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Abstract 

The goal of this thesis is to  develop generic algorithms for computing in polyno- 

mial quotient rings and their fields of fractions. We present two algorithms for 

simplifying rational expressions over k[xl, . . . , x,]/ I. The first algorithm uses 

Groebner bases for modules to compute an equivalent expression whose largest 

term is minimal with respect to  a given monomial order. The second algorithm 

solves systems of linear equations to  find equivalent expressions and conducts a 

brute force search to  find an expression of minimal total degree. 
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Chapter 1 

Preliminaries 

1.1 Introduction 

The manipulation of polynomials is a fundamental goal of computer algebra. 

It was the purpose for which many of the first computer algebra systems were 

written, and it remains an area of active research today. Presently, we have 

good algorithms to factor polynomials and simplify rational expressions over 

the rational numbers, finite fields, and over algebraic number fields. 

The direction of our work has been somewhat different. Our goal is to develop 

generic algorithms for polynomial division and rational expression simplification 

in the presence of algebraic side relations. More precisely, we want to compute 

in polynomial quotient rings and their fields of fractions. 

The cornerstone of any approach will be Grobner bases. Invented by Bruno 

Buchberger in 1965, Grobner bases are primarily used for ideal-theoretic com- 



putations and for simplifying elements of a quotient ring to a canonical form. 

They can also be used to solve linear equations modulo an ideal, which we will 

use to invert elements and perform exact division. 

In this thesis we present two solutions to the problem of rational expres- 

sion simplification. This is a problem which arises quite naturally in computer 

algebra, often in relatively simple contexts. Consider the expression below. 

This is a rational expression in sin(x) and cos(x), where the functions them- 

selves satisfy the polynomial relation ~ i n ( x ) ~  + C O S ( X ) ~  = 1. We would like to 

simplify the fraction so as to minimize the total degree of both the numera- 

tor and denominator in the result. We demonstrate using an ad-hoc method. 

Letting s = sin(x) and c = cos(x), we can rewrite the denominator as follows. 

From this we can cancel the numerator and obtain 1/ (2 sin(x) - 1). This fraction 

must have minimal total degree because the expression is not a constant. 

There are a number of problems confronting ad-hoc methods, not the least 

of which is that factorizations may not be unique. Another more profound 

difficulty is that some fractions can be simplified in a way that does not cor- 



respond to the cancellation of a common divisor. This was noted by Monagan 

and Mulholland in for fractions over Q[s, c]/(s2 + c2 - 1) [MulOl]. 

What is needed is a general method; this is the topic of Chapter two. The 

rest of this chapter introduces the machinery of Grobner bases and the ideal 

theoretic operations upon which our methods rely. This thesis is largely the 

result of computer experiments performed using the Maple computer algebra 

system and some of our own software. A sample session demonstrating this 

software is contained in the appendix. 

1.2 Definitions 

We begin with some basic definitions. Recall from the previous section that 

we had a polynomial relation s2 + c2 - 1 = 0. In general we may have a number 

of such relations, so let S be the set of all polynomials which are equivalent to 

zero. The set S is clearly closed under addition, and any product involving an 

element of S is also in S. 

Definition 1.1. Let R be a commutative ring. A set I 2 R is an ideal if 

i) f + g  E I for all f , g  E I 

ii) f h  E I for all f E I and h E R 

We will restrict ourselves to  computing with multivariate polynomials over a 

field, so that in our case R = k [ x l ,  . . . , x,] , the polynomial ring in n variables 

over the field k .  A generating set or basis for an ideal I is a set of elements 



{fl,  . . . , f,) such that every element in I can be expressed in terms of the fi. In 

our previous example the generating set consisted of a single element: s2 +c2 - 1. 

In general we write ( f l ,  . . . , f,) to denote the ideal generated by { f l ,  . . . , f,). 

Lemma 1.2. Let I E R be an  ideal where R is a commutative ring with identity. 

Define a relation - o n  the elements of R by a - b H a - b E I .  Then  - is an  

equivalence relation. 

Proof a - a = 0 E I  so - is reflexive. If a - b then a - b E I  so b - a = 

( - l ) ( a  - b) E I and - is symmetric. Now suppose a - b and b - c. Then 

a - c = ( a  - b) + (b  - c )  E I  and - is transitive. 0 

If a-b E I  we say that a and b are congruent modulo I  and write a r b mod I .  
- 

The congruence relation partitions the elements of R into equivalence classes, 

where everything in I  is equivalent to zero. 

Definition 1.3. Let I R be an ideal where R is a commutative ring with 

identity. The quotient ring R / I  is the ring whose elements are the equivalence 

classes of R modulo I ,  under the ring operations of R.  

Example 1.4. From the earlier example with polynomials in Q [ s ,  c]:  

s4 - c4 + S = 2s2 + S - 1 + ( s 2  - c2 - 1 ) ( s 2  + c2 - 1 )  

= 2s2 + s - 1 mod ( s 2  + c2 - 1 )  

Thus s4 - c4 + s and 2s2 + s - 1 are in the same equivalence class modulo 

( s 2  + c2 - 1 ) .  In the quotient ring Q [ s ,  c] / ( s 2  + c2 - 1 )  they correspond to the 



same element. 

In addition to computing in k [ x l ,  . . . , x,]/ I we would like to simplify elements 

of its field of fractions. Fractions over k [ x l ,  . . . , x,]/I can be represented as 

ordered pairs (a ,  b) where b $? I ,  so that two fractions (a ,  b) and (c, d )  are 

equivalent if ad = bc mod I .  The binary operations are (a ,  b) + (c ,  d )  = (ad + 
bc, bd) and (a ,  b) (c ,  d )  = (ac, bd). 

The definition above admits a troublesome possibility. Let I = ( x 2  - 1)  

and consider l / ( x  - 1)  + l / ( x  + 1) = 2 x / ( x 2  - 1). Since x2 - 1 = 0 mod I 

the result is not a valid fraction. This problem arises whenever two non-zero 

elements multiply to give zero; such elements are called zero-divisors. Notice 

that a and b are zeredivisors of k [ x l  , . . . , x,] / I if and only if ab E I and a,  b $? I .  

Definition 1.5. An ideal I R is prime if ab E I * a E I or b E I .  

Definition 1.6. A commutative ring with identity is an integral domain if it 

does not contain zeredivisors. 

It should be clear that k [ x l , .  . . , x,]/I is an integral domain if and only if I 

is a prime ideal. In our approach to simplifying rational expressions we will 

assume that I is prime so as to avoid the problems caused by zero-divisors. 



Grobner Bases 

Grobner bases are a fundamental tool of algebraic geometry. They generalize 

the ideas behind the Euclidean algorithm and Gaussian elimination to systems 

of multivariate polynomials and provide canonical representatives for elements 

of a quotient ring. This allows us simplify expressions and detect zero. 

A key ingredient of linear algebra and univariate polynomial computations 

is that an order is imposed on the monomials which may appear. In Gaussian 

elimination the monomials are variables, ordered a priori or incrementally by 

a pivoting strategy. In the Euclidean algorithm powers of a single variable are 

ordered by their degree. The definition below generalizes both of these concepts. 

Definition 1.7. A monomial order is a relation < such that 

i) < is a total order on the monomials of k[x l  , . . . , x,] 

ii) a < b + ac < bc for monomials a ,  b, and c 

iii) 1 is the smallest monomial under < 

Example  1.8. In lexicographic order with xl  > x2 > . . . > x,  monomials are 

compared first by their degree in X I ,  then by their degree in x2, and so on, 

continuing as long as there is a tie. 

Example  1.9. In graded lexicographic order with X I  > x2 > > x,  mono- 

mials are first compared by their total degree with ties broken by lexicographic 



order as above. To illustrate we have written the terms of the polynomial below 

in descending graded-lexicographic order with x > y > z. 

Example 1.10. In graded-reverse lexicographic order with xl > x2 > - .  . > x, 

monomials are again compared first by their total degree but ties are broken 

by preferring monomials with least degree in the smallest variables. We have 

rewritten the polynomial above so that its terms are in descending graded- 

reverse lexicographic order with x > y > z. 

Observe that x3 is again the largest monomial, only this time because its degree 

in z and then y is smallest among its competitors. For the same reason, xy2 is 

now greater than x2z and y2 is greater than xz. 

Example 1.11. In an elimination order with {xl, .  . . , xi-l} >> {xi,. . . ,x,) 

monomials are first compared using a monomial order on {xl, . . . , with 

ties broken by a second order on {xi, . . . , x,}. As a result, the monomials 

containing {xl , . . . , Xi-] } are all greater than the monomials involving only 

x i  . . . , x } .  Elimination orders can also have multiple groups of variables. 

The extreme case where {xl} >> ( 2 2 )  >> . . - >> {x,} is lexicographic order. 

Definition 1.12. Let f E k[xl, .  . . , x,]. The leading t e r n  of f ,  denoted LT(f), 

is the term whose monomial is greatest with respect to a monomial order. The 

coefficient and monomial of this term are called the leading coeficient  and 

leading monomial  respectively. 



Monomial orders lead to a natural generalization of polynomial division. Here 

a single polynomial is divided by a set of polynomials producing a remainder 

and optionally a sequence of quotients. When our choice of monomial order is 

clear we write f + G t r to denote the division of a polynomial f by a list of 

polynomials G producing a remainder r. 

Algorithm 1.13 (The Division Algorithm). 

Input a polynomial f ,  a list of polynomials G, a monomial order < 

Output a polynomial r where no term of r is divisible by an LT(Gi), 

(optionally) a list of polynomials Q with f - ~ j z \  QiGi = r 

( P ,  r )  + ( f ,  0)  

Q +  (O,...,O) 

while p # 0 do 

select the first Gi where LT(Gi) divides LT(p) 

if no such Gi exists move LT(p) to the remainder 

r + r + LT(p) 

P + P - LT(P) 

else cancel LT(p) using Gi 

Qi + Qi + (LT(p)/LT(Gi)) 

P + P - (LT(p)/LT(Gi))Gi 

end if 

end loop 

return r, Q 



We would like to use the division algorithm to test for membership in an ideal, 

but doing so poses a problem. Consider I = (x2 + 1, xy + 1). The polynomial 

x(xy + 1) - y(x2 + 1) = x - y is clearly a member of the ideal, however it can not 

be reduced by either x2 + 1 or xy + 1 using any monomial order. The problem 

is remedied by the following condition. 

Definition 1.14. Let I c k[xl,.  . . , x,] be an ideal and let < be a monomial 

order. A set G is a Grobner bass for I with respect to < if for every f E I, 

LT( f ) is divisible by LT(g) for some g € G. 

Example 1.15. Let I = (x3 - 1, x2 - x) in Q[x]. From the Extended Euclidean 

algorithm we obtaingcd(x3-1,x2-x) = (l)(x3-1)-(x+l)(x2-x) = x-1 E I. 

Every element of I is of the form p(x3 - 1) + q(x2 - x) which is divisible by x - 1 

so I = (x - 1) and {x - 1) is a Grobner basis. 

Theorem 1.16. Let G be a Grobner basis for I c k[xl, . . . , x,]. Then 

i) f t G + r implies f E r mod I 

ii) f = g  mod I and f + G + r  impliesg+G+r 

Proof (i) By Algorithm 1.13 we have f - r = c\:\ QiGi = 0 mod I. (ii) If 

f i G + r and g + G + r' then no term of r (respectively r') is divisible by a 

leading term of G. Then no term of r - r' is divisible by a leading term of G, 

and since r - r' E I and G is a Grobner basis this implies r - r' = 0. 



Corollary 1.17. 

ii) i f f  t G -, r then the remainder r is unique 

For a given monomial order, Theorem 1.16 associates each equivalence class 

of k[xl, .  . . , x,]/I with a unique remainder, called a normal form, which can be 

computed by division with a Grobner basis for I. Thus we can perform addi- 

tion and multiplication in k[xl, . . . , x,]/I using the operations of k[xl, . . . , x,], 

followed by a reduction to the normal form. 

Having demonstrated the usefulness of Grobner bases we turn now to their 

construction. Previously we discovered x - y E (x2 + 1, xy + 1) by inducing a 

cancellation of the leading terms of x2 + 1 and xy + 1. This is called a syzygy, 

and to compute a Grobner basis for an arbitrary ideal it will suffice to compute 

these syzygies one at a time and add them, when necessary, to the generating set. 

Definition 1.18. Let f and g be polynomials and let < be a monomial order. 

The syzygy polynomial of f and g is 

Theorem 1.19 (Buchberger's Syzygy Criterion). Let I be an ideal with 

generating set G and let < be a monomial order. G is a Grobner basis for I 

with respect to < i f  and only if  S(f, g )  + G -, 0 for all f , g E G. 

Proof See [Cox96]. 



We present a crude version of Buchberger's algorithm based on Theorem 1.19. 

The algorithm terminates when S( f ,  g) t G  + 0 has been verified for all f ,  g E G. 

This is guaranteed to happen by the ascending chain condition; every strictly 

increasing sequence of ideals in k[xl, . . . , x,] is finite. Observe that when a non- 

zero remainder r is added to G the ideal of leading monomials of G is strictly 

enlarged. The ACC also implies that every ideal of k[xl, . . . , x,] has a finite set 

of generators, so that Algorithm 1.20 implies the existence of Grobner bases. 

Algorithm 1.20 (Buchberger's Algorithm) . 
Input a set of generators F ,  a monomial order < 

Output a Grobner basis G with respect to < 

G + F  

P' {(f ,g)  1 f , 9  E F )  

while IPI > 0 do 

select a pair ( f ,  g) E P 

P' P\ {( f ,g ) )  

r +- S(f,g) i G 

if r # O  

P +- P U {(h, r) I h E G) 

G+- G u { r )  

end if 

end loop 

return G 



Example 1.21. We compute a Grobner basis for (xy + 1, x2 + 1) Q[x, y] 

using lexicographic order with x > y. Our initial basis consists of just these 

polynomials, but we have a syzygy. 

S ( x y  + 1, x2 + 1 )  = x ( x y  + 1 )  - y(x2 + 1 )  = x - y  

This polynomial can not be reduced by either x2 + 1  or x y  + 1  so we add it to 

the basis unchanged and two new syzygies are created. 

S ( x 2 + 1 , x -  y )  = ( x 2 +  1 )  - x ( x -  y )  = x y + 1  

S ( x y +  1 , x -  y )  = ( x y +  1 )  - y ( x -  y )  = Y 2 +  1  

The first polynomial is already in the basis and thus reduces to zero. The second 

one doesn't reduce, so it is added to the basis and its syzygies are constructed. 

2 2 2 2 s (x2 + 1 ,  y2 + 1 )  = y  ( x  + 1 )  - x ( y  + 1 )  = -x2 + y2  

S ( x y  + 1 ,  y2 + 1 )  = y ( x y  + 1 )  - x(y2 + 1 )  = -x + y  

2 2 S ( x - y , y  + 1 )  = y 2 ( x - y ) - x ( y  + 1 )  = - x - Y 3  

One can easily verify that all of these syzygies reduce to zero. The algorithm 

terminates with { x y  + 1, x2 + 1 ,  x - y ,  y2 + 1 )  which is a Grobner basis. 

Observe that the initial generators x y  + 1 and x2 + 1  in Example 1.21 are no 

longer needed in the final Grobner basis. To see this, we can sort the basis into 

descending order and divide each element by its successors using Algorithm 1.13. 

We find that x2 + 1 = x (x  - y )  + ( x y  + 1 )  and x y  + 1 = y ( x  - y )  + ( y 2  + I ) ,  so 

{ x  - y ,  y2 + 1 )  is also a Grobner basis. 

Definition 1.22. Let G be a Grobner basis, G is reduced if 0 $! G and each 

g E G is in normal form with respect to G \ {g). 



A particularly useful property of reduced Grobner bases is that their elements 

are unique up to a constant multiple [Cox96]. Starting from the output of 

Buchberger's algorithm one can construct a reduced Grobner basis by dividing 

as above, although more efficient methods exist. Some variants of Buchberger's 

algorithm also partially reduce the basis as new polynomials are added [Geb88]. 

With regards to a practical implementation Algorithm 1.20 is dreadfully slow. 

In practice it is not necessary to consider every S(f, g )  and criteria have been 

developed to omit superfluous ones [Buc79][Geb88]. Still the vast majority 

of time in Buchberger's algorithm is spent reducing syzygies to zero [Buc85]. 

Subsequent algorithms by J. C. Faugitre improve on this by considering several 

syzygies at  once [Fau99] [Fau02]. 

One redeeming property of Algorithm 1.20 is that we can easily modify it to 

express the resulting Grobner basis elements in terms of the initial generators. 

The idea is to attach a vector C to each g  E G with the property that 

Whenever polynomial arithmetic is performed, the vectors are updated with the 

analogous operation. We illustrate the technique by repeating Example 1.21. 

Example 1.23. Let F = [xy + 1, x2 + 11 c Q[x, y] be our generating set, again 

using lexicographic order with x > y. We begin by attaching the identity vectors 

[I ,  01 and [O, 11 to xy + 1 and x2 + 1. The first syzygy 



is assigned the vector x[ l ,  01 - y[O, 11 = [x, -y]. Continuing, we assign 

Were we to reduce these polynomials we would have to update their vectors in 

Algorithm 1.13 as well, but for now we are done. The remaining syzygies all 

. reduce to zero and [xy + 1, x2 + 1, x - y, y2 + 11 is a Grobner basis. From the 

vectors we obtain the following relations. 

x y + 1  = 1 ( x y + l ) + 0 ( x 2 + 1 )  

x 2 + 1  = O ( x y + 1 ) + l ( x 2 + 1 )  

x - y  = x (xy + 1) - y (x2 + 1) 

y2 + 1 = (1 - xy) (xy + 1) + y2 (x2 + 1) 

1.4 Ideal Operations 

In addition to membership testing, Grobner bases also can be used to compute 

many ideal-theoretic operations. Because surveys of this area usually constitute 

a volume, we present a minimum amount of material and defer to [Cox961 and 

[BW93] for additional treatment. We begin with the intersection of an ideal 

and a subring of k[xl, . . . , x,]. 

Theorem 1.24 (The Elimination Theorem). Let I 2 k[xl,.  . . ,x,] be an 

ideal and let G be a Grobner basis for I with respect to an elimination order < 

with {xl, . . . , xi-l} >> {xi,. . . , x,}. Then G n k[xi, . . . , x,] is a Grobner basis 

for I n k[xi,. . . , x,] under the restriction of < to {xi,. . . , x,). 



Proof Note that G n k[x i , .  . . , x,] c I n k[x i , .  . . ,x,] since G C I .  Now for 

f E I  n k[xi ,  . . . , x,] we have f i G -t 0 under < but no term of f contains 

{ x l ,  . . . , xi- l )  so only elements of G n k[xi ,  . . . , x,] can be used in the division. 

The same argument applied to { S ( g i ,  g j )  : gi,  gj E G n k[xi7 . . . , x,]) shows that 

G n k[x i , .  . . , x,] is a Grobner basis. 

Example 1.25. In Example 1.21 we found that {x2  + 1,  xy + 1,  y  - x ,  y2 + 1) 

is a Grobner basis for I  = (x2  + 1,  xy + 1 )  c Q[x,  y] under lexicographic order 

with x  > y. Since this is an elimination order I  n Q[y] = ( y 2  + 1). 

Definition 1.26. Let I  = ( f l ,  . . . , f,) and J  = ( g l ,  . . . , g,). Then 

i) The ideal sum I  + J  = ( f l , .  . . , f s ,g l , . .  . ,g,). 

ii) The ideal product I  J  = ( f l g l ,  . . . , f i g j ,  . . . , fsgt)  

iii) The intersection I n  J  = { f  : f E I  and f E J )  

A clever trick reduces the computation of ideal intersections to the subring 

intersection of Theorem 1.24. Let I  C k[x l ,  . . . , x,] be an ideal and let t  be an 

extra variable. We let t I  denote the ideal product of ( t )  and I  in k[x l , .  . . , x,, t ] .  

Lemma 1.27. Let I  and J  be ideals of k [ x l ,  . . . , x,]. Then I  fl J  = 

( t I  + ( 1  - t ) ~ )  n k[xl ,  . . .  ,x,]. 

Proof Suppose f E I  n J  C k[x l ,  . . . ,  x,]. Then t f  E t I  and ( 1  - t ) f  E 

( 1  - t ) J  so f = t f  + ( 1  - t ) f  E ( t l  + ( 1  - t ) J )  n k[x, ,  ..., x,]. Now let 

f E ( t I + ( l - t ) J ) n k [ x l ,  . . . ,  x,]. Then ( t f )  ( t I + ( l - t ) J )  sowecanadd 



(1  - t )  to both sides and obtain f E ( t f ,  1  - t )  C I  + ( 1  - t )  and intersect with 

k [ x l ,  . . . , x,] to get f E I .  A similar argument shows f E J. 0 

Example 1.28. Let I  = ( x  - 1, y  - 1) and J = ( x  - 1, y  + 1). We eliminate 

t from { t ( x  - I ) ,  t ( y  - I ) ,  ( 1  - t ) ( x  - I ) ,  ( 1  - t ) ( y  + 1 ) )  using a lexicographic 

Grobner basis with t > x  > y. The Grobner basis is j y 2  - 1, x  - 1,2t - y  - 1)  

SO ~n J = (y2  - i , ~  - 1). 

The most important task of this section is to describe the quotient operation 

for ideals. Analogous to cancelling out a GCD, it forms the basis of one of our 

methods for simplifying rational expressions over k [ x l ,  . . . , x,]/I.  

Definition 1.29. Let I ,  J  G k [x l ,  . . . , x,] be ideals. The ideal quotient I  : J  is 

the set { f  E k [ x l ,  . . . , x,] : f h  E I  for all h  E J } .  

We show that I  : J  is an ideal. Note that it trivially contains I .  If f ,  g  E I  : J  

and h  E J  then ( f  +g )h  = fh+gh E I  so ( f  +g )  E I  : J .  Likewise i f f  E I  : J ,  

h E  J  andg  E k[xl  ,..., x,] then f g h ~  I  since f h E  I ,  so f g ~  I :  J. 

Example 1.30. Let I  = (x2  - y2) and J  = ( x  - Y ) .  Then I  : J  = ( x  + 3 ) .  

Example 1.31. Let f ,  g  E k [x] .  The quotient ( f )  : ( g )  contains all polynomials 

whose product with g is a multiple of f .  In particular, a minimal element is 

lcm( f ,  g ) /g  = f / gcd( f ,  g)  which also generates the ideal. 



The properties below are noted by Cox et a1 [Cox96]. The third property 

combined with the subsequent lemma provides an algorithm to compute I : J. 

Lemma 1.32. Let I ,  J ,  and K be ideals of k[xl , . .  . ,xn].  Then 

i) I : J = k[xl, .. . , x n ]  if and only if J J I 

ii) IJ C K if and only if I C  K : J 

iii) I : (C:=, Ji) = n:=,(I : Ji) 

Proof See [Cox961 

Lemma 1.33. Let G be a Grobner basis for I n (f).  Then {g/ f : g E G) is a 

Grobner basis for I : ( f )  with respect to the same monomial order. 

Proof First observe gi E ( f )  so each gi/ f is a polynomial. Then gi/ f E I : ( f )  

since (gi/ f )  f = gi E I. Now let h E I : (f) .  We know LT( f h) is divisible by 

some LT(gi) since {gl, . . . , g,) is a Grobner basis. Then LT(h) is divisible by 

LT(gi/ f ) , and since h was arbitrary {gl/ f ,  . . . , gt/ f )  is a Grobner basis. 0 

Example 1.34. Let I = (x2, y2 - 1) and J = (x, y - 1) in Q[x, y]. Then 

I n  (x) = (x2, x(y2 - 1)) and I n  (y - 1) = (x2(y - l) ,  y2 - 1) so 



1.5 Homogenization 

Next we present a few interesting results about homogeneous Grobner bases 

from [Fro97]. A generalization to  arbitrary gradings appears in 510.2 of [BW93]. 

Definition 1.35. A polynomial f E k[xl, . . . , x,] is homogeneous if all of its 

non-zero terms have the same total degree. 

Lemma 1.36. Let f and G = [gl,. . . ,gt] be homogeneous polynomials. If we 

compute f + G + r using Algorithm 1.13, then the remainder r and all of the 

quotients are also homogeneous. 

Proof Upon entering the main loop p (which is initially f )  is homogeneous 

and-we take one of two actions. If LT(p) is divisible by some LT(gi) then we 

subtract pnew +- p - (LT(p)/LT(gi))gi. Since gi is homogeneous pnew is homoge- 

neous and deg(pnew) = deg(p) if pnew # 0. Otherwise we move the leading term 

of p to  the remainder r. Because the degree of p is invariant while p # 0 the 

terms of r all have degree deg(f). Similarly, the non-zero terms of each quotient 

Qi must have degree deg( f )  - deg(gi). 

Lemma 1.37. Let I be an ideal generated by homogeneous polynomials. Then 

a reduced Grobner basis for I with respect to any monomial order consists of 

homogeneous polynomials. 

Proof Observe that syzygies of homogeneous polynomials are homogeneous 

and by Lemma 1.36 so are their remainders. Thus the Buchberger algorithm 



adds only homogeneous polynomials to the generating set. To reduce a Grobner 

basis it suffices to divide each g E G by G \ {g) and remove zero. Again by 

Lemma 1.36 the result is a set of homogeneous polynomials. 

An ideal with homogeneous generators is said to be homogeneous also. Note 

that the class of homogeneous ideals is closed under the operations of Section 1.4, 

although we have omitted some of the requisite details. 

Definition 1.38. Let f E k[xl, . . . , x,] and let y be a new variable. The ho- 

mogenization of f in y is the polynomial f (Y) = ydeg(f) f (x l ly , .  . . , x,/y). 

Example 1.39. Let f = x3 + x + 1 E Q[x]. We introduce y to homogenize f .  

Applying Definition 1.38 we obtain f ( ~ )  = x3 + xy2 + y3. 

Homogenization is an injective map from k[xl, . . . , x,] to k[xl, . . . , x,, y] which 

can be inverted by evaluating y = 1. It is not a ring homomorphism since 

(f + g)(y) # f (y) + g(y) when f and g have different total degree. Nevertheless, 

using Grobner basis theory we can recover some of the results for homogeneous 

polynomials, provided we accept the following condition. 

Definition 1.40. Let < be a monomial order on k[xl , . . . , x,] and let y be a 

new variable. We say that <' is a good extension of < to k[xl, . . . , x,, y] if 

LT<( f )  = LT</( f (9)) for all f E k[xl, . . . , xn]- 

Example 1.41. Let < and <' denote graded lexicographic order with x > y 

and x > y > z respectively. We show that <' is not  a good extension of <. Let 



f = x + y2. Then LT,( f )  = y2 but LT,I( f ("1) = LT,l(xz + y2) = xz. 

Example 1.42. Let < and <' denote graded reverse lexicographic order with 

x1 > x2 > . . . x, and xl > x2 > . . - > x, > y respectively. We show that 

<' is a good extension of <. If f (y) is the homogenization of f E k[xl, . . . , x,] 

then all of its terms have degree deg(f) and to compute LT,I(~(Y))  we first 

select the terms with lowest degree in y. These terms have degree zero in y and 

degree deg(f) in {xl, . . . , x,) so they are initially selected by < as well. Then 

LT,,(~ (3)) = LT, ( f )  since subsequent ties are broken in an identical manner. 

Not all monomial orders have good extensions. In fact, LT, ( f )  = LT,I (f (3)) 

requires deg(LT, (f )) = deg( f ) for all f so only graded orders can be extended. 

The purpose of good extensions is simple: as we will see in the following theo- 

rem, the property of being a Grobner basis is preserved under homogenization 

and dehomogenization. This has numerous applications in projective geometry, 

see [Cox961 for examples. 

Definition 1.43. Let I k[xl,.  . . ,x,] be an ideal. The homogenization of I 

in y is the ideal I(Y)  generated by { f (3) : f E I) in k[xl, . . . , x,, y]. 

Example 1.44. Let I = (y - 1, xy - 1). If we homogenize y - 1 and xy - 1 

using a new variable z we obtain I' = (y - z, xz - z2). However x - 1 E I so 

x - z E I(") but x - z @ 1'. This shows that we can not simply homogenize the 

generators of I to obtain I("). 



Theorem 1.45. Let I k [ x l , .  . . , x,] be an  ideal, and let G be a reduced 

Grobner basis for I with respect to  a monomial  order <. If y is a new variable 

and <I  is  a good extension of < t o  { x l , .  . . , x,, y ) ,  then G(y) = { g ( y )  : g E G )  is  

a reduced Grobner basis for  I ( Y )  under  < I .  

Proof See [l?ro97]. 

Example 1.46. Let I = ( y  - 1, x y  - 1) as in Example 1.44. We homogenize 

I using graded reverse lexicographic order with x > y > z, which is a good 

extension of the same order with x > y. A reduced Grobner basis for I is 

{ y -  1, x -  1) so a reduced Grobner basis for I (")  is { y  -2, x -2) by Theorem 1.45. 

1.6 Modules 

For our final section of preliminary material, we introduce Grobner bases for 

modules. Modules over rings are similar to vector spaces over fields, although 

our presentation focuses entirely on developing Grobner basis techniques. For 

a more comprehensive treatment of modules refer to [Cox98]. 

Definition 1.47. Let R be a ring with unity. A module over R or R-module is a 

set M toget her with operations for addition and scalar multiplication satisfying 

i) (M, +) is an Abelian group 

ii) 1 f = f for all f E M 

iii) ( a b ) f  = a ( b f )  E M for all a ,  b E R and f E M 



iv) (a + b)f = af + bf for all a ,  b E R and f E M 

V) a(f + g )  = a f  +ag fo r  a l l a ~  R a n d  f , g €  M 

When R is not commutative the definition above is that of a le 

however we are only concerned with the case R = k[xl, . . . , x,]. In fact, we will 

only consider modules which are a subset of Rm. These are submodules of Rm, 

since Rm is itself an R-module. 

Example 1.48. Let R = k[x, y] and consider the set of all possible combinations 

in R2. For example, [ ] = y [ : ] - x [ : ] is in the 

r i  
Y 

set while / I is not. it  is easy to see that this set is a module over R and 

L J 

thus a submodule of R2. 

Observe that submodules of R1 correspond to ideals. With this in mind it is 

natural to ask whether Grobner basis techniques can be extended to work with 

submodules of Rm. The only suprising fact is that it all works out so easily. 

Our first task is to extend monomial orders to elements of Rm. Following 

[Cox98], we write f E Rm as a linear combination of monomials in R and 

standard basis vectors ei. For example: 

Then monomials of Rm are all of the form aei where a is a monomial in R. 

Given a monomial order < on R = k[xl, . . . , x,] there are two natural ways to 



extend it to a monomial order on Rm [AL94]. 

Definition 1.49. Let < be a monomial order on R. The position over term 

monomial order <POT is defined by a ei >POT bej if i < j or i = j and a > b. 

Definition 1.50. Let < be a monomial order on R. The term over position 

monomial order <TOP is defined by a ei >TOP bej if a > b or a = b and i < j. 

Example 1.51. Let < denote graded lexicographic order with x > y and let 

f = xyel + x 2 e 2  + x 2 e 3  = [ x y  x2 x2 ] T. Then the largest (or leading) 

monomial of f is x y  el under <POT and x2 e2 under <TOP. 

All that remains is to define division and syzygies for monomials of Rm be- 

fore we can run the algorithms of Section 1.3 unchanged. Quite naturally, if a 

monomial a ei divides b ej we expect to find q with b ej = qa ei. This is possible 

if and only if i = j and a divides b in R. Similarly, one constructs syzygies by 

inducing a cancellation of the leading terms. 

Definition 1.52. Let f ,  g E Rm with leading terms aei and bej respectively. 

The syzygy vector of f and g is S( f ,  g) = b f  - if i = j or 0 E Rm otherwise. 
gcd(a, b) 

Example 1.53. Let f = xel + e2 and g = yel from Example 1.48. We use 

<TOP extending graded lexicographic order with x > y .  The leading monomials 

are xel and y e l ,  so S(f,g) = yf - xg = ye2. 



Example 1.54. Building on the previous example, we apply Algorithm 1.13 to 

divide p = (xy + y) el + x ez by G = {x el + ez, y el, y e2) using <TOP. The 

leading monomial of p is xy el ,  which is reducible by GI.  We subtract 

Since we are using a term over position order the new leading term of p is x e2. 

This is not divisible by any element of G, so we move it to the remainder. The 

next term of p is yel ,  which is reducible by G2 SO 

Finally the leading term -y e2 is cancelled by adding G3 and we obtain zero. 

The algorithm terminates, returning the remainder r = x e2 and optionally the 

list of quotients Q = [-y, - I l l ] .  

The characterization of Grobner bases is the same for modules as it is for 

polynomial ideals, and one can show that Buchberger's criterion (Theorem 1.19) 

carries over as well [Cox98]. That is, a set G is a Grobner basis if and only if 

S( f ,  g) i G + 0 for all f ,  g E G. Observe that this condition is satisfied by the 

set G of Example 1.54, and that it was obtained by running the Buchberger 

algorithm in Example 1.53. 

Similarly Lemma 1.2, Theorem 1.16, and Corollary 1.17 all continue to hold 

when ideals I c R are replaced by modules M C Rm. As a result, Grobner bases 

can be used to test for membership in submodules of Rm. This is illustrated in 

Example 1.54, where p = (xy + y) el + x e2 was found not to be an element of 

the module (x el + e2, y el). 



We conclude with two interesting applications of Grobner bases for modules. 

First we show how a module computation can express a Grobner basis for an 

ideal I C k[x l ,  . . . , x,] in terms of the generators, like the extended Buchberger 

algorithm of Section 1.3. We demonstrate using Example 1.23. 

Example 1.55. Let F = [xy + 1, x2 + 11 and let < denote lexicographic order 

with x > y. We compute a Grobner basis for (Fl el + e2, F2 el + e3) using 

<POT. Our initial basis is G = { ( x y  + 1 )  el + e2, (x2 + 1 )  el + e3) and 

Written in <POT order, the monomials are x el, -y el, x e2, and -y e3. None 

of them are reducible by G1 or G2, SO we add this element unchanged as G3 and 

construct its syzygies 

S(G2, G3) = G2 - xG3 = (xy  + 1 )  el + ( -x2)  e2 + (xy  + 1 )  e3 

The latter is reducible by G1, and we add G4 = (y2 + 1 )  el + (-xy + 1 )  e2 + 
Y 2  e3 and G5 = (-x2 - 1 )  e2 + (xy  + 1 )  e3 to the basis. There are no syzygies 

involving G5 at  this point because no other Gi has a leading monomial in en. 

The remaining syzygies are 



all of which reduce to zero. The elements of G are written in vector form below. 

Notice that the first row of G contains a Grobner basis for ( F )  and the remaining 

rows express this basis in terms of F .  Compare this to Example 1.23. 

Finally we show how Grobner bases for modules can be used to compute 

an ideal quotient I  : ( g ) .  This technique (from [CT98]) is substantially faster 

than the method of Section 1.4 because it avoids the construction of I  rl ( g ) .  

By Lemma 1.33 the generators of the intersection are a factor of g  larger than 

those of the quotient. 

L e m m a  1.56. Let  R = k [ x l , .  . . , x,], let g  E R, and let I  C_ R be a n  ideal. If 

M = ( I e l ,  I e 2 , g e l  + e2) R2 t h e n  I  : ( g )  = M  rl e2. 

Proof We first show M  n e2 2 I  : ( g ) .  Every element a  el + b e2 E M  satisfies 

a -  bg = 0 mod I  so if b  E M n e 2  then bg = 0 mod I  and b  E I  : ( g ) .  Now 

let f  E I  : ( g ) .  Then f g  E I  so f g  = q1 f1 + - - 0  + q,f, for some {q,) C R and 

expresses f  as an element of M  r l  e2. 

E x a m p l e  1.57. Let I  = ( y 2  - x,  x2 - xy )  and let g  = y. We use <POT where < is 

graded-reverse lexicographic order with x > y. The module ( I  e l ,  I  e2, y  el +e2) 



is generated by 

The pairs {S(G1, G2), S(G3, G4), S(G1, G5), S(G2, G5)) are the only syzygies which 

are not identically zero under Definition 1.52. However S(G1, G2) and S(G3, G4) 

must reduce to zero since {Y2 - x, x2 - xy) is a Grobner basis for I with respect 

to <. Thus we compute 

The first syzygy doesn't reduce so it is added to  the basis as G6. The second 

reduces to (-xy + x) e2 following the steps below. 

2 2 +xG1 2 2 -xy e l - x  e2 + -x e l - x  e2 
+xG2 2 
+ -xyel -x  en 

+xG5 
+ (-x2 + x)e2 

+G4 
---+ (-xy+x)e2 

So (-xy + x) e2 is added to the basis as G7. The remaining syzygies all reduce 

to zero so G is a Grobner basis for ( I  el, I e2, y el + e2) with respect to <POT. 

In vector form the elements of G are 

Then I : (g )  = G n en = (y2 - x, x2 - xy, -xy + x), which is also a Grijbner 

basis with respect to < 



Chapter 2 

Quotient Rings 

2.1 Arithmetic in k[x l ,  . . . , x,]/I 

Recall Theorem 1.16 and Corollary 1.17; using Algorithm 1.13 and a Grobner 

basis for I we can simplify polynomials to a unique representative of their equiv- 

alence class modulo I .  Thus we can add and multiply in k[x l  , . . . , x,]/I using 

the operations of k [ x l ,  . . . , x,], reducing to a canonical form as desired. 

Example 2.1. Let I = (x2  + y, y2 + 1).  We use graded lexicographic order 

with x  > y. Observe that the generators of I are already a Grijbner basis since 

S(x2 + y, y2 + 1) = y2(x2 + y) - x2(y2 + 1) = y3 - x2 reduces to zero. Let 

f = x y + l  andlet g = x + y .  Then f + g = x y + x + y + l  and 

f g  = x 2 y + x y 2 + x + y  

-- ( - ) + x ( - 1  x y  mod 1 

1  m o d I  



Our first interesting task is the computation of inverses in k [ x l ,  . . . , x,]/I. 

This method is from 86.1 of [BW93]. Let f be an element of k[x l ,  . . . , x,]/I.  

Then f is invertible if and only if there exists an f E k [ x l ,  . . . , x,] with 

f f-' = 1 mod I ,  or equivalently 1 = f f-' + h for some h E I .  

The key observation is that this is equivalent to 1 E ( f )  + I  C k [ x l ,  . . . , x,], 

where ( f )  + I  is the ideal generated by f together with the generators of I .  

Then ( 1 )  is a reduced Grobner basis for ( f )  + I  and we can compute the inverse 

using the extended Buchberger algorithm of Section 1.3. 

Example 2.2. Let I  = (x2 + y, y2 + 1 )  and let f = x. To compute the inverse 

of f modulo I  we run the extended Buchberger algorithm on ( x ,  x2 + y, y2 + 1 )  

using graded lexicographic order with x  > y. We assign vectors [ I ,  0 ,0] ,  [ O ,  1,0], 

and [O,  0,1] to x ,  x2 + y, and y2 + 1 ,  respectively, and compute the syzygies 

S ( x 7 x 2 +  y) = x ( x ) -  1(x2+ y) = -y assigned [x,-1,0] 

S(-y,  y2 + 1 )  = y(-y) + l ( y 2  + 1 )  = 1 assigned [xy,  - y ,  l ]  

Then 1 = ( x y ) ( x )  + ( - Y ) ( x ~  + y )  + l ( y 2  + 1 ) .  Since x2 + y  and y2 + 1 are in I 

1 = ( x y ) ( x )  mod I  and x-' = xy mod I .  

2.2 Polynomial Division 

We can extend the method of computing inverses in k[x l ,  . . . , x,]/I to describe 

polynomial division modulo I  in general. Once again we exploit the connection 

between representatives f E k[xl  , . . . , x,] / I  and ideals ( f )  + I  C k[xl  , . . . , x,], 



which we denote by (f, I). Our approach is based on two lemmas. 

Lemma 2.3. Let f be a polynomial and let I be an ideal. If {gl, .  . . , g,) is a 

Grobner basis for (f ,  I) then there exist qi E k[xl , . . . , x,] with gi - qi f mod I. 

Proof The statement is actually trivial, but our goal is to  compute the qi. Let 

I = (hl, . . . , h,). From the extended Buchberger algorithm we obtain quotients 

expressing each gi in terms of { f ,  hl ,  . . . , h,), i.e.: 

Since all of the hi are equivalent to zero we have gi - qio f mod I. 

Example 2.4. Let f = xy + 1 and let I = (x2 + 1) c Q[x, y]. In Example 1.23 

we computed a Grobner basis for (f ,  I) using lexicographic order with x > y. 

We obtained the basis {xy + 1, x2 + 1, x - y, y2 + 1) and the relations 

x y + l  = 1 ( x y + 1 ) + 0 ( x 2 + 1 )  

x2 + 1 = 0 (xy + 1) + 1 (x2 + 1) 

x - y  = ~ ( x y + l ) - ~ ( x ~ + 1 )  

y2 + 1 = (1 - xy) (xy + 1) + y2 (x2 + 1) 

Then x - y - xf mod I and y2 + 1 = (1 - xy)f mod I. 

Example 2.5. We illustrate how to  do the computation of Lemma 2.3 using 

Grobner bases for modules. Let < be a monomial order and let I = (hl , . . . , h,). 



If we compute a Grobner basis for the module 

using <POT we will obtain a Grobner basis for ( f ,  I )  in the first coordinate. 

The second coordinate must contain the desired relations {qi) ,  because every 

element [a, b] E M satisfies a  - bf mod I .  

Lemma 2.6. Let f and g be elements of k [ x l , .  . . , x,]/I and suppose g E ( f ,  I ) .  

Then there exists some q  E k [ x l , .  . . , x,] with g = q  f mod I ,  and we say that 

f divides g i n  k [ x l , .  . . ,x ,]/I .  

Proof Let G = { g l ,  . . . , g,) be a Grobner basis for ( f ,  I )  with respect to  some 

monomial order. Then g + G -+ 0 using Algorithm 1.13 and we obtain a set 

of quotients {ci )  with g = cigi. Let {ql ,  . . . , qs}  be the polynomials from 

Lemma 2.3 with g, = qi f mod I .  Then g = ( x i = ,  ciq,) f mod I .  

Example 2.7. Let g = 4sc2 - s  - 4c2 + 2  and f = 2s - 1  in Q[s ,  c ] / ( s2  + c2 - 1). 

We will divide g by f using lexicographic order with s  > c. Our first task is 

to compute a Grobner basis for ( f ,  I )  expressed in terms of f and s2 + c2 - 1. 

From the extended Buchberger algorithm (see Example 1.23) we obtain the 

basis {4c2 - 3, f }  and the relation 

Next we apply Algorithm 1.13 to write g in terms of this basis. 



Since the normal form of g is zero, we know that f divides g modulo I. We 

substitute for 4c2 - 3 to obtain 

g = ( s - I ) ( -2s -  l ) f  + f mod I 

(-2s2 + s + 2) f mod I 

The quotient -2s2 + s + 2 is not reduced modulo I. It reduces to  s + 2c2 

Note that f divides g modulo I if and only if (g, I) C_ (f ,  I). We say that f is 

a proper divisor of g if (f, I) is proper and the containment is strict. A natural 

question to ask is whether this also implies deg(g) > deg(f). As we will see in 

the next example, the somewhat suprising answer is no. 

Example 2.8. Let f = xy3 + x + 1 and let I = (xy5 - x - y). We use graded 

lexicographic order with x > y. The element y2 f z xy2 + y2 + x + y mod I has 

total degree three, however (y2 f ,  I) c (f, I) c Q[x, y] strictly. 

From the examples in this section we see that when f divides g we can not 

say anything about the degree of the quotient. However, if f ,  g, and I are all 

homogeneous then we have the following result. 

Lemma 2.9. Let I be a homogeneous prime ideal and let f and g be homoge- 

neous polynomials with g @ I. If g - q f mod I then the nonnal form of q with 

respect to any monomial order is also homogeneous with degree deg(g) - deg( f )  . 

Proof Let q = ql + q2 where q1 consists of precisely the terms of degree 

deg(g) - deg( f ). Then g - ql f - q2 f r 0 mod I implies q2 f -- 0 mod I since 



the terms of q2 f can not be cancelled by any terms of g - ql f .  Finally I prime 

and f 6 I implies q2 E I, so the normal form of q is equal to the normal form 

of q,. This is homogeneous with degree deg(g) - deg(f) by Lemma 1.36. 

Example 2.10. In general the requirement that I is prime in Lemma 2.9 can 

not be dropped. Let I = ((x - y)(x2 + y2)), f = x2 + y2 and q = x2 + x - y. 

Then q is reduced modulo I but g = x2y2 + y4 = qf mod I. It is true that 

. there exist homogeneous q with g = q f mod I and deg(q) = deg(g) - deg( f ) .  

For instance, q = x2 or q = y2 in this example. 

2.3 Rational Expressions I 

Finally we consider the problem of rational expression simplification over 

[ x . .  x / I  Our goal is simple: given a fraction a/b compute c/d with 

ad r bc mod I and deg(c) + deg(d) minimal. In this section we show how 

to construct equivalent fractions using the ideal quotient operation. We will 

assume that I is prime. 

We proceed as follows. Let c 6 I be an element of (a, I) : (b). Then bc E (a, I) 

by Definition 1.29 so a divides bc in k[xl, . . . , x,]/I. If d is the quotient from 

Lemma 2.6 then bc = ad mod I and a/b is equivalent to cld. Our first lemma 

shows that every equivalent fraction can be obtained in this way. 

Lemma 2.11. If a/ b = c/d mod I then c E (a, I) : (b) and d E (b, I) : (a) 



Proof It suffices to  show bc E (a, I) and ad E (b, I). Since bc = ad mod I 

we have bc = ad + h for some h E I, and the right hand side expresses bc as an 

element of (a, I). Likewise ad = bc - h expresses ad as an element of (b, I). 

Example 2.12. We illustrate with an example from [MulOl]. Consider 

s c - c 2 + s + 1  
over Q[s ,c] / (s2+c2-  1) 

6 - 2 c 2 + s + 1  

We first compute ( s c - c 2 + s + 1 , s 2 + c 2 - 1 )  : ( c 4 - 2 c 2 + s + 1 )  = ( s , c + l )  

using Lemmas 1.27 and 1.33 or alternatively Lemma 1.56. Our numerator is 

chosen from this ideal, so we pick s + c + 1 following [MulOl]. Next we divide 

(s + c + l)(c4 - 2c2 + s + 1) by sc - c2 + s + 1 modulo (s2 + c2 - 1) and obtain 

the quotient s - sc2 + 1 from Lemma 2.6. Then 

s c - c 2 + s + 1  + s + c + l  
mod (s2 + c2 - 1) 

c4 - 2c2 + S + 1 s - sc2 + 1 

Of course it was not necessary to choose the numerator s + c + 1, we can choose 

any f E (s, c + 1) which is not a multiple s2 + c2 - 1. The following fractions 

were obtained from choosing f = s and f = c + 1 respectively: 

Example 2.13. To better understand the method we examine it in a more 

familiar setting. Let a,  b E k[x]  and let I = (0). Then (a, I) : (b) = (a/ gcd(a, b))  

(see Example 1.31) and choosing c = a /  gcd(a, b) we obtain the denominator 

d = bc/a = b/ gcd(a, b), effectively cancelling a greatest common divisor. 

Monagan and Mulholland observed that fractions over Q[s, c]/(s2 + c2 - 1) 

can be simplified in a way that does not correspond to the cancellation of a 



common divisor [MulOl]. This phenomenon actually occurs quite frequently in 

general, as in the following example. 

Example 2.14. Let a  = y5+x+y, b = x-y,  and I  = ( X ~ ~ - X - ~ )  C Q [ x ,  y].  We 

simplify alb mod I  using graded lexicographic order with x  > y. A Grobner 

basis for (a ,  I )  : (b) is { x 2  + xy  + x  + y, y5 + x  + y, xy4 + Y ~ ) ,  and if we select 

c  = x2 + xy + x  + y  we obtain d  = x2 - xy  from Lemma 2.6. Then 

y 5 + x + y  + x 2 + x y + x + y  mod ( x y 5  - x  - y) 
x - Y  x2 - xy  

We show that c  does not divide a  and d does not divide b  in Q [ x ,  y ] / I .  A 

Grobner basis for (c, I )  is { x 2  + xy  + x  + y, y6 + xy  + y2 ,  xy5 - x  - y ) ,  and by 

examining the leading terms we see that a  @ (c ,  I ) .  Likewise a Grobner basis 

for (dl I )  is { x y  - y2,x2 - y2, y6 - x  - y) and it is easy to see that b  @ (dl  I ) .  

So why does this happen? Notice how we have used a correspondence between 

ideals J E Ic[xl,. . . , x,]/I and ideals J + I  E k [ x l ,  . . . , x,]. See 95.2 of [Cox961 

for more details. By Lemma 1.32 (a ,  I )  : (b) = (a,  I )  : (b, I )  so our method 

computes ( a )  : (b) in k [ x l ,  . . . , x,]/I.  We make two remarks. First, although we 

started with principal ideals ( a )  and (b) in k [ x l ,  . . . , x,]/I we have no guarantee 

that their quotient is principal. Second, even if it were and (a )  : (b) = ( f ) ,  

extracting f from a basis of ( f ,  I )  is a non-trivial problem. Thus we should 

expect to find c  E (a ,  I )  : (b) with (a ,  I )  (c ,  I ) ,  producing the situation above. 

So far we have simplfied fractions alb by choosing a numerator c  E (a ,  I )  : (b) 

with minimal total degree. However this strategy may not produce cld with 

deg(c) + deg(d) minimal, as illustrated in the next example. 



Example 2.15. Consider Example 2.14 again, only this time we will attempt 

to simplify bla. A Grobner basis for (b, I) : (a) is {x - y, y5 - 21, so choosing 

a numerator of minimal degree simply reconstructs the original fraction. This 

fraction has total degree six, however in Example 2.14 we constructed one with 

total degree four. 

We mention one important case where choosing a numerator with minimal 

degree does produce a fraction with minimal degree. 

Theorem 2.16. Let I be a homogeneous prime ideal and suppose a ,  b 6 I are 

homogeneous polynomials. ' Let G be a reduced Grobner basis for (a, I) : (b) 

with respect to a graded monomial order <. If we choose c E G,, c @ I with 

deg(c) minimal and compute d = bcla mod I ,  then cld is equivalent to a lb  

and deg(c) + deg(d) is minimal. 

Proof Observe that c is homogeneous by Lemma 1.37 and d is homogeneous 

with degree deg(b) + deg(c) - deg(a) by Lemma 2.9. Now since a 6 I the normal 

form of a has degree deg(a) by Lemma 1.36, so any homogeneous a' = a mod I 

has deg(al) = deg(a). Similarly for b, so that deg(a) and deg(b) are fixed. Then 

deg(c) minimal implies deg(d) = deg(b) + deg(c) - deg(a) is minimal as well. 

Example 2.17. Let a = x3 + x2y, b = 2xy + y2, and let I = (x3 + xy2 + y3). 

We use graded lexicographic order with x > y. A Grobner basis for (a, I) : (b) 

is {xy, x2 - y2, y3), SO if we let c = xy and compute d = bcla = -x + y mod I 



using Lemma 2.6 then 

2 3  + x2y 
---f 

2xy + y2 
xY mod I 

- x + y  

Alternatively, we could choose c = x2 - y 2  and compute d = x + 2y so that 

2 3  + x2 y x2 - Y 2  
---f mod I 

2xy + y2 x + 2y 

Similarly, a Grobner basis for (b, I )  : ( a )  is { y ,  x ) .  If we choose d = y then we 

obtain c = ( x 2  + xy - y 2 ) / 3  and 

2 3  + x2y x2 + xy - y2 
---f mod I 

2xy + y2 3~ 

Finally if d = x then c = ( x2  - 2xy - y2) /3  and 

x 3 + x 2 y  x 2 - 2 x Y - Y 2  
---f mod I 

2xy + y2 32 

Example 2.18. We homogenize Example 2.14 using a new variable z and 

graded reverse lexicographic order with x > y > z. Our goal is to simplify 

y5 + xz4 + yz4 
mod ( xy5  - xz5 - yz5)  

x - Y  

A Grobner basis for the quotient (y5 + xz4 + yz4, xy5 - xz5 - yz5) : ( x  - y) is 

{y5+xz4 + yz4, x2z4 +xyz4 +xz5 + yz5, xy4z4 + y4z5) ,  indicating that the original 

fraction has minimal total degree. This is in sharp contrast to Example 2.14, 

and it suggests that there is little hope of using homogenization to extend 

Theorem 2.16 to non-homogeneous problems. 

2.4 Rational Expressions I1 

In this section we will use Grobner bases for modules to reduce fractions 

over k[x l ,  . . . , x,]/I to a minimal canonical form. The result is analogous to 



the normal form for ordinary polynomials produced by Theorem 1.16. Observe 

that if alb is a fraction over k[x l ,  . . . , x,]/I then the set of pairs [x ,  y] satisfying 

bx - ay = 0 mod I  is a module over k[x l ,  . . . , x,]. 

Lemma 2.19. Let I  = ( h l ,  . . . , h,) be a  prime ideal and let alb be a  fraction 

over k [x l ,  . . . , xn] / I .  If (a,  I )  : (b) = (cl , .  . . ,ct) and di = bci/a mod I  then 

generates M = { [ x ,  y] : bx - ay = 0 mod I )  as a  k [x l ,  . . . , xn]-module. 

Proof By construction, the generators above all satisfy bx - ay r 0 mod I .  

Let [ f , g ]  E M. ByLemma2.11 f E (cl ,  . . . ,  ct) so f =plcl+.-.+ptct for some 

pi E k[x l , .  . . ,xn].  Then 

and since I  is prime g - (pldl + 0 -  + ptdt) = 0 mod I .  Then there exist 

qi E k [ x l , .  . . ,xn] with 

Our approach is to compute a reduced Grobner basis for this module using a 

term over position monomial order. Then we will select the smallest [c, d]  under 

the module order with c, d # I  to be our simplified fraction. This minimizes the 

largest monomial appearing in c/d under the original monomial order. We call 



this monomial the leading monomial of c /d .  

Example 2.20. We repeat Example 2.15 using this new method. Let a = x -  y  

and b = y5+x+y, and consider a/b  modulo I  = ( x y5 -x -  y ) .  We let < be graded 

lexicograpghic order with x > y. A Grobner basis for ( a ,  I )  : (b )  is { x -  y, y5 - 2 )  

and from Lemma 2.6 we obtain the denominators { y 5  + x + y ,  -y9 - y5 + y4).  

We construct the module 

and compute a Grobner basis using <TOP 

The elements of this basis are all valid fractions because their numerators and 

denominators are not in I .  We conclude that ( x 2  - x y ) / ( x 2  + x y  + x + y )  has 

the smallest leading monomial among all fractions equivalent to a/b.  

Example 2.21. We repeat Example 2.12 where the goal was to simplify 

s c - c 2 + s + 1  
mod I  = ( s 2  + c2 - 1 )  

c4 - 2c2 + S + 1 

We use graded lexicographic order with s  > c. A reduced Grobner basis for 

( s c  - c2 + s + 1 ,s2  + c2 - 1 )  : (c4 - 2c2 + s + 1 )  is { S , C  + I ) ,  SO the module is 

generated by [ s ,  - i ( sc2-c3-sc -s+2c- I ) ] ,  [c+1, -$(sc2+c3+sc-s-2c-I)] ,  

and [O,  s2+c2 - 11. Note that the first two elements are the fractions constructed 

for s  and c + 1 at the end of Example 2.12. A Grobner basis for the module is 



so (s - c  - 1 ) / ( c 3  + sc - 2c) has a minimal leading monomial with respect to <. 

Unfortunately having a minimal leading monomial does not guarantee that 

the fraction itself has minimal total degree, even when a graded order is used. 

Example 2.22. Let I = ( x 5 + x y - I ) ,  a = x 3 y 3 - x 4 + x - 1 ,  and b = x 2 - y 2 + 1 .  

We use graded lexicographic order with x  > y .  A Grobner basis for the module 

of Lemma 2.19 with respect to <TOP is 

The first element has the smallest leading term, however its numerator is degree 

five and its denominator is degree four. This compares poorly with the original 

fraction, which has degrees six and two, respectively. 

Another possible objection to this method is that it does not detect when the 

denominator is invertible or when it divides the numerator. In those cases we 

might prefer to get a polynomial of higher degree instead of a fraction. 

Example 2.23. Let I = ( x y 2  - 1)  and consider the fraction ( x  + 1 ) / x 2 .  One 

can easily verify that x2y4 = 1  mod I so that the inverse of x2 is y4 .  Then 

( x  + l ) / x 2  = ( x  + 1)y4  mod I which reduces to y4 + y2.  However, we will 



compute ( x  + 1, xy2 - 1 )  : ( x 2 )  = ( x  + 1, Y 2  + 1 )  and construct the module 

whose generators are already a Grobner basis with respect to term over position 

graded lexicographic order with x > y. The smallest valid fraction is (y2 + l ) / x .  

At this point we need to offer a solution. One possibility is to minimize 

the leading term of the denominator rather than the largest term in the entire 

fraction. This computation does not require modules at all. To simplify alb  

modulo I one can simply choose d E (b,  I )  : ( a ) ,  d @ I minimal and compute 

c - adlb mod I ,  inverting the method of Section 2.3. Whenever b is invertible 

or b divides a modulo I we will obtain d = 1 and c - a l b  mod I .  

An alternative solution is to adapt the method of this section to detect this 

case and deal with it at no extra cost. We can invert Lemma 2.19 so that we 

compute (b, I )  : ( a )  = ( d l , .  . . , dt )  and ci = adi/b mod I .  If b is invertible or 

if b divides a modulo I we will obtain (b, I )  : ( a )  = ( 1 )  and cl = a l b  mod I .  

Otherwise we can proceed with the computation for modules. As a pleasant 

side effect we can extend Lemma 2.19 to the case where I is not prime. 

Lemma 2.24. Let I = ( h l ,  . . . , h,) be an  ideal and let a l b  be a fraction over 

k [ x l , .  . . , x,]/I  where b is not a zero-divisor. If (b, I )  : ( a )  = ( d l , .  . . , d t )  and 

ci = adi/b mod I then 



generates M = { [ x ,  y] : bx - a y  = 0 mod I) as a k [ x l ,  . . . , x,] -module. 

Proof Again by construction, all of the generators satisfy bx - ay = 0 mod I .  

Let [ f , g ]  E M. By Lemma 2.11 g E (d l ,  . . . ,  dt)  so g = pld l+. . .+ptd t  for 

some pi E k [ x l , .  . . ,x,]. Then 

b ( f  - (pic1 + , , . + ptct)) - a(g - (pldl + - . + ptdt)) - 0 mod I 

and since b is not a zero-divisor f - (plcl + 0 . .  + ptct) - 0 mod I. Then there 

exist qi E k [ x l ,  . . . , x,] with 

Example  2.25. Let a  = 4sc2 - s  - 4c2 + 2  and b  = 2s - 1  in Q[s,  c] / ( s2  + c2 - 1) 

from Example 2.7. We will simplify a/b using lexicographic order with s  > c. 

We first compute a Grobner basis for (b ,  I )  : (a)  = (1)  using Lemma 1.56. This 

indicates that b divides a  modulo I ,  so we take 1  to be the denominator and 

compute s  + 2c2 - alb mod I .  

We present this modified method in the form of an algorithm, which computes 

a reduced canonical form for a fraction over k[x l , .  . . , x,]/I with respect to a 

given monomial order. The total degree of the output may not be minimal, 

however the monomials which appear will be as small as possible under the 

ordering. As a corollary, the algorithm must cancel any common divisor. 



Algor i thm 2.26 (Rational  Expression Normal  Form). 

I n p u t  I = (hl ,  . . . , h,) a prime ideal of k[xl, .  . . ,x,], 

a lb  with a,  b @ I, and a monomial order < 

O u t p u t  (optionally) a quotient c = alb  if b divides a modulo I 

cld with ad = bc mod I, c and d are reduced, and the 

largest monomial in cld minimal with respect to < 

{dl,.  . . , dt) t a reduced Grobner basis for (b, I) : (a) (Lemma 1.56) 

{cl, . . . , ct) t the quotients adi/b mod I (Lemma 2.6) 

(optional) if {dl, .  . . , dt) = (1) then r e tu rn  the normal form of cl 

M t  themodule ([cl,dl],...,[ct,dtl,[hl,Ol7...,[h,,Ol) 

G t a reduced Grobner basis for M  with respect to <TOP 

r e t u rn  the smallest [f, g] E G with respect to <TOP with f ,  g @ I 

Additional examples are given in the appendix. We will conclude this section 

with a remark on the difficulties of extending this method to work with fractions 

over non-integral domains. Lemma 2.24 poses no problem, however we must be 

careful that in simplifying a lb  - cld we do not choose d to be a zero-divisor. 

Lemma 2.27. f @ I is a zero-divisor modulo I if and only if I : ( f )  g I. 

Proof  Let f be a zero-divisor modulo I. Then f q E I for some q @ I and 

q E I :  (f) .  Nowlet I :  ( f )  = (ql , . . . ,  q,) g I .  Thensomeqi @ I but fqi E I by 

Definit,ion 1.29. 

Observe that we can test for zero-divisors efficiently using Lemma 1.56. To 

compute I : (f) ,  we will compute a Grobner basis for M  = (I el, I e2, f el + e2) 



using a position over term monomial order <POT. However, if the generators 

for I are a Grobner basis with respect to < then we can identify zero-divisors 

by a remainder r with leading monomial in e2 being added to the basis for M. 

Example 2.28. Let I = (x2 - y, y2 - x, xy - 1) and f = x + y + 1. Let < 
denote graded lexicographic order with x > y, since the generators of I are 

already a Grobner basis with respect to that order. A Grobner basis for the 

module (I el, I e2, f el + e2) with respect to <POT is 

We can see by inspection that I : ( f )  = (y - 1, x - 1) I so f is a zero-divisor. 

One might also note that I = (y - 1, x - 1) n (x + y + 1, y2 + y + l), where the 

generating sets are Grobner bases with respect to <. 

Although we can detect zero-divisors in the denominator using Lemma 2.27, 

it is not at all clear what our algorithm should do when this actually happens. 

We leave this as a topic for future research. 

2.5 Rational Expressions I11 

We conclude this chapter with an alternative method for simplifying rational 

expressions over k[xl,. . . , x,]/I which is guaranteed to produce an expression 

with minimal total degree. Given a/b with a ,  b $2 I, we will conduct a global 

search for equivalent expressions with lower total degree. At each step we set 

c and d to be linear combinations of monomials with undetermined coefficients 



and attempt to solve ad - bc EE 0 mod I with c, d $ 0 mod I .  We will use a 

Grobner basis for I with respect to a graded monomial order. 

Lemma 2.29. Let I k [ x l , .  . . ,x,] be an ideal and let a ,  b E k [ x l , .  . . , x,] with 

a ,  b 6 I .  If c = Cbl ci xi and d = Xi.=, d j  xj, where xi and xj are monomials of 

k [ x l , .  . . , x,] and the ci and d j  are unknowns, then the coeficients of the normal 

form of ad - bc mod I with respect to any monomial order are homogeneous 

linear polynomials i n  the and d j .  

Proof The coefficients of bc and ad are multiples of and d j  respectively, 

so the coefficients of ad - bc are linear and homogeneous in ci and d j .  Now 

consider what happens in Algorithm 1.13. In a reduction step we will subtract 

p,,, + p - (LT(p)/LT(g)) g. If p has linear homogeneous coefficients in ci and 

d j  then (LT(p)/LT(g)) g and p,,, will have this property also. Moving LT(p) 

to  the remainder r retains this property for both p and r ,  so the coefficients of 

the remainder are linear and homogeneous in ci and d j  as well. 

Example 2.30. From Example 2.14 let a = y5 + x + y, b = x - y, and let 

I = ( x y 5  - x - y) .  We will attempt to construct c/d = a/b mod I using 

monomials of up to  degree two. Let c = cl + c2y + c3x + c4y2 + cgxy + c6x2 and 

d = d l  + d2y + d3x + d4y2 + d5xy + d6x2. The normal form of ad - bc under 

graded lexicographic order with x > y is 

d4y7 + d2y6 + d l y 5  + (d6 - G ) X ~  + (d5  + d6 - C5 + c6)x2y + ( ~ 5  - C4 + d4 + d5)xY 2 

+ ( d q +  c4)y3 + (d6 + d 3  - c3)x2 + (d5 + C3 + d 2  - C 2  + d 6  +&)xY 

+ ( d j  + cp + d2)y2 + ( d l  - C I  + d3)x + ( C I +  d l  + d3)y 

Equating each coefficient to zero, we obtain a 12 x 12 system of homogeneous 



linear equations with the general solution cl = 0, c2 = t ,  c3 = t ,  c4 = 0, c5 = t ,  

cg = t ,  dl = 0, d2 = 0, d3 = 0, d4 = 0, d5 = -t, d6 = t. For any t # 0 we can 

substitute these values into c/d an obtain (x2 + xy + x + y)/(x2 - xy). 

Example 2.31. Let a/b = y2/(x2 - y) mod I = (xy2 - 1). We will attempt 

to construct an equivalent fraction c/d wit deg(c) = 2 and deg(d) = 1. Let 

c = cl + c2y + c3x + c4y2 + c5xy + c6x2 and d = dl + d2y + d3x. The normal 

form of ad - bc mod I under graded lexicographic order with x > y is 

4 
-C6X - c5x3Y - c3x3 + (c6 - c2)x2Y + (d2 + c4)Y3 - c1x2 

+ c3xy + (dl + c2)y2 - C ~ X  + CIY + (d3 + ~ 5 )  

We can see by inspection that the linear system has only the trivial solution. 

- 

Having described a single step of the algorithm we turn now to the overall 

strategy. The idea is to walk up through the degrees of the numerator and 

denominator until either a solution is found or the total degree becomes greater 

than or equal to the current minimal solution. When this happens we backtrack 

recursively to examine the remaining possibilities. 

Example 2.32. Suppose we are given a fraction a/b with deg(a) = 4 and 

deg(b) = 1 which can not be simplified. We first try to construct c/d with 

(deg(c), deg(d)) = (0,O) and when that fails we will try (1,l) and (2,2), as 

illustrated in the first figure below. The total degree of the next step, (3,3), is 

too high to be minimal so we split the computation (see figure 2) and continue 

searching from (3,O) and (0,3). The empty circles in the final figure show all of 

the cases which are eventually checked. 



0 2 4 6 0 2 4 6 0 2 4 6 

Solution 0 No Solution No Attempt 

Example 2.33. Let a = y5 + x + y, b = x - y, and I = (xy5 - x - y). To 

simplify a/b mod I we will try to construct c/d with (deg(c), deg(d)) = (0,O) 

and (1, l), both of which fail, before we succeed at (2,2) (see Example 2.30). 

We must now backtrack and check (2,O) and (0,2) (see figure 2) since a solution 

at either of those points would produce a solution at (2,2).  

0 2 4 6 0 2 4 6 0 2 4 6 

Solution 0 No Solution No Attempt 

Walking from (2,O) we arrive at (3, l), however it would be redundant t o  test 

this point since we already have a solution of total degree four. We backtrack to  

test (3,O) and ( 2 , l )  before abandoning this path. From (0,2) we walk to (1, 3) 

which is also redundant, and backtrack to  test (1,2) and (0,3). Neither point 

has a solution, so we can conclude that our solution at (2,2) has minimal total 

degree. Then (y5+x+y)/(x-y) --, ( x ~ + x ~ + x + ~ ) / ( x ~ - x ~ )  mod (xy5-x-y). 



We make some quick remarks before describing the algorithm in full. First, in 

our ansatz for cld we can omit monomials which are reducible by the Grijbner 

basis for I and thus construct the normal forms of c and d directly. Second, if a 

simpler fraction is found it can be used in place of a lb  in subsequent steps of the 

algorithm. In particular, the normal form computation of ad - bc mod I will 

involve polynomials lower degree so that fewer reduction steps may be needed. 

One would then expect the resulting linear systems to be sparser, since their 

complexity depends on the number of reduction steps. 

Algor i thm 2.34 (Rational  Expression Simplification). 

I n p u t  a non-zero fraction alb, a Grijbner basis G for a prime ideal I 

with respect to some a monomial order < 

(when called recursively) an initial (N, D)  = (deg(c) , deg(d)) 

O u t p u t  cld with ad = bc mod I and deg(c) + deg(d) minimal 

if (N, D )  was not specified t h e n  

(N, D )  (0,O) 

e n d  if 

nwmsteps + 0 

while N + D < deg(a) + deg(b) do 

MI t {x E k[xl, . . . , x,] : deg (x) 5 N and x not reducible by G} 

M2 t {X E k[xl, . . . , x,] : deg(x) < D and x not reducible by G} 

c + CXiEMl ci Xi 
- 

d + CXjEM2 dj xj 

r  t ~ o r m a l ~ o r r n ( a d  - bE, G, <) 



S t the set of coefficients of r as a polynomial in {XI, .  . . , x,) 

if S has a non-trivial solution X then 

(c, d) t substitute X into ( E ,  d) 

break loop 

end if 

(N ,D)  +-- ( N + l , D + l )  

numsteps t numsteps + 1 

end loop 

if numsteps > 0 then 

(c, d) t RatSimpli f y(c/d, G, <, N, D - numsteps) 

(c, d) t RatSimpli f y (c/d, G, <, N - numsteps, D) 

end if 

return cld 

We show that in the worst case scenario (when the fraction doesn't reduce) 

the algorithm terminates in O(d logz(d)) steps, where d = deg(a) +deg(b). From 

(0,O) we require [d/21 steps to reach the border, at  which point the computation 

splits into two paths of approximately half the original length. If we follow all 

of the paths simultaneously, this branching can occur at most log,(d) + 1 times 

before the length of each path becomes d/(2l0gz(~)+') < 1. Then the total number 

of steps is bounded by 

Note however that the size of the linear systems can not be controlled. In 

general there are 5 n::: (d + i) monomials in n variables with degree less than 



d, and potentially all of them can appear in each linear system along the border. 

When d is large relative to n this number is proportional to dn, so the method 

becomes impractical for problems of high degree. It is for precisely this reason 

that we start at (0,O) and walk up, as opposed to some other approach. In 

the event that a lb  simplifies to cld, the size of the linear systems which we 

encounter will depend on deg(c) + deg(d) instead of deg(a) + deg(b). 



Appendix A 

Implement at ion 

A.1 PolynomialIdeals in Maple 10 

We have written a new Maple 10 package for ideal theoretic computations 

called PolynomialIdeals which we have used extensively to experiment with 

algorithms and to develop examples for this thesis. We have implemented a 

data-structure for ideals of k[xl, . . . , x,], new routines for Grobner bases, and 

various ideal-theoretic operations, including all of the operations of Section 1.4. 

In this section we introduce the package and show how it can be used to 

perform all of the computations in Chapter 1. In the later sections we use these 

routines to implement the algorithms of Chapter 2. To begin, we first load the 

package using Maple's with command. This allows us to construct ideals using 

an angled-bracket notation. The ideal J below is assumed to lie in the ring 

Q[x,  y, z]  by default. 



> with(Polynomial1deals) : 

Warning, the assigned name <,> now has a global binding 

Warning, the protected name subset has been redefined and unprotected 

> 3 := cx*y-z, x-2+z>; 

J := (xy - z, x2 + z) 

Note that Maple reserves the capital letter I for the imaginary unit, so we 

will use the letters J and K to represent ideals. To compute Grobner bases it 

is necessary understand how Maple represents monomial orders. They appear 

as functions of the ring variables given as an argument to the Grobner basis 

command. For example, lexicographic order with x > y > z is specified as 

plex(x, y, z) in Maple syntax below. 

> PolynomialIdeals:-GroebnerBasis(J,plex(x,y,z)); 

[z2 + y2z, yz + xz, xy - z, x2 + z] 

The other term orders are represented similarly: 'grlex' is graded lexice 

graphic order and 'tdeg' is graded reverse lexicographic order. Below we com- 

pute a Grobner basis for J using graded reverse lexicographic order with z > 

x > y. We first alias PolynomialIdeals:-GroebnerBasis to GroebnerBasis so that 

we don't have to type as much. 

> GroebnerBasis := Polynomial1deals:-GroebnerBasis: # alias 

> GroebnerBasis (3, tdeg(z ,x, y) ) ; 

[xy - z, x2 + z, yz + xz, z2 + ~ 2 2 1  



The 'prod' order constructs an elimination order as a product of monomial 

orders. In the computation below, we compare monomials first using graded 

lexicographic order with x > y with ties broken by lexicographic order on z. 

Maple's Grobner basis commands return the unique reduced Grobner basis 

which is primitive and fraction-free, sorted in the monomial order. We will use 

the internal PolynomialIdeals command, since it implements new functionality 

not yet available in the standard command. For example, to run the extended 

Buchberger algorithm we can use the following syntax. 

- 

> G, C := GroebnerBasis([x*y-z, x^2+z], tdeg(z,x,y), method=extended); 

G, C := [xy - z, x2 + z, yz + xz, z2 + y2z], [[I, 01, [O, 11, [-x, y], [-xy - 2, y2]] 

The output is two lists, the first of which is the sorted reduced Grobner basis. 

The second list defines the rows of a transformation matrix whose dot product 

with the vector of generators gives the Grobner basis, as shown below. 

To compute normal forms we will also use an internal command which can 

compute a list of quotients (see Algorithm 1.13) and assign them to an optional 



fourth argument. Below we compute f i G + T and assign the quotients to Q. 

> NormalForm := PolynomialIdeals:-NormalForm: # alias 

> f := x-3-x*y-2+x*z+y*z; 

f : = X ~ - X ~ ~ + X Z + ~ Z  

> r := NormalForm(f, G, tdeg(z,x,y), '9'); Q; 

T := 0  

[-Y, x 7  ' 7  O ]  

> 'fy = Q[ll*G[l] + Q[2]*G[2] + 'r'; # don't evaluate f and r 

f = -y(Xy - 2 )  + X ( X 2  + 2 )  + T 

> evalb(expand(%)); # evaluate and test the equation 

true 

The package implements all of the algorithms of Section 1.4. For example, to  

intersect the ideals of Example 1.28 one would type: 

> Intersect (<x-1 ,y-l>, <x-1 ,y+l>) ; 

( x  - 1, y2 - 1)  

The Quotient command computes ideal quotients. In Example 1.34 we com- 

puted ( x 2 ,  y2 - 1)  : ( x ,  y  - 1)  as the intersection of ( x 2 ,  y2 - 1 )  : ( x )  and 

( x 2 ,  y2 - 1 )  : ( y  - 1) .  We can do this in Maple as follows. 

> Q1 := Quotient(<xe2, y-2-I>, x); 

Q 1  := ( x ,  y2 - 1)  

> Q2 := Quotient(<xe2, y-2-1>, y-1); 



Q1 := (y + 1, x2) 

> Intersect (Ql ,Q2) ; 

(x2, xy + 2, y2 - 1) 

Of course, the Quotient command can also perform these steps automatically. 

To compute Grobner bases for modules we will employ a useful trick. Consider 

the module from Example 1.57 whose generators are given below. We will 

compute a Grobner basis for this module using position over term graded-reverse 

lexicographic order with x > y. 

The trick is to introduce dummy variables for each module position , such as 

{el, e2, . . . ), and the polynomials eiej = 0 for all i # j. The dummy variables 

prevent the different components from interacting, while eiej = 0 ensures that 

S(f,  g )  = 0 if f and g  have leading monomials in distinct components. 



Next we compute the Grobner basis for this ideal. We can emulate TOP or 

POT using a product order, placing the original variables first or last, respec- 

tively. It does not matter what order is chosen for the dummy variables. 

> G : = GroebnerBasis (J, prod (plex (e [I] , e [2] ) , tdeg(x, y) 1) ; # POT order 

2 G := [ezy2 - e2xl e2xy - e ~ x ,  e2x - e ~ x ,  ye1 + e ~ ,  elx + ye2, 4, elez] 

Finally we discard polynomials which are not linear in the ei. The result is 

a Grobner basis for the module, which we will convert into vector form. The 

basis differs with that of Example 1.57 only because it has been reduced. 

> G := remove(a -> degree(a, {e[ll,e[2])) > I, GI; 

G := [e2Y2 - e2x, e2xy - e2x, e2x - W, ye1 + e2, el% + ye21 

> GV := map(a->map2(coeff, a, CeCIl,eC211>, GI; 

GV := [[O, y2 - x], [O, XY - X I ,  [O, x2 - X I ,  [Y, 11, [ ~ l  Y]] 

> map (Vector, GV) ; 

We write a short Maple program to perform these steps automatically. It 

takes as arguments a list of module elements, a monomial order, and either 

'TOP' or 'POT' for term over position or position over term order, respectively. 

ModuleGB := proc(M::list(list), tord, ordertype) 

local N, e, i, j, V, J, G, mtord; 



N := nops(MC11); 

v := [seq(e [il , i=1. .N)l ; 

J := [op(map(inner, M, V)) , seq(seq(e [il *e[jl , j=l.. i-1) , i=2. .N)] ; 

if ordertype='POT' then 

mtord := 'prod' ('plex' (op(V) 1, t0I-d) ; 

else 

mtord := 'prod'(tord, 'plexY(op(V))); 

end if; 

G := GroebnerBasis(J, mtord); 

G : = remove (a->degree (a, {op (V) )) > 1, G) ; 

G := map(a->map2(coeff, a, V), GI; 

end proc: 

We test the command on the previous example. 

> ModuleGB(M , tdeg (x , y) , POT) ; 

Wl Y2 - xI,[O, XY - X I ,  [o, x2 - X I ,  [Y, 11, [x, Y]] 

This computation comes from Example 2.20. We compute a Grobner basis 

using term over position graded lexicographic order with x > y. 

> M := [ [x-y , ~-5+x+y] , [y-5-2, -y-9-ye5+y-41 , [O, x y-5-x-y]] : 

> map (Vector ,M) ; 

> G : = ModuleGB(M, grlex (x, y) , TOP) : 



A.2 Inverses and Exact Division 

Recall from Section 2.1 how we can compute inverses in k[x l ,  . . . , x n ] / I  using 

the extended Buchberger algorithm. Given f E k [ x l ,  . . . , x n ] / I ,  we compute a 

Grobner basis G for ( f ,  I )  using any monomial order. If 1 E G then f is invert- 

ible, and we can write 1 as a multiple of f modulo I .  We demonstrate using 

f = x  and I  = (x2  + y, y2 + 1 )  from Example 2.2. The Generators command is 

used to get the set of generators for the ideal. 

> f := x; 

f : = x  

> J := <x^2+y, y-2+1>; 

J := (x2  + y, y2 + 1 )  

> F := If, op(Generators(J))]; 

F := [x ,  x2 + y, y2 + 11 
> G, C := GroebnerBasis(F, grlex(x,y), method=extended); 

G,  C := [ I ] ,  [[xy,  1 ,  -YIl 

> f inv : = C [I] [I] ; 

finv := xy 

> NormalForm(f*f inv, J, grlex(x,y)) ; # check 

1 



The general case of polynomial division is not much more complicated. Let 

f = xy3  + x  + 1 and I = ( x y 5  - x  - y )  from Example 2.8.  We divide 

g = xy3+y3+xy+y2  by f modulo I using graded lexicographic order with x  > y .  

g := xy3 + y3 + x y +  y2 

> J := <x*y-5-x-y>; 

J := ( x y 5  - x  - y )  

> F := [f, op(Generators(J))l; 

F := [xy3  + x  + 1 ,  xy5  - x  - y ]  

> G,C := GroebnerBasis(F, grlex(x,y), method=extended): G; 

[2x2 + 3 x y  + y  + 3 2  + 2 , y 3  + x y  + y2 - x  - 1 , x y 2  + y2 + x  + y]  

> C; 

[[2+x-xy3+xy-y4x+y+xy2,xy+xy2-x],[-1+~3,-~],[y2,-1]] 

> r := NormalForm(g, G, grlex(x,y), '9'); 9; 

r = o  

1 [ - ; y  + 2 ,  x  + 1, +] 

At this point we have the matrix equation g = QCF,  where Q and F are row 

and column vectors, respectively. We verify the relation in Maple. 



The quotient for g /  f is the first component of QC. 

> q := NormalForm( (Vector [row] (4) .Matrix(C)) [I] , 3, grlex(x,y) ) ; 

q := y 3 

> NormalForm(g - q*f, J, grlex(x,y)); 

0 

Once again we write a short Maple program to automate the steps above. 

However we will do a dot product of Q with the first column of C and avoid 

the rest of the matrix multiplication. 

local F, G, C, Q, q, i; 
- 

F : = [f , op (Generators (3) )I ; 

G , C : = GroebnerBasis (F , tord , method=extended) ; 

if ~ormalForm(g, G, tord, 'Q')=O then 

q := add(Q[i] *C[i] [I] , i=1. .nops(Q)) ; 

NormalForm(q, 3, tord) ; 

else 

FAIL # f does not divide g mod J 

end if; 

end proc; 

To compute the inverse of f we can simply divide 1 by f .  We test the pro- 

gram on the previous examples. 



A.3 Rational Expression Simplification 

The tools we have developed make it easy to implement the algorithms for 

rational expression simplification. Below we have implemented Algorithm 2.26. 

RatNF := proc(a, b y  J, tord) 

local d, c, My G, i; 

d : = Groebner~asis (quotient (<by op(Generators ( J  > , a) , torc 

c := [seq(Div(a*i ,by J,tord) , i=d) 1 ; 

We verify the program on Examples 2.20 and 2.22. 



Note that Algorithm 2.26 is a normal form algorithm which can be run using 

any monomial order. Below we re-run Example 2.20, this time minimizing the 

largest term of the fraction with respect to lexicographic order with x > y. 

Algorithm 2.34 is a little more complicated. We will use a subroutine to 

generate the set of monomials of degree less than or equal to d which are not 

reducible by a given Grobner basis. 

GenMon := proc(vars, d::nonnegint, G, tord) 

local L, M, v, m, i; 

L := map(Polynomial1deals:-LeadingMonomial, G, tord); 

M := (1); 

for v in vars do 

M : = {seq(seq(m*v-i , i=0. . d-degree (m) ) , m=M) ) ; 
M : = remove (m->member (true, map2 (divide, m, L) ) , M) ; 

end do; 

end proc : 



RatSimp := proc(a, b, J, tord, N1, Dl) 

local N, D, c, d, G, vars, MI, M2, cbar, dbar, r, S, L, numsteps; 

if nargs = 6 then N,D := N1,Dl; else N,D := 0,O; end if; 

c,d := a,b; 

numsteps := 0: 

G := GroebnerBasis(J, tord); 

vars : = indets (tord, 'name' ) ; 

while N + D < degree(a)+degree(b) do 

printf ("%a " , [N,D] ) ; # print the steps 

M1 := GenMon(vars, N, G, tord); 

M2 := GenMon(vars, D, G, tord); 

cbar : = add(cat ( 'c' , i) *MI [i] , i=1. . nops (MI)) ; 
dbar : = add(cat ( 'd' , i) *M2 [i] , i=l . .naps (M2)) ; 

r := NormalForm(a*dbar-b*cbar, G, tord); 

S := coeffs(r, vars); 

L : = solve (S , indets (S) minus vars) ; 

cbar , dbar : = op (subs(L, [cbar , dbar] ) ) ; 

if cbar <> 0 and dbar <> 0 then 

# substitute any left over ci or di equal to 1 

S : = seq(i=l , i-indets ( [cbar ,dbarl ) minus vars) ; 

c,d := op(subs(S, [cbar,dbarl)); 

break; 

end if; 

N,D := N+l,D+l; 

numsteps := numsteps + 1; 



end do; 

if numsteps > 0 then 

(c,d) := RatSimp(c, d, J, tord, N, D-numsteps); 

(c,d) := RatSimp(c, d, J, tord, N-numsteps, D); 

end if; 

c,d; 

end proc: 

Here is a quick example to demonstrate what the subroutine does. 

Here is the algorithm running Example 2.33. 

In Example 2.22 we started with a fraction of total degree eight, and the 

normal form algorithm produced a fraction of higher total degree. We verify 

that the original fraction had minimal total degree. 

> c,d := RatSimp(x^3*yA3-x^4+x-1, x-2-ye2+1, <xe5+x*y-l>, grlex(x,y)): 

[O, 01 [I, 11 [2, 21 [3, 31 [4, 01 [5, 11 [6, 01 [ 7 ,  01 [6, 11 [4, 21 
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