sensitive to this type of

dependent censoring than the transition from “in hospital” to “out of hospital”.

6.2.4 Concluding Remarks

In this section, we analyzed the hospitalization data by the methods developed in

this thesis. Under the HSM model, our estimates of the transition probabilities of

the embedded Markov chain are quite different from the existing approaches. We

find that the transition intensities of the hospitalization process vary in both the

study and duration time scales. Thus the NHSM model appears more appropriate to

the process. The four different specifications: the fully nonparametric, the piecewise

constant, the nonparametric multiplicative, and the semiparametric models, lead to

similar estimates of the transition intensities.
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Figure 6.16: Estimated sojourn time distributions for hospitalization data based on
normalized estimate (Solid: point estimate for F12; Dashed: 95% confidence bands
for F12; Dotted: point estimate for F13; Shaded: 95% confidence bands for F13)
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Figure 6.17: Estimated semi-Markov kernel for hospitalization data (Middle solid:
point estimate; Outer solid: 95% pointwise confidence intervals; Dotted: 95% trans-
formed EP band; Dashed: 95% transformed HW band)
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Figure 6.25: Estimated semi-Markov kernel of the two-state HSM process (Solid:
estimates ignoring the possible dependent censoring; Dashed: plausible bounds based
on the assumed copulas from Frank’s family)
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Figure 6.26: Estimated semi-Markov kernel of the two-state NHSM process (Solid:
estimates ignoring the possible dependent censoring; Dashed: plausible bounds based
on the assumed copulas from Frank’s family)



Chapter 7

Discussion

7.1 Summary

Markov models have been widely used for multi-state processes because of (i) the

simplicity of model specification and interpretation, (ii) the availability of counting

process martingale theory to derive asymptotics, and (iii) the product integration

to link the transition intensities with transition probabilities. However, due to their

memoryless property, strict Markov models can not deal with duration dependence,

and have been found inadequate in many practical applications. In this thesis, we

have developed statistical methods for multi-state processes with duration-dependent

transition intensities.

We start from the homogeneous semi-Markov (HSM) process, as a generalization

of the classical homogeneous Markov processes, which assumes that the transition

intensities depend on the history only through the current state and the duration

time. Gill (1980) derives the consistency and weak convergence of the estimator of

the semi-Markov kernel proposed by Lagakos et al. (1978). However, the asymptotic

Gaussian process does not have an independent increment structure, thus it can not

be transformed into the standard Brownian bridge or Brownian motion to construct

confidence bands for the semi-Markov kernel. We propose two simulation based al-

gorithms for this purpose. In addition, we show that the existing estimators for the

transition probabilities of the embedded Markov chain and the sojourn time distribu-

tions can be biased when right censoring is involved. A robust estimation procedure is

proposed to address the concern. Simulation studies show that the proposed methods

perform well with finite sample size. The efficiency of the robust approach can be

146
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comparable with the existing approaches.

We then study the modulated semi-Markov (MSM) process, which extends the

HSM process to a Cox regression setting. The dependence of the baseline transition

intensities on the duration time scale makes the model fall outside the framework of

Aalen’s multiplicative intensity models and invalidates the usual martingale meth-

ods. Dabrowska et al. (1994) consider MSM processes with covariates depend on the

duration time in the present state only, which precludes the study time variable. As

a generalization, Chapter 3 allows general time-dependent covariates and proposes

estimating equations for the regression parameters. Using empirical process theory,

we establish the consistency, asymptotic normality and efficiency of the estimators for

the regression parameter. The large sample approximation of the limiting distribution

is adequate with sample size as small as 50, as shown in the simulation.

As a further generalization, the nonhomogeneous semi-Markov (NHSM) process

assumes its transition intensity can involve both the study and the duration time

scales. We consider statistical inferences for the NHSM processes with four different

model specifications. The first one is a MSM model, in which the the study time is

included as a time-dependent covariate. The second model assumes that the transition

intensities are piecewise constant in the study time scale, and can vary arbitrarily in

the duration time scale. The third model is structured nonparametric, where the

transition intensities depend on the two time scales in a multiplicative form. The

last model is fully nonparametric in that the transition intensities can depend freely

on the two time scales. Simulation studies show that the more structured models

are more efficient if they are correctly specified. However, they can lead to biased

inferences when the model assumptions are violated. The four models are nested,

which can be utilized to select the most parsimonious model.

Dependent censoring problem is challenging in event history data analysis. We

consider a particular type of informative right censoring scheme with the observation

of a NHSM process. Motivated by the competing risks formulation of the HSM

processes, we model the informative censoring mechanism as another competing risk.

Under this model assumption, the censored process becomes a new NHSM process

with the censoring included as a new absorbing state of the original process. We then

adapt a copula based approach for dependent competing risks to the setting. An

advantage of the copula approach is that the marginal distributions need not to be

specified, and can be estimated nonparametrically.
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We applied the proposed methods to the two real data sets described in Chapter

1. The analysis outcomes suggest that the transition intensities of both the human

sleep and the hospitalization processes vary in both the study and the duration time

scales. Thus the NHSM model is a plausible model for the two data sets.

7.2 Further Investigations

In what follows, we outline some directions for future research.

7.2.1 Interval Transition Probabilities

An easily interpretable quantity of a multi-state process, which is often of interest in

practice, is the interval transition probability

Phj(s, t;Fs) = P{S(t) = j|S(s) = h,Fs−}. (7.2.1)

With nonhomogeneous Markov processes, (7.2.1) reduces to

Phj(s, t) = P{S(t) = j|S(s) = h},

which is linked with the transition intensities through product integration. The in-

ference procedures have been well studied (Aalen and Johansen, 1978; Andersen et

al., 1993). Dabrowska et al. (1994) and Dabrowska (1995) consider estimation pro-

cedures for the interval transition probabilities with HSM processes and modulated

semi-Markov processes with time-independent covariates.

It can be of practical interest to estimate the interval transition probabilities with

NHSM processes. Based on the stochastic feature of NHSM processes, it is equivalent

to estimate the following interval transition probabilities:

Phj(t; τ0, τ) = P [S(t+ τ) = j|S(t+ τ0) = h,B(t+ τ0) = τ0] , (7.2.2)

which is the probability of the process being in state j at time t+τ , given the process

enters state h at time t and remains in state h by time t + τ0. Let Phj(t; τ) =

Phj(t; 0+, τ) be the probability that the process in state j at time t+ τ given it enters

state h at time t.

Applying a conditional argument, we can show that Phj(t; τ)’s satisfy the following

system of Volterra integral equations:

Phj(t; τ) = δhjSh(τ ; t) +
r∑

k=1

∫ τ

0

qhk(u; t)Pkj(t+ u; τ − u)du (7.2.3)
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for all h and j, where δhj = 1 if h = j and 0 otherwise, and Sh(τ ; t) = 1 −Hh(τ ; t).

These equations are the direct counterpart of Kolmogorov equations for the Markov

processes. Let

Qhj(τ0, τ ; t) =
Qhj(τ ; t)−Qhj(τ0; t)

1−Qhj(τ0; t)
,

and qhj(τ0, τ ; t) be the partial derivative of Qhj(τ0, τ ; t) with respect to τ . Then

Phj(t; τ0, τ) = δhjSh(τ0, τ ; t) +
r∑

k=1

∫ τ

τ0

qhk(τ0, u; t)Pkj(t+ u; τ − u)du (7.2.4)

where Sh(τ0, τ ; t) = 1−
∑

k Qhk(τ0, τ ; t).

Lucas et al. (2006) approximate numerically the solution P̂hj(t; τ) of (7.2.3) by

means of a finite system of algebra equations. Here we consider an alternative method

based on Monte Carlo simulation to estimate Phj(t; τ0, τ). We first apply the methods

in Chapter 4 to obtain estimates α̂hj(τ ; t) and Q̂hj(τ ; t) of αhj(τ ; t) and Qhj(τ ; t),

respectively, for h, j ∈ E and t, τ ≥ 0. Denote
∑

j 6=h Q̂hj(τ ; t) by Ĥh(τ ; t). Then an

algorithm to estimate Phj(t; τ0, τ) is as follows.

Step 1. Let (J0, T0) = (h, t) and m = 0.

Step 2. Generate Xm+1 from ĤJm(·;Tm), and then generate Jm+1 from state j with

probability α̂Jmj(Xm+1;Tm)/
∑

j α̂Jmj(Xm+1;Tm). Record (Jm+1, Tm+1), where

Tm+1 = Tm +Xm+1.

Step 3. Repeat Step 2 for each m = 1, 2, . . ., until either Jm+1 is an absorbing state

or Tm+1 > t+ τ .

Step 4. Repeat Step 1 to Step 3 to obtain M sample paths.

We can then estimate Phj(t; τ0, τ) by the proportion of sample paths with X1 > τ0

and being in state j at time t + τ , denoted by P̂hj(t; τ0, τ). The standard deviation

of P̂hj(t; τ0, τ) can be obtained by the bootstrap approach.

7.2.2 Goodness-of-fit Tests

We have considered several nested models for NHSM processes: semiparametric,

structured nonparametric, and fully nonparametric. They can be applied to con-

duct goodness-of-fit tests to select the most parsimonious model. In the context of a

nonparametric hazard model for survival data, McKeague and Utikal (1991) consider
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some goodness-of-fit tests based on the differences between estimates of the doubly

cumulative hazard function. The idea can be used here by comparing the cumulative

transition rate function

Ahj(τ ; t) =

∫ τ

0

αhj(u; t)du,

or the doubly cumulative transition rate function

Ahj(τ ; t) =

∫ t

0

∫ τ

0

αhj(u; s)dsdu.

For instance, to test whether the multiplicative nonparametric model fit the data

adequately, we may plot the differences of the estimated cumulative transition rate

function under the multiplicative nonparametric model and the fully nonparametric

model. If the multiplicative nonparametric model is appropriate, the difference should

be fluctuate around zero without any pattern.

We can also conduct formal hypothesis tests based on the standardized difference

of the estimated cumulative transition rate functions under the nested models, which

can be shown to converge to a Gaussian random field. The limiting process with

possibly complex covariance structure may be approximated via bootstrap. The hy-

pothesis tests can be based on Kolmogorov-Smirnov type or Cramér-von Mises type

statistics.

7.2.3 General Modulated Semi-Markov Models

In Chapter 3, we considered estimation procedures based on the modulated semi-

Markov models where the transition intensities are assumed to have the form

αhj(t|Ft, Zhj(t)) = α0hj (B(t)) eθ′Zhj(t),

or

αhj(t|Ft, Zhj(t)) = α0hj

(
B(t), Ñ(t−)

)
eθ′Zhj(t).

The possible dependence of the transition intensities on the study time is modeled

parametrically.

More flexible models, where the baseline transition rate function can depend on

both the study and duration time scales freely, are

αhj(t|Ft, Zhj(t)) = α0hj (B(t); t) eθ′Zhj(t),
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and

αhj(t|Ft, Zhj(t)) = α0hj

(
B(t); t, Ñ(t−)

)
eθ′Zhj(t).

With a fixed θ, we can apply the methodology in Chapter 4 to obtain an estimate of

the baseline transition rate function. We can then consider some profile estimator for

the regression parameter θ.

7.2.4 Alternative Observation Schemes

In this thesis, we have focused on the right censoring observation scheme. In practice,

the data may be collected periodically, leading to panel data. Kalbfleisch and Lawless

(1985) fit Markov models with panel data. The difficulty to fit semi-Markov models

with panel data, as shown in Kang and Lagakos (2007), is that the likelihood function

is very complicated to work with. Kang and Lagakos (2007) consider a simplified

situation where the transition intensity from at least one of the states of the underlying

process is time homogeneous, in which case they show that the likelihood function is

tractable.

Another problem is the possible unknown duration time in the initial state, when

the subjects are already in certain state before they enter the study. In this thesis,

we have assumed that the subjects start a new state when enter the study, or the

duration time in the current state prior to the entrance into the study is known.

Otherwise, the methods need to be modified to account for the duration of time in

the initial state prior to the entrance of the study. Methods similar to those in the

work by Satten and Sternberg (1999) and Cai et al. (2008) might be adopted to

address the issue.

7.2.5 Other Further Investigations

Listed below are other research topics closely related to the thesis project.

7.2.5.1 Robustness of the Semiparametric Approach

As shown in the literature, approaches associated with Cox regression may have

certain robustness properties against model misspecification in Markov models. We

will examine the performances of the approaches in Chapter 3 when the model is

misspecified with the semi-Markov model.
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7.2.5.2 Nonparametric Additive Model

In Chapter 4, we consider a particular nonparametric structured model, the nonpara-

metric multiplicative model, with NHSM processes. Another nonparametric struc-

tured model for future research is the nonparametric additive model, in which the

transition intensities depend on the study time and the duration time additively, and

the functional forms are left unspecified. The iterative algorithm developed in Sec-

tion 4.4 can be adapted. Theoretical justification for convergence of the algorithms

warrants further investigation.

7.2.5.3 Bandwidth Selection

Kernel smoothing methods are used in the estimation procedures with NHSM pro-

cesses. It is not clear, however, how to choose the optimal bandwidth. The asymp-

totic distribution of the estimators may be too complicated to be used in selecting

the bandwidth by the plug-in method. Bandwidth selection has been well studied in

the context of hazard rate estimation with survival data. Patil (1993) proposes the

least squares cross-validation method. González-Manteiga et al. (1996) introduce a

bootstrap approach. These methods can be potentially adapted to the setting.

7.2.5.4 Estimation of Marginal Quantities

This thesis focuses on intensity-based models with the counting process formulation

of multi-state processes. For the special case of recurrent events, robust inference

procedures based on marginal rate functions have been proposed (Lin et al., 2000;

Cook and Lawless, 2007). Datta and Satten (2001, 2002) consider estimation of the

state occupation probabilities with multi-state processes based on marginal transition

rate functions. More generally, we will study estimation of marginal transition prob-

abilities. Meira-Machado et al. (2006) propose estimators with a special illness-death

process without recovery.
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