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Abstract

In today’s multimedia systems, clients are getting quite heterogeneous in terms of connection

bandwidth, processing power, and display resolution. Scalable video coding techniques can

support this heterogeneity by enabling us to encode a video stream once and extract/decode

it in several ways according to receiver’s capabilities. We study secure and efficient delivery

of scalable streams. First, we propose an authentication scheme for end-to-end secure deliv-

ery of scalable video streams, which supports their full flexibility: it enables verification of

any possible substream extracted from the original stream. Then, we consider streaming of

scalable videos over peer-to-peer networks, and study efficient management of seed servers

resources in these networks. We prove the hardness of optimally allocating these servers

and propose two approximation algorithms to solve it. We evaluate both our security and

resource allocation solutions and show their efficiency analytically and through simulations.

Keywords: video streaming; multimedia security; peer-to-peer streaming; scalable

video coding; H.264/SVC
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Chapter 1

Introduction

In this chapter, we provide a brief background about secure delivery of multimedia streams,

scalable video coding, and peer-to-peer (P2P) streaming systems. Then, we introduce the

problems we address in this thesis and summarize our contributions. The organization of

this thesis is given at the end of this chapter.

1.1 Introduction and Background

The demand for multimedia services has been steadily increasing in the past few years and

is expected to grow even faster in near future, as confirmed by many market research re-

ports [1–3]. With such a strong demand, multimedia services are becoming prevalent and

many people rely on them in different aspects of their daily lives, including work, education,

and entertainment. In these services, however, multimedia content is often distributed over

open and generally insecure networks, such as the Internet, which makes the content vulner-

able to malicious manipulations and alterations. Accordingly, secure delivery of multimedia

streams has become an important and critical concern in today’s multimedia systems. By

secure delivery we mean ensuring the authenticity of the stream such that any tampering

with the content by an attacker can be detected by the receiver. Attackers may tamper

with the multimedia data by removing, inserting, or modifying portions of the data. These

attacks may be performed for commercial, political, or even personal purposes. Securing

the delivery of multimedia streams is the first problem we study in this thesis.

On the other hand, distribution of multimedia streams in large scales over the Internet

has been a topic of interest to academia and industry for several years. Due to the lack of IP

1
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Multicast deployment in today’s Internet and the high cost of purely server-based solutions,

the use of peer-to-peer (P2P) technology for Internet streaming has attracted significant

attention in recent years [4]. P2P streaming systems do not require any particular support

from the Internet infrastructure, and are easy to deploy. In addition, as more peers join the

system and demand the data, they also increase the streaming capacity by uploading the

streams they receive. The second problem we study in this thesis is efficient management

of resources for serving scalable video streams in P2P streaming systems.

In today’s multimedia streaming systems, clients are getting more and more hetero-

geneous in terms of connection bandwidth, processing power, and screen resolution. For

example, a user with a limited-capability cellular phone with a small screen and wireless

connection, and one with a high-end powerful workstation behind cable connection can both

be requesting the same video stream. An example of this is illustrated in Figure 1.1. To sup-

port a wider range of such receivers, it is preferred to encode and distribute a lower-bitrate

video stream, but this will provide a low quality for everyone. By encoding a higher-bitrate

stream, on the other hand, we cannot support many of the receivers. This problem may be

solved by encoding and distributing multiple versions of the video, which is called simulcast-

ing. However, a video has to be encoded many times for different combinations of decoding

capabilities, connection bandwidths, and viewing resolutions. Moreover, switching among

versions is not easy, because (i) for every switching, a client has to wait, possibly for a few

seconds, for the next Intra-coded frame (I-frame) of the new version, and (ii) the streams of

different versions could be asynchronous [5]. As an alternative, Multiple Description Coding

(MDC) can encode a video into multiple descriptions, where the quality of the video will

be proportional to the number of descriptions received. However, MDC techniques are well

known for having considerable bitrate overhead and being computationally complex [5].

In contrast, a scalable video stream has the advantage that it can be encoded once, and a

variety of substreams can be extracted and decoded from it according to receiver’s capabili-

ties. In other words, a wide range of heterogenous clients can benefit from the same stream.

Scalable coding has a lower overhead and is simpler than MDC coding [5]. Moreover, recent

scalable video coding techniques have further improved this coding efficiency and signifi-

cantly outperformed previous scalable videos [6]. For example, the Scalable Video Coding

(SVC) extension of the state-of-the-art H.264/AVC video coding technique [7], known as

the H.264/SVC [8] standard, can generate highly flexible video streams at a bitrate close to

the bitrate of the corresponding nonscalable video stream. These scalable streams support
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Figure 1.1: Heterogeneous receivers participating in the same streaming session.

three scalability types at the same time: temporal, spatial, and quality, which provide dif-

ferent frame rates, different spatial resolutions, and different visual qualities, respectively.

These features have attracted significant attention and these streams are being increasingly

adopted in many applications, e.g., [9–12].

1.2 Problem Statement and Contributions

Our goal is to adopt and take best advantage of scalable video streams in today’s multimedia

streaming systems. This thesis studies two problems related to this goal: securely delivering

scalable video stream and efficiently allocating resource for serving scalable streams in P2P

systems.

1.2.1 Problem I: Authentication of Scalable Video Streams

Although the problem of data authentication is well digested and practical solutions exist,

secure delivery of multimedia streams is challenging due to several reasons. First, the

authentication mechanism, which can be computationally expensive, has to keep up with

the online nature of streams. Second, multimedia content is often distributed over unreliable

channels, where packet losses are not uncommon. The authentication scheme needs to

function properly even in presence of these losses. Third, the information added to the

streams by the authentication scheme should be minimized in order to avoid increasing the
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already-high storage and network bandwidth requirements for multimedia content. Finally

and most importantly, the authentication scheme must support the flexibility of scalable

streams and successfully verify any substream extracted from the original stream. More

precisely, the problem of authenticating scalable video streams can be stated as follows.

Problem 1 Given a video stream encoded in a scalable manner that enables extraction of

substreams along three types of scalability, temporal, spatial, and quality, design an efficient

authentication scheme that can sign the video stream once and ensure successful verification

of all possible substreams.

Due to its importance, authentication of multimedia streams, nonscalable and scalable,

has been extensively studied by academia and industry. Several authentication schemes have

been proposed to address this problem in different settings. First, merits and shortcomings

of these schemes over each other are not clear such that we can choose the most suitable

scheme for a given multimedia streaming application. Moreover, authentication of recent

scalable video streams is not supported by these schemes, even though authentication of

traditional scalable video streams has been studied by several previous works, e.g., [13–15].

In a traditional scalable stream, the video is encoded as a base layer and a number of

enhancement layers that progressively improve the video in terms of spatial resolution or

visual quality. Recent scalable video streams, in contrast, can provide different types of

scalability at the same time and with higher flexibility. They are more general than the

traditional, and much simpler, linear layered videos in which scalability is typically provided

along one dimension and the layers in that dimension are cumulative. Recent scalable

streams, most notably H.264/SVC, can be adapted along different scalability dimensions,

and enable many possible combinations of layers. In addition, they employ new useful coding

tools designed for scalable coding, such as hierarchical prediction of frames and medium-

grained scalability. Consequently, previous authentication schemes, which are designed for

simple layered videos, are not applicable to these scalable streams, as we discuss in more

details in Section 2.6. To the best of our knowledge, there are no authentication schemes in

the literature that can efficiently support the full flexibility of recent scalable streams.
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1.2.2 Problem II: Efficient Allocation of Seed Servers in Peer-to-Peer

Streaming Systems

In P2P streaming systems, the upload bandwidths of peers are often far less than their

demanded download rates. For example, an average-to-good quality video stream requires

about 1–2 Mbps bandwidth, whereas the average upload capacity of home users with DSL

and cable connections is often less than a few hundred kbps. To make up for this asymmetry,

a number of seed servers need to be deployed in the P2P network in order to deliver high-

quality video streams to users. These servers have finite capacity and are often loaded with

a volume of requests larger than their serving capacity. Accordingly, arbitrary allocation of

these servers for serving peers will result in poor management of resources and inefficient

utilization of data, especially when these servers serve scalable video streams. We study

efficient allocation of seeding resources in P2P streaming systems with scalable videos. This

problem can be stated as follows.

Problem 2 Design an efficient algorithm that, given a total seeding capacity, decides how to

allocate this capacity for serving peers’ request for different substreams such that a network-

wide utility function is maximized, e.g., the average video quality delivered to peers.

P2P streaming with scalable videos has been studied by several previous works, e.g.,

[16–18]. Most of these works, however, do not consider the functionalities of seed servers.

Allocation of seed servers for P2P streaming with nonscalable videos has also been studied

in the literature [19]. However, the case for scalable video streams is more challenging as

various substreams need to be considered and served to receivers. That is, the finite seeding

capacity needs to be optimally allocated to requesting peers and requested layers such that

a higher-quality video is delivered to all peers. We review previous works in details in

Section 4.2. To the best of our knowledge, the problem of seeding scalable videos with

limited seeding resources is not studied by any of them.

1.2.3 Thesis Contributions

The contributions of this thesis can be summarized as follows:

• We conduct a comprehensive analysis and quantitative comparison of the main schemes

proposed in the literature to authenticate multimedia streams [20,21]. Our analytical
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and simulation based comparisons along multiple performance metrics reveal the mer-

its and shortcomings of each scheme. Moreover, our analysis provides guidelines on

choosing the most suitable scheme for a given multimedia streaming application, and

offers insights for further research on the stream authentication problem. For instance,

our analysis has led us to propose a new authentication scheme for nonscalable streams,

which combines the advantages of two previous schemes for on-demand streaming ap-

plications. Our evaluations show that the proposed authentication scheme outper-

forms others in the literature for on-demand streaming applications. We also show

that current schemes for authenticating scalable video streams fail to support the full

flexibility of recent scalable streams, and empirically demonstrate the importance of

this problem by performing sample tampering attacks.

• We propose a new authentication scheme that supports the full flexibility of recent,

three-dimensionally scalable video streams [22]. We analytically show that the pro-

posed scheme guarantees correct verification of any valid substream extracted from the

original stream. The algorithm is designed for end-to-end authentication of streams.

That is, a third-party content delivery network in charge of delivering (and possibly

adapting) the streams does not have to be aware of and compatible with the authen-

tication scheme, which is an important advantage. We also propose an additional

algorithm for minimizing the communication overhead imposed by the authentication

scheme. The algorithm can be of interest in its own right, since it can be used to min-

imize the communication overhead of other scalable stream authentication schemes as

well. Our simulation study with real video traces confirms that the proposed authenti-

cation scheme is robust against packet losses, incurs low computational cost and buffer

requirement, has a short delay, and adds small communication overhead particularly

after using the overhead reduction algorithm.

• We implement our authentication scheme for H.264/SVC streams in a prototype called

svcAuth, which is available as an open source library and can be employed by any

multimedia streaming application as a transparent software add-on, without requiring

changes to the encoders/decoders.

• We address the problem of optimally allocating the resources of seed servers for stream-

ing scalable videos over P2P networks [23]. We formulate this problem and show that

it is NP-complete. We then propose two approximation algorithms for the problem,
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which complement each other. We analytically show that they produce near-optimal

results while being computationally efficient and able to run in real-time. The results

of evaluating the algorithms in a simulated P2P streaming system confirm the effi-

ciency and near-optimality of the proposed algorithms, and show that higher-quality

video streams are delivered to peers if our algorithms are employed for allocating seed

servers.

1.3 Thesis Organization

We conduct an analysis and comparison of previous multimedia stream authentication

schemes in Chapter 2. In Chapter 3, we present, analyze, and evaluate our proposed scheme

for authentication of modern scalable video streams, and we give an overview of its imple-

mentation in the svcAuth library. In Chapter 4, the seed server allocation problem in P2P

streaming systems, and our proposed algorithms, are presented. Finally, we conclude this

thesis and highlight future research directions in Chapter 5.



Chapter 2

Analysis of Media Stream

Authentication Schemes

In this chapter, we present a comprehensive analysis and comparison among the main

schemes proposed in the literature to authenticate multimedia streams. We first see an

overview of the analysis and the need for that, followed by the details of the analysis. Ac-

cording to our analysis and comparison, we draw several conclusions on the advantages and

shortcomings of each authentication scheme and present recommendations for choosing the

appropriate schemes for various streaming applications.

2.1 Introduction

The large prevalence of multimedia systems in recent years makes the security of multimedia

communications an important and critical issue. Accordingly, the problem of multimedia

stream authentication has been studied by many previous works, and several schemes have

been proposed to address this problem in different settings [21, 24]. However, no rigorous

analysis and quantitative comparison of the different schemes has been done in the literature,

to the best of our knowledge. Detailed analysis of various authentication schemes is needed

in order to discover the merits and shortcomings of each scheme. Moreover, side-by-side

comparisons of authentication schemes along multiple performance metrics provide guide-

lines on choosing the most suitable scheme for a given multimedia streaming application,

and offer insights for further research on the stream authentication problem.

8
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We conduct a comprehensive analysis and quantitative comparison among different mul-

timedia stream authentication schemes proposed in the literature. We consider authentica-

tion schemes for both nonscalable and scalable streams. We first analyze the main authen-

tication schemes for nonscalable streams. To conduct this analysis, we define five important

performance metrics, which are computation cost, communication overhead, receiver buffer

size, delay, and tolerance to packet losses. Then, we derive analytic formulas for these

metrics for all considered authentication schemes, and numerically analyze these formulas

to explore the performance of the schemes for a wide range of parameters. In addition,

we implement all authentication schemes in a simulator to study and compare their per-

formance in different environments. The parameter values for the simulator are carefully

chosen to mimic realistic settings. For example, we analyze the authentication schemes

under two common models for packet losses: bursty and random. The bursty loss model

is typical in wired networks where a sequence of packets may get dropped because of a

buffer overflow in one of the routers on the network path from sender to receiver. Whereas

the random loss model is usually used to capture bit errors in wireless environments. We

highlight the advantages and disadvantages of each scheme, and draw several conclusions

on their behavior. Furthermore, according to our analysis of the schemes, we propose a new

authentication scheme for nonscalable streams, which combines the best features of two

of the best-performing previous schemes for on-demand streaming applications. According

to our evaluation study we believe that the proposed scheme is the most suitable one for

on-demand streaming.

In the second part of this chapter, we extend our analysis to authentication schemes for

scalable streams. We pay careful attention to the flexibility of scalable streams and analyze

its impacts on authentication schemes. Based on our analysis, we present a number of

recommendations for choosing the appropriate schemes for various streaming applications.

Then, we analyze the application of current scalable stream authentication schemes to recent

scalable video streams, e.g., H.264/SVC, and show that current schemes fail to support the

full flexibility of these streams.

This chapter continues by reviewing the common cryptographic techniques used for

authentication, and summarizing previous works related to this analysis in Section 2.2.

Then, we define in Section 2.3 the performance metrics and notations used in our analysis.

In Section 2.4, we present and analyze authentication schemes for nonscalable streams.

For each scheme, we provide a brief overview of the scheme followed by the analysis of the
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different performance metrics. In Section 2.5, we conduct numerical analysis of the equations

derived in Section 2.4. We also present our simulation analysis and summarize our findings

in this section. We analyze authentication schemes for scalable multimedia streams and

discuss their shortcomings for supporting modern scalable streams in Section 2.6. A brief

summary of the chapter is given in Section 2.7.

2.2 Background and Related Work

In this section, we briefly review basic cryptographic techniques used in authentication

schemes, and then summarize previous works related to our analysis.

2.2.1 Common Cryptographic Techniques Used for Authentication

The goal of an authentication scheme is to enable a receiver to make sure that the content it

has received is originally generated by the desired content provider, and it is not tampered

with by any other entity. To provide this service, a number of cryptographic functions and

techniques are usually employed in authentication schemes [25]. A commonly used type of

these functions are one-way hash functions. They take as input a message x of arbitrary

length and produce a fixed-length output, y = h(x), to which we refer as the hash value

or the message digest. Given x, computation of h(x) is easy, whereas if y is given, finding

x or any other message whose digest equals y is infeasible. Moreover, finding two different

messages x1 and x2 such that h(x1) = h(x2) is infeasible. Therefore, if the authenticity of

h(x) is successfully verified, we know that message x is also authentic, because no attacker

can change or replace x while preserving its hash value h(x). SHA-1 [26] and MD5 [27] are

two commonly used hash functions.

Digital signatures provide authentication as well as non-repudiation. That is, the receiver

can make sure that the message is generated by the desired sender and is not modified by

anybody else, and also the sender cannot repudiate or refuse the validity of his signature.

RSA (by Rivest, Shamir, and Adleman) [28] and DSS (Digital Signature Standard) [29]

are two commonly used digital signature algorithms. Since these algorithms are based on

asymmetric cryptography, they are computationally expensive. To save in computational

cost, the conventional method for signing a message of arbitrary length is to compute the

digest of the message and sign the digest, i.e., sign(h(x)), because the digest has a short fixed

length and its authenticity is enough for assuring the authenticity of the original message.
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Message Authentication Codes (MAC) are an alternative way for ensuring the authen-

ticity of a message using a secret key K. A MAC is a short digest calculated over an

arbitrary-length message x using the secret key K as input, i.e., y = MAC(x, K). Since

they are based on symmetric cryptography, MAC codes are very inexpensive to compute.

However, because of being based on a shared secret key, they cannot make a commitment

between a message and one particular signer. That is, if one is able to verify a MAC,

i.e., he has the key, then he is able to alter the message and compute a new forged MAC.

Thus, MACs are more suitable for single-sender single-receiver communications where the

two entities have already managed to securely share a secret key.

2.2.2 Related Work

A survey on authentication schemes for multicasting multimedia streams is given in [24].

The authors classify authentication schemes according to the core techniques underlying

them, e.g., symmetric or asymmetric cryptography, partially sharing secrets with receivers,

relying on time synchronization, replicating hash values, and signature amortization. The

authors also provide a qualitative comparison among the schemes. However, unlike our

work, the work in [24] does not provide a quantitative analysis and detailed comparison

of the authentication schemes in realistic environments. In addition, the survey in [24] is

relatively old and does not cover a number of recent authentication schemes that we consider

in this chapter. Furthermore, the work in [24] does not discuss or analyze authentication

schemes for multimedia streams encoded in scalable manner, which have become popular

recently because of their ability to support a wide range of heterogeneous clients [8–10].

Previous authentication techniques for scalable JPEG 2000 images [30–32] are surveyed

in [33]. However, we are not aware of previous works that analyze authentication of scalable

video streams.

2.3 Notations and Performance Metrics

To rigorously evaluate various multimedia authentication schemes, we define five perfor-

mance metrics that cover all angles of the authentication problem, and we analyze these

metrics in different environments. The performance metrics are as follows.
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• Computation Cost. It is the CPU time needed to verify the authenticity by the

receiver. Evaluating the computation cost is important especially if the receiver has

a limited processing capacity, e.g., a PDA or cell phone. Note that in streaming

applications, the verification process of an incoming multimedia stream is invoked

periodically and in real-time. Thus, if its computation cost is high, some receivers

may not be able to support it.

• Communication Overhead. It is the number of additional bytes that the authentica-

tion scheme needs to transfer over the communication channel to the receiver in order

to enable it to verify the authenticity of the received multimedia stream.

• Tolerance to Packet Losses. Multimedia streams are typically transmitted over the

Internet or lossy wireless channels, where some packets may get lost. Due to the

dependency that the authentication scheme imposes among packets, packet losses may

affect verifiability of some packets that are successfully received. Thus, the robustness

of the authentication scheme to packet losses is important to analyze for different

packet loss ratios. We quantify this robustness as the percentage of the received

packets that can be verified in presence of packet losses, and we call it the verification

rate.

• Receiver Buffer Size. Some authentication schemes require the receiver to buffer a

certain amount of data before it can start verifying the stream. The required buffer

size specifies the minimum memory requirements, which is especially important for

limited-capability receiver devices. Besides, the required receiver buffer determines

the amount of delay at receiver side, which is included in the Delay metric below.

• Delay Imposed by the Authentication Process. Since most of the schemes designate

one digital signature for a block of packets, they require the sender/receiver (or both)

to wait for generation/reception of a certain amount of data before being able to

transmit/verify it. This delay, which is the sum of sender side and receiver side delays,

specifies whether or not the authentication information can be produced or verified

online. For example, a delay beyond a few seconds is not suitable for live streaming.

Note that we consider the delay imposed by the authentication process only; delays

caused by transmission through the networks or by the media encoding/decoding

process are not accounted.
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Table 2.1: Parameters used in our analysis and their values.
Parameter Value Description

α 30 pkt/sec Packet rate.
l 1400 bytes Packet size.
n 128 pkts Block size. It is 128 packets as long as it is not one of the

variable parameters.
N 1000 to 1 M Number of blocks transmitted.
ρ 0 to 0.5 Packet loss ratio.
d 8 pkts Expected burst length.

nenough 0.8n Number of packets of a block that suffice for verification.
tsig 500 ms Time to verify a digital signature (1024-bit RSA with pub-

lic exponent = 65537).
thash 0.1 ms Time to compute a hash over a 512-bit (64-byte) block.
ssig 128 Signature size in bytes (1024-bit RSA).
shash 20 Hash size in bytes (SHA-1).
nrows 32 Number of rows in Butterfly graph (see Section 2.4.3).

s 0, 0.25, 0.5 An input to eSAIDA (see Section 2.4.5).
nsig Aug chain: 8,

Btfly graph:
searched

Number of signature replications in the block. It is set to
1
16n (i.e., 8) for Augmented Chain. For Butterfly Graph,
it is obtained by a local search for best verification rate.

p, a Searched Inputs to Augmented chain (see Section 2.4.2).

The above metrics are analyzed under different scenarios. For example, we consider a

wide range of packet loss rates and using two common loss models: bursty and random.

Several other parameters are used in the analysis, such as packet rate α, packet size l, and

block size n. For quick reference, we list all parameters used in this chapter and their

notations in Table 2.1. We also mention the range of values used for each parameter. In

the simulation section, we discuss why we use these values.

2.4 Authentication Schemes for Nonscalable Streams

Several schemes have been proposed for authenticating nonscalable multimedia streams. A

multimedia stream is nonscalable if it is encoded as a single layer and only the complete

layer is decodable [34]. We study and analyze the most important schemes in the literature.

A naive solution for authenticating such stream may be to sign every packet. This clearly

does not work in practice due to its high computational cost. Accordingly, to amortize this

cost, authentication schemes often divide a stream into blocks of n packets, and designate
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Figure 2.1: Stream authentication using hash chaining.

one digital signature for each block.1 In each of the following subsections (Sections 2.4.1—

2.4.7), we briefly describe the main idea of an authentication scheme and we analyze it using

the performance metrics defined in Section 2.3. We also mention the authentication schemes

that are not analyzed in this chapter and why we do not consider them in Section 2.4.8. We

use the parameters listed in Table 2.1 in the analyses.

2.4.1 Hash Chaining

Hash chaining [35] is one of the simplest techniques to authenticate multimedia streams.

Figure 2.1 illustrates its basic idea. Packets of the stream are divided into blocks, each of

size n packets. Then, the hash of each packet is attached to its previous packet, and the first

packet of each block is digitally signed. Due to the one-way property of the hash function,

the signature authenticates the whole block.

Analysis of hash chaining is straightforward. For a block of n packets, hash chaining

computes n hash values and verifies one digital signature. Therefore, the computation cost

to verify a block is tsig+ndl/64ethash seconds. The communication overhead is ssig/n+shash

bytes per packet. Hash chaining does not tolerate any packet losses. There is no receiver

buffer requirement for this scheme as packets can be verified as they arrive after receiving

the first packet with the signature. The sender, however, needs to wait for n packets to be

generated, because hash chaining starts at the last packet in the block. Thus, with a packet

generation rate of α, the total delay is n/α.

To enable the hash chaining scheme to tolerate packet losses, the hash value of a packet

is replicated and attached to multiple packets. According to the way hashes are replicated

in packets, a block of packets can be modeled as a Directed Acyclic Graph (DAG), whose

nodes represent data packets and each directed edge from node A to node B indicates that

1Note that we only consider authentication schemes that rely on digital signatures for assuring authen-
ticity. That is, we do not consider schemes that only rely on Message Authentication Codes (MAC), which
requires all parties of the streaming setting to be fully trusted.
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the hash of packet A is attached to packet B, i.e., if packet B is verified then packet A can

also be verified. In this DAG, a packet is verifiable if there is a path from its corresponding

node to the signature node. When loss occurs among packets of a block, some nodes of

the DAG and their associated edges are removed, which may threaten the verifiability of

some of the received packets. The simple hash chaining described above can be viewed as a

linear DAG with n nodes and n − 1 edges, where the first node carries the signature. The

following two subsections present two authentication methods that improve the robustness

of a linear DAG to packet losses.

2.4.2 Augmented Hash Chaining

In the augmented hash chaining scheme [36], the authentication DAG is constructed as

follows. First, the hash of packet pi is attached to packets pi+1 and pi+a, where a is an

integer parameter that affects resistance against bursty losses as well as receiver delay and

buffer. The last packet is designated as the signature packet. Then, p−1 additional packets

(p is an input to the algorithm) as well as their relevant edges are inserted between each

two packets of this chain to make it an augmented chain. Two methods are proposed for

this insertion, which have equal resistance to bursty losses. The first method attaches the

hash of each new packet to the packet preceding it and to the packet from the original chain

succeeding it. Thus, the number of hashes carried by packets of the original chain grows

linearly with p, while the average number of hashes per packet is two. The second method

is more complex and follows a recursive structure to keep the degree of each node equal to

two; we consider the second structure in our analyses. Since the delivery of the signature

packet is vital, the scheme sends it multiple (nsig) times within a block of packets. The

packet loss tolerance of this technique depends on the loss model, i.e., it depends on the

loss rate and loss pattern (random or bursty). We analyze this tolerance using simulation

in Section 2.5.

Computations needed for verifying a block in augmented hash chaining take tsig +

ndl/64ethash seconds, and the communication overhead is nsigssig/n + 2shash bytes per

packet. The receiver has to buffer a whole block, thus the receiver delay and buffer size are

n/α seconds and n packets, respectively. Moreover, the sender needs to buffer p packets

before transmission, which makes the sender delay p/α seconds. Since p is small compared

to n, we consider the total delay to be n/α seconds.
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2.4.3 Butterfly Hash Chaining

Zhang et al. [37] proposed to use Butterfly graphs to construct the authentication DAG.

Assuming the number of packets of a block is n = nrows(log2 nrows + 1), the nodes of the

authentication DAG are arranged into log2 nrows + 1 columns of the same length nrows.

Each node in a column is linked to two other nodes of the previous column, according to

the column it belongs to. Nodes of the first column are all linked to the signature packet.

These butterfly graphs, however, do not work for arbitrary number of packets, and make

the size of the signature packet grow almost in proportion to the block size. To mitigate

these limitations, the authors later extended their work to utilize a generalized Butterfly

graph [38]. This graph is made more flexibly such that the number of rows nrows is set

independently of n and is taken as an input. Then, nodes are arranged into dn/nrowse
columns, where the last column does not necessarily consist of nrows nodes. The way the

nodes are linked to each other is similar to the previous Butterfly graph. We consider the

generalized version of Butterfly graph scheme in our analyses.

The computation cost of the butterfly authentication is the same as the augmented hash

chaining: tsig +ndl/64ethash seconds to verify a block of n packets. Denoting the number of

rows in the butterfly graph by nrows, the communication overhead of this scheme is equal

to nsig(ssig + nrowsshash)/n + shash(2n − nrows)/n bytes per packet. According to losses,

receivers need to buffer packets till a copy of the signature arrives. In the worst case they

may need to have a buffer of up to n packets, though it is unlikely. Thus, for the total delay,

we neglect the receiver delay when summing it with the sender of n/α seconds, which makes

a total delay of n/α seconds. However, the receiver buffer required cannot be neglected

even it fills infrequently. Similar to the augmented hash chaining, the loss tolerance of this

schemes depends on the packet loss model, which we evaluate in the simulation section.

2.4.4 Tree chaining

Wong and Lam [39] proposed the use of Merkle hash trees [40] for stream authentication.

In their scheme, one signature is designated for each block of packets. At the sender side,

a balanced binary Merkle hash tree is built over packets of each block. Leaves of this tree

are hashes of packets, and each interior node represents the digest of concatenation of its

children. The root of this tree is then signed. Due to the collision-free property of the hash

function, the whole set of leaf packets is authenticated if authenticity of the root of the tree
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Figure 2.2: Stream authentication using SAIDA.

is successfully verified. Each packet is individually verifiable by traversing and partially

reconstructing the tree from the bottom (the leaf node corresponding to the given packet)

to top (the root) and verifying the root digest using the given signature. For this procedure,

only siblings of the nodes on the path are needed. Therefore, in this scheme, each packet

carries the block signature, its location in the block, and the set of siblings on the path from

itself to the root. This makes each packet individually verifiable using the authentication

information it carries.

The computations needed for verifying a block consist of one signature verification,

ndl/64e hash computations over packets, and (dn log2 ne−n)d2shash/64e hash computations

interior to the tree, which in total takes tsig+thash(ndl/64e+(dn log2 ne−n)d2shash/64e) sec-

onds for a block. The communication overhead of this scheme is equal to ssig +dlog2 neshash

bytes per packet. In tree chaining, there is no need to buffer any packet, thus a packet can

be verified once it arrives. The total delay imposed by tree chaining, which consists of the

sender delay only, is that of generating a block: n/α seconds. Moreover, loss resilience is

always 100% given that a packet is either arrived or lost atomically.

2.4.5 SAIDA and eSAIDA

Park et al. [41] presented SAIDA (Signature Amortization using Information Dispersal Al-

gorithm) for stream authentication. As shown in Fig. 2.2, SAIDA divides the stream into

blocks of n packets. Then, it hashes each packet and concatenates the hash values. Let
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us denote the result of this concatenation by H = h(p1)||h(p2)|| · · · ||h(pn), and the number

of packets that are expected to be received out of a block of n packets by nenough, i.e.,

nenough = (1− ρ)n. H along with a signature on h(H) is divided into nenough (nenough ≤ n)

pieces, IDA-coded2 into n pieces and split over all the n packets of the block. Any nenough

pieces suffice to re-construct the hashes and the signature to verify authenticity of the entire

block. Note that the signature itself is sufficient for authenticating the whole block if no loss

occurs, but the concatenation of packet hashes is also IDA-coded and carried by packets so

that the block is still verifiable if some packets are lost.

Computations needed by SAIDA to verify a block are n hash computations over packets,

one hash over the concatenation of packet hashes, one signature verification, and one IDA-

decoding. We disregard the cost of IDA-coding, because there are efficient algorithms for

erasure correction, such as Tornado codes that use only XOR operations and operate in linear

time of the block size, which can replace IDA-coding in SAIDA. Hence, the time it takes for a

receiver to verify a block is tsig+(ndl/64e+dshashn/64e)thash. The communication overhead

of SAIDA depends on the parameters of the IDA algorithm (or any other FEC technique

used instead), and is equal to (ssig + nshash)/nenough bytes per packet. The receiver needs

to buffer at least nenough packets, which typically is a significant fraction of n. Thus the

receiver delay can be considered n/α, which results in a total delay of 2n/α seconds when

summed to the sender delay of n/α.

As an enhancement on SAIDA, Park and Cho presented eSAIDA [43]. In eSAIDA, one

hash is designated for each pair of adjacent packets, rather than one for each packet as in

SAIDA. This reduces the overhead, but will cause a packet to be unverifiable if its couple

is not received. Thus, a packet in a block may also contain the hash value of its couple.

The fraction of packets containing their couple’s hash is parameterized by s (0 ≤ s < 1) as

an input, which governs a tradeoff between successful verification rate and communication

overhead. Computations needed by eSAIDA per each block are (1+s)n/2 hash computations

over packets, one hash over the concatenation of hashes of packet pairs, one signature

verification, and one IDA-decoding that we neglect. Thus, the time it takes for eSAIDA to

verify a block is tsig +(dl/64e(1+s)n/2+ dshashn/128e)thash. The communication overhead

of eSAIDA is (ssig + shashn/2)/nenough + shashs bytes per block. The receiver buffer size

and the total delay in eSAIDA are similar to those in SAIDA.

2See Rabin’s Information Dispersal Algorithm (IDA) [42], which belongs to a broader set of erasure codes
called Forward Error Correction (FEC) codes.
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2.4.6 cSAIDA

Pannetrat et al. in [44] developed another improvement of SAIDA, which we call cSAIDA be-

cause it significantly reduces the communication overhead of SAIDA. Recall that in SAIDA,

the concatenation of the packet hashes (H) along with a signature on h(H) are FEC-coded

(using the IDA algorithm [42]) and distributed among the n packets of the block. However,

a considerable fraction of these packet hashes can be computed from the received pack-

ets. Thus, there is no need for the whole H to be transmitted. To achieve this, cSAIDA

uses FEC coding twice as follows. First, a systematic erasure code is employed to encode

H. A systematic erasure code encodes data pieces D1, D2, . . . , Dn into m (m ≥ n) pieces

D′
1, D

′
2, . . . , D

′
m such that any subset of n pieces are sufficient for reconstructing the original

data and the first n pieces of the encoded result are equal to the original data. That is,

Di = D′
i (1 ≤ i ≤ n). In this case, the extra redundancy pieces D′

n+1, . . . , D
′
m are called

parity check pieces. Denoting the expected loss rate by ρ (0 ≤ ρ < 1), in cSAIDA, the n

pieces of H are systematically FEC-coded into dn + ρne pieces H ′
1,H

′
2, . . . , H

′
dn+ρne. Then,

only parity pieces H ′
n+1, . . . ,H

′
dn+ρne and a signature on h(H) are concatenated, divided

into bn(1− ρ)c pieces, and FEC-coded again into n pieces to be attached to all the n pack-

ets of the block. At the receiver side, if bn(1 − ρ)c (i.e., nenough) packets are successfully

received, then bn(1 − ρ)c of the hash values, the signature on h(H), and the parity pieces

H ′
n+1, . . . ,H

′
dn+ρne can all be successfully retrieved. Thus, H can be reconstructed in order

to verify the whole block using the signature.

Computations needed by cSAIDA to verify a block are equal to those of SAIDA, plus

one extra FEC-decoding. Since we disregard the cost of FEC-decoding, the time it takes

cSAIDA to verify a block is tsig +(ndl/64e+dshashn/64e)thash seconds. The communication

overhead of cSAIDA is (ssig +(n−nenough)shash)/nenough bytes per packet. The total delay

and receiver buffer size of cSAIDA are similar to those of SIADA and eSAIDA.

2.4.7 TFDP

Habib et al. [45] presented TFDP (Tree-based Forward Digest Protocol) for offline P2P

streaming, i.e., distribution of already-recorded media files. Similar to SAIDA, packets are

hashed, and packet hashes are concatenated and hashed again to form the digest of the

block. Unlike SAIDA, only one signature is generated for the whole stream, because the

entire file being streamed is given initially. Similar to tree chaining [39], a Merkle hash
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tree [40] is built over blocks of the stream, whose leaves are block digests. The root of

this tree is then signed. At the beginning of the streaming session, the client receives the

signed root of the tree along with a list of senders. The client asks one of the senders for

information needed to verify a number (x) of blocks, which includes hashes of packets of

these blocks (FEC-coded), digests of the x blocks, and auxiliary digests in the tree needed

for reconstructing and verifying the root digest. Having received the digests, the client

checks their genuineness by re-calculating the root hash. Once verified, they can be used for

verifying authenticity of the x data blocks, one by one once they arrive. The client repeats

the same procedure for the next sets of blocks. Therefore, the communication overhead is

amortized over a number of blocks.

Computations needed by TFDP for each block (assuming x = 1 for simplicity) are n hash

computations over packets, one hash over the concatenation of packet hashes, and dlog2 Ne
hashes corresponding to nodes interior to the tree, which takes (ndl/64e + dshashn/64e +

dlog2 Ned2shash/64e)thash seconds. Thus, compared to computations of other schemes,

which all include one signature per block, TFDP’s computations are much cheaper. The

communication overhead of TFDP is at most equal to shash(n/nenough + (1 + log2 N)/n)

bytes per packet, where N denotes the total number of blocks in the file. This worst case

communication overhead occurs when the clients requests one block, i.e., x = 1. In TFDP,

a receiver needs to buffer at most n packets. In addition, since TFDP works for offline

streams only, the delay is not relevant.

2.4.8 Other Authentication Schemes

Perrig et al. proposed TESLA (Timed Efficient Stream Loss-tolerant Authentication) and

EMSS (Efficient Multi-chained Stream Signature) in [46] to authenticate online streams in

lossy networks. The core idea of TESLA is to take advantage of the online nature of the

stream. That is, after a packet is received by all receivers, any possibility to forge the

contents of that packet is of no danger, i.e., it is enough to eliminate this possibility only

during the time the packet is in transit. TESLA and a later improvement on it [47] are very

interesting techniques for authentication of online multicast streams. However, because they

depend on the online nature of the stream and on a time synchronization (though loose)

between the sender and receivers, they are not applicable to other streaming scenarios, such

as video on demand, where receivers may be receiving different parts of the stream at the

same time, or to P2P streaming, where delay constraining is extremely difficult. Therefore,
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TESLA cannot be a solution for the general stream authentication problem. The other

method presented in [46], EMSS, does not depend on the online nature of the stream, which

comes at the cost of more expensive computations. For a block of packets, the hash of each

packet is put in multiple later packets of the block, and a signature is put in the last packet

of the block. The signature suffices for verifying the entire block of packets. EMSS does

not clearly specify how to designate hash links. It is one of the earliest techniques based on

hash replication, and is outperformed by other schemes summarized in this section in terms

of loss tolerability with less overheads. Thus, we do not include EMSS in our analysis.

The authentication schemes presented thus far do not use or depend on the character-

istics of the video stream. There are other schemes that do use these characteristics in

the authentication process. These are usually called content-based authentication schemes.

Conducting a quantitative analysis of these schemes is difficult, because of the dependence

on the video characteristics which are quite diverse and varying. Nonetheless, to make this

chapter comprehensive, we summarize a few of such schemes in this category.

Liang et al. [48] proposed a method for extracting a content-based feature vector from

video. The goal is to inexpensively extract the feature vector such that it is robust against

transcoding operations. The feature vector is then embedded back into the video as a

watermark. Sun et al. in [49] extended an earlier work of theirs on image authentication [50]

for video authentication with robustness against transcoding. In [50], some content-based

invariant features of an image are extracted, and the feature vector is FEC-coded. The

resulting codeword can be partitioned into two parts: the feature vector itself and parity

check bits. Only the parity check bits are taken as a kind of Message Authentication

Code (MAC) for the image and are then embedded back into the image as a watermark.

Furthermore, the whole FEC codeword (extracted feature vector and its parity check bits)

is hashed and then signed to form the signature of the image. The signature can either be

attached to the image or again be embedded back into the image as another watermark. At

the receiver side, to verify the authenticity, the feature vector is extracted from the content,

which together with the watermark (parity check bits) can re-construct the FEC codeword

whose signed hash is received and ready for verification. Feature extraction and watermark

embedding are done in the transform domain, since transcoding operations are usually

performed in that domain. Robustness against re-quantization is achieved by following the

approach taken in an earlier work [51].

Another instance of content-based approaches is the scheme presented by Pradeep et



CHAPTER 2. ANALYSIS OF MEDIA STREAM AUTHENTICATION SCHEMES 22

al. [52] for video authentication based on Shamir’s secret sharing [53]. They divide a video

into shots, and then extract a number of key frames from each shot. They define three

levels of authentication and create one authentication frame for (i) each sequence of frames

between two successive key frames, (ii) each shot, and (iii) the whole video.

For detecting forgery of offline (recorded) videos, Wang et al. in [54] approached au-

thentication of MPEG-coded video by detecting the effects of double MPEG compression.

Recall the video coding process where each Group of Pictures (GoP) consists of an I-frame

followed by a number of P- and B-frames. When a sequence of frames is removed from (or

inserted to) a video and the video is encoded again, the type (I, P, or B) of some frames

could change. Accordingly, two frames belonging to a GoP in the new video might belong

to two different GoPs in the old one. Since the retrieved content of P- and B-frames is

mainly based on the motion vectors, there is a strong correlation between frames belonging

to the same GoP. However, when some frames are in different GoPs in the old video and

in the same GoP in the new one, this correlation becomes weaker, and the motion error

is increased; this increased motion error is observed periodically in the video sequence. In

addition to migration between GoPs, there is another effect when a video is compressed

twice. For the I-frames that still remain I-frame in the new coded video, the quantization

factor would be different if the old and new videos are encoded at different bitrates. Such

double quantization results in a detectable statistical pattern that occurs periodically in the

histogram of DCT coefficients. Taking advantage of these two behaviors, a forgery can be

detected.

2.5 Evaluation of Authentication Schemes for Nonscalable

Streams

In this section, we compare nonscalable stream authentication techniques summarized in

Section 2.4. We first conduct a numerical analysis of the computation cost and commu-

nication overhead of the schemes. Then, we analyze their tolerance to packet losses using

simulation under different loss models. Then, a summary of our findings is presented. Fi-

nally, we propose to combine the best features of two authentication schemes to design a

more efficient one.
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Table 2.2: Summary of the analysis of authentication schemes for nonscalable streams.
Computation cost: time to
verify a block (sec)

Communication overhead
(bytes per packet)

Total
delay
(sec)

Receiver
buff size
(pkts)

Hash
chaining

tsig + thashndl/64e ssig

n
+ shash n/α 1

Aug.
chain

tsig + thashndl/64e nsigssig

n
+ 2shash n/α n

Butterfly
chaining

tsig + thashndl/64e nsig(ssig + nrowsshash)
n

+

shash(2n− nrows)
n

n/α n

Tree
chaining

tsig + thash

(
ndl/64e +

(dn log2 ne − n)d2shash/64e
) ssig + dlog2 neshash n/α 1

SAIDA tsig + thash

(
ndl/64e +

dshashn/64e
)

ssig + nshash

nenough
2n/α n

eSAIDA tsig+thash

(
dl/64e(1+s)n/2+

dshashn/128e
)

ssig + shashn/2
nenough

+ shashs 2n/α n

cSAIDA tsig + thash

(
ndl/64e +

dshashn/64e
)

ssig + (n− nenough)shash

nenough
2n/α n

TFDP thash

(
ndl/64e+dshashn/64e+

dlog2 Ned2shash/64e
) shash(

n

nenough
+

1
n

+

log2(N/x)
nx

)

NA n

2.5.1 Numerical Analysis

We present in Table 2.2 a summary of the analysis of all authentication schemes presented

in the previous section. Each row corresponds to one authentication scheme, and the four

columns represent four of the five performance metrics defined in Section 2.3. To shed some

light on the performance of the different authentication schemes, we numerically analyze

their computation cost and communication overhead as the number of packets in the group

n varies. n is the most important parameter that impacts the performance of the authen-

tication schemes. To conduct this analysis, we choose realistic values for other parameters

as summarized in Table 2.1 and discussed below.
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Choosing Values of the Parameters for Simulation. We first choose the values of packet

size and packet sending rate. To improve the performance of video streaming applications

over Internet, it is usually preferred to fit each application data unit in an IP packet, which

should be smaller than the maximum transmission unit (MTU) [55]. Assuming a video

encoding rate of 320 kbps and an MTU of 1,500 bytes, the data in a packet should be

roughly 1,400 bytes. This takes into account the RTP/UDP/IP headers and authentication

information attached to each packet. Thus, the packet rate (α) is equal to α =
320 kbps

1400 bytes
'

30 packets per second.

Next, we estimate the computation costs of the digital signature and hashing operations.

Digital signature operations are often very costly, because they involve modular multiplica-

tion of very large numbers. Since we assume that the signer is powerful enough, RSA [28] is

an appropriate choice as the digital signature scheme, because its verification can be done

efficiently when the public key is chosen properly, e.g., a value of 65537 (216 + 1) for the

public exponent. The size of a 1024-bit RSA signature is ssig = 128 bytes. tsig in Table 2.1

denotes the time it takes to verify a 1024-bit RSA signature with such exponent. That is

estimated for a typical limited-capability device, by using a small fraction (5-10%) of its

CPU time. It is experimented in [56] that 1024-bit RSA verification when the public expo-

nent is 65537 takes about 5 milliseconds on an iPAQ H3630 with a 206 MHz StrongARM

processor, 32 MB of RAM, and running Windows CE Pocket PC 2002. A similar experi-

ment [57] measures 1024-bit RSA verification time on a number of J2ME-enabled mobile

devices and reports that the time taken ranges from a few to more than a hundred millisec-

onds. Since the authentication scheme should not take more than a small fraction of CPU

time, e.g., 5-10%, and considering a safety margin, we took the value tsig = 500 millisecond

in Table 2.1. For the hashing algorithm, SHA-1 [26] and MD5 [27] are two popular one-way

hash functions, both of which operate on blocks of 512 bits. MD5 has higher performance

and smaller digest size, but some successful cryptanalysis have been done on MD5 and al-

gorithms have been proposed for finding collisions [58,59]. Although these cryptanalysis on

MD5 are far from being practical for breaking a system in real-time, we chose SHA-1 as the

hash algorithm for our evaluations. The digest size shash for SHA-1 equals to 20 bytes.

Results of the Analysis. We plot in Figure 2.3 the computation costs for all considered

authentication schemes as n varies from 0 to 150 packets. The figure shows that the TFDP

scheme is more efficient than the others. This is because it does not verify a digital signature

per each block. Recall, however, that to build the Merkle hash tree used in TFDP, the whole
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Figure 2.3: Computation cost (time to verify a block of packets) versus block size.

stream need to be available. This makes TFDP only suitable for on-demand streaming of

pre-encoded video streams.

In Figure 2.3, we also plot the time it takes for a block of packets of size n to arrive

at the receiver, which is computed from the packet generation rate α. Clearly, the block

arrival time should be larger than the block verification time. Otherwise, the receiver will

not have enough processing capacity to verify the authenticity of packets in real time.

Therefore, by looking at Figure 2.3, we notice that small block sizes may not be suitable

for all authentication schemes except TFDP. This implies that a minimum block size is

required to support devices with limited processing capacity. For example, for the data

used in producing Figure 2.3, a block size of approximately 100 packets would be needed

to safely use any of the authentication schemes. This also indicates that the receiver needs

to allocate a buffer of size at least 100 packets for most of the schemes (see buffering

requirements in Table 2.2).

Next, we plot the per-packet communication overhead against the block size n for all

authentication schemes in Figure 2.4. The communication overhead is the number of ad-

ditional bytes added to each packet to implement the authentication scheme. The figure

shows that the cSAIDA authentication scheme imposes the least amount of communication

overhead. Moreover, the per-packet overhead stabilizes for block sizes greater than 50 pack-

ets for all schemes, except for the simple tree chaining scheme in which the overhead keeps

increasing as the block size increases.
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Figure 2.4: Communication overhead (bytes per packets) versus block size.

2.5.2 Simulation

Simulation Setup. We have implemented all authentication schemes described in Sec-

tion 2.4 in a simulator to study the impact of packet losses on their performance. The

main performance metric used is the packet verification rate, which is the fraction of pack-

ets successfully verified over all received packets when packets carrying the authentication

information could be lost. Notice that we are analyzing the loss tolerance for each authen-

tication scheme, not the loss tolerance of the video decoder which may employ various error

concealment methods.

We consider two common models for packet losses: bursty and random. The bursty loss

model is typical in wired networks where a sequence of packets may get dropped because

of a buffer overflow in one of the routers on the network path from sender to receiver.

Whereas the random loss model is usually used to capture bit errors in wireless environments.

Notice that some multimedia streaming techniques over wired networks use interleaved

packetization of data, which can change the observed loss pattern at the receiver from

bursty to random. Thus, it is important to analyze the performance of the authentication

schemes under both models of packet losses.

For simulating bursty packet losses, we implemented a two-state Markov chain, as it has

been shown to accurately model bursty losses [60]. In the two-state Markov chain, one state

indicates that a packet is received and the other indicates the packet is lost. Transition
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Figure 2.5: Verification rate versus packet loss ratio.

probabilities between these two states are computed based on the target average loss ratio

and the expected burst length using the method in [41].

Values of the other parameters used in the simulation are listed in Table 2.1.

Simulation Results. The results for the packet verification rates versus average packet

losses are given in Figure 2.5(a) for the bursty loss model, and in Figure 2.5(b) for the

random loss model. The hash chaining and tree chaining schemes are not included in these

figures, since the former one does not tolerate any packet loss and the latter always has a

loss resilience of 100%; each packet in tree chaining carries all information needed for its

verification. In figures 2.5(a) and 2.5(b), we fixed the communication overhead to 40 bytes

per packet (except for the Augmented chain which has 42 bytes since it cannot work with

40 bytes).

A few observations can be made on these two figures. First, cSAIDA clearly exhibits

the best resilience to the loss under both bursty and random loss models. For example,

for bursty losses with an average loss rate of 40% in the authentication information, about

99% of the received packets can be verified. Second, the loss tolerance of the authentication

schemes does indeed depend on the loss model, not only on the average loss rate. For

example, with an average loss rate of 40% of the authentication information, the SAIDA

scheme can verify up to 79% of the received packets under bursty losses, while this ratio is

96% under random losses. We now briefly discuss the reasons underlying these behaviors in

the figures.
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Table 2.3: Counteracting packet losses by different authentication schemes when the over-
head is fixed to 40 bytes per packet (42 bytes for the Augmented chain).

Scheme Loss counteraction
Augmented chain Replicating the signature twice within a block.
Butterfly graph The best compromise of number of edges and signature replication

is local-searched.
SAIDA An FEC factor of 1.9, i.e., 47% expected loss ratio.
eSAIDA (s = 0) An FEC factor of 3.6, i.e., 72% expected loss ratio.
eSAIDA (s = 0.5) An FEC factor of 2.7, i.e., 63% expected loss ratio.
cSAIDA An FEC factor of 2.8, i.e., 65% expected loss ratio.
TFDP An FEC factor of 2, i.e., 50% expected loss ratio.

Recall that loss is counteracted either by FEC-coding or by replicating some authen-

tication information, i.e., digests and block signature. Let us call the fraction n/nenough

the FEC factor. Depending on the scheme, the overhead of 40 bytes per packet results

in different FEC factors for FEC-based schemes (SAIDA variants and TFDP) or different

number of replications for replication-based ones (Augmented chain and Butterfly graph),

as shown in Table 2.3. For SAIDA, the 40 bytes per packet leads to FEC factors of 1.9,

which means resistance to loss of up to 47% of a block, as indicated in the table. Calculation

of FEC factors for cSAIDA and TFDP with 40 bytes per packet follow the same procedure.

eSAIDA does not only rely on FEC. Because it couples every pair of packets together, it

also attaches the hash value of a packet to its couple packet with a probability parameter s.

The 40 bytes per packet for eSAIDA with s = 0 and s = 0.5 leads to the high FEC factors

of 3.6 and 2.7, respectively. Thus, with losses up to 72% and 63%, the block signature and

hash values of packet couples can be retrieved. However, since loss of a packet threatens

verifiability of its couple, verification ratio of eSAIDA is not as high as cSAIDA even though

its FEC factor is almost equal or higher. Augmented chain has a fixed number of edges

and allows customization of loss resilience versus communication overhead only by varying

the number of replications of the signature packet. The 42 bytes per packet allows it to

replicate the signature twice within the block. The Butterfly graph allows customizing the

communication overhead by replicating signature as well as varying the number of edges of

the graph. These two parameters are in tradeoff with each other. We perform a local search

to find the best balance for that in our simulations, given a fixed amount of communication

overhead.

Recall that with 40 bytes per packet, the FEC factor of cSAIDA would be 2.8 and up
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to 65% loss is tolerated. This can be observed in Figure 2.5(b), which depicts that with

random loss up to 50%, cSAIDA keeps the verification rate almost 1. However, the effect of

bursty losses is different and more serious, as expected. Intuitively, if a loss of ratio 50% has

a random pattern, for each block almost half of the packets are lost, which is easily resisted

by the FEC factor of 2.8. On the other hand, with bursty loss of the same average ratio,

a significant fraction of packets of a block could be lost during bursts, while some other

blocks observe much less losses. This results in unverifiability of a few blocks, since the

authentication information for those blocks cannot be retrieved from the received packets

at all. This unverifiability can be seen in Figure 2.5(a), even though the loss ratio 50% is

less than the ratio 65% we prepared the stream for. That is why the FEC-based schemes

perform better under random loss model compared to bursty loss.

We can also notice the different decreasing behavior of FEC-based schemes (SAIDA vari-

ants and TFDP) with the two different loss patterns. With random losses, the verification

rate sharply falls if the loss ratio exceeds the ratio supported by the FEC factor. This is

clear in the plot for SAIDA and TFDP; same phenomenon happens to cSAIDA at 65% loss

that is not shown in the figure. With bursty loss, on the other hand, the decreasing behavior

is more smooth, because according to the above implication, there is no explicit loss ratio

value, below which is easily tolerated and beyond which it suddenly gets too hard to resist.

The third point that can be noticed is the linear decreasing behavior of eSAIDA with

random loss. The 40 bytes per packet allows eSAIDA with s = 0 (no packet hash value

is attached to its couple) and with s = 0.5 (hash of half of packets is attached to their

couples) to have FEC factors of 3.6 and 2.7, which resist 72% and 63% loss, respectively.

That means, a random loss of up to 50% (Figure 2.5(b)) is easily tolerated by them. Hence,

the decrease in verification ratio is not because of being unable to retrieve the FEC-coded

authentication information of a block. Rather, the unverifiability of some packets, say px,

is only because their couple, say px+1, is lost, and the hash of px+1 is not attached to px,

so the hash value h(px||px+1) cannot be reconstructed to be verified. The more the loss

ratio, the more the number of packets that are missing the hash of their couples. Also, it

can be observed that with s = 0.5, this increase in unverified packets ratio is less, as can be

expected. With bursty loss, on the other hand, both packets of a pair are more likely to be

lost together. That is, with each burst of loss, at most two packets can be left unverifiable:

the ones right before and right after the burst begins and ends. Thus, unverifiability can

be both due to not being able to retrieve authentication information of a block (which was
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Figure 2.6: Verification rate versus communication overhead.

very unlikely with random loss below the loss ratio supported by the FEC factor) and not

being able to verify a packet because its couple is missing. Therefore, this phenomenon, i.e.,

linear decrease of verification rate, does not take place.

We can also notice that, unlike most of the schemes, the Augmented chain performs

worse under random loss model compared to the bursty one. That can be attributed to the

structure of the augmented chain, which is designed to have least unverifiability effect with

bursty losses. With each burst of loss, up to a few packets can be left unverifiable in the

augmented chain. Thus, when each burst consists of one packet, i.e., random loss, the ratio

of unverifiable packets increases. Also, the decreasing behavior of Augmented chain curves

in Figures 2.5(a) and 2.5(b) is not so straight, which is most probably because we obtain

the parameters p and a for the the Augmented chain scheme (see Section 2.4.2) by a local

search for best verification rate, given a fixed amount of overhead.

Finally, we fix the average loss rate at 20% with bursty losses, and we vary the communi-

cation overhead per packet. That is done either by varying the FEC factor (for FEC-based

schemes) or by changing the number of replication of the signature (for replication-based

schemes). Then, we analyze the verification rates for different values of the per-packet over-

head. The results for all authentication schemes are given in Figure 2.6. The figure confirms

the efficiency of the cSAIDA scheme in carefully minimizing the number of bytes needed

to encode the authentication information. With less than 30 additional bytes per packet,
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cSAIDA can achieve 100% verification rate under bursty losses with an average loss rate of

20%. Whereas other schemes need almost double this number of overhead bytes to achieve

comparable loss resilience.

2.5.3 Summary and Discussion

Our analysis and simulation with realistic parameters and in different environments indicate

that cSAIDA—the improved version of the SAIDA authentication scheme proposed in [44]—

imposes the least amount of communication overhead and achieves the best tolerance to the

loss of the authentication information. cSAIDA capitalizes on the fact that not all hash

values of packets in a block need to be transmitted, since a large portion of these hashes can

be reconstructed from the received packets. cSAIDA, however, requires a digital signature

verification per block, which is costly. The TFDP [45] scheme, on the other hand, is very

efficient in terms of computation cost, but only for offline streams. That is because TFDP

performs one digital signature verification for the whole stream, which requires the whole

stream to be available. Therefore, TFDP is not suitable for live streaming applications

where packets are generated online in real time.

In addition, as shown in Table 2.2, most of the authentication schemes for nonscalable

video streams require the receiver to buffer a block of packets, which needs memory space.

In case that the receiver has a limited memory space, the simple hash chaining [35] or tree

chaining [39] authentication schemes can be used.

Furthermore, we mention that some streaming applications employ TCP to reliably

transport data from the sender to receivers. TCP could be a possible option for streaming

if there are infrequent packet losses and the round trip time is small. In this case, the

simple hash chaining authentication scheme would suffice as loss resiliency and its associated

complex operations in other authentication schemes are not needed.

2.5.4 iTFDP

We propose to combine the best features of cSAIDA (communication efficiency) and TFDP

(computation efficiency) in designing an efficient authentication scheme for streaming of pre-

encoded streams. We call this scheme the Improved TFDP and we refer to it by iTFDP. Sim-

ilar to cSAIDA, iTFDP divides data into blocks, each with with n packets: p1, p2, . . . , pn and

it computes H = h(p1)||h(p2)|| · · · ||h(pn). It also systematically FEC-codes the n pieces of H
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Figure 2.7: Comparison between the proposed scheme (iTFDP) and cSAIDA.

into m ≥ n pieces H1,H2, . . . , Hm, and only takes the parity symbols Hn+1,Hn+2, . . . , Hm.

These symbols are concatenated, divided into bn(1− ρ)c pieces, and FEC-coded again into

n pieces to be attached to all the n packets of the block. Unlike cSAIDA, iTFDP does not

sign h(H), whose authenticity is essential for verifying the block. Instead, it authenticates

the values h(H) of blocks using a Merkle hash tree, as done in TFDP. Accordingly, the

computation cost can be significantly reduced since only one signature is designated for the

whole stream. Therefore, iTFDP can achieve the low communication overhead of cSAIDA

and the low computation cost of TFDP, without impacting other factors including delay

and buffering requirements.

To validate the efficiency of iTFDP, we have implemented it in our simulator and com-

pared it against cSAIDA. We stream a video sequence with 1 million packets in an en-

vironment with a bursty loss and average loss rate of 20%. All other parameters in this

simulation are the same as in Table 2.1. In Figure 2.7, we plot the computation cost and

communication overhead of iTFDP and cSAIDA. The figure clearly shows that iTFDP

has a significantly smaller computation cost than cSAIDA, and iTFDP further reduces the

(already-optimized) communication overhead of cSAIDA. In Figure 2.8, we compare the

verification rate of the received packets for iTFDP versus cSAIDA in presence of bursty

losses of the authentication information. The figure also shows that iTFDP improves the

verification rate of cSAIDA. Therefore, iTFDP achieves its goals of reduced computation

cost and communication overhead as well as high verification rate in presence of losses.
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Figure 2.8: Verification rate of iTFDP versus cSAIDA for different per-packet overheads.

2.6 Authentication of Scalable Multimedia Streams

In the previous two sections, we presented and analyzed authentication schemes for multi-

media streams that are encoded in a nonscalable manner. Nonscalable streams offer very

limited flexibility in supporting heterogeneous receivers. In contrast, multimedia streams

created using scalable video coding techniques can easily be adapted to support a wide

range of diverse receivers and network conditions. This ease of adaptation comes at a cost

of reduced coding efficiency, i.e., at the same bitrate a nonscalable stream yields a better

visual quality than a scalable stream. Nevertheless, this quality gap has been significantly

reduced with the recent H.264/SVC standard [8]. In this section, we present and analyze

authentication schemes for scalable multimedia streams. It is important to note that any au-

thentication scheme for a scalable stream must be able to authenticate all valid substreams

that can be extracted from it. Substreams are truncated versions of the original full stream,

created by dropping some layers. These truncations are intentionally made to customize the

stream based on the capacity of the receiver and the network conditions, and they must be

differentiated from illegitimate manipulations on the video.

Several authentication schemes for traditional scalable video streams have been pro-

posed. These scalable streams consist of a base layer and a number of enhancement layers

that progressively improve the video in terms of spatial resolution or visual quality. In other
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Figure 2.9: Authenticating scalable streams by hash chaining.

words, scalability is provided along one dimension and the layers in that dimension are cu-

mulative, i.e., layer l is an atomic unit of data (cannot be truncated) and is only useful if

all preceding l−1 layers are received. Authentication schemes for these scalable videos gen-

erally rely on two cryptographic techniques as their basis: hash chaining and Merkle hash

trees [40], which are reviewed and evaluated in the following sections. At last, we discuss

the shortcomings of these schemes for supporting recent scalable video streams which can

provide different scalability types at the same time and with higher flexibility.

2.6.1 2-D Hash Chaining

A scalable stream is a sequence of video frames, where each frame consists of a set of

layers. Clearly, we cannot treat the scalable stream as a set of independent incremental

substreams to be authenticated separately, because in a typical substream the number of

layers received out of consecutive frames may be different. Accordingly, we can think of a

scalable stream as a sequence with two dimensions: horizontal and vertical. The horizontal

dimension represents successive frames, while the vertical dimension represents the layers in

each frame. An authentication scheme for scalable streams needs to validate the authenticity

across the two dimensions.

The hash chaining scheme can be extended to scalable streams as follows [15,61]. First,

each enhancement layer of a frame is hashed and its hash is attached to its predecessor layer

of the same frame. Thus, the base layer of a frame contains a digest of all enhancement layers
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Figure 2.10: A Merkle hash tree built over 8 layers. As an example, for authenticating layer
1 only, the hash of layer 2 as well as b and v are needed.

of the frame. Then, the hash of the base layer (and the digest) of a frame is attached to the

previous frame. The two-dimensional hash chaining scheme for scalable streams is illustrated

in Figure 2.9. Notice that a substream with a base layer and 0 or more (consecutive)

enhancement layers can be verified using the authentication information carried only in

that substream—no additional information about the truncated layers is needed for the

verification of the received layers. This is an important advantage especially for streaming

in large-scale systems where proxy servers and/or third party content delivery networks can

be involved in the streaming. In this case, these entities do not have to understand the

authentication scheme and cooperate with it.

2.6.2 2-D Tree Chaining

In the tree chaining scheme for authenticating scalable streams, Merkle hash trees [40] are

employed [13, 14, 62–65]. The enhancement layers of a video frame are hashed, and the

hash values are arranged as leaves of a Merkle hash tree. Each interior node of this tree

consists of the digest of its children. The root of the tree represents the frame digest. This

is illustrated in Figure 2.10. Due to the collision-free property of the hash function, the

whole set of layers represented by the leaves is authenticated if the root of the tree, i.e.,

the frame digest, is successfully verified. To authenticate the sequence of frames, another

hash tree is built over the frame digests of a group of frames. Authentication schemes

in [13, 62] specifically employ MPEG-4’s tree-like structure for building the hash tree. In

either case, upon removal of some layers, a receiver needs some extra digests for verifying the

remaining layers, i.e., for reconstructing the root digest of the hash tree. For the example
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in Figure 2.10, if a client is receiving the base layer only (layer 1 in the figure), he/she

needs digests 2, b, and v to reconstruct and verify the root. If the first five layers are being

received, the client needs digests 6 and d. This means that a stream adaptation proxy on

the delivery path must understand and be compatible with the authentication scheme so

that it can attach the required hash values to the adapted substream. This may not be

desirable as proxy servers of content delivery networks serve thousands of streams at the

same time from different content providers who may be employing different authentication

schemes.

To mitigate this problem, we can modify the 2-D tree chaining approach as follows. The

content provider embeds in each layer i all information needed to authenticate the first i

layers (excluding the information already carried by layers 0 through i−1). This trick makes

the authentication scheme end-to-end, i.e., it no longer requires proxies to understand the

scheme, given that the information are embedded in the stream in a transparent manner

(compliant to the video stream format). However, this trick increases the communication

overhead. For example, in Figure 2.10, to layer 1 the digests 2, b, and v are always attached,

which are not necessary for many of the substreams. This increase in communication over-

head is significant, as we analyze shortly.

2.6.3 Evaluation of Authentication Schemes for Scalable Streams

We analyze the above two approaches for authentication of scalable schemes. The computa-

tion cost analysis is similar to the analysis in Section 2.4, except that there is an additional

hash computation for each enhancement layer, which is negligible. In addition, the delay

and the receiver buffer size for the two-dimensional hash chaining and tree chaining are the

same as the basic hash chaining and tree chaining schemes. The communication overheads,

however, are different and they depend on whether an intermediate proxy server is aware of

the authentication scheme or not.

We implemented the two-dimensional hash chaining and tree chaining in our simulator.

Using this simulator, we analyze the communication overhead for both schemes. We encode

a video sequence with 16 enhancement layers, with bitrates ranging from 128 kbps to nearly

1 Mbps. We create authentication information for the 16 layers using hash chaining and

tree chaining. Then, we simulate a wide range of receivers with different bandwidth. Each

receiver will obtain a truncated version of the stream based on its bandwidth. The truncated

stream should contain the needed authentication information to verify the received layers.
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Figure 2.11: Communication overhead versus bitrate.

We measure the percentage of this authentication information to the total amount of data

transmitted to the receiver. Figure 2.11 illustrates this overhead. In this figure, the vertical

axis shows the overhead percentage, and the horizonal axis represents the bitrate of the

substream being received, which is in proportion to the number of layers being received.

The overhead of authentication through hash chaining is labeled “Hash chain” in the figure,

that of hash trees is labeled “Hash tree, non-E2E”, and the overhead of hash trees for end-

to-end authentication, which is done through the trick described in Section 2.6.2, is labeled

“Hash tree, E2E”.

A few observations can be made on Figure 2.11. First, for low bandwidth receivers that

obtain only a few layers, the hash chaining scheme imposes the least amount of communi-

cation overhead. Minimizing the overhead for such receivers is crucial as they have limited

bandwidth in the first place. As the number of received layers increases, the tree chaining

scheme becomes more desirable because of the efficiency in organizing the hashes in Merkle

hash trees. The figure shows that the tree chaining scheme imposes lower overhead than

hash chaining in most cases, except when the number of layers is very few. However, au-

thentication through hash trees has limited applicability. When considering the general case

of large-scale content distribution, where third-party proxies can be involved in adapting

scalable streams, end-to-end authentication is desired. In this case, the use of hash chains is
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(a) A video encoded in three temporal, two
spatial, and up to three quality layers.

(b) A possible substream of Figure 2.12(a)
with two temporal layers, both of the spatial
layers, and a valid subset of quality layers.

Figure 2.12: A three-dimensionally scalable video and a possible substream of that.

more appropriate than hash trees since the “Hash chain” curve is always below the “Hash

tree, E2E” curve in Figure 2.11 for all bitrates.

2.6.4 Limitations of Current Schemes for Modern Scalable Streams

Recent scalable video streams offer great flexibility while incurring much lower overheads

than traditional scalable videos [6]. For example, the Scalable Video Coding (SVC) extension

of the state-of-the-art H.264/AVC video coding technique, known as the H.264/SVC [8]

standard, supports adapting a video stream along three scalability dimensions: temporal,

spatial, and quality, which provide different frame rates, different spatial resolutions, and

different visual qualities, respectively. This three-dimensional scalability model, which is

depicted in Fig. 2.12(a), is more general than the previous, and much simpler, linear layered

models. It allows different combinations of layers along the three dimensions. Even for the

same number of layers, there could be several possible paths through the scalability cube to

achieve it [8]. For example, a possible substream of Figure 2.12(a) is shown in Figure 2.12(b)

with shaded cubes, in which the first two temporal layers, both of the spatial layers, and a

valid subset of quality layers exist.

Because of the many possible combinations of layers, authentication schemes for the

traditional, and much simpler, cumulative layered video, are not applicable to this model.

Even for traditional layered videos, these schemes may incur a significant communication

overhead if the stream is providing more than a limited flexibility, because the number
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of hash values added to the stream will be in proportion to the number of layers of a

video frame; we discuss this issue in Section 3.6. In addition, the new useful coding tools

designed for scalable coding, such as hierarchical prediction of frames and medium-grained

scalability, also require new authentication algorithms. Accordingly, an efficient and end-

to-end authentication service for modern scalable streams cannot be provided by current

authentication schemes or by simple extensions of them such as forming a hash chain or tree

on each scalability dimension. For example, if previous schemes are applied on a temporal

scalable stream, frames in a temporal layer of the stream has to be all kept or all dropped

together, since these schemes operate on a layer basis. In addition, applying previous

techniques to authenticate quality enhancement packets may result in unverifiability of

many of the received packets, because they are not necessarily dropped in a cumulative

manner. To the best of our knowledge, there are no authentication schemes in the literature

that can efficiently support the full flexibility of the three-dimensional scalability model.

In the next chapter, we take into account the complete scalability structure of three-

dimensional scalable streams to authenticate all their valid substreams. We also propose an

additional algorithm for significantly reducing the communication overhead.

2.7 Summary

In this chapter we have surveyed, analyzed, and compared the most important solutions pro-

posed in the literature for the problem of verifying the authenticity of multimedia streams.

We carried out numeric analyses and simulations for the schemes to study their performance

in terms of computation cost, communication overhead, delay, receiver buffer size, and tol-

erance to packet losses. We considered authentication schemes for both nonscalable and

scalable multimedia streams. For nonscalable streams, we found that the scheme proposed

in [44] (denoted by cSAIDA) imposes the least amount of communication overhead and

achieves the best tolerance to the loss of authentication information. On the other hand,

the scheme proposed in [45] (named TFDP) is very efficient in terms of computation cost,

but only for offline (on-demand) streaming. We then proposed an authentication scheme

for on-demand streaming that combines the advantages of both cSAIDA (communication

efficiency) and TFDP (computation efficiency), i.e., it has a significantly lower computation

cost than cSAIDA while it maintains its communication efficiency and loss tolerance. Our

evaluations show that our proposed authentication scheme is the best performing one for
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on-demand streaming applications; for live streaming, on the other hand, cSAIDA is a good

candidate.

For scalable multimedia streams, we showed that authentication schemes based on hash

trees are more efficient in terms of communication overhead, but only when proxies involved

in the delivery and adaptation of streams are compatible with the authentication scheme.

Schemes based on hash chaining, on the other hand, do not require this cooperation and

can provide end-to-end authentication. Nevertheless, we showed that current schemes for

scalable video streams fail to support the full flexibility of recent scalable streams, e.g.,

H.264/SVC, which provides three scalability types at the same time and with higher flexi-

bility, yet with higher coding efficiency than traditional scalable videos.



Chapter 3

The Proposed SVC Stream

Authentication Scheme

In this chapter, we design, analyze, and implement a new authentication scheme for end-to-

end secure delivery of scalable video streams. We also propose an additional algorithm for

minimizing the communication overhead of the authentication scheme. At last, we evaluate

different performance aspects of the proposed solutions.

3.1 Introduction

As reviewed in the previous chapter, recent Scalable Video Coding (SVC) techniques can

generate highly flexible video streams and with higher coding efficiency, compared to tradi-

tional layered videos [6]. This is achieved by employing a new three-dimensional scalability

model that enables three types of scalability at the same time. In addition, new coding

tools are employed for providing these scalability types, such as hierarchical prediction of

frames, new intra-frame prediction possibilities, and Medium-Grained Scalability (MGS).

The state-of-the-art realization of this scalability model is the H.264/SVC video coding

technique, which is standardized recently and is being increasingly adopted in many appli-

cations, e.g., [9–12]. However, to the best of our knowledge, there are no schemes in the

literature that can efficiently support the new scalability model and provide an end-to-end

authentication service for SVC streams.

41
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We propose a new authentication scheme that supports the full flexibility of three-

dimensionally scalable video streams. We analytically show that the proposed scheme guar-

antees correct verification of any valid substream extracted from the original stream. The

scheme is designed for end-to-end authentication of streams. That is, a third-party con-

tent delivery network in charge of delivering (and possibly adapting) the streams does not

have to be aware of, or be compatible with, the authentication scheme, which is an im-

portant advantage. Furthermore, we propose an additional algorithm for minimizing the

communication overhead imposed by the authentication scheme, which also can be used to

minimize the communication overhead of other scalable stream authentication schemes (for

traditional scalable streams). We then implement our authentication scheme for H.264/SVC

streams in a prototype called svcAuth, which is available as an open source library and can

be employed by any multimedia streaming application as a transparent add-on, without

requiring changes to the encoders/decoders. We conduct a simulation study with real video

traces to evaluate different aspects of our scheme. Our results show that our scheme is

robust against packet losses, incurs low computational cost and buffer requirement, and is

suitable for live streaming as it has short delay. Furthermore, it adds small communication

overhead, particularly after using the overhead reduction algorithm.

In the rest of this chapter, we first review the related works in Section 3.2. Then, we pro-

vide a background in Section 3.3 on the structure of H.264/SVC scalable streams and how

it realizes the three-dimensional scalability model, and we demonstrate the importance of

authenticating all extractable layers. Our authentication scheme is described in Section 3.4,

and its security and complexity are analyzed in Section 3.5. Section 3.6 presents an algo-

rithm for minimizing the communication overhead. We evaluate our scheme in Section 3.7.

Section 3.8 gives an overview of the svcAuth library. A summary of this chapter is provided

in Section 3.9.

3.2 Related Work

We reviewed and analyzed previous schemes for authenticating multimedia streams in the

previous chapter. To authenticate scalable video streams in particular, we saw that pre-

vious schemes are designed for traditional cumulative layered videos, and they or their

simple extensions cannot support scalable streams encoded using recent scalable coding

techniques. Another work related to ours is a high level framework for Secure Scalable
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Streaming (SSS) [66], which mainly focuses on the encryption of scalable videos and on en-

abling the proxies to perform adaptations without requiring decryption. For authentication,

however, the SSS framework again recommends using Merkle hash trees, which requires the

cooperation of proxies (see Section 2.6.2).

For supporting adaptation of video streams, an alternative approach to authenticating

substreams could be to follow a content-based approach. In this approach, e.g., [48, 52], as

reviewed in Section 2.4.8, the general procedure is to extract a feature set from the video

content that is robust against adaptations, but fragile against malicious manipulations. The

features are then signed and attached to the stream. However, in these approaches, there

is no clear boundary for differentiating valid changes to the content from malicious ones,

e.g., [52] relies on threshold numbers provided as input. In addition, it is not clear how

significantly one can tamper with the video while preserving the feature set, e.g., [48] uses

the energy distribution of I-frames as the feature set, which is not difficult to preserve while

changing the content. An alternative way for making sure the video is not tampered with

is that the sender embeds/hides a watermark inside the video. The watermark could be

a shared secret between the sender and receivers [67], or a digital signature on the video

content [68]. The former case needs to trust all receivers, which is not desirable. In the

latter case, the problem of deciding how to extract robust features to sign still exists. In

fact, content-based and watermarking approaches are more suitable for authenticating video

streams that are adapted by traditional stream adaptation techniques such as transcoding

and re-compression.

3.3 Background

3.3.1 Overview of H.264/SVC

The recently standardized H.264/SVC video coding standard [8] adds scalability to the

widely used H.264/AVC video coding technique [7]. In addition to generating highly flexible

video streams, H.264/SVC significantly outperforms previous scalable coding techniques in

terms of coding efficiency [6]. That is, at the same bitrate, it provides a higher visual quality.

H.264/SVC supports temporal, spatial, and quality scalability at the same time.

Temporal scalability is achieved by employing a hierarchical prediction structure among

video frames belonging to the same Group-of-Pictures (GoP), as shown in Figure 3.1. In

this structure, frames of higher temporal layers can only be predicted from lower temporal
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Figure 3.1: Hierarchical prediction structure of H.264/SVC temporal scalability. Arrows
represent prediction. Numbers listed in the bottom row show the displaying order, while
numbers inside frames show the coding order.

layers. A GoP consists of one frame in the temporal base layer, which is generally coded as

P-frame, and several hierarchically coded B-frames that are located between the temporal

base layer frames. In the spatial scalability of SVC, a spatial layer s of a frame can be

predicted from the s-th spatial layer of some other frames (in lower temporal layers), as

well as lower spatial layers in its own frame. For providing quality scalability, there are two

different possibilities. The first one follows the spatial scalability structure, but assigns the

same resolution and different quantization parameters to layers. This produces a Coarse-

Grained Scalable (CGS) video with limited number of quality layers. A finer granularity

can be provided by the second possibility, which uses Medium-Grained Scalability (MGS)

coding to divide a single CGS quality layer into multiple sub-layers, which are referred

to as MGS layers. This is done by partitioning the residual DCT coefficients of a CGS

layer into multiple MGS layers. A stream can be truncated at any CGS or MGS layer. In

addition, some packets of an MGS layer can be discarded, while the remaining ones can still

be decoded to improve quality. Packet discarding can be done in different ways, depending

on the bitstream extraction process [69]. H.264/SVC allows Up to 7 temporal, 8 spatial,

and 16 quality layers [8].

In H.264/SVC, the coded video data and other related information are organized into



CHAPTER 3. THE PROPOSED SVC STREAM AUTHENTICATION SCHEME 45

(a) Original picture. (b) Result of tampering with the
first MGS layer (after 4 frames).

(c) Result of tampering with
the second MGS layer (after 4
frames).

Figure 3.2: Results of tampering with one MGS packet.

Network Abstraction Layer (NAL) units, which we alternatively refer to as a video packet or

a truncation unit because these are the smallest units that can be truncated from an SVC

stream. Each NAL unit, has temporal id, spatial id, and quality id field in its header, which

identify to which temporal, spatial, and quality layer the NAL unit belongs to. NAL units

can be Video Coding Layer (VCL) units, which contain the coded video data, or non-VCL

NAL units, which contain associated additional information.

3.3.2 Importance of Protecting All Layers

We aim at authenticating every video packet in a received substream. For this purpose,

we need to protect every packet from potential malicious manipulations. One might argue

that this may not be necessary and it could suffice, for example, to authenticate every

two or more packets together; the two packets then, if both are received, can be verified,

but an individual one cannot. This argument is based on the conjecture that exploiting

a few single packets which are typically in enhancement layers can only have a quality

enhancement/degradation effect, and thus cannot lead to a successful manipulation of the

video content.

We show in the following that it is necessary to verify all portions of the received data

and discard the unverifiable packets. In H.264/SVC for quality scalable coding with MGS,

the highest quality picture of a frame is often used for motion compensation at receiver

side [8]. Consequently, a change in the small unprotected portion of some highest few MGS
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layers will fast propagate through frames of a GoP, since those layers are used as prediction

references for other frames. To confirm the importance of authenticating every packet, we

empirically demonstrate a simple attack on an SVC video by manipulating one enhancement

packet only. The original video is a short sequence consisting of 10 frames which shows the

face of a man with no motion, as depicted in Figure 3.2(a). The video is encoded as one

base and one CGS quality enhancement layer, whose quantization factors are 30 and 0 (no

quantization), respectively. Transform coefficients of the CGS enhancement layer are further

divided into three MGS layers, consisting of 4, 6, and 6 coefficients in the zigzag traversal

order of the 4 × 4 coefficient table. Each MGS layer consists of a few small video packet.

The tampering is done by modifying a small portion of the enhancement data, trying to

add a simple scratch to the face. We first assume we are allowed only to tamper with up

to one packet of the first MGS layer, as the base layer is protected. We gradually modify

over a few successive frames one packet of the first MGS layer in each frame. After only

four frames, we could make a meaningful alteration on the video by creating a scratch on

the face of the man, as shown in Figure 3.2(b). In another attack, we assume that packets

of the base layer and the first MGS layer are protected, and we (as attacker) are allowed

only to modify a single packet in the second MGS layer. Again after a few frames, we were

able to meaningfully tamper with the video content, as shown in Figure 3.2(c)

This experiment highlights the risk of leaving any portion of the video data unprotected.

Notice that, we tried to tamper with the video in a very simple way by replacing the

small number of unprotected transform coefficients with those of the desired picture. Now

consider a real attacker who chooses the target video content carefully and/or employs more

complicated image processing techniques for replacing unprotected coefficients. Clearly this

attack may successfully make significant changes to the video content.

3.4 The Proposed Scheme

In this section, we present our method for authenticating SVC streams. We first present an

overview of the scheme, followed by the details of the authentication steps.

3.4.1 The Proposed Authentication Scheme

At a high level, the proposed authentication scheme works as follows. First, the content

provider prepares the additional information needed for verification, and attaches them to
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the stream. Each receiver either receives the whole or a subset of the original stream,

along with the corresponding authentication information. The task of substream extraction

may be carried out by stream adaptation proxies belonging to the delivery network, which

do not have to understand the authentication scheme. The authentication information is

transparent to these proxies; it is attached to specific NAL units in a video format-compliant

manner. Some packets of the stream may be lost during transmission. Unlike loss of a video

packet that can be tolerated to some extent by error concealment techniques, loss of the

authentication information may have a serious effect: some layers cannot be verified and thus

cannot be used, although they are successfully received. We therefore need to appropriately

protect the authentication information against loss. If the video is being transmitted over

the Internet, where bursts of packets can be lost, it is a common practice to distribute video

data over network packets in an interleaved manner [70], which changes the loss pattern

from bursty to random. Relying on such packetization technique, we assume packet losses

have a random pattern.

An SVC stream is a sequence of GoPs. Each GoP consists of a number of video frames,

each of which belongs to a certain temporal level. Each frame, in turn, contains multiple

spatial layers. A spatial layer then includes a few CGS quality layers, each one possibly

partitioned into several MGS layers. Each MGS layer can be divided into multiple NAL

units, to which we alternatively refer as truncation units or video packets, because these

are the smallest units that can be truncated from an SVC stream. A video packet can be

transmitted as more than one network packet, but without loss of generality, we assume

that a video packet fits in a network packet, i.e., it is encoded at a size not exceeding the

desired packet size for network transmission; otherwise, the video packet is divided into

multiple video packets. According to this structure, the server prepares the authenticated

video using the algorithm in Figure 3.3, which is described in the following. First, within

each spatial layer of each frame, quality layers are authenticated and one hash value is

computed as the spatial layer digest. Then, in each frame, spatial layers and their digests

are authenticated and the frame digest is created. The next step authenticates the frames

of each GoP according to their temporal levels, which results in a GoP digest. In the last

step, the whole stream is authenticated by dividing the sequence of GoPs into blocks, and

digitally signing the block digest computed on the block. The authentication information

generated in each step is embedded into the stream. In this bottom-up approach, each of the

aforementioned digests hides all scalability details of the digested unit of data. For example,
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SVC Authenticate

AuthenticateStream ( GoPs[], n, k, α[] )
1. GoPblocks = DivideToBlocks(GoPs, n)
2. for block ∈ GoPBlocks do
3. X = null //contains GoP digests
4. foreach GoP ∈ block and i = 0 to n− 1
5. X = X || AuthenticateGoP(GoP, k, α)
6. Embed { X||Sign(h(X)) } in layer (0, 0, 0) of all of the GoPs in block
AuthenticateGoP ( GoP, k, α[] )
1. T = GoP.NumTemporalLayers
2. nt∈[0,T−1] = GoP.NumFramesAtLayer [t]
3. n1 = 2
4. ToEmbed [] = MakeEmptyArray(nT )
5. for t = T − 1 to 2 do
6. X = null //contains frame digests
7. for i = 0 to nt − 1
8. X = AuthenticateFrame( GoP.FramesAt- Layer [t].get(i), k, ToEmbed [i] ) || X
9. x[] = DivideToPieces( X, dα[t]×nt−1e )
10. ToEmbed [] = FEC encode(x, nt−1)
11. f0, f1 = GoP.FrameAtLayer [0], [1]
12. y = AuthenticateFrame(f1, k, ToEmbed [1])
13. x = AuthenticateFrame(f0, k, ToEmbed [0])
14. return {x || y}
AuthenticateFrame ( frame, k, W )
1. S = frame.NumSpatialAndCGSlayers
2. ToEmbed [] = MakeEmptyArray(S)
3. for s = S − 1 to 0 do
4. layer = frame.layer [s]; Q = layer.NumMGSes
5. F ′[] = MakeEmptyArray(Q)
6. for q = 0 to Q− 1
7. p[] = layer.MGS [q].Units()
8. F ′[q] = h(p[0]) || . . . || h(p[size(p)− 1])
9. Embed F ′[q] in layer.MGS [q] in k copies
10. F = h(F ′[0]) || . . . || h(F ′[Q− 1]) || ToEmbed [s]
11. if s = 0 then
12. Embed {F ||W} in layer.MGS [0] in k copies
13. return h(F ||W )
14. Embed F in layer.MGS [0] in k copies
15. ToEmbed [ layer.HighestRef() ] ||= h(F )

Figure 3.3: The proposed authentication scheme.
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Figure 3.4: Authenticating a video frame.

a frame digest hides spatial and quality scalability, and makes the frame a transparent unit

of data for the next step of authentication.

The verification process proceeds in the same way as generating the authentication infor-

mation. Given a valid substream and its authentication information, a receiver recomputes

spatial layer, frame, GoP, and block digests from the reconstructed video. In case of any

mismatch between the recomputed digest and the digest provided by the server in the sub-

stream, the mismatching part of data, such as a video frame, is marked as unauthentic and

is discarded. The remaining part of the received substream is known as authentic if and

only if the digital signature of the corresponding block is successfully verified.

3.4.2 Authentication of Quality Layers

Quality scalability can be provided in SVC by encoding one or more CGS layers, and par-

titioning each CGS layer into multiple MGS layers. As discussed earlier, CGS layers are

encoded the same way as spatial layers, and follow the same dependency structure. We

therefore treat CGS layers as spatial layers; when dealing with authentication of quality

scalability, we only consider MGS layers within a spatial or CGS layer. Note that if a

video is not encoded with Medium-Grained Scalability, without loss of generality, we con-

sider each spatial/CGS layer as if having only one MGS layer. MGS quality layers in SVC,

unlike previous scalable videos, can be extracted in many possible ways. Moreover, MGS
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layers are no more atomic units. Rather, a single MGS layer can be truncated at packet

level [69], and the H.264/SVC standard does not dictate any specific quality packet extrac-

tion process. Therefore, we form the authentication information of MGS layers/packets of

each spatial/CGS layer in a two-level hierarchy as shown in Figure 3.4 and lines 4–10 of the

“AuthenticateFrame” function in the pseudocode (Figure 3.3).

Let Q be the number of MGS layers, MGS [q] (0 ≤ q ≤ Q − 1) be the MGS lay-

ers themselves, Pq be the number of video packets constituting the q-th MGS layer, and

pq,0, . . . , pq,Pq−1 be the packets themselves. First, packets of each MGS layer MGS [q] are

hashed using a secure hash function h(·), and their hashes are concatenated as F ′
q =

h(pq,0)|| . . . ||h(pq,Pq−1) (see Figure 3.4 and line 8 of the code). Then, F ′
q values are hashed

and concatenated again as F = h(F ′
0)|| . . . ||h(F ′

Q−1)||Hx0 ||Hx1 || . . . , where the values (typ-

ically one or very few) Hxi are the spatial layer digests of some higher layers (the ToEmbed

array in line 10 of the code), as introduced shortly. Moreover, to the lowest spatial layer

could possibly be added, as one of the aforementioned Hxi values, a part of the authenti-

cation information of the next temporal level (string W in the code). This is depicted in

Figure 3.4 as the arrow going from outside the frame to the lowest spatial layer. The spatial

layer digest is obtained as H = h(F ||W ). Each F ′
q is attached to the MGS layer MGS [q]

so that any subset of packets of this MGS layer can still be verified without requiring the

whole set of packets of the layer. Similarly, F is attached to the corresponding spatial/CGS

layer. This enables a receiver to reconstruct the spatial layer digest H, and all required

intermediary values, even if some layers and packets are not received at all.

3.4.3 Authentication of a Video Frame

In SVC spatial (and CGS) scalability, the dependency structure among spatial layers of a

frame, i.e., intra-frame dependency, does not have to be linear, as it was in previous scalable

videos. Rather, it is in general a Directed Acyclic Graph (DAG), where for example, layer

5 does not necessarily depend on layer 4, but instead it may use layers 1 and 3 as reference.

We thus attach each spatial layer digest Hs to its highest reference layer. This is shown

in Figure 3.4, and lines 10 and 15 of the pseudocode in Figure 3.3. It is possible, though

unlikely, that a spatial enhancement layer s is not dependent on any lower layer in the same

frame; it is predicted only from the s-th spatial layer of other frames. In this case, we attach

the layer digest Hs to the s-th layer of the closest reference frame (not shown in Figures 3.4

and 3.3). The digest of the lowest spatial layer of a video frame represents the frame digest.
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To protect the authentication information of quality and spatial layers against loss, we

need to add redundancy. The common technique for this purpose is the use of Forward

Error Correction (FEC) codes. However, since there can be several quality and spatial

layers, the computational cost of performing many FEC operations per each frame can be

too high. Therefore, we replicate the authentication information of each MGS/spatial layer

in two or more packets, rather than FEC-coding this information. The number of copies of

the authentication packet, denoted by k in Figure 3.3, can balance a tradeoff between loss

tolerance and the communication overhead. We will show in the evaluation section that

only 2 copies are enough for resisting against typical loss ratios.

3.4.4 Authentication of a GoP

We take care of temporal scalability at frame level using frame digests provided in the pre-

vious step. In a temporally scaled SVC substream, there exist all frames of temporal layers

below (excluding) a certain level, T , and possibly a fraction of frames at level T . Thus, to be

able to verify any valid substream, we embed the digests of frames of each temporal layer in

the frames of the lower temporal layer according to Figure 3.5 and the “AuthenticateGoP”

function in Figure 3.3; GoPs with non-dyadic structure can be authenticated in a similar

manner. In this scheme, frame digests of temporal level t are first concatenated. Denoting

the number of frames in level t by nt, the concatenation of frame digests of temporal level t

is divided into kt = dα[t]×nt−1e pieces (line 9), FEC-coded into nt−1 pieces, and distributed

over the nt−1 frames of level t − 1. In this way, adaptation of the video to any frame rate

will not affect our authentication scheme. At the receiver side, authentication information

of any kt out of nt−1 frames of temporal level t − 1 leads to successful verification of all

frames at level t. Since kt = dα[t] × nt−1e, loss of the authentication information of up to

(1− αt) nt−1 frames of the nt−1 frames at temporal layer t− 1 can be tolerated.

Figure 3.5 also shows how the GoP digest is obtained, whose authenticity is essential for

the authentication of any subset of the GoP. Note that, for different temporal levels, different

robustness to loss can be provided, because lower temporal levels are more important as

they are used for prediction of more frames. Assessing the importance of frames in SVC

prediction structure, and unequally protecting them against loss is an orthogonal work

to ours, and we leave that to, for example, [71, 72]. Nevertheless, this practice is more

effective than FEC-coding the whole set of authentication information equally, as done

for scalable authentication schemes in [65] and [13]. As a case in point, FEC-coding some
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Figure 3.5: Authenticating frames of a GoP.

information into two parts is actually equivalent to replicating the information in two copies.

Thus, for temporal layers 2 and below, the FEC coding operation consists of replicating the

concatenation of frame digests of the higher temporal layer. Since there are only a few FEC

operations performed per each GoP, the computational cost is kept low.

3.4.5 Authentication of a Sequence of GoPs

No GoP can be dropped from the stream for adaptation purposes. Thus, a sequence of GoPs

can in general be thought of as a stream of data packets. Accordingly, we first consider

to authenticate the sequence of GoPs by applying one of the data stream authentication

techniques proposed in the literature. To authenticate a stream of data packets, as we

reviewed in Section 2.4, the common practice, e.g., [41,44], is to divide packets of a stream

into blocks of size n packets, and designate one digital signature for each block. This

amortizes the signature size and the computation cost of signature verification over several

packets. For preparing the authentication information of a block of GoPs, we follow the

same approach.
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For distributing the authentication information of a block in its packets, various meth-

ods are proposed aiming to best resists against bursts of packet loss. The cost of this is

some delay at the sender/receiver side for generating/receiving a block, which is especially

important for live streaming, and some buffering requirement for receivers to keep almost

a complete block before being able to verify any of the packets. However, a sequence of

GoPs has different characteristics than a sequence of data packets: it has a low rate, each

GoP is very large compared to a packet, and GoPs are not likely to be lost in bursts, since

bursts of loss have short periods [60]. Taking advantage of these considerations, we authen-

ticate each block of GoPs as described in the “AuthenticateStream” function of Figure 3.3.

Compared to applying classic packet stream authentication techniques for authenticating

the sequence of GoPs, this method has the following benefits: (i) it is more robust against

loss, since receiving the authentication information of any GoP is sufficient for verifying the

whole block, (ii) it incurs lower delay, because a receiver does not have to wait for receiving

almost a complete block, (iii) it requires receivers to buffer one or very few GoPs, since

any successfully received GoP authentication information suffices for verifying the GoPs,

and (iv) it imposes only a small communication overhead (< 1 KB per second) because the

information attached to each GoP consists of a few hash values and a digital signature, and

the sequence of GoPs has a low rate (very few GoPs per second).

3.5 Analysis and Security of the Proposed Scheme

3.5.1 Security Analysis

We prove that the proposed scheme authenticates any valid substream extracted from the

original stream, provided that the underlying cryptographic primitives (hash function and

digital signature) are secure on their own. The scheme enables a client to assure that

the received content has gone under no manipulation, such as changes in the contents

of any video frame, frame insertion, frame reordering, frame removal, or any other type

of tampering—frame removals due to frame rate reduction are legitimate as long as they

are compliant to the SVC standard, which cannot be used for malicious purposes such as

cropping a number of consecutive frames.

Theorem 1 The proposed scheme ensures the authenticity of any substream extracted from

the original SVC stream.
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Proof. Recall the hierarchical structure of an SVC video stream, whose levels consist of

GoPs, temporal layers, frames, spatial/CGS layers, MGS quality layers, and finally, video

packets. We prove the authenticity of any valid substream in a bottom-up manner in this

structure. We first show that the authenticity of any valid subset of quality layers can be

successfully verified if the corresponding spatial layer digest is authentic. The procedure

continues similarly for the digests of spatial layers, frames, GoPs, and GoP blocks. Finally,

successful verification of the digital signature of a GoP block is shown to be the necessary

and sufficient condition for authenticity of any valid substream, which proves the theorem.

Step 1: Authenticity of quality layers. We first analyze the deepest level of the scalability

hierarchy, which corresponds to quality layers. We prove that any valid subset of video

packets of a spatial/CGS layer, given the authentication information of the packets and the

digest of the corresponding spatial/CGS layer, are authentic iff the spatial/CGS layer digest

is authentic. The forward direction of the statement, i.e., no manipulated/inserted video

packet is accepted, is proven as follows. Since the spatial/CGS layer digest h(F ) (where F

is obtained in line 10 of the code) is authentic and h(·) is a collision-free hash function, the

concatenation F = h(F ′[0])|| . . . ||h(F ′[Q−1])||ToEmbed[s] is also authentic. This proves the

authenticity of all h(F ′[i]) values, which are present in the received substream since they are

included in the authentication information of the spatial/CGS layer; they enable a receiver

to reconstruct F even if it has received no packet from some of the quality layers. For each

MGS layer q from which at least one packet is received, the attached F ′[q] value can be

verified since h(F ′[q]) is authentic, meaning that no F ′[q] value can be forged or inserted.

Since an MGS layer q’s F ′[q] equals h(p[0])|| . . . ||h(p[size(p) − 1]) (line 8 of Fig. 3.3), the

authenticity of F ′[q] proves the authenticity of h(p[i]) values, and accordingly, the packets

p[i] that exist in the substream. Any change to the contents of a packet will result in a

change in the corresponding h(p[i]), F ′[q], h(F ′[q]), F , and h(F ) values, and no change

to a packet p[i] can preserve these values since h(·) is collision-free. Moreover, no video

packet can be inserted, as the integrity of F ′[q] = h(p[0])|| . . . ||h(p[size(p) − 1]) is already

proven. This shows that no content other than a subset of authentic packets can pass the

verification process. The backward direction of the statement, i.e., no original subset of

packets is rejected, is clear. First, one can reconstruct the spatial/CGS layer digest out of

any valid subset of quality packets. Moreover, out of an authentic subset of packets the

same h(F ) value as the one provided by the content provider is calculated by a receiver.

Hence, any subset of packets will pass the verification iff it is authentic.
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Step 2: Authenticity of spatial/CGS layers. Having authenticated each of the received

or partially received spatial/CGS layers, we now show that in a valid subset of spatial/CGS

layers of a frame, each layer that has a path of digests to the base layer is authentic iff

the frame digest is authentic. Each layer that does not have this path, which in turn has

a path to another frame digest, is authentic iff the digest of that frame is authentic. This

statement is obvious for the base layer, since a frame digest is actually the digest of the

base layer along with its attached authentication information. Any other spatial/CGS layer

has its digest embedded in a lower layer, which makes the authenticity of the lower layer

necessary and sufficient for the authenticity of the higher one. Hence, this relationship is

created between frame digests and all of the layers, because from each layer there is a path

to the base layer of the same frame; or in the unlikely case that a layer is not predicted

from any lower layer, there is a path from it to the base layer of another frame. Hence, the

authenticity of frame digests is necessary and sufficient for authenticity of any valid subset

of spatial/CGS layers.

Step 3: Authenticity of video frames. We now show that the authenticity of the digest

of a GoP is necessary and sufficient for the authenticity of the digests of its frames. Recall

that a valid subset of frames consists of all video frames of temporal layers 1, 2, . . . , T − 1,

possibly a fraction of frames at temporal level T , and no frame from levels T +1 and higher.

In the GoP authentication procedure, if a sufficient number of frames of level t are received

by a client, the concatenation of frame digests of level t+1 can be verified, which assures for

any subset of frame digests of level t+1 that all digest have integrity and no frame (with its

digest) is inserted. Therefore, the authenticity of the frame digests of each temporal level

is necessary and sufficient for the authenticity of those in the next temporal level. This

enables the authenticity of the GoP digest to propagate from the temporal base layer to all

of the received temporal layers and assures the authenticity of all frame digests.

Step 4: Authenticity of GoPs. A GoP block digest, which is digitally signed, is nothing

but a hash value over the digests of the GoPs of the block. This clearly shows the bidi-

rectional dependency between the authenticity of GoP digests and that of the GoP block

digest; it prevents any changes to a GoP digest or insertion/removal of a GoP.

According to the above steps, the correctness of Theorem 1 can now be readily proven

as follows. The stream consists of independently signed blocks of GoPs. According to steps

4 through 1, successful verification of the digital signature of a GoP block is necessary and

sufficient for the authenticity of all packets of an extracted substream. ¤
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3.5.2 Complexity Analysis

Computation cost. We calculate the computation cost in terms of the number of hash

computations, FEC coding operations, and digital signature generations/verifications per

each GoP block. Since there is one hash computation per each GoP, frame, spatial/CGS

layer, MGS layer, and truncation unit, the total number of hash operations is n+F +S+Q+

P , where F , S, Q, and P represent the total number of frames, spatial layers, quality layers,

and video packets in a block of n GoPs. Since a hash operation can be performed very fast

compared to decoding of a video packet, we can practically ignore the computation cost of

the above hashes. The total number of FEC operations per block of n GoPs equals the

number temporal layers times n, which is typically a few per second. This cost is negligible

too, as there are fast FEC coding algorithms to be employed. For example, Tornado codes

for FEC coding use only XOR operations and operate in linear time of the input block.

The dominant computation cost is that of digital signature operations, the number of which

in our scheme is one per n GoPs. This cost is still low in our scheme as we show in the

evaluation section.

Communication overhead. We denote by shash the size of a hash, by ssig the size of

a digital signature, by k the number of copies of authentication information of quality and

spatial/CGS layers, and by α the FEC factor for authenticating temporal layers, i.e., the

fraction of pieces enough for re-constructing the original data. The communication overhead

of our scheme for each block of n GoPs, C, is as follows:

C = (k × (P + Q + S) + F/α + n)× shash + ssig (3.1)

This communication overhead can become non-negligible for highly flexible scalable

streams that provide many possibilities for extracting substreams. We propose an algo-

rithm to reduce this communication overhead in the next section.

3.6 Reducing the Overhead

The amount of authentication information that needs to be added to an SVC stream can be

non-negligible if the stream is providing a high flexibility, i.e., when there is a large number

of truncation points. We refer to this information as the communication overhead of the

scheme. Note that the non-negligible communication overhead is not specific to our scheme

and will be suffered from by other authentication schemes as well. This is because a hash
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value is needed for each truncatable unit of data, and the number of these units grows with

flexibility of scalable streams.

In order to reduce the communication overhead, we compute one hash value for a group

of truncation units rather than for each unit. Note that the atomic unit of authentication

would then be a group of units, i.e., partial groups cannot be authenticated. That is

because unverified video packets of a partially received group have to be discarded, as

shown in Section 3.3.2. Accordingly, by aggregating truncation units into groups, on one

hand we reduce the communication overhead of hashes, and on the other hand, we may also

reduce the flexibility of the stream. That is, some receivers may receive a smaller number

of layers than the number of layers they would have received if there was no grouping. In

this section, we propose an optimal algorithm for grouping the truncation units in order

to minimize this twofold overhead. The application of this algorithm is not limited to

our authentication scheme, and it can be used with other scalable video authentication

techniques in the literature, such as those for traditional scalable streams, e.g., [15,61], for

optimizing their communication overhead. Thus, this overhead reduction algorithm can be

of interest in its own right.

Since only a complete group of units can be authenticated, in order for the grouping

process to perform well, the selection of quality truncation units in the substream extraction

process should not be arbitrary. Otherwise, it is possible that in a received substream,

for example, all groups are received partially, none of which is then verifiable. Thus, we

can embed (during encoding) the quality extraction information inside the stream so that

stream adaptation proxies follow the same extraction procedure. The H.264/SVC standard

provides specific means for signalling this information in the streams [69]. This enables us

to assume an ordering on truncation units, and cases such as the aforementioned example

will not happen. That is, at most one group of units can be received partially. Note that

this assumption does not restrict the flexibility of SVC quality scalable streams, as the

discarding of quality packets and layers can still be non-cumulative. However, grouping

units and not allowing the use of partial groups limits this flexibility, since it reduces the

number of possible truncation points. Clearly, there is a tradeoff between the flexibility of

streams and the communication overhead imposed by the authentication scheme, and this

tradeoff is controlled by the size of truncation unit groups.

Our grouping algorithm works on a frame basis and divides the truncation units of each

frame into a number of groups. Note that the number of truncation units of a frame can
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grow to hundreds as we show for actual videos in the evaluation section. The algorithm

uses the communication overhead as a cost function and employs dynamic programming to

determine the grouping of truncation units that minimizes this cost.

Suppose there are n truncation units in a frame f , and denote them by u1, u2, . . . , un.

These units are to be partitioned into a number of, say h, groups as follows:

u1 . . . ux1︸ ︷︷ ︸
x1

| ux1+1 . . . ux1+x2︸ ︷︷ ︸
x2

| . . . | ux1+···+xh−1+1 . . . un︸ ︷︷ ︸
xh

.

The algorithm finds the optimal number h∗ of (non-empty) groups, and divides the n units

into h∗ groups. The cost of grouping ui, . . . , uj of frame f is cf (i, j), which consists of the

streaming bitrate that users lose when we omit truncation points at ui, . . . , uj−1, as well as

the overhead of an s-bit hash value that will be designated to the group. For calculation

of the overall streaming bitrate that users lose by grouping ui through uj , we can also take

into account the distribution of user bandwidths, leading to a more accurate calculation of

cf (i, j). Calculation of cf (i, j) based on the truncation units of a frame and user bandwidth

distribution is discussed at the end of this section. The cost of multiple groups equals

the sum of the group costs. It could be possible, although unlikely, for some highest-layer

truncation units not to be in any being-hashed group. Let c′f (i) denote the cost for not

having ui, . . . , un in any hashed group, i.e., these units are preferred to be ignored.

The proposed dynamic programming algorithm is based on solving subproblems (h, l),

which represent the grouping of the first l units into h groups (1 ≤ h ≤ l ≤ n) where the

h-th group exactly ends at the l-th unit. The minimum cost for the (h, l) subproblem is

kept in a matrix Af [h, l] for frame f . For the first row of the matrix Af , which refers to

the case where only one hash value is to be calculated for the frame, Af [1, l] indicates that

units {u1, . . . , ul} will constitute the only group. The rest of the rows of the matrix Af are

calculated as follows:

Af [h, l] = min





Af [h− 1, l − 1] + cf (l, l),

Af [h− 1, l − 2] + cf (l − 1, l),
...

Af [h− 1, h− 1] + cf (h, l).

(3.2)

In Eq. (3.2), the i-th row (1 ≤ i ≤ l − h + 1) represent the case where the h-th group

consists of the l− i+1-st through the l-th units. Thus, the cost equals the cost of having the
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previous l− i units in h− 1 groups, which is Af [h− 1, l− i], as well as the cost of grouping

the l − i + 1-st through the l-th units together, which is cf (l − i + 1, l). To maintain how

each of the subproblem solutions is constructed, we keep another n × n matrix Bf where

Bf [h, l] represents the number of units in the h-th group when grouping l units in h groups,

i.e., the row index in Eq. (3.2) that led to the minimum cost. Therefore, the solution to

subproblem (h, l) consists of Bf [h, l] units in the h-th group, Bf [ h − 1, l − Bf [h, l] ] units

in the h− 1-st group, and so on.

Having filled the cost matrix Af with the minimum cost of all valid subproblems, we

now calculate the minimum cost Âf [h] of the optimal solution for grouping all units into h

groups. If we were sure that all units belong to some group, i.e., no unit is decided to be

ignored, Âf [h] would have been equal to Af [h, l]. However, note that it is possible, though

unlikely, that the optimal solution leaves some units ux+1, ux+2, . . . , un out of any group,

e.g., hashing those truncation units does not worth its communication overhead. Thus,

Âf [h] is calculated as:

Âf [h] = min{Af [h, x] + c′f (x + 1) | h ≤ x ≤ n} (3.3)

To obtain the final optimal solution, we first determine the best number of groups h∗ as

h∗ = argmaxh{A′[h]}. Then, to construct those h∗ groups, we first note that the number of

truncation units considered in those h∗ groups, denoted by x∗ (1 ≤ x∗ ≤ n), is actually the

x value that minimized Eq. (3.3). In the optimal solution, the number of units in the i-th

group (1 ≤ i ≤ h∗), denoted by X[i], is obtained from X[h∗] to X[1] as follows. Let p be a

pointer representing the number of units in the remaining groups, and thus initially assigned

as p = x∗. According to the construction of the matrix B, we have X[h∗] = B[h∗, p]. Having

put X[h∗] units in the h∗-th group, we update the pointer p as p = p − X[h∗] and obtain

the number of units in the second last group as X[h∗ − 1] = B[h∗ − 1, p]. Updating p as

p = p −X[h∗ − 1], we get X[h∗ − 2] = B[h∗ − 2, p], and similarly are obtained the rest of

the X[i] values. The values h∗ and X[i] (1 ≤ i ≤ h∗) form the optimal grouping solution.

The following theorem shows the optimality and complexity of the proposed algorithm.

Theorem 2 The proposed dynamic programming solution for aggregating truncation units

of a frame into groups finds the minimum-cost grouping. It has a memory requirement of

O(n2
max), where nmax is the maximum number of truncation units in a frame, and it has a

time complexity of O(n3
max).
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Proof. The key point of the proof is the optimality of matrix Af that keeps the minimum

costs of subproblems and is calculated as Eq. 3.2. We show this optimality by showing

that the problem exhibits the optimal substructure property: an optimal solution to the

problem, which is h∗ optimally formed groups of X[1], X[2], . . . , X[h∗] truncation units,

contains within it optimal solutions to subproblems, which is optimal formation of the first

h (1 ≤ h ≤ h∗) groups using the first l (h ≤ l ≤ n) units. This is true because in the final

optimal solution, if the grouping of the first l =
∑h

i=1 X[i] units in the first h groups is not

optimal, we simply replace this part with an optimal sub-solution and obtain a smaller cost,

leading to a contradiction. Given the optimality of the matrix Af , the optimality of Âf [h]

values (Eq. (3.3)) immediately follows.

The memory required by the algorithm for a frame f is that of two n× n matrices, Af

and Bf , and one vector Âf of length n. Thus, the memory required is of O(n2
max), where

nmax is the maximum number of truncation units in a frame and hardly reaches 1000. The

required memory is thus a small amount.

The algorithm calculates only the upper triangular half of matrices Af and Bf , i.e.,

indices [i, j] where i ≤ j. For each Af [i, j] and Bf [i, j] together, j − i + 1 comparisons are

performed. Hence, the running time in terms of the total number of comparisons Ωf for a

frame f is:

Ωf =
n∑

i=1

n∑

j=i

(j − i + 1) =
1
6
n(n + 1)(2n− 5) + n2 + n. (3.4)

This number of iterations makes the running time of the algorithm O(n3
max), though its

constant factor is considerably small (1/3).

¤

We have run our algorithm on a commodity PC for high bitrate video streams (> 10

Mbps) with 500-byte truncation units, which makes 30 to 300 units per frame, and it could

easily perform the grouping faster than the frame rate of the stream.

3.6.1 The Cost Function

This section describes the details of computing cost values cf (i, j), which is the cost of

grouping the i-th through the j-th truncation units of frame f together. This is done based

on the bitrate of the video up to each truncation unit, and optionally, the distribution of

users bandwidths.
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The cost cf (i, j) consists of two parts: the loss of truncation points at truncation units

ui, . . . , uj−1, as well as an s-bit overhead of the hash value being designated to the group

of units. To have an accurate calculation of these costs for a frame f , we need the time

duration d(f) it takes for f to be downloaded, which may not be equal among different

frames. d(f) is calculated based on the bitrate of the video and the sizes of other frames as

we see shortly. Let b(ui) = size(ui)/d(f) denote the bitrate of a unit ui, bi =
∑i

x=1 b(ux)

the bitrate of the frame under process when it contains up to unit ui, and ŝf = s/d(f)

the bitrate overhead of a hash value for frame f . The cost function, which is reflecting the

communication overhead, can be thought of as the bandwidth waste of all clients, that is,

the difference between the bitrate of the authenticated video that a client will receive and

the bitrate of the video if there was no authentication information attached and no grouping

performed. To calculate these costs, we can also take into account a priori knowledge about

the streaming scenario in terms of the distribution of client bandwidths Z, leading to a

more efficient overall cost minimization. Clearly, a uniform distribution can be assumed if

no such priori knowledge can be obtained. The cost cf (i, j) for a group of units consists

of the cost of a hash value and that of making clients with bandwidths in [bi, bj) receive a

video bitrate of bi−1 rather than bi, bi+1, . . . , or bj−1. The cost cf (i, j) is calculated as:

cf (i, j) = ŝ +
j−1∑

x=i

(
(bx − bi−1)×

∫ bx+1

bx

Pr(Z = z) dz
)

(3.5)

Similarly, the cost c′f (i) of not having units ui, . . . , un in any hashed group is calculated

as:

c′f (i) =
n∑

x=i

(
(bx − bi−1)×

∫ bx+1

bx

Pr(Z = z) dz
)

(3.6)

Calculation of the cost values cf (i, j) impacts the running time of the algorithm negli-

gibly, since they can be calculated for each frame prior to running the grouping algorithm

for the frame. For each frame f , a lookup matrix Cf is created, which is discarded after the

vector Âf of the frame is obtained. The matrix is constructed as Cf [i, j] = cf (i, j). Thus,

during the calculation of Af and Âf in the grouping algorithm, each cf (i, j) is immediately

retrieved. Calculation of the matrix Cf can be done efficiently due to the progressive nature

of the cells. That is, having Cf [i, i] = cf (i, i) = ŝ, for 1 ≤ i < j ≤ n we have:

Cf [i, j] = Cf [i, j − 1] + (bj−1 − bi−1)×
∫ bj

bj−1

Pr(Z = z) dz (3.7)
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Hence, each C[i, j] is calculated in O(1) and calculation of the entire matrix takes O(n2),

which can be neglected compared to other calculations of the overhead reduction algorithm.

The memory required by this matrix is also of O(n2), which is similarly negligible.

The last step is to compute d(f), the expected time it takes for frame f to be downloaded.

Denoting the frame rate of the video by α, d(f) simply equals 1/α for a Constant Bitrate

(CBR) video. For a Variable Bitrate (VBR) video, however, frames do not have the same

size and thus are not expected to take the same time to be downloaded. Therefore, we

calculate d(f) values as follows. Our algorithm works on a basis of a few (w) GoPs, and

no information about frames of further GoPs is known—accordingly, for live streaming

scenarios w has to be small, preferably w = 1, in order to impose a very short delay. Let

the size of the given w GoPs be S bits and their playback duration be D seconds, making

the bitrate of the corresponding sequence of GoPs be S/D bps. In order for a client to keep

the download rate of the video constantly equal to its bandwidth, the download rate of each

frame f should also be S/D bps, since the download rate does frequently vary from frame

to frame. Hence: ∑n
i=1 size(ui)

d(f)
=

S

D
⇒ d(f) =

D

S

n∑

i=1

size(ui) (3.8)

Clearly, this is done in O(1) for each truncation unit.

3.6.2 The Impact of Packet Losses on the Overhead Reduction Algorithm

The proposed algorithm for minimizing the communication overhead may be vulnerable to

packet losses. When gathering a number of truncation units in a group and designating one

hash value for the group, loss of any of the units will result in unverifiability of the rest of

the units in the group. Nevertheless, the proposed algorithm can gain over 50% overhead

reduction when streaming over reliable channels or channels with low loss ratios, which is

the typical case in today’s Internet. For example, in a large-scale measurement study [73],

over 85% of traces experienced a loss ratio of below 1%, and 99% of traces experienced

a loss of less than 10%. If the loss ratio is significant (> 10%) the algorithm will have

a tendency to form smaller groups. Consequently, the overhead saving by the algorithm

reduces when loss ratio increases. Clearly, the algorithm never results in a higher overhead

than authentication with no grouping.

Recall that with simple authentication with no grouping, we send the authentication

information of quality layers in two copies for lossy transmission scenarios. For grouping
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the video packets to reduce the overhead, we send one copy of the hashes of units as it is,

and apply the optimal grouping on the replication copies. In this case, Eq. (3.5) is updated

as follows to capture the expected cost of losing a unit, which is the loss of other truncation

units:

cf (i, j) = ŝ +
j−1∑

x=i

(
(bx − bi−1)×

∫ bx+1

bx

Pr(Z = z) dz
)

+

ρ
(
1− (1− ρ)j−i+1

)
(bj − bi−1)

∫ +∞

bj

Pr(Z = z) dz (3.9)

where ρ is the expected loss ratio, and thus the probability that at least one unit from

the group is lost is
(
1− (1− ρ)j−i+1

)
, and the probability that the hash values of the units

of the group (carried in the same authentication NAL unit) gets lost is ρ.

3.7 Performance Evaluation

We use trace-based simulations to evaluate the performance of our scheme in terms of

computation cost, delay, buffer requirements for receivers, loss tolerance, and communication

overhead. As described in Section 3.2, we are not aware of other schemes in the literature

designed for end-to-end authentication of scalable video streams that support the flexible,

three-dimensional, scalability. Previous authentication schemes are not applicable to such

streams, since they cannot authenticate all their possible substreams. Hence, quantitatively

comparing our scheme against them is not possible.

3.7.1 Simulation Setup

We simulate the transmission of H.264/SVC scalable video streams over a channel with

packet losses. The packet size is 1 KB. We consider three diverse videos from the Joint Video

Team (JVT) test sequence set, namely “Crew”, “Soccer”, and “Harbour”, and encode them

using the H.264/SVC reference software, called JSVM. Each encoded stream consists of 4

temporal layers (GoP size 8) and 2 spatial layers providing CIF and 4CIF resolutions. In

each of the streams, both spatial representations provide a high quality of approximately 40

dB in terms of Y-PSNR. The considered streams are quite diverse in their content, resulting

in different bitrates of 1.5 Mbps, 2.1 Mbps, and 3.7 Mbps for the CIF representation of the

stream, and 5.5 Mbps, 8.6 Mbps, and 12.3 Mbps for the 4CIF representation. Each spatial
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Figure 3.6: Average bitrate extracted from the video versus the size of truncation units.

layer contains 2 CGS quality layers. The CGS base layer of each spatial layer provides the

minimum quality for that resolution, and has a bitrate between 85 kbps and 140 kbps (at

full frame rate) for the considered streams. The CGS enhancement layer of the first and

the second spatial layer is divided into 4 and 5 MGS layers, respectively. Each MGS layer

in turn is divided into multiple truncation units.

To obtain the size of a truncation unit, we performed a local search in the tradeoff

between having small truncation units, which means finer granularity but higher NAL header

overhead, and having large truncation units, which incurs lower NAL header overhead but

provides coarser granularity.

Figure 3.6 illustrates this tradeoff as the average bitrate that can be extracted from the

video versus the unit size for the “soccer” stream; the other two sequences demonstrate

similar results. In this tradeoff, for smaller truncation unit sizes, the overhead of NAL

headers becomes significant and makes users receive video data at lower bitrates. For higher

unit sizes, the granularity of the scalable stream is coarsened. Consequently, the bitrates of

the substreams that users receive is no longer so close to their demanded download rates.

According to Figure 3.6, we chose 500 bytes as the unit size, which means that two such units

can fit in a single packet. A high degree of flexibility is provided by the considered streams

since a subset of 500-byte packets of any MGS quality layer can be discarded. We determined

the 500-byte truncation units of each video frame using our own utilities for parsing SVC

streams—this was needed to be done as a post-processing of the stream that is created by
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Figure 3.7: Computation cost, delay, and loss resilience of the proposed authentication
scheme.

the JSVM encoder, because the JSVM encoder often embeds all video data of an MGS layer

in one (possibly big) NAL unit. We then add the authentication information to the layers

and transfer the authenticated streams to the receiver through a loss simulator. The loss

simulator drops a number of packets according to the desired loss ratio. We employ SHA-1

as the hash function (20-byte hashes), and RSA as the digital signature scheme (128-byte

signatures) due to its inexpensive verification, which is an advantage for accommodating

limited-capability receivers.

3.7.2 Simulation Results

Computation Cost. This is the most important performance factor of an authentication

scheme. If some receivers cannot afford the computations needed by the scheme, they

cannot verify the video at all; we assume the server is powerful enough for providing the

authenticated stream in real-time. The dominant operation in the verification process is

verifying the digital signatures, as discussed in Section 3.5.2. Fig. 3.7(a) depicts the number

of signature verifications needed per second for different values of n (the number of GoPs

in a signed block). The value of n can balance a tradeoff between delay and computation

cost, since the content provider needs to generate a complete block of n GoPs before being

able to transmit any of them. Assuming that one to two signature verifications per second

are easily affordable by nowadays limited-capability video playback devices, as reviewed in
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Figure 3.8: Fraction of received packets that can be verified.

Section 2.5.1, Fig. 3.7(a) shows that gathering only n = 5 GoPs in each block suffices for

having the authentication operations affordable by all receivers.

Delay and Buffering Requirements. When streaming live content, the delay is

in proportion to the block size. Fig. 3.7(b) depicts the delay caused by the authentication

scheme for different values of n. For example, with n = 5 and a GoP size of 8, the delay

is less than 2 seconds, which is quite acceptable. Moreover, a value of n = 5 indicates that

in the worst case, where the authentication information of the first four GoPs of a block is

lost, the receivers need to buffer 5 GoPs. Therefore, receivers need a small buffer only: less

than 2 MB if receiving the highest-bitrate version of the stream. Note that this represents

the buffering required by the authentication scheme; the streaming application may already

be buffering a few seconds of video data before playing back, which can be utilized by the

authentication scheme and in this case no additional buffering is needed.

Robustness Against Loss. Packet losses can negatively impact an authenticated

video in two ways. First, some video packets can be lost. Second, some packets, although

received, can be unusable as they cannot be verified. Thus, authentication may amplify the

effect of losses. We show that our scheme does not suffer from these issues. In our simulator,

once a GoP is received, the receiver checks the attached authentication information and may

drop a subset of packets from the stream, which cannot be authenticated due to the loss

of the corresponding authentication information. The result of this process is shown in
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Figure 3.9: User bandwidth distribution and the number of truncation units per frame at
different temporal levels.

Fig. 3.8, where the fraction of the packets received and verified over the total packets is

depicted.

As discussed earlier, the authentication information of quality/spatial layers is repli-

cated in a few, k, copies for protection against loss. The first finding by Fig. 3.8 is that

our authentication scheme increases the impact of loss only marginally: as the loss ratio

increases from 0 to higher values, the gap between the plain (unauthenticated) video and

the authenticated video with k = 2 or 3 increases negligibly. As a second finding, Fig. 3.8

also helps us to determine how many copies the authentication information packet should

be sent in: k = 1 results in high sensitivity to loss, k = 2 is suitable for reasonable loss ratios

(< 10%), and k = 3 becomes the preferred choice as the loss ratio grows higher. Notice that

lower k values are always preferred, since the amount of communication overhead is directly

proportional to k.

Communication Overhead. We measure the communication overhead as the ad-

ditional bandwidth a receiver has to consume to receive the authentication information,

averaged over all receivers. The overhead for the three video streams, when not employing

the overhead reduction algorithm, is shown with the green bars in Fig. 3.10(a).

To reduce this overhead, we run the proposed algorithm for grouping truncation units

of each frame. The number of truncation units in a frame can vary from frame to frame,

especially for frames at different temporal layers. Figure 3.9(b) shows the average number of



CHAPTER 3. THE PROPOSED SVC STREAM AUTHENTICATION SCHEME 68

Crew Soccer Harbour
0

100

200

300

400

500

600

A
ve

ra
g
e

b
it
ra

te
ov

er
h
ea

d
(k

b
p
s)

 

 

W/o grouping
W/ grouping

(a) Communication overhead.

Crew Soccer Harbour
0

10

20

30

40

50

60

70

80

O
ve

rh
ea

d
sa

v
in

g
(p

er
ce

n
t)

 

 

 10% loss ratio
 5% loss ratio
No loss

(b) Saving in communication overhead.

Figure 3.10: The efficiency of the overhead reduction algorithm.

truncation units in the frames of each temporal layer. As expected, frames of lower tempo-

ral layers have many more packets—as these frames are used for prediction of more frames,

they are encoded with lower quantization parameters to provide stronger prediction signals.

There are at least a few dozens of truncation units in each frame, which we optimally group

using the proposed overhead reduction algorithm. We assume a multi-modal Gaussian dis-

tribution for modeling user bandwidth in a heterogenous environment. In this distribution,

shown in Figure 3.9(a), three major concentrations of user bandwidths are assumed at 512

kbps, 4 Mbps, and 8 Mbps. By applying the proposed algorithm, the average overhead

is considerably reduced for streams as shown in Fig. 3.10(a) and 3.10(b). The saving is

higher in the third stream, which has a higher bitrate and a higher number of truncation

units per frame. More truncation units per frame provides opportunity for more efficient

grouping. We note that packet losses can impact the efficiency of our grouping algorithm, as

discussed in Section 3.6.2, though even in the presence of losses the algorithm still benefits

us in reducing the overhead. The gain, however, is reduced from 50% to around 20% and

10% when a loss of ratio 5% and 10% is introduced. For higher loss ratios, although this

benefit diminishes to less than 10%, the algorithm never results in an overhead worse than

that of not grouping.

As discussed earlier, on one hand the grouping process reduces the communication over-

head by reducing the number of hash values needed. On the other, the grouping itself may
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Figure 3.11: Deciding the best number of groups.

cause an overhead, because it omits some truncation possibilities and makes some users re-

ceive a lower bitrate video than they would have received if there was no grouping. Fig. 3.11

depicts this tradeoff for an average frame in the temporal base layer, and shows how the

obtained optimal grouping results in a significantly lower overhead than the two ends of the

tradeoff.

3.8 The svcAuth Library

We have implemented the proposed authentication scheme for H.264/SVC streams in a

prototype called svcAuth.1 svcAuth is available as an open source library implemented in

Java to support portability across different platforms. It can be employed by any video

streaming application as a transparent software add-on, without requiring any change to

the encoders/decoders. As illustrated in Figure 3.12, we add an Authentication Module to

the provider side, which performs post-processing of the encoded stream, and creates and

embeds the authentication information in the stream. At the receiver, we add a Verifica-

tion Module which verifies the received stream using the information embedded in it, and

passes the verified stream to the player. Note that receivers that do not have the svcAuth

Verification Module can still decode streams, since svcAuth is transparent.

1The latest version of svcAuth and the related documentations can be found at http://nsl.cs.sfu.ca/

wiki/index.php/svcAuth.
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Figure 3.12: Deployment of svcAuth Authentication and Verification Module.

svcAuth is a rather large library with over 7,000 lines of code, including sample secure

streaming usages and utilities for working with SVC streams. Here we briefly review the

svcAuth Authentication module. This module, which is placed after the video encoding

process and before transmission, is shown in Fig. 3.13 and operates as follows. The video

bitstream is first parsed by the Stream Parser component, which extracts NAL units from

the bitstream, parses their headers, and delivers them as logical objects to the SVC Reader

component. The SVC Reader component determines the structure of the SVC stream using

the NAL units. For this purpose, as shown in the figure, it needs to buffer a number of

NAL units, e.g., to determine the last NAL unit of the current video frame which is done

by detecting the first NAL unit of the next frame. SVC Reader outputs a logical view of

the stream as GoPs, frames, and different types of layers. We refer to these entities as SVC

Elements. Each SVC Element of this structure in the logical view returned by SVC Reader

contains an array of authentication information messages, which is initially empty. These

arrays are filled by the SVC Auth component. The SVC Auth component implements the

algorithm described in Figure 3.3. It takes as input a block of n GoPs, computes the required

authentication information, and adds them to the SVC Elements of those n GoPs.

The info-added SVC Elements are delivered to the SVC Writer component, which con-

verts back the logical structure to a raw bitstream. This is done by encapsulating the
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Figure 3.13: The svcAuth Authentication Module.

authentication information as appropriate NAL units and inserting them in specified loca-

tions in the original bitstream. For this purpose, we exploit the Supplemental Enhancement

Information (SEI) NAL units of SVC [8]. These NAL units (NAL unit type 6) are non-VCL

NAL units that can carry auxiliary information related to decoding, displaying, or other

processing operations of the video. An SEI NAL unit can contain one or more SEI Mes-

sages. To attach some information to a specific layer, we embed it in an Unregistered User

Data SEI Message, relate it to the desired temporal/spatial/quality layer by encapsulating

(nesting) it in a Scalable Nesting SEI Message [74], and we finally encapsulate the result in

an SEI NAL unit.

3.9 Summary

In this chapter, we proposed an authentication scheme for scalable video streams encoded

using recent scalable coding techniques and the three-dimensional scalability model. These

streams offer higher flexibility and higher coding efficiency than traditional layered scalable

streams. Our authentication scheme enables verification of all possible substreams, and we

analytically proved its security. We have implemented this scheme for H.264/SVC video

streams as an open source library called svcAuth, which can be employed as a transparent

add-on component by any streaming application. We designed an additional algorithm for

minimizing the communication overhead, which can become non-negligible for highly flexible

streams. The overhead could be reduced by the proposed algorithm by more than 50% in our

experiments. The overhead reduction algorithm can also be used with other authentication
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schemes in the literature, which are designed for traditional scalable videos, to optimize

their overhead. We conducted a simulation study with real video traces, which shows that

our authentication scheme is robust against reasonable packet loss rates (< 20%), has low

communication overhead, incurs negligible computational cost, adds only a short (1–2 sec)

delay, and requires no significant buffering (< 2 MB) by receives.



Chapter 4

Seed Server Allocation in P2P

Streaming Systems

In this chapter, we study the problem of allocating the resources of seed servers for serving

scalable video streams in P2P streaming systems. We formulate this problem, show its

NP-completeness, and propose two approximation algorithms to solve it. We then evaluate

the proposed solutions to confirm their efficiency and near-optimality.

4.1 Introduction

In recent years, several P2P streaming systems have been designed and deployed for large-

scale user communities [75–78]. Most of these systems, however, still use nonscalable video

streams [79]. Our goal in this chapter is to leverage scalable video streams to improve the

quality observed by diverse clients. Among the different challenges that need to be dealt with

for running an efficient P2P streaming system [4,80], we focus on efficient management of the

resources of seed servers. These servers are needed in high-quality P2P streaming systems to

make up for the limited upload bandwidth of peers compared to their demanded download

rates. For example, while an average-to-good quality video stream requires about 1–2 Mbps

bandwidth, the typical upload capacity of home users with DSL and cable connections is

often less than a few hundred kilobits per second.

When serving scalable video streams in a P2P network, the data demanded/possessed by

peers gets heterogeneous. Accordingly, allocating seed resources for serving peers’ requests

73
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arbitrarily, as in most of today’s P2P streaming systems [79], will result in poor management

of resources and inefficient utilization of data. Moreover, the flexibility offered by scalable

video streams should be appropriately taken advantage of to best satisfy the demands of

peers using a given limited resource.

We study efficient allocation of seed servers resources in P2P streaming systems. We

consider both live streaming and video on-demand scenarios. These seed servers have finite

serving capacity and are often loaded with a volume of requests larger than their capacity.

We formulate the problem of allocating this capacity for optimally serving scalable videos.

We show that this problem is NP-complete, and propose two approximation algorithms to

solve it, which complement each other. The first one allocates seeding resources for serving

peers based on dynamic programming, and is more suitable for small seeding capacities

(≤ 10 Mbps). The second algorithm follows a greedy approach and is more efficient for

larger capacities. We evaluate the proposed algorithms analytically and in a simulated P2P

streaming system. The results confirm the efficiency and near-optimality of the proposed

algorithms, and show that higher-quality videos are delivered to peers if our algorithms are

employed for allocating seed servers.

This chapter is organized as follows. Related works are summarized in Section 4.2. In

Section 4.3, the considered P2P streaming model is presented, and the seed server allocation

problem is formulated and proven to be NP-complete. Two approximation algorithms for the

problem are presented in Section 4.4. We evaluate the proposed algorithms in Section 4.5.

Section 4.6 provides a summary of this chapter.

4.2 Related Work

Cui et al. [81] and Rejaie et al. [16] study P2P streaming systems with scalable videos,

focusing on the tasks of peers. An algorithm is presented in [81] to be run on each peer

independently that decides how to request video layers from a given set of heterogeneous

senders, assuming layers have equal bitrate and provide equal video quality. Hefeeda et

al. [18] study this problem for Fine-Grained Scalable (FGS) videos, taking into account

the rate-distortion model of the video for maximizing the perceived quality, which is more

accurate than assuming all layers have equal quality enhancements as supposed in [81].

We too consider video layers with heterogenous rates and quality enhancements. In the

framework presented in [16], the problem of requesting from a set of senders is studied from
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a practical perspective. A receiver periodically sends an ordered list of requested packets to

each sender, and the sender provides packets in the given order according to its TCP-friendly

congestion control mechanism.

Lan et al. [17] present a high level architecture for data-driven P2P streaming with

scalable videos. The authors propose a scheduling algorithm for peers to request data

from senders. This algorithm, however, does not explicitly take the scalable nature of

the video into account. The packet scheduling problem for scalable video steams is more

challenging than nonscalable streams. Due to their adaptability to bandwidth variations,

naively fetching video data from other peers may result in frequent variations in the number

of video layers. This causes fluctuations in the video quality, which may be even worse than

just watching a low quality video [82]. This packet scheduling problem is studied in [83,84].

All of these works do not consider the functionalities of seed servers, which are critical

to provide high-quality video streaming services. This is because the upload bandwidths of

peers are often far less than their demanded download rates. For example, an average-to-

good quality video stream requires about 1–2 Mbps, whereas the average upload capacity of

home users with DSL and cable connections is often less than a few hundred kilobytes. To

make up for this asymmetry, a number of seed servers need to be deployed in the network.

Xu et al. [19] study the functionality of seed servers for P2P streaming. However, their work

is only for nonscalable video streams, and they also assume that peers’ upload bandwidths

can take a number of certain values only. The case for scalable video streams is more

challenging as various substreams need to be handled. In [81], seed servers are assumed to

always have enough capacity to serve all requests, which is not realistic. In this chapter, we

consider a more practical scenario in which seed servers have finite capacity, and this finite

capacity needs to be optimally allocated to requesting peers such that a higher-quality video

is delivered to all peers.

4.3 System Model and Problem Statement

In this section, we describe the considered system model and state the resource allocation

problem addressed in this chapter.
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Figure 4.1: A request from a peer who is demanding the first five layers in total, and is
receiving the first two from other peers and the next two from a seed server.

4.3.1 System Overview

The considered P2P streaming architecture consists of trackers, seed servers, and peers.

Peers join the system by contacting one of the trackers. The tracker receives periodic update

reports from peers, informing it about their available data and capacity. This enables the

tracker to monitor its network and keep track of the set of active peers, their contribution,

and their data availability. Note that the tracker does not keep track of the topology of the

network, i.e., the list of partners of each peer. A number of seed servers exist in the network

to serve requests when there is not enough capacity in the peer population. Our problem

is to decide which subset of requests should be served by the seed servers to maximize a

system-wide utility function. This problem is important because the volume of requests to

be served often exceeds the seeding capacity. Allocating seeding resources optimally will

lead to better utilization of seed servers, and higher video quality for users, especially during

periods with excessive loads which are typically the most difficult to handle in real systems.

Peers are expected to use their limited upload bandwidth for serving lower layers first,

so as to avoid having some peers starving while other peers are receiving highest rates.

Moreover, peers try to serve as many layers as they can upload. For example, if all layers

have a rate of 100 kbps and a peer has 250 kbps upload bandwidth, it will upload the two

lowest layers at rate 100 kbps and the third one at 50 kbps.
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Table 4.1: List of notations used in the seed server allocation problem.
Parameter Description

∆ The tracker decides allocation of the seed servers every ∆ seconds.
V The set of videos or TV channels.

Pv, Tv The set of peers watching and the number of video segments of video v ∈ V .
vp, up The video/TV channel being watched by and the upload capacity (bps) of

peer p.
rv,l Rate (bps) of the l-th layer of video v.
C The total capacity (bps) of seed servers.
K Number of requests in the queue.

reqk The k-th request in the queue: {reqk.p, reqk.t, reqk.l1, reqk.l2}.
nk nk = reqk.l2 − reqk.l1 + 1 is the number of layers requested with reqk.

reqk,j A sub-request of reqk considering only the j lowest requested layers (1 ≤
j ≤ nk).

ck,j , bk,j Cost and utility of sub-request reqk,j .

4.3.2 Problem Statement and Hardness

Peers’ requests are gathered in the tracker’s request queue. The tracker decides every ∆

seconds, which is a few seconds, and accepts some requests (to be served by a seed server)

and rejects others. Let V denote the set of video files in an on-demand session or the

set of channels in a live streaming scenario. We divide a video into short time intervals,

called video segments, the number of which is Tv for each video v ∈ V . A video segment

is considered an atomic unit of adaptation, meaning that the number of layers received by

a peer is assumed constant during a media segment, but may vary between consecutive

segments. Pv is the set of peers currently participating in the streaming session of a video

v ∈ V . At each time the tracker solves the allocation problem, there are K requests in

the queue. Each request reqk is in the form {reqk.p, reqk.t, reqk.l1, reqk.l2}, meaning that

peer reqk.p is requesting layers reqk.l1 through reqk.l2 (inclusive) of the stream, starting at

segment reqk.t; the peer could be receiving layers 1 through reqk.l1 − 1 from other peers.

an example of this is illustrated in Figure 4.1. Since reqk is for nk = reqk.l2 − reqk.l1 + 1

layers and may be admitted partially, we break it to nk sub-requests, denoted by reqk,j where

1 ≤ j ≤ nk. A sub-request reqk,j represents a request for the j lowest requested layers, i.e.,

reqk,j corresponds to layers reqk.l1 through reqk.l1 + j − 1. Let rv,l denote the bitrate (bps)

of the l-th layer of the video v, and up be the upload capacity (bps) of peer p. A list of

notation is provided in Table 4.1 for quick reference.
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Serving each sub-request reqk,j has a cost ck,j for seed servers which is the sum of the

bitrates of the j requested layers. Letting ν denote the requested video ν = vreqk.p in reqk,

we denote the costs of reqk’s sub-requests by:

ck,j =
reqk.l1+j−1∑

l=reqk.l1

rν,l (1 ≤ k ≤ K , 1 ≤ j ≤ nk). (4.1)

Moreover, by admitting reqk,j , a utility (benefit) bk,j is gained by the system, which con-

sists of the utility of serving the associated layers to the corresponding peer, that is,
∑reqk.l1+j−1

l=reqk.l1
bself(reqk.p, l), and the utility gained when the peer shares those layers with

the network, denoted by
∑reqk.l1+j−1

l=reqk.l1
bshare(reqk.p, l). Our algorithms are not restricted to a

specific bself(p, l) function; we see in Section 4.4.3 two sample utility functions to maximize

the average quality received by peers and to provide max-min fairness among quality re-

ceived by peers according to their demands. For calculating bshare(p, l), we need to consider

the peer serving those layers (or part of them) to its partners, those partners serving (par-

tially) to their partners, and so on. Taking these neighborhood details into account requires

knowledge of the network topology, which is difficult to maintain for dynamic P2P systems.

We therefore compute bshare(p, l) as the expected utility that the system gains when a peer

shares some video layers with the network. In Section 4.4.3 we see how to calculate these

expected utilities according to bself(p, l).

Problem 3 (Seed Server Allocation) Given the requests req1, . . . , reqK , their costs ck,j

bps and utilities bk,j (1 ≤ k ≤ K, 1 ≤ j ≤ nk), and a seeding capacity C bps, find the xk (0 ≤
xk ≤ nk) value for each reqk which indicates that sub-requests reqk,1, reqk,2, . . . , reqk,xk

should

be served out of reqk in order to maximize the system-wide utility.

This problem is formulated as follows. Find xk in order to:

max
K∑

k=1

bk,xk
(4.2a)

s.t.
∑K

k=1 ck,xk
≤ C (4.2b)

xk ∈ {0, 1, . . . , nk} (1 ≤ k ≤ K) (4.2c)

Theorem 3 The seed server allocation problem defined in Eq. (4.2) is NP-complete.
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Proof: We prove the NP-completeness by reducing the Knapsack Problem [85] to a

simplified version of the seed server allocation problem. Suppose that all videos are single-

layer coded and thus all requests are for the first layer. In this case, all xi values are either 0

or 1. This special case of the problem is equivalent to the 0-1 Knapsack Problem. In addition,

a solution for the seed server allocation problem can easily be verified in polynomial time.

Hence, the seed server allocation problem is NP-complete. ¤

4.4 Problem Solution

In this section, we present two approximation algorithms for the seed server allocation

problem. The first algorithm produces close-to-optimal results for small seeding capacity

C, but as the capacity increases, it has to get far from the optimal in order to operate in

real-time. The second algorithm runs in a time independent of the seeding capacity and can

always operate in real-time. It provides close-to-optimal results for large seeding capacities,

but becomes far from the optimal for small capacities.

4.4.1 SRA DP: Seed Resource Allocation using Dynamic Programming

Since our server allocation problem has some similarities with the Knapsack problem, it is

intuitive to check the applicability of Knapsack solutions to our problem. The Knapsack

problem has an interesting optimal solution using dynamic programming, and a consequent

approximation solution [85]. However, if to be applied to the seed server allocation problem,

this algorithm can function only for the single-layer allocation problem (see the proof of

Theorem 3). We propose a dynamic programming algorithm for the general case with

multi-layer videos. Unlike the approximation algorithm for the Knapsack problem, our

algorithm accounts for the consistency in serving sub-requests of each request reqk. That

is, no higher layer must be served unless all of its lower layers are already served. We first

transform all utility values bk,j , which are real numbers, to integers b′k,j = bbk,j

M
c where M is

a constant real number greater than zero, e.g., we set M = 0.1 for neglecting the second and

further decimal points of bk,j values. We then optimally solve the problem with b′k,j values.

The value M determines the approximation factor and the running time of the algorithm,

as we analyze shortly.

The dynamic programming algorithm, denoted by SRA DP, operates as follows. Let

B′
max denote the maximum b′k,j for all valid (k, j) values, Cmin the minimum ck,j , i.e., the
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bitrate of the base layer, and K ′ =
∑K

k=1 nk the total number of sub-requests. Thus, C/Cmin

is an upper bound on the number of sub-requests that can be served, and I = C
Cmin

B′
max is an

upper bound on the total utility that can be gained. We define a[k, i] (0 ≤ k ≤ K, 0 ≤ i ≤ I)

as the minimum cost that a subset of requests req1, . . . , reqk can have, whose total utility

exactly equals i; a[k, 0] for all 0 ≤ k ≤ K is set to 0 and a[0, i] for all 1 ≤ i ≤ I is assigned

∞. If no subset of sub-requests with a total utility of i can be formed, a[k, i] is set to ∞.

Having initialized a[k, 0] and a[0, i] values, the rest of the matrix is calculated as in Eq. (4.3):

a[k, i] = min





a[k − 1, i],

a[k − 1, i− b′k,1] + ck,1, if i ≥ b′k,1

a[k − 1, i− b′k,2] + ck,2, if i ≥ b′k,2

...

a[k − 1, i− b′k,nk
] + ck,nk

if i ≥ b′k,nk

(4.3)

In Eq. (4.3), the first option represents the case that no layer of reqk is served, the second

option represents the case when one layer is served, and so on. The min-cost value among

these options is chosen. Suppose x layers are to be served out of the nk layers of reqk in

order to make a total utility of i, which is only possible if b′k,x ≤ i. Then, the total cost

will be that of x layers from reqk, i.e., ck,x, as well as the minimum cost for obtaining a

utility of i− b′k,x using the previous k − 1 requests, which add up to b[k − 1, i− b′k,x] + ck,x

as represented in Eq. (4.3). The optimal utility that can be gained using the capacity C is

obtained by finding the maximum i such that a[K, i] does not exceed C, and we denote this

utility by i∗.

To keep track of how these optimal sub-solutions are built, i.e., to obtain xk values in

Eq. (4.2), we keep another matrix y[k, i] (0 ≤ k ≤ K, 0 ≤ i ≤ I). Each y[k, i] for nonzero k

and i values holds the number of sub-requests served from the request reqk in the solution

to subproblem (k, i). y[0, i] and y[k, 0] are set to zero. In each iteration where an a[k, i] is

calculated according to Eq. (4.3), y[k, i] is set to the number of sub-requests, i.e., the row

index (starting from 0) in Eq. (4.3), that makes the minimum. Finally, we obtain the x[k]

values for Eq. (4.2) as follows. Let s be a pointer that is initially set to i∗. First, x[K] is set

as x[K] = y[K, s]. Then, s is reduced by b′K,x[K], i.e., the utility of serving x[K] sub-requests

out of the K-th request. The new s value points to the best utility we got using requests

req1, . . . , reqK−1. Thus, x[K − 1] is obtained as x[K − 1] = y[K − 1, s]. Then, the pointer
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s is updated accordingly, i.e., reduced by b′K−1,x[K−1], and so on. The running time of the

algorithm is analyzed shortly.

We now derive the approximation factor for the proposed algorithm. The proof pro-

ceeds in a similar way to the proof of the Fully Polynomial Time Approximation Scheme

(FPTAS) for Knapsack [85]. We, however, provide a tighter approximation factor by using

the characteristics of our problem.

Theorem 4 The SRA DP algorithm returns a solution for the seed server allocation prob-

lem (Problem 3) with worst-case approximation factor of 1− CM

CminBmax
, where C (C ≥ ck,j),

Cmin, and Bmax are the seeding capacity, the bitrate of the base layer, and the maximum

utility among all sub-requests, respectively. Furthermore, the time complexity of the SRA DP

algorithm is of O(K ′bCBmax

CminM
c), where K ′ is the total number of sub-requests.

Proof: According to the definition and usage of x[k] values, it is clear that the serving of

sub-request is consistent. To obtain the approximation factor, we first need to make sure that

the proposed dynamic programming algorithm is optimal with rounded utility values b′k,j .

For this purpose, it is enough to show that the problem has optimal substructure property,

since the optimality of the algorithm (with b′k,j values) immediately follows this property.

The optimal substructure property means that the optimal solution to the problem contains

within it optimal solutions to subproblem. This is true for our problem, because if in the

optimal solution (with utility a[K, i∗]) the solution to a subproblem (k, i) is not optimal

—meaning that a utility of i could have been achieved out of the first k requests at a lower

cost that a[k, i]— we can simply replace that part of the final optimal solution and obtain

a better utility than a[K, i∗], which is contradiction. We now analyze the approximation

factor. Suppose the optimal solution to the original problem with bk,j values is the set O of

sub-requests, and the solution to the problem with b′k,j values is O′. Let the function b(O)

denote the sum of the bk,j utilities of sub-requests in O; likewise for b′(O) that sums b′k,j

values. Thus, the obtained utility and the optimal one are w = b(O′) and OPT = b(O),

respectively. Since we round down bk,j values by a factor of M , we have:

bk,j ≥ Mb′k,j ⇒ b(O′) ≥ Mb′(O′)

bk,j −Mb′k,j ≤ M ⇒ b(O)−Mb′(O) ≤ |O|M ≤ C

Cmin
M

where the latter inequality is based on the observation that any subset O of sub-requests

that fits in a capacity of C has at most C/Cmin elements. Because the subset O′ is optimal
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with b′k,j values, we have:

b′(O′) ≥ b′(O) ⇒ w = b(O′) ≥ Mb′(O′) ≥ Mb′(O) ≥ b(O)− C

Cmin
M ⇒

w ≥ (1− CM

CminOPT
)OPT ⇒ w ≥ (1− CM

CminBmax
)OPT. (4.4)

For each row k of the matrices a[k, i] and y[k, i] together, O(Ink) comparisons are per-

formed, where I = C
Cmin

B′
max is an upper bound on the total utility that can be gained.

Thus, the running time of the algorithm is:

K∑

k=1

O(Ink) = O(K ′I) = O(K ′bCBmax

CminM
c). (4.5)

¤
We numerically analyze the running time of the algorithm and its relation to the ap-

proximation factor γ = 1 − CM
CminBmax

. As Eq. (4.4) and Eq. (4.5) show, by decreasing

the rounding factor M , the approximation factor approaches 1, which, on the other hand,

increases the computational complexity. To have an estimate of this relation, suppose the

number of iterations that the tracker can perform in ∆ seconds, i.e., till next turn to run the

seed server allocation algorithm, is given as Ω. Each iteration of the algorithm consists of a

few lookups, one addition, two comparisons, and possibly one assignment. Also suppose the

number of iterations needed by the algorithm is simply K ′ CBmax
CminM , which must not exceed

Ω. Therefore, according to Eq. (4.4) and Eq. (4.5), the approximation factor γ will be as

follows:

M ≥ K ′CBmax

ΩCmin
⇒ γ ≥ 1− K ′

Ω
(

C

Cmin
)2. (4.6)

This is illustrated in Figure 4.2 where the guaranteed approximation factor γ is depicted

versus the computational power, assuming that the base layer of the videos is at 100 kbps,

there are K ′ = 1000 sub-requests in the queue, and that each iteration roughly takes 100

machine instructions to execute. According to Figure 4.2, a tracker with seed servers of

total capacity 10 Mbps whose allocation is decided every second, can make sure that the

approximation result is at least as good as 90% of the optimal if it can perform 10 giga

low-level instructions per second.

In sum, the SRA DP algorithm obtains answers very close to the optimal for small

seeding capacities, but it has to sacrifice some non-negligible approximation factor for large

seeding capacities. We propose another approximation algorithm for these cases in the next

subsection.
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Figure 4.2: Tradeoff between approximation factor and computational complexity.

4.4.2 SRA GREEDY: Seed Resource Allocation using a Greedy Algo-

rithm

We present another approximation algorithm for the seed server allocation problem, whose

running time is independent of the seeding capacity and only depends on the number of

requests in the queue. We show that the result of this approximation gets very close to

the optimal answer as the seeding capacity increases, e.g., C = 50 Mbps, though is worse

than the algorithm SRA DP if the seeding capacity is small, e.g., C = 10 Mbps. Our

approximation is based on relaxing the Integer Programming (IP) problem in Eq. (4.2) to

its equivalent Linear Programming (LP) problem, in which the constraint (4.2c) is relaxed

to (4.7a) and (4.7b).

0 ≤ x′k ≤ nk (1 ≤ k ≤ K) (4.7a)

x′k ∈ R. (4.7b)

In other words, we now allow a layer to be partially served, though it is not meaningful in

practice. Having solved the LP problem in Eq. (4.7) and obtained the x′k values, we obtain a

valid solution to the original IP problem by rounding down all x′k values: xk = bx′kc. Clearly,

xk values form a valid answer for the IP form in Eq. (4.2), since they satisfy both constraints

(4.2b) and (4.2c). We will see shortly that after this relaxation and down-rounding, how close

the objective function (4.2a) will be to the optimal solution. The proposed algorithm is called
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SRA GREEDY

GreedyAllocation (K, C, n[], b[][], c[][])
1. // K: number of requests, C: seeding capacity
2. // n[k]: number of sub-requests in the k-th requests (1 ≤ k ≤ K)
3. // b[k][j], c[k][j]: utility and cost of the j-th sub-request of the k-th request
(1 ≤ j ≤ n[k]); b[k][0] and c[k][0] are assigned 0
4. // Output: x[]: number of sub-requests to serve from the k-th request
5. K ′ =

∑K
k=1 n[k] // total number of sub-requests

6. S[] ←− the K ′ sub-requests sorted in decreasing order of utility-to-cost ratio
7. z ←− 0 // will be the total obtained utility
8. x[] ←− CreateArray(K, 0)
9. for (k, j) ∈ S do
10. if x[k] > j then continue
11. cost ←− c[k][j]−c[k][x[k]]
12. utility ←− b[k][j]−b[k][x[k]]
13. if cost ≤ C then
14. C ←− C − cost
15. z ←− z + utility
16. x[k] ←− j
17. done
18. return z, x[]

Figure 4.3: The SRA GREEDY algorithm for the seed server allocation problem.

SRA GREEDAY and is shown in Figure 4.3. Sub-requests are sorted in decreasing order

of utility-to-cost ratio and are picked one by one in each iteration. Since some sub-requests

are overlapping, i.e., each sub-request (k, j) is a subset of sub-requests (k, j +1), . . . , (k, nk),

in each iteration we take those layers from sub-request (k, j) that are not already served by

another sub-request (k, j′ < j). The algorithm consists of sorting sub-requests, which runs in

O(K ′ log K ′) where K ′ is the total number of sub-requests, and performing K ′ iterations of

O(1), which makes the total running time O(K ′ log K ′). This is easily practical in real-time

for reasonable K ′ values (< 500K).

Theorem 5 If all costs ck,j are bounded as ck,j ≤ cmax < C for all valid k, j values, the

algorithm SRA GREEDY is a
cmax

C − cmax
-factor approximation for the seed server allocation

problem, i.e., z ≥ (1− cmax

C − cmax
)OPT.
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Proof: Consider the following two modifications to the algorithm in Figure 4.3: (i)

after line 16 in the code, if cost > C then pick a portion θ (0 ≤ θ < 1) of the current

sub-request (k, j) which can fill the capacity C, and quit the loop, (ii) after line 16 in the

code, if cost > C then just quit the loop. Case (i) refers to the solution to the LP problem

in Eq. (4.7) and provides the optimal answer for it; the proof is simple and is similar to

that of the solution to Knapsack’s LP-relaxation. Let z∗ denote the utility obtained by this

solution, which is at least as good as OPT since it refers to the LP-relaxation of the original

problem. Case (ii) is only for a comparison purpose. Since its solution is a subset of the

solution obtained by our algorithm in Figure 4.3, the utility obtained by case (ii), denoted

by z′, is a lower bound on our obtained utility z, i.e., z′ ≤ z.

Let m + 1 and m be the number of sub-requests taken by modifications (i) and (ii),

respectively. Also let b1, . . . , bm+1 and c1, . . . , cm+1 be the short for the utilities and costs

of these sub-requests. Since the m + 1-st sub-request served has a utility-to-cost ratio less

than or equal to each of the previous m ones, we have:

bm+1

cm+1
≤ bi

ci
for all i ∈ {1, 2, . . . ,m} ⇒ bm+1

cm+1
ci ≤ bi ⇒ bm+1 ≤ cm+1

∑m
i=1 bi∑m
i=1 ci

(4.8)

The margin between z and OPT is bounded as follows:

z′ ≤ z ≤ OPT ≤ z∗

⇒ ε = 1− z

OPT
≤ 1− z′

z∗
=

z∗ − z′

z∗
=

∑m
i=1 bi + θbm+1 −

∑m
i=1 bi∑m

i=1 bi + θbm+1
≤

bm+1∑m
i=1 bi

≤ cm+1

∑m
i=1 bi∑m
i=1 ci

1∑m
i=1 bi

≤ cmax∑m
i=1 ci

≤ cmax

C − cmax

⇒ z ≥ (1− cmax

C − cmax
) OPT (4.9)

¤
For example, for a 2 Mbps video and a seeding capacity of 25 Mbps, it is guaranteed

that the greedy approximation solution will produce results as good as 91% of the optimal.

For larger seeding capacities, this factor approaches 1. For small seeding capacities (≤ 10

Mbps), however, the approximation factor is low, e.g., 75% for C = 10 Mbps. In this case,

employing the SRA DP algorithm is recommended as its factor is close to 1 for small seeding

capacities.

In sum, according to the seeding capacity, the computational power, and the maximum

bitrate of the videos being served, one can determine the guaranteed approximation factor
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of both algorithms SRA DP and SRA GREEDY using Equations (4.6) and (4.9) choose the

more appropriate one.

4.4.3 The Utility Function

The proposed allocation algorithms are general and can adopt different utility functions to

suit the objective of various practical systems. In this section, we define two sample utility

functions, which are to (i) maximize the average quality received by peers, and (ii) provide

max-min fairness among quality received by peers according to their demands.

Recall that the utility function consists of two parts, bself(p, l) and bshare(p, l), as discussed

in Section 4.3.2. Let us first calculate the former part, bself(p, l). This function is calculated

differently in cases (i) and (ii) mentioned above. For case (i), we have:

bself(p, l) = q(vp, l)− q(vp, l − 1), (4.10)

where vp is the video being watched by peer p and q(vp, l) denotes the video quality, e.g.,

Y-PSNR, of the first l layers of the video. The value q(vp, 0) needs to be realistically

defined; note that a blank video can produce a Y-PSNR of 10 to 20 dB, depending on

the original video. The q(vp, 0) value determines the importance of the base layer and

does not significantly affect the way the enhancement layers are served in our algorithm:

q(vp, 1) − q(vp, 0) is the utility of the base layer that can be defined superior to any other

layer in order to make sure everyone will receive the base layer. We set q(vp, 0) as 25 dB in

our experiments in Section 4.5.

In case (ii), let dp denote the the quality demand of a peer p, e.g., the Y-PSNR of

the video substream that the peer requests to download, as the case in our evaluations in

Section 4.5. Denoting by qp the quality of the video that a peer p receives, we refer to the

fraction
qp

dp
as peer satisfaction. The goal is to maximize the minimum peer satisfaction

among all peers. For example, if the resources in the network are half the total demanded,

in the ideal case every peer should receive half of its demanded quality, not some peers

completely satisfied and others starving. To achieve this goal, we define the utility function

as:

bself(p, l) =
dp − q(vp, l − 1)

dp − q(vp, 0)
, (4.11)

At each instance, for peers with different demands dp and different video qualities qp

being currently received, the utility function in Eq. (4.11) will make those peers be selected
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Figure 4.4: Max-min fairness using Eq. (4.11) for serving layers to different demands with
limited serving capacity.

for being served that are currently receiving the least fraction of their demand. This is

illustrated in Figure 4.4, in which, for simplicity, it is assumed that layers have equal bitrate

and quality. In this figure, each stack of l boxes represents a user with a demand of l layers.

The figure shows that by using the utility function defined in Eq. (4.11), which layers will

be served to which demands if the serving capacity is enough only for serving 10, 20, 35,

and 55 layers.

We now calculate the utility bshare(p, l) according to the function bself(p, l) and peers

upload bandwidths. As discussed earlier (Section 4.3.2), bshare(p, l) refers to the expected

utility gained by the system when peer p shares layer l with the network. Let Lp denote

the number of layers that peer p demands. According to the way the peers are expected to

share their upload bandwidth for serving different layers (Section 4.3.2), we know the rate

up,l at which a peer p will serve each layer l of video v:

up,l = min
{

up −
l−1∑

i=1

up,i, rv,l

}
(1 ≤ l ≤ Lp). (4.12)

If the upload bandwidth of peer p is higher than the bitrate of the demanded video, the

bandwidth remained from Eq. (4.12) is equally divided among layers, i.e.,

up,l = min
{

up −
l−1∑

i=1

up,i, rv,l

}
+

up −
∑Lp

i=1 rv,i

Lp
. (4.13)
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Denote by Pv,l,p the set of peers who demand the video v at layers higher than or equal to

l, and who can possibly be served by the peer p. Then, the function bshare(p, l) is calculated

as:

bshare(p, l) =
up,l

rv,l
× 1
|Pv,l,p| ×

∑

x∈Pv,l,p

(
bself(x, l) + bshare(x, l)

)
. (4.14)

Calculation of Eq. (4.14) for each peer is in the order of total number of peers for

arbitrary bself(p, l) functions, which is not efficient. However, for specific cases such as

providing max-min fairness, this can be estimated efficiently. Given the upload/download

bandwidth distribution of peers, which can be obtained and updated during the streaming

session, we can calculate the chance that a peer p’s layer demand Lp equals a given number

l, to which we briefly refer as Pr`(l). This reduces the complexity of Eq. (4.14) from being

in the order of number of peers to the order of number of video layers. For the case of

maximizing the average quality, where bself(p, l) = q(vp, l) − q(vp, l − 1), the share utility

function in Eq. (4.14) is simply calculated as:

bshare(p, l) =
up,l

rv,l
× ( q(vp, l)− q(vp, l − 1) ). (4.15)

For providing max-min fairness, where bself(p, l) is given as Eq. (4.11), we have:

bshare(p, l) =
up,l

rv,l
× 1∑L

i=l Pr`(i)
×

L∑

i=l

Pr`(i)
i− q(vp, l − 1)

i− q(vp, 0)
. (4.16)

In these two calculations, a peer sharing data with its partners is taken into account,

whereas further hops, i.e., those peers sharing, is not relied on, as it makes the accuracy of

the calculated utilities very sensitive to network dynamics. Neglecting them, on the other

hand, may underestimate the utility of peers sharing the layers, though underestimating

the share utility similarly for all peers is more acceptable. At last, each of the bk,j values is

calculated as:

bk,j =





0 j = 0
∑reqk.l1+j−1

l=reqk.l1

(
bself(reqk.p, l) + bshare(reqk.p, l)

)
1 ≤ j ≤ nk

(4.17)

4.5 Evaluation

4.5.1 Simulation Setup

We simulate on-demand distribution of a video file encoded in 10 quality layers at a bitrate

of 2 Mbps, which a Y-PSNR quality of 27 dB to 40 dB. The video length is 7 minutes.
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We refer to the fraction of video quality received by a peer over its demanded quality as

peer satisfaction. The objective of the system is to maximize the minimum peer satisfaction

(max-min fairness), as discussed in Section 4.4.3. Peers join the network according to a

Poisson distribution with expected 1 arrival per second. The network consists of 400–500

peers on average. The simulation runs for 60 minutes. Each peer, once finished watching

the video, stays in the network for up to 3 minutes for serving others. Each peer may leave

at any time according to an exponential probability distribution, by which 25% of peers

leave the network before they finish watching the video and doing the expected seeding. For

generating download and upload bandwidths of peers, two classes of peers are considered.

The first class has 80% of peers and represents home users, which have download bandwidths

between 100 kbps to 4 Mbps and upload bandwidth between 100 kbps to 1 Mbps. The second

class has 20% of peers and represents campus users, which can have download and upload

rates between 100 kbps to 4 Mbps. Each peer is thus capable of downloading and uploading

the base layer at least.

Each request of a peer to the tracker is first tried to be served by a list of potential

senders. If there is no peer free to serve the requested layers, the requesting peer is served

by the seed server. A peer might receive a layer from multiple peers, with the total receiving

rate equal to the bitrate of the layer. The seed server, on the other hand, only serves whole

layers. The tracker gathers requests in its queue and runs the seed server allocation algorithm

once every 10 seconds. In each such run, all streaming requests in the queue along with

those that are currently being served are considered together and a new set of requests to

be served is determined. Each sender peer disconnects its connection to a receiver according

to a Bernoulli probability distribution with an expected value of 1 minute. This is done to

make enough dynamics in the network and to simulate peer failures. Video segment length

is assumed 10 seconds. The simulation runs following an event-driven procedure with 10-

second steps, i.e., events are gathered during a time step and applied at once at the end of

the time step. To avoid wide quality fluctuations at receiver side, we take a simple heuristic

that does not allow more than 1 layer change in the number of layers in two consecutive

segments, i.e., the heuristic at each peer drops the enhancement layers that violate this

criterion.

Allocation algorithms. In addition to the proposed allocation algorithms, we con-

sider two other algorithms: First-Come First-Serve (FCFS) and BitTorrent-like (BT-like).

SRA DP, SRA GREEDY, and FCFS operate as follows. First, each request in the ordered
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Figure 4.5: Near-optimality of the proposed algorithms.

request queue is tried to be matched with available peers. The ordering of the request queue

is based on the utility-to-cost ratio for SRA DP and SRA GREEDY, and based on arrival

time of the requests in FCFS. After matching requests to available peers, a subset of the

remaining requests is selected to be served according to the employed seed server alloca-

tion algorithm: SRA DP, SRA GREEDY, or serving in the order of arrival (FCFS). In the

fourth method, BT-like, a different procedure is employed: requests are first responded by

the seed servers in an FCFS manner, then the remaining requests are responded by a set

of up to 30 randomly selected peers who do have the requested data but might not have

enough available capacity. Being randomly selected to be served by a seed server might

result in quality fluctuation at the receiving peer. Thus, a request that is randomly selected

for serving is continuously served at least for 1 minute.

4.5.2 Simulation Results

We first evaluate how close the utility gained by different allocation methods is to the

optimal. Figure 4.5 depicts the result of this evaluation. The optimal utility in this figure

is calculated as follows. At each time step, we assume a virtual seed server that is formed

by aggregating the capacity of all peers as well as the actual seed server, ignoring all data

availability constraints at peers. Therefore, the optimal utility that can be gained using

the virtual seed server is greater than or equal to the optimal utility that can be actually
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Figure 4.6: Satisfaction experienced by at least 90% of peers.

gained from the network. Since finding the optimal utility of the virtual seed server is an

NP-complete problem (Theorem 3), we consider the optimal answer of the LP-relaxation of

the problem, which is at least as large as the actual optimal utility; see Section 4.4.2. Thus,

the optimal utility that we consider in Figure 4.5 is an upper bound on the maximum utility

that can be gained in the network.

Figure 4.5(a) shows how close the two proposed algorithms are to the optimal. This figure

depicts the utility gained by the system (normalized to [0, 100]) over time using different seed

server allocation algorithms. Figure 4.5(b) illustrates the near-optimality of our proposed

algorithms. In this figure, the proposed algorithms SRA DP and SRA GREEDY always

gain beyond 90% of the optimal with an average of 95%. The seed server capacity is 10

Mbps in Figures 4.5(a) and 4.5(b). The theoretical approximation ratio for this case is 96%,

while we see it has reached slightly lower values in practice. This is due to dynamics of the

network that were not involved in the approximation analyses, i.e., the experimental ratio

would have been always higher that 96% if all peers stayed in the network as expected,

they let the tracker (and the tracker was able to) decide and update their partnerships at

every 10-second step, and all peers did obey our assumptions about sharing their upload

bandwidths among layers, which we intentionally made them disobey by deviating by up

to 50% from their supposed values in Eq. (4.13). Figure 4.5 also depicts that the two

approximation algorithms operate almost equally efficiently for a seed server capacity of 10
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Figure 4.7: Video quality for peers with different download bandwidths.

Mbps; since the network consists of hundreds of peers we do not consider seeding capacities

below 10 Mbps as such seed servers will not be realistic. For larger capacities, the dynamic

algorithm takes a significant time to operate with reasonable approximation factor. Thus,

we do not consider this method in the following evaluations as they deal with large seeding

capacities.

We now evaluate the increase in the overall peer satisfaction, which is the fraction

that a peer receives out of its demanded video quality. Figure 4.6 plots the satisfaction

experienced by at least 90% of peers. The algorithm SRA GREEDY considerably increase

the satisfactions especially for limited seeding capacities, which is often the case in practice.

Figure 4.6 also shows that for a very large seeding capacity such as 200 Mbps, which is

nearly enough for fully satisfying all peers even with the FCFS method, the BitTorrent-like

method still could not increase the satisfaction as expected. That is because this method

followed a random peer matching, which caused inefficient utilization of peers resources.

Next, we evaluate the video quality delivered to peers. Figure 4.7 depicts the average

Y-PSNR quality that peers with different download bandwidths could receive. The seed

servers capacity is 25 Mbps in this figure. Without our algorithm, some higher quality

levels could not be achieved at all (beyond 32 dB). The other quality levels would require

peers to have a significantly larger bandwidth, e.g., beyond 2 Mbps for a quality of 32 dB

whereas it is achieved by 1.2 Mbps by employing our algorithm. A quality increase of more
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Figure 4.8: Incentive provided for peers to share upload bandwidth.

than 2 dB is obtained for most peers; the quality range of the considered scalable video is

13 dB in total.

We need to mention that with our algorithms a request is responded with a delay of up

to the period between allocation algorithm runs. This period is typically a few seconds, but

it is 10 seconds in our experiments; it needs to be this large so that our simulator, which

is both in charge of allocation tasks as well as tasks of hundreds of peers, can simulate

the network in reasonable time. We also mentioned that the computational cost of our

algorithms, especially SRA DP, is higher than simple algorithms such as FCFS and BT-like.

Nevertheless, even our heavily-loaded simulator was able to perform these computations

faster than real-time.

Our algorithms rely on knowing and utilizing the upload bandwidth of peers. This

could be a weakness if peers are not cooperative. However, Figure 4.8 reveals how peers are

encouraged to cooperate: more cooperation will bring them a significantly higher quality.

This is because the utility function calculated in Eq. 4.17 assigns a higher score to coop-

erating peers (Section 4.4.3). For example, peers who shared 2 Mbps upload bandwidth

received a video quality of 36 dB on average, which is 2 dB higher that the quality received

by those contributing 1 Mbps, and 5 dB higher than those contributing 250 kbps. One

might argue that this result is because peers with higher upload bandwidth also have higher

download bandwidth, and naturally receive more video layers. We see, however, that for
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methods FCFS and BT-like this quality difference is marginal; the received quality is almost

independent of the upload bandwidth. Thus, the higher quality achieved by our allocation

algorithms is due peers’ cooperation. With our algorithm compared to FCFS and BT-like

algorithms, cooperating peers receive up to 7 dB higher quality, which is even more than

half of the entire quality range of the video. This clearly shows the provided incentive for

peers to cooperate as much as they can.

4.6 Summary

In this chapter, we have considered streaming of scalable videos over P2P networks. In these

networks, due to the significant asymmetry between peers download and upload bandwidths,

a number of seed servers need to be deployed in the network for delivering high-quality

video streams to peers. We focused on the problem of allocating these seeding resources to

the requests of peers for different substreams, in order to maximize a system-wide utility

function. We formulated this problem and showed that it is NP-complete. We then proposed

two approximation algorithms for the problem and proved that they produce near-optimal

results. The first algorithm allocates seed servers based on dynamic programming and is

preferred for limited seeding capacities (≤ 10 Mbps). The second algorithm is designed for

larger capacities and follows a greedy approach. We evaluated the proposed algorithms by

simulating a P2P streaming system. The results of our evaluations confirm that the utility

obtained by the proposed algorithms is always beyond 90% of the optimal utility that can

be gained from the system. The results show also that the proposed seed server allocation

algorithms result in peers receiving more video layers, and thus an enhanced video quality

(over 2 dB). Moreover, our algorithms encourage peers to cooperate, as they provide a

significantly higher video quality for those peers that upload more.



Chapter 5

Conclusions and Future Work

In this chapter, we summarize the contributions of this thesis and outline possible directions

for future research.

5.1 Conclusions

In this thesis, we have studied two research problems related to our goal of adopting and

taking best advantage of scalable video streams in today’s multimedia streaming systems.

The first problem is ensuring the authenticity of scalable video streams delivered over open

and insecure networks, such as the Internet. The second problem is efficient management

of resources for serving scalable video streams in P2P streaming systems.

For the former problem, we first analyzed and compared the most important solutions

proposed in the literature for the problem of authenticating multimedia streams. We car-

ried out numeric analysis and simulations for the schemes to study their performance along

different performance metrics, and derived conclusions on choosing the most suitable au-

thentication scheme for a given streaming application. For nonscalable streams, we found

that the scheme proposed in [44] imposes the least amount of communication overhead and

achieves the best resilience to packet losses. On the other hand, the scheme proposed in [45]

is very efficient in terms of computation cost, but it is designed for on-demand streaming

and is not applicable to live streaming scenarios. Furthermore, based on our analysis, we

proposed a new authentication scheme for on-demand streaming that combines the advan-

tages of these two schemes [44,45], and is the best performing one for on-demand streaming

applications. For scalable streams, we found that authentication schemes based on hash

95
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trees are more efficient in terms of communication overhead. However, they require that

stream adaptation proxies involved in the delivery process be compatible with the authen-

tication scheme, which may not be desirable. For end-to-end streaming scenarios, on the

other hand, authentication schemes based on hash chaining are more efficient. Nevertheless,

we found that current schemes for scalable video streams fail to support the full flexibility

of recent scalable streams.

Then, we proposed a new authentication scheme for scalable video streams encoded us-

ing the three-dimensional scalability model. Our scheme enables verification of any possible

substream extracted from the original stream, and is designed for end-to-end secure deliv-

ery scenarios, where any entity involved in the delivery process and possibly in adapting

video streams does not have to be compatible with our scheme. Moreover, we proposed an

additional algorithm for minimizing the communication overhead incurred by an authen-

tication scheme, which could reduce the overhead by more than 50% in our experiments.

This algorithm can also be used to minimize the overhead of other authentication schemes,

which are designed for traditional scalable videos. We conducted a simulation study with

real video traces to evaluate our authentication scheme, which shows that our scheme is

robust against reasonable packet loss rates (< 20%), incurs negligible computational cost,

adds only a short (1–2 sec) delay, requires no significant buffering (< 2 MB) by receives,

and has low communication overhead, particularly after applying the overhead reduction

algorithm. We also implemented the proposed authentication scheme in a prototype called

svcAuth. svcAuth is available as an open source Java library and can be employed by any

multimedia streaming application as a software add-on. It provides an end-to-end authen-

tication service and allows receivers not supporting svcAuth to still receive and decode the

streams, since it is transparent.

For the second problem, we formulated the problem of allocating the finite resources of

seed servers to peers’ requests for different video layers. We proved the NP-completeness

of this problem, and proposed two approximation algorithms to solve it, which complement

each other for a full spectrum of seeding capacities: the first algorithm allocates seed servers

based on dynamic programming and is preferred for limited seeding capacities (≤ 10 Mbps),

while the second algorithm is designed for larger capacities and follows a greedy approach.

The results of evaluating our algorithms in a simulated P2P streaming system confirm that

the utility obtained by the algorithms is always beyond 90% of the optimal utility that can be

gained from the system. The proposed seed server allocation algorithms also result in peers
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receiving more video layers, and thus an enhanced video quality (over 2 dB). Moreover, our

algorithms provide incentives for peers to cooperate in uploading, as the algorithms provide

a significantly higher video quality for those peers that upload more.

5.2 Future Work

There are several open problems related to the topics discussed in this thesis. We summarize

a number of them in this section and highlight some directions for future research.

Efficient support for limited-capability receivers. The proposed authentication

scheme enables a receiver to verify all video packets, and minimizes the computation and

communication overhead that need to be paid for achieving this goal. Although this is a

desirable feature for many applications, we can further reduce the computation and/or com-

munication overhead for limited-capability receivers by relaxing the security requirements

for less security-critical applications, while still having a reasonably safe streaming session.

For example, in a P2P streaming system, we can capitalize on the unique features of the P2P

environment such as the large number of potential senders. Given many senders, a receiver

can receive chunks of video data and authentication information from multiple intelligently-

chosen senders and compare them. This will enable a limited-capability receiver to skip

downloading some parts of the authentication information and avoid performing one signa-

ture verification for every few GoPs, while ensuring the authenticity with a high probability

and detecting any attack in a short time. Note that in order for an attack on the video

content to be meaningful, it needs to modify a continuous set of several video frames.

Enhancements to the seed resource allocation solutions. The proposed al-

gorithms for allocation of seed servers are designed for being employed by a tracker that

controls the seed servers. A desirable enhancement to this method is to extend these algo-

rithms to be run on the seed servers themselves in a distributed manner, ensuring that the

outcome is close to the tracker-based solution. In addition, in the proposed algorithms, the

amount of computations on the tracker for each round of allocation is in proportion to the

amount of requests. An efficient mechanism for regulating the rate of each peer’s requests

to the tracker, and accordingly, for avoiding any risk of a denial-of-service attack, can be of

high interest.

Distribution of data availability information for scalable videos. The tracker-

based approach for keeping track of peers’ data availability information, which we assumed
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in our P2P streaming model, will require us to deploy a sufficient number of trackers in case

of serving a large scale network of millions of concurrent users. On the other hand, arbi-

trary tracker-less methods for distributing this information, such as through gossip messages

periodically generated and forwarded by peers, as in most of today’s live P2P streaming

systems (with nonscalable videos) [4], may not be efficient. This is because the data de-

manded by peers is no longer the same among all peers: in an on-demand streaming setting

with scalable streams, each peer has a window of buffered data, e.g., the last 30 minutes

it has played back, and possibly a different number of layers from each video segment in

the buffer. Accordingly, finding a potential sender for a data segment, which happens to

be available only at a small fraction of peers, could be very inefficient without the help of

a tracker. Thus, a hybrid method for efficiently distributing data availability information

by peers and trackers, while incurring a small load on trackers, can be very useful. This

includes algorithms for determining when and how to send an update report to trackers and

when to refer to them, an appropriate gossiping protocol, and algorithms for compressing a

buffer map before reporting it to other peers. Note that a buffer map may consist of a large

number of video segments, each with a different number of layers in different scalability

dimensions.

Capacity provisioning for P2P streaming systems with scalable videos. The

seed server allocation algorithms proposed in this thesis help us decide how to best utilize

a given amount of seeding capacity. On the other hand, it can be very useful if we can

estimate beforehand that with a given seeding capacity, what the expected throughput of

the P2P streaming system will be, e.g., the average video quality served in the network,

and the number of peers that can be served. Accordingly, we can determine the amount of

seeding capacity that we need to provision for the network in order to achieve a desired level

of video quality. To answer these questions, an analytical model is needed for forecasting

the behavior of a given P2P streaming system. For example, as inputs to the analysis,

we provide the characteristics of peers and video streams, the seeding capacity, and the

employed seed allocation method, and we obtain the expected video quality that peers will

receive.

Taking best advantage of the three-dimensional scalability model. The three-

dimensional scalability model provides a high degree of flexibility for deciding what sub-

stream to receive using a given limited bandwidth. However, we need to carefully determine
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which layers in these dimensions we should download in order to achieve the highest per-

ceptual quality, while meeting the bandwidth constraint. A similar problem, which is for

traditional stream transcoders to choose among different adaptation possibilities, is studied

by several previous works, e.g., [86, 87]. This is often done either by a subjective study to

find a global solution for multi-dimensional stream adaptation, or by expensive retrieval

of advanced information from the video content, such as the amount of motion or spatial

details—note that deciding the best adaptations according to these information is still a

subjective issue. Interestingly, H.264/SVC allows each client on its own to adapt the sub-

stream it receives: a client can request an ordered list of temporal, spatial, and quality layers

according to their importance for the user, where the preferences of the user are known by

the client software. This ability should be properly taken advantage of to best allocate a

user’s limited download bandwidth for receiving various layers, according to the bitrate and

the importance of each combination of layers. An appropriate solution to this problem can

be of interest for other streaming challenges as well, such as requesting H.264/SVC streams

from multiple heterogeneous receivers or unequal loss protection of video layers. Moreover,

previous subjective studies are limited to a small number of subjects, whereas having each

user in a multimedia streaming system decide its own preference will result in a rich data

set, and the possibility for an accurate universal quality metric.

Receiving scalable video streams from heterogeneous and dynamic senders.

Suppose a P2P streaming system with scalable videos, where each peer has a list of potential

senders. Each sender has a set of video layers available and an estimated throughput. The

peer needs to employ a scheduling algorithm for downloading data chunks, which should

maximize the received video quality and provide a smooth playback. This is an important

problem in heterogeneous P2P streaming systems with scalable videos, and a simple form

of it has been studied before for layered videos and for MPEG-4 Fine-Grained Scalable

(FGS) videos in [18,81]. In these works, it is assumed that the throughput of each sender is

given as a certain number and that it does not change frequently. A peer continuously runs

the proposed algorithms for requesting video pieces, and keeps measuring and updating

the throughput of each sender. In a more practical scenario, however, a very dynamic

sender with highly variable throughput should be differentiated from one with rather steady

throughput: the former, even if having a higher mean value than the latter, is less preferred

for being chosen to provide lower layers. That is because there is a chance that we need to

throw away some higher video layers that we have already downloaded, since we could not
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receive their lower layers by their deadline, i.e., their playback time. Thus, an algorithm for

requesting video data from heterogeneous senders, which takes into account these dynamics

and gets the highest video quality while minimizing the chance of such cases can be very

useful.
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